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Abstract: Climate change has significant effects on forest ecosystems around the world. Since tree
diameter increment determines forest volume increment and ultimately forest production, an accurate
estimate of this variable under future climate change is of great importance for sustainable forest
management. In this study, we modeled tree diameter increment under the effects of current and
expected future climate change, using multilayer perceptron (MLP) artificial neural networks and
linear mixed-effect model in two sites of the Hyrcanian Forest, northern Iran. Using 573 monitoring
fixed-area (0.1 ha) plots, we measured and calculated biotic and abiotic factors (i.e., diameter at
breast height (DBH), basal area in the largest trees (BAL), basal area (BA), elevation, aspect, slope,
precipitation, and temperature). We investigated the effect of climate change in the year 2070 under
two reference scenarios; RCP 4.5 (an intermediate scenario) and RCP 8.5 (an extreme scenario) due
to the uncertainty caused by the general circulation models. According to the scenarios of climate
change, the amount of annual precipitation and temperature during the study period will increase by
12.18 mm and 1.77 ◦C, respectively. Further, the results showed that the impact of predicted climate
change was not very noticeable and the growth at the end of the period decreased by only about
7% annually. The effect of precipitation and temperature on the growth rate, in fact, neutralize each
other, and therefore, the growth rate does not change significantly at the end of the period compared
to the beginning. Based on the models’ predictions, the MLP model performed better compared to
the linear mixed-effect model in predicting tree diameter increment.

Keywords: biotic and abiotic factors; climate change; Hyrcanian Forest; machine learning;
RCP scenarios

1. Introduction

Climate change refers to long-term changes in weather and temperature patterns that
may lead to intense drought, flooding, melting polar ice, rising sea levels, water scarcity,
severe fire, catastrophic storms, and declining biodiversity [1–4]. Various studies have
demonstrated that climate is constantly changing around the world [5] and this change
can affect the presence, distribution, and mortality of tree species in forest ecosystems
around the world [6]. Such changes can also affect the growth and competition of species.
Knowledge of how tree growth can alter with climate change [7] is crucial in providing
management options and strategies to adapt to these changes to achieve sustainable forest
development [8,9]. Forest growth can be affected directly and indirectly by changes in
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precipitation and the occurrence of drought periods. Changes in respiration rate and
photosynthesis in response to temperature changes, and through water relations, affect
photosynthesis by changing the stomatal conductance [10,11]. To accurately investigate
and evaluate these effects, it is necessary to study the influence of simultaneous changes of
climate parameters, such as temperature and precipitation on forest attributes, including
growth and biodiversity [12,13].

Climate affects several main drivers of forest growth, and the rapid rate of climate
change often makes growth prediction uncertain. For example, Strömgren and Linder [14]
believe that warmer temperatures increase access to nitrogen and lead to longer growing
seasons, which ultimately leads to increased overall production of tree growth and biomass.

Given the rapid increase in temperature and the possibility of increasing the average
temperature and precipitation in the world, and since these factors and site conditions
have an important effect on forest growth, the assessment of climatic factors in predicting
forest growth is very important [12,15]. According to world reports, the annual temper-
ature has increased by 0.07 ◦C per decade since 1880, and has increased to 0.18 ◦C since
1981 [16]. There are many concerns about the potential effects of these climate changes on
forest functions, such as timber supply, biodiversity, and species distribution, as well as
changes in physiological and ecological trends, and tree growth and interactions between
species [17–19]. Hamidi et al. [3] investigated the climate change effects on the biodiversity
of the Hyrcanian Forest over a long-term period by regression and artificial intelligence
models. They concluded that climate change in mountainous areas in the Hyrcanian Forest
causes a very slight increase in biodiversity, and did not have a negative effect on biodi-
versity. The results of this study also showed that the climate change in the Hyrcanian
Forest is accompanied by a simultaneous increase in temperature and rainfall. In another
study in the Hyrcanian Forest, Limaki et al. [12] investigated the climate change effects on
the movement and migration of tree species and concluded that climate change and an
increase in air temperature causes the migration of shade-tolerant species, such as beech, to
higher elevations in the Hyrcanian Forest.

Individual tree diameter growth models are very important tools in various forest
increment and performance systems, because these models are very useful for estimating
and predicting the sustainable source of yield, as well as in formulating forest management
plans. To determine the current and future rate of forest growth, information about the
relative growth and diameter of single trees is required [20,21]. However, little attention has
been paid to the climate factors, which is the main factor influencing site productivity. One
of the key elements of sustainable forest management is predicting future forest growth
and yield under different management scenarios [22]. The projection of future temperature
and precipitation is derived from representative concentration pathway (RCP) scenarios,
developed for use at the input of the general atmosphere circulation model, and which show
the trend of different concentrations of greenhouse gases including carbon dioxide, water
vapor, nitrogen oxides, methane, and ozone, which are described in the fifth evaluation
report accepted in 2014 [23,24].

Although Bayat et al. [25] and Hamidi et al. [26] studied the growth rate of uneven-
aged tree stands in the Hyrcanian Forest, investigations into the effect of climate factors on
growth rate still lag behind for this region. To fill this gap in the research, we investigated
the effects of biotic and abiotic factors on the tree diameter increment under the effects
of current and expected future climate change, using the multilayer perceptron (MLP)
artificial neural network and linear mixed-effect model, in two sites of the Hyrcanian Forest.
In particular, we address the following questions:

How much do the precipitation and temperature change during the study period?
If climate change occurs, does it have a significant effect on tree diameter increment

(negative/positive) or not?
What are the most influential biotic and abiotic factors on the current and future tree

diameter increment (under climate change scenarios)?
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2. Materials and Methods
2.1. Study Area

The Hyrcanian Forest stretches from the west of the Caspian Sea to the east in a narrow and
long strip and spreads in three provinces of Golestan, Mazandaran, and Gilan. The main species
in this forest is beech (Fagus orientalis Lipsky.), which includes 30% of the tree volume and 30% of
the number, and the next species is hornbeam (Carpinus betulus L.,), which has the largest number
of trees in the forest. Other species include oak (Quercus castaneifolia), maple (Acer velutinum), and
yew species (Taxus baccata); additionally, cypresses (Juniperus excelsa) are among the coniferous
species of the forest. In this forest, biodiversity indicators increase from west to east [27]. In this
study, we studied two sites, i.e., Kheyroud and Farim, from this forest (Figure 1).
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Figure 1. The location of study sites (green and yellow circles) in the Hyrcanian Forest, northern Iran.

In the Kheyroud site, we studied the Gorazbon section, which covers an area of about
934 ha. The elevation of this region is between 980 and 1380 m above sea level and has an
average annual temperature of 15.9 ◦C in the coldest month (February) and 29.2 ◦C in the
warmest month of the year (August). About 1300 mm of precipitation falls annually [24,25].

The Farim site covers an area about 3350 ha with an elevation between 1280 to 1700 m
above sea level, and has an average annual precipitation of 845 mm and an annual tem-
perature of 11 ◦C. Tree species include beech, hornbeam, alder, and elm, and the most
important herbaceous species include asparagus, grasses, metametes, violets, cyclamen,
and primroses.

2.2. Methodology

The main steps of the methodology proposed in this study are shown in Figure 2 and
are summarized as follows.
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Figure 2. Flowchart of the main research steps. RCP8.5 and RCP4.5 are two scenarios of Representa-
tive Concentration Pathway, BA is basal area (m2 ha−1), BAL is basal area in largest trees (m2 ha−1),
DBH is diameter at breast height (cm), and ANNs is Artificial Neural Networks.

2.3. Data Used
2.3.1. Dependent Variable: Increment Data

In 573 permanent sample plots (0.1 ha), the diameter of all trees with dbh > 7 cm was
measured in the same direction in the year 2003 and was re-measured in the year 2012.
From the difference between these two measurements, a 10-year diameter increment of
trees was obtained [28].

2.3.2. Independent Variables: Climate Data

For each forest site (Kheiroud and Farim), we selected four weather stations that were
the closest to these forest sites, and by interpolation we calculated the average temperature
and rainfall for each forest site. In this study, more weight was given to the weather stations
that were closer to the forest site. Additionally, in this interpolation, we tried to include at
least the weather station at a height above sea level equal to the height above sea level of
the forest site.

General circulation models are powerful tools to increase the understanding of factors
affecting climate and improve the ability to predict future climate patterns. In this study,
climatic variables for the period 1950–2000 and the year 2070 (average for 2060–2080) were
obtained with a spatial resolution of 1 km2 from the WorldClim database of the CMIP5
project [29,30]. Precipitation and temperature data was obtained from the interpolation of
data from seven meteorological stations nearest to the study sites. In this study, climate
scenarios were used to investigate the effect of climate change in 2070 (average for the
years 2060 to 2080) and due to the uncertainty caused by the public circulation model
under two scenarios, RCP4.5 (an intermediate one) and the RCP8.5 (an extreme one) were
used. RCPs climate change scenarios have been developed for use at the input of the
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general atmosphere circulation model and show the trend of different concentrations of
greenhouse gases (GHG) including carbon dioxide, water vapor, nitrogen oxides, methane,
and ozone, which are in the fifth evaluation report accepted in 2014 [12]. These scenarios
replaced the GHG Emissions Report (SRES) released in 2000 by the Intergovernmental
Panel on Climate Change. According to the RCP 4.5 scenario, global warming is projected
to increase by an average of 1.4 ◦C between 2060 and 2080. According to the IPCC, RCP
4.5 requires that carbon dioxide (CO2) emissions start declining by approximately 2045 to
reach roughly half of the levels of 2050 by 2100 and RCP8.5, generally taken as the basis for
worst-case climate change scenarios [3]. First, temperature and precipitation for current
and future climatic conditions were extracted under the above two scenarios based on the
Hyrcanian Forest boundary within the R software using the raster package. Then, the tree
increment rate of the Hyrcanian Forest was calculated based on climatic scenarios in 2070
using the MLP and linear mixed-effect models.

2.3.3. Other Independent Variables

The independent factors used for the diameter increment modeling included tree
diameter (DBH), basal area (BA), basal area of large trees (BAL), aspect, slope, elevation,
temperature, and precipitation. All independent factors were calculated at the plot level,
but the modeling of diameter increment growth was done at the individual tree level.

A brief description of these factors is as follows:
The DBH is the tree diameter at breast height in cm. DBH is one of the most important

factors in determining the increment and yield of the forest [31]. Figure 3a shows the
distribution of trees to diameter classes in the study sites, with a minimum of 7 and a
maximum of 190 cm. Diameter class 15 holds the highest frequency among diameter
classes. In this study, the diameter classes are 5 cm and they are continuous. For example,
diameter class 15 means all trees from diameter 12.5 to 17.5 are included in this diameter
class or diameter class 20 means all trees from diameter 17.5 to 22.5 are included in this
diameter class.
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BA is the basal area of a tree that has been measured that corresponds to the tree’s
DBH. Since this measure is related directly to the volume of the tree, the conversion of DBH
to BA is useful and suitable for comparing the dominance of species among different types
of forests. BA is expressed as:

BA =
π

4
DBH2 (1)

where π = 3.14.
Figure 3b shows the BA distribution per ha for each plot to the BA classes in the study

sites, with a minimum of 0–0.5 and a maximum of 13–15 m2. Class 2–3 has the highest
frequency among classes.

BAL is somehow related to the light available to a tree, because with the increase of
BAL, less light is available for neighbor trees. This index provides an effective measure of
tree dominance in a stand [32]. BAL is given by:

BAL =
π

4
. ∑n

j=1

(
tfj.DBH2

j

)
(2)

where DBHj > DBHi (i.e., all trees larger than subject tree i), DBH is measured in cm, and tfj
is a tree factor (i.e., the number of trees represented by jth tree in a hectare) [32].

Figure 3c shows the BAL distribution per ha for each plot in the study sites, with
a minimum of 0–1 and a maximum of 110–115 m2. Class 2–3 has the highest frequency
among classes.

Aspect can affect the access to sunlight, it changes the water and energy balance
conditions and causes differences in the structure and composition of vegetation in an area.
Figure 4a shows the distribution of aspect classes for each plot over the study area.
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Elevation is one of the most important abiotic factors that has an important effect on
the structure and distribution of vegetation in an area by affecting other non-living factors.
Figure 4b shows the distribution of elevation classes over the study area.

Slope has an important effect on the microclimate because it causes differences in the
length of the radiation period in different regions. Together, these factors affect moisture,
soil, and other factors, and thus affect the structure and composition of vegetation in an
area. Figure 4c shows the distribution of slope classes over the study area.

According to the two climate scenarios used in this study, i.e., RCP 4.5 (an intermediate one)
and the RCP 8.5 (an extreme one), the temperature will increase during the periods 2020–2070
about two degrees and precipitation 500 mm, approximately (Figures 5 and 6).
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Figure 5. The trend of annual temperature changes at the beginning (blue points) and end (red points)
of the period in the studied plots.

Forests 2022, 13, x FOR PEER REVIEW 8 of 21 
 

 

 

Figure 5. The trend of annual temperature changes at the beginning (blue points) and end (red 

points) of the period in the studied plots. 

 

Figure 6. The trend of annual precipitation changes at the beginning (blue points) and end (red 

points) of the period in the studied plots. 

2.4. Models Used 

The models used in this study were the MLP and linear mixed-effect models. A brief 

description of these models is as follows. 

The linear mixed-effect model can simultaneously model fixed and random effects. 

In these models, predictors are used to represent group membership. The coefficients for 

each group in the data are then estimated. A linear mixed-effect model can be expressed 

as: 

y = Xβ + Zu + ɛ (3)

where y is a N × 1 column vector, the dependent variable, X is a N × p matrix of the p 

predictor (independent) variables, β is a p × 1 column vector of the fixed-effects regression 

coefficients (the βs), Z is a N × qJ design matrix for the q random effects and J groups, u is 

a qJ × 1 vector of q random effects (the random complement to the fixed β) for groups, and 

ɛ is a N × 1 column vector of the residuals that part of y that is not explained by the model, 

in this study, physiographic, climatic and biometric variables were considered as fixed 

effect and plots as random effect. 

11

12

13

14

15

16

17

18

0 50 100 150 200 250 300 350 400 450 500 550 600

Plot number

T
em

p
er

at
u

re
(◦

C
)

200

400

600

800

1000

0 50 100 150 200 250 300 350 400 450 500 550 600

P
re

ci
p

it
at

io
n

(m
m

)

Plot number

Figure 6. The trend of annual precipitation changes at the beginning (blue points) and end (red points)
of the period in the studied plots.

2.4. Models Used

The models used in this study were the MLP and linear mixed-effect models. A brief
description of these models is as follows.



Forests 2022, 13, 1816 8 of 20

The linear mixed-effect model can simultaneously model fixed and random effects. In
these models, predictors are used to represent group membership. The coefficients for each
group in the data are then estimated. A linear mixed-effect model can be expressed as:

y = Xβ + Zu + ε (3)

where y is a N × 1 column vector, the dependent variable, X is a N × p matrix of the p
predictor (independent) variables, β is a p × 1 column vector of the fixed-effects regression
coefficients (the βs), Z is a N × qJ design matrix for the q random effects and J groups,
u is a qJ × 1 vector of q random effects (the random complement to the fixed β) for groups,
and ε is a N × 1 column vector of the residuals that part of y that is not explained by the
model, in this study, physiographic, climatic and biometric variables were considered as
fixed effect and plots as random effect.

MLP is a method for modeling that can be used in relation to conventional modeling
due to their intelligent structure and flexibility in accepting conventional modeling [26]. In
this study, we used a multilayer perceptron (MLP) class for modeling tree growth.

Model Training and Validation

The training stage was performed to determine the optimal network structure, weight
matrix, and threshold matrix. For this purpose, we randomly divided the data into
two groups and used 70% for model training. We used the remaining 30% of the data
and employed three validation criteria including RMSE, RMSE%, and BIAS, to evaluate the
predictive accuracy of the models. The validation criteria are calculated as follows [33]:

BIAS =
∑n

i=1(ŷi − yi)

n
(4)

RMSE =

√
∑n

i=1
(yi − ŷi)

2

n − k
(5)

%RMSE = 100 ×

√
∑n

i=1
(yi − ŷi)

2

n − k
/y (6)

where n is the number of observations, yi is the observed value, ŷi is the estimated value, y
is the mean of the observed value, and k is the number of parameters [34].

3. Results
3.1. Modeling Results for Each Species
3.1.1. Fagus

DI = 13.86 + uj + 0.03 (DBH) − 1.24 (BA) + 0.0072 (BAL)
0.0016 (ASP) − 0.0027 (ELE) − 0.77 (TEMP) + 0.0022 (PRPE) + eij

(7)

The standard deviation and variance for the random factor of species were 0.26 and 0.11,
respectively. The RMSE, bias, and R2 were 1.66 cm, 1.39 cm, and 0.20, respectively, with a
95% confidence (Table 1).

3.1.2. Carpinus

DI = 6.51 + uj + 0.04 (DBH) − 2.23 (BA) −
1.04 (BA-BAL) + 1.04 (BAL-BA) + 0.0011(ASP) −

0.0013 (ELE) − 0.30 (TEMP) + 0.00052 (PRPE) + eij
(8)

The standard deviation and variance for the random factor of species were 0.43 and
0.21, respectively. The RMSE, bias, and R2 were 1.74 cm, 1.64 cm, and 0.10, respectively,
with a 95% confidence (Table 2).
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Table 1. Results of the linear mixed-effect model for Fagus diameter increment.

Fagus Estimate Std. Error t Value Pr (>|t|)

Intercept 13.86678 1.202374 11.5328 0.000000
DBH 0.03621 0.003532 10.2515 0.000000
BA −1.24626 0.372723 −3.3437 0.000833

BAL 0.00724 0.001901 3.8095 0.000141
BA_BAL −0.11809 0.124150 −0.9512 0.341546
BAL_BA −0.00004 0.000022 −1.7320 0.083342

ASP 0.00169 0.000306 5.5352 0.000000
SLP 0.00031 0.001607 0.1940 0.846222
ELE −0.00272 0.000265 −10.2758 0.000000

TEMP −0.77897 0.072303 −10.7738 0.000000
PREC 0.00226 0.000321 7.0347 0.000000

DBH is diameter at breast height, BA is basal area, BAL is basal area in largest trees, ASP is aspect, SLP is slope,
ELE is elevation, TEMP is temperature, and PREC is participation.

Table 2. Results of the linear mixed-effect model for Carpinus diameter increment.

Carpinus Estimate Std. Error t Value Pr (>|t|)

Intercept 6.51818 0.801555 8.13192 0.000000
DBH 0.04583 0.004726 9.69805 0.000000
BA −2.23963 0.604983 −3.70198 0.000217

BAL 0.00041 0.001998 0.20604 0.836767
BA_BAL −1.04600 0.287918 −3.63298 0.000284
BAL_BA 0.00008 0.000011 7.16247 0.000000

ASP 0.00110 0.000298 3.68348 0.000233
SLP −0.00243 0.002056 −1.18355 0.236659
ELE −0.00137 0.000218 −6.26503 0.000000

TEMP −0.30486 0.048397 −6.29913 0.000000
PREC 0.00052 0.000221 2.35220 0.018710

DBH is diameter at breast height, BA is basal area, BAL is basal area in largest trees, ASP is aspect, SLP is slope,
ELE is elevation, TEMP is temperature, and PREC is participation.

3.1.3. Quercus

DI = 11.23 + uj + 0.08 (DBH) –
5.49 (BA) + 0.02 (BAL) –

0.0014 (ELE) − 0.65 (TEMP) + eij
(9)

The standard deviation and variance for the random factor of species were 0.21 and 0.08,
respectively. The RMSE, bias, and R2 were 1.64 cm, 1.37 cm, and 0.24, respectively, with a
95% confidence (Table 3).

Table 3. Results of the linear mixed-effect model for Quercus diameter increment.

Quercus Estimate Std. Error t Value Pr (>|t|)

Intercept 11.23192 2.848557 3.94302 0.000091
DBH 0.08955 0.018065 4.95705 0.000001
BA −5.49099 2.172556 −2.52743 0.011780

BAL 0.02703 0.009387 2.87913 0.004149
BA_BAL −0.47566 0.648376 −0.73362 0.463506
BAL_BA −0.00011 0.000085 −1.28709 0.198626

ASP −0.00009 0.000994 −0.09118 0.927383
SLP −0.00168 0.005095 −0.32890 0.742362
ELE −0.00140 0.000695 −2.00836 0.045113

TEMP −0.65842 0.158488 −4.15439 0.000038
PREC 0.00025 0.000856 0.28801 0.773449

DBH is diameter at breast height, BA is basal area, BAL is basal area in largest trees, ASP is aspect, SLP is slope,
ELE is elevation, TEMP is temperature, and PREC is participation.
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3.1.4. Others Species

DI = 12.37 + uj + 0.02 (BAL) -
0.0003 (BAL-BA) − 0.0014 (ELE) -

0.63 (TEMP) + eij
(10)

The standard deviation and variance for the random factor of species were 0.16 and 0.19,
respectively. The RMSE, bias, and R2 were 1.70 cm, 1.60 cm, and 0.12, respectively, with a
95% confidence (Table 4). Tables 5 and 6 show the most important characteristics of MLP-based
ANNs and associated metrics for diameter model training and evaluation by species.

Table 4. Results of the linear mixed-effect model for others species diameter increment.

Others Species Estimate Std. Error t Value Pr (>|t|)

Intercept 12.37578 1.823423 6.78711 0.000000
DBH 0.00689 0.006085 1.13154 0.257977
BA 0.96779 0.602838 1.60539 0.108578

BAL 0.02499 0.004180 5.97897 0.000000
BA_BAL −0.44267 0.386819 −1.14440 0.252608
BAL_BA −0.00033 0.000055 −5.99956 0.000000

ASP −0.00010 0.000581 −0.16392 0.869808
SLP 0.00043 0.002916 0.14735 0.882876
ELE −0.00142 0.000462 −3.06661 0.002196

TEMP −0.63779 0.102897 −6.19840 0.000000
PREC 0.00087 0.000479 1.82720 0.067831

DBH is diameter at breast height, BA is basal area, BAL is basal area in largest trees, ASP is aspect, SLP is slope,
ELE is elevation, TEMP is temperature, and PREC is participation.

Table 5. The most important characteristics of MLP-based ANNs and associated metrics for diameter
model training by species.

Species Network
Name Algorithm Error

Function
Hidden

Activation R2 RMSE % RMSE BIAS % BIAS

Fagus MLP
10-6-1 BFGS 46 SOS Logistic 0.50 0.43 18.69 0.0005 0.029

Carpinus MLP
10-4-1 BFGS 53 SOS Tanh 0.37 0.69 31.08 0.0025 0.079

Quercus MLP
10-12-1 BFGS 26 SOS Logistic 0.57 0.40 17.77 0.0004 0.026

Others MLP
10-11-1 BFGS 33 SOS Exponential 0.42 0.58 26.24 s 0.0017 0.030

Table 6. The most important characteristics of MLP-based ANNs and associated metrics for diameter
model evaluation by species.

Species Network
Name Algorithm Error

Function
Hidden

Activation R2 RMSE % RMSE BIAS % BIAS

Fagus MLP
10-6-1 BFGS 46 SOS Logistic 0.47 0.50 22.52 0.0009 0.006

Carpinus MLP
10-4-1 BFGS 53 SOS Tanh 0.41 0.61 27.47 0.0028 0.017

Quercus MLP
10-12-1 BFGS 26 SOS Logistic 0.58 0.41 18.56 0.0006 0.004

Others MLP
10-11-1 BFGS 33 SOS Exponential 0.42 0.63 28.12 0.0023 0.011
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3.2. Modeling Results for the Current Conditions

The application of the linear mixed-effect model provided the following equation for
the estimation of the tree diameter increment (DI).

DI = 1.17 + uj + 4.39 (DBH) − 2.20 (BA) –
0.032 (BA/BAL) − 0.00029 (BAL/BA) –

0.0022 (elevation) + 0.0021 (aspect) –
0.62 (temperature) + 0.0014 (precipitation) + eij

(11)

The standard deviation and variance for the random factor of species were 0.30 and 0.09,
respectively. The RMSE, bias, and R2 were 1.61 cm, 1.33 cm, and 0.25, respectively, with a
95% confidence. According to Table 7, all the variables except the slope and basal area of the
thickest trees are significant in the model Figure 7 represents the relationship between the
predicted and actual diameter increment using the regression model.

Table 7. Results of the linear mixed-effect model for diameter increment.

Estimate Std. Error t Value Pr (>|t|)

Intercept 1.176 × 101 1.134e × 10 10.367 <2 × 10−16 ***
DBH 4.393 × 10−2 2.440 × 10−3 18.001 <2 × 10−16 ***
BA −2.201 × 10 2.645 × 10−1 −8.323 <2 × 10−16 ***

BAL −1.846 × 10−3 1.901 × 10−3 −0.971 0.33195
BA_BAL −3.250 × 10−1 1.071 × 10−1 −3.035 0.00241 **
BAL_BA 2.958 × 10−5 9.427 × 10−6 3.138 0.00171 **

ASP 2.157 × 10−3 3.677 × 10−4 5.865 8.88 × 10−9 ***
ELE −2.219 × 10−3 2.698 × 10−4 −8.223 2.22 × 10−15 ***
SLP −3.050 × 10−3 2.003 × 10−3 −1.523 0.12846

TEMP −6.222 × 10−1 6.650 × 10−2 −9.356 <2 × 10−16 ***
PREC 1.488 × 10−3 3.137 × 10−4 4.744 2.83 × 10−6 ***

Forests 2022, 13, x FOR PEER REVIEW 12 of 21 
 

 

3.2. Modeling Results for the Current Conditions 

The application of the linear mixed-effect model provided the following equation for 

the estimation of the tree diameter increment (DI). 

DI = 1.17 +uj +4.39 (DBH) − 2.20 (BA) – 

0.032 (BA/BAL) − 0.00029 (BAL/BA) – 

0.0022 (elevation) + 0.0021 (aspect) – 

0.62 (temperature) + 0.0014 (precipitation) + eij 

(11)

The standard deviation and variance for the random factor of species were 0.30 and 

0.09, respectively. The RMSE, bias, and R2 were 1.61  cm, 1.33 cm, and 0.25, respectively, 

with a 95% confidence. According to Table 7, all the variables except the slope and basal 

area of the thickest trees are significant in the model Figure 7 represents the relationship 

between the predicted and actual diameter increment using the regression model. 

Table 7. Results of the linear mixed-effect model for diameter increment. 

 Estimate Std. Error t Value Pr(>|t|) 

Intercept 1.176 × 101 1.134e × 10 10.367 <2 × 10−16  *** 

DBH 4.393 × 10−2 2.440 × 10−3 18.001 <2 × 10−16  *** 

BA −2.201 × 10 2.645 × 10−1 −8.323 <2 × 10−16  *** 

BAL −1.846 × 10−3 1.901 × 10−3 −0.971 0.33195 

BA_BAL −3.250 × 10−1 1.071 × 10−1 −3.035 0.00241   **  

BAL_BA 2.958 × 10−5 9.427 × 10−6 3.138 0.00171   **  

ASP 2.157 × 10−3 3.677 × 10−4 5.865 8.88 × 10−9  ***  
ELE −2.219 × 10−3 2.698 × 10−4 −8.223 2.22 × 10−15  *** 

SLP −3.050 × 10−3 2.003 × 10−3 −1.523 0.12846 

TEMP −6.222 × 10−1 6.650 × 10−2 −9.356 <2 × 10−16  *** 

PREC 1.488 × 10−3 3.137 × 10−4 4.744 2.83 × 10−6  *** 

 

0

3

6

9

12

15

0 1 2 3 4 5 6 7

A
ct

u
al

 d
ia

m
et

er
 g

ro
w

th
 (

cm
)

Predicted diameter growth (cm)

Figure 7. The relationship between predicted and actual diameter increment extracted by the mixed-
effect model.
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Table 8 shows the results of the application of the MLP model with different net-works
in the training and validation steps and only the models with high accuracy are given,
while the results of all ANN are given in the Supplemental Materials (Tables S1 and S2).
Figure 8 represents the relationship between the predicted and actual diameter increment
using the MLP model artificial neural network.

Table 8. The results of the MLP model for the training and validation step.

Sample Network Algorithm Error
Function

Hidden
Activation R2 RMSE % RMSE BIAS % BIAS

Train MLP
10-9-1

BFGS 106 SOS Tanh 0.48 0.52 21.84 0.0008 0.0336

Validation MLP
10-9-1

BFGS 106 SOS Tanh 0.44 0.63 26.47 0.0010 0.04201

MLP = multilayer perceptron (10-7-1 implies 10 = number of input layers; 7 = number of hidden layers;
and 1 = number of output layer); BFGS = Broyden-Fletcher-Goldfarb-Shanno; RBFT = Radial Basis Function
Training; SOS = Symbiotic Organisms Search.
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Figure 8. The relationship between predicted and actual diameter increment extracted by the MLP model.

The most influential factors in the MLP model are elevation, BAL, aspect, temperature,
and DBH (Figure 9).
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Figure 9. Relative importance of the predictor factors measured by the MLP model. SLP is slope,
BA is basal area, BAL is basal area in largest trees, PREC is participation, DBH is diameter at breast
height, TEMP is temperature, ASP is aspect, and ELE is elevation.

3.3. Modeling Results for the Next 50 Years

The results of linear mixed-effect model for the diameter increment for the next
50 years (DIf) are as follows:

DIf = − 3.12 + uj + 4.45 (DBH) − 2.28 (BA) −
0.031 (BA/BAL) + 0.00306 (BAL/BA) +
0.0101 (elevation) + 0.0028 (aspect) +
0.234 (precipitation) − 0.0123 (PREC) + eij

(12)

The standard deviation and variance for the random factor of species were 0.28, and
0.08, respectively. The RMSE, bias, and R2 were 1.54 cm, 1.27 cm, and 0.30, respectively, at
significance level 95% (Figure 10, Table 9).

Table 9. Results of regression model analysis for diameter growth of trees under change climate.

Variable Estimate Std. Error t Value Pr (>|t|)

Intercept −3.128 ×10 9.376 ×10−1 −3.337 0.000911 ***
DBH 4.453 ×10−2 2.451 ×10−3 18.169 <2 ×10−16 ***
BA −2.282 ×10 2.657 ×10−1 −8.589 <2 ×10−16 ***

BAL −1.825 ×10−3 2.057 ×10−3 −0.887 0.375212
BA_BAL −3.312 ×10−1 1.075 ×10−1 −3.081 0.002065 **
BAL_BA 3.066 ×10−5 9.440 ×10−6 3.248 0.001166 **

ASP 2.877 ×10−3 3.820 ×10−4 7.531 2.90 ×10−13 ***
ELE 1.011 ×10−3 2.944 ×10−4 3.435 0.000644 ***
SLP −1.393 ×10−3 2.146 ×10−3 −0.649 0.516438

TEMP 2.346 ×10−1 4.451 ×10−2 5.272 2.00 ×10−7 ***
PREC −1.232 ×10−3 2.880 ×10−4 −4.277 2.33 ×10−5 ***

DBH is diameter at breast height, BA is basal area, BAL is basal area in largest trees, ASP is aspect, SLP is slope,
ELE is elevation, TEMP is temperature, and PREC is participation. ** p ≤ 0.01*** p ≤ 0.001.
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Figure 10. Relationship between predicted and actual diameter increment by mixed-effect
regression (cm) affected by climate change.

In Table 10 the results of the neural network model, the MLP algorithm with lower
RMSE and BIAS is more suitable than the RBF model and the models with high accuracy
are given, while the performance of all deter-mined ANNs is provided in the Supplemental
Materials (Tables S3 and S4). In addition, Figure 11 represents the relationship between the
predicted and actual diameter increment for all species by ANN.

Table 10. Characteristics of RBF and MLP-based ANNs and associated metrics for diameter model
training and validation.

Sample Network Algorithm Error
Function

Hidden
Activation R2 RMSE % RMSE BIAS % BIAS

Train MLP
10-11-1

BFGS 196 SOS Exponential 0.49 0.50 20.92 0.0005 0.020

Validation MLP
10-11-1

BFGS 196 SOS Exponential 0.44 0.76 31.79 0.0019 0.079
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Figure 11. Relationship between predicted and actual diameter increment for future time by
ANN (cm) affected by climate change.

The influential factors in this method are DBH, basal area, basal area large, aspect,
temperature, elevation, ratio basal area large to basal area, precipitation, ratio basal area to
basal area large, and slope (Figure 12).
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Figure 12. Relative importance of predictor factors in the ANN model for future diameter increment.
SLP is slope, BA is basal area, BAL is basal area in largest trees, PREC is participation, DBH is
diameter at breast height, TEMP is temperature, ASP is aspect, and ELE is elevation.
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Table 11 shows the diameter increment changes from the current to 2070 under climate
change. The results show that due to changes in precipitation and temperature in the
region, the amount of diameter increment model is decreasing in the forest region.

Table 11. Changes in individual diameter increment (cm) by regression and artificial neuron network
under climate change.

Climate Condition Species Linear Mixed-Effect Model MLP

Current Fagus 2.30 2.31
Carpinus 2.22 2.24
Quercus 2.96 2.98

Other 2.85 2.86
All 2.39 (cm) 2.40 (cm)

Future time Fagus 2.30 2.31
Carpinus 2.22 2.25
Quercus 2.94 2.98

Other 2.85 2.86
All 2.38 (cm) 2.39 (cm)

MLP is multilayer perceptron.

4. Discussion

Estimating forest increment is one of the most important stages of forest management
planning [25]. Thus, the accuracy of this estimation is very important. In this study,
using individual tree models, we estimated the effect of biotic and abiotic factors on the
increment of tree species in Hyrcanian Forest under climate change conditions These
models are actually a series of mathematical equations or interconnected equation systems
that can provide future forest increment with any combination of inputs for optimal forest
management. In this regard, we used different structures of the ANN model and the linear
mixed-effect model. Compared to the ANN models, the linear mixed-effect model had a
higher RMSE (i.e., modeling error). Many researchers have used ANN models in forestry for
the simulation of the forest growth process and found them effective models [27,35]. Despite
the efficiency of artificial intelligence, linear mixed-effect models also have advantages
that can be used as a complement to other models [21]. For example, ANN makes fewer
assumptions about data, [26,36], has higher flexibility and accuracy, the ability to model
nonlinear and complex relationships, and the ability to clearly display the relationships
between variables [31].

The results of the factor importance analysis showed that elevation and BAL had
the greatest relative importance in estimating increment in different structures of ANN.
Further, BAL was used to account for competition. This index is one of the best and most
usual indicators for calculating one-side competition in forest ecosystems because it is
relatively simple to calculate, has a good correlation with growth rate, and it is an absolute
value [37,38]. In general, the results of factor analysis showed that the abiotic factors had a
much greater effect on increment estimation than biotic factors. In line with our results,
Primicia et al. [39] concluded that elevation in the two-way interaction with the competition
factor is one of the most important factors in the response of trees to the climate. Of course,
this response is also affected by the tree age such that older trees are more sensitive to
climate change than young trees, and their response to the effect of climate depends on
elevation. It should be noted that our study was in the forest with un-even aged stands, so,
did not consider the age factor.

The RCP4.5 and RCP8.5 scenarios projected increased temperature and precipitation
for the year 2070. The annual average temperature is 13.75 ◦C in the year 2020 and will reach
15.52 ◦C in the year 2070. Additionally, the average of annual precipitation in year 2020 is
425.01 mm and will increase to 437.19 mm in the year 2070. Unlike biodiversity, which has
an increasing trend from west to east of the Caspian Sea [27], the rate of diameter increment
is decreasing, and this can be a result of reduced precipitation. Accordingly, the rate of
tree increment in the forest of the region under the RCP4.5 scenarios is decreased by 0.01
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and 7.5%. Temperature on the southern slopes of the Caspian Sea has increased in recent
years [40], which reduces snow cover, slows down and reduces surface and subsurface
humidity, and creates drought conditions for vegetation in most years. As our findings
show, we are witnessing a significant increase in temperature and precipitation in the
Hyrcanian Forest. However, due to the increase in temperature and precipitation in 2070,
the tree increment rate is projected to decrease slightly.

In this study, the diameter increments for each species, such as the diameter increment
of the beech, the diameter increments of the hornbeam, and the diameter increment for
the total species, which is the productivity of the forest, was calculated for the current
conditions and under the influence of climate change; the results showed that in both
cases climate change did not affect the growth and productivity of the forest. In fact, the
simultaneous increase of rainfall and air temperature prevents the occurrence of a very
severe disturbance in the diameter increment of trees in the Hyrcanian mountain forests.
In line with our results, Burkhart et al. [41] confirmed that the climate does not have
much effect on growth, but the increase in CO2 causes growth to increase. In fact, the
increased levels of CO2 have two effects: (1) climate, and (2) tree physiological efficiency
(photosynthesis, water uptake, nutrient uptake, etc.).

Given several studies worldwide, the response of different species to the impact of
climate change is different. For example, studies in Ontario, Canada, showed that the
effects of projected climate change were positive in the northwest and northeast for jack
pine and negative and neutral in the center west and far west for red pine, respectively [42].
However, drought stress may affect plant increment, if the increase in temperature is not
accompanied by an increase in precipitation [43,44]. Studies on tree species such as grown
balsam fir (Abies balsamea (L.) Mill.), black spruce (Picea mariana (Mill.) B.S.P.), jack pine
(Pinus banksiana Lamb.), and trembling aspen (Populus tremuloides Michx.) in the Eastern
Canadian region have shown that the average annual temperature affects the basal area of
these tree species [43].

In this regard, several studies have been conducted, each of which has presented
different results in relation to increasing or decreasing the increment rate of the tree with
precipitation and temperature changes. For example, Goldblum and Rigg [45] reported
that when precipitation and temperature increased on the northeastern coast of Lake
Superior in Ontario, Canada, the increment rate of sugar maple and white spruce increased.
However, diameter increment of balsam was not affected by higher temperatures in the
fall. Subedi and Sharma [42] also reported the same results; they used 30-year increment
data (1971–2000) and concluded that the climate change had positive and negative effects
on the diameter increment of jack pine and black spruce trees, respectively. Oboite and
Comeau [46] developed climate-sensitive mixed effects models for some tree species in
Canada; they reported a negative effect on coniferous trees during the frost-free period and
an increase in increment on deciduous trees with longer frost-free period. Further, more
moisture increased the increment of trees, but the effect of available moisture depended on
the competitive factor. Sharma [43] modeled diameter increments for red pine plantations
in a changing climate and concluded that the projected diameters for trees in the southeast
and southwest were 11 and 23% larger, respectively, and for trees in the west-central
region 6% narrower at the end of the growing period, 2021–2080. Yang et al. [15] in the
Taihang Mountains, Northern China, examined the factors affecting the increment of trees
under climate change and concluded that the combination of increasing temperature and
precipitation has a decreasing effect on the increment rate, which is exactly the same as
the results of the present study, but they also suggested that the accuracy of the prediction
could be increased if we evaluated the species separately. Further, precipitation had a
positive effect on forest increment. Laubhann, et al. [47] studied the effect of temperature,
precipitation, and the deposition change of sulphur and nitrogen compounds on forest
increment. They analyzed Fagus sylvatica, Quercus petraea, and Q. robur, Pinus sylvestris,
and Picea abies. Their results are in line with ours; they concluded for all species, except
Picea abies, the increasing temperature had a positive influence on increment.
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Particular tree species may respond differently to climate change across any re-
gion. In this study, we studied oriental beech (Fagus orientalis Lipsky), common horn-
beam (Carpinus betulus L.), Caucasian alder (Alnus subcordata C.A. Mey), velvet maple
(Acer velutinum Boiss.), and large-leaved lime tree (Tilia platyphyllos Scop.) and assumed
responding to climate change in forest increment for all populations are similar.

Given the fact that the increment rate has not changed significantly during the study
period, as seen in various previous works (e.g., [15]), increasing the temperature on one
hand, with increasing evapotranspiration, reduces the increment rate and increases pre-
cipitation also increases the rate in another hand. However, according to the prediction
of climate change scenarios studied in this research, during the study period, an increase
in temperature and precipitation will occur together, so these two effects neutralize each
other on the increment rate and thus the increment rate at the end of the period has not
changed significantly.

5. Conclusions

In this study, we investigated the effect of climate change, which was simulated with
the RCP4.5 and RCP8.5 scenarios in 2070 on forest increment under the influence of various
biotic and abiotic factors. Different structures of the ANN model were developed due to
its ability to model nonlinear relationships. The most important factor in tree increment
was elevation and BAL. The effect of climate, which included an increase in precipitation
and temperature at the end of the study period, on increment was not very noticeable.
In fact, many factors affect the response of tree increment to climate change, such as
species type, site conditions, and tree age. Our results demonstrated that the effect of
increasing temperature, which reduces the increment rate, is accompanied by an increase
in precipitation, which increases the increment rate. These climatic factors neutralize the
effect on the increment rate and, therefore, the increment rate does not change significantly
at the end of the period compared to the beginning.
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