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Since 1992, all state-of-the-art methods for fast and sensitive identification of

evolutionary, structural, and functional relations between proteins (also referred

to as “homology detection”) use sequences and sequence-profiles (PSSMs).

Protein Language Models (pLMs) generalize sequences, possibly capturing the

same constraints as PSSMs, e.g., through embeddings. Here, we explored how

to use such embeddings for nearest neighbor searches to identify relations

between protein pairs with diverged sequences (remote homology detection

for levels of <20% pairwise sequence identity, PIDE). While this approach

excelled for proteins with single domains, we demonstrated the current

challenges applying this to multi-domain proteins and presented some ideas

how to overcome existing limitations, in principle. We observed that sufficiently

challenging data set separations were crucial to provide deeply relevant insights

into the behavior of nearest neighbor search when applied to the protein

embedding space, and made all our methods readily available for others.
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Hidden Markov Model; HMMer, particular method for HMM-profile alignments (); LM, Language
Model; MMseqs2, fast database search and multiple sequence alignment method (); MSA, Multiple
Sequence Alignment; NLP, Natural Language Processing; PDB, Protein Data Bank (Burley et al., 2017);
Pfam, Protein family database (); PIDE, percentage pairwise sequence identity; pLM, protein Language
Model; ProtBERT, pLM () based on the LM BERT; ProtT5, pLM () based on the LM T5; PSSM, position-
specific scoring matrix (also dubbed profile); SOTA, state-of-the-art.
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Introduction

Homology detection

Any investigation of a query protein, Q, beginning with its

sequence starts by the identification of evolutionary, structural,

and functional relations between Q and all other proteins for

which relevant experimental annotations exist. This investigation

is often, and slightly misleadingly, labelled as “homology

detection” inspired by the terminology introduced to describe

the analogy of organs between different species (Owen, 1848).

Homology as a term describing the similarity between proteins

typically inherits the concept of “related by evolution” from the

original comparison of species (Darwin, 1859). In practice,

“related by evolution” is often replaced by “similar (or

identical) structure (or function)” as “structural similarity” is

less ambiguous to quantify than “evolutionary relation.” This

ambivalence also pertains to our view of “protein space”: Maps

showing relations between proteins are specific to particular

definitions, e.g., the map of protein structure domains, or of

functional units, or of evolutionary relations. The reproducibility

of such maps increases with quantifiability, and is highest for

protein structure because the knowledge of structure enables

parsing proteins into their compact, independently foldable

constituents, namely structural domains. Searches for relations

in protein space root almost any drug development and are

crucial for the success of the breakthrough prediction of protein

structure prediction by AlphaFold2 (Jumper et al., 2021; Mirdita

et al., 2021; Marx, 2022).

From sequence to feature similarity

With growing databases, speed has become THE major

challenge for methods detecting homology by comparing the

sequence of a query protein Q to all sequences in a database DB.

All successful fast solutions from the classic BLAST/PSI-BLAST,

over to MMseqs2 and Diamond2, (Altschul et al., 1997;

Steinegger and Söding, 2017; Buchfink et al., 2021) essentially

follow three steps. 1) Fast: Initialize search using sequence

fragments with typically 3–10 consecutive residues (k-mer),

i.e., by finding database sequences with k-mers identical or

near-identical to the query. 2) Slower: Expand short k-mer

matches (hits) through un-gapped alignment. 3) Slowest:

Refine alignment for subset of Q-DB pairs with un-gapped

scores above a predefined threshold (Step #2) through

resource-intensive Smith-Waterman (Smith and Waterman,

1981). Ultimately, the first two steps pre-filter the finding of

homologs, while the third generates the actual alignment yielding

an E-value for each hit. This E-value estimates how many hits

with identical are expected by chance (Karlin and Altschul,

1990). Following others, MMseqs2 [(Steinegger and Söding,

2017), Supplementary Online Material, SOM “Design of

sensitivity benchmark”] measured the success in detecting

homologs through a score referred to as AUC1, namely the

fraction of annotated homologs found until the first non-

homolog. Similar to other measures scoring search success,

AUC1 depends heavily on the size of DB and the particular

relation equated with homology, i.e., results differ between

aiming at identifying pairs with similar structure, or similar

function, or related in evolution, and given the immense

diversity in definitions for function, AUC1-like measures can

easily differ by an order of magnitude depending on the precise

definition for function (Rost, 2002).

Alignments between pairs of sequences (also referred to as

pairwise or sequence-sequence) unravel only simple connections,

in evolutionary terms, the homology between proteins from

closely related organisms. In order to intrude deeper into the

twilight zone of sequence comparisons (Doolittle, 1986; Rost,

1999; Yona and Levitt, 2002), we need to find a family of related

proteins through pairwise alignments, compile a profile or

position-specific scoring matrix (PSSM) from this family, and

then use the profile for more fine grained sequence-profile

alignments (e.g. Clustal (Higgins and Sharp, 1989) or PSI-

BLAST (Altschul et al., 1997)). The signal distinguishing

between related and unrelated proteins becomes obfuscated

upon entering the twilight zone; in fact, the transition from

what we may call “daylight” to twilight zone is described by a

rapid order-of-magnitude signal loss akin of a phase-transition

(Rost, 1999). Profile-based searches intrude into the twilight

zone, in particular, methods based on Hidden Markov Models

(HMMs) as introduced for protein comparisons almost 30 years

ago (Haussler et al., 1993; Krogh et al., 1994) and perfected

through HHblits (Remmert et al., 2012) and Jackhmmr (Johnson

et al., 2010).

Even more powerful than sequence-profile are profile-profile

comparisons using profiles for query and database (Remmert

et al., 2012). While some relations in this realm may no longer be

indicative of evolutionary connections, at least many of the

relations obtained by comparing the three-dimensional (3D)

structures of proteins reveal that many relations are likely

indicative of evolutionary connections so distant that even

advanced sequence-based alignment methods fail to unravel

those (Orengo et al., 2001; Nepomnyachiy et al., 2017). Thus,

the identification of relations in the lower end of the twilight zone

is often referred to as remote homology detection. Even profile-

profile comparisons usually fail to intrude even further, namely

the midnight zone in which sequences have diverged to random

levels (5–10% pairwise sequence identity, PIDE) (Rost, 1997;

Friedberg et al., 2000; Nepomnyachiy et al., 2017). In fact, most

pairs of proteins with similar structures populate this realm

(Rost, 1997; Friedberg et al., 2000).

Profile-based methods vary in speed, from the highly

optimized HHblits (Remmert et al., 2012) averaging 2 min per

query against UniRef30 (Remmert et al., 2012), to the lightning

fast iterated MMseqs2 profile-aligning in sub-seconds on
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UniRef90 (almost three orders faster than HHblits). Runtime

details crucially depend on parameter choices such as “number of

hits reported”.

Protein Language Models capture crucial
constraints

Faster computer hardware (largely GPUs and TPUs), better

algorithms in Machine Learning, and big data combined to leap

Natural Language Processing (NLP). In analogy, protein

Language Models (pLMs) use large databases of raw protein

sequences to implicitly understand the language of life (Alley

et al., 2019; Bepler and Berger, 2019; Heinzinger et al., 2019;

Elnaggar et al., 2021; Ofer et al., 2021; Rives et al., 2021). Indeed,

many pLMs essentially needed access to sequence collections

ten times larger than UniProt (Suzek et al., 2015; UniProt

Consortium, 2017), namely BFD (Steinegger and Söding,

2018; Steinegger et al., 2019). Some pLMs additionally

include supervised training (Bepler and Berger, 2019; El-

Gebali et al., 2019). The values from the last hidden layers of

the pLMs typically are extracted as “the embeddings of the

pLM.” For the pLM ProtT5 (Elnaggar et al., 2021), in particular,

these embeddings have 1,024 dimensions for each residue in the

protein (each protein position). The mean over all per-residue

embeddings in a protein (1 /

L∑L
i embeddingdi , with L as the

protein length and embeddingdi as the embedding of residue i in

dimension d) yields a new per-protein embedding (global

average pooling) of the same dimension (1024 days for

ProtT5). We used this per-protein embedding as feature for

our search.

Embeddings from pLMs capture information beyond

sequence similarity and can help to detect close and remote

homologs (Rao et al., 2019; Littmann et al., 2021a; Littmann et al.,

2021b; Rives et al., 2021; Heinzinger et al., 2022). The similarity

between protein-pairs in terms of embedding and sequence space

are only weakly correlate which allows embedding-based

annotation transfer (EAT) even for proteins with different

sequences (PIDE<20%) (Littmann et al., 2020; Heinzinger

et al., 2022). The per-residue embeddings as sole input to

relatively shallow subsequent AI improve per-residue

predictions of secondary structure (Elnaggar et al., 2021),

inter-residue distance (Weissenow et al., 2022), 3D structure

(Weissenow et al., 2022), and even residue-conservation and

effects of sequence variation (Marquet et al., 2021; Dunham et al.,

2022) beyond top prediction methods using evolutionary

information from MSAs. Although falling substantially short

of AlphaFold2 (Jumper et al., 2021). Per-protein embeddings

outperform the best MSA-based methods in the prediction of

sub-cellular location (Staerk et al., 2021), signal peptides (Teufel

et al., 2021) and binding residues (Littmann et al., 2021c).

Nearest neighbor search through pLM
embeddings

To search in embedding space, we want to find the k

embeddings in a dataset most similar to our query given a

distance metric. This is known as nearest neighbor search. As

determining the exact nearest neighbors becomes intractable in

high-dimensional spaces (Slaney and Casey, 2008), we applied

approximate nearest neighbor search (k-nn) that is well

established in domains including image recognition (Liu et al.,

2007; Li et al., 2019), recommender systems (Bernhardsson,

2020) and NLP (Khandelwal et al., 2019). Modern indexing

techniques such as Hierarchical Navigable Small World

Graphs (Malkov and Yashunin, 2018) or Product

Quantization (Jegou et al., 2010), as well as, approaches

building upon those two (Babenko and Lempitsky, 2014;

Baranchuk et al., 2018; Matsui et al., 2018) handle billion-

scale datasets, suggesting the applicability to searching and/or

clustering databases such as TrEMBL with 195 M sequences (11/

2020 used here) (UniProt Consortium, 2017) or even the entirety

of BFD (Steinegger and Söding, 2018; Steinegger et al., 2019).

Standard of truth: CATH and Pfam

We benchmarked on two databases: CATH (Orengo et al.,

1997; Sillitoe et al., 2019) and Pfam (Bateman et al., 2000). CATH

is created by three main steps: 1) parse all proteins of known 3D

structure taken from the PDB (Protein Data Bank (Burley et al.,

2017)) into compact domains. 2) Align all domains to each other

by methods comparing 3D structures, i.e., structural alignment

techniques (Orengo et al., 1992; Kolodny et al., 2005). 3) Proteins

of unknown 3D structure are aligned by HMMer (Finn et al.,

2011) to the 3D-aligned domain seeds forming the four classes of

CATH: C (class), A (architecture), T (topology), H (homologous

family). The Pfam database (El-Gebali et al., 2019) collects

protein families without using 3D structure information.

Consequently, Pfam family seeds are much shorter than

structural domains (Liu and Rost, 2003), incidentally, also

built using HMMer (Finn et al., 2011).

Advantages of pLMs

The key advantage of pretrained pLMs is that might implicit

capture the same constraints that shaped evolution. Could this

same advantage be harnessed to also revolutionize sequence

comparisons? Here we analyzed to which extent alignments

using the generalized sequences as found in embeddings

might be competitive with traditional sequence-based

approaches.
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Methods

Data set 3D: CATH20

We used a redundancy-reduced version of CATHv4.2.0 (Orengo

et al., 1997; Sillitoe et al., 2019) provided by the CATH team, which

was optimized to contain asmany sequences as possible. It was created

by eliminating pairs with ≥20% PIDE and ≥60% overlap with the

longest protein and consists of 14,433 domain sequences in

5,125 families. We computed embeddings for both datasets with

the python api of bio_embeddings v0.2.0 (Dallago et al., 2021). The

full 14,433 domains served as target database (to search against with

the query), and 10,874 domains from the subset of 1,566 families with

more than onemember served as queries (to searchwith).Wedeemed

a result as correct if the top hit (excluding self-hits) belonged to the

same Pfam/CATH family as the query.

Data set 1D: Pfam20

In practice, many users will either not know or use single

domains for their searches because as many as 80% of all proteins

may have several domains (Liu et al., 2004), and because for the

target database users would be limited to domain-based resources

such as CATH (Orengo et al., 1997; Sillitoe et al., 2019) or Pfam

(Bateman et al., 2000; El-Gebali et al., 2019). To flip this perspective:

most expert users will likely use one of those two at some point and

will have some idea about the composition of structural domains in

their protein, in particular, given the AlphaFold2 predictions for

hundreds ofmillions of proteins (Tunyasuvunakool et al., 2021) that

simplify separating proteins into structural domains.

We proxied searches with full-length proteins through the

Pfam-based dataset. To have enough proteins with matching

domains without over-representing large families, we picked

20 domains from each Pfam family with at least 20 members

and accumulated all of those proteins into a set dubbed Pfam20.

For these, we retrieved the full-length proteins for each Pfam-

region. This provided 313,518 proteins and the set of all Pfam

domain annotations for each protein. The task was to find all

proteins that have a Pfam domain from the same family as any of

the Pfam-domains annotated for the full-length query. This

sampling ensured each query to have at least 20 correct hits.

We searched this set in all-against-all fashion, considering a query-

hit pair as correct if the two had at least one Pfam annotation in

common. For k-nn, we retrieved the 300 nearest neighbors for each

query. As most queries had 20 correct hits, the AUC1 (area under

curve until first incorrect match) fell between 0 and 20 of 20.

Sequence alignment

MMseqs2 version 13 (Steinegger and Söding, 2017) served as

state-of-the-art (SOTA) for combining speed and sensitivity. We

searched with a sensitivity of 7.5 (−s 7.5) and accepted hits with

E-values ≤ 10̂4 and a prefilter limit of 300 hits. For the

CATH20 set, these settings found the correct hit in all but

11 of the 14,433 queries.

Protein Language Model embeddings

SeqVec (Heinzinger et al., 2019) applies the bidirectional

Long Short-Term Memory layer (LSTM) architecture of ELMo

(Peters et al., 2018) architecture from NLP to proteins, yielding

embeddings that are 1,024 dimensional 32-bit float vectors.

ProtTrans (Elnaggar et al., 2021) abbreviates a collection of

pLMs all of which use a transformer architecture and have

more free parameters than SeqVec (ProtBert 420 M—with M

for million, ProtAlbert 224M, ProtT5 3B—with B for billion, vs.

SeqVec 93 M) and were trained on the much larger BFD dataset

(UniRef50 50 M) (Steinegger and Söding, 2018; Steinegger et al.,

2019; Elnaggar et al., 2020). While ProtBert has the same

embedding dimensionality as SeqVec (d = 1,024), ProtAlbert

has 4096-dimensional embeddings. From the ESM-series of

pLMs (Rives et al., 2021), we benchmarked ESM and ESM1b

with 670M and 650 M parameters respectively and

1,280 embedding dimensions, which were trained on the

250 million sequences. ProtT5 (Elnaggar et al., 2021), based

on the Text-to-Text Transfer Transformer [T5, (Raffel et al.,

2019)], is a model consisting of an encoder and a decoder, of

which we used only the decoder. The original ProtT5 model was

only pretrained on BFD (ProtT5 BFD), a later version was

finetuned on UniRef 50 (ProtT5 XL U50). We used it in half

precision mode (fp16) for speedier embedding generation

without loss of accuracy (Elnaggar et al., 2021).

Embedding-based clustering

Step 1: k-nn index:We constructed anHNSW index (Hierarchical

Navigable Small World Graphs) ofM = 42 (Malkov and Yashunin,

2018), and searched with efSearch = 256 using faiss (Johnson et al.,

2019). While storing the embeddings for our datasets required

642 MB, the HNSW index, which included both the embeddings

and the HNSW graphs, required 1.4 GB.

Step 2: k-nn score: As basis for the combined method, we used

negative log-transformed E-values for the hits from

MMseqs2 and cosine similarities for the embeddings. As we

chose E < 0.1 and since cosine scores were between 0 and 1, the

transformed E-values were always larger than the cosine

similarities, forming our new combined scored. However, for

the raw E-values lower is better while for the k-nn scores the

opposite held. The combined score used the same, more

simplistic, normalization of “higher is better.”
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Hardware

All benchmarks were performed on a machine with 2 Intel

Xeon Gold 6248 with a total of 80 threads, 400 GB RAM and an

Nvidia Quadro RTX 8000 with 46 GB memory. The GPU was

only used to generate embeddings.

Implementation and availability

The k-nn search was performed using the python interface of

faiss version 1.6.3 (Johnson et al., 2019). To align the k-nn hits,

we wrote them into a MMseqs2 prefilter database and ran

MMseqs2 align with an E-value cutoff of 10,000 (−e 10,000).

Wemade the code that reproduced all figures and tables as well as

all figure data available at https://github.com/konstin/knn-for-

homology, together with the raw data of the figures.

Performance measures

Top1(CATH20): For the CATH20 dataset, we searched each

of the 10,874 domains from a family with more than one

representative (query) against the 14,432 other domains in the

CATH20 (database) with an exhaustive nearest neighbor search

with cosine similarity. For each query, we considered the search

result correct if the top hit was from the same homologous

superfamily as the query. We considered only the top/first hit as

it is has been suggested to be the most relevant for homology-

based inference (Littmann et al., 2020). We reported two values

reflecting performance accuracy. 1) Raw accuracy was defined as

the fraction of correct hits:

QrawTop1(Dataset) � 1
size(CATH20) ∑q∈CATH20

correct(qi)

(1)
where DataSet were CATH20 and Pfam20, size (DataSet) gave the

number of queries in the data set, qi was the i-th query in DataSet.

(2) As another measure, we considered the normalized accuracy

normalized by family size to remove the bias from large families:

QnormTop1(Dataset) � 1
num(families)

∑
f∈families

1
size(family)

∑
q∈f

correct(fi)

(2)

The latter was obtained by computing the accuracy for each

family separately and taking the mean over these accuracies.

These two scores have also been referred to as micro and macro

average. For CATH20, we have reported both measures because

the two often differed substantially. While the normalized

accuracy removes the bias towards large queries, the raw

accuracy adequately represents the abundance of sequences in

the redundancy-reduced set. AUC1(Pfam20): For Pfam20 for

each query, we recorded the fraction of true positive hits detected

up to the first false positive. Errors were estimated using

500 rounds of bootstrapping and extracting the 95%

confidence interval.

Results

Single domains: CATH (set CATH20)

Proof-of-principle: Successful identification of
domains

The embedding-based nearest neighbor search (k-nn) found

more diverged/sequence-dissimilar homologous domains than

MMseqs2, the state-of-the-art (SOTA) for fast and sensitive

sequence-based search. Embeddings from more advanced pLMs

clearly outperformed those from simpler pLMs (Figure 1; Table 1).

This finding is easiest to illustrate using “>” to mean “better than” for

the major pLMs (Figure 1), we observed: ProtT5 > ESM1b >
ProtAlbert > ProtXLNet > ProtBert. All these differences were

statistically significant at the 95% confidence interval (CI). While

MMseqs2 outperformed the less advanced pLMs, it was outperformed

by ProtT5 and ESM1b (Tables 1, 2). SeqVec’s LSTM1 layer performed

better than any combination of three layers (Supporting Online

Material (SOM), Supplementary Figure S3).

In terms of embedding measure (proximity/distance of two

embeddings vectors of, e.g., 1,024 dimensions for ProtT5,

representing query and database hit), the cosine similarity

consistently outperformed the Euclidean distance, albeit only

slightly (Supplementary Table S1). For instance, the normalized

accuracy (QnormTop1) for ProtT5 dropped from 57.5% ± 1.6%

(using cosine similarity to measure that the query-hit vector are

FIGURE 1
Performance better for longer proteins. The vertical y-axis
QrawTop1 (Eq. 1) reflect the performance for proteins from the
length interval specified on the horizontal x-axis (non-cumulative
bins). While the embeddings from ProtT5 and ESM saturated
quickly, the sequence alignment method MMseqs2 and the
SeqVec-embeddings correlated more linearly with protein length.
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similar) to 55.3% ± 1.7% (using the Euclidean distance to

measure the embedding similarity).

To clarify the novel contribution of embeddings, we

replaced all hits from MMseqs2 with E-value > T and those

with no match (11 cases) with hits from knnProtT5. The

resulting combined search results (dubbed “combined

method”) outperformed both methods over a wide range of

thresholds T (Supplementary Figure S2, S3). For instance, at

an E-value threshold of T = 0.01, the raw accuracy increased

by over two percentage points to 73.0% (Table 1, first row).

The combined method outperforms both methods’ accuracy

over a large range of cutoffs (Supplementary Figure S1, S2).

Hypothetical best of both
If we could by some unknown procedure pick only the correct

hits from each method, we would reach QrawTop1 = 78.2%. This

implied a higher increase from combined method to hypothetical

than from knnProtT5 to combined method, but much less than

from MMseqs2 to combined. This hypothetical perfect merger

marked the theoretical limit for the combined approach, which

implied that the simple E-value threshold of T = 0.01 already

reached almost half of the improvement theoretically possible.

Factors determining performance
To better understand the complementarity of alignment-based

and embedding-based approaches, we zoomed into strengths and

weaknesses of each approach. For MMseqs2 and SeqVec accuracy

clearly correlated with protein length (“shorter proteins better”),

while for ProtT5 and, to a slightly lesser extent, for ESM, the

accuracy saturated for longer proteins. ProtBert-BFD, on the other

hand, performed rather consistently across the spectrum of protein

length (Figure 1). By design, CATH20 considered only single

domains. We observed only a limited correlation between

cosine similarities and E-values with a Spearman’s ρ
of −0.17 and Pearson Correlation Coefficient between cosine

similarities and the log-transformed E-values of −0.14. This

confirmed prior results (Littmann et al., 2020).

Full-length proteins: Pfam regions (set
Pfam20)

Embedding-based knnProtT5 alone not
competitive

The above assessment focused on the comparison of single-

domain proteins or single domains. The Pfam20 (Methods)

benchmark pulled in full-length proteins (still compared to

TABLE 1 Performance on CATH20a.

Methods QnormTop1 QrawTop1

Combined method 62.0% ± 1.4% 73.0% ± 0.8%

ProtT5 57.5% ± 1.6% 70.9% ± 0.9%

ProtT5 BFD 54.3% ± 1.8% 70.8% ± 0.9%

ESM1b 47.9% ± 2.0% 68.5% ± 0.9%

ESM 43.5% ± 2.0% 65.2% ± 0.9%

MMseqs2 34.5% ± 1.2% 40.3% ± 1.0%

MMseqs2 E < 0.01 26.1% ± 0.9% 28.2% ± 1.0%

ProtAlbert BFD 20.2% ± 1.3% 34.7% ± 0.9%

SeqVec LSTM1 18.6% ± 1.2% 37.4% ± 0.9%

SeqVec Sum 18.2% ± 1.4% 37.5% ± 0.9%

PLUS 17.7% ± 1.3% 36.0% ± 0.9%

SeqVec LSTM2 17.6% ± 1.3% 36.7% ± 0.9%

ProtXLNet UniRef100 15.4% ± 1.2% 34.2% ± 0.9%

ProtBert BFD 12.7% ± 0.9% 21.0% ± 0.8%

UniRep 9.1% ± 0.9% 22.4% ± 0.8%

SeqVec CharCNN 2.7% ± 0.4% 4.2% ± 0.4%

AA composition 2.5% ± 0.3% 4.0% ± 0.4%

CPCProt 2.1% ± 0.4% 3.9% ± 0.4%

aData set: CATH20 (redundancy reduced at PIDE≤20); performance measures

(columns): QrawTop1 (Eq. 1) reflected the percentage of queries for which the first hit

was correct (same CATH, identifier), while QnormTop1 normalized by family size (Eq.

2); methods (rows, sorted by QnormTop1): ProtTrans (ProtT5, Prot5 BFD, ProtBert

BFD, ProtAlbert BFD, ProtXLNet, UniRef100) (Elnaggar et al., 2021), ESM (Rives et al.,

2021), MMseqs2 (Steinegger and Söding, 2017), SeqVec (Heinzinger et al., 2019),

UniRep (Alley et al., 2019), CPCProt (Lu et al., 2020), combined method: MMseqs2 E <
0.01 + ProtT5 UniRef50; error estimates: the ± values provide the range of the 95%

confidence interval corresponding to 1.96 standard errors; bold letters: highlighting the

comparison between embedding-based and alignment-based lookup.

TABLE 2 Class imbalance for CATH hierarchya.

Alpha Beta Alpha/beta Few secondary structures

Number of queries 2,668 2,328 5,773 105

Number of targets 3,987 3,159 7,105 182

QrawTop1 family knnProtT5 65.6% 72.9% 73.7% 53.3%

QrawTop1 family MMseqs2 35.9% 36.6% 43.8% 45.7%

QrawTop1 class knnProtT5 93.1% 92.1% 95.7% 58.1%

QrawTop1 class MMseqs2 57.6% 56.7% 79.3% 45.7%

aData set: CATH20 (redundancy reduced at PIDE≤20); performance measures: QrawTop1 (Eq. 1) reflected the percentage of queries for which the first hit was correct (same CATH,

identifier); CATH, classes (columns): on the level of class (C), CATH (Orengo et al., 1997; Sillitoe et al., 2019) distinguishes between mostly-alpha, mostly-beta, mixed alpha/beta and “few

secondary structure”; values (rows): number of queries and targets, and two different ways to compile accuracy, the first (QrawTop1 family) is the fraction of queries where the top hit is

from the same CATH, family, the second (QrawTop1 class) does the same but considers one level higher in the CATH, hierarchy.
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single domain-like Pfam regions). Instead of outperforming

MMseqs2 (for CATH20), knnProtT5 performed clearly worse

for Pfam20 (Figure 2: solid red and dotted green below solid blue;

AUC1(knn,Pfam20) = 0.367 vs. AUC1 (Mmseqs2,Pfam20) =

0.52). While knnProtT5 and MMSeqs2 found a similar fraction

of homologs in the first 300 hits (68.0% vs. 67.4%), the vector

distances (cosine similarity) between the per-protein

representations did not sort the hits precisely enough, leading

to a drops in AUC1 specifically and on the entire precision-recall

more generally (Figure 3; Supplementary Figure S5).

Shuffling domains
By using Pfam annotations as ground truth, we might

incorrectly consider a hit as incorrect when domain
annotations are missing. The common solution is to shuffle
the amino acid sequence outside of domain annotations and/
or to add reversed or shuffled sequences as known incorrect hits
(Brenner et al., 1998; Steinegger and Söding, 2017; Buchfink et al.,
2021). However, we found that ProtT5 clearly separated between
reversed or shuffled and real sequence (Supplementary Figure S7;
Supplementary Table S2). Thus, we had to accept that some
correct hits may be labeled as incorrect.

Combined method most sensitive
As for single-domains, the combined method (MMseqs2 +

knnProtT5) considerably increased the overall sensitivity

(Figure 2B: Combined method). Toward this end, we aligned the

FIGURE 2
Sequence-based approaches better for full-length proteins (Pfam20). Data set: Pfam20; we searched all-against-all through 313,518 proteins
with Pfam (Bateman et al., 2000) annotations. (A) Cumulative distribution of AUC1 that for each query reflected the fraction of queries (against the
313,518) with a matching Pfam annotation ranked above the first hit without matching Pfam annotation. Higher curves implied higher sensitivity. The
steps in the lines originated from sampling 20members for each Pfam family. MMseqs2 (Steinegger and Söding, 2017) as state-of-the-art in fast
and sensitive sequence-based alignment in solid blue; the novel knnProtT5 method in solid red; knnProtT5 for search plus Smith-Waterman
alignment performed by mmseqs align in dotted green; the combination of MMseqs2 and knnProtT5 in dot-dashed orange. (B) Precision-recall
curve for the same methods as in panel A except for the dashed green marking an additional test combining unaligned knnProtT5 hits with
MMseqs2 to show the power of embeddings on their own. The two combined approaches useMMSeqs2 E-values as base and knnProtT5 with cosine
similarity only where MMseqs2 had low E-values. This explains the large overlap with MMseqs2.

FIGURE 3
Longer proteins more difficult for Pfam20. Mean
AUC1 sensitivity for different bins of lengths (number of residues)
for the query protein (full proteins, not just domains compared to
Pfam regions), showing how the combined method works
across different sequence length. For those full-length proteins, all
methods performed better for shorter than for longer proteins,
e.g., MMseqs2 performance was almost half for proteins shorter
than 200 residues than for those longer than 1,000 residues, and
still substantially better for proteins with <600 residues that
account for the majority of UniProt. Long proteins are often
contain multiple domain which have more total homologs on
average and are also more difficult to match on per-protein
representation level (Discussion).

Frontiers in Bioinformatics frontiersin.org07

Schütze et al. 10.3389/fbinf.2022.1033775

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2022.1033775


top 300 knnProtT5 hits using MMseqs2 and merged those 300 with

the top hits from MMseqs2 ranked by E-value. This combination

raised the AUC1 from 0.52 to 0.557 (Figure 3) and improved the

recall even for high precision (Figure 3). The number of hits was the

main hyperparameter for knnProtT5 and the subsequent alignment.

We chose 300 to be identical to the MMseqs2 prefilter default.

Although for the embeddings of some pLMs the value mattered

more, essentially all embeddings appeared relatively stable for choices

above 150 hits (Supplementary Figure S6). In particular, the

combined method clearly outperformed MMseqs2 choosing the

top 600 rather than 300 hits (AUC1(300) = 0.520 vs.

AUC1(600) = 0.523). Thus, more hits correlated with increased

AUC1 at the expense of runtime (below).

We also combined MMseqs2 and knnProtT5 without aligning

the k-nn hits. Toward this end, we first filled the result list for a

query with the MMseqs2 hits at E-values<0.1 and then appended

the k-nn hits, i.e., we accepted very reliable MMseqs2 hits, and

added knnProtT5 hits to fill up the hitlist to 300. This simpler

scheme also reached an AUC1 of 0.558, but the recall only

improved for lower precision (Figure 2B). The results were very

similar to those for the combined method with re-alignment,

reaching the same AUC1 of 59%.

Aligning knnProtT5 hits competitive
Aligning the knnProtT5 hits with Smith-Waterman (Smith and

Waterman, 1981), yielded an AUC1 similar to that of MMseqs2.

Using knnProtT5 as prefilter instead of MMseqs2 is, however,

infeasible in practice due to the immense amount of time

needed to compute per-protein embeddings. Although we

aligned with an E-value cutoff of 10,000, the mean recall over all

up to 300 hits dropped from 67.4% to 63.8%, or put differently: 3.6%

of all homologs were correctly found by knnProtT5 but then

dropped because they could not be aligned adequately.

Lower AUC1 for longer proteins
While knnProtT5 correctly retrieved many hits for long

proteins, barely any of those were not already found by

MMseqs2 (Figure 3). Splitting long proteins into overlapping

slices of 600 residues, which were embedded individually and

searched all-against-all against a databases of slices, did not

improve (results not shown). Due to the quadratic growth in

terms of costs (time and memory) for computing

ProtT5 embeddings for longer proteins, we had to remove

0.6% of the proteins with over than 3,096 residues, worsening

the results for the >1,024 bucket slightly (Figure 3). We observed

that long sequences had disproportionally many hits with high

cosine similarity (>0.95) and no matching annotations, most

likely due to missing annotations.

Runtime: Method fast, but slowed down by
embedding-lookup

MMseqs2 took 17 min 39 s for the search (12 m 2 s prefilter

and 5 m 37 s align). Generating embeddings took 7 h 23 min,

giving an average of 0.08 s per protein. Generating a Hierarchical

Navigable Small World Graph (HNSW (Malkov and Yashunin,

2018) took 15 s, the search took 77 s. Compared to exhaustive

nearest neighbor search we lost 0.004 AUC1 sensitivity

(0.367–0.371), while the effect was below standard error for

aligned knnProtT5 and the combined method.

Discussion

Key step: Comparing generalized
sequences

Embeddings from protein Language Models (pLMs)

appear to carry information about aspects such as protein

function, structure, and evolution (Rao et al., 2019; Littmann

et al., 2020; Littmann et al., 2021a; Littmann et al., 2021b;

Elnaggar et al., 2021; Marquet et al., 2021; Rives et al., 2021;

Dunham et al., 2022; Heinzinger et al., 2022; Weissenow et al.,

2022). In this sense, they constitute what we might refer to as

“generalized sequences.” The key advance underlying our

novel approach is to use generalized sequences for remote

homology detection. While the idea for this is not new (Alley

et al., 2019; Littmann et al., 2021a; Littmann et al., 2021b; Ofer

et al., 2021; Bileschi et al., 2022; Heinzinger et al., 2022;

Nallapareddy et al., 2022), here we presented a more

rigorous and generic framework for directly comparing

embedding-based to sequence-based alignments which have

been optimized which have been optimized for half a century.

Despite this advantage of being decades ahead in experience,

methods that train on embeddings to map proteins to

particular databases, such as CATH (Orengo et al., 1997;

Sillitoe et al., 2019) and Pfam (Bateman et al., 2000)

already outperform traditional sequence-based methods,

even those based on profiles (Bileschi et al., 2022;

Heinzinger et al., 2022; Nallapareddy et al., 2022). Here, we

explored to which extent pLM embeddings directly,

i.e., without any further training, are competitive in terms

of performance and speed to a state-of-the-art (SOTA)

sequence-based identification of homologs.

Our approach of finding k-nn embedding matches appeared

to have several advantages. Firstly, by using k-nn matches

(dubbed knnProtT5), we could explicitly drop the incorrect

and limiting assumption that alignments at position P1 are

statistically independent of those at position P2. Secondly, by

replacing an amino acid alphabet with a vector condensing

information from other residues, possibly far away in terms of

sequence separation, that influence the evolution, function and

structure at each residue position P, we implicitly use such

constraints to compare sequences. Thus, although other novel

solutions for non-iterated homology searches based on

embeddings tend to focus on speed, our solution tried to

combine speed and sensitivity. This was most prominently
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exemplified by the 3.6% of ground truth homologs which

knnProtT5 found but which could not be reasonably aligned

[neither by MMseqs2 (Steinegger and Söding, 2017) nor by

Smith-Waterman (Smith and Waterman, 1981)].

Overall, raw embeddings through k-nn (knnProtT5) could

improve over traditional sequence similarity searched, both for

single-domain vs. single-domain homology-based inference

(CATH20, Figure 1) and for more general full-length vs.

single-domain/Pfam-region homology searches (Pfam20,

Figure 2). Merging sequence- and embedding-based

(MMseqs2 + knnProtT5) did better than any of the two

throughout (Figures 1, 2: combined method). However, for

the more realistic use-case of comparing full-length proteins

against Pfam-regions, MMseqs2 overall clearly outperformed the

raw embeddings (Figure 2). Thus, we established an idea for a

simple solution of using embeddings without further machine

learning that showed some promises and strengths without

breaking through.

Speed not necessarily sufficient

While the nearest neighbor search itself is blazingly fast, the

time needed to generate the per-protein embeddings by

ProtT5 and the effective GPU requirement might throw up

major hurdles for adopting our approach. In fact for full-length

proteins, the iterated profile search fromMMseqs2 currently yields

better results in shorter time. Two future eventualities might

change this: firstly, databases such as UniProt (UniProt

Consortium, 2017) might offer per-protein embeddings for all

their proteins. If so, knnProtT5 would immediately become

competitive. Secondly, judging from advances in NLP, we

expect significant model speedups, potentially making k-nn

with alignment viable on its own. PLMs leaped through rounds

of exponential improvements over the last 3 years: from

embedding-based prediction methods being faster than multiple

sequence alignment (MSA) based predictions but much worse to

outperforming MSA-based methods. Given this rapid evolution,

large pLMsmay soon become sufficiently good and/or small (NLP

on smart phone) to justify the runtime cost. For instance, only the

more recent ESM (Rives et al., 2021) and ProtT5 (Elnaggar et al.,

2021) outperformed MMseqs2 for CATH20, while slightly earlier

models such as SeqVec, or ProtBERT failed to do so. Maybe the

next leap for the next pLM by increasing power and reducing the

size will shift the balance more toward embedding-than sequence-

based solutions.

Multiple domains will continue to
challenge comparisons of entire proteins

As many as 80% of all proteins may consist of several

domains. If we chopped all proteins into their domains and

compared all-domains-against-all, the then full-domain

embedding based k-nn succeeded (Figure 1), while for the

comparison of full-length proteins against domains, the

average-pooled per-protein embeddings of the queries are too

coarse-grained (Figure 2). Sequence-based solutions built upon

the local Smith-Waterman concept (Smith andWaterman, 1981)

still succeed because of matching subsequences. In fact, this most

likely explained the lack of improvement for proteins longer than

1,000 residues (Figure 3). Another possible path might be to

directly create pLMs capturing entire domains as the “units,”

however, so far there seems no solution in this direction that

succeeded without having to retrain specific AI models on top of

embeddings, such as CATHe (Vaswani et al., 2017) or

ProtTucker (Heinzinger et al., 2022), or the Pfam-AI (Bileschi

et al., 2022).

While only tangentially relevant for homology search, we

considered ProtT5’s ability to detect “fake” sequences and make

them trivially separable a noticeable result in its own right.

No advance without alignment?

A fundamental strength and limitation of our approach is that

k-nn hits need to be aligned, e.g., by Smith-Waterman (Smith and

Waterman, 1981). Alignments become unreliable at low levels of

sequence identity, i.e., exactly in the realm for which embedding

similarity promises to be useful (Rost, 1999; Steinegger and Söding,

2017; Littmann et al., 2020; Buchfink et al., 2021). Indeed,

knnProtT5 found many correct hits below 20% PIDE that

could not be aligned correctly (Supplementary Figure S6:

knnProtT5 vs. knnProtT5_aligned). These results might suggest

the need for the development of an embedding-based local

alignment method to use the full potential of embedding based

homology search and to make hits interpretable beyond a single

score. A few approaches have been proposed toward this end,

however, these are limited to global alignments (Bepler and Berger,

2019; Morton et al., 2020), i.e., will even worsen the decline from

domain vs. domain (CATH20, Figure 1) tofull-length vs. domain

(Pfam20, Figure 2).

K-nn index for fast pre-filtering?

An exhaustive k-nn index search has quadratic complexity,

making it unworkable for large datasets, compared to modern

indices with log-linear runtime complexity (n·logn). The HNSW

index we chose operated considerably faster than the

MMseqs2 prefilter while finding a comparable number of

correct hits. It scaled well to billions of vectors (Malkov and

Yashunin, 2018), making it feasible to search even metagenomics

databases such as BFD (Steinegger and Söding, 2018; Steinegger

et al., 2019). Combined with a fast pLM, this has the potential to

outperform and outscale k-mer based approaches.
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Conclusion

We demonstrated nearest neighbor search with protein

Language Model (pLM) embeddings (here knnProtT5) to

constitute a valuable complement to MMseqs2, enabling more

sensitive homology searches. The embedding-based solution

exceled in detecting distantly related domains (remote

homology detection), finding hits that previously were not

accessible by non-iterated homology search. Thus, embedding-

based solutions might offer a more stringent baseline for the

reach of homology based inference (if SIM(Q,A) > threshold,

copy annotation from A to Q). knnProtT5 also scales to

increasingly large databases. The only limitation at the

moment, the generation of per-protein embeddings, might be

removed as an obstacle through database resources such as

UniProt providing such embeddings in prestored fashion for

all proteins. Either way, rapid progress of pLMs already renders

nearest neighbor searches on embeddings a promising new path,

allowing us to tap into a new pool of homologs from embedding

space and to go beyond sequence similarity.
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