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Malnutrition (MN) is a common primary or secondary complication in

gastrointestinal diseases. The patient’s nutritional status also influences

muscle mass and function, which can be impaired up to the degree of

sarcopenia. The molecular interactions in diseases leading to sarcopenia

are complex and multifaceted, affecting muscle physiology, the intestine

(nutrition), and the liver at different levels. Although extensive knowledge

of individual molecular factors is available, their regulatory interplay is

not yet fully understood. A comprehensive overall picture of pathological

mechanisms and resulting phenotypes is lacking. In silico approaches that

convert existing knowledge into computationally readable formats can help

unravel mechanisms, underlying such complex molecular processes. From

public literature, we manually compiled experimental evidence for molecular

interactions involved in the development of sarcopenia into a knowledge

base, referred to as the Sarcopenia Map. We integrated two diseases, namely

liver cirrhosis (LC), and intestinal dysfunction, by considering their effects

on nutrition and blood secretome. We demonstrate the performance of our

model by successfully simulating the impact of changing dietary frequency,

glycogen storage capacity, and disease severity on the carbohydrate and

muscle systems. We present the Sarcopenia Map as a publicly available, open-

source, and interactive online resource, that links gastrointestinal diseases,

MN, and sarcopenia. The map provides tools that allow users to explore the

information on the map and perform in silico simulations.
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Introduction

Malnutrition (MN) is a common and characteristic feature
of gastrointestinal diseases, such as liver cirrhosis (LC) and
intestinal dysfunctions (ID), e.g., short bowel syndrome (SBS),
and is associated with high mortality rates (1). For LC patients,
the prevalence of MN is indicated with up to 90% (2); for
patients suffering from SBS with around 10–40% (3). Disease-
related MN is closely related to mild, chronic inflammation
(4). Both MN and inflammation contribute to muscle wasting,
which, combined with the loss of muscle function, can
eventually result in sarcopenia. This vicious cycle of MN,
inflammation, sarcopenia, and the underlying disease itself leads
to an unfavorable prognosis for the patient (5). A sufficient
supply of energy and nutrients is needed for homeostasis of
muscle anabolism and catabolism. Conversely, an inadequate
nutrient uptake by intestinal malabsorption and a deficient
metabolism of nutrients, as well as deficient breakdown of
muscle waste products in the liver can impair muscle growth
(6, 7). Additionally, microbial invasion caused by a disrupted
epithelial barrier in ID and LC leads to systemic inflammation
that stimulates catabolic processes in the muscle (5, 8, 9). The
liver, as a main producer of cytokines and hormones, also
releases many pro-inflammatory mediators during injury that
favor muscle atrophy (7, 10, 11). The fact that the control
of muscle physiology is consequently highly dependent on
intestinal and liver function, makes sarcopenia a common
secondary phenomenon in ID and LC (5).

Given the physiological and pathophysiological association
of intestine, liver, and muscle function, it is not surprising
that they are linked by complex molecular communication
networks (12–14). Although the role of many molecules has
been elucidated by extensive in vitro and in vivo experiments,
understanding the system as a whole, including all the
interactions involved, is a task beyond human capabilities.
Therefore, the use of in silico approaches, i.e., the conversion of
available knowledge into computationally readable formats, can
help unravel this complexity. In this context, Systems Biology
models have already been used to study complex systems,
such as nutrient absorption (15), muscle fiber physiology
(16, 17), pathologic liver metabolism (18), and diabetes
(19). Although these models enable detailed simulations by
integrating kinetic information, they are inherently limited
to small-scale applications, such as spatially defined signaling
processes. To this end, a resource that links gastrointestinal
diseases, nutrition, and muscle (patho-)physiology on a larger
scale and enables simulations across tissues is lacking.

Disease maps have emerged as web-based resources
collecting information on molecular interactions to enable

Abbreviations: ID, Intestinal Dysfunction; LC, Liver Cirrhosis; MIM,
Molecular Interaction Map; MN, Malnutrition; SBML, Systems Biology
Markup Language; SBS, Short Bowel Syndrome; SP, Shortest Path.

disease-specific interactive visualizations and computer-based
simulations (20). Prominent examples of established disease
maps include the Atlas of Inflammation Resolution (AIR) (21),
the Parkinson’s Disease Map (22), the Rheumatoid Arthritis
Map (23), the AsthmaMap (24), the Atherosclerosis Map (25),
or the COVID-19 disease map (26). Many of those have been
published on MINERVA, a web platform that allows to develop
disease-specific analysis tools, making it an excellent framework
for interactive visualizations of disease maps (27). The use of
computational standards in MINERVA, e.g., the systems biology
markup language (SBML), which describes how biological
models are represented graphically and stored computationally,
ensures reproducibility (28, 29). Through cell type-, tissue-,
or process-specific modularization, thus creating so-called
submaps, disease maps help to provide an intuitive overview
of complex disease mechanisms. All submaps together form a
single large-scale molecular interaction map (MIM) (21), which
is directed graph encompassing all interactions that connect
elements in the graph which represent biological entities such
as proteins, small molecules, pathways, or diseases. Given the
high number of interactions and scarcity of available data,
it is extremely challenging to parameterize all interactions in
the disease map. Therefore, approximations of non-parametric
mechanisms in and in between submaps are required.

Topological analyses determine the interconnectedness
of nodes in the network by traversing along the causal
interactions (30, 31). In this way, relationships between distant
elements can be detected, nodes in signaling pathways can be
identified, or weights can be assigned to elements that regulate
a particular process (32). Topological methods have also been
used to extract core regulatory networks from large-scale
networks to investigate mechanisms on a smaller scale (33). In
addition, topological information have been used to improve the
analytical performance of statistical enrichment (34) or machine
learning approaches (35). Topological analysis is less complex
but can be problematic in highly interconnected networks.
Identifying all paths in larger networks, i.e., all connections
between every pair of elements, is a computationally intensive
challenge. Consequently, many algorithms focus on identifying
only the shortest paths between two nodes in the network
(36). Thus, topological analysis can be highly affected by
biases such as (i) misestimating the length of interactions
that lack intermediates, (ii) neglecting the biochemical
relevance of longer pathways, and (iii) overrepresenting more
intensively studied molecules. Nevertheless, they provide
means for implementation and sufficient informative power
to compare elements that are included in a given pathway
and to what extent.

Boolean models are much better suited to study network
mechanisms and to investigate the effects of molecular
perturbations on the system (37, 38). In Boolean models, the
state of each gene/molecule/phenotype is constrained to be
either active (ON/1) or inactive (OFF/0), defined by specific
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Boolean rules based on the state of other network elements
(39). In successive steps representing a time scale, the state of
each element in the map is evaluated based on the states of
incoming elements in the previous step. Since there is a finite
number of possible network states, at some point a steady state
is reached that is either stable, i.e., remains in one state, or
oscillates, i.e., changes infinitely between one or multiple states.
The steady state provides useful qualitative information on
molecular mechanisms, in particular on circulating regulatory
feedback and feedforward loops. Analysis of the number of
active states during the steady state as a function of a given
input makes it possible to determine correlations between
elements regardless of their distance in the network (40, 41).
This is of great importance in complex processes such as energy
metabolism, where the influence of each nutrient must be
considered equally at each time point. Moreover, in Boolean
models, the computational time increases only proportionally
to the complexity of the network, allowing efficient high-
throughput analyses. The development of a Boolean model
simulating the influence of nutrition and metabolism on
sarcopenia may therefore prove useful in assessing the effects of
various physiological and pathological conditions.

We developed an in-depth, standardized, and
computationally encoded disease map of the molecular
environment that regulates sarcopenia, which we term the
“Sarcopenia Map,” and integrated the two disease states ID and
LC. Given their relevance in the development of sarcopenia,
we modularized the map into three tissue-specific submaps for
(i) the intestine, i.e., nutrient uptake, its hormonal regulation,
and the effects of ID, (ii) the liver, i.e., metabolic processes,
cytokine secretion, and their alteration in LC, (iii) and the
muscle, i.e., molecular regulation of catabolic and anabolic
muscular processes leading to sarcopenia. In addition, we
converted the underlying interaction network into a Boolean
model and validated the model by simulating clinically relevant
molecular perturbations. We integrated our methods into an
interactive MINERVA tool suite allowing researchers to explore
the information on the maps, identify interaction pathways, and
perform in silico perturbation experiments. With these tools,
we demonstrate how the map contributes to understanding the
complex molecular processes leading to sarcopenia.

Materials and methods

Map curation

We screened the PubMed database for published literature
focusing on recent reviews describing the intestinal uptake
of nutrients and their metabolism in the liver, hormonal
communication between liver and muscle, and regulation
of muscle growth and function. Simultaneously, we sought
information on the effects of ID and LC on these processes.

The information was then further examined to ensure that the
interactions identified were direct, such as protein-receptor
interactions. To improve clarity and ease curation efforts, we
collected the information in three Systems Biology Markup
Language (SBML)-standardized submaps in CellDesigner (29,
42). Intracellular molecules were enclosed in compartments
reflecting the organ, while extracellular molecules were placed
outside the compartments, either representing molecules in
the bloodstream (e.g., nutrients or cytokines) or systemic
conditions, such as acidosis or hyperammonemia. This
separation enables the distinction between tissue-specific
processes and connects them through the intervening
communication processes. Figure 1A provides a schematic
overview of the map organization and the hierarchical flow of
information through the submaps.

Different shapes and colors enable intuitive visualizations
of various biological or clinical entities, including (i) molecules,
such as genes, proteins, or metabolites; (ii) their subclasses, such
as receptors and ion channels; (iii) clinical features; and (iv)
whole pathways. We refer to all of these entities collectively
as map elements (Figure 1B). We connected the elements
by SBML-standardized reactions representing their biochemical
interaction. We simplified most reactions in the activity flow
format, i.e., represented more complex mechanisms (e.g.,
phosphorylations) as single arrows connecting a source element
(e.g., the protein kinase) with a target element (e.g., the protein).
This simplification reduces the map content and improves
readability while retaining all necessary information. Only
enzymatic reactions were retained in the process description
format because information about enzymes is necessary for
modeling the mechanisms of metabolic regulations. Larger
metabolic pathways, e.g., glycolysis, have been combined
into a single catalytic reaction leading from the initial
reactant (glucose) to the final product (pyruvate), omitting
all intermediates. The reaction is catalyzed by a phenotypic
element (glycolysis) that represents the metabolic pathway
per se. All regulations, e.g., product-feedback-inhibitions or
hormonal, were then added as reactions to the phenotype
element (exemplarily shown in Figure 1B).

Network generation

We transformed the submaps into a single graph (G)
consisting of a set of elements [vertices V(G)] connected by
interactions [edges E(G)]. All reactions in the submaps were
converted into one or multiple interactions each consisting of
two elements that are linked by either upregulation (positive)
or downregulation (negative). Therefore, E (G) is defined as a
collection of triples E ⊂

(
s
∣∣r∣∣t) consisting of a source element

s ∈ V , a relation r ∈ {−1, 1} representing a positive (activating)
or negative (inactivating) interaction, and a target element t ∈
V . All enzymatic reactions in the maps, which catalyze the
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FIGURE 1

Overview of the logical modeling approaches in the sarcopenia map. (A) Schematic structure of the Sarcopenia Map. (B) SBML schema of
tissue-specific compartments (yellow frames) that are connected through extracellular elements, e.g., representing hormones or cytokines.
(C) Topological analysis of the underlying network. Paths between two elements are analyzed based on their length, type (positive or negative),
and passed nodes. Elements are ranked by their inclusions in the identified paths. (D) Creation of Boolean rules that define an element’s state by
converting SBML reactions into logical gates.

synthesis of a product p from a substrate s by an enzyme
e, were transformed into an edge triplet of

(
s
∣∣1∣∣p),

(
e
∣∣1∣∣ p

)
,

and (e
∣∣−1

∣∣ s). The latter represents the consumption of the
substrate by the enzyme. For reactions with multiple substrates,
all substrates were first combined into a complex with edges
connecting the substrates and the complex. The complex c then
acts as the substrate of the reaction triplet. For reactions with
multiple products, reaction triplets were generated for each
product. A path P(G) of the length L ∈ N can be written as the
sequence

(
u1−→

r1 u2−→
r2 −→rL uL+1

)
with

(
ui, ri, ui+1

)
∈

E. The type T ∈ {−1, 1} of any P is defined as (r1 · r2 · . . . · rL).

Topological modeling

We identified paths in the MIM using a breadth-first-
search (BFS) algorithm, one of the fastest possible solutions
in a directed and unweighted graph (43). In its standard
form, the algorithm enables the search for shortest paths (SP)

between two elements (u, v) ∈ V as a set of existing paths
Pu,v between u and v, where L(Pu,v) is minimized. To identify
more paths between u and v, we adapted the BFS algorithm to
stop at already visited interactions instead of visited elements.
The set of all identified paths or SPs that connect at least

two specified elements, we call a pathway in the graph. To

determine the role of an element e in the pathway of u
and v, we filtered the paths between u and v by those that

go through e. In addition, the filtered paths were split into

two subpaths, Ps,e, from s to e (incoming), and Pe,t , from e

to t (outgoing), with T(Ps,t) = T(Ps,e) · T(Pe,t) and L(Ps,t) =
L(Ps,e)+ L(Pe,t) (Figure 1C). This separation of paths provides

us with information on (i) the ratio of positive and negative

paths between s and t, in which e is involved, and (ii) the ratio
of how e is regulated by s and how e regulates t. Repeating this
analysis for other elements in the MIM compares their role in
the investigated pathway.
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Boolean modeling

Based on the interactions in the submaps, we defined a
Boolean rule for each element that specifies how its state (either
ON or OFF) is defined by the state of other elements (inputs)
represented by logical gates (NOT, OR, or AND) (Figure 1D).
A Boolean rule may consist of multiple gates, which may be
nested. When a reaction requires multiple elements to be active,
such as in enzymatic reactions or the formation of complexes,
these elements are represented by AND gates. Any negative
input, such as from a disease or negative feedback, is integrated
as a NOT gate. In general, all logic gates must be satisfied for
an element to be ON, with disease inputs taking precedence.
An exception, however, is the glycogen element in the model,
whose state we represent as an integer that increases by 1 at
each step at which the element’s Boolean rule is satisfied and
decreases by 1 when it is not. As long as its state is greater
than zero, it is treated as an ON input to other elements. In
this way, we can simulate the construction of a storage and
its subsequent use, even after its inputs subsided. Finally, we
defined an initial state of the model, in which some elements
with no inputs, such as digestive enzymes or transporters, are set
to ON. Supplementary material shows the list of map elements
with their initial state.

Correlation analysis

We identified the correlations between two elements based
on the dependency of their activity. The principle behind this
methodology has been described by Helikar and Rogers (41).
The activity of an element is defined as the percentage p of active
states of the model during a range of n observed steps (n = 100
by default). We perturbed a source element s either through
a set activity or through inhibition. Setting the activity of an
element means changing its state to OFF and then to ON at
every k-th step depending on the activity frequency pa(s) with
k = 1

pa(s) . For example, the input activity frequency pa (s) =
0.25 refers to a state sequence for s of [1-0-0-0-1-0-0-0-1-. . .].
When perturbing s through inhibition, its state is set to OFF for
every k-th step with k= 1

pi(s) , while in all other steps the element
behaves normally. Then after performing n steps, we measured
the activity of the target element t as the percentage of steps with
ON state. If t is the “sarcopenia” phenotype in the muscle, its
activity is defined as

p
(
sarcopenia

)
= p

(
catabolism

)
− p(anabolism)

The phenotypes “anabolism” and “catabolism” themselves
are defined as:

p
(
catabolism

)
= p

(
apoptosis

)
+ p

(
proteolysis

)
and

p
(
anabolism

)
= p

(
cell differentiation

)
+ p

(
protein synthesis

)

The perturbation simulation was then repeated for different
activities of s. The correlation between both elements’ activities
in each simulation was then analyzed using the “pearsonr”
function from the stats module of the scipy python package
generating the Pearson correlation coefficient and a two-sided
p-value. Since Boolean models are susceptible to interferences,
meaning that independent signals can overlap and distort the
measurement, only a few observations could lead to incorrect
assumptions. Thus, we use a wide range of activities for s (from
0 to 100% in 1% increments), which ensures that the observed
correlations are more reliable.

Results

We present the Sarcopenia Map1 as a publicly available,
comprehensive knowledge base of experimental evidence for
molecular interactions related to sarcopenia and linked to LC
and ID (Figure 2). In the following, we explain in more detail (i)
the Sarcopenia Map as a knowledge base (ii) its tools to perform
in silico simulations, and (iii) applications and validations of
the underlying computational model. We provide examples of
how the tools help researchers to analyze disease mechanisms
by investigating the molecular interactions linking nutrition,
gastrointestinal diseases, and sarcopenia.

A knowledge base of molecular
interactions in sarcopenia

We have compiled findings from the scientific literature
into three standardized, tissue-specific submaps (Figure 2A).
The submaps summarize the processes in each tissue as SBML-
standardized molecular networks (Supplementary Figures 1–
3). Figure 2B shows the distribution of elements between
submaps. Their overlap is more dominant for extracellular
elements, which is to be expected since they represent secreted
molecules that mediate communication between compartments.
The highest number of tissue unique elements is found in the
submap of the intestine, as it contains food components, as well
as digestive enzymes and transporters.

MINERVA provides features to explore elements in the
map and targets of specific drugs, miRNAs, or chemicals. The
submaps are publicly accessible and can be downloaded in
various formats (e.g., SBML, .svg, or .pdf). All elements and
interactions in the maps are annotated with references to public
databases or scientific literature (e.g., PubMed). The Sarcopenia
Map comes with an interactive tool that we developed in
this study to allow users to explore interaction paths in the
sarcopenia map through topological analysis and to perform

1 https://www.sbi.uni-rostock.de/sarcopenia
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FIGURE 2

Overview of the hierarchical organization of the Sarcopenia map. (A) We summarized information on molecular interactions related to
sarcopenia from the literature into three tissue-specific submaps. In addition, we integrated the effects of liver cirrhosis (LC) and intestinal
dysfunction (ID) on these molecular processes. (B) Venn Diagrams of element distributions between the different tissues. (C) The interactive
user interface of the Sarcopenia Map enables the exploration of information, as well as simulations of molecular perturbations.

in silico simulations with Boolean models in an easy-to-use
interface (Figure 2C).

A platform for interactive in silico
experiments

The first part of the developed tool provides network
topology functions to investigate interaction paths between
user-specified elements to explore their underlying molecular
regulations. Users can select a source element (“From”) and

a target element (“To”) whose interaction paths are to be
identified in the MIM (Figure 3A). In addition, another element
can be specified to filter paths that pass “Through” that element.
The output is presented as a table that shows all identified
paths, their length, the total impact on the target, and all
individual steps within the path (Figure 3B). Each interaction
is referenced by a PubMed identifier and clicking on the icon
takes the user to the location on the submaps. In addition,
a bar chart lists the percentage of these paths, in which each
element occurs, separated into positive and negative paths
(Figure 3C). Because of the limitations of topological models
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FIGURE 3

The user interface to identify interaction paths between selected elements in the Sarcopenia Map. For selected elements (A), their interaction
pathways are listed in a table (B) Additionally, elements along the pathways are ranked by their percentages of appearance separated by the type
of interaction (C).

(see “Introduction” section), assumptions about functional
relationships and mechanisms should not be inferred from the
distribution of positive and negative interaction paths alone.
Nevertheless, they provide an intuitive overview of the design
of molecular pathways and the flow of information.

The second part of the tool enables Boolean simulations
on the Sarcopenia Map via a simple user interface and
colored overlays on the map (Figure 4). One of its functions
is correlation analysis, which provides insights into the
mechanistic relationship between elements. For a selected
element (source) and nutrition states, multiple simulations are
iteratively and automatically performed with increasing activity
or deficiency of the source element (Figure 4C). At each
iteration, the activity of other elements (targets) is measured
during the resulting steady state. The correlations of the source
and all target elements, represented by the Pearson correlation
coefficient, are then summarized in a table. Scatter plots of the
activities of the two elements provide further information by
showing the detailed correlation course at different nutrition
states (Figure 4D). For every target element, the table also
ranks other elements in the network according to the similarity

of their activity distributions toward the source and target.
Elements that correlate with both, are most likely responsible
for transmitting the signals. In addition, based on the type of
correlation (positive or negative), we can investigate the role
of the transmitting element, i.e., whether inhibition/activation
of an inhibitory/activating signal has occurred or vice versa.
Another function of the Boolean model is the identification of
steady states. Supplementary Figure 4 illustrates the activity of
elements during the oscillating steady state, which evolves from
the default input state of the map by simulating a permanently
active food input. The figure shows that most of the elements
that change their state during the steady state are metabolites
and metabolic enzymes. As long as food intake is constantly ON,
extracellular glucose is as well, leading to a constant oscillation
between glycolysis and glycogen synthesis. Feedback loops are
essential for reversible responses in Boolean models, otherwise,
the ON signal would be sent back and forth infinitely, even
when the external signal is removed. Once we set the food intake
to OFF and iterate forward, the new resulting steady state is
stable, i.e., it does not oscillate and has no active metabolites
(not shown).
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FIGURE 4

The user interface to perform Boolean simulations on the Sarcopenia Map. (A) For each step, the active (red) or disturbed (gray) elements in the
network are highlighted. (B) An interactive table provides an overview of all elements in the maps and allows perturbations by activating or
inhibiting their state. (C) Automated perturbation experiments allow simulation of an increase in activation or inhibition of a selected element.
(D) The correlation of the activities of the other elements in response to the perturbation is then presented in a table and diagrams.

(Patho-)physiological simulations of
nutrition and disease states

To test the Boolean model, we studied the behavior of
the carbohydrate system under different nutrition states, i.e.,
different active frequencies of the “food intake” element.
The carbohydrate metabolism is a tightly regulated system
and the central part of the energy cycle that controls
muscle function. Therefore, the carbohydrate system
is a key pathway linking LC and ID to sarcopenia, as
carbohydrate resorption, storage, and usage are impaired
in these diseases (44, 45). In clinical settings, glucose
supplementation has been shown to reduce muscle mass
loss, while glycogen depletion has been identified as a major
cause of the development of sarcopenia in LC patients (46,
47). We need to ensure that in our model carbohydrate

activities respond correctly to changing nutritional conditions
and perturbations.

First, we measured the response of glucose and glycogen
to altered nutritional stimuli. Figure 5A shows the extent of
hepatic glycogen storage (blue dots) and blood glucose (red
dots) in response to increasing food intake (y-axis, black dots).
As expected, we observed increasing hepatic glycogen activity
and its prolonged conversion to blood glucose after food intake
was switched off. Blood glucose is continuously active as long as
food intake occurs and is oscillating during glycogen depletion.
These results show that our model can simulate the conversion
of glycogen to glucose and its release into the bloodstream in
fasting situations. Next, we measured carbohydrate behavior
again, but with different combinations of ON and OFF food
intake, representing changing frequency and quantity, but not
quality, of diet. From these, we identified three specific nutrition
states, which will act as input for the model to simulate
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FIGURE 5

Testing the model by simulating different nutrition states and carbohydrate availability. (A) The activity of hepatic glycogen storage and
extracellular glucose depending on the duration of the food intake stimulus. (B) Definition of three nutrition states by their food intake
frequency and the resulting activities of hepatic glycogen storage and extracellular glucose. (C) Predicted activities of selected elements in
response to an increasing deficiency of hepatic glycogen synthase.

(patho-)physiological behavior. Importantly, Boolean models
use steps as an discrete and arbitrary measurement of time
and are not able to simulate real time-scale. Here, we define
the nutrition states by their impact on the carbohydrate system
(Figure 5B): (i) undernourished, i.e., long fasting periods with
full depletion of glycogen storage (5 ON-steps and 25 OFF-
steps), (ii) well-nourished, with continuous glycogen storage
(5 ON-steps and 10 OFF-steps), and (iii) overnourished, with
continuously increasing glycogen (5 ON-steps and 2 OFF-steps).
We incorporated these states into the Sarcopenia Map user
interface to facilitate their comparison when running different
simulations. These nutritional states differ only in the quantity
of food, not its composition, and are assumed to contain
all macro- and micronutrients. However, users of the map
can disable elements in the intestine submap to change the
composition of the diet individually.

After testing the model under physiological conditions,
we simulated pathophysiological disease states by molecular
perturbations. We investigated how a deficiency of glycogen

synthase (GS) in the liver correlates with the activity of glucose
in the liver, blood, and muscle, ketogenesis in the liver, and
proteolysis and sarcopenia in the muscle (Figure 5C). Most
noticeably, in the overnourished state, GS deficiency has no
correlations with any of the elements and, in the well-nourished
state, a correlation becomes visible at high inactivation only.
The latter is probably caused by the compensation of a lower
GS deficiency by the increased blood glucose due to a more
frequent food intake compared with the undernourished state.
GS deficiency correlates negatively with glucose activity, which
is most prominent in the liver compartment and less in the
blood and muscle compartments. In the well-nourished state,
glucose activity in the muscle shows a large plateau at medium
GS deficiencies (20–60%), possibly due to compensation by
muscle glycogen. A positive correlation is visible for the
“ketogenesis” phenotype in the liver and “proteolysis” in the
muscle, both physiological responses to hypoglycemic states
(47, 48). Interestingly, the plot for “sarcopenia” also shows a
positive correlation and is very similar to that for “proteolysis,”
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suggesting that sarcopenia in GS deficiency is most likely
mediated by increased activity of muscle proteolysis. We
conducted additional simulations for deficient glycogenolysis
(Supplementary Figure 5A), deficient glucose uptake in the
muscle (GLUT4/SLC2A4, Supplementary Figure 5B) and
deficient glucose resorption in the intestine (SGLT1/SLC5A1,
Supplementary Figure 5C). All three cases positively correlate
with sarcopenia. Although both GLUT4 and SGLT1 deficiencies
lead to glucose depletion in muscle, the effect of SGLT1 on
sarcopenia is much stronger, especially in well- and over-
nourished states. This is most likely due to the negative impact
of SGLT1 deficiency on blood sugar. Conversely, disruption of
GLUT4 does not lead to a decrease in blood glucose levels, thus
anabolic hormones such as insulin remain elevated. We note
that in our model energy loss is compensated by other nutrients,
such as fatty acid oxidation, which is comparable to a resting
state. During exercise, the effects of reduced glucose uptake in
muscle would be more essential.

Next, we investigated the correlations between activities of
LC and ID on the muscle phenotypes “anabolism,” “catabolism,”
and “sarcopenia” dependent on the nutrition state (Figure 6).
In both diseases, we see a strong positive correlation with
catabolism (blue) and a negative correlation with anabolism
(red). Thus, both disease states also correlate positively with
sarcopenia. No major differences are observed between the
nutrition states. However, the contribution of both diseases to
anabolism appears to be lower in the malnourished state than in
the other states. Presumably, this is due to the generally lower
activity of anabolism in the undernourished state. In general,
the correlation in the overnourished state tends to be constant,
whereas the correlations in the nourished and undernourished
states are more divergent. In these undernourished states, a
greater increase in catabolic and sarcopenic activity is observed
even at low LC activities (<0.2). Conversely, the sarcopenia
phenotype in ID shows an almost plateau-like behavior at lower
disease activities (<0.5), especially in malnourished states, and
only then starts to increase. This is to be expected because at a
low frequency of food intake, the baseline activity of sarcopenia
is increased and the effects of ID, which is mainly related to food
absorption, are minimal.

Discussion

As scientific knowledge increases, so does awareness of
the complexity of the molecular mechanisms that regulate
biological processes. Gastrointestinal diseases are regulated
through complex, interconnected networks in multiple cell
types, tissues, and organs (49). Muscle growth and function
are tightly regulated processes to keep the body functioning in
different dietary situations (5, 14). Therefore, various nutrients
and hormones are involved in regulating muscle activity, which
complicates the search for the causes of dysregulations, such

as sarcopenia. Moreover, the function of individual molecules
in these processes can change depending on environmental
conditions, such as the activity of other elements. Experimental
setups are usually unable to simultaneously mimic the
complex interactions between different metabolic pathways in
various cells, compartments, or tissues. The complex molecular
networks linking gastrointestinal diseases, MN, and sarcopenia
motivate the use of in silico approaches.

We established the Sarcopenia Map to bring the
complex molecular interaction pathways in sarcopenia
into a comprehensive, standardized, and reproducible format.
The Sarcopenia Map is a knowledge base that (i) gathers
molecular information annotated with databases references,
(ii) intuitively visualizes signal transductions, and (iii) provides
tools for in silico simulations. By topologically evaluating the
highly interconnected molecular network, users can utilize
our tools to identify interaction paths between molecules of
interest. Using Boolean simulations, the tool allows observing
how changes in molecular activities propagate through the
system and affect different compartments. However, it should
be noted that Boolean models are divided into successive steps
of discrete values and therefore cannot analyze continuous
changes or molecular quantities. In our model, this limitation
is less relevant because the correlation analysis observes
changes in the system over multiple iterations rather than
analyzing a single signal transduction. In this way, our model
can identify and visualize mechanistic relationships across
the entire network. Furthermore, we summarized subsequent
intermediate reactions of pathways into a single element. This
simplification allows us to keep a structured visualization
and makes the model more robust toward feedback signaling.
Retaining all reactions would distort the temporal perception
of signal transduction. In a synchronously updated Boolean
model such as ours, the time scales of all biological events are
considered equally, thus more steps are required for pathways
with more intermediate reactions. In reality, however, most
reactions occur simultaneously because of the large quantities
of molecules involved. For example, in our muscle model only
the ubiquitin-proteasome system is included as a junction of
catabolic signals, as incorporating of all available regulatory
processes would be too complex for the current focus of the
map. Thus, in developing our model, we aimed to strike a
balance between feasibility and informativeness of the complex
molecular interaction network. By successfully reproducing
existing knowledge of the carbohydrate system in (patho-
)physiological conditions, we showed that our model is capable
of simulating such molecular processes.

We provide the community with a free-to-use platform
to support nutrition research in developing or validating
new hypotheses. While our work focused on the effects of
gastrointestinal diseases, such as LC or ID in sarcopenia, the
map itself provides a comprehensive knowledge base linking
nutrition and muscle metabolism that can be also useful for
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FIGURE 6

Predicted activities of three muscle phenotypes in response to increasing severity of liver cirrhosis (LC, A) and intestinal dysfunction (ID, B) in
three different nutrition states. Each point represents a simulation in which, starting from an initial state, signal transduction is iterated over 100
consecutive steps. During these steps, the state of LC or ID is set active with a defined frequency representing their severity.

other research areas. The hierarchical format of the map and the
standardized representation of molecular interactions facilitate
the extension to other related diseases or integration of new
information, such as MN in relation to other tissues, in the
future. Disease maps are community resources, and MINERVA
provides tools for the community to expand these maps
collaboratively. We encourage researchers to use the Sarcopenia
Map to support open science by sharing scientific results and
extending the map.
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SUPPLEMENTARY FIGURE 1

SBML-standardized submap of muscle-specific processes involved in
the regulation of sarcopenia. The map includes signaling pathways of
hormones, cytokines, and metabolites on muscle anabolism (left) and
catabolism (right), thus regulating the development of
sarcopenia (orange).

SUPPLEMENTARY FIGURE 2

SBML-standardized submap of liver-specific processes involved in the
regulation of sarcopenia. The map contains information on metabolic
processes (left), secreted hormones or metabolites (right), and their
alterations in liver cirrhosis (orange).

SUPPLEMENTARY FIGURE 3

SBML-standardized submap of Gut-specific processes involved in the
regulation of sarcopenia. The map contains information on nutrient
resorption, secretion of hormones, and their alterations in intestinal
dysfunction (orange).

SUPPLEMENTARY FIGURE 4

Steady state of the Boolean model with a constantly active “food
intake.” Each dot represents an active element (y-axis) in the respective
step (x-axis) during the steady state. In the last step the original state is
reached, and thus the sequence iterates infinitely.

SUPPLEMENTARY FIGURE 5

Simulations of molecular perturbations and their observed correlation
with other elements in the map. Each point represents a simulation
experiment in which the respective nutritional state was simulated over
100 steps. During the simulation, the perturbed element was inactivated
at a specific frequency (x-axis) and the activity of the observed element
was measured. (A) Deficient glycogenolysis in the liver. (B) Deficient
glucose uptake in the muscle through SLC2A4 (GLUT4). (C) Deficient
glucose absorption in the intestine through SLC5A1 (SGLT1) without
sucrose/fructose supplementation.
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