
DOI: 10.1111/cgf.14578 COMPUTER GRAPHICS forum
Volume 41 (2022), number 6 pp. 196–211

Fast Neural Representations for Direct Volume Rendering

S. Weiss, P. Hermüller and R. Westermann

Technical University of Munich, Munich, Germany

Abstract
Despite the potential of neural scene representations to effectively compress 3D scalar fields at high reconstruction quality,
the computational complexity of the training and data reconstruction step using scene representation networks limits their use
in practical applications. In this paper, we analyse whether scene representation networks can be modified to reduce these
limitations and whether such architectures can also be used for temporal reconstruction tasks. We propose a novel design of scene
representation networks using GPU tensor cores to integrate the reconstruction seamlessly into on-chip raytracing kernels, and
compare the quality and performance of this network to alternative network- and non-network-based compression schemes. The
results indicate competitive quality of our design at high compression rates, and significantly faster decoding times and lower
memory consumption during data reconstruction. We investigate how density gradients can be computed using the network and
show an extension where density, gradient and curvature are predicted jointly. As an alternative to spatial super-resolution
approaches for time-varying fields, we propose a solution that builds upon latent-space interpolation to enable random access
reconstruction at arbitrary granularity. We summarize our findings in the form of an assessment of the strengths and limitations
of scene representation networks for compression domain volume rendering, and outline future research directions. Source code:
https://github.com/shamanDevel/ fV-SRN

Keywords: volume rendering, neural networks, compression algorithms

ACM CCS: • Computing methodologies → Ray tracing; Neural networks

1. Introduction

Learning-based lossy compression schemes for 3D scalar fields us-
ing neural networks have been proposed recently. While first ap-
proaches have leveraged the capabilities of such networks to learn
general properties of scientific fields and use this knowledge for
spatial and temporal super-resolution [ZHW*17, HW20, GYH*20,
HW19], Lu et al. [LJLB21] have focused on the use of scene repre-
sentation networks (SRNs) [PFS*19, SZW19, MST*20] that overfit
to a specific dataset to achieve improved compression rates.

SRNs were introduced as a compact encoding of (coloured) sur-
face models. They replace the initial model representation with a
learned function that maps from domain locations to surface points.
SRNs are modelled as fully connected networks where the scene is
encoded in the weights of the hidden layers. This scene encoding—
the so-called latent-space representation—can be trained from im-
ages of the initial object via a differentiable ray-marcher, or in
object-space using sampled points that are classified as inside or
outside the surface. Since SRNs allow for direct access of the en-
coded model at arbitrary domain points, ray-marching can work on

the compact representation without having to decode the initial ob-
ject.

Lu et al. [LJLB21] introduced neurcomp, an SRN where the map-
ping function has been trained to yield density samples instead of
surface points. We subsequently refer to an SRN that predicts den-
sity samples as volume representation network (V-SRN). By using a
V-SRN, a ray-marcher can sample directly from the compact latent-
space representation, and does not require to decode the initial vol-
ume beforehand. However, at every sample point along the view-
rays, a deep network is called to infer the density sample.

Since SRNs are implemented using generic frameworks like Py-
Torch or Tensorflow where the basic building block is a network
layer, intermediate states of each layer need to be written to global
memory to make it available to the next layer. Thus, the evaluation
becomes heavily memory-bound when deep networks consisting of
multiple layers are used. Due to this reason, direct volume rendering
using V-SRN is currently limited to non-interactive applications,
with frame rates that are significantly below what can be achieved
on the initial data. Furthermore, the size of the networks that are

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

196

https://orcid.org/0000-0003-4399-3180
https://orcid.org/0000-0002-8743-7488
https://orcid.org/0000-0002-3394-0731
https://github.com/shamanDevel/fV-SRN
http://creativecommons.org/licenses/by/4.0/


S. Weiss et al. / fV-SRN for DVR 197

Figure 1: Performance and quality comparison of volume representation networks (SRNs). (a) The original datasets. (b) Low-pass filtered
versions, sub-sampled to meet the selected compression rate. (c) neurcomp by Lu et al. [LJLB21]. (d) Our proposed fV-SRN. From left to
right, top to bottom: Richtmyer–Meshkov (RM), Skull (each of resolution 2563, 8-bit), Ejecta (10243, 16-bit), Jet (512 × 336 × 768, 32-bit
floating-point, courtesy of Lu et al.). The same network configuration was used for all datasets. Compression rates for (b)–(d): 1:32 for RM
and Skull, 1:254 for Jet, 1:2048 for Ejecta, including network weights and latent grid. RM, Skull, Ejecta rendered using DVR with a step size
of 1 voxel, Jet using Monte-Carlo path tracing with 256 spp to a screen of resolution 1080p. RM and Skull trained using 2563 samples, Jet
and Ejecta using 5123 and 10243 samples, respectively.

used to generate the model representation drastically increases the
training times.

Figure 1 demonstrates the aforementioned properties for differ-
ent datasets and a given memory budget of roughly 3–0.4% of the
memory that is required by the original dataset. Given the internal
format of the network weights, which is set to 16-bit half-precision
floating-point values in the current examples, V-SRN automatically
determines the internal network layout so that the memory budget is
not exceeded. Compared to the initial datasets in (a), V-SRN in (c)
with 18 layers (eight residual blocks) and 128 channels shows high
reconstruction fidelity at the given compression rate. Compared to
low-pass filtered versions of the original datasets (b), which are re-
sampled to a resolution that matches the memory budget, even fine
structures are well preserved. However, the rendering times are be-
tween a minute to multiple minutes, and training times range from
39 min to multiple hours.

1.1. Contribution

In this work, we demonstrate that the efficiency of V-SRN for vol-
ume rendering can be significantly improved, both with respect to
training and data reconstruction. We achieve this by a novel com-
pact network design called fV-SNR, which effectively utilizes the
GPU TensorCores and uses a trained volumetric grid of latent fea-
tures as additional network inputs. This enables fast training and
significantly faster rendering from the compressed representation
than prior work.

We compare fV-SRN to neurcomp by Lu et al. [LJLB21] as well
as non-network-based compression schemes TThresh [BRLP19]
and cudaCompress [TRAW12, TBR*12] regarding compression ra-
tio and reconstruction speed. The results indicate that fV-SRN is
significantly faster than neurcomp at similar compression rates,
achieves similar compression rates than TThresh at significantly
lower reconstruction times and significantly outperforms cudaCom-

press in terms of compression ratio at similar decoding speed. Fur-
thermore, since fV-SRN can render directly from the compressed
representation, no additional memory is required at rendering time.
Building upon the strengths of fV-SRN, we introduce the extension
of fV-SRN to predict scalar field values as well as derived quantities
like gradients and curvature estimates.

We further demonstrate the use of fV-SRN for temporal super-
resolution tasks, to perform smooth, yet structure-preserving in-
terpolation between given volumetric datasets at two consecutive
timesteps. This enables to reduce the number of timesteps that need
to be stored out of a running simulation. We analyse the possibil-
ity of latent-space interpolation to perform this task, and demon-
strate that the restriction of available super-resolution schemes like
TSR [HW19] and STNet [HZCW21] to obtain interpolations only at
a pre-defined discrete set of timesteps can be overcome. Our specific
contributions are:

1) The design and implementation of a fast variant of V-SRN
(fV/SRN) using a volumetric latent grid and running completely
on fast on-chip memory.

2) An extension of fV-SRN to jointly predict a scalar quantity as
well as the gradient and curvature at the given input position.

3) A temporal super-resolution fV/SRN using latent-space inter-
polation as a means for feature-preserving reconstruction of
time-sequences at arbitrary temporal resolution.

In an ablation study we shed light on the design decisions and
training methodology, and we perform a number of experiments
to demonstrate the specific properties of fV/SRN. Its quality and
performance are compared to state-of-the-art compression schemes
targeting direct volume rendering applications. Our experiments in-
clude qualitative and quantitative evaluations, which indicate high
compression quality even when small networks are used. fV/SRN
can be integrated seamlessly into ray- and path-tracing kernels, im-
proves the rendering performance about two orders of magnitude
(between 150× and 200×) on a screen of resolution 1920 × 1080

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



198 S. Weiss et al. / fV-SRN for DVR

compared to neurcomp, and accelerates the training process by
about a factor of 9× (Figure 1). Due to the use of a low-resolution la-
tent grid, temporal super-resolution between given instances in time
can be used even for large time-varying sequences (Section 8).

2. Related Work

There is a vast body of literature on compression schemes for vol-
umetric fields and SRNs, and a comprehensive review is beyond
the scope of this paper. However, for thorough overviews and dis-
cussions of the most recent works in these fields let us refer to the
articles by Balsa Rodríguez et al. [RGG*13], Beyer et al. [BHP14],
Hoang et al. [HSB*21] and Tewari et al. [TFT*20].

Lossy volume compression schemes. Our approach, since it at-
tempts to further improve the compressive neural volume repre-
sentation by Lu et al. [LJLB21], falls into the category of lossy
compression schemes for volumetric scalar fields. Previous stud-
ies in this field have utilized quantization schemes to represent
contiguous data blocks by a single index or a sparse combina-
tion of learned representative values [SW03, FM07, GIGM12,
GG16], or lossy curve fittings like the popular SZ compression algo-
rithm [DC16, ZDL*20]. Transform coding-based schemes [YL95,
Wes95, LCA08] make use, in particular, of the discrete cosine and
wavelet transforms. They try to transform the data into a basis in
which only few coefficients are relevant while many others can be
removed. More recently, Ballester-Ripoll et al. [BRLP19] introduce
tensor decomposition to achieve extremely high compression rates
exceeding 1:1000.

For interactive applications, methods combining transform
coding-based schemes and other techniques listed above
are often applied brick-wise and embedded into streaming
pipelines [TBR*12, RTW13, DMG20]. They achieve signifi-
cantly smaller compression ratios as, e.g. TThresh, for the sake
of efficient GPU decoding. For example, Marton et al. [MAG19]
present a rendering pipeline capable of decompressing over 10
Gvoxels/s while reporting a compression ratio of 1:64 (0.5 bits
per sample on floating point data). In our work we target the
high compression rates achieved by offline schemes like TThresh,
while still being able to render images of large volumes from the
compressed representation within a second.

Fixed-rate texture compression formats such as ASTC, S3TC and
variants [INH99, Fen03, NLP*12] are implemented directly by the
graphics hardware. This means that rendering, including hardware-
supported interpolation, is possible directly from the compressed
stream. However, the fixed-rate stage allows little or no control over
the quality versus compression rate trade-off.

Deep learning for scientific data compression. With the suc-
cess of convolutional neural networks, deep learning methods
have started to see applications in visualization tasks. Early
works use super-resolution networks to upscale the data if ei-
ther storing the high-resolution data is too expensive (3D spatial
data [ZHW*17, HW20, GYH*20], temporal data [HW19], spa-
tiotemporal data [HZCW21]) or the rendering process is too expen-
sive (2D data [WCTW19, WITW20]). Sahoo and Berger [SB21]

extended 3D super-resolution for vector fields by introducing a
loss function that penalizes differences in traced streamlines, in-
stead of only point-wise differences. The most recent approach by
Lu et al. [LJLB21] and Wurster et al. [WSG*21] utilizes SRNs
to learn a compact mapping from domain positions to scalar field
values.

Berger et al. [BLL19] and Gavrilescu [Gav20] avoid the render-
ing process completely and train a network that directly predicts the
rendered image from camera and transfer function (TF) parameters.
This results in a compact representation of the data in the network
weights from which the image can be directly predicted, but is lim-
ited concerning the generalization to new views or TFs if the training
data does not provide this specific combination. Super-resolution
methods for 3D spatial data or temporal data, on the other hand, are
fixed on a regular grid in space (or time) due to the use of convo-
lutional (recurrent) networks. Therefore, they do not allow for free
interpolation and require the decompression of a whole block be-
fore rendering.

Scene representation networks. SRNs address the above issues.
By directly mapping a spatiotemporal position to the data value, ran-
dom access is possible, as opposed to grid-based super-resolution
methods. This also allows to freely move the camera during testing.

SRNs were first introduced for representing 3D opaque meshes,
either as occupancy grids [MON*19, MLL*21] or signed distance
field [TLY*21, DNJ20, LJM21, CLI*20]. In these methods, the
networks were trained in world-space, that is, from pairs of po-
sition to data value. This principle was also adopted in the VIS
area by Lu et al. [LJLB21]. The large network used in this work,
however, makes interactive rendering infeasible. For image-space
training, that is, training from images through the rendering pro-
cess, SRNs were first introduced for 3D reconstruction [SZW19],
including NeRF by Mildenhall et al. [MST*20, TSM*20]. Fur-
ther improvements include reduction of aliasing artefacts (Mip-
NeRF) [BMT*21] and incorporation of lighting effects [SDZ*21].
Performance improvements are achieved by caching evalu-
ated samples (FastNeRF) [GKJ*21], pre-integration of segments
(AutoInt) [LMW21] or depth oracles (DONeRF) [NSP*21].

Let us remark that in the mentioned scenarios, the networks are
trained to predict single surfaces from images, i.e. a computer vi-
sion task. This allows for significantly larger step sizes, or the use
of sparse latent grids where only regions close to the surface are re-
solved at high resolution [TLY*21, YLT*21]. In the extreme case,
a network is completely replaced by a learned sparse voxel repre-
sentation [YFKT*21, HSM*21]. These approaches cannot be trans-
ferred to the direct volume rendering scenario addressed in our
work, were a surface might not be given or is permanently changed
by interactively selecting iso-contours in the volumetric scalar field.
Nevertheless, we see potential for future transfer of techniques be-
tween both worlds, for example, by integrating the proposed cus-
tom TensorCore kernels into computer vision tasks, or extending
fV-SRN with aliasing-reducing techniques inspired by Mip-NeRF.

Regarding dynamic scenes, Park et al. [PFS*19] (modelling
SDFs) and Chen and Zhang [CZ19] (modelling occupancy grids)
introduce a latent vector that allows interpolating between differ-
ent models. This is the basis for the time interpolation described in

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



S. Weiss et al. / fV-SRN for DVR 199

Section 8. Alternatively, Pumarola et al. [PCPMMN21] intro-
duce a second network that models affine transformations from a
base model.

3. Scene Representation Networks

Let V be a 3D multi-parameter field, i.e. a mapping R
3 → R

D that
assigns to each point in a given domain a set of D dependent pa-
rameters. In this work, we focus on 3D scalar fields (D = 1) and
colour fields (D = 4), where at each domain point either a scalar
density value is given or an RGBα sample has been generated via a
TF mapping.

SRNs [MST*20, TSM*20] encode and compress the field V via
a neural network comprised of fully connected layers. The network
takes a domain position as input and predicts the density or colour at
that position, i.e. a mapping V� : R3 → R

D. In detail, let v0 = p ∈
R

3 be the input position. Then, layer i of the network is computed as
vi+1 = a(Wivi + bi), whereWi is the layer weight matrix, bi the bias
vector and a(·) the element-wise activation function. The number
of layers is denoted by l. The output of the last layer vl ∈ R

D is the
final network output. The intermediate states v1, . . . , vl−1 are of size
R
c with c being the number of hidden channels of the network. The

matricesWi, bi are the trainable parameters of the network.

Since the network processes each input position independently of
the other inputs, the volumetric field can be decoded at arbitrary po-
sitions only where needed, i.e. along the ray during direct volume
raycasting. In practice, batches of thousands of positions are pro-
cessed in parallel. In the spirit of previous SRNs [CZ19, MON*19,
PFS*19], neurcomp by Lu et al. [LJLB21] is trained in world-space,
using training pairs of position and density (x, v). Let us refer to
Section 5 for a study of the most relevant network parameters and
the details of the training method.

As shown by Mildenhall et al. [TSM*20] and Tan-
cik et al. [TSM*20], when the SRN is trained only with positional
input p = (x, y, z) and corresponding density or colour output,
the mapping function cannot faithfully represent high-frequency
features in the data. To avoid this shortcoming, so-called Fourier
features are used to lift 3D positions to a higher-dimensional
space before sending the input to the network. In this way, the
spread between spatially close positions is increased, and positional
variations of the output values are emphasized.

Let p ∈ R
3 and m ∈ N, respectively, be the input positions to the

network and the desired number of Fourier features that should be
used (see Section 4.1 for a discussion of how to choose m). Then, a
matrixF ∈ R

m,3—the so-called Fourier matrix—is defined. Milden-
hall et al. [MST*20] propose to construct the Fourier matrix based
on diagonal matrices of powers of two �

3, i.e.

FNeRF = 2π
[
20 · �3, 21 · �3, . . . 2L−1 · �3

] ∈ R
3L,3, (1)

where m = 3L. The matrix is fixed before the training process and
not part of the trainable parameters. The inputs to the network are
then enriched via vector concatenation as

vfourier = p⊕ sin(F p) ⊕ cos(F p), (2)

where ⊕ indicates the concatenation operation.

Alternatively, Tancik et al. [TSM*20] reported better reconstruc-
tion quality when using random Fourier features, where the entries
of the matrix F are sampled from N (0; (2πσ )2) using the dataset-
dependent hyperparameter σ . In our experiments (Section 5.3),
however, we could not observe these improvements and, therefore,
follow the construction proposed by Mildenhall et al. [MST*20]. In
contrast to neurcomp, which does not make use of Fourier features,
we observed a significant enhancement of the networks’ learning
skills when incorporating these features.

4. Fast Volumetric SRN (fV-SRN)

When using SRNs, the main computational bottleneck is the evalua-
tion of the network to infer a data sample at a given domain location.
In frameworks like PyTorch or Tensorflow, the basic building block
a network is composed of is a single linear layer. On recent GPUs,
when a layer is evaluated, the inputs and weights are loaded from
global memory, updated and the results are written back to global
memory to make them available to the next layer. In direct volume
rendering, if 100 steps along a ray are taken and the SRN consists
of seven layers, this amounts to 700 layer invocations and global
memory read and write operations. In the following, we show that
it is possible to completely avoid loading and storing the interme-
diate results to global memory by fusing the network into a single
CUDA kernel and following certain size constraints. A similar idea
has been employed previously for radiance caching in Monte-Carlo
path tracing [MRNK21]. Our approach goes beyond this by using
a latent grid (Section 4.2), which has been published concurrently
by Müller et al. [MESK22], and by completely avoiding all global
memory access within the network layers and between the samples
during raytracing (see Section 4.1). This gives rise to a speedup of up
to 16.8× of our custom CUDA TensorCore implementation, com-
pared to a native PyTorch [PGM*19] implementation, for the same
V-SRN network architecture, see Section 5.1.

4.1. Custom inference via TensorCores

NVIDIA GPUs expose 64 kB of fast on-chip memory per multi-
processor that is magnitudes faster than global memory (GBs of
memory shared across all multiprocessors). These 64 kB are divided
into 48-kB freely accessible shared memory and 16 kB of L1-cache.
Furthermore, the tensor core (TC) units on modern GPUs provide
warp-synchronous operations to speed up matrix–matrix multipli-
cations by a factor of 6× [MDCL*18]. A warp is a group of 32
threads that are executed in lock-step on a single multiprocessor.
The core operation of the TC units is—for our purpose—a matrix–
matrix multiplication of 16 × 16 matrices of 16-bit half-precision
floats D = AB+C. Each thread holds a part of the input and the
output matrices in registers and computes a part of the matrix multi-
plication. The TC API comes with three main limitations: (a) matrix
sizes must be a multiple of 16, (b) inputs and outputs can only be
loaded from and stored to shared or global memory, not registers,
(c) all 32 threads of the warp must execute the same code.

When evaluating an SRN, each layer computes y =Wx+ b,
where W is the weight matrix, x the input state vector, b the bias
vector and y the output state. To use the TC units as described
above and regarding constraint (a), however, x must be a matrix

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



200 S. Weiss et al. / fV-SRN for DVR

Table 1: Largest possible network configurations for the proposed Tensor-
Core implementation of fV-SRN.

Channels 32 48 64 96 128

Layers 22 10 6 3 2

with 16 columns. The first idea is to batch the evaluation so that
the 32 threads per warp calculate 16 rays. Then, however, half of
the threads are idle in operations like TF evaluation. Therefore,
we map one thread to one ray, and block the matrix multiplica-
tion Y =WX + B in the following way (exemplary for 48 chan-
nels per layer): The matrix W ∈ R

48,48 is split into 3 × 3 blocks,
and X,Y ∈ R

48,32 are split into 3 × 2 blocks, each block of shape
16 × 16. The bias B ∈ R

48,32 is broadcasted from the bias vector
b ∈ R

48 by setting the column stride to zero. In total, a layer eval-
uation of 48 channels with 32 rays requires six invocations to the
TC units.

Constraint (b) indicates that the weights and biases of the hidden
layers, as well as the layer outputs, must fit into shared memory for
optimal performance. In contrast, Müller et al. [MRNK21] reload
the weights from global memory in every layer evaluation per warp.
As an example, consider a network with l = 4 layers, each with
c = 48 channels. Then the weights and biases require 4 ∗ 482 ∗ 2
bytes and 4 ∗ 48 ∗ 2 bytes, respectively, for a total of mw = 18816
bytes that have to be stored once. Additionally, each thread stores
the 48 layer outputs, leading to ms = 48 ∗ 32 ∗ 2 = 3072 bytes per
warp. Therefore, with the limitation of 48-kB shared memory, w =
�(48k − mw )/ms� = 9 warps can fit into memory. More warps—up
to the hardware limit of 32—are advantageous, as they allow to hide
pipeline latency by switching between the warps per multiprocessor.
Note that the first (last layer) has to be handled separately, as the in-
put (output) dimension differs. This results in the maximal network
configurations given in Table 1. The number of Fourier features m
(see Section 3) is chosen as m = (c− 4)/2, so that the size of the
used input vector v matches the channel count.

As the network evaluation is directly included in the raytracing
kernel, global memory interactions between the renderer and the
network can be avoided. The network evaluation terminates auto-
matically when all rays of a warp terminate, e.g. due to opacity-
based early-out. As shown in Section 5.1, our TC implementation
achieves a speedup of up to 16.8× against 32-bit PyTorch or 9.8×
against 16-bit PyTorch.

4.2. Volumetric latent grid

When using V-SRN with a network configuration that is small
enough to enable interactive volume rendering, we observe a signif-
icant drop in the networks’ prediction skills. The reason lies in the
loss of expressive power of the network when relying solely on the
few network weights to encode the volume. To circumvent this limi-
tation, we borrow an idea proposed by Takikawa et al. [TLY*21] for
representing an implicit surface that is encoded as a signed distance
function via an SRN. The proposed architecture employs a sparse
voxel octree, which stores latent vectors at the nodes instead of
distance values. Each octree node stores a trainable F-dimensional

Figure 2: Visualization of the proposed fV-SRN architecture: The
input position x, y, z is augmented by the Fourier features and the
latent vector sampled from the coarse latent grid on the left. The
resulting hidden vector with 48 channels is then passed to an MLP
with four layers and 32 hidden channels to predict the scalar density.

vector that is interpolated across space and passed as additional in-
put to the SRN network. Since the SRN learns to predict a single
surface, an adaptive voxel octree with a finer resolution near the
surface is used. We adopt this approach of a volumetric latent space
but use a dense 3D grid instead of a sparse voxel octree. Especially,
since in direct volume rendering, it is desirable to change the TF
mapping of density values to colours after training, refining adap-
tively toward a single surface is not suitable.

LetG : R3 → R
F be a regular 3D grid with F channels, i.e. F pa-

rameters per grid vertex, and a resolution of R vertices along each
axis. In the interior of each cell, the values are tri-linearly interpo-
lated to obtain a continuous field. When evaluating the SRN V� at
position x, the grid is interpolated at x and the resulting latent vector
G(x) = z ∈ R

F is passed as additional input—alongside the Fourier
features—to the network. The contents of G are trained jointly with
the network weights and biases.

With this approach, we can keep the network small enough to
enable fast inference, up to networks of only two layers à 32 chan-
nels, while maintaining the reconstruction quality of V-SRN. For
the evaluation of the network and grid configurations, we refer to
Section 5.2. We found that the best compromise between speed,
quality and compression rate is achieved with a network of four lay-
ers à 32 channels and a latent grid of resolution R = 32 and F = 16
features. This configuration is used in Figure 1d and as default in the
ablation studies below. The basic network architecture is illustrated
in Figure 2. Compared to neurcomp, the proposed network leads to
a speedup of up to 9.8× for training and 165× for rendering. The
latent grid is stored in four 3D CUDA textures with four channels
each, so that hardware-supported trilinear texture interpolation can
be exploited.

By using a latent grid, most of the parameters are stored in the
grid instead of the network. For the configuration described above,
the grid requires 2 MB of memory (four bytes per voxel and chan-
nel), whereas the network consumes only around 7.3 kB of mem-
ory. Note that in all specifications of the memory consumption of
fV-SNR given in this paper, the memory consumed by the latent
grid and the network weights is included. We further avoid storing
the latent grid in a float-texture, by using a CUDA feature that en-
ables the use of 8-bit integers per entry that are then linearly mapped
to [0, 1] in hardware. Thus, we compute the minimal and maximal
grid value for each channel, and use these values to first map the

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



S. Weiss et al. / fV-SRN for DVR 201

Figure 3: Datasets used in the ablation study: (a) ScalarFlow
(1783) [EUT19], (b) Ejecta (2563), (c) RM (2563).

grid values to [0, 1] and then uniformly discretize them into 8-bit
values. This reduces the memory footprint of the latent grid repre-
sentation to a quarter of the size, while reducing the rendering times
only slightly by roughly 5% due to reduced memory bandwidth.
At the same time, the quality of the rendered images is slightly de-
creased by a factor of up to 2% of the reference SSIM and LPIPS
statistics. Visually, however, the discretization does not introduce
any perceptual differences, and is used in all of our experiments.

5. Ablation Study

To select the network architecture with the best reconstruction qual-
ity from the possible configurations within the hardware limitations,
we trained different networks on three different datasets (see Fig-
ure 3): The ScalarFlow dataset [EUT19]—a smoke plume simula-
tion with 500 timesteps, the Ejecta dataset—a supernova simulation
with 100 timesteps and the RM dataset—a Richtmyer–Meshkov
simulation with 255 timesteps. All datasets are given on Cartesian
voxel grids, and they are internally represented with 8 bits per voxel.
All timings are obtained on a system running Windows 10, an Intel
Xeon CPU with 3.60 GHz, and an NVIDIA GeForce RTX 2070.

Unless otherwise noted, we analyse the capabilities of fV-SRN
using world-space training on position-density encodings. The net-
works are training on 2563 randomly sampled positions, with a batch
size of 128 · 642 positions over 200 epochs, an L1 loss function on
the predicted outputs and the Adam optimizer with a learning rate
of 0.01. We use a modified Snake [LHU20] activation function with
enhanced overall slope, i.e.

SnakeAlt(x) = 0.5x+ sin2(x), (3)

which results in slight improvements of the reconstruction quality,
see supplementary material. After training, the networks are evalu-
ated by rendering 64 images of resolution 5122 from different views
of the objects. The quality of the rendered images is measured us-
ing the image statistics SSIM [WBSS04] and LPIPS [ZIE*18] us-
ing renderings of the initial volumes as references. For training from
rendered images, we refer to Section 5.5 and the supplementary ma-
terial.

5.1. Performance evaluation

First, we compare the performance of the proposed TC implemen-
tation to a native PyTorch implementation of the same architecture.
Performance measures include the time to access the latent grid and
to evaluate fV-SRN with the positional information augmented by

Figure 4: Performance analysis of fV-SRN using the latent grid and
different layer-channel combinations. A 2563 dataset is rendered to
a 5122 viewpoint with a constant stepsize of 1 voxel without gra-
dients and empty-space skipping. Measures are obtained as aver-
ages over many views. For thin networks with few channels, fV-SRN
outperforms a native PyTorch implementation using 32- or 16-bit
floats by up to a factor of 17×. For wide networks with 96 or 128
channels, computation dominates over memory access, leading to a
smaller speedup.

Fourier features. Figure 4 shows the timings for rather lightweight
networks as well as the largest possible networks within the TC
hardware constraints.

As can be seen, the largest speedup of 16.8× (9.8×) over a 32-
bit (16-bit) PyTorch implementation is achieved for a medium-sized
network of six layers and 48 channels. For very small networks
of two or four layers with 32 channels, the speedup goes down to
≈ 11× (≈ 8×). For larger networks, e.g. two layers à 128 chan-
nels, the network evaluation becomes computation bound and the
reduction of memory access operations as achieved by our solution
becomes less significant. However, also in these cases, a speedup of
1.9 (1.5) against 32-bit (16-bit) PyTorch can still be achieved. We
notice, however, that fast renderings with 5–10 FPS are only possi-
ble with small networks.

5.2. Latent grid

Next, we investigate the effect of the volumetric latent grid on re-
construction quality. For Ejecta with many fine-scale details, Fig-
ure 5 shows quantitative results for different resolutions of the latent
grid and different network configurations. As one can see, the re-
construction quality drastically increases with increasing latent grid
resolution. At finer grids, i.e. 323 and higher, the choice of the net-
work has a rather limited effect on the overall reconstruction quality.
The differences between networks of four and six layers are not no-
ticeable. In these cases, a small network of only four layers à 32
hidden channels is sufficient to achieve good reconstruction quality.
Only when using small grids—or no latent grid at all—can larger
networks improve the overall quality.

To confirm that the quality improvement is not solely due to the
volumetric latent grid while the SRN is superfluous, we compare the
rendered images to images that were rendered from a low-pass fil-
tered density grid with the same memory consumption as the latent
grid (row ‘off’ in Figure 5). For example, for a latent grid of reso-
lution 323 and 16 features, the original volume is first low-pass fil-
tered and then down-sampled to a grid resolution of 3

√
323 · 16 ≈ 81.

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



202 S. Weiss et al. / fV-SRN for DVR

Figure 5: Effect of latent grid resolution on reconstruction quality
for Ejecta. The x-axis shows the grid resolution (43, 83, . . . , 643)
and grid feature channels F (4, 8, 16, 32), or 0 if no grid is used.
The y-axis represents the network configuration, the number of hid-
den channels (32, 48, 64), and the number of layers (2, 4, 6). The
special network ‘off’ shows the results without a network, where
only a density grid requiring the same memory as the current la-
tent grid G is used. The LPIPS score and the other datasets show
similar behaviour.

Figure 6: Effect of latent grid resolution on reconstruction quality.
(a) Reference. (b) Latent grid of R = 8,F = 8 with a network of
32 channels, two layers. (c) Latent grid of R = 32,F = 16 with a
network of 32 channels, two layers. (d) and (e) Density grid without
a network of equivalent memory consumption as (b) and (c).

The width of the low-pass filter is selected according to the sub-
sampling frequency. As one can see from Figure 5, and evidenced by
the qualitative assessment in Figure 6, by using a latent grid in com-
bination with the SRN even small-scale structures are maintained.
In the low-resolution density grid, many of these structures are lost.

Notably, since the latent grid can be trained very efficiently and
takes the burden from the SRN to train a huge number of parame-
ters, the training times of fV-SRN are up to a factor of 9.8× faster
than those of V-SRN with the same total number of parameters, see
Figure 1. Especially because SRNs overfit to a certain dataset and
training has to be repeated for each new dataset, we believe that
this reduction of the training times is mandatory to make SRNs
applicable.

Figure 7: SSIM values for different types of Fourier features—
Tancik et al. with different values for σ , NeRF and disabled
features—and different feature sizes m, evaluated on the Ejecta
dataset. The LPIPS score and the other datasets show similar be-
haviour.

5.3. Fourier features

In the following, we shed light on the effects of Fourier features on
the overall reconstruction quality of networks that were trained in
world-space for density prediction. We compare the construction of
Fourier features according to Mildenhall et al. [MST*20], denoted
‘NeRF’, and Tancik et al. [TSM*20] with standard deviation σ as
hyperparameter. In addition, we evaluate the reconstruction quality
when Fourier features are not used. Networks were trained for mul-
tiple values of σ and three different numbers of Fourier features.
The results can be found in Figure 7. They demonstrate the general
improvements due to the use of Fourier features, and furthermore
indicate the superiority of ‘NeRF’ over random Fourier feature by
Tancik et al. in combination with our network design.

5.4. Density versus colour prediction

Next, we shed light on the reconstruction quality for networks that
predict densities that are then mapped to colours via a user-defined
TF (the approach we have followed so far), and networks that di-
rectly predict colours at a certain domain location. In the latter case,
the network encodes colours dependent on positions, and the loss
function considers the differences between the encoded colours and
the colours that are obtained by post-shading at the interpolated in-
put positions.

Density prediction enables to change the TF after a sample has
been reconstructed without retraining. When predicting colours,
however, the network needs to be re-trained whenever the TF is
changed. Hence, this approach seems to be less useful in practice,
yet it is interesting to analyse how well a network can adapt its learn-
ing skills to those regions emphasized by a TF mapping. Possibly,
the network can learn to spend its capacities on those regions that
are actually visible after the TF has been applied, which may result
in improved reconstruction quality.

Instances of fV-SRN: One that predicts densities and three net-
works that predict colours that have been generated via three dif-
ferent TFs on ScalarFlow. Reference images for the three TFs are
shown in Figure 8, combined with the achieved reconstruction qual-
ity. For the first two TFs, there are almost no differences in image
quality between density and colour prediction. For the third TF with
two narrow peaks, however, colour prediction performs consider-
ably worse, even though the network needs to learn significantly

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



S. Weiss et al. / fV-SRN for DVR 203

Figure 8: Quality comparison of fV-SNR-based density and colour
prediction. The tests were conducted with three different TFs, refer-
ence images and transfer functions are shown in the first row.

fewer positions at which a non-transparent colour is assigned. We
hypothesize that especially narrow peaks in the TF make the predic-
tion difficult. In such cases, the absorption changes rapidly over a
short interval, so that the network training on uniformly distributed
locations cannot adequately learn these high frequencies.

To force the network to consider more positional samples in re-
gions where the TF mapping generates a colour, we propose the fol-
lowing adaptive re-sampling scheme: After eachNth epoch (N = 50
in our experiments), we evaluate the prediction error over a coarse
voxel grid E of resolution 1283. Per voxel, eight positions are sam-
pled and evaluated as an approximation of the average prediction er-
ror per voxel. E is then used to sample new training data for the next
N epochs, where the number of sampled positions is made propor-
tional to the values in E. This allows the training process to focus on
regions with high prediction error and samples the volumetric field
in more detail in these regions.

By using the proposed adaptive sampling scheme, e.g. the LPIPS
score for TF 3 for the colour-predicting network is improved from
0.113 to 0.039. Even though, however, we do not believe that the
quality of colour prediction can match the quality of density pre-
diction when rather sharp TFs are used. Thus, and also due to the
restriction of colour prediction to a specific TF, we consider this
option to be useful only when a colour volume is given initially.

5.5. Image-based training

In all of the previous examples, networks were trained on losses in-
volving the differences between the initial and reconstructed data
samples. Thus, the network uses its capacities even for data sam-
ples which might never contribute to the final images. In the follow-
ing, we evaluate the feasibility of generating a perceptual adaptive
compressed encoding, which is solely based on the resulting image
quality.

Figure 9: Screen- versus world-space training, using a TF with
sharp peaks. (a) Reference rendering with stepsize of 0.1 voxels.
(b) Rendering with a stepsize of 4 voxels and reconstruction using
fV-SRN trained in world-space. (c) Rendering with a stepsize of 4
voxels and reconstruction using fV-SRN trained in screen-space.

Therefore, we train fV-SRN in screen space using pairs (C, I)
consisting of camera extrinsics C and reference images I. The
network learns to adapt its internal mapping function so that
the reference images are best preserved. In the original work by
Sitzmann et al. [SZW19] and Mildenhall et al. [MST*20], this strat-
egy has been pursued using an extremely memory intensive ap-
proach, which requires to store the intermediate values along the
rays of sight for backpropagation. This severely limits the num-
ber of rays and steps that can be processed. For example, Milden-
hall et al. [MST*20] report that only 128 steps along the ray with an
image resolution of 642 can be used for training. To support arbitrar-
ily many steps along the ray during training, we use the approach
proposed by Weiss and Westermann [WW21] for differentiable vol-
ume rendering. This approach exploits an analytic inversion of the
blending function to ensure a constant memory footprint, regardless
of the number of steps per ray that need to be backpropagated. How-
ever, when training in screen-space, the network cannot reconstruct
a density field from the provided colour images. Weiss and West-
ermann [WW21] have shown that the non-convexity of the applied
TFs make the reconstruction of densities ill-posed. Therefore, the
networks used for screen-space training are fixed to a pre-defined
TF and directly predict the colour and absorption.

For the details on the training method including different input
parametrizations to incorporate the ray direction, used hyperparam-
eters and quantitative results, we refer to the supplementary mate-
rial. Instead, we focus here on qualitative results. If a dataset with
a high frequent TF, e.g. TF 3 in Figure 8, shown in more detail in
Figure 9a, is rendered with a large step size of 4 voxels between
samples, severe rendering artefacts occur due to undersampling, see
Figure 9b. The networks trained in screen-space do not show such
artefacts, since they are trained from artefact-free reference images
(Figure 9c). On the one hand, however, these networks have diffi-
culties in accurately recovering sharp colour transitions in the im-
ages and tend to produce blurry results. On the other hand, even at
a rather coarse stepsize of 4 voxels, the overall structure of the ren-
dered field is reconstructed since the network seems to use its ca-
pacities on those structures that are seen in the reference images.
Due to these observations, we believe that it is worth analysing
screen-space training further and to shed light on how to extend the

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



204 S. Weiss et al. / fV-SRN for DVR

Figure 10: Network-based direct volume rendering including
gradient-magnitude-based shading. (a) Gradients are computed via
finite differences, i.e. calling the network eight times for gradient
estimation. (b) Gradients are computed via the adjoint method, by
backpropagation through the volume, (c) fV-SRN is trained to pre-
dict scalar values and gradients. Shown is Jet with a compression
ratio of 1:985 and Phong shading. fV-SRN without gradient estima-
tion (i.e. no shading) requires 1.373 s.

network capacities so that accurate reconstruction becomes possi-
ble.

6. Gradient Prediction and Higher-Order Derivatives

In the following, we shed light on the use of fV-SRN to learn a
mapping that not only predicts a scalar field value at a given posi-
tion but also the gradient and even higher-order derivatives at that
position. The gradient is important in volume rendering to apply
gradient-magnitude-based opacity and colour selection via TF map-
pings [Lev88], and, since the gradient at a certain position is the
normal vector of the isosurface passing through this position, to il-
luminate the point, e.g. via Phong lighting.

In particular, we evaluate different strategies to estimate gradi-
ents in network-based scalar field reconstruction: Using finite dif-
ferences by calling the network multiple times (FD), using the ad-
joint method (Adjoint) and training fV-SRN to predict the gradients
alongside the density. As we will show, the latter improves the ren-
dering performance by ≈ 12× over finite differences and 4 − 5×
over the adjoint method, while reducing the quality only slightly,
see Figure 10. All three methods are implemented using the pro-
posed TC kernel (Section 4.1).

The common method to compute gradients during volume ray-
casting is to use FD, more concretely central differences, between
trilinearly interpolated scalar values with a step size of 1 voxel size
[Lev88]. Compared to computing analytical derivatives of the trilin-
ear interpolant, the use of central differences avoids discontinuities
at the voxel borders. Since the use of FD (with fV-SRN) introduces
a bias if the same method (w/o network) is used as reference, FD
with fV-SRN leads to the best prediction in general, see Figure 10b.
This method, however, introduces a large computation overhead
as seven network evaluations are required to compute the density
and gradients. Therefore, in previous work, the adjoint method (Ad-
joint) was proposed as an alternative [DNJ20, LJLB21]. Adjoint
uses backpropagation through the trained reconstruction network to
predict the change of the scalar value depending on changes of the
position, see Figure 10c.

Figure 11: fV-SRN for isosurface rendering with curvature-
based TF mapping. (a,b) Gaussian curvature κ1κ2 on an im-
plicit dataset [KWTM03], (c,d) principal curvatures κ1 and κ2 are
mapped to colour on an isosurface in a CT scan. (a,c) are the ref-
erences, (b,d) show the predictions by fV-SRN.

The fastest prediction is achieved by extending the output of fV-
SRN to predict scalar values and gradients, see Figure 10d. How-
ever, as the network now needs to predict four outputs—density plus
gradient x, y, z—instead of one within the same network weights
and latent grid size, the quality is slightly reduced. For an extended
comparison on further datasets, including implicit functions with
analytical gradients, and a detailed study on how to design the loss
function to include the gradients, we refer to the supplementary ma-
terial.

If higher-order derivatives are required, e.g. for TFs in-
corporating curvature measures [KWTM03], FD and Adjoint
become increasingly intractable. For finite differences, Kindl-
mann et al. [KWTM03] propose a stencil with a support of 43 sam-
ples. This would require 64 network evaluations per sample along
the ray. Similarly, the adjoint method requires an additional ad-
joint pass per row in the Hessian matrix. As an outlook for fu-
ture research, we show that the SRNs can be trained to jointly pre-
dict densities, gradients and also curvature estimates as a multi-
valued output. First results using the shading proposed by Kindl-
mann et al. [KWTM03] on isosurface renderings are given in Fig-
ure 11.

7. Performance and Quality Comparison

In the following, the quality and performance of fV-SRN is com-
pared to neurcomp [LJLB21], TThresh [BRLP19] and cudaCom-
press [TRAW12, TBR*12]. We compare to TTresh because of the
extreme compression rates it can achieve, and to cudaCompress be-
cause of its decoding efficiency. The publicly available implemen-
tations of TThresh (running on the CPU) and cudaCompress (run-
ning on the GPU) are used. For the comparison, we chose Jet with
Phong shading, as introduced in Section 6, and Ejecta at a reso-
lution of 10243, see Figure 1. To achieve a given compression ra-
tio, fV-SRN changes the latent grid resolution, neurcomp adapts
the number of hidden channels, TTresh modifies the bitplane cut-
off, and cudaCompress adapts the stepsize for quantizing discrete
wavelet coefficients. Further results on additional datasets are given
in the supplementary material.

For a quantitative evaluation, compression ratios of the four meth-
ods are plotted against (a) the peak CPU and GPU memory required
for decoding, (b,c) the time it requires to reconstruct 106 random lo-
cations as well as the resulting PSNR, (d,e) the time it requires to
render an image of resolution 10242 with two samples per voxel on
average as well as the resulting SSIM statistics, see Figure 12. All

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



S. Weiss et al. / fV-SRN for DVR 205

Figure 12: Evaluation of different compression rates of fV-SRN, neurcomp [LJLB21], TThresh [BRLP19] and cudaCompress [TRAW12,
TBR*12], using Jet of resolution 512 × 336 × 768 with 32-bit floating-point per voxel and Ejecta of resolution 10243 with 16 bits per voxel.
Jet uses Phong shading, the adjoint method is used by the network-based approaches to predict the gradients, see Section 6.

Figure 13: Visual comparison of volume compression schemes for Jet (a–d) and Ejecta (e–h). (a,e) Reference, (b,f) fV-SRN, (c,g) TThresh,
(d–h) cudaCompress. For each scheme, the result obtained with a compression ratio closest to 1:1000 and 1:10,000 for Jet and Ejecta,
respectively, is selected from Figure 12.

timing statistics are performed on an Intel Xeon CPU with 8 cores
and 3.60 GHz, equiped with a NVIDIA GeForce RTX 2070 GPU.

Regarding PSNR and SSIM, fV-SRN, neurcomp and TThresh are
almost on-par. For high compression ratios, the network-based ap-
proaches slightly outperform TThresh, while the opposite is true at
low compression ratios. However, both TThresh and cudaCompress
require additional temporal memory, as they need to decode the
volume before rendering. For TThresh and cudaCompress, respec-
tively, the temporarily required memory can grow up to 34 and 4.7
GB. neurcomp requires temporal memory to store the hidden states
during network evaluation, computed here for evaluating 10242 rays
in parallel. As shown in Section 4.1, fV-SRN runs completely in
shared memory and requires no additional temporal memory for
evaluation, besides storing the latent-space representation including
network weights and latent grid—for sampling and rendering.

Treib et al. [TRAW12, TBR*12] propose bricked decompression
and rendering in combination with cudaCompress. In our case, we
use a brick size of 2563. This drastically reduces the memory re-
quirements from 4.7 GB to around 700 MB, while increasing the
rendering time by roughly 13% for the Ejecta dataset. Note that this
bricked rendering is only possible for the regular access pattern dur-
ing rendering. For random access, the whole volume still needs to be
decompressed. In a similar fashion, we applied a bricked TThresh,
where each brick is compressed independently. For Ejecta, this also

reduces the memory requirement from 34 GB to around 8 GB, but
also drastically reduces the achieved compression ratio.

A qualitative comparison of the errors introduced by all compres-
sion schemes is given in Figure 13. cudaCompress quantizes the
values, which introduce large errors with narrow TFs. TThresh in-
troduces slight grid artefacts, and both fV-SRN and neurcomp blur
the dataset at higher compression ratios.

8. fV-SRN for Temporal Super-Resolution

We now analyse the extension of fV-SRNs to interpolate be-
tween different instances in time of a scalar field. The interpo-
lation should smoothly transition between the instances to create
plausible intermediate fields, and topological changes should be
handled. The proposed approach is inspired by previous works by
Park et al. [PFS*19] and Chen and Zhang [CZ19], where latent vec-
tors representing different objects are interpolated to morph one ob-
ject into another one in a feature-preserving manner. To achieve the
aforementioned goals, we extend the volumetric latent spaces, see
Section 5.2, to include the time domain.

Let Tall = {1, 2, . . . , T } be the indices of the T timesteps that
are available in the dataset. To save memory, the volumetric latent
space is provided only at certain timesteps that we call keyframes.

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



206 S. Weiss et al. / fV-SRN for DVR

Figure 14: Analysis of temporal super-resolution of ScalarFlow, showing reconstruction quality for different grid sizes and time encoding
schemes. The networks were trained on every 5th timestep in (a) and every 2nd timestep in (b), with a keyframe at every 10th timestep, and
evaluated on all timesteps. The blue and yellow lines represent the the different time encoding schemes, green the baseline where the original
volume at the keyframes is interpolated in time, and red is the method inspired by Lu et al. [LJLB21], where only a single grid is used and the
time is sorely interpreted by the network. The unchanged neurcomp architecture by Lu et al., where all information is stored in the network
weights, is depicted in purple.

Let Tkey ⊂ Tall be the timestep indices of the keyframes and the
volumetric latent space is then indexed as Gt : R3 → R

F , t ∈ Tkey.
For timesteps that are between two keyframes, the volumetric la-
tent space is linearly interpolated in time and passed to the network.
During training, timesteps from Ttrain ⊂ Tall are used.

In addition to the time-dependent latent space, we evaluate four
options to encode the time dimension in the network, so that plau-
sible interpolation is achieved: no extra input (‘latent only’); time
as an additional scalar input (‘direct’); time modulated by Fourier
features based on Mildenhall et al. with L = 4, see Section 5.3
(‘Fourier’); time as scalar input and Fourier features (‘both’). Quan-
titative results are given in Figure 14 on the ScalarFlow dataset with
a keyframe every 10th timestep for timesteps 30–100. For training,
every 5th timestep (Figure 14a) or every 2nd timestep (Figure 14b)
was used. For timesteps 60–70, Figure 15 shows the qualitative re-
sults.

We found that ‘latent only’ and ‘direct’ lead to good general-
ization for in-between timesteps that were never seen during train-
ing, with no noticeable difference between both methods (Figure 14
blue, Figure 15b). Those two architectures lead to a semantically
plausible interpolation, that becomes especially noticeable when
compared against a baseline (Figure 14 green, Figure 15d) where
the original grid is used at the keyframes and then linearly interpo-
lated in time.

The options including Fourier features in the time domain
(‘Fourier’ and ‘both’), however, show chaotic behaviour for in-
between timesteps (Figure 14 yellow). As opposed to Fourier fea-
tures in the spatial domain where all fractional positions could have
been observed due to the random sampling of the positions, in the
time domain, only a discrete subset of timesteps are seen. Therefore,
during generalization, the Fourier encoding produces value ranges
for the network that were never seen before.

Let us also emphasize that neurcomp by Lu et al. [LJLB21] also
supports super-resolution in the time domain, by sending the time
domain directly as input to the network, see Figure 14 purple. Neur-
comp allows an accurate prediction of the timesteps from the train-
ing datasets, using the same compression ratio as fV-SRN, but fails
to generalize to in-between timesteps. This can also be clearly seen
in the qualitative comparison Figure 15c. We hypothesize that the
time-interpolated latent grid acts as a regularizer in that regard. The
importance of a time-varying latent grid is also supported by the
following test, Figure 14 red. Using the time encoding ‘direct’, but
with only a single keyframe for the grid, leads to inferior results.

In total, fV-SRN allows for an efficient and plausible interpola-
tion in time. The training time when including the time domain,
however, increases drastically. Training a network on every 5th
timestep requires around 3:45 h. Using every 2nd timestep instead
of every 5th improves the quality of the interpolation (Figure 14b

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



S. Weiss et al. / fV-SRN for DVR 207

Figure 15: Qualitative results for timesteps 60–70 of ScalarFlow, shown in Figure 14a. (a) Reference, (b) best time encoding ‘direct’, (c)
‘neurcomp’, (d) linear interpolation on the initial grids.

versus a), but the training time increases accordingly to
almost 8 h.

9. Conclusion

We have analysed SRNs for compression domain volume render-
ing, and introduced fV-SRN as a novel extension to achieve signifi-
cantly accelerated reconstruction performance. Accelerated training
as well as the adaptation of fV-SRN to facilitate temporal super-
resolution have been proposed. As key findings, we see that

1) by using custom evaluation kernels and a latent grid, SRNs have
the potential to be used in interactive volume rendering appli-
cations,

2) fV-SRN is an alternative to existing volume compression
schemes at comparable quality and significantly improved de-
coding speed, or similar performance but significantly higher
compression ratios,

3) SRNs using latent space interpolation can preserve features
that are lost using traditional interpolation and enable tempo-
ral super-resolution at arbitrary temporal resolution.

For now, the full volume has to be kept in GPU memory to gener-
ate the training data. To support terra-scale datasets in future work,
out-of-core strategies for training SRNs will be investigated.

In the context of volume rendering, it will be important to in-
vestigate the capabilities of SRNs to learn mappings that consider
a view-dependent level-of-detail (LoD). In particular, the network

might be able to infer more than just values of a low-pass filtered
signal, but infer values as they would be perceived when looking at
the data through a pixel and perform area-weighted super-sampling.
Such a view-dependent learning of LoDs can avoid missing details,
which are smoothed out using the classical low-pass filtering ap-
proach.

We see further potential in SRNs for scientific data visualiza-
tion due to their ability to randomly access samples from the
compressed feature representation. Due to this property, we see a
promising application in the context of flow visualization. By us-
ing SRNs to encode position-velocity relationships, particle trac-
ing or streamline tracing, with its sparse and highly irregular data
access patterns, can work on a compactly encoded vector field
representation.

As another interesting use case for fV-SRN, we see ensemble
visualization. In particular, we intend to investigate whether the
idea of multiple latent grids introduced for time-dependent fields
can be used to represent similar and dissimilar parts in each
ensemble member. An interesting experiment will be to generate
Mean-SRNs, which are trained using position-density encodings
corresponding to different datasets. This may also give rise to
alternative ensemble compression schemes, where differences to a
reference are encoded. Furthermore, we plan to investigate whether
time and ensemble information can be decoupled in the latent grid.
This can eventually enable to retrain ensemble features for a novel
ensemble member, and vary the temporal features to predict the
temporal evolution. Finally, we note that including the time domain
vastly increases the training time. Thus, similar to the adaptive

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



208 S. Weiss et al. / fV-SRN for DVR

spatial sampling presented in this work, we plan to investigate
adaptive (re-)sampling strategies in time, to focus only on those
timesteps that exhibit the largest prediction errors.

ACKNOWLEDGMENTS

Open Access funding enabled and organized by Projekt DEAL.

References

[BHP14] Beyer J., Hadwiger M., Pfister H.: A survey of GPU-
based large-scale volume visualization. In Proceedings of the
EuroVis—STARs (2014), R. Borgo, R. Maciejewski and I. Viola
(Eds.), The Eurographics Association.

[BLL19] Berger M., Li J., Levine J. A.: A generative model for
volume rendering. IEEE Transactions on Visualization and Com-
puter Graphics 25, 4 (2019), 1636–1650.

[BMT*21] Barron J. T., Mildenhall B., Tancik M., Hedman
P., Martin-Brualla R., Srinivasan P. P.: Mip-NeRF: A multi-
scale representation for anti-aliasing neural radiance fields. Pro-
ceedings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV) (2021), 5855–5864.

[BRLP19] Ballester-Ripoll R., Lindstrom P., Pajarola R.:
TTHRESH: Tensor compression for multidimensional visual
data. IEEE Transactions on Visualization and Computer Graph-
ics 26, 9 (2019), 2891–2903.

[CLI*20] Chabra R., Lenssen J. E., Ilg E., Schmidt T., Straub
J., Lovegrove S., Newcombe R.: Deep local shapes: Learn-
ing local SDF priors for detailed 3D reconstruction. In Proceed-
ings of the European Conference on Computer Vision (2020),
Springer, pp. 608–625.

[CZ19] Chen Z., Zhang H.: Learning implicit fields for genera-
tive shape modeling. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (2019), pp.
5939–5948.

[DC16] Di S., Cappello F.: Fast error-bounded lossy HPC data
compression with SZ. In Proceedings of the 2016 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS)
(2016), IEEE, pp. 730–739.

[DMG20] Díaz J., Marton F., Gobbetti E.: Interactive spatio-
temporal exploration of massive time-varying rectilinear scalar
volumes based on a variable bit-rate sparse representation over
learned dictionaries. Computers & Graphics 88 (2020), 45–56.

[DNJ20] Davies T., Nowrouzezahrai D., Jacobson A.: On the
effectiveness of weight-encoded neural implicit 3D shapes. arXiv
preprint (2020). http://arxiv.org/abs/2009.09808.

[EUT19] Eckert M.-L., Um K., Thuerey N.: ScalarFlow: A large-
scale volumetric data set of real-world scalar transport flows for
computer animation and machine learning.ACMTransactions on
Graphics 38, 6 (Nov. 2019), 1–16.

[Fen03] Fenney S.: Texture compression using low-frequency
signal modulation. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Conference on Graphics Hardware
(2003), pp. 84–91.

[FM07] Fout N., Ma K.-L.: Transform coding for hardware-
accelerated volume rendering. IEEE Transactions on Visualiza-
tion and Computer Graphics 13, 6 (2007), 1600–1607.

[Gav20] Gavrilescu M.: A supervised generative model for ef-
ficient rendering of medical volume data. In Proceedings of the
2020 International Conference on e-Health and Bioengineering
(EHB) (2020), IEEE, pp. 1–4.

[GG16] Guthe S., Goesele M.: Variable length coding for GPU-
based direct volume rendering. In Proceedings of the Conference
on Vision, Modeling and Visualization (2016), pp. 77–84.

[GIGM12] Gobbetti E., Iglesias Guitián J. A., Marton F.:
COVRA: A compression-domain output-sensitive volume ren-
dering architecture based on a sparse representation of voxel
blocks. Computer Graphics Forum (2012), 31 (2021) pp. 1315–
1324.

[GKJ*21] Garbin S. J., Kowalski M., Johnson M., Shotton
J., Valentin J.: FastNeRF: High-fidelity neural rendering at
200FPS.Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV) (2021), pp. 14346–14355.

[GYH*20] Guo L., Ye S., Han J., Zheng H., Gao H., Chen D.
Z., Wang J.-X., Wang C.: SSR-VFD: Spatial super-resolution
for vector field data analysis and visualization. In Proceedings
of the 2020 IEEE Pacific Visualization Symposium (PacificVis)
(2020), IEEE Computer Society, pp. 71–80.

[HSB*21] Hoang D. T. A., Summa B., Bhatia H., Lindstrom
P., Klacansky P., Usher W., Bremer P.-T., Pascucci V.: Ef-
ficient and flexible hierarchical data layouts for a unified en-
coding of scalar field precision and resolution. IEEE Transac-
tions on Visualization and Computer Graphics 27 (2021), 603–
613.

[HSM*21] Hedman P., Srinivasan P. P., Mildenhall B., Bar-
ron J. T., Debevec P.: Baking neural radiance fields for real-
time view synthesis. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (2021), pp. 5875–
5884.

[HW19] Han J., Wang C.: TSR-TVD: Temporal super-resolution
for time-varying data analysis and visualization. IEEE Transac-
tions on Visualization and Computer Graphics 26, 1 (2019), 205–
215.

[HW20] Han J., Wang C.: SSR-TVD: Spatial super-resolution for
time-varying data analysis and visualization. IEEE Transactions
on Visualization and Computer Graphics (2020).

[HZCW21] Han J., Zheng H., Chen D. Z., Wang C.: STNet: An
end-to-end generative framework for synthesizing spatiotempo-
ral super-resolution volumes. IEEE Transactions on Visualiza-
tion and Computer Graphics 28, 1 (2022), 270–280.

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

http://arxiv.org/abs/2009.09808


S. Weiss et al. / fV-SRN for DVR 209

[INH99] Iourcha K., Nayak K., Hong Z.: System and method
for fixed-rate block-based image compression with inferred pixel
values. US Patent 5,956,431, 1999.

[KWTM03] Kindlmann G., Whitaker R., Tasdizen T., Moller
T.: Curvature-based transfer functions for direct volume render-
ing: Methods and applications. In Proceedings of the IEEE Visu-
alization, 2003. VIS 2003. (2003), IEEE, pp. 513–520.

[LCA08] Lee M.-C., Chan R. K., Adjeroh D. A.: Fast three-
dimensional discrete cosine transform. SIAM Journal on Scien-
tific Computing 30, 6 (2008), 3087–3107.

[Lev88] Levoy M.: Display of surfaces from volume data. IEEE
Computer graphics and Applications 8, 3 (1988), 29–37.

[LHU20] Liu Z., Hartwig T., Ueda M.: Neural networks fail
to learn periodic functions and how to fix it. In Advances in
Neural Information Processing Systems, H. Larochelle, M. Ran-
zato, R. Hadsell, M. F. Balcan and H. Lin (2020), Curran Asso-
ciates, Inc pp. 1583–1594. https://proceedings.neurips.cc/paper/
2020/file/1160453108d3e537255e9f7b931f4e90-Paper.pdf

[LJLB21] Lu Y., Jiang K., Levine J. A., Berger M.: Compres-
sive neural representations of volumetric scalar fields. Computer
Graphics Forum 40 (2021), 135–146.

[LJM21] Lei J., Jia K., Ma Y.: Learning and meshing from deep
implicit surface networks using an efficient implementation of
analytic marching. IEEE Transactions on Pattern Analysis and
Machine Intelligence (2021), 1. https://doi.org/10.1109/TPAMI.
2021.3135007

[LMW21] Lindell D. B., Martel J. N., Wetzstein G.: Autoint:
Automatic integration for fast neural volume rendering. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2021), pp. 14556–14565.

[MAG19] Marton F., Agus M., Gobbetti E.: A framework for
GPU-accelerated exploration of massive time-varying rectilin-
ear scalar volumes. Computer Graphics Forum 38, 3 (2019),
53–66.

[MDCL*18] Markidis S., Der Chien S. W., Laure E., Peng
I. B., Vetter J. S.: NVIDIA tensor core programmability, per-
formance & precision. In Proceedings of the 2018 IEEE Inter-
national Parallel and Distributed Processing Symposium Work-
shops (IPDPSW) (2018), IEEE, pp. 522–531.

[MESK22] Müller T., Evans A., Schied C., Keller A.: Instant
neural graphics primitives with a multiresolution hash encoding.
ACM Transactons on Graphics 41, 4 (July 2022), 102:1–102:15.

[MLL*21] Martel J. N. P., Lindell D. B., Lin C. Z., Chan E.
R.,Monteiro M.,Wetzstein G.: ACORN: Adaptive coordinate
networks for neural scene representation. ACM Transactions on
Graphics 40, 4 (Aug. 2021), 1–13.

[MON*19] Mescheder L., Oechsle M., Niemeyer M., Nowozin
S., Geiger A.: Occupancy networks: Learning 3D reconstruction
in function space. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (2019), pp. 4460–
4470.

[MRNK21] Müller T., Rousselle F., Novák J., Keller A.:
Real-time neural radiance caching for path tracing. ACM Trans-
actions on Graphics 40, 4 (Aug. 2021), 36:1–36:16.

[MST*20] Mildenhall B., Srinivasan P. P., Tancik M., Barron
J. T., Ramamoorthi R., Ng R.: NeRF: Representing scenes as
neural radiance fields for view synthesis. In Proceedings of the
European Conference on Computer Vision (2020), Springer, pp.
405–421.

[NLP*12] Nystad J., Lassen A., Pomianowski A., Ellis S., Ol-
son T.: Adaptive scalable texture compression. In Proceedings of
the Fourth ACM SIGGRAPH/Eurographics Conference on High-
Performance Graphics (2012), pp. 105–114.

[NSP*21] Neff T., Stadlbauer P., Parger M., Kurz A.,
Mueller J. H., Chaitanya C. R. A., Kaplanyan A., Stein-
berger M.: DONeRF: Towards real-time rendering of compact
neural radiance fields using depth oracle networks. Computer
Graphics Forum 40 (2021), 45–59.

[PCPMMN21] Pumarola A., Corona E., Pons-Moll G.,
Moreno-Noguer F.: D-NeRF: Neural radiance fields for dy-
namic scenes. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (2021), pp. 10318–
10327.

[PFS*19] Park J. J., Florence P., Straub J., Newcombe R.,
Lovegrove S.: DeepSDF: Learning continuous signed dis-
tance functions for shape representation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (2019), pp. 165–174.

[PGM*19] Paszke A., Gross S., Massa F., Lerer A., Bradbury
J., Chanan G., Killeen T., Lin Z., Gimelshein N., Antiga L.,
Desmaison A., Kopf A., Yang E., DeVito Z., Raison M., Te-
jani A., Chilamkurthy S., Steiner B., Fang L., Bai J., Chin-
tala S.: PyTorch: An imperative style, high-performance deep
learning library. In Proceedings of the Advances in Neural Infor-
mation Processing Systems 32 (2019), H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’ Alché-Buc, E. Fox and R. Garnett (Eds.),
Curran Associates, Inc., pp. 8024–8035.

[RGG*13] Rodriguez M. B., Gobbetti E., Guitián J. A. I.,
Makhinya M., Marton F., Pajarola R., Suter S. K.: A survey
of compressed GPU-based direct volume rendering. In Proceed-
ings of the Eurographics (State of the Art Reports) (2013), pp.
117–136.

[RTW13] Reichl F., Treib M., Westermann R.: Visualization of
big SPH simulations via compressed octree grids. In Proceedings
of the 2013 IEEE International Conference on Big Data (2013),
IEEE, pp. 71–78.

[SB21] Sahoo S., Berger M.: Integration-aware vector field su-
per resolution. InProceedings of the EuroVis 2021—Short Papers
(2021), M. Agus, C. Garth and A. Kerren (Eds.), The Eurograph-
ics Association.

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

https://proceedings.neurips.cc/paper/2020/file/1160453108d3e537255e9f7b931f4e90-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1160453108d3e537255e9f7b931f4e90-Paper.pdf
https://doi.org/10.1109/TPAMI.2021.3135007
https://doi.org/10.1109/TPAMI.2021.3135007


210 S. Weiss et al. / fV-SRN for DVR

[SDZ*21] Srinivasan P. P., Deng B., Zhang X., Tancik M.,
Mildenhall B., Barron J. T.: NeRV: Neural reflectance and
visibility fields for relighting and view synthesis. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (2021), pp. 7495–7504.

[SW03] Schneider J., Westermann R.: Compression domain
volume rendering. In Proceedings of the IEEE Visualization,
2003. VIS 2003. (2003), pp. 293–300.

[SZW19] Sitzmann V., Zollhöfer M., Wetzstein G.:
Scene representation networks: Continuous 3D-structure-
aware neural scene representations. Advances in Neural
Information Processing Systems Curran Associates, Inc
32 (2019). https://proceedings.neurips.cc/paper/2019/file/
b5dc4e5d9b495d0196f61d45b26ef33e-Paper.pdf

[TBR*12] Treib M., Bürger K., Reichl F., Meneveau C., Sza-
lay A., Westermann R.: Turbulence visualization at the teras-
cale on desktop PCs. IEEE Transactions on Visualization and
Computer Graphics 18, 12 (2012), 2169–2177.

[TFT*20] Tewari A., Fried O., Thies J., Sitzmann V., Lombardi
S., Sunkavalli K., Martin-Brualla R., Simon T., Saragih J.,
Nießner M., Pandey R., Fanello S., Wetzstein G., Zhu J.-Y.,
Theobalt C., Agrawala M., Shechtman E., Goldman D. B.,
Zollhöfer M.: State of the art on neural rendering. InComputer
Graphics Forum 39 (2020), 701–727.

[TLY*21] Takikawa T., Litalien J., Yin K., Kreis K., Loop C.,
Nowrouzezahrai D., Jacobson A., McGuire M., Fidler S.:
Neural geometric level of detail: Real-time rendering with im-
plicit 3D shapes. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (2021), pp. 11358–
11367.

[TRAW12] Treib M., Reichl F., Auer S., Westermann R.: Inter-
active editing of GigaSample terrain fields. Computer Graphics
Forum 31 (2012), 383–392.

[TSM*20] Tancik M., Srinivasan P. P., Mildenhall B.,
Fridovich-Keil S., Raghavan N., Singhal U., Ramamoorthi
R., Barron J. T., Ng R.: Fourier features let networks learn high
frequency functions in low dimensional domains. arXiv preprint
(2020). http://arxiv.org/abs/2006.10739.

[WBSS04] Wang Z., Bovik A. C., Sheikh H. R., Simoncelli E.
P.: Image quality assessment: from error visibility to structural
similarity. IEEE Transactions on Image Processing 13, 4 (2004),
600–612.

[WCTW19] Weiss S., Chu M., Thuerey N., Westermann
R.: Volumetric isosurface rendering with deep learning-based
super-resolution. IEEE Transactions on Visualization and Com-
puter Graphics 27, 6 (2019), 3064–3078. https://doi.org/10.
1109/TVCG.2019.2956697

[Wes95] Westermann R.: Compression domain rendering of time-
resolved volume data. In Proceedings of the Visualization ’95
(1995), pp. 168–175.

[WITW20] Weiss S., Işık M., Thies J., Westermann R.: Learning
adaptive sampling and reconstruction for volume visualization.
IEEE Transactions on Visualization and Computer Graphics
28, 7 (2020), 2654–2667. https://doi.org/10.1109/TVCG.2020.
3039340

[WSG*21] Wurster S. W., Shen H.-W., Guo H., Peterka T.,
Raj M., Xu J.: Deep hierarchical super-resolution for scientific
data reduction and visualization. 2021. http://arxiv.org/abs/2107.
00462.

[WW21] Weiss S., Westermann R.: Differentiable direct volume
rendering. IEEE Transactions on Visualization and Computer
Graphics 28, 1 (2022), 562–572. https://doi.org/10.1109/TVCG.
2021.3114769

[YFKT*21] Yu A., Fridovich-Keil S., Tancik M., Chen
Q., Recht B., Kanazawa A.: Plenoxels: Radiance fields
without neural networks. arXiv preprint arXiv:2112.05131
(2021).

[YL95] Yeo B.-L., Liu B.: Volume rendering of DCT-based com-
pressed 3D scalar data. IEEE Transactions on Visualization and
Computer Graphics 1, 1 (1995), 29–43.

[YLT*21] Yu A., Li R., Tancik M., Li H., Ng R., Kanazawa A.:
Plenoctrees for real-time rendering of neural radiance fields. In
Proceedings of the IEEE/CVF International Conference on Com-
puter Vision (2021), pp. 5752–5761.

[ZDL*20] Zhao K., Di S., Liang X., Li S., Tao D., Chen Z., Cap-
pello F.: Significantly improving lossy compression for HPC
datasets with second-order prediction and parameter optimiza-
tion. InHPDC’20: Proceedings of the 29th International Sympo-
sium on High-Performance Parallel and Distributed Computing
(New York, NY, USA, 2020), Association for Computing Ma-
chinery, pp. 89–100.

[ZHW*17] Zhou Z., Hou Y., Wang Q., Chen G., Lu J., Tao Y.,
Lin H.: Volume upscaling with convolutional neural networks. In
Proceedings of the Computer Graphics International Conference
(2017), pp. 1–6.

[ZIE*18] Zhang R., Isola P., Efros A. A., Shechtman E., Wang
O.: The unreasonable effectiveness of deep features as a percep-
tual metric. In Proceedings of the CVPR (2018).

Supporting Information

Additional supporting information may be found online in the Sup-
porting Information section at the end of the article.

Table 1:Evaluation of different activation functions on rendered im-
ages.

Table 2: Quality comparison between training in world-space and
in screen-space with different input encodings and stepsizes for the
TF from Fig. 1.

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

https://proceedings.neurips.cc/paper/2019/file/b5dc4e5d9b495d0196f61d45b26ef33e-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/b5dc4e5d9b495d0196f61d45b26ef33e-Paper.pdf
http://arxiv.org/abs/2006.10739
https://doi.org/10.1109/TVCG.2019.2956697
https://doi.org/10.1109/TVCG.2019.2956697
https://doi.org/10.1109/TVCG.2020.3039340
https://doi.org/10.1109/TVCG.2020.3039340
http://arxiv.org/abs/2107.00462
http://arxiv.org/abs/2107.00462
https://doi.org/10.1109/TVCG.2021.3114769
https://doi.org/10.1109/TVCG.2021.3114769


S. Weiss et al. / fV-SRN for DVR 211

Figure 1: Screen- vs. world-space training, using a TF with
sharp peaks.

Figure 2:Renderings with a gradient-depending TF with a different
stepsize h for the finite differences approximation: a) h = 4R, b) h
= R, c) h = R/16, where R is the voxel size.

Figure 3: A hyperparameter study was conducted on two datasets,
a human skull (2563, top) and a Richtmyer-Meshkov simulation
(5123, bottom).

Figure 4: Evaluation of analytic datasets, “Blobby” [SN09] and
“Marschner Lobb” [ML94]

Table 3: Performance comparison of the three tested methods for
computing the density and gradients for 224 samples.

Figure 5: We explore different methods on how density gradients
can be computed using volumetric SRNs, shown here on two exem-
plary datasets

Figure 6: Influence of fine-tuning the weighting value α in the loss
function for the datasets from Fig. 5: The default setting for the
gradient weighting α (see Sec. 3.3) leads to the configuration high-
lighted in green.

Figure 7: Evaluation of different compression rates for fV-SRN.

Figure 8: Visual comparison of fV-SRN for different compression
ratios on the Richtmyer Meshkov dataset (a-d) and the Miranda
dataset (e-h). (a,e) Reference, (b,f) fV-SRN, (c,g) TThresh, (d-h) cu-
daCompress.

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.


