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Abstract: Neurons critically depend on mitochondria for ATP production and Ca2+ buffering. They
are highly compartmentalized cells and therefore a finely tuned mitochondrial network constantly
adapting to the local requirements is necessary. For neuronal maintenance, old or damaged mito-
chondria need to be degraded, while the functional mitochondrial pool needs to be replenished with
freshly synthesized components. Mitochondrial biogenesis is known to be primarily regulated via
the PGC-1α-NRF1/2-TFAM pathway at the transcriptional level. However, while transcriptional
regulation of mitochondrial genes can change the global mitochondrial content in neurons, it does
not explain how a morphologically complex cell such as a neuron adapts to local differences in
mitochondrial demand. In this review, we discuss regulatory mechanisms controlling mitochondrial
biogenesis thereby making a case for differential regulation at the transcriptional and translational
level. In neurons, additional regulation can occur due to the axonal localization of mRNAs encoding
mitochondrial proteins. Hitchhiking of mRNAs on organelles including mitochondria as well as
contact site formation between mitochondria and endolysosomes are required for local mitochondrial
biogenesis in axons linking defects in any of these organelles to the mitochondrial dysfunction seen
in various neurological disorders.

Keywords: PGC-1α; mitochondrial biogenesis; transcription; translation; AMPK; mTORC1;
insulin; neurons

1. Introduction

Mitochondria are double membrane organelles that harbor their own DNA (mtDNA).
They are often referred to as the powerhouse of the cell as they produce adenosine triphos-
phate (ATP) via oxidative phosphorylation (OXPHOS). The OXPHOS pathway generates
ATP by several oxidation-reduction reactions involving electron transfer from NADH and
FADH2 to oxygen across transmembrane protein complexes in the inner mitochondrial
membrane. In these reactions, NADH and FADH2 are oxidized to NAD+ and FAD, respec-
tively [1]. Apart from ATP production, mitochondria also play essential roles in various
other cellular functions such as intracellular calcium (Ca2+) homeostasis and regulation
of apoptosis [2]. Neurons critically depend on mitochondria due to their high energy
demand and need for tight Ca2+ regulation to maintain neuronal activity [3]. Consequently,
mitochondrial dysfunction is directly linked to neurodegenerative diseases and aging [4,5].
Neurons are highly polarized cells with a complex structure and different subcellular com-
partments including a cell body, dendrites, axons and synapses. The different parts of the
neuron do not only have different functions but also different energy demands. As a conse-
quence, a finely tuned mitochondrial network constantly adapting to the local requirement
of the neuronal compartment is necessary. This is achieved by mitochondrial transport
along axons and dendrites, fusion and fission and degradation of damaged organelles via
mitophagy, as well as mitochondrial biogenesis [6,7]. As mitochondria cannot be made de
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novo, the biogenesis of mitochondrial proteins requires already existing organelles, which
duplicate and express their mtDNA, as well as import of over 1000 proteins encoded in
the nucleus [8]. Hence, a tight regulation and constant crosstalk between the nucleus and
mitochondria is required to ensure proper mitochondrial biogenesis.

2. Regulation of Mitochondrial Biogenesis by PGC-1α

The co-transcriptional regulation factor PGC-1α (peroxisome-proliferator-activated
γ co-activator-1α) is known as the master regulator of mitochondrial biogenesis. It ac-
tivates different transcription factors including NRF-1 and NRF-2 (nuclear respiration
factors 1 and 2), which promote the expression of several nuclear-encoded mitochondrial
genes. Furthermore, they drive the expression of the nuclear-encoded TFAM (mitochondrial
transcription factor A), which is required for transcription and replication of mtDNA [9,10].

Several intracellular signaling molecules generated or regulated by mitochondria
(Figure 1) are involved in promoting mitochondrial biogenesis via the PGC-1α-NRF-1/2-
TFAM pathway, including the AMP/ATP ratio (via AMPK), the NAD+/NADH ratio (via
SIRT1) and Ca2+ levels (via CaMK) [11]. AMPK (adenosine monophosphate-activated pro-
tein kinase) is a serine/threonine protein kinase that is composed of one catalytic α subunit
and two regulatory β and γ subunits [12]. An increased AMP/ATP ratio induces activation
of AMPK, which directly phosphorylates and thereby activates PGC-1α [13]. PGC-1α
in turn controls expression of several mitochondrial genes as well as its own [13,14]. In
addition to activating AMPK, AMP can also be converted to cyclic AMP (cAMP) by adenyl
cyclase and subsequently stimulate PKA activity. PKA in turn phosphorylates the cAMP
response element binding (CREB) protein in the nucleus [15]. CREB is a transcription factor
that binds to the promoter of PGC-1α [16], thereby promoting mitochondrial biogenesis.
Apart from AMPK, SIRT1 (Sirtuin 1) is another energy sensor that plays an important
role in mitochondrial biogenesis. SIRT1 is a deacetylase that is activated in response to an
increased NAD+/NADH ratio caused by energy stress. Once activated, SIRT1 deacetylates
PGC-1α resulting in its activation [17]. Interestingly, the signaling pathways of the two
major energy sensors, AMPK and SIRT1, seem to be interconnected as AMPK acts upstream
of SIRT1 by increasing intracellular NAD+ levels leading to SIRT1 activation, deacetylation
of PGC-1α and mitochondrial biogenesis [18–21]. Finally, Ca2+ also plays an important
role in regulating mitochondrial biogenesis via the PGC-1α-NRF-1/2-TFAM pathway [22].
Mechanistically, Ca2+ promotes CaMK (calcium/calmodulin-dependent protein kinase)
activity, which phosphorylates p38 MAPK (p38 mitogen-activated protein kinase), resulting
in activation of PGC-1α [22–24]. Interestingly, CaMK can also stimulate PGC-1α via CREB
activation [14]. Consequently, CREB might be involved in both AMP- and Ca2+-dependent
mitochondrial biogenesis.

Since the majority of the studies about mitochondrial biogenesis have been performed
in non-neuronal cells, very little is known about its regulation in neurons. However, as
in other cells, PGC-1α is the master regulator of mitochondrial biogenesis in neurons [11].
Overexpression of PGC-1α has been shown to result in an increased number of mito-
chondria and improved mitochondrial function in primary hippocampal neurons [25].
Knockdown of PGC-1α, on the other hand, leads to a reduction in dendritic mitochondria
and inhibition of synaptogenesis in hippocampal neurons [26]. Furthermore, PGC-1α has
been shown to control axonal mitochondrial density in a SIRT1-dependent manner [27]. It
remains to be determined how much local activation of AMPK, SIRT1 or CaMK can elicit
global changes in mitochondrial transcription as discussed below.
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Figure 1. Regulation of mitochondrial biogenesis at the transcriptional and translational level. At the
transcriptional level, the PGC-1α-NRF-1/2-TFAM pathway is the master regulator of mitochondrial
biogenesis. Increased AMP/ATP ratio, NAD+/NADH ratio and Ca2+ levels, which are part of
mitochondrial feedback mechanisms within the cell, result in activation of AMPK, PKA, SIRT1 and
CaMK that in turn lead to PGC-1α stimulation. Once activated, PGC-1α promotes transcription
of nuclear-encoded mitochondrial genes via NRF-1/2 and transcription of mitochondrial-encoded
genes via expression of TFAM. At the translational level, the insulin-induced PI3K/AKT/mTORC1
pathway plays a major role in mitochondrial biogenesis. Via activation of eIF4E, mTORC1 increases
the translation of nuclear-encoded mitochondrial proteins, which are imported into mitochondria.
AKT, however, also has an effect on transcription via inhibition of FOXO1 and consequent activation
of PGC-1α. Furthermore, AMPK is also a substrate of AKT, which is inhibited by AKT-induced
phosphorylation. Finally, AMPK and mTORC1 can inhibit each other by direct phosphorylation.

3. Regulation of Mitochondrial Biogenesis by Signaling Pathways

Insulin, the main hormone involved in fuel metabolism, is an important regulator of
mitochondrial biogenesis (Figure 1). Upon binding to the insulin receptor, insulin elicits
the phosphoinositide 3-kinase (PI3K)-dependent activation of AKT [28]. AKT in turn
phosphorylates and thereby inhibits the transcription factor FOXO1 (Forkhead Box Protein
O1) [29–31]. AKT-induced FOXO1 inhibition increases expression and activity of PGC-1α
thereby stimulating transcription of mitochondrial genes [32–36]. Despite some conflicting
studies [37,38], the overall agreement is that insulin signaling promotes mitochondrial
biogenesis [39,40]. In line with this, several studies have shown that insulin treatment stim-
ulates mitochondrial protein synthesis and function [41,42]. AKT also activates mTORC1
(mammalian target of rapamycin complex 1), which not only regulates mitochondrial
oxidative function [43] via stimulation of PGC-1α [44] but also increases the translation
of nuclear-encoded mitochondrial proteins via activation of eIF4E (eukaryotic translation
initiation factor 4E) [45]. Interestingly, insulin signaling is also clearly linked to various
aspects of neuronal mitochondrial function including respiration, ATP production and
Ca2+ buffering as well as protein homeostasis and biogenesis [46]. In cortical neurons,
insulin treatment has been shown to enhance mitochondrial respiration [47]. This in vitro
finding could be confirmed in mice, where intranasal application of insulin increases brain
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mitochondrial respiration accompanied by enhanced mtDNA levels as well as increased mi-
tochondrial protein levels and PGC-1α expression in the hippocampus [48]. This supports
the model that insulin signaling promotes mitochondrial biogenesis also in neurons.

To add to the complexity, the insulin/AKT pathway has also been shown to inhibit
AMPK through phosphorylation via AKT [49–55]; and mTORC1 directly inhibits AMPK
through an inhibitory phosphorylation [56]. AMPK, conversely, can also downregulate
mTORC1 signaling via phosphorylation [57,58]. This reciprocal inhibition may result in a
differential regulation of mitochondrial biogenesis at the transcriptional versus the transla-
tional level. Hence inhibition of mTORC1 signaling by AMPK would reduce mitochondrial
protein biogenesis despite an increase in transcription and vice versa. This may explain how
mitochondrial synthesis and activity can be decreased (via reduced mTORC1 signaling)
despite increased expression of PGC-1α (via increased AMPK signaling). This is in line
with several studies demonstrating that the correlation between mammalian expression
levels of mRNA and protein is fairly low [59–61] and that shifts in metabolism, as for
example seen during neuronal differentiation, are executed at the translational level [62].

Of note, the signals stimulating PGC-1α expression, including the AMP/ATP ratio,
the NAD+/NADH ratio and Ca2+, are part of mitochondrial feedback mechanisms within
the cell (Figure 1). Cell-intrinsic signals may demand a more long-term and therefore
slower adaptation, which is obtained by transcriptional upregulation of mitochondrial
genes, in contrast to the quick and transient regulation of translation by mTORC1 triggered
by extrinsic signals such as insulin and other growth factors.

Finally, also other steps beyond transcription and translation could be controlled by
cellular signaling pathways. This includes the localization of mRNAs encoding mitochon-
drial proteins (as discussed below) and the regulated removal of mitochondria by selective
autophagy processes (mitophagy). In mammals, several mitophagy pathways and proteins
have been described including PINK1 (PTEN-induced kinase 1), Parkin, BNIP3L/NIX and
FUNDC1 [63]. The PINK1/Parkin-dependent pathway is the best characterized pathway
for degradation of damaged mitochondria. Briefly, in healthy mitochondria, PINK1 needs
to be constantly synthesized, imported and degraded [64]. On damaged mitochondria,
however, PINK1 is stabilized and recruits Parkin to the mitochondria, which in turn leads
to initiation of mitophagy, recruitment of autophagy receptors and eventually lysosomal
degradation [65,66]. Similar to mitochondrial biogenesis, mitophagy is also regulated by
cellular signaling pathways including AMPK signaling (see [67] for more detail). Inter-
estingly, in addition to their well-known role in mitophagy, PINK1 and Parkin are also
involved in regulating mitochondrial biogenesis (as discussed below). Additionally, the
import of mitochondrial precursor proteins through the translocases of the outer (TOM)
and inner membrane was found to be regulated by several kinases in yeast [8,68–71] and
recently also confirmed to be regulated in mammalian cells [72]. It will be interesting to
reveal further mechanistic connections between these processes and the transcriptional as
well as translational pathways described here.

4. Mitochondrial Biogenesis by mRNA Localization and Axonal Translation

As the majority of mitochondrial proteins is encoded in the nucleus, it has long been
assumed that mitochondrial biogenesis is restricted to the neuronal cell body. Newly
generated mitochondria subsequently travel to distal parts of the neurons and replace
damaged mitochondria, which in turn are retrogradely transported to the cell body for
degradation. The speed of transport, however, which is estimated to be around 0.5 µm/s
in neurons [73,74], creates a challenge for the neuron since newly generated mitochondria
would take days to reach distal parts of the axon. While mitochondrial proteins are gen-
erally longer lived than other mammalian proteins [75,76], there are also exceptions to
this rule. In line with this, nuclear-encoded mitochondrial transcripts have been found in
axons [77–80], and, interestingly, transcripts encoding for mitochondrial proteins have been
shown to be significantly enriched in axons compared to the somatodendritic region [81,82].
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Furthermore, translation of both mitochondrial- [83] and nuclear-encoded [84–86] mito-
chondrial proteins could be observed in axons.

mRNAs contain cis- and trans-acting factors, which determine their subcellular lo-
calization. Some mRNAs have 3′ untranslated region (UTR) motifs, called ‘zipcodes’,
which regulate the localization of the mRNAs to axons [87–89]. Additionally, mRNAs
can interact with RNA-binding proteins (RBPs) forming so-called messenger ribonucle-
oprotein (mRNP) granules. These assemblies are important for regulation of subcel-
lular transport and stability of mRNAs. RNPs can phase-separate into membraneless
foci [90] and interact with motor proteins for transport along axons and dendrites [91,92].
One example is SFPQ (splicing factor, proline-glutamine rich), an RBP that binds multi-
ple mRNAs, including laminb2 and bclw, allowing for their trafficking along axons [93]
(Figure 2A). Both laminb2 and bclw transcripts have been shown to be locally translated in
axons and their protein products localize to mitochondria [86,94]. An emerging concept
is the tethering of mRNPs directly onto organelles allowing for mRNA transport along
axons and also on-demand local translation in distal parts of the neurons. It has already
been demonstrated that mRNPs can hitchhike on mitochondria, early endosomes, late
endosomes and lysosomes [84,85,95–97]. Since these organelles are being transported
back and forth along neurons, hitchhiking represents an ideal, energy efficient way to
distribute mRNAs in axons. We have recently shown that the transcript encoding for the
mitochondrial protein PINK1 and potentially also other nuclear-encoded mitochondrial
transcripts are tethered to neuronal mitochondria allowing for axonal co-transport [85]
(Figure 2A). PINK1, one of the main players in mitophagy, is a mitochondrial protein with
a very short half-life [98,99]. Interestingly, mitochondrial hitchhiking of the Pink1 mRNA
requires translation of the protein in addition to binding of the transcript. Furthermore,
the coding region rather than the 3′UTR is required for mitochondrial localization [85].
The tethering complex for the Pink1 transcript is composed of the outer mitochondrial
membrane protein Synaptojanin 2 binding protein (SYNJ2BP) and Synaptojanin 2 (SYNJ2),
which contains an RNA-binding motif [85] (Figure 2A). Interestingly, SYNJ2BP itself has
also been identified as an RBP [100,101]. A similar translation dependent mechanism may
be tethering the Cox7c (cytochrome c oxidase subunit 7C) transcript to mitochondria. Cox7c
mRNA encoding an essential component of the mitochondrial respiratory chain has been
demonstrated to be associated and co-transported with mitochondria along axons [95]
(Figure 2A). Another recent study has found several mRNAs localized to early endo-
somes [102]. Since part of the mRNAs dissociate from the early endosomes upon puromycin
treatment, the localization can be either translation-dependent or -independent [102]. Fur-
thermore, for EEA1 (early endosomal antigen 1) mRNA encoding an endosomal tethering
factor and fusogen, the coding sequence is sufficient for endosomal localization, while the
3′UTR is not required [102] (Figure 2B), similar to the Pink1 and Cox7c transcript tethering.
Fittingly, early endosomes and endolysosomes as well as mitochondria have been shown
to be hotspots of local protein synthesis in axons [84,97,103].

How ribosomes are localized to those specific hotspots is an active area of research.
A recent study identified the novel Rab5 effector complex FERRY in neurons, which
localizes to early endosomes and interacts both with the translation machinery and mR-
NAs [97]. Importantly, it has been shown to selectively bind to mRNAs that are enriched for
nuclear-encoded mitochondrial genes and to colocalize with mitochondria [97] (Figure 2B),
suggesting that the FERRY complex transports ribosomes involved in local mitochon-
drial biogenesis.
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Figure 2. Transport of nuclear-encoded mitochondrial transcripts in neurons. Motor proteins actively
transport RNA granules, mitochondria and Rab5-positive early endosomes as well as Rab7- and
LAMP1-positive endolysosomes along axons. In this way, nuclear-encoded mitochondrial transcripts
that are either part of RNA granules or tethered to the organelles reach distal parts of the neurons
allowing for local translation. (A) The mitochondrial laminb2 and bclw transcripts are transported in
RNA granules via binding to their RBP SFPQ. Cox7c and Pink1 mRNA are tethered to mitochondria.
The tethering complex for Pink1 mRNA is composed of SYNJ2BP and SYNJ2. (B) Several mRNAs are
transported with early endosomes. The FERRY complex localizes to early endosomes and interacts
both with the translation machinery and mRNAs that are enriched for nuclear-encoded mitochondrial
genes. (C) Endolysosomes transport G3BP1-containing RNA granules using ANXA11 as a tether.

Finally, also hitchhiking of RNA granules on endolysosomes has been reported. RNPs
containing nuclear-encoded mitochondrial transcripts associate with moving Rab7-positive
endolysosomes in axons [84]. Moreover, annexin A11 (ANXA11) was identified as the tether
that links G3BP1 (GTPase-activating protein SH3 domain-binding protein 1)-containing
RNA granules to endolysosomes [96]. While the RBP G3BP1 can be part of stress granules,
where translationally stalled RNAs are stored upon stress [104], G3BP1 can also localize
to RNA granules positive for CLUH (clustered mitochondria homologue) distinct from
stress granules [105]. CLUH has been identified as an RBP that binds a subset of nuclear
transcripts encoding mitochondrial proteins [106]. It regulates the expression of mitochon-
drial proteins functioning in key metabolic pathways in a posttranscriptional fashion. It
promotes both mRNA stability and their translation [107]. In line with this, the Drosophila
orthologue Clueless tethers ribosomes to the outer mitochondrial membrane via interaction
with the TOM complex subunit Tom20 [108]. It remains to be determined what kind of
G3BP1-containing granule hitchhikes on endolysosomes and whether mRNAs encoding
mitochondrial proteins are coming along for the ride (Figure 2C).

5. Interplay between Cellular Signaling and Local Translation

While transcription of all nuclear-encoded mitochondrial proteins is regulated on a
global scale in the cell body via the PGC-1α-NRF-1/2-TFAM pathway, the discovery of local
translation may act as contributor to mitochondrial diversity within one cell. However, so
far very little is known about the signaling pathways regulating mitochondrial biogenesis
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at the translational level in axons far away from the cell body. It is very likely that neurons
have developed their own, neuron-specific mechanisms for regulating local mitochondrial
biogenesis that are precisely adapted to their complex architecture and energetic demands.

Based on recent findings, it seems evident that protein translation preferentially occurs
at contact sites between different organelles. Both early endosomes and endolysosomes
have already been identified as translational platform for mitochondrial proteins in neu-
rons [84,97]. Interestingly, both mTORC1 and AMPK, which play an important role in regu-
lating mitochondrial biogenesis, are recruited to endolysosomes for activation [109–112].
One scenario that activates mTOR locally is axonal injury, which indeed leads to upregula-
tion of local translation in an mTORC1-dependent manner, including the mTOR transcript
itself [113]. mTOR mRNA has been shown to be transported into axons by the RBP nucle-
olin [113]. Given the observed effect of mTORC1 on mitochondrial protein translation [45],
it is possible that local translation of mitochondrial transcripts is also upregulated upon
axonal injury. This will support local ATP generation, which is critical to promote axon
regeneration and neuronal survival [114].

Similarly, upon mitochondrial damage, stabilization of the PINK1 kinase on the outer
mitochondrial membrane promotes translation of nuclear-encoded respiratory chain com-
plex mRNAs, which are localized to the outer mitochondrial membrane in a PINK1/Tom20-
dependent manner [115]. This leads to an increase in local mitochondrial biogenesis in the
vicinity of damaged organelles, potentially representing an attempt to rescue the mitochon-
drial damage preceding activation of mitophagy by PINK1 activity. Given the fact that the
Pink1 mRNA is locally translated and can get activated in axons [85,116], this local feedback
loop may also be operational in axons and represent a mechanism to homeostatically boost
local mitochondrial biogenesis upon mitochondrial stress. Furthermore, other proteins
have been reported to localize mRNAs to mitochondria. The outer mitochondrial mem-
brane proteins A-kinase anchoring protein 1 (AKAP1) in humans and MDI in Drosophila
recruit transcripts to the mitochondrial surface [117–119] and are involved in the selection
mechanism that prevents transmission of deleterious mtDNA mutations in Drosophila
oocytes [120]. Interestingly, this is again dependent on PINK1, which phosphorylates the
translation stimulator La-related protein (Larp) to selectively inhibit local protein synthesis
on defective mitochondria thereby limiting the replication of their mtDNA [120].

Interestingly, CLUH-dependent RNA granules have also been shown to function as
signaling hubs, which control mTORC1 recruitment and activation as well as the function
of other RBPs such as G3BP1 and 2 as mentioned above. Upon starvation, CLUH inhibits
mTORC1 and stimulates mitochondrial turnover via mitophagy [105]. The function of
CLUH in axons is not fully known yet. It is, however, very likely that CLUH plays a critical
role due to its function in mitochondrial maintenance by controlling local translation
and mitophagy.

Finally, axonal branching and growth as well as axonal regeneration are also associated
with local translation of mitochondrial proteins. These processes require huge amounts of
energy and are supported by local ATP production via axonal mitochondria [103,121–124].
A recent study showed that the nuclear-encoded mitochondrial translation initiation factor
3 (mtIF3) is locally translated in developing axons and promotes axonal translation of
mitochondrial proteins thereby supporting axonal growth [125]. In addition to axonal
growth, synaptic transmission is also an energy-consuming process. Interestingly, synaptic
signaling stimulates AMPK activity due to decreased ATP levels [126,127]. Given the
huge amounts of energy consumed by synaptic transmission [128], one may speculate that
presynaptic AMPK activation can have two effects: Firstly, it may exert a global activation
of the PGC-1α response leading to increased mitochondrial biogenesis on a global scale.
In line with that, depolarization-induced AMPK activation results in increased PGC-1α,
NRF-1 and TFAM levels as well as increased ATP production in primary rat visual cortical
neurons [129]. However, it still remains to be determined if AMPK activity limited to
individual synapses would create a signal that is able to propagate or be transported all
the way to the cell soma to elicit a global transcriptional response. Secondly, local AMPK
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activation may restrict local synthesis of mitochondrial proteins via inhibition of mTORC1-
dependent protein translation during these times of high ATP demand. After a period of
acute synaptic activity, ATP levels can recover, resulting in decreased AMPK activity and
potentially mTORC1 stimulation. Subsequent local translation of mitochondrial proteins
may contribute to the repair and replenishment of mitochondria in axons leading to a
complete restoration of local ATP levels. However, it has been shown that synaptic activity
induces translation of mitochondrial proteins [130] but it remains to be determined if this
increase occurs pre- or post-synaptically. Interestingly, chronically elevated intracellular
Ca2+ levels, as may be the case during sustained synaptic signaling, have been shown to
inhibit AMPK via activation of the protein phosphatase 2A in muscle cells [131,132], which
would allow for mTORC1-dependent protein synthesis. Taken together we propose a model
in which, during acute synaptic signaling, AMPK activation may reduce local mitochondrial
protein synthesis to preserve energy. This would be in contrast to sustained activity that may
activate axonal translation analogous to the post-synaptic compartment [133]. However, it
remains to be determined if local AMPK activation upon acute synaptic activity indeed
inhibits local mTORC1 signaling in areas with ATP shortage.

6. Importance of Mitochondrial Biogenesis in Neuronal Health

Mitochondrial maintenance including precise regulation of mitochondrial biogen-
esis plays a crucial role in neuronal health. This becomes apparent in the fact that the
PGC-1α-NRF-1/2-TFAM pathway is downregulated in many neurodegenerative diseases
including Parkinson’s disease (PD), Huntington’s disease (HD) and Alzheimer’s disease
(AD) [11,134,135]. In PD, which is characterized by dopaminergic neurons loss in the sub-
stantia nigra, mtDNA levels [136] as well as the expression levels of PGC-1α and its target
genes, such as NRF-1, are reduced [137,138]. The parkin interacting substrate (PARIS),
whose levels are controlled by phosphorylation via PINK1 and ubiquitination via the E3
ubiquitin ligase parkin [139], has been shown to repress the transcription of PGC-1α by
binding to its promoter [138]. Interestingly, conditional knockout of parkin or overexpres-
sion of PARIS results in the selective loss of dopaminergic neurons in the substantia nigra.
Parkin or PGC-1α coexpression can prevent the PARIS-induced dopaminergic neuron
loss [138]. In HD, a mutation in the huntingtin gene leads to aggregation of the mutant
huntingtin protein and neurodegeneration in the striatum. Interestingly, mutant hunt-
ingtin has been shown to associate with the promoter of PGC-1α, thereby repressing its
transcription and leading to reduced PGC-1α levels [140]. Accordingly, overexpression
of PGC-1α in cultured striatal neurons and transgenic HD mice is neuroprotective [140].
In hippocampal tissue from AD patients and M17 cells overexpressing an AD-causing
amyloid precursor protein (APP) mutant, the number of mitochondria is reduced [141,142].
Furthermore, the levels of PGC-1α, NRF-1/2 and TFAM are decreased, suggesting im-
paired mitochondrial biogenesis as cause for the reduced mitochondrial number [143].
Accordingly, overexpression of PGC-1α can reverse the mitochondrial biogenesis defect.
Apart from PGC-1α, phospho-CREB levels are also reduced in the cells overexpressing APP.
Interestingly, cAMP can rescue the expression of phospho-CREB and PGC-1α, while inhibi-
tion of PKA prevents this effect [143]. This indicates that the cAMP/PKA/CREB pathway
plays an important role in controlling PGC-1α expression in this AD model. As mentioned
above, insulin is also a critical regulator of mitochondrial biogenesis. Besides hampered
mitochondrial biogenesis and function, AD has also been associated with impaired insulin
signaling [144–146]. Interestingly, studies have shown that intranasal delivery of insulin
results in improved cognitive performance in AD patients [147–150]. Given the supportive
role mitochondria perform during synaptic plasticity [151], insulin-induced mitochondrial
biogenesis may contribute to the positive effects of intranasal insulin in these patients.

Apart from defects in the global transcriptional regulation of mitochondrial biogenesis
via the PGC-1α-NRF-1/2-TFAM pathway, it has been shown that mitochondrial health is
also severely impaired when transport and local translation of nuclear-encoded mitochon-
drial transcripts are disturbed [152,153], with dire consequences for cellular and organismal



Biomolecules 2022, 12, 1595 9 of 16

health. Loss of local translation of mitochondrial transcripts, such as laminb2 and bclw, as
well as their RBP SFPQ, has been shown to result in axon degeneration [86,93,94], while
dysregulation of Cox4 mRNA transport into axons of the mouse forebrain leads to increased
reactive oxygen species levels accompanied by an anxiety- and depression-like pheno-
type [154]. Furthermore, the mitophagy protein PINK1, whose transcript is hitchhiking on
mitochondria along axons [85] and which modulates the synthesis of other mitochondrially
associated transcripts [115], is mutated in familial forms of PD [155]. Axons of the predomi-
nantly affected cell type in PD, dopaminergic neurons, show a unique architecture. They
belong to the most branched neurons with a tremendously complex arborization [156]. Ac-
cordingly, mRNA transport along axons and proper mitochondrial maintenance, including
biogenesis and mitophagy, is of particular importance in dopaminergic neurons and one of
the reasons why they may be more susceptible to PD.

Additionally, defects in transport and translation at mito-endolysosomal contact sites
may impact the local availability of mitochondrial proteins. Loss of the FERRY complex,
which tethers nuclear-encoded mitochondrial transcripts and ribosomes to early endo-
somes, has been shown to severely compromise brain development and function resulting
in intellectual disability and epilepsy [97], which may be linked to defects in local translation
of mitochondrial proteins. Other proteins involved in mRNA hitchhiking on endolyso-
somes are found mutated in neurodegenerative diseases, including Rab7 and ANXA11.
Missense mutations in Rab7, a small GTPase involved in transport of late endosomes,
cause Charcot-Marie-Tooth type 2B (CMT2B) [157]. As a consequence, impaired local
translation of mitochondrial proteins on axonal endosomes has been observed in neurons
carrying disease relevant mutations. This results in compromised mitochondrial function
and axonal viability [84]. ANXA11, on the other hand, has been shown to be associated
with amyotrophic lateral sclerosis (ALS) [158,159]. Mutations in ANXA11 disrupt the inter-
action between mRNPs and lysosomes, thereby impairing mRNA transport along axons in
ALS [96]. Since RBPs play a critical role in proper axonal localization of mRNAs, it is not
surprising that mutations or loss of RBPs have been linked to neurological diseases [160].
For instance, mutations in the TAR-DNA-binding-protein 43 (TDP-43) also result in familial
forms of ALS as well as frontotemporal dementia [161]. ALS-associated mutations in
TDP-43 have been demonstrated to directly impair axonal mRNA transport [162,163] due
to the formation of RNP condensates, which affect mRNA localization and translation [164].
Furthermore, a recent study shows that pathological TDP-43 condensates primarily affect
local synthesis of nuclear-encoded mitochondrial proteins in axons and synapses of motor
neurons. This leads to impaired mitochondrial function and consequently neuromuscular
junction degeneration [165]. These results suggest that the localization of mitochondrial
transcripts as well as axonal translation are crucial determinants of neuronal health.

Taken together, mitochondrial biogenesis is impaired in several neurodegenerative
diseases, both at the global level of PGC-1α and at the level of controlled transport and
local translation of mitochondrial transcripts. Targeting mitochondrial biogenesis at both
levels may result in promising therapeutic strategies.

7. Conclusions

In several studies, it has become evident that transcriptional upregulation does not
necessarily lead to increased protein levels [59–61] as these processes are regulated by
different signaling pathways. This is also the case for mitochondrial biogenesis. While
the cell-intrinsic molecules including the AMP/ATP ratio, the NAD+/NADH ratio and
Ca2+ levels control transcription via AMPK and the PGC-1α-NRF1/2-TFAM pathway, the
cell-extrinsic molecule insulin mainly controls translation of mitochondrial proteins via
the AKT/mTORC1 pathway. Due to the separate regulation at the transcriptional and
translational level, the cell can respond differently depending on the nature of the stimulus,
thereby allowing for short- or long-term adaptation in the regulation of mitochondrial
biogenesis. Cell-intrinsic activation of AMPK promotes transcription while potentially
downregulating translation of mitochondrial proteins due to mTORC1 inhibition. Al-
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though very little is known about the regulation of mitochondrial biogenesis in neurons,
this regulatory pathway may be of particular importance given the mitochondrial dys-
function observed in neurodegenerative diseases. Understanding the regulatory pathways
controlling neuronal mitochondrial biogenesis at all levels and the critical contribution of
axonal local translation at organellar contact sites will not only provide new insights into
the complexity of mitochondrial maintenance in highly polarized cells such as neurons but
may also result in new therapeutic targets for various neurodegenerative disorders.
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