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Abstract
Techniques for tissue culture have seen significant advances during the last
decades and novel 3D cell culture systems have become available. To control
their high complexity, experimental techniques and their Digital Twins (mod-
elling and computational tools) are combined to link different variables to pro-
cess conditions and critical process parameters. This allows a rapid evaluation of
the expected product quality. However, the use of mathematical simulation and
Digital Twins is critically dependent on the precise description of the problem
and correct input parameters. Errors here can lead to dramatically wrong conclu-
sions. The intention of this review is to provide an overview of the state-of-the-art
and remaining challenges with respect to generating input values for computa-
tional analysis of mass and momentum transport processes within tissue cul-
tures. It gives an overview on relevant aspects of transport processes in tissue cul-
tures as well asmodelling and computational tools to tackle these problems. Fur-
ther focus is on techniques used for the determination of cell-specific parameters
and characterization of culture systems, including sensors for on-line determi-
nation of relevant parameters. In conclusion, tissue culture techniques are well-
established, and modelling tools are technically mature. New sensor technolo-
gies are on the way, especially for organ chips. The greatest remaining challenge
seems to be the proper addressing and handling of input parameters required
for mathematical models. Following Good Modelling Practice approaches when
setting up and validating computational models is, therefore, essential to get to
better estimations of the interesting complex processes inside organotypic tissue
cultures in the future.

ABBREVIATIONS: CHO, chinese hamster ovary cells; CPPs, critical process parameters; CQA, critical quality attributes; DTs, digital twins; ECM,
extracellular matrix; MOC, multi-organ-on-a-chip; OC, organ-on-a-chip; OTR, oxygen transfer rate; PAT, process analytical technologies
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1 INTRODUCTION

‘Organotypic tissue culture’ refers to a micro-structured
cell culture under in vitro conditions that consider the
three-dimensionality (3D) and the physiology of the tis-
sue. The ultimate goal is to create a vital tissue with organ-
specific structure and functionality, mimicking the com-
plexity of the cellular microenvironment in vivo. Areas
of application mainly cover basic research (e.g., stem
cell research, tumour models), pharmacology and toxi-
city tests, regenerative medicine (tissue engineering for
implantation), and in vitromeat, among others [1, 2]. Tech-
niques for tissue cultivation have seen significant advances
during the last decades and novel 3D cell culture sys-
tems have become available, for example, 3D organoids or
organ/body-on-chip systems [3–6].
A tissue culture construct is mainly composed of cells,

biomaterials/carrier systems and solutes, which are culti-
vated in a bioreactor. Bioreactors allow to control micro-
environmental parameters and recapitulate tissue-specific
cell–cell contacts or cell–matrix interactions, mimic gradi-
ents with respect to oxygen, nutrients, waste products or
pH, diffusion of regulatory molecules, internal and exter-
nal mass transfer (e.g., oxygen, nutrient, and waste mate-
rials transfer), as well as different kinds of stimulation
(mechano-, electro-, thermos- and magneto-transduction)
[1, 7]. The function of the cells in a tissue culture is strongly
governed by fluidics and transport processes. Therefore,
understanding the principles behind these transport phe-
nomena is necessary for the targeted development of the
tissue culture. To describe the internal actions of the cell
in the tissue culture, as accurately as possible, biological
and biochemical aspects, as well as engineering parame-
ters such as internal and externalmass transfer, fluid veloc-
ity, shear stress, have to be considered [8].
Due to the high complexity of such culture constructs,

long lasting experimental techniques,modelling, and com-
putational tools have to be combined to link different
parameters to process conditions and critical process
parameters (CPPs). If successful, this can allow a rapid
evaluation of the product quality by means of Critical
Quality Attributes (CQAs) [9]. Furthermore, modelling
and computational tools can be integrated into Digital
Twins (DTs), a virtual replica of a real process, service,
or system [10]. DTs can help to anticipate potential issues
and curb risks by testing new functionalities before rolling

them out or they can be used in real-time in parallel to the
actual product for internal control. Hence, DTs are valu-
able tools for describing and understanding cellular reac-
tions (e.g., mechanistic kinetic DTs), setting up meaning-
ful and time-saving experiments (e.g., digital twin-assisted
Design-of-Experiment), or designing and optimizing bio-
processes by digital twin-based control strategies. This
approach is already well established for cell-based produc-
tion of biopharmaceuticals [10, 11]. For tissue engineering,
the potential has been recently uncovered [12, 7].
The results of both mathematical simulations and DTs

are critically dependent on correct input parameters.
Errors in input parameters can lead to dramatically wrong
conclusions. However, acquiring accurate input parame-
ters requires challenging techniques. Experimental tech-
niques comprise analytic methods including on-line and
off-line sensors have to be meticulously implemented.
These techniques are used for characterization of cul-
ture systems (oxygen transfer, diffusion, permeation, flow,
shear, mechanical load, etc.), and determination of cellu-
lar parameters (oxygen uptake rate, substrate uptake rate,
metabolite production rates, etc.).
This review provides an overview, how transport pro-

cesses within tissue cultures can bemeasured and summa-
rizes state-of-the-art techniques and remaining challenges
for input generation to be used in comprehensive compu-
tational analysis.

2 RELEVANT ASPECTS OF
TRANSPORT PROCESSES IN TISSUE
CULTURES

Tissue cultures—like many other systems that deal with
cell cultivation—entail several phenomena inwhich trans-
port processes, mainly mass and momentum transfer, rep-
resent a key element in tissue development and mainte-
nance (an overview of respective techniques is given in
Table 1). The mass transfer controls how nutrients and
growth/stimulating factors are transported to the tissue,
and how waste products are removed and cells function in
the tissue.
To create a functional tissue, the maintenance of mass

transport and the precise and reproducible control of envi-
ronmental conditions are essential [1]. Cells, especially
stem cells, are known respond to a variety of regulatory
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TABLE 1 General overview on techniques for organotypic
tissue culture (adapted from [7])

Application Techniques and devices
Cell expansion
(2D, monolayer)

∙ Well-plates
∙ Flasks/roller bottles/multi-tray systems
∙ Microcarrier for suspension culture
(spinner, shake flask, stirred bioreactor)

Tissue
generation
and
maturation
(3D)

∙ Non-scaffold-based (e.g., hanging drop
microplates, spheroid microplates, magnetic
levitation, Multi-Organ-Chips, aggregate
culture in suspension culture)

∙ Scaffold-based, for example, synthetic and
biological macroporous carriers, hydrogels
or de-cellularized matrices (e.g.,
micropatterned surface microplates,
transwelll membrane systems,
Multi-Organ-Chips (“micro-bioreactors”),
tissue specific bioreactors
(“macro-bioreactors”))

peptides/proteins in different developmental stages (e.g.,
differentiation, proliferation), different fate decisions (e.g.,
self-renewal vs. lineage specification) as wells as to gradi-
ents of biomolecular concentrations and cell–cell and/or
cell–matrix interactions (for references see [7]). These reg-
ulatory proteins are also produced and secreted by the
cells, generating feedback loops. The required tissue archi-
tecture to allow for these regulatory loops can be achieved
by scaffold-free or scaffold-based techniques. Scaffolds are
especially used in more sophisticated bioreactor systems
(reviewed in [7]), which create an appropriate biomimetic
microenvironment, recapitulate tissue-specific cell–cell
contacts or cell–matrix interactions, mimic gradients of
oxygen, nutrients, waste products or pH, and modulate
diffusion of regulatory molecules. One of the major chal-
lenges in this regard is controlling the diffusion rates of
growth factors, proteins, and other molecules for cell regu-
lation and a careful exchange of nutrients and gases under
spatial control [13–15].
Besides mass transfer, other transport processes like

momentum and fluid flow are also important as they influ-
ence cell development. Shear stress below detrimental lev-
els stimulates cells mechanically and can affect cell dif-
ferentiation and proliferation [16, 17]. Compared to static
conditions, perfusion can, for instance, enhance calcium
and collagen production [18, 19], or increase mineralized
matrix production by bone marrow cells [20–22] while
decreasing chondrocyte-driven cartilage production [23,
24]. Mullender et al. [25] demonstrated that the perfusion
rate can change cell responsiveness as well. Furthermore,
it was shown that the cell response to gradients of shear
stress differs from that of the magnitude of shear stress

[26, 27], as well as temporal and spatial variations [28].
Therefore, it is necessary to determine the precise shear
stress stimuli that the cells actually experience to under-
stand complex cell responses to it.
For appropriate design and operation of organotypic tis-

sue cultures, not only a profound biological understand-
ing of the tissue/organ of interest is required, but also an
extensive “engineering” knowledge is necessary on special
materials that enhance cell immobilisation (biocompati-
bility, biodegradability), special culture systems (bioreac-
tors), including flow dynamics, mass transfer [29], shear
effects (as discussed above), as well as control and culti-
vation strategies [8]. This creates diverse intercellular sig-
naling networks and a complicated process, which is also
manifested in in vitro culture of tissue constructs, most
of them comprise dynamic non-linear interplays between
several components. This makes it very difficult to distin-
guish individual mechanisms in order to control the local
microenvironment and the functional development of the
tissue construct.

3 COMPUTATIONALMETHODS

Due to the high complexity of the microenvironment and
flow dynamics, especially in micro-bioreactors, it is very
difficult to design controlled experiments. Computational
models are therefore valuable tools to gain a comprehen-
sive understanding of this complex biological systems. In
silicomodels andDTs of the real system can be used for cell
culture system design (bioreactors), simulation and anal-
ysis of mass transfer (nutrient supply, removal of metabo-
lites deposits). Furthermore, this can also result in replace-
ment or reduction of in vivo experiments complying with
the reduction, refinement, and replacement principles [30,
4–33].
Developing an in silico model often starts with gen-

eral formulations and interpretations of previous exper-
iments and hypotheses, intending to figure out funda-
mental mechanisms and their interactions. The more key
parameters and important partial processes can be iden-
tified the more representative the model setup comprises
of. The outcome is a set of equations that describe how
the quantity of interest (e.g., metabolite concentration)
changes with time and environmental process parame-
ters (e.g., temperature and pH). Different mechanisms
(e.g., physicochemical phenomena) can then be studied to
design or optimize tissue engineering bioreactors. Further-
more, mathematical modelling and computational tools
can be used to discover the interconnection of complex
regulatory processes, investigate the systematic influence
of perturbations for optimal engineering design, develop
new hypotheses, and ultimately evaluate the functionality
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TABLE 2 Aspects addressed by mathematical modelling with
respect to tissue culture (adapted from [7], for references see [7])

Aspects addressed by mathematical modelling
Biological Physico-chemical
Cell growtha, morphology,
heterogeneity, dynamics

Culture conditionsa, cell
handling, cell seeding

Cellular kineticsa Biomechanical effects (e.g., shear
stress)a

Signaling networks,
regulatory networks,
cell–cell and cell–matrix
interactions

Penetrationa, permeationa,
diffusiona

Tissue specific effects Fluid dynamicsa, mass transfera

(bioreactors, scaffolds)
Pharmacology Chemical, physical and

mechanical stimulationa

aRelated to computational analysis of transport processes.

of specific molecules for therapeutic applications [34, 35].
The simulation approach provides us with an opportunity
to probe different scenarios and perform parametric stud-
ies of the hypothesized model. The results of such compu-
tational experiments are then compared to known exper-
imental facts for validation of the model. Afterwards, the
validated model may be used to optimize certain aspects of
the studied system. Some demonstrated examples of this
approach relevant to tissue engineering include optimizing
construct and scaffold geometries as well as fluid flow pat-
terns in bioreactors [36–39]. Additionally, dynamic mod-
elling can be a predictive tool for improving experimental
design protocols.
Since different affecting variables, such as shear stress,

are nearly impossible tomeasure due to the complex geom-
etry of bioreactors, computational fluid dynamics (CFDs)
emerged as a remedy. CFD can simulate fluid flow in
freely definable scaffolds and bioreactor geometries [40,
8–44]. Given enough computer resources, high-resolution
simulation on micro-computed tomography (µCT) recon-
structed geometries can achieve precise flow distribution
throughout the microstructure [45, 46]. Computational
modelling is becoming the core of the development of
the next generation of bioreactors and scaffolds, as it
allows an enhanced combined consideration of biologi-
cal and engineering effects for characterization of the sys-
tem and the cellular response [9]. To complete the sim-
ulation using CFD, dynamic cellular parameters, such
as cell growth and proliferation, are required to cap-
ture their effects on shear stress distribution. Different
aspects that can be addressed by mathematical modelling
of tissue cultures are reviewed in [7] and summarized in
Table 2.
In the field of computational biomechanics, the finite

element method (FEM) is by far the most common

numerical discretization and solution technique. Themain
strengths of FEM are its ability to work with complex
geometries, its well-developed mathematical background
that provides a consistent way to treat material inhomo-
geneities and different constitutive equations for themate-
rial behavior, as well as the high availability of solvers
[35, 47–49]. Although there are several examples of in sil-
ico studies, there are still challenges for using their full
potential. One of the critical challenges of biological sys-
tems is the connection of simultaneous interrelated phe-
nomena in different scales and unknown system impor-
tance. The ensuingmulti-disciplinaritymakes it difficult to
derive mathematical equations and find solutions. There-
fore, multi-scale methods are used to take care of indi-
vidual cell interactions in micro-scales and holistic behav-
iors in macro-scales. There also exist meso-scale methods,
for example, Lattice Bolzman method (LBM) [50], which
work in between the scales mentioned above [51, 52]. Due
to the kinetic nature of the LBM, microscopic interactions
in the system can be handled in porous media and other
complex geometries [50]. Moreover, the inherently local
dynamics used in LBM allow an efficient implementation
to exploit the computational power of present and emerg-
ing supercomputing architectures [53]. Besides such algo-
rithmic advantages, LBM shows high versatility for multi-
physics simulation and integrationwith tomographicmea-
surement techniques as evident by works on perfusion
flow in scaffold bioreactors [54] and even by patents for
medical image analysis [55].
In general, model generations should follow GoodMod-

elling Practice approaches and explicit workflows [56].
As a good example, the USA Food and Drug Adminis-
tration (FDA) has provided standard technical guidelines
[57] that need to be followed for digital tools to be used
as medical devices. Several additional steps are necessary
to utilize the model as a digital tool: verification, valida-
tion, and uncertainty quantifications [12]. Here, verifica-
tion refers to the agreement between the results and the
mathematical formulations, while validation is the estab-
lishing agreement with the experimental results. Uncer-
tainty quantification should also be applied to make sure
that the method is based on correct assumptions, is built
correctly, and has already considered the effect of input
uncertainty on the results. Other remaining challenges in
the widespread application of in silico models in biopro-
cess technologies include; user-friendliness of tools and
user acceptance, precise documentation for a unified pro-
cess modelling implementation, and generation of valid
input variables for in silico models. The latter has been
surprisingly overlooked in research as will be highlighted
in Section 4, most likely due to the common misconcep-
tion that the iterative nature of mathematical models can
eventually generate accurate results. Therefore, there is an
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ever-increasing necessity to emphasize and discuss differ-
ent techniques for precise data generation.

4 TECHNIQUES FOR GENERATION
OF INPUT VARIABLES FOR
COMPUTATIONALMODELS

4.1 Sensor techniques

Sensors are essential tools for marker-free, continu-
ous, on-line or at-line monitoring and control of cell
metabolism and microenvironment parameters (e.g., tem-
perature, pH, pressure, fluid flow, oxygen tension, metabo-
lites, impedance, regulatorymolecules, short-lived reactive
species, shear stress, electrical pacing, mechanical proper-
ties). They deliver information beyond microscopy tech-
niques and end-point tests [58–60], and have to be ‘able to
detect events or changes in their environment at low con-
centrations under a complex matrix, which also permits
multi-parametric analyses at the same time with contin-
uous monitoring and fast response at low cost’ [61].
Whereas these techniques help to investigate tissue cul-

tures in the first place, they are indispensable in standard-
izing techniques that are routinely required for CQAs. Fur-
thermore, they provide the data required for the deter-
mination of cellular metabolic parameters (Section 4.2)
and physicochemical process parameters for the charac-
terization of culture systems (Section 4.3). Therefore, sen-
sor readings are closely coupled and correspond with good
mathematical modelling practices of fluid dynamics and
mass transfer effects in culture devices (Section 3). An
overview of sensor techniques is given in Table 3. For a
detailed explanation of the working principles, pros and
cons, and specific applications, see [58, 59, 62, 63].
In recent years, the focus has been on integrating sen-

sors in microfluidic systems (e.g., multi-organ chips) to
access parameters of cellular metabolism as well as mor-
phological effects [58, 60, 62, 64–65], so far limited to extra-
cellular readings providing indirect information about the
metabolic state of the cells [58]. Future directions can
focus on characterization of complex cell–cell and cell–
matrix interactions and real-time quantification of small
molecules uptake and release as well as protein expres-
sion, as these are essential input parameters for computa-
tional models (compare Section 4.2) [58, 59]. Furthermore,
probing and monitoring of relevant key organ functions
using tissue-/organ-related biosensing strategies has to be
established [62]. Limitations that have to be overcome for
establishing routine applications include high complexity
of fabrication technology and operation, as well as incom-
patibility with standard procedures [58, 59, 65, 66].

4.2 Cellular metabolic parameters
relevant for modelling

Cell-specific metabolic parameters such as uptake rates
for oxygen and substrates, production rates for metabolites
and carbon dioxide, as well as growth and death rates, are
essential variables for computational models addressing
fluid dynamics, mass transfer effects and metabolic activ-
ities in tissue cultures. Whereas methods for determining
such variables are well-established for biopharmaceutical
cell culture using mostly established cell lines [57], this
is hardly the case for tissue cultures for several reasons.
An essential difference is that tissue cultures are mostly
generated from primary cells and not well-established cell
lines. For the latter (e.g., Chinese Hamster Ovary [CHO]
cells), a stable metabolism can be assumed over a large
number of passages. Furthermore, most of these cell lines
have been adapted to growth in suspension. Therefore,
a sufficient number of cells can be produced to perform
experiments under appropriate, reproducible culture con-
ditions, for example, in well-controlled bioreactor systems.
Hence, it is possible to determine reliable data and investi-
gate the impact of culture conditions on these parameters,
for example, the relationship between metabolic rates and
concentrations of oxygen, substrates or metabolites. From
such data, thorough metabolic models can be formulated
[67].
In the case of primary cells, however, determination

of reliable data is more challenging. In most cases, just
a small number of primary cells can be obtained from a
biopsy of interest. Protocols for the proliferation of tissue
cells have mainly been established only for adherent cells.
This, in principle, allows to generate a large number of
cells within several passages, even though it makes cul-
tivation in controlled bioreactors a lot more challenging.
More importantly, cellular properties and metabolic activ-
ities change significantly during the first passages. There-
fore, data generated for cells in a higher passage number
hardly reflect freshly isolated primary cells or even cells in
vivo. Furthermore, cellular and metabolic parameters are
donor-specific [68–71]. Due to the problems described for
isolated primary cells, cell-specific metabolic parameters
have often been determined using immortalized cell lines
such HepG2, HepaRG, HaCaT, hMSC-tert cells, etc. (see
below).
To make matters worse, tissue engineering is often

aimed to obtain functional organotypic tissues that con-
sist of several cell types within an appropriate extracel-
lular matrix (3D, organoid, etc.). Under such conditions,
cellular properties and metabolic activities are different to
those in monolayer flask cultures. Owing to the difficulty
of detecting the exact cell number required to calculate
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TABLE 3 Overview on sensor techniques for tissue culture devices (adapted from [58, 62], modified)

Parameter Sensor type
Cell culture supernatant
Oxygen Direct amperometric sensors

Clark-type sensors
Optical sensors (luminescence/fluorescence)

pH Light addressable potentiometric sensors (LAPS) Ion-selective field effect
transistors (ISFET)

Metal oxide-based potentiometric sensors
Optical sensors (lumenscence/fluorescence)

Glucose Electrochemical (enzyme based) biosensors
Optical biosensors
Electrochemical multi-electrode arrays (MEA)

Lactate Electrochemical (enzyme based) biosensors
Optical biosensors

Glutamate Electrochemical (enzyme based) biosensors
Pyruvate Electrochemical (enzyme based) biosensors
Reactive oxygen (ROS) and reactive
nitrogen

species (RNS)

Microsensor approaches in combination with electrochemical sensing techniques
(ultramicroelectrode (UME) arrays, planar sputtered gold/cytochrome c electrodes,
pyramid-shaped Pt tip electrodes)

Proteins Immunosensors
Cellular properties
Cell density, cell morphology, marker
secretion

Electric Cell-Substrate Impedance Sensing (IDEs (Interdigitated Electrodes)), FETs
(field-effect transistor), ISFETS (ion-sensitive field-effect transistor (ISFET)

Tissue morphogenesis and maturation Pillar deformation (fluorescence microscopy)
Mechanical strain of cellular barrier Resistivity changes in impedimetric coplanar electrodes.
Barrier function and integrity, tight
junction formation, cell growth and
differentiation

Transepithelial/transendothelial electrical resistance (TEER) measurements

Barrier integrity Transconductance measurements
Myokine secretion Myokine concentration measurement by functionalized gold electrodes
Cardiac beat rate Multi-electrode array and atomic force microscopy measurements

Voltage and displacement current measurement by large area electrodes
Cantilever array

cell-specific parameters in 3D or organoid cultures, cell-
specific metabolic parameters can often be determined as
volume-specific parameters only. For determination of vol-
umetric rates, for example, in organoid cultures or multi-
organ chips, specific methods have to be established due to
the small volumes [8]. Furthermore, gradients of, for exam-
ple, oxygen or substrates/metabolites, have to be foreseen,
making it more difficult to investigate the impact of cul-
ture conditions on these parameters. Often, these variables
are determined as adaptation parameters in mathematical
models for flow/metabolism (see below).
In the following example, aspects related to the determi-

nation of cell-specific metabolic parameters are explicitly
examined to determine cell-specific oxygen uptake rates.
Further metabolic rates are only considered briefly.
Oxygen has a tremendous impact on the cellular and

metabolic activity of cells. Therefore, it is essential to gen-

erate an appropriatemicroenvironmentwith regard to cell-
specific oxygen concentrations. For example, in cartilage,
liver or stem cells, lower oxygen concentrations seem to
be advantageous with respect to the metabolic activity [72,
73]. With respect to mass transfer effects within 3D or
organoid cultures, oxygen is usually regarded as more rel-
evant than other medium compounds such as glucose or
glutamine. This is often attributed to the poor solubility
of oxygen in the culture medium, which restricts the dif-
fusive penetration depth of oxygen within tissues in vivo
in the range of only 100–200 µm [8]. In vitro, this is even
worse, as artificially generated tissues are usually not vas-
cularized, calling for anticipating severe oxygen gradients
or even oxygen limitations. Therefore, the oxygen concen-
tration adjustment is a critical matter in the design of any
tissue culture system. But as exact sensory determination
of the oxygen concentration within tissue constructs is still
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difficult and not well-established (compare Section 2), oxy-
gen profiles can often only be estimated through mathe-
matical modelling, which itself depends on reliable values
for cell-specific oxygen uptake rates.
Methods used for the determination of parameters

related to oxygen consumption are summarized in Table 4.
These are mostly related to liver/HepG2 cells, due to the
intensive research on cell-based extracorporeal liver sup-
port systems and oxygen distribution within the respec-
tive bioreactors. Selected examples for other tissue types
have been added. The values themselves are deliberately
not provided, as the focus of this review is on the respec-
tive methods. Furthermore, values reported in the litera-
ture often show a considerable deviation. As an example,
for the uptake rate of liver cells, reported values fluctu-
ate by a factor of 25–30 [74]. This is probably due to dif-
ferent methods and environmental conditions (cell den-
sity, growth phase, substrate concentrations, 2D/3D) that
have been applied. Most references referring to bioreactors
have applied macro-bioreactors. Only a few studies used
the terminology to refer to micro-bioreactors or organoid
cultures, even though techniques for monitoring and con-
trolling oxygen within such systems have been described
[75–79].
In respect to the relationship between the volumetric

oxygen uptake rate and the oxygen concentration most
studies cited in Table 4 refer to the work of Haselgrove
et al. in 1993 [80], where an equation following Michaelis–
Menten-Kinetics was used:

OUR = 𝑞cell ⋅ 𝑁cell ⋅
𝑐O2

𝑘m + 𝑐O2
(1)

OUR: oxygen uptake rate (mol L–1 h–1); qcell: cell-specific
oxygen uptake rate (mol cell–1 h–1);Ncell: cell density (cells
L–1); cO2: oxygen concentration (mol L–1); km: Michaelis–
Menten-constant (mol L–1).
Even if the assumptions of Equation (1) are reasonable,

actual verification is missing. As the exact determination
ofNcell is often difficult for 3D culture, qcell *Ncell has been
determined as the volumetric parameter instead (mol L–1
h–1). This problem in particular applies to microfluidic cell
culture devices with respect to real-timemonitoring of cell
densities and oxygen concentration [77, 81].
With respect to cell-specific metabolic rates as input

parameters for growth, substrate consumption or metabo-
lite production in mass transfer models, mostly glucose as
the substrate and lactate as the metabolite are considered,
with some focus on the relevance of other compounds such
as glutamine, ammonia or carbon dioxide [8]. Determina-
tion of cell-specific substrate uptake and lactate production
rates is usually based on time-dependent analysis of the
concentrations of the respective compounds, as well as the

cell numbers. The latter can further be used for calculation
of cell-specific growth rates.
Even though the relevance of the abovementioned

parameters and their tremendous impact on culture con-
ditions is well known from established cell lines, extensive
studies on tissue cells addressing these effects are rare. To
some extent, such studies have been performed for mono-
layer cultures [82, 83], but hardly for 3D and organoid cul-
tures. Techniques for determination (compare Section 2)
and long-term monitoring [75, 84] of glucose and lactate
for such complex systems have been established, and chal-
lenges related to the precise 3D determination of cell num-
ber for organoid culture have been discussed before.
Several studies exist on modelling of cell growth, glu-

cose uptake and lactate production in tissue cultures [37,
83, 85–90], inmost of which values for cell-specific growth,
uptake and production rates were either taken from liter-
ature or determined by parameter estimation (similar to
oxygen uptake rates; see above). Particularly, noteworthy
in this context is the work of Higuera et al. [83], as they
compared, measured and simulated values.
In conclusion, the above discussion reflects the prob-

lems in determination of reliable cell-specific metabolic
parameters. This has to be taken into account if these
parameters are applied in mass transfer models. Likewise,
sensitivity analyses should be included, and discussion
on how required simplifications and assumptions in the
modelling have an inevitable influence on the adjustment
parameters.

4.3 Physico-chemical process
parameters relevant for modelling

Several engineering parameters are relevant for modelling
of mass transfer effects and fluid dynamics in tissue cul-
ture. For transport mechanisms, oxygen transfer rate, per-
meability, and diffusion coefficients are addressed. Fluid
flow is mainly influenced by shear distribution, scaffold
structure, and porosity of the scaffold. Respective tech-
niques will be discussed in the following.

4.3.1 Oxygen transfer rates

As already highlighted in Section 4.2, oxygen transfer is
a matter of utmost importance for tissue cultures due to
the low solubility of oxygen in the culture medium and
the tremendous impact of the oxygen concentration on the
physiology of tissue cells [76, 8, 91, 92]. Naturally, the oxy-
gen requirement of cells (volume-specific oxygen uptake
rate, OUR) must be in accordance with the oxygen sup-
ply (oxygen transfer rate; OTR). For aeration of tissue cul-
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ra
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at
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ra
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ra
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ra
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ra
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k m
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ra
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ra
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ra
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m
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t-p
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ra
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ra
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at
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ro
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d.
O
xy
ge
n

di
ffu
si
on

in
bo
th
di
re
ct
io
ns
,

in
cl
ud
in
g
pa
ra
lle
lt
o
th
e
flo
w

di
re
ct
io
n
an
d
pe
rp
en
di
cu
la
rt
o
th
e

flo
w
di
re
ct
io
n
du
e
to
th
e
ce
llu
la
r

ox
yg
en

up
ta
ke

w
er
e
co
ns
id
er
ed
.

O
U
R m

ax
fr
om

[1
27
],
k m

ne
gl
ec
te
d

M
od
el
no
tv
er
ifi
ed

ex
pe
rim

en
ta
lly
.

N
o
se
ns
iti
vi
ty
an
al
ys
is

re
ga
rd
in
g
O
U
R m

ax
.

Va
lu
es
fo
rO

U
R m

ax
ha
ve
be
en

ex
pe
rim

en
ta
lly

de
te
rm

in
ed

fo
ra

di
ffe
re
nt
cu
ltu
re

sy
st
em

.

(C
on
tin
ue
s)



FATTAHI et al. 691

T
A
B
L
E

4
(C
on
tin
ue
d)

R
ef
s.

pu
rp
os
e

C
el
lt
yp
e

M
et
ho
d
fo
r
de
te
rm

in
at
io
n
of
O
U
R

an
d/
or

k m
Ve
ri
fi
ca
ti
on

C
om

m
en
t

[1
00
]

In
ve
st
ig
at
in
g
ox
yg
en

tr
an
sp
or
te
ffi
ci
en
ci
es
in

pr
ec
is
io
n‑
cu
tl
iv
er

sl
ic
e‑
ba
se
d
or
ga
n‑
on
‑a
‑c
hi
p

de
vi
ce
s

M
ou
se
liv
er

sl
ic
es

Th
e
tr
an
sp
or
to
fn
ut
rie
nt
si
n
th
e

si
m
ul
at
io
n
w
as
de
sc
rib
ed

by
th
e

ge
ne
ric

di
ffu
si
on
.T
he

co
ns
um

pt
io
n

of
ox
yg
en

w
as
ca
lc
ul
at
ed

w
ith

M
ic
ha
el
is
–M

en
te
n
re
ac
tio
n
ki
ne
tic
s.

Fu
rt
he
rm

or
e,
to
ac
co
un
tf
or
ce
llu
la
r

pr
oc
es
se
ss
uc
h
as
ne
cr
os
is
,a
fa
ct
or

w
as
im
pl
em

en
te
d
to
el
im
in
at
e
th
e

re
ac
tio
n
te
rm

fo
rt
he

ce
llu
la
r

co
ns
um

pt
io
n
by

go
in
g
to
ze
ro
be
lo
w

a
cr
iti
ca
lD

O
.

O
U
R m

ax
an
d
k m

ta
ke
n
fr
om

[1
24
]

M
od
el
no
tv
er
ifi
ed

ex
pe
rim

en
ta
lly
.

N
o
se
ns
iti
vi
ty
an
al
ys
is

re
ga
rd
in
g
O
U
R m

ax
.

Th
e
op
tim

al
de
vi
ce

ar
ch
ite
ct
ur
e
de
riv
ed

fr
om

th
e
m
od
el
lin
g
w
as
th
en

fa
br
ic
at
ed

an
d
its

op
er
at
io
n
co
nf
irm

ed
w
ith

an
LD

H
as
sa
y.

[8
0]

C
om

pu
te
rm

od
el
lin
g
of
th
e

ox
yg
en

su
pp
ly
an
d

de
m
an
d

of
ca
rt
ila
ge
ce
lls

Is
ol
at
ed

ch
ic
ke
n

ch
on
dr
oc
yt
es

O
U
R
ex
pe
rim

en
ta
lly

de
te
rm

in
ed

an
d

pl
ot
te
d
ve
rs
us
D
O
,p
ar
am

et
er

es
tim

at
io
n
fo
r

M
ic
ha
el
is
-M
en
te
n-
ki
ne
tic

Q
ua
lit
at
iv
el
y
di
sc
us
se
d

O
U
R
de
cr
ea
se
sa
tl
ow

ox
yg
en

te
ns
io
ns
.T
he

m
et
ab
ol
is
m

of
ch
on
dr
oc
yt
es
is
no
t

co
nt
ro
lle
d
si
m
pl
y
by

th
e

av
ai
la
bl
e
ox
yg
en

su
pp
ly

[1
34
].

[1
35
]

M
od
el
lin
g
of
ox
yg
en

up
ta
ke

w
ith

th
re
e-
di
m
en
si
on
al

ch
on
dr
oc
yt
e
pe
lle
ts

C
ar
til
ag
e
ce
lls

fr
om

m
in
i-p
ig

(k
ne
e
an
d

el
bo
w
)

O
xy
ge
n
up
ta
ke

ra
te
of
a
si
ng
le
pe
lle
t

m
ea
su
re
d
in
a
sp
ec
ia
ld
es
ig
ne
d

re
ac
tio
n
ch
am

be
r.M
as
sb
al
an
ce

eq
ua
tio
ns
fo
rd
et
er
m
in
at
io
n
of

ox
yg
en

pr
of
ile

in
ch
on
dr
oc
yt
e
pe
lle
ts

D
iff
us
io
n
co
ef
fic
ie
nt
as

fit
tin
g
pa
ra
m
et
er

C
el
l-s
pe
ci
fic

ox
yg
en

up
ta
ke

ra
te
de
te
rm

in
ed

fo
r

su
sp
en
de
d
ch
on
dr
oc
yt
es

[1
36
]

Re
al
-

tim
e
m
on
ito
rin

g
of

sp
ec
ifi
c
ox
yg
en

up
ta
ke

ra
te
s

in
a
m
ic
ro
flu
id
ic

ce
ll
cu
ltu
re

de
vi
ceEm
br
yo
ni
c
st
em

ce
lls

M
on
ito
rin

g
of
ce
ll
gr
ow

th
fr
om

ph
as
e

co
nt
ra
st
m
ic
ro
sc
op
y
im
ag
es
,a
nd

of
re
sp
ira
tio
n
us
in
g
op
tic
al
se
ns
or
sf
or

di
ss
ol
ve
d
ox
yg
en

co
nn
ec
te
d
to
in
le
t

an
d
ou
tle
to
ft
he

m
ic
ro
flu
id
ic

cu
ltu
re
de
vi
ce
.C
al
cu
la
ti
on

of
O
U
R

fr
om

a
si
m
pl
e
m
as
s
ba
la
nc
e

de
pe
nd

in
g
on

fl
ow

ra
te
.

n.
d.

La
be
l-f
re
e
an
d
re
al
-ti
m
e

m
on
ito
rin

g
of
ox
yg
en

co
nc
en
tr
at
io
ns
an
d
ce
ll

pr
ol
ife
ra
tio
n



692 FATTAHI et al.

ture systems, one or a combination of the following meth-
ods can be applied, depending mainly on the size of the
culture system: surface aeration, direct sparging, indirect
and/ormembrane aeration (diffusion),mediumperfusion,
increasing the partial pressure of oxygen, and increasing
the atmospheric pressure [93]. Oxygen dissolved in the
medium ismainly transported by diffusionwithin the bulk
fluid phase, from the bulk to the surface of the organoid
through the boundary layers, and subsequently reaches
the bulk of the organoid. As the spatial distribution of
oxygen within the boundary layer and within the bulk of
the organoid can hardly be measured so far, mass transfer
models that are applied here are based on diffusion (e.g.,
Fick’s law).
Several techniques for determination of oxygen transfer

rates are at hand in the case of surface aeration or direct
sparging, which include the sulphite oxidation method,
the dynamicmethod, the gassing out method (reviewed by
[8]), and the membrane aeration [93] among others. Most
of these methods have been developed and standardized
for the stirred tank and similar bioreactors [74] or adapted
to flask type cultures (well plates, T-flask) or shake flasks
with surface aeration [94].
The exact experimental determination of OTR for tissue

culture systems (mainly micro-bioreactors) has proven to
be extremely difficult owing to the small size and the com-
plexity of such systems, as well as the limited availability
of techniques for measuring the oxygen concentration, as
outlined in Section 4.1 [74, 95–98].Hence,OTR is often con-
sidered within mass transfer models [46, 74, 92, 99–103].

4.3.2 Diffusion/permeability coefficients

As mass transfer in in vitro tissue organoids relies mostly
on diffusion/permeation, proper determination of the
respective transport coefficients is important. Diffusion is a
transport process in which molecules move via Brownian
motion in a volume or area, driven by the concentration
gradient in the direction from higher to lower concentra-
tions. Mathematically, it is usually described by Fick’s law
[104, 105]. Permeation is merely an aspect of diffusion, and
while diffusion is related to the movement of molecules in
a system, permeation describes how fast molecules move
through a system, and is characterized by the permeabil-
ity coefficient. Both parameters depend on the molecular
weight of the compound and the properties of the medium
or tissue, among others [104].
Within mass transfer models, mostly low-molecular-

weight compounds such as oxygen, glucose, and lactate
are considered for diffusion within the bulk medium sur-
rounding a tissue organoid and within the organoid. In
most cases, diffusion coefficients determined for diffusion

in water at medium temperatures are applied. For the
bulk medium, this seems to be a sensible approach. For
the tissue organoid itself, however, the respective prop-
erties should be considered. When hydrogels are applied
as the scaffold material, this problem should be exam-
ined even more closely, as hydrogels consist of a water-
containing polymer network, where the material trans-
port takes place predominantly in the aqueous phase. For
hydrogels, the polymer network turns out to be the actual
barrier for molecular movement. Decisive factors for the
diffusion of substances through a hydrogel are the nature
and density of the cross-linked network and the shape
and size of the particles. The water solubility and the sur-
face charge also play major roles. In general, molecules
migrate better and faster through a large-meshed, flexi-
ble network than through a small-meshed, rigid network.
Likewise, molecules with a smaller hydrodynamic radius
diffuse faster through hydrogels than large ones [106]. For
largermolecules (approx. 4 kD), anomalous diffusion (sub-
diffusion) has to be expected,which cannot be described by
Fick’s law. This effect could be confirmed by Hsu et al. for
in vivo skin models [107].
Aside from skin models/biopsies and cartilage, high

molecular weight compounds such as growth factors or
substances applied in penetration tests (e.g., skin models
or drug testing) have hardly been considered inmass trans-
fer models. Due to the high relevance of skin permeation
following different mechanisms, mainly the transcellular,
the intercellular and the follicular pathway [108], several
methods have been developed to determine skin perme-
ability, which will be summarized briefly in the following.
The Franz diffusion cell is a well-known device to mea-

sure the permeation of a substance through a tissue. Due to
the usual size (height) of Franz diffusion cells, they arewell
established for skin biopsies but can hardly be applied for
small tissue constructs [109]. Fluorescence recovery after
photobleaching (FRAP) is a method to measure molecu-
lar diffusion in tissues or gels, mainly for high molecu-
lar weight compounds. For this, the substance must be
labelledwith a fluorochrome.Mostly fluorescence-labelled
proteins or FITC-dextrans (fluorescein isothiocyanate-
dextrans) with different molecular weight/sizes are used
[110, 111]. Further imaging methods for the determina-
tion of diffusion of molecules in the skin are Fourier-
transform-infrared (FTIR) spectroscopy, two-photon flu-
orescence correlation spectroscopy in combination with
fluorescence correlation spectroscopy (FCS) and optical
coherence tomography (reviewed by [15]). These methods
are non-invasive and non-destructive but require expen-
sive equipment.
Asmentioned before,mostmethods for determining dif-

fusion and permeability parameters have been developed
for large biopsies and can hardly be applied for small-scale
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tissue cultures. But this is indispensable if either multi-
well test systems with several samples run in parallel or
multi-organ chips are applied. Furthermore, most meth-
ods require treatment of the sample in one or the other
way. Therefore, it is quite difficult to determine the time-
depending changes of diffusion and permeation. Hsu et al.
developed a method based on fluorescence measurements
to determine and simulate the permeation of high molec-
ular weight compounds through a gel matrix in a multi-
organ-chip and applied this to in vivo cultivated skin mod-
els [105, 112, 15].

4.3.3 Porosity

The porosity of the scaffold—defined as the sum of the vol-
umes of the pores divided by the sum of the volume of
the scaffoldmaterial—can influencemass transport effects
within the scaffold and by this the biological function-
ality and mechanical durability and is therefore impor-
tant to be evaluated. Assessment techniques include the-
oretical approaches (e.g., unit cube analysis and mass
technique), scanning electronmicroscopy (SEM), mercury
porosimetry, gas pycnometry, gas adsorption, and flow
porosimetry, all of which are associated with several lim-
itations and pitfalls. A lack of sensitivity to characterize
inconsistent/irregular architectures, destructiveness, and
the necessity to perform complementary experiments are
some of the more common drawbacks of the aforemen-
tioned techniques (reviewed by [113] and [114]). On the
other hand, micro-CT has a key advantage over other
approaches since it is a single, non-destructive technique
that can be used in high-resolutionmodes to scrutinize the
intricate micro-architecture of scaffolds, even if they con-
tain irregular spatial layouts.

4.3.4 Scaffold permeability

Successful tissue regeneration depends on the scaffold’s
ability to simultaneously allow nutrient diffusion, waste
removal and to provide a sufficient mechanical environ-
ment. This is particularly mandatory to promote regen-
eration of bone tissue, where bone scaffolds should have
a set of properties in terms of pore size and distribu-
tion, porosity ratio, tortuosity, interconnectivity, and spe-
cific surface area, among others. However, many of these
parameters are interdependent and exhibit complex or
even ambiguous results when it comes to their relation
to mass transport and the biological performance of the
scaffold [115]. For instance, even though larger pore sizes
and higher porosity ratios in scaffolds are often ascribed
to improved bone growth, some studies have reported

limited to no significant difference in bone regeneration
capacity of scaffolds with varying porosity ratios, while
the influence of pore size has been similarly a matter of
debate [116].
To address these conflicting reports regarding the role

of the design parameters, scaffold permeability has been
introduced as a macroscopic parameter that indirectly
accounts for all the aforementioned geometrical features.
Methods of permeability evaluation are often classified
into two general categories: experimental test benches and
computational approaches (reviewed extensively in [117]).
In experimental methods, the permeability is quantified in
the system either by measuring the pressure drop under
a constant flow rate or by measuring the volumetric flow
rate for a given pressure difference applied to the scaffold.
In purely viscous flows, that is, Darcy regime (negligible
inertial losses; Reynolds number < 1), the permeability K
can be calculated by Darcy’s law:

𝐾 = (𝑄𝜇𝐿)∕(𝐴Δ𝑃) (2)

In Equation (2), Q is the volumetric flow rate, ΔP is the
pressure drop through the scaffold, A and L are the cross-
sectional area and the thickness/length of the scaffold in
the direction of flow, respectively, and µ is the dynamic
viscosity of the fluid. Here the impact of the individual
molecule involved (size, charge, hydrophobicity) has to be
considered as well. Additionally, permeability can be esti-
mated indirectly by measuring geometrical features of the
scaffold (e.g., pore size, porosity, tortuosity, etc.) and using
semi-empirical models such as the Ergun–Forchheimer
correlation [117]; in particular, when the assumption of the
Darcy regime cannot be met.
One main challenge in the experimental assessment

of scaffold permeability is a lack of widely shared, inter-
laboratory protocols, making it nearly impossible to com-
pare values obtained in different laboratories. Moreover,
as the permeability evaluation is based on simultane-
ous measurement of multiple quantities (i.e., upstream
and downstream pressure and flow rate), several sen-
sors/transducers have to be implemented, which intro-
duce inaccuracy to the system [118]. Critically, the sensi-
tivity and the range width of these transducers have to be
selected as a function of the permeability range. Another
difficulty is raised from the fact that most experimental
methods require high fluid pressures, large time intervals,
and several cycles of measurement to ensure reproducible
results [119, 120]. This can lead to irreversible deformation
in the scaffold structure and induce obstruction of small
pores, which in turn causes fluid entrapment inside the
scaffold, another possible source of error.
An alternativeway of determining the permeability coef-

ficient of scaffolds is the computational simulation of fluid
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flow dynamics [116]. By numerically solving partial differ-
ential equations that describe the fluid motion in different
flow regimes, the permeability of the scaffold can be com-
puted. For simulation, the geometrical 3D models of the
scaffold can either be created from computer-aided design
(CAD), or by image-based techniques such as micro-CT
[121]. Since even small variations between the designed
architecture and the manufactured scaffold can strongly
influence the flow field [122], micro-CT has been deemed
the gold standard for generating realistic 3D models of
scaffolds, as well as measuring their geometrical charac-
teristics (e.g., pore size and porosity) as input parameters
for iterative processes [123]. Nevertheless, insufficient spa-
tial image resolution can influence the accuracy of the 3D
model and increase the surface roughness, which in turn
would cause an underestimation of the computed perme-
ability coefficient. On a more fundamental level, making
accurate boundary conditions at different scales as well as
incorporating material properties is a crucial challenge of
numerical simulations.

5 CONCLUDING REMARKS

The complexity of an in-depth characterization of flu-
idics and transport processes within organotypic tissue
cultures requires the combination of experimental tech-
niques, modelling, and computational tools. Tissue cul-
ture techniques are well-established, modelling tools are
at hand, and sensor technologies are increasingly being
integrated in culture devices. The main current problem is
that mathematical simulations need valid material prop-
erty values and correct input parameters, because errors
in input values can lead to completely wrong predictions,
even if the intermediate model is accurate. As outlined
in this review, there are still many areas, where validated
and generally accepted measurement methods for deter-
mination of the input parameters are lacking. In these
cases, values are either taken from the literature, some-
times neglecting limitations of the original source, or the
values result as adjustment parameters in the modelling,
with the risk of generating self-fulfilling prophecies. Care
needs to be taken to critically discuss how realistic such
values are. This includes discussion on how the required
simplifications and assumptions in the modelling may
influence such adjustment parameters. Furthermore, if
the precision of input parameters is uncertain, sensitiv-
ity analyses would allow an estimation of the magnitude
of possible effects. Following such Good Modelling Prac-
tice approaches when setting up and validating computa-
tional models will, therefore, lead to better estimations of
the interesting complex processes inside organotypic tissue
cultures in the future.

NOMENCLATURE

OUR, oxygen uptake rate (mol L–1 h–1)
qcell, cell-specific oxygen uptake rate (mol cell–1 h–1)
Ncell, cell density (cells L–1)
cO2, oxygen concentration (mol L–1)
km, Michaelis–Menten-constant (mol L–1)
K, permeability (Da)
Q, volumetric flow rate (m3 s–1)
ΔP, pressure drops through the scaffold (Pa)
A, Cross-sectional area (m2)
L, thickness/length of the scaffold in the direction of

flow (m)
µ, dynamic viscosity of the fluid (Pa s)
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