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Abstract
Compared with public transport operations, urban freight traffic and its associated delivery operations seem to be frequently
overlooked in urban traffic management and traffic flow theory. One explanation for this is certainly the lack of available data,
as the competitive freight transport market is fragmented and several actors are unwilling to collect or share tactical and
operational data. In this study, we use the unique pNEUMA drone data set from Athens, Greece, to shed light on urban
freight operations. We discuss macroscopic traffic indicators in a multimodal context. As the vehicle stopping behavior can
adversely influence traffic flow, we reveal the stopping behavior of the different modes represented in the data set using clus-
tering techniques. We find that urban freight vehicles’ stopping frequency lies between the stopping frequencies of cars and
buses. We reveal the distribution of stopping times for loading and unloading stops in Athens to have a mean of around
380 seconds. Clustering all loading and unloading stops further reveals three groups of loading and unloading stops that could
be labeled by incorporating knowledge and expertise about local particularities. The limited flight time of drones, owing to
their battery capacities, did not allow reconstruction of longer vehicle routes, such as an entire vehicle tour within the net-
work. However, this could be addressed in future research by realizing continuous large-scale monitoring routines. The
revealed vehicle behavior parameters can be used in traffic models to generate further insights into the impacts of urban
freight transport to inform public sector decision makers.
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The field of urban freight transport (UFT) is considered
essential for the functioning of urban economies as it
provides the freight flows that are vital to providing
products and services within the urban area (1). At the
same time, UFT contributes to the existing externalities
of transport (e.g., congestion or pollutant emissions). As
these externalities are typically borne by society, mini-
mizing the negative side effects and serving the frame-
work conditions to optimize UFT system performance
are key objectives of public sector decision-making. In
this regard, the public sector bears the responsibility for
implementing solutions that not only satisfy the short-
term pressure to act but also anticipate future-viable
solutions that will allow sufficient management of poten-
tial transport demands (for an overview on the variety of
existing measures for the UFT management, see for
example research by Holguı́n-Veras et al. (2, 3)). The

extent of these future demands depends on various para-
meters that cannot be predicted precisely and with cer-
tainty, such as the expected impacts of new business
models for on-demand grocery e-commerce or the effects
of large-scale work-from-home movements.

As this responsibility is framed by existing and bind-
ing political objectives on a supranational, national, as
well as regional level, a particular need for the proactive
management of UFT systems (4, 5) and for correspond-
ing decision support approaches arises (e.g., Marcucci

1Chair of Traffic Engineering and Control, Technical University of Munich,

Germany
2Information Management in Mechanical Engineering, RWTH Aachen

University, Germany

Corresponding Author:

Allister Loder, allister.loder@tum.de

us.sagepub.com/en-us/journals-permissions
https://doi.org/10.1177/03611981221093620
https://journals.sagepub.com/home/trr


et al. (6), Otte et al. (7), and Otte and Meisen (8)). To
support the decision-making process and to ensure suffi-
cient accuracy of the considerations during that process,
introducing reliable real-world data into the process is
important. However, owing to the heterogeneity of the
involved interests within the highly competitive UFT
market (e.g., leading to data privacy concerns and a
reluctance to engage in informational cooperation), the
field of UFT is characterized by a variety of data-related
observations and resulting challenges that have been
summarized in a recent report for the European
Commission (1) and are represented within the bottom
section of Figure 1.

To provide a reliable basis for more informed and
transparent decision-making processes in municipalities,
various approaches could be applied to obtain real-world
data about the behavior of UFT systems (1): Data can
be recorded from the real world (e.g., surveys, observa-
tion studies, interviews, sensors), generated in simulated
environments, or exchanged with third parties (e.g.,
urban freight forums with stakeholders, open data
platforms).

For the benefit of the overall system (and thus also
for the benefit of each actor and interest group involved),
it should be avoided that private interests and/or con-
cerns influence (e.g., by adjusting the data quality or -

selection provided), limit, or—at worst—even preclude
the public sector from acting (e.g., by not making data
available).Therefore, there is currently a particular neces-
sity to develop methods to resolve potential dependencies
of public sector decision makers from the willingness of
third parties to provide data.

Further, methods to translate these data into informa-
tion on the impact of UFT on traffic and its external
costs are required for appropriate decision-making and
regulation. However, in current urban traffic modeling,
where externalities can be computed, urban freight vehi-
cles (UFVs) have been considered as a vehicle type, but
rarely with their associated loading and unloading stop-
ping behavior that influences urban traffic. There has
been substantial interest in modeling interactions
between different vehicle types on motorways, for exam-
ple, between cars and trucks (9). UFT research most
notably addresses the problem of routing (10, 11), the
location of distribution centers (12, 13), parking (14), or
lately a possible integration into passenger transport by
ride-parcel pooling (15).

Building on urban network flow models (16–18), we
have already proposed a conceptual framework to assess
the impact of UFT at a macroscopic network level (19).
This is based on the additional delays on general traffic
generated by UFV loading and unloading stops, which is

Figure 1. Vehicle trajectories extracted from drone data allow assessment of the urban freight transport (UFT) situation on an urban
level.
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considered similar to the behavior of buses (20–22), with
UFV behavior being characterized by higher randomness
in its design parameters (e.g., stop locations, stop dis-
tances, stop times) from the perspective of external
observations.

In this study, we use data from a large-scale traffic
monitoring experiment with (aerial) drones (i.e.,
pNEUMA data set from Athens, Greece (23)) to take an
initial step towards understanding the impacts of UFT
on urban traffic to improve public sector decision-
making in the context of UFT. A variety of UFT para-
meters can be derived or estimated using vehicle trajec-
tories from drone data as seen in Figure 1. We first
perform an exploratory data analysis to compare the
behavior of UFVs to those of cars and buses within the
network. Second, to parameterize UFT loading and
unloading stops, we utilize k-means clustering to cluster
UFT stops, which enables us to separate loading and
unloading stops from the general traffic-related stops of
UFVs (e.g., at traffic lights, in congestion).

This paper is organized as follows. In the next section,
we introduce the pNEUMA data set, explain our data
processing procedures and describe an exploratory data
analysis from the UFT perspective. Subsequently, we
perform a clustering of urban freight vehicle stops to sep-
arate the service stops for loading or unloading goods
from traffic-related stops. We close this paper by

discussing the results and pointing out where the results
could be used in modeling and decision-making.

Data Set

We utilize the pNEUMA data set presented by
Barmpounakis and Geroliminis (23). In their recent
traffic-monitoring experiment, they used (consumer)
quadcopter drones (DJI Phantom 4 Advanced; see man-
ufacturer’s website (24) for detailed technical specifica-
tions) to collect video footage (4K: 4096 3 2160 at 25
fps) of a predefined monitoring area within the city of
Athens (Greece). In total, the monitoring area consisted
of 1.3 km2 and included an approximately 10-km road
network with approximately 100 intersections (see
Figure 2).

The authors’ experimental design contained a swarm
of ten neighboring drones with synchronous individual
hovering points and overlapping monitoring areas to
enable not only the synchronization of time and space
but also the reidentification of vehicles beyond the lim-
itations of one individual monitoring area. The drones’
takeoff and landing areas were deployed on two rooftops
within the city center. Having chosen the essential para-
meters of the experiment (i.e., takeoff and landing areas,
size of swarm, hovering points, altitude), specific flight
plans were defined for each drone (e.g., takeoff times,
routes, altitude profiles) to realize simultaneous and
energy-efficient traffic stream recordings. The monitor-
ing took place during the morning peak between 8:00
and 10:30 a.m. for every day of a working week. Each of
the 2.5 hour morning peaks was segmented into five
sequential flights (i.e., monitoring sequences) of 30min-
utes including the takeoff and landing procedures (e.g.,
for battery change). Therefore, the simultaneous swarm-
wide traffic recording time per monitoring sequence was
marginally shorter than 30minutes. For the overall mon-
itoring experiment, professional drone pilots controlled
the drones following the predefined flight plans.

In a subsequent offline analysis of the recorded videos,
detailed vehicle trajectories were identified. The offline
analysis was subcontracted to DataFromSky, a company
that claims greater than 98% accuracy for vehicle detec-
tion and tracking. Although the company does not dis-
close its proprietary algorithms, this accuracy has been
manually validated in research by Barmpounakis and
Geroliminis, in which further details about the data set as
well as the overall data collection procedure can be
obtained (23). The data set itself can be downloaded from
Geroliminis and Barmpounakis (25).

In this study, we focus exclusively on vehicles that we
can confidently identify to be performing freight opera-
tions. In the present data, the only information available
for this purpose is the vehicle type. The original data

Figure 2. Experimental site in Athens. The polygon indicates the
overall monitoring area covered by the drone swarm.
Source: �OpenStreetMap contributors.
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distinguish between two types of freight vehicles:
medium and heavy. According to DataFromSky (26),
medium refers to the vehicle classification type Ordinary
Goods Vehicle 1, which covers most notably freight vehi-
cles with two or three axles. Heavy refers to the type
Ordinary Goods Vehicle 2: vehicles with four or more
axles, articulated vehicles, and medium vehicles with a
trailer. We expect that the majority of medium and
heavy vehicles would be performing freight operations,
therefore, both of these vehicle types are analyzed in our
study. However, we cannot make statements about vehi-
cles that may have a potential hybrid use, for example, a
medium vehicle operating as a minibus or a car deliver-
ing freight. With access to local expertise we will be able
to match the different vehicle types to specific associated
services in future research.

Preprocessing

To prepare the pNEUMA data set for our analysis, we
preprocessed the data in four consecutive steps: (i)
reshaping the original data for each flight from a wide to
a long data format, (ii) reducing the file size to ensure
computability by keeping only observations that are
0.16 s apart, instead 0.04 s as in the original data, (iii)
assembling all 20 flight data sets into a single data frame,
in which single vehicles are uniquely identified by a
track-ID and a flight-ID (the same vehicle must not have
the same track-ID during another flight-ID), and (iv)
segregating information for each vehicle independent of
momentary points of time (e.g., vehicle type, total travel
distance, average speed).

We are confident that the second step particularly
does not alter the results in unforeseen ways as this step
simplifies the trajectories and changes the traveled dis-
tance by no more than 2meters in the most unfavorable
case (0.12 s 3 15m/s). We find that Flight 8 (file
20181029_dX_0900_0930) deviates substantially from all
other flights as it reportes lower traffic volume, most
likely the result of a shorter observation period. As the
reason for this was unclear, we removed this flight from
the sample.

Exploratory Data Analysis

The basic performance indicators and traffic relation-
ships within the data can be found in Barmpounakis and
Geroliminis’ orgininal research (23). Therefore, we do
not explore these global indicators further, but rather
focus on the multimodal traffic and its associated stop-
ping behavior that might influence network traffic.
Figure 3 shows the fractions of observed vehicles and
vehicle-kilometers traveled. Note, the same vehicle might
have been observed multiple times within the design of

the experiment (e.g., segmentation of the monitoring
area into ten subsegments). It can be seen that cars con-
stitute the largest fraction of vehicles; buses and UFVs
comprise less than 10% of the total. Interestingly, UFVs
constitute a larger fraction than buses; in traffic flow
modeling, however, the behavior of buses in urban road
network modeling receives much more attention (e.g.,
Castrillon and Laval (21)). Nevertheless, both UFVs and
buses are moving bottlenecks that can be modeled (see
Muñoz and Daganzo (27)). Another interesting observa-
tion from Figure 3 is that the percentages for number of
vehicles and vehicle-kilometers traveled are similar, indi-
cating that all vehicle types travel at a similar space-
mean journey speed in the network.

In the following sections, we further investigate the
traffic behavior of buses, cars, and UFVs in the network.
As stated, in our analysis UFVs correspond to the group
of medium and heavy vehicles in the original data, albeit
being aware that some freight transport trips might also
be undertaken by cars. As we are particularly interested
in monitoring and assessing the behavior of UFVs within
the urban network, we decided to compare them with
two other vehicle types for the following reasons: we
compare them with cars because they are commonly con-
sidered the reference mode in networks; and we compare
them with buses because of their similarities to UFVs,
that is, additional stops during a journey that might nega-
tively affect network performance. In Figure 4, we com-
pare the number of stops, the travel time, travel distance,
and journey speed of cars, buses, and UFVs; the sample
means are presented in Table 1.

In Figure 4a, we observe Poisson-like distributions for
each vehicle type. From Table 1, we can confirm this
finding as cars have the least number of stops on aver-
age, whereas UFVs stop more and buses stop the most.
Note that we consider a vehicle to be stopped when it
travels less than 1 km/h. This is intuitive as cars rarely

Figure 3. Breakdown of the number of vehicles and vehicle-
kilometers traveled in the pNEUMA sample from Athens.
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(a)

(b)

(c)

(d)

Figure 4. Distributions of study-relevant parameters from the original data: (a) number of stops, (b) travel time, (c) travel distance, and
(d) journey speed.
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have additional stops apart from traffic- and signal-
induced stops. The difference in the number of stops
between buses and UFVs suggests that UFVs perform
fewer service stops (e.g., for loading and unloading) com-
pared with buses. Figure 4b shows that buses tend to
travel longer during each drone flight compared with
cars and UFVs. In other words, cars and UFVs tend to
begin or end their trip later or earlier than buses, which
again is intuitive as buses usually follow a stop sequence
that is much longer than the 20 to 30minutes observation
period. Conversely, we see in Figure 4c that the trip
lengths are very similar, although buses have slightly
higher values than cars and UFVs. This can be explained
similarly to the travel time findings: many buses are tra-
veling thoughout an observation interval and, compared
with cars and UFVs, do not necessarily take the shortest
path as their routing is typically aimed at maximizing
public accessibility, incoporating predefined routes and
schedules instead of minimizing the travel distance.
Combining travel distance and travel time, as expected,
the space mean journey speeds (Figure 4d) shows that
cars have the highest speed and buses the lowest because
of more stops that delay the journey. UFVs positioned
between the other two, as their number of stops also falls
within the two.

We conclude from this exploratory analysis of the
data from an urban freight perspective that UFVs per-
form, on average, more stops than cars, but fewer than
buses, which reduces their journey speed in the network.
Furthermore, it should be noted that these additional
stops within the network would presumably create addi-
tional delays for other vehicles in the network as well as
for the overall network.

Revealing Urban Freight Vehicle Behavior
From Drone Data

We investigate the behavior of UFVs in an urban road net-
work based on large-scale drone data in three consecutive
steps: (i) identification of stops; (ii) clustering of all stops to
reveal the essential parameters and associated distributions;
and (iii) clustering the service stops to reveal different types
of services present in the data.

Identification of Stops

The data selected from the pNEUMA data for our analy-
sis reports vehicle movements every 0.16 s. Thus, it is
likely that all vehicle stopping maneuvers would be
recorded in the data. To characterize stops, we derive
three attributes: the stop duration, the distance traveled
before stopping, and the number of vehicles (all vehicle
types) that stopped within a 5-m radius around the stop
location during observation. The latter variable is derived
to characterize the stop location, for example, a location
with several vehicles indicates proximity to a stop line
(e.g., traffic signal), whereas a location with few vehicles
might indicate a different location along a link. We define
a vehicle to be stopped at a location when it drives less
than 1 km/h, stops for more than 2 s, and move more
than 2 m between stops; we also require that vehicle to
stop at least twice to meet the criteria. The resulting data
set contains 232,799 stop observations from which 20,640
could be assigned to medium and heavy vehicles, the two
vehicle types that correspond to the UFV fleet.

Clustering of Stops

We use the NbClust package (28) to determine the opti-
mal number of clusters we would retrieve from k-means
when using the attributes stop duration, stop distance,
and total number of vehicles at the stop location. This
function suggests four clusters as the optimal underlying
structure. Figure 5 shows the distributions of the three
variables in each cluster and Figure 6 illustrates the loca-
tions of all stops by cluster. The cluster means are pre-
sented in Table 2.

Arguably, we expect that the first- (40% of all stops),
third- (50% of all stops), and fourth cluster (8% of all
stops) described traffic signal stopsas suggested by the
findings from Figure 5. The first cluster seems to describe
stops at locations with a higher traffic load (e.g., closer to
a stop line); the third cluster shows similar distances and
durations as the first cluster, but with fewer other vehicles
at the stopping location, suggesting this is describing
stops in a queue further away from the stop line. The
fourth cluster seems to describe traffic signal stops at
main roads where road segments are longer and vehicles

Table 1. Sample Means of Number of Stops, Travel Time, and Travel Distance for Cars, Buses, and UFVs in the pNEUMA Data

Mode

Sample mean

Number of stops Travel time (s) Travel distance (m) Journey speed (m/s)

Car 6.79 151.3 442.6 3.76
UFV 7.19 179.1 387.6 3.17
Bus 8.36 228.5 523.1 2.87

Note: UFV = urban freight vehicle.

Loder et al 501



(a)

(b)

(c)

Figure 5. Cluster distributions of (a) stop duration, (b) stop distance, and (c) number of other vehicles stopped at present location.

Table 2. Cluster Means for Stop Duration, Stop Distance, and Number of Other Stopped Vehicles

Cluster Stop duration (s) Stop distance (m) Number of other stopped vehicles

1 24.6 88.6 654
2 380 87.9 110
3 20.9 78.8 223
4 22.6 530 400
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might proceed in green waves. We conclude that the sec-
ond cluster (2% of all stops) most likely corresponds to
UFT service stops: longer stop durations, stop distances
that covered a wide range, and substantially fewer other
vehicle stops at the stop location.

The 394 identified stops from the second cluster con-
tain 364 unique vehicles in which 335 reported one UFT
service stop, 28 reported two UFT service stops, and one
reported three UFT service stops. Arguably, the short
recording time (approx. 20minutes) during the 30 min-
utes flight and the comparatively limited monitoring
area prevent observing the entire UFV routing graph
within the urban area. Figure 7 shows the kernel den-
sity estimate of the distances between UFT service
stops (not the distances used for clustering as there are
too few observations). The distribution has a mean of
111meters and a standard deviation of 123meters. In
the observed cases, the distances are primarily within
the length of a link.

Clustering of UFT Stops

We select all likely UFT service stops and repeat the
aforementioned procedure. The optimal number of

clusters indicated by the NbClust package (28) is three.
Figure 8 shows the distribution of the stop durations and
distances between stops that suggest different service
types. In the next step, involving local knowledge and

Figure 6. Stop locations of UFVs in Athens by cluster.
Note: UFV = urban freight vehicle.

The map is orientated in the same way as the map in Figure 2.

Figure 7. Distribution of distances between two UFT service
stops.
Note: UFT = urban freight transport.
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expertise to assign specific services (e.g., from different
UFT market segments) to each cluster is recommended.

Conclusions and Outlook

In this study we investigated the extent to which UFV
operations parameters can be extracted from large-scale
drone data. Usually, network-wide data on urban freight
transport is difficult to access for planners and traffic
managers, among others, because of heterogeneous inter-
ests and a strong competition within the UFT market.
From the drone data, we extracted all stops of UFVs.
For each stop, we collected the attributes of stop time,
distance traveled from the previous stop (i.e., stop dis-
tance), and the number of other vehicles that stopped at
that particular location during the observation period.
Using k-means clustering, we found one cluster that
most likely described UFT service stops. Three other
clusters characterized general traffic-related stops (e.g.,
at traffic lights or in queues). Clustering the UFT service
stops further showed that at least three different types of
UFT services were present in Athens, judging from the
analyzed data. Our analysis showed that approximately

5% of all UFVs performed at least one service stop dur-
ing the observation period. A UFT service stop lasted an
average of 380 seconds. As battery capacity limits the
drones’ flight time, only a few UFVs reported more than
one service stop. In cases where multiple stops were
observable, the stops had an average spacing of around
100meters. These findings add to a list of urban logistics
‘‘rules of thumb’’ for cities in developed countries, as sug-
gested, for example, by Dablanc (29) and taken up by
van der Bossche et al. (1): (i) 0.1 service stops for loading
or unloading operations per person per day, (ii) around
300 to 400 heavy vehicle (lorry) trips per 1,000 people
per day, (iii) and 30 to 50 tons of freight per person per
year.

Drone data are a comparatively new source for traffic
flow analyses. As the initial paper by Barmpounakis and
Geroliminis (23) has shown, standard traffic flow para-
meters can be obtained at high accuracy from such data
(.98%). We have shown that further interesting urban
traffic flow parameters can be derived, which are usually
difficult to monitor or access and therefore rarely moni-
tored. Our findings could be corroborated by conducting
expert interviews or surveys on site, which may also

(a)

(b)

Figure 8. Distributions of (a) stop duration and (b) stop distance for the three UFT service stop clusters.
Note: UFT = urban freight transport.
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support the wider acceptance of drone data for public
sector decision-making. As the cost of drones and video
processing are likely to fall owing to decreasing hardware
costs and increasing process automation, such drone
data-collection procedures could become standard tools
for temporary large-scale traffic observations, facilitating
municipal decision-making processes.

We conclude that network-wide drone data, as col-
lected in Athens, are a promising data source to obtain
information on UFV operations. It is a data collection
method that does not require operators to disclose confi-
dential information. With increasing flight times and
lower data collection costs, such drone data could be
used by traffic planners and managers at large scale to
obtain reliable parameter estimates for calibrating mod-
els, as well as for use in subsequent decision-making. In
addition, as the data comprise observations of all road-
based modes, the collection costs could be shared among
departments, further lowering barriers to applying this
data collection method. Using such a data-driven
approach also allows the revealing of white-label vehicles
as UFT services, which are otherwise difficult to classify.
This new data source consequently offers municipalities
the prospect of collecting UFT data without involving
market participants, which could encourage other UFT
actors to share their data to avoid decision-making based
on data that might be disadvantageous for them.
Nevertheless, we have to acknowledge that reliable iden-
tification of entire UFV routing graphs is currently
impossible as complete routes cannot be recovered from
trajectory observations within the monitoring areas
owing to realizable flight times.

The presented analysis will be extended to give more
insights into the behavior of UFVs. This will include test-
ing different clustering techniques as well as adding fur-
ther (spatial) attributes. Integrating knowledge about
local particularities might help to label the different types
of service stops revealed from the data, that will allow
the development of further applications. For example,
with data that span longer periods and consequently
reveal more UFV service stops, a mapping of these stops
to nearby facilities and points of interest as well as the
quantification of land used or consumed by stopped
vehicles could add value for decisions on the regulation
of UFV operations. Furthermore, we will explore how
and under which conditions the stopping of UFVs affects
the following traffic, that is, the impact on speed. These
results will also be included in traffic flow models (e.g.,
Loder and Otte (19)), to develop macroscopic models
that will inform decisions makers on the impact of UFV
operations in their urban network. In addition, we could
use the revealed parameters in a microscopic traffic simu-
lator in a larger experimental design to investigate and
validate the findings on traffic impact. Finally, we will

also continue to investigate which of the revealed effects
provide global validity and which are locally specific.

In closing, although UFVs presumably produce more
vehicle-kilometers than buses and stop more than cars,
presumably obstructing other road users during that pro-
cess (especially without dedicated infrastructure that
exists for buses), they do receive less attention in explicit
traffic flow modeling and thus subsequently also in pol-
icy making. This study has shown that, with extensive
data from which many could benefit, and comparatively
simple data analysis, network-wide information on urban
freight operations can be retrieved. This could have posi-
tive impacts on cost–benefit appraisals and avoid mis-
leading assumptions or inappropriate ‘‘gut decisions’’ in
the context of UFT. To this end, this paper emphasizes
the need to consider UFVs not only as a dedicated vehi-
cle type, but also as a specific transportation service.
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Vehicle Routing Problems for City Logistics. EURO Jour-

nal on Transportation and Logistics, Vol. 6, No. 1, 2017,

pp. 51–79.

12. Browne, M., J. Allen, and J. Leonardi. Evaluating the Use

of an Urban Consolidation Centre and Electric Vehicles in

Central London. IATSS Research, Vol. 35, No. 1, 2011,

pp. 1–6. https://doi.org/10.1016/J.IATSSR.2011.06.002.
13. Niels, T., M. T. Hof, and K. Bogenberger. Design and

Operation of an Urban Electric Courier Cargo Bike Sys-

tem. Proc., 21st International Conference on Intelligent

Transportation Systems (ITSC), Maui, HI, IEEE, New

York, 2018. https://doi.org/10.1109/itsc.2018.8569606.
14. Roca-Riu, M., E. Fernández, and M. Estrada. Parking Slot

Assignment for Urban Distribution: Models and Formula-

tions. Omega, Vol. 57, 2015, pp. 157–175. https://doi.org/

10.1016/J.OMEGA.2015.04.010.
15. Fehn, F., R. Engelhardt, F. Dandl, and U. Glöckl. Ride-
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