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Abstract

Isobaric labeling increases the throughput of proteomics by enabling the parallel iden-

tification and quantification of peptides and proteins. Over the past decades, a variety

of isobaric tags have been developed allowing the multiplexed analysis of up to 18

samples. However, experiments utilizing such tags often exhibit reduced identifica-

tion rates and thus show decreased analytical depth. Re-scoring has been shown to

rescue otherwise missed identifications but was not yet systematically applied on

isobarically labeled data. Because iTRAQ 4/8-plex and the recently released TMT-

pro 16/18-plex share similar characteristics with TMT 6/10/11-plex, we hypothesized

that Prosit-TMT, trained exclusively on 6/10/11-plex labeled peptides, may be appli-

cable to these isobaric labeling strategies as well. To investigate this, we re-analyzed

nine publicly available datasets covering iTRAQ and TMTpro labeling for samples with

humanandmouseorigin.Wehighlight that Prosit-TMTshows remarkably goodperfor-

mance when comparing experimentally acquired and predicted fragmentation spectra

(R of 0.84 - 0.9) and retention times (ΔRT95% of 3% - 10% gradient time) of peptides.

Furthermore, re-scoring substantially increases the number of confidently identified

spectra, peptides, and proteins.
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1 INTRODUCTION

Accurate peptide identification is an indispensable step in all pro-

teomics experiments [1]. However, the most commonly used tools for

peptide identification to date do not utilize all information captured in

tandem mass spectra, as they typically match in silico generated unit-

intensity fragmentation spectra to experimentally acquired tandem
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quantitation; iTRAQ4, iTRAQ4-plex; iTRAQ8, iTRAQ8-plex; RT, retention time; SA,

normalized spectral contrast angle; TMT, tandemmass tag; TMTpro, proline-based reporter

isobaric tandemmass tag structure; TMT16, TMTpro 16-plex; TMT18, TMTpro 18-plex.
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mass spectra [2]. Over the last years, different deep learning models

were developed that can predict the expected fragment ion intensities

of peptides with very high accuracy [3–9]. A particularly interesting

application of such predictions is their incorporation into the pro-

cess of peptide identification either by spectral library searching or,

more commonly used to date, by re-scoring database search engine

results.

Re-scoring has been shown to hold the potential to substantially

increase the confidence andnumber of peptide identifications [10–12].

While initial research focusedon theapplicationonunlabeledpeptides,

the concept was recently shown to drastically increase the sensitivity

and specificity also for data utilizing tandem mass tag (TMT) labeled
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peptides [13]. This type of multiplexing received a lot of attention

over the last years because it parallelizes the analysis of multiple sam-

ples and thus increases the scalability of bottom-up proteomics [14,

15]. All commonly used isobaric labels [16–19] used to date utilize

a similar mechanism and the tags share similar characteristics [20].

However, intensity prediction bymachine learningmodels is only avail-

able for TMT 6/10/11-plex and isobaric tags for relative and absolute

quantitation (iTRAQ) 4-plex accurate [4, 13].

Here, we report that Prosit-TMT, a model recently developed for

TMT 6/10/11-plex labeled peptides, is applicable to peptides labeled

with iTRAQ, (4/8-plex) or proline-based reporter isobaric tandemmass

tag structure (TMTpro, 16/18-plex). To show this, we start by sys-

tematically comparing fragment ion intensity and RT predictions from

Prosit-TMT to experimentally acquired data from nine datasets cov-

ering different iTRAQ and TMTpro labels, fragmentation methods,

and sample complexities. Prosit-TMT shows remarkably good per-

formance for spectra (Pearson correlation of 0.84 - 0.9) and RTs

(ΔRT95% of 3 - 10% gradient time). Last, re-scoring of the nine

datasets with Prosit-TMT increases the number of peptide spectrum

matches, peptides, and proteins by on average 42%, 40%, and 31%,

respectively.

2 MATERIALS AND METHODS

2.1 External data processing

The raw MS data from six studies were downloaded from PRIDE

[21, 22] and grouped into nine datasets (Table 1). Each dataset was

re-processed using MaxQuant 2.0.1 [2] using the parameters as men-

tioned in the original studies. However, for later re-scoring no false

discovery rate (FDR) filtering on PSM, peptide, and proteins level was

performed at this stage. For the datasets using TMT 16- and 18-

plex labeling, TMTpro was added to the MaxQuant configuration and

specified as a fixedmodification.

Statement of the Significance

Re-scoring, utilizing fragment intensity and other peptide

property predictions, has been successfully used to increase

the confidence and number of identified peptides. Particu-

larly for isobaric labeling strategies, increasing the number

of confidently identified spectra is highly desirable as it pro-

vides new identification and quantification information with

every spectrum. However, current prediction models are

only available for a subset of commonly used labeling strate-

gies. Here we investigated the generalization of Prosit-TMT

to iTRAQ and TMTpro on nine publicly available datasets.

The results show that Prosit-TMT is generally applicable to

other isobaric labelling strategies and increases the number

of peptide spectrum matches, peptides, and proteins by an

average 42%, 40%, and 31%, respectively.

2.2 Fragment ion intensity and RT prediction with
Prosit-TMT

For fragment ion intensity and RT prediction of iTRAQ and TMTpro

labeled peptides, the Prosit-TMT intensity andRTmodel 2021 [13]was

used. In both cases, the iTRAQ and TMTpro label was replaced by the

TMT6 label for prediction. For fragment intensities, the resulting frag-

ment masses were shifted to the correct m/z values based on the mass

shifts induced by iTRAQ or TMTPro.

2.3 Re-scoring workflow

The re-scoringwas performed as described inGabriel et al.[13]. Briefly,

to utilize theRTpredictions, the re-scoringpipelinedescribed inGessu-

lat et al. [10] was extended. First, PSMs were filtered to 1% FDR using

TABLE 1 List of PRIDE datasets processed indicating the PXD identifiers, original publication, the isobaric label used, organism analyzed,
sample type, acquisitionmethod, and dataset name referred to in this study

ProteomeXchange

identifier Reference Label Organism Sample

MS/MS

acquisition

method

Dataset

name

PXD030340 Gabriel et al. [13] TMT6 Human/Yeast cell line HCD/CID IT/OT TMT6

PXD017472 Yang et al. [35] iTRAQ4 mouse serum HCD/OT D1

PXD017472 Yang et al. [35] iTRAQ4 human serum HCD/OT D2

PXD017621 Sánchez-González et al. [36] iTRAQ4 mouse skeletal muscle HCD/OT D3

PXD002214 Preil et al. [37] iTRAQ8 human artery HCD/OT D4

PXD021401 Kim et al. [38] iTRAQ8 human cervicovaginal fluid HCD/OT D5

PXD027089 Ramchandani et al. [39] TMT16 mouse breast and lung tissue CID/IT D6

PXD027089 Ramchandani et al. [39] TMT16 human breast and lung tissue CID/IT D7

PXD024275 Li et al. [19] TMT16 human cell line CID/IT D8

PXD024275 Li et al. [19] TMT18 human cell line CID/IT D9
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the normalized spectral contrast angle (SA) calculated between the

intensity prediction and the observed spectra. For this, a linear discrim-

ination analysis was applied on PSMs level to estimate the FDR. For

RT alignment, a lowess fit between predicted indexed retention time

(iRT) and experimental RT was used. In order to stabilize the lowess

fit, outlierswere recursively filtered by computing themedian absolute

error between predictions and observations. When the median abso-

lute error was > 0.02, outliers were removed. Initially, 0.1% of outliers

are removed. The percentage is increased exponentially to a maximum

of 50%. Finally, RT, predicted iRT, transformed iRT, and the absolute dif-

ference between transformed RT and experimental time are added as

features to Percolator [23]. We used Percolator for PSM and peptide

FDR estimation, followed by the picked FDR approach [24] for protein

FDR estimation.

2.4 Post processing

To calculateRTdifference (ΔRT),wedivide the absolute error observed
between the predicted and observed RT by the gradient length. The

resultingmeasure describes the relatedΔRT in relation to the gradient
time for any given experiment (ΔRT%).

For the quantitation analysis, we selected protein groups identi-

fied by both Andromeda and Prosit, that only represented a single

gene. These were further filtered for groups with more than one PSM

uniquely identified with Prosit. After filtering, we calculated the Pear-

son correlation of the sum of all reporter intensities of the shared

(Prosit and Andromeda) PSMs for that protein group 1) to the PSMs

uniquely identified by Prosit that are assigned to this protein group

(target) and 2) to Prosit-unique PSMs from other protein groups

(background).

3 RESULTS AND DISCUSSION

3.1 Prediction performance for iTRAQ 4/8-plex
labeled peptides

TMT and iTRAQ both use amine-specific reactive groups (N-

hydroxysuccinimide chemistry) that react with free N-terminal

amino groups and lysine side chains of a polypeptide. The main dif-

ference between these isobaric labeling strategies is the molecular

design and structure of the balancer and reporter group (Figure 1A,

insets showing the structures for each isobaric label; flag symbol for

iTRAQ 8-plex indicates proprietary structure of the balancer group).

However, the differences fragmentation characteristics induced by

thesewere reported to beminimal and thus allow the inter-conversion

of spectra from one label to the other [25]. Prosit-TMT was trained

to predict the fragment ion intensities (Prosit TMT intensity 2021)

of up to triply charged b- and y-ions and the indexed retention time

(Prosit TMT iRT 2021) for TMT 6/10/11-plex (TMT6) labeled peptides

with a maximum length of 30 amino acids. Thus, we hypothesized that

its predictions could be used to predict iTRAQ4 and iTRAQ8 labeled

peptides as well.

To test this,wedownloaded and re-analyzed five datasets (D1-5, see

Methods) that used iTRAQ4 (D1, D2, D3) or iTRAQ8 (D4, D5) label-

ing. The confidently (< 1% FDR) identified peptide spectrum matches

(PSMs) from the MaxQuant analysis were then compared to predic-

tions generated by Prosit-TMT. This is possible because the fragment

ion masses are added separately after Prosit’s predictions (the neu-

ral network is unaware of the fragment masses), which enabled us to

superimpose the TMT6 fragment intensities on the calculated frag-

ment masses of iTRAQ labeled peptides (see Methods). In line with

data acquisition, the higher-energy CID (HCD; also referred to as

beam-typeCID) fragmentationmodelwas used for prediction. Thenor-

malized collision energy (NCE) used for prediction was calibrated for

each dataset (see Methods). Figure 1A shows two exemplary mirror

spectra where predictions by the Prosit-TMT model are compared to

the experimental spectra of an iTRAQ4 (Figure 1A top mirror spec-

trum for APIRPDIVNFVHTNLR) or iTRAQ8 (Figure 1A bottom mirror

spectrum forDIQMTQSPSSLSASVGDR) labeled peptide. In both cases,

the spectral similarity reaches high levels of agreement indicated by

the high SA of ∼0.71 and Pearson correlations (R) of ∼0.85. This is

substantially higher than what was achieved when using Prosit mod-

els that were learned on unlabeled peptides (SA∼0.55 and R∼0.63,

Supplementary Figure S1). Somewhat surprisingly, the prediction accu-

racy achieved with the base Prosit model appears to be different for

y- and b-ions when using the Prosit model trained on unlabeled pep-

tides. While the fragment intensities of y-ions are surprisingly well

conserved, the b-ion intensities show amuchmore erratic characteris-

tic. Thismay be caused by the fact that for both peptides, only the b-ion

series contains the iTRAQmodification (noC-terminal lysine), and thus

the y-ion intensities are largely unaffected, which is supported by a

systematic investigation into the b- and y-ion similarities for peptides

which contain no missed-cleavage ending in either lysine or arginine

(Supplementary Figure S2A-E).

To systematically confirm the high level of agreement of the Prosit-

TMT intensity model with acquired spectra of iTRAQ-labeled peptides,

we compared 17,420 and 35,718 confident PSMs of datasets D1 and

D4, respectively, against their predictions (Figure 1B, top panel for

iTRAQ4, bottom panel for iTRAQ8). Amedian SA of 0.74 and 0.73 (R of

0.87 and 0.85) for iTRAQ4 and iTRAQ8, respectively, indicates that the

exemplary mirror spectra represent the median performance that can

be expected for any prediction. As expected, the overall performance

of Prosit-TMT on iTRAQ is reduced when compared to TMT6-labeled

peptides which achieves a median SA of 0.89 (R of 0.97) for HCD

fragmentation. The results shown here for iTRAQ4 and iTRAQ8 are

consistent across the five investigated datasets (Supplementary Figure

S3A-C for D2, D3, and D5).

To evaluate the performance of Prosit TMT iRT 2021 model on

iTRAQ-labeled peptides, we compared predicted and observed aligned

RT, (see Methods) of labeled peptides, respectively. Figure 1C shows

the distribution of the absolute retention time error (ΔRT%) in relation
to the gradient time (percent of gradient; ΔRT95%) for iTRAQ4 (top)
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F IGURE 1 Prosit-TMT prediction performance for iTRAQ-labeled peptides. (A) Spectrummirror plots of an iTRAQ4 labeled peptide (top) and
iTRAQ8 labeled peptide (bottom) comparing an experimental spectrum (top spectrum in each) to the corresponding prediction performed by
Prosit-TMT (bottom spectrum in each). The topmirror plot shows the triply charged peptide APIRPDIVNFVHTNLR from dataset D3 acquired at
normalized collision energy (NCE) of 42 fragmented using HCD. The bottommirror plots show the doubly charged peptide
DIQMTQSPSSLSASVGDR acquired at NCE of 34 using HCD fragmentation in dataset D5. Fragment ions are blue and red for b- and y-ions,
respectively, and unannotated peaks are grey. Shared y-ions and b-ion are labeled in the top and bottom spectrum, respectively, only. The spectral
similarity wasmeasured by Pearson correlation (R) and normalized spectral contrast angle (SA) calculated on thematching b- and y-ions only. The
difference between observed and predicted retention time (RT) is expressed in relation to the gradient length. (B) Bean plots showing the
prediction accuracy of the Prosit TMT intensity 2021model for iTRAQ4 labeled (top, green distribution) and iTRAQ8 labeled (bottom, green
distribution) peptides compared to TMT6 labeled peptides (red distribution in each). Prediction accuracies aremeasured using SA (left pair of
beans) and R (right pair of beans) metrics. The number of underlying spectra (n) is indicated at the bottom. The horizontal lines correspond to the
median SA/R observed indicated. (C) Bean plots showing the prediction accuracy of the Prosit TMT RT 2021model on iTRAQ4 labeled (top, green
distribution) and iTRAQ8 labeled (bottom, green distribution) peptides compared to TMT6 labeled (red distribution in each) peptides. The
performance wasmeasured by the difference between predicted and observed retention time relative to the gradient length. The number of
underlying peptides (n) is indicated at the bottom. The horizontal lines correspond to the interval necessary to capture 95% of the peptides
(ΔRT95%)

and iTRAQ8 (bottom) in comparison to a conservative upper bound

estimated by the corresponding TMT6 ΔRT% distribution. For both

iTRAQ labels, the difference between the prediction and observation

was only 4% of the total gradient length for 95% of the peptides. In

comparison, for TMT6 95% of the peptides were within 2% of the

total gradient length. When using the base Prosit model, peptides that

contain no missed-cleavage terminating on arginine show a marginally

lower ΔRT95% than peptides terminating on lysine (Supplementary

Figure S4).

As observed earlier [10], despite Prosit being trained on peptides

with human origin only, no bias was visible when comparing the

prediction performance for datasets with human or mouse samples,

indicating that Prosit-TMT and its application on iTRAQ-labeled data

may not be limited to a specific species. Although the analysis shows

that Prosit-TMT performs slightly worse for iTRAQ than for TMT6, the

predictions are much more accurate in comparison to using a Prosit

model that was trained for unlabeled peptides.

3.2 Prediction performance for TMTpro
16/18-plex labeled peptides

Supported by the results obtained from the analysis on iTRAQ, we

hypothesized that similar results may be observed when comparing

Prosit-TMT predictions to TMTpro 16- (TMT16) or 18-plex (TMT18)

labeled peptides. Similar to iTRAQ, TMTpro largely only differs in

the specifics of the balancer and reporter group from the TMT6

(Figure 2A). We downloaded, processed and filtered four datasets

(D6-D9, see Methods) that used TMT16 (D6, D7, D8) and TMT18

(D9) labeling. The confidently (< 1% FDR) identified PSMs from

the MaxQuant analysis were then compared to predictions where

Prosit-TMT fragment intensities were superimposed on TMT16 or

TMT18 calculated fragment masses (see Methods). All four datasets

were acquired using CID fragmentation and thus NCE calibration was

not necessary. The SA of ∼0.76 and R of ∼0.89 for the two exem-

plary mirror spectra for TMT16 (Figure 2A top mirror spectrum for
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F IGURE 2 Prosit-TMT prediction performance for TMTpro-labeled peptides. (A) Spectrummirror plots of an TMT16 labeled peptide (top) and
TMT18 labeled peptide (bottom) comparing an experimental spectrum (top spectrum in each) to the corresponding prediction performed by
Prosit-TMT (bottom spectrum in each). The topmirror plot shows the triply charged peptide YTEISNIK from dataset D6 acquired at collision
energy (CE) of 35 fragmented using CID. The bottommirror plots show the doubly charged peptide YPNLQVIGGNVVTAAQAK acquired at CE of
35 using CID fragmentation in dataset D9. Fragment ions are blue and red for b- and y-ions, respectively, and unannotated peaks are grey. Shared
y-ions and b-ion are labeled in the top and bottom spectrum, respectively, only. The spectral similarity wasmeasured by Pearson correlation (R)
and normalized spectral contrast angle (SA) calculated on thematching b- and y-ions only. The difference between observed and predicted
retention time (RT) is expressed in relation to the gradient length. (B) Bean plots showing the prediction accuracy of the Prosit TMT intensity 2021
model for TMT16 labeled (top, green distribution) and TMT18 labeled (bottom, green distribution) peptides compared to TMT6 labeled peptides
(red distribution in each). Prediction accuracies aremeasured using SA (left pair of beans) and R (right pair of beans) metrics. The number of
underlying spectra (n) is indicated at the bottom. The horizontal lines correspond to themedian SA/R observed indicated. (C) Bean plots showing
the prediction accuracy of the Prosit TMT RT 2021model on TMT16 labeled (top, green distribution) and TMT18 labeled (bottom, green
distribution) peptides compared to TMT6 labeled (red distribution in each) peptides. The performance wasmeasured by the difference between
predicted and observed retention time relative to the gradient length. The number of underlying peptides (n) is indicated at the bottom. The
horizontal lines correspond to the interval necessary t capture 95% of the peptides (ΔRT95%)

YTEISNIK) and TMT18 (Figure 2A bottom mirror spectrum for YPN-

LQVIGGNVVTAAQAK) indicate high levels of agreement. Similar to

iTRAQ, the position and overall presence/absence of peaks is matched

between predictions and observations and is substantially higher than

whatwas achievedwhen using a Prositmodel thatwas trained on unla-

beled peptides (Supplementary Figure S5). However, contrary to what

wasobserved for iTRAQ, theSAof b- andy-ions for peptides containing

no missed-cleavage when predicted with the base Prosit model shows

that y-ion prediction correlates very poorly irrespective of the terminal

amino acid (Supplementary Figure S2F-I). This suggests that the pres-

ence of a TMTpro tag has amore long-range effect on fragmentation in

comparison to iTRAQ, which may be due to the use of a proline-based

reporter.

The spectra similarity distribution on the 245,868 and 92,985 con-

fident PSMs from the TMT16 datasets D6 and TMT18 dataset D9

showeda similar pattern as for iTRAQ labeledpeptides (Figure2B). The

median SA reaches 0.72 (R of 0.87) and 0.76 (R of 0.9) for TMT16 and

TMT18, respectively, but shows decreased performance in compari-

son to the conservative upper bound estimated by the existing TMT6

model, which surpasses SAs of ∼0.86 (R of 0.97) in half of the cases.

The RT prediction performance for both TMT16 and TMT18 appears

to be worse in comparison to iTRAQ as an RT tolerance of about 8%

for TMT16 and 10% for TMT 18 of the gradient is necessary to cap-

ture 95% of the peptides (Figure 2C). This may be the result of TMTpro

inducing a stronger RT shift, which is supported by the expectation that

the reporter and longer balancer group lead tomore hydrophobic pep-

tides in comparison toTMT6. The results for fragment ion intensity and

RT prediction are consistent across the four investigated datasets that

used TMTpro labeling (Supplementary Figure S3D-E for D7-8).

3.3 Re-scoring drastically increases identified
peptide spectrum matches, peptides and proteins for
iTRAQ and TMTpro labeled data

We and others have shown that re-scoring, an approach where pre-

dicted fragment ion intensities and RTs of peptides are used for scoring

peptide spectrum matches, can drastically increase the number of
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F IGURE 3 Rescoring iTRAQ and TMTPro datasets using Prosit-TMT. (A) Simplification of a Venn diagram (Vennbar, first column) showing the
number of confident PSMs (left) and peptides (right) below 1% FDR lost (orange), shared (blue), and gained (green) when using re-scoring
(Prosit-TMT) compared to without re-scoring (MaxQuant/Andromeda) results. Barplot (second column) showing the number of confidently
identified protein groups either with (Prosit-TMT) or without rescoring (MaxQuant/Andromeda). First row shows the results when re-scoring the
iTRAQ4 dataset D1 and the last row for the iTRAQ8 dataset D4. (B) Same as A but for the TMT16 dataset D6 (first row) and the TMT18 dataset D9
(second row). (C) Scatter plot showing the number of identifications with rescoring (Prosit-TMT, y-axis) as a function of the number of
identifications without rescoring (MaxQuant/Andromeda, x-axis) for PSMs, peptides, and proteins (top to bottom). Points are colored blue for
iTRAQ and orange for TMTPro datasets. The solid black line indicates the diagonal (y= x), whereas the green line shows a regression fit to all
datasets without a variable intercept

confidently identified spectra, peptides, and proteins [4, 10, 11, 26,

27].We have recently shown that this is particularly the case for TMT6

labeled peptides. However, prior research also indicates that very high

prediction accuracies - as achieved by, for example, Prositwhen trained

and applied on the same peptide class reaching a median SA of 0.9

(R∼0.99) - might not be necessary for re-scoring [12]. Taken together,

we hypothesized that we should observe gains in PSMs, peptides, and

proteins for iTRAQ and TMTpro data when using Prosit-TMT, even

though this model was not trained to yield optimal predictions. To

investigate this, we systematically re-scored the nine investigated

datasets (see Methods), covering CID and HCD fragmentation, ion

trap (IT) and Orbitrap (FTMS) readout, iTRAQ and TMTpro labeling,

and samples from human andmouse origin.

The results obtained from re-scoring for four representative

datasets (D1, D4, D6, D9) are visualized in Figure 3. Starting with

iTRAQ4 (Figure 3A, top panels, D1), we observed a substantial gain

in confidently identified PSMs (17,420 to 25,175), peptides (708 to

1,883) and proteins (292 to 475) of ∼ 40%, ∼ 50%, and ∼ 60%,

respectively. The 183 rescued proteins are on average supported by

3 peptides suggesting that these are not the result of random (false

positive) matches. For iTRAQ8 (Figure 3A, bottom panels, D4), a sim-

ilar increase in PSMs (35,718 to 49,479), peptides (2,418 to 3,824)

and proteins (351 to 618) of ∼ 35%, ∼ 50%, and ∼ 75%, respectively,

was observed. Also here, the rescued protein identifications are sup-

portedbyon averageof 3.6 peptides. This trend is conserved across the

five investigated iTRAQ datasets (Supplementary Figure S6A-C) and

in single cases gains of up to 70% on PSM, 50% on peptide level, and

75% protein level were observed for iTRAQ. The results for TMT16

(Figure 3B, top panels, D6) and TMT18 (Figure 3B, bottom panels, D9)

exhibited similar gains of ∼ 35% on PSM, ∼ 30% on peptide, and∼ 10%

protein level.

In line with earlier observations, re-scoring particularly boosts the

confidence of low abundant proteins and peptides. All studies using

iTRAQ investigated either body fluids (very large dynamic range of

protein expression) or specimens with limited sample amounts (see

Methods, Supplementary Figure S6). In these cases, a larger number
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of low signal-to-noise spectra is acquired. Because re-scoring does not

solely rely on the number of matched fragment ions but includes met-

rics that score the relative intensity patterns, many of such spectra

can still result in high scores and thus survive FDR filtering, ultimately

leading to the confident identification of more peptides and often

more proteins.However, even theTMTprodatasetswhere the increase

on protein levels was not as substantial as for iTRAQ benefit from

re-scoring as every confidently identified spectrum and peptide adds

additional data points for quantification. To investigate the validity of

the added PSMs further, we compared the reporter intensity pattern

of a protein group to PSMsuniquely identified by re-scoring (seeMeth-

ods). We observed that the reporter intensities of a protein group

correlates very well with Prosit-unique PSMs assigned to the same

protein group, whereas this correlation drops substantially for PSMs

uniquely identifiedby re-scoringassigned tootherprotein groups (Sup-

plementary Figure S7). This indicates that thePSMsuniquely identified

by re-scoring are very likely valid hits.

On average, 42%, 40%, and 31% more PSMs, peptide and proteins

where identified by re-scoring for the nine datasets. When fitting

a linear model on the number of identification with re-scoring as a

function of identifications without re-scoring, the slopes highlight

an expected increase of 17% in PSMs, 33% for peptides, and 10%

for proteins (Figure 3C). No bias for the increase on PSM, peptide

and protein level was observed with respect to fragmentation, the

mass analyzer, labeling, and species, indicating that the re-scoring

approach by Prosit-TMT is generally applicable to datasets using the

here investigated isobaric tags.

3.4 Concluding remarks

Prosit-TMT (for TMT6) is applicable to iTRAQ, and TMTpro labeled

peptides due to the similar design of different isobaric tags. While the

overall achieved prediction accuracy is slightly worse than expected

when training specific models for these labels, it does not appear to

impair re-scoring when compared to the TMT6 labeled peptides as

evident by the substantial gains in PSMs, peptide and protein groups.

However, particularly for RT prediction, models supporting differ-

ent modifications may assist the discrimination between correct and

incorrect matches even further [9]. The extension of Prosit-TMT to

iTRAQ and particularly TMTpro enables a large community to bene-

fit from recent advances in machine learning and data processing and

we expect to see more studies utilizing the re-scoring approach in the

future. To this day, Prosit has been used >6 billion times to predict the

fragment ion intensities or RT of peptides, indicating that there is great

interest in accurate predictions. Additional opportunities for such pre-

dictions are its integration into real-time searches that may further

increase the efficiency of data acquisition or result in improved quan-

tification due to the accurate selection of interference-free fragments

for quantification [28].

To the best of our knowledge, Prosit-TMT is the only model that

offers the prediction of fragment intensities or RT of iTRAQ8 and

TMTpro labeled peptides. For iTRAQ4, MS2PIP provides a pre-trained

model that achieves a median R of ∼0.9 [29]. However, this model only

predicts the intensities of singly charged fragment ions, while Prosit-

TMT is capable of predicting fragment ion intensities of up to triply

charged ions with a median R of 0.87. Comparing the prediction accu-

racies for singly charged fragments only, Prosit-TMT does seem to per-

formmarginally worse (median R of 0.89 for Prosit-TMT) thanMS2PIP.

We observed that the increase a user may expect when using re-

scoring is mostly dependent on the experimental design, for example,

the number of batches, the extent of offline fractionation, and - most

importantly - the biologicalmaterial used (e.g., body fluids vs. cell lines).

The functionality to re-score iTRAQandTMTpro labeled datasets, gen-

erate spectral libraries or perform NCE calibration is available online

(https://www.proteomicsdb.org/prosit) and our previously developed

universal spectrum viewer (https://www.proteomicsdb.org/use) sup-

ports the prediction of iTRAQ and TMTpro labeled peptides by the

Prosit-TMTmodel as well.

Previous research has shown that traditional search engines may

yield fewer identifications for iTRAQ8 and TMT6 than for iTRAQ4,

likely as a result of a number of tag-less ions being generated dur-

ing fragmentation which are not accounted for by the search engine

scores [30]. Our implementation of re-scoring only considers matched

fragments during score calculation and does not penalize for non-

annotated peaks. This was a conscious decision due to the fact that

Prosit only predicts the intensities of singly to triply charged b- and

y-ion fragments and the potentially large number of additional ions

which may be generated during fragmentation (e.g., neutral losses,

immonium ions and remnants of the precursor) or co-isolation would

otherwise distort the similarity calculation. To avoid this, extending

Prosit by additional fragment types is a promising future avenue which

is likely particularly interesting for confident site localization of mod-

ifications [31–33]. For isobaric labels, another interesting avenue is

the prediction of the summed reporter ion intensity which could be

used in combinationwith Prosit’s unique ability to predict intensities in

a NCE-dependent manner to optimize fragmentation for either iden-

tification or quantification for targeted assays and real-time peptide

identification [15, 34].
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