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Abstract: This work introduces a process to develop a tool-independent, high-fidelity, ray tracing-
based light detection and ranging (LiDAR) model. This virtual LiDAR sensor includes accurate
modeling of the scan pattern and a complete signal processing toolchain of a LiDAR sensor. It is
developed as a functional mock-up unit (FMU) by using the standardized open simulation interface
(OSI) 3.0.2, and functional mock-up interface (FMI) 2.0. Subsequently, it was integrated into two com-
mercial software virtual environment frameworks to demonstrate its exchangeability. Furthermore,
the accuracy of the LiDAR sensor model is validated by comparing the simulation and real measure-
ment data on the time domain and on the point cloud level. The validation results show that the mean
absolute percentage error (MAPE) of simulated and measured time domain signal amplitude is 1.7%.
In addition, the MAPE of the number of points Npoints and mean intensity Imean values received from
the virtual and real targets are 8.5% and 9.3%, respectively. To the author’s knowledge, these are the
smallest errors reported for the number of received points Npoints and mean intensity Imean values
up until now. Moreover, the distance error derror is below the range accuracy of the actual LiDAR
sensor, which is 2 cm for this use case. In addition, the proving ground measurement results are
compared with the state-of-the-art LiDAR model provided by commercial software and the proposed
LiDAR model to measure the presented model fidelity. The results show that the complete signal
processing steps and imperfections of real LiDAR sensors need to be considered in the virtual LiDAR
to obtain simulation results close to the actual sensor. Such considerable imperfections are optical
losses, inherent detector effects, effects generated by the electrical amplification, and noise produced
by the sunlight.

Keywords: advanced driver-assistance systems; automotive LiDAR sensor; open standard; standardized
interfaces; open simulation interface; functional mock-up interface; functional mock-up unit; co-
simulation environment; CarMaker; silicon photomultipliers detector; time domain signal; point
clouds; proving ground

1. Introduction

Advanced driver-assistance systems (ADAS) are currently an area of focus in the
automotive industry. Modern vehicles are equipped with different ADAS, increasing the
driver’s comfort and safety, as depicted in Figure 1. According to the German Federal
Statistical Office, fatalities in road accidents in Germany dropped from 21,330 in 1970 to
2562 by 2021 [1], regardless of the tremendous increase in the number of motor vehicles
that took place during these years. Figure 2 summarizes the ADAS role in reducing the
number of fatalities in traffic accidents.
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Pedestrian Detection

Figure 1. ADAS functions used in modern vehicles, Source: adapted from [2].
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Figure 2. Decrease in road fatalities despite the increase in the number of motor vehicles due to the
advances of ADAS in Germany, Source: adapted from [1,3]. ABS, anti-lock braking system; ACC,
adaptive cruise control; ESC, electronic stability control; LDW, lane departure warning; PA, parking
assistant; TSR, traffic sign recognition.

The complexity of ADAS is also increasing rapidly, and validation of such systems
is becoming challenging. The validation of such a complex system in the real world is
expensive and time-consuming. According to the RAND cooperation statistical studies,
5 billion km of test driving is required to demonstrate the autonomous vehicle failure rate
being lower than that of humans [4]. Similar statistical consideration given in [5] also proves
that 240 million km of the test drive is required for the verification of the ADAS, which is
not feasible to attain. Numerous validation processes have been adopted to overcome this
challenge, model-in-the-loop (MiL), hardware-in-the-loop (HiL), and software-in-the-loop
(SiL) [5]. Moreover, we see increasing efforts and work from academia and industry with
regard to virtual validation processes. Research projects including VIVID [6], DIVP [7],
VVM [8], and SET level [9] also endorsed the same concept. In addition, the automotive
industry has started considering type approval based on virtual tests [10]. In addition,
the ADAS complexity requires joint efforts and collaboration of industrial players from
different domains, which is only possible with an effective exchange of models without
intellectual property (IP) violation [11]. Therefore, open standards and interfaces have been
introduced, including an open simulation interface (OSI) and functional mock-up interface
(FMI) [11,12].

The virtual environment and environmental perception sensors exhibit the complexity
and behavior of real-world scenarios, and sensors are essential elements and enablers in
all these activities [13]. However, the state-of-the-art virtual scenarios and environmental
perception sensors provided by simulation tool vendors typically offer a generic, parameter-
izable model of the optical or electromagnetic wave propagation but often do not consider
sensor-specific effects in detail. Moreover, no commonly accepted metrics or standards
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exist to prove the fidelity of virtually developed environmental perception sensor models
and scenarios [14].

This paper contributes to the ADAS virtual testing and validation with a tool-independent,
high-fidelity LiDAR sensor model. The proposed model is developed by using a standard-
ized OSI 3.0.2 and FMI 2.0. It was integrated successfully into the virtual environment
of CarMaker from IPG Automotive, and the AURELION of dSPACE to verify the ex-
changeability [15,16]. The operational performance of the LiDAR FMU model is the same,
irrespective of the tool used. The presented virtual sensor includes the complete signal
processing toolchain of the Blickfeld Cube 1 LiDAR sensor. Moreover, it also considers the
optical, electrical, and environmental effects to generate a realistic output. Furthermore,
a real-world static test scenario is accurately constructed in the virtual environment of Car-
Maker. Finally, real and virtual test results are compared to verify the fidelity of the LiDAR
sensor model on the time domain and point cloud levels. Furthermore, key performance
indicators (KPIs) are defined to authenticate the accuracy of the sensor model at the point
cloud level.

The paper is structured as follows: Section 2 describes the LiDAR sensor background.
Then, an overview of the state-of-the-art LiDAR sensor models is given in Section 3. Section 4
describes the modeling approach of the proposed LiDAR sensor model. The LiDAR FMU
modules specifications are explained in Section 5. The results are discussed in Section 6.
Finally, Sections 7 and 8 provide the conclusion and outlook.

2. Background

LiDAR is a range measurement technique that has been used in the military and
aviation fields for many decades. However, since the first realization of an autonomous
vehicle on the road, original equipment manufacturers (OEMs) have enhanced vehicles’
autonomous capabilities by installing different ADAS [17]. As a result, LiDAR technology
has become indispensable for autonomous driving (AD) due to its better angular resolution,
and field-of-view (FoV) than RADAR [18].

LiDAR Working Principle

The LiDAR sensor measures the round-trip delay time (RTDT) that laser light takes to
hit an object and returns to calculate the range [19], as depicted in Figure 3.

Figure 3. LiDAR working principle. LiDAR sensor mounted on ego vehicle simultaneously sends
and receives the laser light partly reflected from the surface of the target and measures the distance.

We have
R =

c · τ
2

, (1)

where R denotes the target range, c is the speed of light, and τ is the RTDT, also known as
time of flight (ToF). The LiDAR sensor measures the range and, together with the spatial
laser beam deflection, the position by using pulsed or modulated waveforms [19].
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3. State of the Art

Automotive perception sensor models can be divided into three categories; ideal,
phenomenological, and physical models depending on their modeling approach and
covered effects [20].

Ideal sensor models, also known as “ground truth (Ground truth provides the sim-
ulated objects’ actual values, dimensions, position, velocities, orientation, and bounding
box.)” sensor models, use the object list provided by the simulation framework in the world
coordinate system as an input. The term ground truth is borrowed from remote sensing,
where it refers to information collected on location for data calibration [21]. These models’
output is a filtered object list as per the sensor-specific FoV [22]. The ideal LiDAR sensor
models are presented in [23,24], and they do not consider any sensor-related imperfections
except FoV and object occlusion. Therefore, these models have low complexity, require less
computation time, and can test the highly automated driving (HAD) function operation
in the early stage of development. It should be noted that the ideal models which are
described in the literature, are mostly generic, and they can fulfill the requirements of differ-
ent environmental perception sensor types, including LiDAR, RADAR, and camera [23,24].
OSI provides the osi3::GroundTruth interface for such models.

Phenomenological sensor models use the object list as an input and apply weather con-
ditions, false alarms (positive/negative), detection probability, and sensor-related effects,
including FoV and limited detection range. This type of sensor model output either raw
data (point clouds) for LiDAR sensors or object lists [25]. Muckenhuber et al. [26] proposed
a generic sensor model that requires a ground truth object list as an input. The model’s
output is a sensor-specific object list, including FoV, object class definition, occlusion,
and probability of false positive and false negative detections. Linnhoff et al. [27] intro-
duced an object-based LiDAR sensor model that outputs object lists and considers partial
occlusion of objects, limitation of angular view, and decreases in the effective range due to
atmospheric attenuation. Hirsenkorn et al. [25] presented a generic non-parametric statisti-
cal methodology to replicate the behavior of the real-world sensor. The developed model
includes various sensor errors that include ranging, latency, false-positive, and occlusion.
The model’s output can be either an object list or raw data. A LiDAR model consisting of
geometrical and physical submodules is presented in [28,29]. The input of the geometrical
model is the object list, including the occlusion, FoV, and beam divergence. The model’s
output is an object list that can be extended to point clouds.

Physical sensor models are based on the physical aspects and are numerically complex.
Hence, they require a lot of computational power and, thus, might not be real-time capable.
The subsequent models use the rendering techniques provided by the simulation frame-
work as input and generate the raw data (point clouds) as an output containing distance,
intensity, and timestamp. Several rendering techniques generate the synthetic LiDAR
sensor raw data; ray tracing, ray casting, rasterization (z-buffers), and ray path [14,30].
Philipp et al. [31] developed a ray casting-based LiDAR sensor model to generate point
clouds. Their presented model includes beam divergence, signal-to-noise ratio (SNR), de-
tection threshold, and material surface reflection properties. Gschwandtner et al. [32] intro-
duced the Blender sensor simulation (Blensor), an open-source LiDAR plugin. The Blensor
toolkit uses the ray casting mechanism of Blender, and it considers the sensor noise, materi-
als’ physical properties, and free space path losses (FSPL). Goodin et al. [33] established a
ray casting LiDAR sensor model and incorporated it into the virtual navigation environ-
ment (VANE). The model can simulate the effects of beam divergence and a Gaussian beam
profile. In [34], an open-source multi-purpose LiDAR simulator HELIOS is proposed. HE-
LIOS exploits a ray casting approach and provides the scan pattern of four beam deflection
units: fiber array, rotating, oscillating, and conic mirror. The effects of beam divergence,
atmospheric attenuation, scanner efficiency, and material surface properties are also mod-
eled. Hanke et al. [35] apply a ray tracing rendering technique for generating synthetic
point clouds. Moreover, the suggested model includes beam divergence, material reflection
properties, detection threshold, noise effects, and atmospheric attenuation. Li et al. [28]
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developed a physical sensor model that requires ray tracing data as an input. In addition,
the model contains beam divergence and power loss due to rain, fog, snow, and haze.
Zhao et al. [29] extend the work of [28]. Their model takes the probability of false alarms
due to the backscattering from water droplets. In addition, the physical effects of beam
divergence and object surface reflectivity were studied by Goodin et al. [36], who also
analyzed the LiDAR signal attenuation and range error due to the rainfall. The commercial
and open-source simulation platforms also provide the LiDAR sensor models with different
fidelity levels.

CARLA is an open-source simulation environment that offers a LiDAR model that
simulates laser rays by using ray casting. The CARLA LiDAR model takes into considera-
tion physical effects, noise, the drop-off in intensity, and the number of point clouds due
to external perturbations [37]. CarMaker provides the real-time capable ray tracing-based
LiDAR model known as LiDAR raw signal interface (LiDAR RSI). The LiDAR RSI regards
propagation losses, object geometry, material surface properties, and incidence angle of ray
for intensity calculation of point clouds [20]. DYNA4 from Vector offers a LiDAR model
which uses a ray casting technique that outputs raw data intensity based on physical effects,
the material surface reflectivity, and ray angle of incidence [38]. The VTD from Vires LiDAR
model operates on a ray tracing engine from NVIDIA [14,35]. The AURELION LiDAR
model is also based on ray tracing. It considers material surface reflectivity, covers noise,
atmospheric attenuation, and fast motion scan effect [39].

This work categorizes the ideal and phenomenological sensor models as low fidelity
because of their simplified modeling approach and covered effects. For instance, the above-
mentioned physical sensor models simulate point clouds according to ray tracing or ray
casting detections but don’t consider sensor-specific effects in detail. Such considerable
effects are optical losses, inherent detector effects, effects generated by the electrical amplifi-
cation, and noise produced by sunlight. That is why we classified them as medium-fidelity
LiDAR sensor models. On the other hand, the sensor model proposed in this work consid-
ers ray tracing detection as input and applies sensor-specific imperfections of the LiDAR
sensor to output the realistic time domain and point cloud data. Therefore, the sensor
model considers the complete signal processing steps of an actual LiDAR sensor. Because of
that, the proposed LiDAR model is classified as a high-fidelity sensor model.

The imperfections implemented in the proposed high-fidelity model significantly
impact LiDAR sensor performance. To prove this point, we have compared the presented
LiDAR model, the state-of-the-art LiDAR model from commercial software results, with the
real measurements at the point cloud level. In addition, the presented LiDAR sensor model
is also validated at the time domain level. An overview of the working principle, covered
effects, and validation approaches of the LiDAR sensor models presented in this section is
listed in Table 1.

Table 1. Overview of the state-of-the-art LiDAR sensor model working principles and validation ap-
proaches.

Authors Model Type Input of
Model

Output of
Model

Covered
Effects

Validation
Approach

Hanke et al. [23] Ideal/low-fidelity Object list Object list FoV and object occlusion N/A

Stolz & Nestlinger
[24]

Ideal/low-fidelity Object list Object list FoV and object occlusion N/A

Muckenhuber et al.
[26]

Phenomenological/
low-fidelity Object list Object list

FoV, object class definition,
occlusion, probability of false
positive and false negative
detections

Simulation result
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Table 1. Cont.

Authors Model Type Input of
Model

Output of
Model

Covered
Effects

Validation
Approach

Linnhoff et al.
[27]

Phenomenological/
low-fidelity Object list Object list

Partial occlusion of objects,
limitation of angular view, and
decrease in the effective range
due to atmospheric attenuation

Simulation result
comparison with
ray tracing model
at object level

Hirsenkorn et al.
[25]

Phenomenological/
low-fidelity Object list Object list Ranging errors, latency,

false-positive, and occlusion Simulation result

Zhao et al. [28] Phenomenological/
low-fidelity Object list Object list or

point clouds
Occlusion, FoV and
beam divergence Simulation result

Li et al. [29] Physical/
medium-fidelity Object list Object list or

point clouds
Occlusion, FoV and
beam divergence Simulation result

Philipp et al. [31] Physical/
medium-fidelity Ray-casting Point clouds

& object list

Beam divergence, SNR,
detection threshold, and
material surface properties

Qualitative compar-
ison with real and re-
ference measuremen-
ts at the object list le-
vel for one dynamic
scenario

Gschwandtner
et al. [32]

Physical/
medium-fidelity Ray-casting Point clouds Sensor noise, materials physical

properties, and FSPL Simulation results

Goodin et al. [33] Physical/
medium-fidelity Ray-casting Point clouds Beam divergence and a

Gaussian beam profile Simulation results

Bechtold & Höfle
[34]

Physical/
medium-fidelity Ray-casting Point clouds

Beam divergence, atmospheric
attenuation, scanner efficiency,
and material surface properties

Simulation results

Hanke et al. [35] Physical/
medium-fidelity Ray-tracing Point clouds

Beam divergence, material
surface properties, detection
threshold, noise effects,
and atmospheric attenuation

Qualitative comparis-
on of synthetic and re-
al data at point cloud
level for one dynamic
scenario

Li et al. [29] Physical/
medium-fidelity Ray-tracing Point clouds

Beam divergence, power
loss due to rain, fog, snow,
and haze

Simulation results for
one static and one dy-
namic scenario

Zhao et al. [28] Physical/
medium-fidelity Ray-tracing Point clouds

False alarm due to the
backscattering from water
droplets

Qualitative comparis-
on with measurement

CARLA [37] Physical/
medium-fidelity Ray-casting Point clouds

signal attenuation, noise
the drop-off in number of
point clouds loss due to
external perturbations

N/A

CarMaker [20] Physical/
medium-fidelity Ray-tracing Point clouds

Noise, the drop-off in intensity,
and the number of point clouds
due to atmospheric attenuation

N/A

DYNA4 [38] Physical/
medium-fidelity Ray-casting Point clouds

Physical effects, the material
surface reflectivity and ray
angle of incidence

N/A

VTD [40] Physical/
medium-fidelity Ray-tracing Point clouds Material properties N/A

AURELION [39] Physical/
medium-fidelity Ray-tracing Point clouds

Material surface reflectivity,
sensor noise, atmospheric
attenuation, and fast motion
scan effect

N/A

Haider et al.
(proposed model)

Physical/
high-fidelity Ray-tracing Time domain

& point clouds

Material surface reflectivity,
beam divergence, FSPL
daylight, daylight filter,
internal reflection of detector
saturation of detector from
bright targets, detector shot noise
and dark count rate, and detection
threshold

Qualitative comparison
of simulation and real
measurement at time do-
main and point cloud
level
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4. LiDAR Modeling Building Blocks

The modeling and simulation of ADAS sensors are complex, multi-domain, concur-
rent, and distributed, requiring expert teams from different disciplines to develop and
authenticate. However, the rapid development of such a system is possible if every partici-
pant prepares their partial solution and integrates it with other partners’ solutions with
ease [41].

4.1. Open Standards

As given in Section 1, the open standards gained significant interest from the automo-
tive industry in the last few years because it allows the accessible exchange of simulation
models between different tools. The LiDAR model developed in this work is for industrial
use. Therefore, we used standardized interfaces FMI and OSI to make it tool-independent.
We have verified the interchangeability of the proposed sensor model by successfully
integrating it into the co-simulation environment of CarMaker and AURELION.

The co-simulation framework provides flexibility to a couple more than one simulation
model by using standardized interfaces FMI and OSI [41].

4.2. Functional Mock-Up Interface

As mentioned earlier, generic, standardized interfaces are required in the automotive
industry to exchange the model between different simulation tools without IP infringe-
ment [41]. Therefore, FMI is a solution to this industrial need. It was an initiative of Daimler
AG with the primary aim to improve the exchange of simulation models between the OEMs
and suppliers [11].

The FMI standard 2.0 contains two types of protocols [42]:
FMI for Model Exchange is an interface to the dynamic system model described by

differential, algebraic and discrete-time equations. Dynamics models don’t have a solver,
and their C-code is generated by simulation environments that other simulation tools can
also use in online and offline simulations.

FMI for Co-Simulation is an interface to connect more than one simulation tool and
subsystems in a co-simulation environment. Each subsystem in the co-simulation interface
has its own solver to solve independently between two communication steps. The master
algorithm steers the data sharing between the subsystems (slaves).

The focus of this research paper is on FMI for a co-simulation stand-alone use case.
FMI co-simulation stand-alone can be applied in different use cases as given in [42], but this
paper focuses on the single process use case shown in Figure 4. In such a case, master and
slave both run on the same process. The master controls the coupled simulation, and the
slaves consist of the model and solver. FMU is the component that implements the FMI
interface [11].

Figure 4. Co-simulation stand-alone use case [11].

4.3. Open Simulation Interface

As mentioned earlier, virtual validation of ADAS and AD is indispensable. Therefore,
logical interfaces from the virtual sensors to ADAS are also required. OSI is the first
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reference implementation of the ISO 23150 for the virtual development and validation of
ADAS systems and sensors endorsed in the Pegasus Project [43]. OSI is a generic interface
that uses a protocol buffer message format developed by Google to exchange information
between the environmental simulation tools, ADAS sensor models, and ADAS [12]. It also
provides the flexibility to integrate the sensor models into the co-simulation environment
by using the so-called OSI sensor model packaging (OSMP) [44]. The OSMP FMUs transfer
the positions and the sizes of the Google protobufs to exchange the data between the
simulation environment and sensor model [45]. To study the detailed description of the
OSI interfaces, the reader is referred to [12].

5. LiDAR Sensor Model

Figure 5 depicts the toolchain and the signal processing steps of the proposed LiDAR
model. The sensor model considers the scan pattern and complete signal processing steps
of Blickfeld Cube 1. As mentioned earlier in Section 1, the model itself is built as an
OSMP FMU and uses the virtual environment of CarMaker. It provides the ray tracing
framework with a bidirectional reflectance distribution function (BRDF) that considers the
direction of the incident ray θ, material surface, and color properties [46]. The LiDAR FMU
model uses the ray tracing module of CarMaker. The material properties of the simulated
objects, angle-dependent spectral reflectance Rλ(θ), and reflection types, including diffuse,
specular, retroreflective, and transmissive, are specified in the material library of CarMaker.

Figure 5. Co-simulation framework of the LiDAR FMU model.

The FMU controller passes the required input configuration to the simulation frame-
work via osi3::LidarSensorViewConfiguration. The simulation tool verifies the input configu-
ration and provides the ray tracing detections via osi3::LidarSensorView::reflection interface
time delay τ and relative power Prel(R) [45].

Afterward, the FMU controller calls the LiDAR simulation library and passes the ray
tracing data for further processing. The central component of the simulation library is the
simulation controller. It is used as the primary interface component to provide interactions
with the library, for instance, configuring the simulation pipeline, inserting ray tracing data,
executing the simulation’s steps, and retrieving the results.

The next block in the pipeline is the link budget module, which calculates the photons
over time. The task of the detector module is to capture these photons’ arrivals and
convert them into an electrical current signal id[i]. In the proposed LiDAR model, we have
implemented silicon photomultipliers (SiPM) as a detector [47]. Still, it can also support
avalanche photodiode (APD) and single-photon avalanche diode (SPAD) detector models.

The third block in the pipeline is the circuit module. Its task is to amplify and convert
the detector’s photo current signal id[i] to a voltage signal vc[i] that is processed by the
ranging module.
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The last part of the toolchain is the ranging module, which determines the range and
intensity of the target based on the vc[i] received from the analog circuit for every reflected
scan point. Finally, the effect engine (FX engine) is a series of interfaces that interacts
with environmental or sensor-related effects and the blocks of the simulation pipeline.
These interactions can involve, for example, the consideration of thermal noise in electrical
components, signal attenuation due to weather phenomena, and backscattering. It should
be noted that this paper only considers the environmental condition sunlight effect.

This section will cover a detailed description of scan patterns and LiDAR simulation
library components.

5.1. Scan Pattern

The described LiDAR FMU model uses the Blickfeld Cube 1 elliptical shape scan
pattern as given in Figure 6. Cube 1 is comprises of a single laser source to emit laser
pulses and a beam deflection unit, a so-called scanner that deflects the beam to obtain an
environment image. The scanner deflects the laser beam using two 1D microelectrome-
chanical mirrors (MEMS) scanners oriented horizontally and vertically, and having a phase
difference of 45◦ [48]. The block diagram of the MEMS LiDAR sensor is shown in Figure 7.
The scan pattern is imported inside the LiDAR FMU via the FMU Controller.

Azimuth Angle  (deg)

E
le

va
tio

n 
A

ng
le

 
 (

de
g)

Figure 6. Specification of scan pattern used by LiDAR FMU model and LiDAR sensor: 30◦ horizontal
and 10◦ vertical FoV, 80 scan lines, frame mode only up, 0.4◦ horizontal angle spacing, frame rate
6.7 Hz, maximum detection range is 250 m, and minimum detection range is 4.80 m.

Figure 7. Block diagram of MEMS LiDAR sensor. Source: adapted from [49].

5.2. Link Budget Module

The relative power Prel(R) obtained from the ray tracing module does not consider the
environmental condition of sunlight and optical losses. The link budget module considers
these effects, and the received power Prx(t) can be given as

Prx(t) = ρ
d2

aperture

4R2
trg

cos(θ)︸ ︷︷ ︸
Prel(R)

T2
atmToptPtx(t), (2)
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where ρ is the target reflectivity, daperture denotes the diameter of the optical aperture, Rtrg
is the target range, the direction of the incident ray is given by θ, receiver optics loss factor
is given by Topt, Tatm shows the atmospheric loss factor, and the transmit power is denoted
by Ptx(t) [50].

The total received power Ptot(t) by the detector over time can originate from different
sources including internal reflection Pint(t), target receive power Prx(t), and sunlight power
Psun. That is why Ptot(t) can be given as

Ptot(t) = Pint(t) + Prx(t) + Psun. (3)

The Psun can be calculated as

Psun =
ρd2

apertureToptTatm

4R2
trg

∫
Atrg

∫
BWopt

Iλ,A dλ dA, (4)

where the illuminated area of the laser spot on the target is Atrg, BWopt denotes the optical
bandwidth of the bandpass daylight filter, the optical loss factor is given by Topt, Rtrg is the
target distance, and Iλ,A ( W

m2·nm ) is the solar spectral irradiance at air mass 1.5 [50]. In this
work, Iλ,A values are taken from the ASTM G173-03 standard [51].

It is possible to model the optics at the photon level based on the power equation to
make the simulation more accurate. For this approach, the power signal must be sampled
with time interval of ∆t [47]. Then, the sampled power equation takes the form of

Ptot[i] = Pint[i] + Prx[i] + Psun, (5)

with t = i · ∆t. The mean of incident photons n[i] on the SiPM detector within a one-time
bin can be written as

n[i] =
Ptot[i] · ∆t

Eph
, (6)

where Eph = hν is the energy of a single laser photon at the laser’s wavelength, h is the
Planck constant and ν is the frequency of the photon [52]. The SiPM detector generates
Poisson distributed shot noise due to the statistical arrival of photons. That is why the
arrival of photons can be modeled as a Poisson process [53]

n[i] = P(n[i]). (7)

The output of the link budget module is given in Figure 8.

0 100 200 300 400
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200

400
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800

1000
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Target at 30 m 
Target at 40 m

Figure 8. The output of the implemented link budget module for 5% reflective point scatter targets.

5.3. SiPM Detector Module

We have implemented the SiPM detector module that provides an output current
proportional to the number of photons [47]. In contrast to the SPAD, the SiPM detector
yields better multi-photon detection sensitivity, photon number resolution, and extended
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dynamic range [54,55]. The SiPM detector response for a given photon signal can be
calculated as

id[i] = Si · (hSiPM[i] ∗ n[i]), (8)

where Si is the SiPM detector sensitivity, the impulse response of the detector is given as
hSiPM. Si is given as

Si = 1− e(−t/τdelay), (9)

τdelay is the SiPM recovery time [47,54,55].
The output of the SiPM detector module is given in Figure 9.

 (ns)

Target at 10 m
Target at 20 m
Target at 30 m
Target at 40 m

Figure 9. The output of the implemented SiPM detector module for 5% reflective point scatter targets.

5.4. Circuit Module

We use the small-signal transfer function H( f ) of the analog circuit model to obtain
the voltage signal vc[i],

vc[i] = vc0 + ∆vc[i] = vc0 +F−1{H( f ) · Id( f )︸ ︷︷ ︸
F{id [i]}

}, (10)

where vc0 is the operating voltage of the circuit model, F−1 is the inverse discrete Fourier
transform (IDFT), F shows the discrete Fourier transform (DFT), and ∆vc[i] denotes the
small-signal voltage of the circuit model [47]. The output voltages of the circuit module are
given in Figure 10.

 (ns)

Target at 10 m
Target at 20 m
Target at 30 m
Target at 40 m

Figure 10. The output of the circuit module for 5% reflective point scatter targets.

5.5. Ranging Module

The ranging algorithm takes the voltage signal vc[i] from the circuit module as its
input. Then, it calculates the target range and the signal intensity for each scan point.
The range is given in meters while the intensity is mapped linearly to an arbitrary integer
scale from 0 to 4096 as used in the Cube 1 products.
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The algorithm applies several threshold levels to distinguish between internal reflec-
tion, noise, and target peaks. The target range is determined based on the relative position
of the target peaks to the internal reflection, while the signal intensity is calculated from
the peak voltage levels. The output of the ranging module is given in Figure 11.
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Figure 11. The output of the ranging module for 5% reflective point scatter targets.

6. Results

The model’s accuracy presented in this paper is authenticate on two interfaces: time-
domain and point cloud. We used single-point scatter to validate the model in the time domain.

6.1. Validation of the Model on Time Domain

The primary reason to verify the LiDAR model on the time domain is that the link
budget, detector, and circuit modules are working as intended. Furthermore, comparing
the time domain signals (TDS) establishes the association between measured and modeled
noise and amplitude levels because it is difficult to compare the simulated and measured
noise at the point cloud level.

A 10% diffuse reflective Lambert plate is placed at the distance of 10 m, 15 m, 20 m,
25 m, 30 m, 35 m, and 40 m in front of the sensor, as shown in Figure 12. To verify the
model on the time domain level, only single-point scatter is considered from the surface of
the target. The comparison of the simulated and real measured TDS and their amplitude
differences ∆v are shown in Figures 13 and 14, respectively. The amplitude difference ∆v
can be written as

∆v = vsim − vreal , (11)

where vsim is LiDAR FMU TDS, and vreal denotes the measured TDS of the LiDAR sensor.

Figure 12. (a) Static simulation scene to validate the time domain and point cloud data. (b) Real
setup to validate the time domain and point cloud data. The 10% reflective target was placed in front
of the sensor at different distances. The coordinates of the actual and simulated sensor and target are
the same. The ground truth distance dGT is calculated from the sensor origin to the target center.
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Figure 13. LiDAR FMU and real measured TDS comparison. The target peaks and noise levels match
well. Furthermore, the LiDAR FMU model provides the same results in AURELION from dSPACE
for the time domain signals. We used the osi3::GroundTruth interface to get the target’s position in the
virtual environment.

Distance (m)

Figure 14. The voltages difference ∆v of simulated and measured target peaks.

It can be seen that object’s peaks, shape, and noise level match quite well. But the
difference in amplitude ∆v can be observed at different distances, as given in Figure 14.
This is because we use the small-signal transfer function, not an analog circuit model,
to prevent computational burden. To quantify the amplitude difference ∆v, we use the
mean absolute percentage error (MAPE ) metric

MAPE =
1
n

n

∑
i=1
| yi − xi

yi
|, (12)

where yi is the simulated value, the measured value is denoted by xi, and n shows the total
number of data points [56]. The MAPE of voltages is 1.7%.

Afterward, we validated the ranging model by comparing the intensities value shown
in Figure 15. Again, the result shows good agreement between the simulated and measured
data. Here, it should be noted that the voltage mismatch is directly proportional to the
intensities discrepancy because the voltages are mapped linearly to the arbitrary integer
intensity scale.
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Figure 15. The validation of the ranging module. The simulated and measured intensities values
show good agreement.
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6.2. Validation of the Model on Point Cloud Level

To validate the sensor model on the point cloud level, we took the lab tests in ideal
conditions and proving ground measurements in real environmental conditions.

6.2.1. Lab Test

In the next step, the model is analyzed at the point cloud level, and for this purpose,
the same test setup is used, as shown in Figure 12. Now, all the reflections from the
Lambertian plates during the scan are considered. The performance of the LiDAR sensor
model significantly depends upon its fidelity level and virtual environmental modeling,
including the target’s surface reflective properties. However, as mentioned earlier, no
metrics or KPIs are available to verify the sensor model accuracy at the point cloud level.
Therefore, we define three KPIs based on expert knowledge to confirm whether the model
is ready for ADAS testing, as follows.

1. The number of received points Npoints from the surface of the simulated and real
objects of interest.

2. The comparison between the mean intensity Imean values of received reflections from
the surface of the simulated and real targets.

3. The distance error derror of point clouds obtained from the actual and virtual objects
should not be more than the range accuracy of the real sensor, which is 2 cm in this case.

The number of received points Npoints is an important KPI. Because neural networks
and deep learning algorithms are applied to 3D LiDAR point clouds for object recognition,
segmentation, and classification. If the number of LiDAR points Npoints received from the
simulated and measured objects is different. It will influence the performance of object-
recognition algorithms and the ADAS. This KPI depends on the simulated and real scan
pattern’s similarity. For this paper, the LiDAR sensor model and LiDAR sensor use the
same scan pattern shown in Figure 6. In the author’s opinion, this is an important KPI to
be considered for the accuracy verification of the model.

The intensity values of received reflections in simulation and actual measurement are
also considered for the environmental modeling and sensor model verification. However,
if the reflectivity of the modeled object is not the same as in the real world, mean intensity
values Imean and the number of received reflections Npoints will not match. Therefore, this
KPI is also essential to obtain a realistic output.

Furthermore, the distance error derror of the point clouds received from the simulated
and measured object of interest should not be more than the range accuracy of the real
sensor. We have

derror = dGT − dmean,sim/meas, (13)

where ground truth distance is denoted by dGT , dmean,sim, and dmean,meas are the mean
distance of reflections received from the surface of simulated and the real object of interest.
The ground truth distance dGT is calculated from the sensor’s origin to the target’s center,
and it can be written as

dGT =
√
(xt − xs)2 + (yt − ys)2 + (zt − zs)2, (14)

where the target’s x, y, and z coordinates are denoted by subscript t and sensors by s [57].
OSI ground truth interface osi3::GroundTruth is used to retrieve the sensor origin and target
center position in 3D coordinates.

The exemplary 3D point clouds of LiDAR FMU and real measurement are given in
Figure 16a,b, respectively. Figure 17 shows the simulated and real measured spherical point
clouds obtained from the Lambertian plates. The horizontal θ and vertical φ spacing of
simulated and real measured point clouds are 0.4◦ and 0.25◦, respectively. That shows the
horizontal and vertical spacing of points in simulated and real scan patterns are the same.



Sensors 2022, 22, 7556 15 of 23

(a)

(b)

Figure 16. Exemplary visualization of the Cartesian point clouds received from all the objects in the
FoV of LiDAR FMU and real sensor. (a) The LiDAR FMU 3D Cartesian point clouds. (b) The 3D point
clouds of real sensors. It should be noted that the modeled and actual objects’ material properties are
different except for the Lambertian target. That’s why the number of points Npoints received from the
ground and walls are different in simulation and actual measurement.
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Figure 17. Visualization in spherical coordinates of points obtained from the actual and simulated
Lambertian plate placed at 15 m. The horizontal spacing between the simulated and measured points
is θ = 0.4◦ and vertical spacing is φ = 0.25◦.
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Figure 18 compares the number of received points Npoints, and mean intensity values
Imean. The number of received points Npoints and mean intensity Imean from the object of
interest in the simulation and real measurements show good agreement. However, a slight
mismatch between these quantities can be observed. The possible reasons for the deviation
are the ambient light that is not constant over the entire measurement field. We used the
MAPE metric as given in Equation (12) to quantify the difference between the number of
received points Npoints and mean intensity Imean. The results are given in Table 2.

Figure 18. (a) The number of received points from the object of interest in simulation and real
measurement is approximately the same at all distance values. However, a slight mismatch in the
number of reflections can be observed because it is impossible to replicate the 100% real-world
conditions in the simulation, for instance, ambient light. (b) The mean intensity Imean values show
good agreement. It can also be observed that the standard deviation of real measured intensity values
is higher than the simulated intensity values because the ambient light condition influences the real
measured intensity values.

Table 2. The MAPE for the number of points Npoints and mean intensity Imean.

Parameter MAPE

Number of received points Npoints 8.5%
Mean Intensity Imean 9.3%

The distance error derror is shown in Figure 19, and it is below the range accuracy of
the real sensor, which is 2 cm in this case. These results confirm that the scan pattern and
modeled object reflective properties are the same as the real sensor and object. Furthermore,
the sensor model provides realistic output.

rror rror

Figure 19. The distance error is below the range accuracy, that is ±2 cm.

6.2.2. Proving Ground Tests

We have conducted static tests at the FAKT-motion GmbH proving ground in Ben-
ningen to record the real data in daylight. The intensity of daylight was 8 klux. A 10%
reflective Lambertian plate is placed at the distance of 5 m, 10 m, 15 m, 20 m, 25 m, 30 m,
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35 m, and 40 m in front of the Cube 1 mounted on the test vehicle as shown in Figure 20.
The scan pattern used for this measurement campaign is shown in Figure 21.

Figure 20. (a) The test vehicle was equipped with a LiDAR sensor and global positioning system
(GPS). The GPS ADMA-G-PRO+ from Genesys Inc. is used as the reference sensor with a range
accuracy of 0.1 m. The size of the 10% reflective plate is 0.5 × 0.5. (b) The static simulation scene.
The ground truth distance dGT is calculated from the sensor reference point to the center of the plate
target in simulation and real measurement by using Equation (14).
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Figure 21. Specification of scan pattern used by the real and virtual LiDAR sensors for proving
ground tests: 42◦ horizontal and 10◦ vertical FoV, 40 scan lines, frame mode only up, 0.4◦ horizontal
angle spacing, frame rate 13.3 Hz, maximum detection range is 250 m, and minimum detection range
is 4.80 m.

Figure 22 compares the number of received points Npoints for the real and simulated
object of interest. It should be noted the sensor model provided by the CarMaker also uses
the same scan pattern, as shown in Figure 21. The real sensor and LiDAR FMU model can
detect the object of interest up to the 30 m. However, the exact dimension of the target
cannot be estimated from the real and LiDAR FMU point clouds, as shown in Figure 23.
This is because the background noise due to the sunlight, detector shot noise, and thermal
noise of electronic circuitry masks the weak reflections received from the Lambertian
target. Consequently, the peak detection algorithm of real and LiDAR FMU models cannot
distinguish between the noise and target peaks. It should be noted LiDAR FMU model
uses the same peak detection algorithm and detection thresholds as Cube 1. On the other
hand, a state-of-the-art sensor model provided by commercial software can detect the target
till 40 m, and the dimension of the target can be estimated easily from the yielded point
clouds. This is the case because the LiDAR models provided by the commercial software



Sensors 2022, 22, 7556 18 of 23

are generic and parameterizable. These sensor models do not consider the complete signal
processing toolchain of specific LiDAR hardware and related sensor imperfections. Instead,
they allow the user to integrate the sensor-specific scan pattern, obtain the ideal point
clouds, and apply the signal processing steps and imperfection of the LiDAR sensor to get
simulation results close to the specific LiDAR sensor in post-processing.
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Figure 22. The comparison between the number of received points Npoints obtained from the simu-
lated and real 10% Lambertian plate. The actual measured and LiDAR FMU received point cloud
Npoints are similar. However, the number of points Npoints yielded by the state-of-the-art LiDAR
sensor model are higher. The MAPE for the number of received Npoints of LiDAR FMU is 9.6 % and
48.4% for the state-of-the-art LiDAR sensor model up to 30 m.
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Figure 23. The exemplary point clouds provided by real and virtual LiDAR sensor models for
0.5 m × 0.5 m Lambertian plate placed at 30 m. (a) Real measured point clouds (b) LiDAR FMU
point clouds (c) State-of-the-art LiDAR sensor model. The real and LiDAR FMU points are noisy and
dispersed. However, the state-of-the-art LiDAR model points are ideal and aligned.

The authors believe the sensor models provided by the commercial and open source
tool vendors can be used for the ADAS testing that requires ideal or medium fidelity point
clouds. However, in use cases where a high-fidelity LiDAR model’s output is required,
the scan pattern, complete signal processing toolchain, and sensor-specific imperfections of
real LiDAR sensor, as mentioned in Section 1 need to be considered.

Figure 24 compares the mean intensity Imean of Cube 1 and LiDAR FMU model.
The mean intensity Imean values received from the object of interest in simulation and real
measurement are similar. We used Equation (12) to quantify the difference between the
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simulated and real measured values. The MAPE for the mean intensity Imean is 11.1%, and it
is greater than the MAPE of lab tests mean intensity Imean values as given in Section 6.2.1.
Although we have modeled the daylight intensity in the LiDAR FMU model, it is still
challenging to model 100% environmental conditions in the simulation. The increase in
the MAPE for mean intensity Imean values is due to environmental losses. Furthermore,
it is impossible to compare state-of-the-art LiDAR sensor model intensity with the real
measurement because their signal processing steps to calculate the intensity are not the
same, which is why their units are different. The real measured point cloud intensity is
in arbitrary units (a.u.), and state-of-the-art sensor model intensity is in Watts. Figure 25
shows the comparison of distance error derror of the real and virtual sensors. The distance
error derror of the state-of-the-art LiDAR model is less than 0.5 cm. This is because this
sensor model provides the ideal point clouds, and its mean distance dmean is closer to the
ground truth distance dGT . However, the real LiDAR sensor and LiDAR FMU point clouds
are noisy and dispersed, which is why their distance error derror is more than 1 cm.
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Figure 24. The comparison of measured and simulated mean intensity Imean values. The mean
intensity Imean values show good agreement. The MAPE for the mean intensity Imean is 11.1%. It
should be noted that comparing intensity values of the real measurement and state-of-the-art sensor
model is impossible because their units are different.
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Figure 25. The distance error derror of real and virtual sensors is below the range accuracy of the real
sensor ±2 cm.
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7. Conclusions

In this work, we have introduced a process to develop a tool-independent, high-
fidelity LiDAR sensor model by using FMI and OSI standardized interfaces. The model
was integrated successfully into the virtual environment of CarMaker and AURELION
from dSPACE to show its exchangeability. Moreover, the LiDAR FMU model provides the
same results regardless of the tool used. The developed LiDAR sensor model includes the
complete signal processing steps of the real LiDAR sensor and considers the sensor-specific
imperfections, including optical losses, inherent detector effects, effects generated by the
electrical amplification, and noise produced by the sunlight to output the realistic data.
The virtual LiDAR sensor outputs the time domain and point cloud data. The real and
simulated time domain results comparison show that simulated and measured signals’
peak shape, noise, and amplitude levels match well. The MAPE of amplitude is 1.7%.
Furthermore, KPIs are defined to authenticate the simulated and measured point clouds.
The presented lab test results demonstrate that the MAPE is 8.5% and 9.3% for the number
of points Npoints and mean intensity values Imean obtained from the simulated and real
Lambertian plates. Moreover, the distance error derror is below 2 cm. In addition, the static
tests were performed at the proving ground on a sunny day to record the real data. Real
measurement results are compared with the state-of-the-art LiDAR model provided by
the commercial and the proposed LiDAR model to show the presented model fidelity.
The results show that although the state-of-the-art LiDAR model uses a similar scan pattern
as the real sensor, it cannot exhibit the same results as a real sensor. This is because
it does not include the complete signal processing steps of the real sensor and related
imperfections. Such models are useful for testing the ADAS in use cases where low and
medium-fidelity LiDAR point clouds are sufficient. The scan pattern, complete signal
processing steps, and sensor-specific imperfections must be considered when high-fidelity
output is required. It is also concluded that the material properties and reflectivity of the
modeled and actual object of interest should be the same; otherwise, simulation and actual
results will not match.

8. Outlook

The model will be further validated in the next steps as per the ASTM E3125-17
standard. Moreover, the model fidelity will be validated using the different state-of-the-art
metrics available. Furthermore, rain and fog effects on the performance of automotive
LiDAR sensors will be modeled and validated.
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Abbreviations
The following abbreviations are used in this manuscript:

ADAS Advanced Driver-Assistance System
LiDAR Light Detection And Ranging
RADAR Radio Detection And Ranging
FMU Functional Mock-Up Unit (FMU)
OSI Open Simulation Interface
FMI Functional Mock-Up Interface (FMI)
MAPE Mean Absolute Percentage Error
ABS Anti-Lock Braking System
ACC Adaptive Cruise Control
ESC Electronic Stability Control
LDW Lane Departure Warning
PA Parking Assistant
TSR Traffic-Sign Recognition
MiL Model-in-the-Loop
HiL Hardware-in-the-Loop
SiL Software-in-the-Loop
IP Intellectual Property
KPIs Key Performance Indicators
OEMs Original Equipment Manufacturers
FoV Field of View
RTDT Round-Trip Delay Time
ToF Time of Flight
HAD Highly Automated Driving
RSI Raw Signal Interface
OSMP OSI Sensor Model Packaging
SNR Signal-to-Noise Ratio
FSPL Free Space Path Losses
BRDF Bidirectional Reflectance Distribution Function
SiPM Silicon Photomultipliers
APD Avalanche Photodiode
SPAD Single-Photon Avalanche diode
FX Engine Effect Engine
MEMS Microelectromechanical Mirrors
IDFT Inverse discrete Fourier Transform
DFT Discrete Fourier Transform
TDS Time Domain Signals
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