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Zusammenfassung

Eine robuste virtuelle Entwicklung von Fahrzeugen bezüg-
lich niederfrequenter vibroakustischer Eigenschaften benötigt
die Anwendung von Methoden, welche eine Vielzahl an Modell-
auswertungen für wechselnde Eingangsparameter voraussetzen.
Nachdem Finite-Elemente Modelle von Gesamtfahrzeugen Mil-
lionen von Unbekannten enthalten können, ist die Parameterva-
riation solcher Modelle berechnungsintensiv und eine Anwen-
dung entsprechender Methoden in der Praxis herausfordernd.

Um eine Anwendbarkeit dennoch zu ermöglichen, wird
ein performantes Simulations-Framework im Rahmen der Ar-
beit entwickelt. Dieses stützt sich auf zwei Kernelemente. Zu-
nächst wird ein vollmodularer Ansatz zur Gebietszerlegung und
-kopplung eingeführt. Dieser ermöglicht eine Parallelisierung
der Berechnungen, und zudem eine Hybridisierung der Mo-
dellierung durch Inklusion gemessener Subsysteme. Eine ge-
neralisierte Problembeschreibung wird hierzu eingeführt, die
auf dem Konzept von Newton-Iterationen basiert und durch ei-
ne Flexibilisierung der Koppelbedingungen die Inklusion einer
Vielzahl von Subsystemarten ermöglicht. Das modulare Kon-
zept wird ebenfalls für eine effiziente Sensitivitätsberechnung
in Subsystem-Netzwerken erweitert.

Die zweite Komponente stellt ein Ansatz zur parametrischen
Modellreduktion von Subsystemen dar, welche die approximati-
ve Auswertung dieser um Größenordnungen beschleunigt. Eine
Projektionsmethode wird verwendet, die auf einem globalen
Basisansatz und affinen Matrixzerlegungen zur Berücksichti-
gung der hochdimensionalen Parametrik basiert. Ein neuer An-
satz zum Modelltraining für Frequenzgangsanalysen wird da-
zu eingeführt. Das Modelltraining basiert auf einem gängigen
Momentenabgleich der Subsystem-Transferfunktionen mittels
Krylov-Unterraummethoden und identifiziert die zu berücksich-
tigenden Parameter- und Frequenzpunkte mittels eines netzfrei-
en Greedy-Verfahrens. Letzteres stützt sich auf Optimierungs-
probleme, die für speziell zur bandbegrenzten Frequenzgangs-
analyse entwickelte Fehlerschätzer formuliert werden und ein
Training für hochdimensionale Parametrik großer industrieller
Modelle ermöglichen.

Die Algorithmen werden an numerischen Referenzlösungen
verifiziert. Die aus dem Framework resultierenden Potenziale
werden final anhand einer globalisierten Optimierung sowohl
eines akademischen zweidimensionalen Netzwerkbeispiels als
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auch einer gekoppelten Fahrzeugstruktur veranschaulicht. Als
Zielfunktion wird die frequenzbandintegrierte Leistung heran-
gezogen, welche an der in das Fluid abstrahlenden Substruktur
anliegt. Die korrekte Auswertung einer solchen energetischen
Größe wurde dazu bei der Formulierung des numerischen Fra-
meworks explizit berücksichtigt, als auch experimentelle Ver-
fahren inklusive Phasenkorrektur zur Validierung diskutiert. Ab-
schließend wird die relative Performanz der energetischen Ziel-
funktion gegenüber vereinfachten ingenieursmäßigen Ansätzen
kritisch beleuchtet.
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Abstract

Robust virtual development processes for low-frequency
vehicle vibroacoustics require a significant amount of system
evaluations for changing input parameter values. This need for
extensive parameter evaluations is challenging as complete vehi-
cle finite element models usually contain many states, and thus
single parameter evaluations are computationally expensive.

As a remedy, a high-performance simulation framework is
developed based on two main approaches. Firstly, a fully modu-
lar domain decomposition and coupling method is proposed
allowing for parallel computations but also hybrid assemblies
incorporating experimentally determined subsystems. Based
on Newton iterations, a very general framework is found, with
minimum limitations for the subsystems and, therefore, more
extensive flexibility. At the same time, the framework provides
a new, efficient formulation for sensitivity calculations in the
network. Secondly, parametric model order reduction for struc-
tural components increases the computational efficiency of nu-
meric subsystem evaluations by orders of magnitude. The re-
duced model is found by projection using a global basis with an
affine system matrix decomposition. A new method for reduced
model training is introduced suited for band-limited frequency-
domain analyses. The training utilizes the concept of moment
matching by Krylov-subspace methods in combination with
a grid-free greedy sampling strategy for identifying expansion
points in the parameter space. Local optimization problems
for minimizing error estimates define the sampling strategy, en-
abling the reduction of large-scale industrial subsystems with
high-dimensional input parameter spaces.

All numerical algorithms are verified against numerical refer-
ence solutions. The potentials of the proposed numerical frame-
work are finally demonstrated for the case of a globalized opti-
mization of both a generic coupled two-dimensional example
and an industrial vehicle structure. The frequency band inte-
grated power at the radiating subsystem interface is used for
each example as the objective. The performance of such an en-
ergetic approach against more simplified engineering measures
is discussed critically, and methods for experimental power de-
termination are introduced, incorporating a phase correction.
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1
INTRODUCTION

1.1 Numerical Vehicle Vibroacoustics and some of its
Challenges

The increasing cost and time pressure in the automotive industry,
reinforced by an enlarging number of vehicle derivatives, leads to the
growing importance of efficient development processes. At the same
time, the importance of the acoustic quality of cars increases in its role
as a key differentiator in the premium vehicle segment. Historically,
the acoustic development of cars was mainly driven by the expert
knowledge of single engineers and the results from several iterations
in hardware experiments. Anyhow, such an approach requires the
validity of expert experience from past projects, which may not be
given for disruptive changes in the vehicle architecture; the switch
from combustion drive trains to electric ones, for example. Expensive
hardware prototypes are needed, which are available only at late de-
velopment stages, in which no fundamental changes to the vehicle
system are possible anymore. Virtual vehicle development and vir-
tual testing are a remedy to that. An end-to-end virtual development
process results in fewer hardware prototypes, thus enabling shorter
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1 Introduction

and significantly cheaper processes and more efficient vehicle modi-
fications. There is no need to rely exclusively on expert experience,
but numerical models are available at any stage of the development
process for supporting decision-making.

In what follows, the focus is on structure-borne sound problems
for the interior acoustic quality of linear time-invariant (LTI) vibroa-
coustic vehicle systems. The systems are considered to be in a steady
state, thus, are analyzed in the band-limited frequency domain. In
such a setting, vibration is transmitted from the source through the
mechanical vehicle structure, radiates from the surfaces of the car
body inside the passenger cabin, and results in sound pressure lev-
els at the passenger ears positions, the relevant acoustic quantity for
the customer. Unfortunately, the robust modeling and analysis by
numerical methods is no trivial task for such an acoustic chain of
effects. Vehicle structures are complex mechanical systems that in-
volve many different subcomponents, materials, and contact types,
like spot welds or gluing. Statistic variations in the manufacturing
quality or material properties introduce aleatoric uncertainties in the
model’s input parameters. The unknown numerical modeling of sub-
components like rubber bushings or dampers introduces epistemic
uncertainties in the transmission path through the structure. Epis-
temic uncertainties also play a significant role when it comes to the
modeling of the radiator, thus the car body. The correct numerical
representation of carpet coverings, plastic claddings, and their pos-
sible non-linear contact with the metal structures, for example, are
still an open topic in industrial applications. Additional uncertainties
arise in the early development stage, in which design details of the car
body are not yet precisely known. Unfortunately, all these parameters
of the radiator may significantly influence the sound pressure levels
in the Helmholtz fluid of the interior cabin.

Even if there were no uncertainties, the numerical treatment of
structure-borne sound problems remains challenging for complex
vehicle structures. In synthesis, one has to find modifications with a
high impact on the sound pressure on the one hand. This need for
high-impact optimization is due to the logarithmic nature of human
perception. On the other hand, one has to face highly non-convex opti-
mization problems involving many design parameters to find cost and
weight-effective modifications for better vibroacoustic performance.
Although the considered vibroacoustic systems are linear in their
states, the input parameters may have a highly non-linear influence

2



1.2 Possible Remedies

on the latter. At the same time, multiple and possibly interdisciplinary
design constraints may need to be considered by synthesis.

These challenges are already significant in the lower frequency
regime, which is the focus of the presented work. In the following, the
lower frequency range is defined by a moderate number of significant
resonant modes (nres < 30), the subcomponents of the coupled vehicle
assembly exhibit in the analyzed frequency range. There are many
sub-assemblies in vehicle systems, consisting of components that
fulfill this property up to kilohertz frequencies. Wiper systems are
one example or many assemblies which contain auxiliary units. For
chassis systems, which are geometrically more complex and consist
of dozens of components, the lower frequency range assumption is
fulfilled at the component level typically up to several hundred hertz.
Many acoustic phenomena like road-induced noise are present in
this frequency range, which greatly impact acoustic vehicle quality.

During vehicle development, the systems are modeled determin-
istically in the low-frequency range, typically by the displacement-
based finite element (FE) method. Vehicle FE models often have a fine
discretization and complex modeling, which must be valid for differ-
ent analysis types. Corresponding models, therefore, have many de-
grees of freedom (DOFs) in the range n ≈ 106, making their evaluation
computationally expensive. Furthermore, many different element
types and connection techniques may be incorporated.

1.2 Possible Remedies

1.2.1 Probabilistic Energetic System Formulation

Many approaches have been developed to cope with the problem of
robustness for vibroacoustic applications during the last decades. In
such methods, probabilistic assumptions are introduced to enable
robust analyses. In addition, popular methods analyze the wave trans-
mission not based on the displacement-based system description,
but the latter is reformulated entirely in terms of energetic quantities.
Such energetic system formulations have a long history in vibroa-
coustics, especially in the high-frequency regime; consequently, an
energetic system analysis seems to be a natural choice for vehicle
networks.

Indeed, there are several methods that can be applied to complex
industrial models. Statistical Energy Analysis (SEA) is probably the
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1 Introduction

most popular energy-based method in vibroacoustics. It allows for
probabilistic system analysis in high-frequency ranges and requires
only the evaluation of small systems of equations. The network con-
cept is found in this method, and at the basis of averaging, robust levels
and exchange of the subsystem energies of an assembly are calculated
by solving energy balance equations. Classically, the SEA is derived
by a modal approach, see Lyon et al. [158]. In this formulation, each
subsystem is described by groups of similar modes. Similar modes
are defined as modes of the same type, flexural or torsional, for exam-
ple. A sufficiently high number of resonant modes is needed in each
analyzed frequency band, at least three to six. These modes store the
subsystem energy and exchange energy with resonant modes of other
subsystems. The subsystem’s capability to store energy is described by
its modal density, the exchange by coupling loss factors. Both quanti-
ties must be determined depending on the single subsystem types,
classically by analytic methods. In the classic SEA formulation, sub-
systems are weakly damped and coupled weakly. Indirect coupling
of subsystems, which do not have a common interface, is impossible
in most formulations. Some probability distribution over frequency
is assumed for the modal parameters to approach the uncertainties
of the system characteristics in the high-frequency range. Finally, re-
sults are obtained, which are averaged over frequency and spatially
over the single subsystem domains. These results are interpreted as a
statistical ensemble average of systems with similar properties.

There is the newer wave-based approach to SEA as an alternative,
which is described in Le Bot [144], for example. Using the wave-based
approach, one arrives at the same equations for the energy balance of
the assembly. However, each subsystem is described not by a modal
approach but by direct wave fields at each interface to other subsys-
tems and a diffuse reverberant field. Each subsystem contains a single
wave type. The direct fields of single interfaces do not interact, and
the reverberant field is incoherent. In contrast to the modal derivation
of SEA, the energy is stored in the reverberant field as a function of
the subsystem modal density. An averaging is finally performed to
cope with the uncertain wave properties.

The wave-based approach to SEA allows relating the latter to other
energy-based methods. One of these methods is the energy-based
finite element method (EFEM). In EFEM, the governing differential
equations are formulated for the energy density as a variable and
solved numerically by a finite element procedure. In the formulation
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1.2 Possible Remedies

of Nefske et al. [180], the element formulation is obtained for the en-
ergy density, which is summed up incoherently from the energy of
orthogonal waves, similar to wave-based SEA. An averaging is per-
formed spatially over a wavelength and temporally over one period of
vibration. Other formulations exist using far-field lossy plane waves,
based on Wohlever et al. [274]. EFEM can be an attractive approach
compared to SEA, as the spatial energy distribution in subsystems
can be assessed, and FE modeling can be reused, at least in theory. Al-
though the modeling can be reused, a new formulation must be found
for any considered element type, and joint matrices are required at
discontinuities. These joint matrices must be derived for different
types of discontinuities a-priori.

Another concept for energy-based methods in the high-frequency
regime is the Direct Energy Analysis (DEA), introduced in Tanner [243],
respectively Discrete Flow Mapping. The concept of ray-tracing is fol-
lowed to describe energy flows. However, densities of rays are tracked
instead of single rays under the assumption of short wavelengths.
As in EFEM, specific FE modeling can be reused, and energy fluxes
through the single element boundaries are analyzed through ray den-
sities. For automotive engineering, an application to a floor panel is
demonstrated in Hartmann et al. [119].

Such energetic methods as introduced above, are a valuable ap-
proach for the solution of high-frequency-domain problems, but not
necessarily for lower frequency ranges. All the above methods require
a short wavelength assumption for meaningful results, thus a small
ratio of the wavelength to subsystem dimensions, which defines the
high-frequency regime. For compact subsystems in a vehicle assem-
bly, this ratio is only fulfilled starting from several kilohertz. Hybrid
methods were developed to relax that requirement for some subsys-
tems of an assembly. The latter combine the above methods with a
displacement-based finite element method and extend the applicabil-
ity of the above methods to mid-frequency ranges (Mace et al. [161]).
A popular approach for a (wave-based) SEA-FEM hybrid approach
is found in Shorter et al. [225], for example. A combined EFEM-FEM
approach is introduced in Vlahopoulos et al. [266]. However, the ap-
plication for low-frequency analysis remains an open question. For
many automotive structural assemblies, none of the subsystems fulfill
the short-wavelength assumption up to several hundred hertz. Axle
systems are one example, as discussed above.
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Consequently, one could aim to extend or develop a method based
on an energetic system formulation for robust analysis and high-
impact optimization in the low-frequency range. However, several rea-
sons contradict such an approach in practical use: Firstly, the above
methods are non-parametric, meaning no direct link between the
physical input parameters like a shell thickness and the outputs is
available. As a result, a systematic sensitivity analysis or optimiza-
tion of input parameters is challenging, at least in classic methods.
Secondly, such an approach must be applicable in practice during
the vehicle development process. During the latter, FE models of the
single vehicle components are available, which are improved evo-
lutionary through the product development process. Ideally, these
models should be reused for the energetic analysis to avoid remod-
eling. The latter is expensive in time and money and may only be
feasible in some development stages. However, industrial systems
contain complex modeling, including many different element types
and connection techniques. Therefore, reusing such modeling in a
newly developed energetic system formulation is cumbersome and
requires highly mature methods. This also applies to the approaches
discussed above. The SEA requires completely different modeling,
which must be built in parallel. EFEM and DEA can deal with FE mod-
eling theoretically. However, formulations must be derived for any
element type or connection technique used in the original FE model.
Consequently, at least modifications of the modeling are required in
practice, which result in a de facto remodeling.

1.2.2 Reusing the Deterministic Displacement-Based
System Formulation

An alternative approach for the low-frequency range is followed here.
No probabilistic models are developed, but the system analysis and
synthesis are based on the displacement-based FE model, thus a
purely deterministic system. For a deterministic system formulation,
approaches to cope with the challenges of robustness and high-impact
optimization are already available. Globalized optimization, utilizing
random search algorithms (Zabinsky [280]), for example, enables high-
impact synthesis in the presence of non-convex objective functions.
For robustness of analysis, epistemic uncertainties can be reduced
by inverse methods for parameter identification from validation data
(Kennedy et al. [136]). Parametric methods for uncertainty quantifica-
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tion (UQ) allow considering aleatoric uncertainties in the analysis. For
an overview, refer to Ghanem et al. [96]. Nevertheless, all the above ap-
proaches are multi-query methods, meaning that repetitive determin-
istic system evaluations with varying input parameters are required.
As the vehicle models contain up to hundreds of varying parameters,
a large number of up to several million sampled system solutions may
be needed to cover the high-dimensional parameter space. At the
same time, corresponding numerical vehicle models have a vast num-
ber of DOFs; single parameter variations, thus, are computationally
highly expensive. Consequently, the application of multi-query meth-
ods is challenging for such industrial models. One possible solution
is reducing the input parameter space to the dominant directions.
However, approaches to reducing the input parameter space are com-
putationally expensive multi-query methods themselves. Global sen-
sitivity analysis employing a variance-based approach (Saltelli et al.
[218]), for example, requires extensive sampling, too.

This need for extensive sampling illustrates a central challenge
when dealing with the industrial deterministic systems: one has to
find a highly-efficient system evaluation scheme under the preser-
vation of the system’s numerous input parametric dependencies to
speed up single parameter variations by some orders of magnitude.
If such efficiency improvements can be provided for existing stan-
dard FE models, an enabler is found for multi-query methods and
thus a robust virtual end-to-end development process for industrial
vibroacoustic problems. No additional restrictions on the analytical
system properties need to be introduced. No components need to
be replaced by analytical surrogates, which simplify the complex me-
chanical properties which would not sufficiently reflect many geomet-
rically complex vehicle structures. Enabling the standard FE models,
the use in industrial development processes can also be ensured from
the business process point of view.

Based on the deterministic system formulation, one may also eval-
uate energetic quantities as postprocessing of the displacement solu-
tion. Again, the mechanical structure can be considered a network of
components, and energy exchange can be analyzed. Such an approach
results in consistency with the analysis approach of high-frequency
methods in Section 1.2.1; consequently, results from a parametric
uncertainty quantification or other probabilistic methods in the low-
frequency domain, which build on the deterministic system, can be
compared against the ones of methods of Section 1.2.1. However, one
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also may use energetic quantities for purely deterministic applications
to gain additional insights into the transmission behavior of complex
mechanical networks. In vibroacoustics, energetic quantities inside
the mechanical structure were used for the analysis of single subsys-
tem interactions in the design of resilient machine mounts in build-
ings, see Goyder et al. [103] for an early work, active vibration control
(Gardonio [92, 93]) or the characterization of sound sources (Moor-
house [177]), respectively receiver (Jianxin et al. [132] and Weisser
et al. [271]). In electrical engineering, energetic network analysis is
an established analysis tool (see Bosse et al. [42] exemplary). Several
studies in automotive design are also based on energetic quantities.
Tadina et al. [239], Lenzi et al. [149] and Jund et al. [133] used energetic
quantities for the evaluation of a body in white. Detailed analyses of
smaller subcomponents were performed by Korta et al. [141] for an
under-seat panel or by Ebert et al. [71] for a vehicle floor. In synthesis,
one may use energetic quantities as a more robust objective than
single sound pressure levels, as is discussed below.

In the past, approaches to speed up FE computations for an ener-
getic analysis were already introduced, which, however, do not pre-
serve parametric dependencies (Mace et al. [159, 160], Mourelatos et
al. [178], and Tan [241]). These methods are based on the combination
of domain decomposition and model order reduction by Component
Mode Synthesis (CMS) methods; for more details on that approach,
refer to Section 5.2.3.

1.3 Thesis Overview

1.3.1 Outline

Motivated by this, four main goals are followed with different emphasis
in the proposed work:

1. Development of an efficient numerical framework for multi-
query applications.
The starting point is the deterministic displacement-based sys-
tem formulation obtained from the standard FE modeling. In
contrast to the above methods, particular emphasis is on pre-
serving high-dimensional input parameter spaces for variation
and efficient evaluation. The latter allows for multi-query appli-

8



1.3 Thesis Overview

cations like parametric uncertainty quantification or globalized
optimization for large-scale industrial vibroacoustic models.

2. Formulations and extensions for an energetic analysis.
An accurate evaluation of energetic quantities should be en-
abled during the postprocessing of the displacement-based sys-
tem solution. As shown below, this results in the requirement
of a systematic and accurate consideration of the model damp-
ing in numerical methods; and phase-accurate measurement
approaches if experimental data should be combined into a
hybrid network. Particular emphasis is on including structural
damping and the necessary methodological extension for this
purpose.

3. Show-case demonstration of the numerical framework’s po-
tentials on a vibroacoustic large-scale vehicle system.
No explicit adaptions of the proposed framework are performed
for one specific type of multi-query analysis to allow for general
applicability. Anyhow, the potentials of the numerical frame-
work should be presented on one element of an end-to-end
development process explicitly: a globalized optimization of
complete and fully coupled vibroacoustic systems. A complex
industrial vehicle model is considered.

4. Problem-specific discussion of the value of power as key per-
formance indicator for vehicle systems.
It is evaluated if power can be a valuable and possibly more
robust optimization objective for globalized optimization of
vehicle systems. This is reflected problem-specific for the show-
case systems.

The main focus of the proposed work is on the first goal of devel-
oping an efficient numerical framework with the preservation of para-
metric dependencies. The framework which is developed throughout
Chapter 3 to Chapter 6 relies on two basic principles: the considera-
tion of the vibroacoustic system as a modular network of substructures
and a learning procedure based on parametric model order reduction
(pMOR) of the latter ones.

A fully modular domain decomposition and coupling are intro-
duced in Chapter 3, which allows for parallel computations. Antici-
pating the results of that chapter, modularity means the independent
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calculation of subsystem outputs for certain inputs, followed by a
synchronization of the subsystem inputs and outputs by evaluating
an interface problem. Thus, instead of one large monolithic system,
several small subsystems can be solved in parallel. Based on the con-
cept of Newton iteration, a very general framework is found in a new
formulation, with minimum limitations for the subsystems and, there-
fore, larger flexibility. Pure Neumann subsystems, for example, can be
included in a systematic matter. Classic dual-domain decomposition
methods can be considered a subcase of this more general framework.
At the same time, an explicit link between domain decomposition
and co-simulation is provided, as the framework is derived from a
linearized version of a co-simulation method.

Complete vehicle models contain hundreds of design or uncertain
model parameters. Modularity allows for efficient localized parameter
variations on subsystem level, for which solely parts of the network
need to be recalculated. In addition, localization is also possible for
evaluating parameter sensitivities in the network. Consequently, the
framework allows for a new, efficient formulation for sensitivity calcu-
lations, useful for optimization and UQ. This is discussed in Chapter 4.

The modular approach alone is not efficient enough for multi-
query analyses of vibroacoustic problems. The structural subsystems
still have many DOFs, which results in a computationally expensive
evaluation of the subsystems for varying parameters. Parametric model
order reduction is introduced to remedy that, allowing for highly ef-
ficient subsystem evaluations. Reduced-order models (ROMs) are
found based on a projection of the full-order models (FOMs) utilizing
Krylov subspaces, which are introduced in Chapter 5 for the non-
parametric case first. The basic properties of Krylov subspaces are
revisited in the context of subsystem coupling and energetic analysis.
The standard theory is reformulated systematically for second-order
systems with hysteretic damping, thus enabling an accurate damping
modeling of the considered industrial models. Efficient code imple-
mentations are presented for the latter, including newly modified
block-Arnoldi algorithms.

In Chapter 6, it is shown afterward how such subspaces can be
utilized in a parametric model order approach. It is demonstrated that
global basis methods are an attractive choice for the substructures
considered in the thesis, which have a moderate number of resonant
modes but show a highly non-linear dependence of the subsystem
responses on the parameters. Based on that, a new approach is de-
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veloped in the frequency domain, which utilizes a greedy sampling
strategy to train the model in the parameter space. This training can
be considered a learning process, as the essential system dynamics
must be included in the reduced subspace. Due to the localized ap-
proach of parameter treatment provided by the coupling framework,
a practical pMOR method does not need to preserve subsystem pa-
rameters for variation in the ROM in the order of hundreds. However,
a high-dimensional parameter space still needs to be covered up to an
order d = 15. This high-dimensional characteristic of parameter space
imposes challenges for both the training of the reduced-order model
and the later validation. As a remedy to the training challenge, the
idea of a grid-free sampling through local optimization problems with
error estimates as the objective is followed. For validation, a statistical
approach using Bayesian inference is introduced.

As energetic quantities should be evaluated finally on the network,
it is demonstrated already in Chapter 2, how energetic quantities can
be evaluated in the mechanical network as postprocessing. Using
such an energetic approach, one arrives at some similarities with SEA:
energies are considered, which are exchanged by subsystems, network
analysis is performed based on small systems of equations. However,
the displacement-based deterministic system formulation is the basis
instead of a probabilistic energetic one. Full coupling is considered
through the Poincaré–Steklov operator, instead of a weak and direct
coupling only.

Modularity through subsystem coupling does not only allow for
parallel, distributed calculations but also provides a natural frame-
work for hybridization. In the latter, parts of the numerical model are
replaced by measured ones to meet the epistemic uncertainties in
numerical modeling. It is sketched in Chapter 7, which additional
challenges arise when measured subsystems should be used for en-
ergetic network analysis. It is demonstrated how concepts for phase
correction enable validation measurements for energetic quantities.
Conclusions are drawn from that for the measurement-based subsys-
tem identification and are briefly discussed.

As a result, several different components are required for the pro-
posed framework. Throughout Chapter 2 to Chapter 7 the main focus
is on developing these individual components for an industrial appli-
cation, each embedded in-situ in the context of existing methods and
summarized at the end of each chapter. Only a few examples are occa-
sionally provided in these chapters to illustrate the methods. Instead,
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the interplay of all these components is illustrated on two extensive
examples in Chapter 8. The globalized optimization of an academic
two-dimensional showcase, as well as a numerical vehicle example,
is demonstrated as part of an end-to-end virtual development pro-
cess. The vehicle example consists of a rear axle and a car body, for
which structure-borne sound transmission from road-induced noise
is reduced through reducing power at the car body. The benefit of a
globalized approach is discussed, which is enabled by the numerical
framework. The value of power as a key performance indicator for
the optimization of vehicle problems is evaluated: the underlying as-
sumptions and the final performance of power are critically reflected
based on the examples.

1.3.2 Requirements and Concepts for an Industrial
Application

Before introducing the detailed methods, the basic properties of the
systems considered in the thesis are summarized. Some general con-
cepts can be derived from these, which form the background for de-
veloping the methods through the thesis. Large-scale mechanical
networks are analyzed in a limited (low-) frequency band. The net-
works, which are considered in the presented work, consist of linear
time-invariant subsystems. The numerical FE subsystems have the
following properties:

• Many subsystem FE models have a large number of DOFs (n ≈
106), which results from the discretization of the underlying
second-order system.

• A moderate number of resonant modes (nres < 20) is present in
the analyzed frequency range per subsystem.

• Each subsystem has a limited but high-dimensional input pa-
rameter space up to a dimension of d = 15. The parameters
have a potentially highly nonlinear influence on the subsystem
outputs.

• Mainly small interfaces exist for the subsystems. Most interfaces
between different subsystems are considered as discretized sin-
gle points. Consequently, just a couple of inputs and outputs
are present per interface.
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• Complex FE modeling is used for the subsystems, including
different element types and connection techniques.

• The damping modeling is complex. It comprises non-uniform
spatial distributions with localized effects and different damp-
ing types. Structural damping, a standard engineering approach
for damping modeling, is found in most subsystems.

Additionally, there may be subsystems from other sources than a
FE model and may contain arbitrary structure (pure Neumann prob-
lems, for example). All methods, respectively algorithms developed
during the presented work, must be able to handle such networks
while providing a computational speed-up by some orders of magni-
tude as an enabler for (energetic) multi-query analyses. In particular,
each algorithm must ensure

• scalability: the pMOR algorithms must work efficiently with
large numbers of subsystem DOFs and the high-dimensional
input parameter spaces. Subsystem coupling must provide fa-
vorable scaling with the number of parameter inputs and sub-
systems.

• generality: in subsystem coupling, the coupling method should
introduce no restrictions on the subsystem properties. In pMOR,
the theory behind algorithms should not be limited to special
damping modelings, special element formulations, only specific
input parameters, or the use in a specific multi-query method.

• non-intrusiveness: Assembly routines of commercial FE codes
should be reused for subsystem discretization to ensure indus-
trial applicability. Commercial FE programs, however, do not
provide access to their code. Therefore, methods must not re-
quire any code modification but be based on available program
output.

At the bottom line, the methods must enable the fast application to
real industrial models. Modularization is one central principle to en-
sure such fast analyses, as discussed above. However, modularization
is not only a prerequisite for efficient numerical evaluations but also
reflects the vehicle development process. A modular principle is fol-
lowed in automotive engineering to meet the ever-increasing number
of vehicle derivatives in the presence of cost pressure. Many parts are
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developed once and reused in many different vehicles. A correspond-
ing numerical framework should reflect that. Subsystem coupling
follows that principle. In the following, some basic approaches are
discussed to preserve modularity when combined with model order
reduction.

Localized and Decoupled pMOR

High computational costs arise mainly at two different stages of the
subsystem coupling: at the calculation of the subsystem outputs and
at the solution of the interface problem, which defines the network
and synchronizes the subsystem outputs for the coupled response.
As discussed above, model order reduction is applied to calculate
the subsystem outputs. A local projection basis is found for every
single subsystem, which should be reduced. This approach is called
localized MOR in the following. The internal subsystem states are
reduced, from which the outputs are calculated, but not the number
of inputs and outputs. Thus, the structure of the interface problem
is unaffected by MOR. Each local basis is found independently from
the other subsystems or a specific assembly. The error control in the
ROM generation is decoupled from later assemblies.

Thus, the interface problem is not reduced. The subsystem inter-
faces are small; consequently, the solution of the interface problem is
not significant in the overall workflow when the proposed framework
for subsystem coupling is used. Moreover, MOR on the interfaces
problem contradicts the modularity approach, as a corresponding
ROM cannot be reused for other assemblies and needs to be trained
for the whole parameter space of the assembly, not the local subsys-
tems’ ones. As mechanical networks have up to hundreds of variable
parameters, covering the whole parameter space would be infeasible.

Offline-online Phase Separation

Following a localized, decoupled pMOR approach, one can strictly
separate between an offline and online phase. In the offline phase,
the subsystems are pre-processed. Reduced-order models (ROM) are
trained for the subsystem parameter spaces, or subsystem identifica-
tion is performed based on measurements. In the online phase, the
coupling of these subsystems is evaluated, and energetic quantities
are calculated in the network for multi-query applications. From that
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perspective, one could also call the offline phase a learning process,
the online phase an execution process. This separation follows the
principle of modularity: Any pre-processing, thus ROM generation
is performed only once per subsystem. The results from the offline
phase can be reused in different vehicle networks, different stages
of development, and with different multi-query applications. This
approach leads to a workflow as visualized in Figure 1.1.

As the resulting ROMs from the offline phase can be reused, cal-
culations in the offline phase can be more demanding in terms of
computational complexity. In the online phase, multi-query applica-
tions for high-dimensional parameter spaces require a vast number
of repetitive system evaluations. Therefore, computational efficiency
must be maximized at this stage, in contrast to the offline phase. No
calculations should be included that require the evaluation of quanti-
ties except the ones of the ROMs.

15



1 Introduction

Offline phase

Experimental

methods

FEM

Parametric

MOR

Hybrid network
definition

Validation
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(Chapter 3)

Calculation
coupled solution

Network update for

changing parameters

Online phase

Multi-query application

(Chapter 3)

(Chapter 7)

(Chapter 5 &
Chapter 6)

Provision
gradients
(Chapter 4)

(Chapter 8)

Example:
power-based optimization

Figure 1.1: The workflow for the energetic network analysis based on the
principle of an offline-online separation. References to the single chapters

of the thesis are provided, while the measurement-based subsystem
identification is only triggered.
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BASIC THEORY FOR THE NETWORK

ANALYSIS

In the beginning, some basic mechanical and system theoretic con-
cepts are introduced. The (sub-)system description and mechanical
representation are discussed, and how energetic quantities can be
evaluated for such systems.

2.1 System-Theoretic Preliminaries

2.1.1 Elements of Coupled Problems

A key concept of the coupling framework, which is proposed in Chap-
ter 3, is a very general problem definition. The notation is adapted
from the concept of Sicklinger [227] for this purpose. Assume a net-
work consisting of ns ≥ 2 subsystems, of which one knows nothing
except that they have the form

Yk = Sk

�

Uk , pk

�

k = 1, ..., ns. (2.1)

Uk the input vector, Yk the output vector of the subsystem k . The in-
puts may be forces, the outputs displacements for mechanical systems
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in classic approaches. In addition, there may be design parameters
pk , stiffness or shell thickness values, for example. These form an
additional class of inputs that cannot be used for the definition of
the coupling operator. Equation (2.1) defines a subsystem simply as
a transformation process of inputs to outputs; both provided on the
subsystem interface for coupling. Thus, black-box subsystems are al-
lowed, not exposing their inner structure. The only basic assumption
so far is a linear relationship between inputs and outputs, as we deal
with LTI systems. In addition, the subsystems may have internal state
variables X k . The latter may be accessible together with the subsys-
tem matrices for white-box subsystems but not for black-box ones.
The subsystem formulation Sk also includes subsystem boundary
conditions not related to coupling and external loads.

The coupling of subsystems is defined by interface constraint
equations

I j

�

Yk , Uk , k = 1, ..., ns

�

= 0 j = 1, ..., ns. (2.2)

As a unique feature of the general formulation, Equation (2.2) can de-
scribe any coupling between inputs and outputs. In the following, no
further assumptions are made on the form of the interface constraint
equation I j , except that it is a linear combination of subsystem inputs
and outputs

I j =
∑

β

aβγYβ +
∑

γ

bβγUγ. (2.3)

The requirement of linear constraint equations is not obligatory for
the concepts below; it could be relaxed by adapting the formulation
of the coupling framework in Chapter 3. Anyhow, this linear form is
sufficient for the vibroacoustic problems of the thesis. In addition, it
allows interrelating the proposed framework to classic domain de-
composition approaches. Equation (2.3) can incorporate any linear
coupling between inputs and outputs. Inputs can be coupled to out-
puts I = aβγYβ +bβγUγ, resulting in a Dirichlet-Neumann constraint
equation. Dirichlet-Dirichlet constraint equations include a coupling
of solely outputs I = aβγYβ +bβγYγ, Neumann-Neumann constraint
equations a coupling of solely inputs I = aβγUβ +bβγUγ.

This general linear problem definition is used to develop a flexible
and systematic subsystem coupling method for the definition of the
interface problem in Chapter 3. Prior to that, however, the black-box
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nature of the subsystems as defined by Equation (2.1) is unraveled for
the vibroacoustic application. The known mechanical representation
of the subsystems is discussed and how energies are calculated for
the latter.

2.1.2 Second-Order Systems

The vibroacoustic subsystems, which are considered in the following,
are spatially discretized and described by the equation of motion, a
second-order ordinary differential equation in the time domain

Sk :







K k

�

pk

�

X k (t ) +Dk

�

pk

� dX k (t )
dt +Mk

�

pk

� d2 X k (t )
dt 2 = F (t )

Yk (t ) =C k X k (t )

(2.4)

where the right hand side is

F (t ) = Bk

�

Fext,k (t ) +Uk (t )
�

. (2.5)

A detailed description of the single variables involved in these equa-
tions is provided on the next page. The displacement-based finite
element method provides the basis for the spatial discretization of all
numerical subsystems in the following. In this variational method, the
continuous spatial domain is divided into a mesh of finite elements.
In the latter, the displacement solution is approximated locally by
discrete DOFs and interpolating ansatz functions. For an in-depth
overview of FE methods, refer to the textbooks of Zienkiewicz et al.
[283] or Bathe [22].

Steady LTI systems do not need to be analyzed in the time do-
main but can be characterized efficiently in a transformed space. For
generality, the Laplace transform t c ss of the equation of motion
is considered first, and the systems of equations are given as a func-
tion of the complex Laplace variable s =σ+ iω, where i =

p
−1. The

Laplace transform can account for any time-dependent load on an
LTI system, and corresponding initial conditions can be introduced.
In the following, zero initial conditions are chosen, which allow for
the transfer function calculation below. This Laplace domain repre-
sentation is the basis for the derivation of the model order reduction
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technique in Chapter 5. As shown in Section 2.2, the harmonic anal-
ysis, which is performed in the frequency domain, can be deduced
from this Laplace domain form in a second step.

Inner Representation

For zero initial conditions, the discretized equation of motion of sub-
system k can be formulated in the Laplace domain as

Sk :







A k

�

s , pk

�

X k (s ) = Bk

�

Fext,k (s ) +Uk (s )
�

Yk (s ) =C k X k (s )
(2.6)

with the design parameter dependent dynamic stiffness matrix

A k

�

s , pk

�

= K k

�

pk

�

+ i sgni (s )Sk

�

pk

�

+ s Dk

�

pk

�

+ s 2Mk

�

pk

�

.

K k

�

pk

�

∈Cn×n is the stiffness matrix, Mk

�

pk

�

∈Cn×n the mass matrix.

Dk

�

pk

�

∈Cn×n defines the viscous damping matrix of subsystem k .

Sk

�

pk

�

∈Cn×n is the structural damping matrix, which is introduced
in the Laplace transform in addition as discussed below. X k (s ) ∈Cn×1

is the vector of internal states, respectively displacements. sgni (s )
is the abbreviation for the signum function of the imaginary part
of s , sgn

�

ℑ(s )
�

. The signum function is one, sgn(2) = 1, for 2 > 0,
sgn(2) =−1 for2< 0, and sgn(2) = 0 for2= 0. The system formula-
tion of Equation (2.6) allows for an explicit definition of the subsys-
tem interfaces: Uk (s ) ∈CnU×1 is the vector of nU inputs, respectively
the forces resulting from the dynamic interaction of subsystems in
a network. In addition, an external force excitation Fext,k (s )may be
included in the subsystem definition. For brevity, the explicit notation
of the variables’ dependency on pk and s is omitted in the following
where not particularly relevant.

The inputs are mapped to the internal DOFs by the input map
matrix Bk ∈ Cn×nU . Yk ∈ CnY×1 is the vector of nY outputs. The lat-
ter can be defined as any linear combination of states through the
output matrix C k ∈CnY×n . In the case of a single-input-single-output
(SISO) system, there is exactly one discrete input and one output. C k

and Bk become column, respectively row vectors in that case. How-
ever, the case of a multiple-input-multiple-output (MIMO) system is
the common one in the thesis. If one further assumes that the same
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combination of states defines the outputs and inputs, one obtains
an interface-symmetric MIMO system. For an interface-symmetric
system,

C H
k = Bk (2.7)

holds, while H is the Hermitian transpose. Interface-symmetric MIMO
systems are assumed in the following for all subsystems.

A (FE) discretization of second-order systems usually results in
system matrices (K k , Mk , Sk ,Dk ), which are real valued and symmet-
ric. The system matrices can become complex valued in a reduced
system representation for several model order reduction techniques.
For such setting, the system matrices are Hermitian, thus

Dk =D H
k Mk =M H

k K k = K H
k Sk = S H

k (2.8)

which also covers the real-valued symmetric case. However, there are
cases in which Equation (2.8) does not hold, mainly if the subsystem
incorporates fluid-structure interaction and consequently includes
some discretized Helmholtz fluid. In such a case, the state vector
contains both displacement and acoustic pressure DOFs. Such sub-
systems do not necessarily contain symmetric (Hermitian) system
matrices, depending on the fluid-structure interaction formulation
(Sandberg et al. [219]).

As an alternative to the input-output form of Equation (2.6), sub-
systems can be rearranged in an inner representation as

A k X k = Fk +Gk ↔





A XX,k A XY,k

A YX,k A YY,k









•
X k

Yk



=





•
F ext,k

Fext,k



+





0

Uk



 .

(2.9)

This system formulation is more general as Equation (2.6)in the aspect

that it includes an external load
•

F ext,k applied to non-interface DOFs.
It is set to zero for compatibility with Equation (2.6) in the following
apart from some cases that explicitly include this quantity. At the same
time, Equation (2.9) is less general as Equation (2.6). It neither allows
to define a linear combination of states as output nor to split an input
to several internal DOFs. One can argue that the latter distinction
between the two system representations is artificial to a certain extent
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when the subsystem is a white box; thus, one has full access to the in-
ternal states and system matrices. While the system of Equation (2.9)
can be expressed in the form of Equation (2.6), a conversion the other
way round is theoretically also possible. One can reformulate a sub-
system of Equation (2.6) in the form Equation (2.9) by defining the
outputs as �Y = X and the inputs as �U = BU in this case. Nevertheless,
such reformulation is often impractical as the interface structure of
the subsystem changes when the subsystem coordinate system is
changed. The proposed model order reduction technique is based
on such (lossy) coordinate transformation of a system representation
in the form of Equation (2.6), in which the states and the algebraic
system of equations are transformed. As a result, after model order
reduction, the interface problem would need to be reformulated after
each step of model order reduction for a system formulation of Equa-
tion (2.9). Consequently, the form of Equation (2.6) is preferred over
Equation (2.9) throughout the thesis.

Transfer Function Representation

In the inner representation, one has full access to the (sub-)system
matrices and the states; thus, the subsystem is a white-box subsys-
tem. This may not be the case in the transfer function representation,
respectively outer form. In the latter, the subsystem is represented
solely by its input-to-output behavior in the Laplace domain

Hk =
Yk

Uk
, (2.10)

which is the rational transfer function matrix Hk ∈CnY×nU of subsys-
tem k . Hk is the Laplace transform of the impulse response function
in the time domain. For interface-symmetric systems, the transfer
function matrix is symmetric.

If the inner representation of the system is available (the realiza-
tion of the transfer function), the transfer function is calculated as

Hk =C k A−1
k Bk =C k

�

K k + i sgni (s )Sk + s Dk + s 2Mk

�−1
Bk (2.11)

for second-order systems in the form of Equation (2.6). Rearranging
Equation (2.9) for Equation (2.10), the transfer function is obtained
for this alternative inner representation by

Hk = A−1
k ,Schur =

�

A YY,k − A XY,k A−1
XX,k A YX,k

�−1
, (2.12)
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which is the Schur complement (Schur [221]) of the dynamic stiffness.
Although the transfer function could be obtained from the inversion of
the whole dynamic stiffness, the inversion of the Schur-complement
has better numerical properties in general (Badia et al. [18]).

Inner representations are not available in many applications, in
using black-box code or many experimental methods for subsystem
identification; the latter is discussed in Section 7.3 more in detail.
For such a black-box subsystem, only sampled measurements of the
transfer function matrix are available, often solely in the frequency
domain. Corresponding subsystem coupling approaches must be
capable of handling such subsystems.

Depending on the physical type of output and input, the transfer
function matrix has different names in structural dynamics (see Harris
et al. [118]). The transfer function matrix is also called receptance for
a displacement output and force input. For an acceleration output,
thus a scaling of Equation (2.11) byω2 in the frequency domain, Hk

is referred to as accelerance. For a velocity output, alternative names
are admittance or mobility. The inverse of a mobility matrix is named
impedance matrix; the inverse of the accelerance is the apparent
mass. All these representations can be considered transfer functions
of correspondingly adapted subsystems in the general definition of
Equation (2.1).

Damping modeling

The damping modeling for industrial second-order subsystems may
be complex and highly localized in general. Thus, some modeling
aspects are discussed explicitly on the matrix level in the following.
In structural dynamics, the viscous damping often is assumed to be
proportional. The latter terminology is used in different contexts. Ac-
cording to Caughey et al. [51], proportional damping is defined by a
viscous damping matrix Dk , which satisfies

K k M −1
k Dk =Dk M −1

k K k . (2.13)

Rayleigh-Damping, Dk =αMk+βK k , is one common sub-case of such
proportional damping definition. Often, the definition of Rayleigh
damping itself is considered as the one of proportional damping. Pro-
portional damping is defined here on the level of the global subsys-
tem matrices. As a result, proportional damping is rarely obtained
in real-world industrial FE models. Even if the model consists of one
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homogeneous material with proportional damping and thus lacks
localized damping, this can be the case. Connection techniques and
finite element formulations introduce additional nondamped DOFs.
As a result, no specific form of Dk can be assumed for most industrial
models.

In addition, structural damping is systematically included in the
Laplace domain representations Equation (2.6) to Equation (2.12).
This additional form of damping is introduced, as viscous damping
is insufficient to describe the damping behavior for many practi-
cal vibroacoustic systems. This deficiency led to the development
of more general viscoelastic damping models, in which the viscous
damping matrix can be frequency-dependent, D (ω), see Crandall
[62] and Ungar [257]. One particular case is a damping matrix D (ω),
whose elements have the form of Di = const./|ω|, where |2| denotes the
absolute value of a quantity. This form results in structural damp-
ing, a displacement-proportional damping. Such modeling is found
in many industrial vibroacoustic models, especially for metal parts,
and is realized via a complex material modulus of elasticity or com-
plex springs. On the level of algebraic equations, structural damp-
ing is defined by the matrix Sk in Equation (2.6) in the frequency
domain. Different names are available for that form of damping: (lin-
ear) hysteretic damping (Crandall [61] and Neumark [182]) or rate-
independent damping (Chopra [57]), for example. Structural damping
is defined typically in the frequency domain, a corresponding formu-
lation can be introduced in the Laplace domain by the structural
damping force as defined in Equation (2.6),

Fd = i sgni (s )Sk X K . (2.14)

Employing the signum function on the imaginary part of s , the phase
relation is preserved for both positive and negative frequenciesω and
enables the passivity proof of Section 2.3.4. It leads to solutions of the
characteristic equation of Equation (2.6), which appear in conjugate
complex pairs with negative real parts for underdamped systems. Thus
a stable second-order system without structural damping remains
stable when structural damping is added as defined by Equation (2.14).
The introduction in the Laplace domain is provided in an equivalent
formulation by Chen et al. [54], or with some similar damping model by
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Bonisoli et al. [40]. Converting Equation (2.14) to a frequency domain
representation, the formulation changes to

Fd = i sgn (ω)Sk X K , (2.15)

which is the form as found in Crandall [62]. Note that this formulation
of structural damping is not exclusively used in literature, but alterna-
tive definitions are available. Meerbergen [172], for example, omits
the signum function, which does not take into account the above
considerations for the negative frequency domain.

The time-domain equivalent of the frequency domain damping
force, Equation (2.15), is a Hilbert transform of the time-dependent
system states (Inaudi et al. [129]). The latter illustrates the problematic
nature of structural damping in the time domain. As a Hilbert trans-
form involves a convolution, such time-domain representation is not
causal. The latter makes the use of structural damping questionable
for time-domain analyses; consequently, this type of damping was
not included in Equation (2.4). For a frequency domain, respectively
Laplace domain analysis, however, structural damping is a common
engineering approach to model many industry-relevant damping
mechanisms. On material level, structural damping is usually intro-
duced into models by a complex-valued modulus of elasticity

Ê = E
�

1+ j sgni(s )η
�

,

where η is the structural damping coefficient. Correspondingly, com-
plex-valued stiffness values may be introduced for discretized spring
elements.

On the level of algebraic systems of equations, structural damp-
ing leads to necessarily complex-valued dynamic stiffness matrices
in the Laplace domain. The formulation of model order reduction
approaches needs to be adapted for such complex-valued matrices
to be applied to metal part substructures in practice.

2.1.3 First-Order Systems

All mechanical subsystems in the vibroacoustic network are described
by the second-order differential equation of Equation (2.4). Anyhow,
first-order system representations have relevance throughout the the-
sis, as they are the historical starting point for the development of
the model order reduction technique in Chapter 5. Considering zero
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initial conditions again, the inner representation of a first-order sub-
system without feedthrough is defined in the Laplace domain as

SI,k :







E k s X k (s ) = A I,k

�

s , pk

�

X k +B I,k Uk (s )

Yk (s ) =C I,k X I,k (s )
(2.16)

with the parameter dependent state matrix A I,k

�

s , pk

�

∈ C nI×nI and
E k ∈C nI×nI . Equation (2.16) has the same structure as Equation (2.6):
The first line is called state equation, the second line output equation.
B I,k ∈CnI×nU and C I,k ∈CnY×nI are the input and output matrices of
the first-order system, which map the state DOFs X I,k ∈C nI×1 to the
inputs Uk (s ) ∈C p×1 and outputs Yk (s ) ∈C p×1.

The transfer function representation of the first-order system is
found in the Laplace domain as

HI,k =C I,k (s E k − A I,k )
−1B I,k . (2.17)

Any second-order system can be transformed to a first-order rep-
resentation by linearization. Compared to the second-order form, the
number of unknowns in the state vector is doubled nI = 2n in this case.
Such linearization is not unique (Tisseur et al. [245]); depending on
the choice of the state vector, different formulations for linearization
are available. A common choice for the state vector is

X I,k =





X k

dX k
dt



 ,

which results in the the following linearized system matrices

E k =





Dk Mk

Mk 0



 A I,k =





−K k − i sgni (s )Sk 0

0 Mk





B I,k =





Bk

0



 C I,k =
h

C k 0
i

. (2.18)

Using the linearization of Equation (2.18), the symmetry of the system
matrices is preserved in the first-order representation. For symmet-
ric system matrices of the second-order system, K k , Mk , Sk ,Dk , the
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first-order system matrices A k and E k are symmetric, too. For other
linearization schemes, refer to Tisseur et al. [245] or Salimbahrami
[217].

The state matrix does not depend on the Laplace variable s in stan-
dard first-order representations, in contrast to the dynamic stiffness
in second-order systems. Anyhow, the inclusion of structural damping
introduces such dependency, as evident from Equation (2.18). Thus,
the introduction of structural damping requires the critical review of
established algorithms applied to a system in state-space form.

2.2 Harmonic Analysis of Linear Systems

As steady systems are assumed, harmonic analyses are performed
throughout the thesis. A steady system is characterized in the time
domain by its particular response

X (t ) = X 0 cos
�

ωt +ϕX

�

resp. Y (t ) = Y0 cos
�

ωt +ϕY

�

, (2.19)

which is calculated by solving Equation (2.4) for a harmonic excitation
F (t ) = F0 cos

�

ωt +ϕF

�

withω= 2π f . f is the frequency of excitation.
These harmonic functions can be reformulated in a complex notation
using Euler’s formula, as shown exemplarily for the state

X (t ) =
1

2

�

X 0e iϕX e iωt +X 0e −iϕX e −iωt
�

=
1

2

�

X e iωt +X ∗e iωt
�

.

(2.20)

2
∗ denotes the conjugate complex and X the signal’s complex-valued

amplitude. The latter contains the phase and amplitude information
of the signal of Equation (2.19)

X 0 = |X | ϕX = arctan

�

ℑ(X )
ℜ(X )

�

,

where |2| is the absolute value. The Euler representation consists
of a positive and negative frequency component. Anyhow, only one
component needs to be considered to solve Equation (2.4) for the
complex-valued state vector of the complete solution, respectively
output vector and thus for the required amplitude and phase infor-
mation (Bosse et al. [42]). There is no uniform convention in vibroa-
coustics on whether to take the positive or negative-valued frequency
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component (Maysenhölder [169]). In the following, all expressions
are based on considering the positive-valued components. Thus, one
uses analytic signals as ansatz function in the time-domain

X̂ (t ) = X e iωt resp. Ŷ (t ) = Y e iωt (2.21)

for an excitation of the same form, F̂ (t ) = F e iωt . This corresponds to
an addition of a sine-imaginary part to the cosine function of Equa-
tion (2.19)

X̂ (t ) = X 0 cos
�

ωt +ϕX

�

+ i X 0 sin
�

ωt +ϕX

�

. (2.22)

The time-dependent analytic signals are complex valued, for which
only the real part is physical X (t ) =ℜ

�

X̂ (t )
�

. However, they allow to
calculate X and Y , and thus the required amplitude and phase vec-
tors directly from the solution of the system with the analytic ansatz
functions. The described procedure corresponds to a Fourier transfor-
mation of the time-domain representation of the steady system, Equa-
tion (2.4), which is evaluated for the positive frequency content only,
and for which the complete solution is recovered afterward. Therefore,
the required frequency-domain representations are obtained by sub-
stituting s = iω in the Laplace domain formulations of Equation (2.6),
respectively Equation (2.11).

Performing a harmonic analysis, the involved variables are com-
plex-valued and frequency-dependent. The notation of the latter is
omitted for brevity in the following. If variables do not depend on
frequency, this is stated explicitly.

2.3 Energetic Network Analysis for Coupled
Deterministic Systems

The above system formulations are based on displacement DOFs,
and, in the case of first-order system, their time derivatives. For such
discretized subsystems, the evaluation of energetic quantities is a
postprocessing step after the system solution. Before suitable post-
processing is presented, it is clarified below what energetic quantities
are available for an evaluation and how they are related.

2.3.1 Energetic Quantities of a Subsystem

Therefore, the interrelation between the different energetic quantities
of a subsystem is derived. These relationships have been thoroughly
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investigated; refer to Alfredsson [3] and Alfredsson et al. [4], for exam-
ple. The following paragraph follows closely Ullmann et al. [253, 255].
A continuum mechanic formulation is followed below for illustration,
which results in formulas for discrete systems in Section 2.3.2. The
indices for indicating subsystem k are dropped during the section for
brevity.

Energy conservation is a fundamental principle of mechanical
systems. Starting from the wave equation, a corresponding corollary
can be derived for source-free volumes as

∂ EtotV(t )
∂ t

+∇ i (t ) =−D (t ) (2.23)

where EtotV is the total energy density, i is the vector of (acoustic)
energy fluence rate or simply instantaneous intensity, and D is the
dissipated energy per volume. No external body forces are considered.
For solid structures, a derivation can be found in Maysenhölder [169],
for Helmholtz fluids in Kirchhoff [140]. The corollary is known as
Poynting’s theorem in electrodynamics. Integrating (2.23) over the
subsystem volume V an expression in the form of the first law of
thermodynamics is obtained and, thus, can be interpreted as the law
of (acoustic) energy conservation

∂

∂ t

∫

V

EtotV(t )dV

︸ ︷︷ ︸

Etot(t )

+

∫

S

i (t ) ·n dS

︸ ︷︷ ︸

P (t )

=−
∫

V

D (t )dV

︸ ︷︷ ︸

Pdiss(t )

. (2.24)

S is the overall surface of the subsystem volume, n the surface normal
vector. Further assuming external excitation solely at the connecting
interfaces, the integration over S can be reduced to integration over
the subsystem interfaces, which are considered a subset of S . Etot(t )
is the time-dependent total subsystem energy, which is the sum of
potential and kinetic energy,

Etot(t ) =

∫

V

EtotV(t )dV =

∫

V

EpotV(t )dV +

∫

V

EkinV(t )dV . (2.25)

For linear elastic solids, the total energy is obtained by

Etot(t ) =

∫

V

1

2
ρ v (t )v (t )dV +

∫

V

1

2
ϵ(t )σ(t )dV (2.26)
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where v (t ) = dw
dt is the velocity vector, ϵ(t ) the strain tensor,σ(t ) the

stress tensor.
Pdiss(t ) is the instantaneous dissipated power. P (t ) is the instanta-

neous power calculated by the surface integral of the scalar product
of the intensity and the surface normal vector n . The intensity vector
itself is obtained by the multiplication of the stress tensor and the
velocity vector

P (t ) =

∫

S

i (t )T n dS =

∫

S

n Tσ(t )v (t )dS . (2.27)

The above formulas in the time domain are valid for any time-depend-
ent system response. However, usually, not the instantaneous values
but the cycle-averaged energetic values are of interest for harmonic
analysis. On cycle average, the change of the total energy is zero for a
harmonic excitation

1

T

∫ T

0

Etot(t )dt = 0, (2.28)

where T is the cycle time. The cycle-averaged mean power is obtained
from Equation (2.24) by

P =
1

T

∫ T

0

P (t )dt =
1

T

∫ T

0

Pdiss(t )dt . (2.29)

To obtain the cycle averaged form of the energy conservation law
(Equation (2.24)) in the frequency domain, a valuable auxiliary is given
by the following relationship for two functions a (t ) and b (t ), which
oscillate harmonically at the same frequency

1

T

∫ T

0

ℜ
�

a (t )
�

ℜ
�

b (t )
�

dt =
1

2
ℜ
�

a b ∗
�

=
1

2
ℜ
�

Sab

�

. (2.30)

The time average of the product of the two real parts of a (t ) and b (t )
is obtained by the real part of the complex conjugate multiplication
of the two complex-valued quantities in the frequency domain. a b ∗

is a cross-power spectrum Sab, which corresponds to a convolution in
the time domain. The energy conservation, Equation (2.24), thus is
obtained in the frequency domain as

2 iω (E pot−E kin) +Pc = P diss (2.31)
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where E pot is the cycle averaged potential energy,

E pot =
1

4
ℜ

�

∫

V

ϵ∗σdV

�

(2.32)

E kin the cycle averaged kinetic energy

Ēkin =
1

4
ℜ

�

∫

V

ρ v ∗v dV

�

. (2.33)

Pc is the complex power, which is complex valued and is obtained
according to Alfredsson et al. [4], Maysenhölder [169], and Pavic [195]
as

Pc =
1

2

∫

S

n Tσv ∗dS . (2.34)

Based on the reformulated mechanical energy conservation, Equa-
tion (2.31), the real and imaginary parts of the complex power can be
related to cycle-averaged values (Alfredsson [3]):

ℜ
�

Pc

�

= P = P diss (2.35)

ℑ
�

Pc

�

= 2ω(E pot−E kin). (2.36)

The real part of the complex power quantity is equal to the vibration
cycle-averaged dissipated power, P diss; it is referred to shortly as mean
power in the following. The imaginary part is proportional to the
product of the circular frequency of excitationω and the Lagrangian
E pot − E kin. It is called reactive power in literature (Jacobsen [130])
and is equal to the magnitude of that part of instantaneous power,
whose cyclic mean value is zero. As reactive power is proportional
to the difference in mean energies, reactive power is considered as a
measure of oscillating energy in electrical networks (Bosse et al. [42]).
For mechanical systems, the use of reactive power as an indicator for
several different effects is discussed critically, especially in the context
of intensity methods, refer to Fahy [75], Jacobsen [130], Maysenhölder
[169], and Rossing [210].

2.3.2 Evaluation of Energetic Quantities in Discretized
Subsystems

These energetic quantities can be evaluated in networks of coupled,
discretized subsystems. For the derivations of this section assume
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a displacement-based subsystem formulation as provided by Equa-
tion (2.6) or Equation (2.11). The subsystem inputs are forces Uk : F ,
the outputs, respectively states are displacements Yk , X k : W and
may contain both translational and rotational DOFs. Such system
formulation is not a requirement for the evaluation of energetic quan-
tities. However, the formulas below need to be reformulated otherwise.
Furthermore, an interface-symmetric subsystem in the form of Equa-
tion (2.6) is required, which is defined by C H

k = Bk

A discretized version of the energy conservation in the frequency
domain, Equation (2.31), is obtained directly by pre-multiplying Equa-
tion (2.6) with the Hermitian of the velocity vector V = iωX . Starting
from that, the relationship for the energetic quantities of discretized
systems can be found. A discretized version of Equation (2.34) is ob-
tained for the calculation of power in accordance with Alfredsson [3]
and Mace et al. [160]. In Ullmann et al. [255], the evaluation of power
in arbitrary cutting sections of FE models was demonstrated. The
complex power, Equation (2.34), can be further split into two parts:
one part, which results from the energy exchange between the sub-
systems of a network, and the input power as another part, which
is supplied by external forces. The first part, the complex power of a
discretized subsystem resulting from the interaction in the network
and summed up over all the subsystem’s interfaces, is given by

Pk =
iω

2
U H

k Yk =
iω

2
U H

k Hk Uk . (2.37)

Consequently, the mean power is obtained from

P k =
ω

2
ℜ
�

i U H
k Yk

�

=
ω

2
ℜ
�

i U H
k Hk Uk

�

=−
ω

2
ℑ
�

U H
k Hk Uk

�

, (2.38)

the reactive power from

Rk =
ω

2
ℑ
�

i U H
k Yk

�

=
ω

2
ℑ
�

i U H
k Hk Uk

�

=
ω

2
ℜ
�

U H
k Hk Uk

�

. (2.39)

The subsystem input power, which results from external forces, is
given by

Pext,k =
iω

2
F H

ext,k Yk =
iω

2
F H

ext,k Hk Fext,k , (2.40)

and the real and imaginary parts correspondingly to Equation (2.38)
and Equation (2.39). The energy exchange of single subsystems through
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partial interfaces are obtained by modifying Equation (2.37), respec-
tively Equation (2.38) or Equation (2.39) for the partial input and out-
put vector.

The cycle-averaged total energy can be calculated from the sum
of kinetic and potential energy E tot,k = E P,k + E P,k for discretized
systems. For the latter, the kinetic energy is obtained at any frequency
by

E kin,k =
1

4
ω2X H

k Mk X k , (2.41)

the potential energy by

E pot,k =
1

4
X H

k K k X k . (2.42)

Real-valued symmetric, respectively complex-valued Hermitian ma-
trices K k and Mk are assumed for Equation (2.41) and Equation (2.42).

2.3.3 Availability of Energetic Quantities for Network
Evaluations

Different methods for an energetic network characterization are avail-
able, which utilize different energetic measures as the quantity of
interest. A first approach is to evaluate the subsystem mean kinetic
and potential energies, like in a SEA method (Le Bot [144] and Lyon
et al. [158]). An additional scaling of the subsystem energies by the sys-
tem input power is possible, resulting in energy influence coefficients
(EIC, Mace et al. [160])

ak l =
E tot,k l

P̄l
(2.43)

where Etot,k l is the total energy in subsystem k due to an external input
power at subsystem l . EICs showed up to give valuable insights into
the dynamics of coupled systems for deterministic low-frequency
systems, as demonstrated for a vehicle floor by Müller et al. [179].
Energy influence coefficients can be further used to estimate SEA
(like) coupling loss factors, see Thite et al. [244].

However, the evaluation of energies is not possible for hybrid net-
works, which include any experimentally or generically determined
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black-box subsystem. Calculating the subsystem energy by Equa-
tion (2.41) and Equation (2.42) requires the inner representation of the
second-order system, Equation (2.6). The subsystem state vector X k ,
mass and stiffness matrix Mk , respectively K k , must be available. In a
measurement-based subsystem identification, the transfer function
is often measured at distinct frequency samples, without reconstruc-
tion of an inner representation. As a possible remedy, energies can
be estimated from the observation of the sampled subsystem inputs
and outputs, which does not require an inner representation (see
Section 7.1.2). However, such approaches are an error-prone approxi-
mation without general applicability.

As a result, power quantities but not subsystem energies can be
evaluated in hybrid networks: the calculation of power solely needs
knowledge of the subsystem inputs and outputs, which are available
in any subsystem coupling scenario by construction. If not explic-
itly stated, mean power quantities are evaluated exclusively in the
following; they contribute to the temporal mean of power and are
thus directly connected to the energy dissipated in the mechanical
network and the energy flow.

2.3.4 Requirements for Accurate Power Quantities

If power should be analyzed in the network as postprocessing, there
are additional requirements for both numerical and experimental
network characterization methods. First, the discussion on these is
based on a SISO setting with unidirectional input and output - with-
out losing generality. Again, the subsystem input is a force Uk : F ,
the output is a displacement Yk : W . Rewriting Equation (2.37) in a
trigonometric form as

P =
1

2
|Uk ||Yk |sin(∆ϕYU) =

1

2
|Uk |2|H |sin(∆ϕH) (2.44)

emphasizes that besides the amplitudes of forces and velocities, the
relative phase between these signals,∆ϕUY , is included in the power
calculation. Hv = s H is the SISO transfer function, which was defined
for a velocity output for brevity, thus the mobility. Accordingly, the
required phase is given by

∆ϕH =∆ϕUY = arctan
ℑ
�

SUY

�

ℜ
�

SUY

� , (2.45)
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where SUY =U ∗
k Yk is the cross power spectrum between output and

input.

Phase Accuracy and Damping Modeling

The accuracy of the relative phase in Equation (2.45) can become a
crucial requirement for meaningful power quantities. To illustrate
this, the paragraphs below follow closely Ullmann et al. [256] and the
sensitivity of power with respect to perturbations in the input and out-
put quantities is discussed. As examined in Chapter 7, experimental
methods may introduce an distortion not proportional to the original
non-distorted value. The absolute conditioning of the power quantity,

cond(P ,γ) =

�

�

�

�

�

∂ P (γ)
∂ γ

�

�

�

�

�

1

|P (γ)|
, (2.46)

is evaluated for this, which differs from the standard conditioning in
that it omits the scaling by |γ|. ∂ P (γ)/∂ γ is the partial derivative of the
mean power P with respect to γ. γ is the input, for which the mean
power’s sensitivity should be analyzed; here, the amplitudes of the two
required quantities, the force and the velocity, and the relative phase
between them are chosen, γ= |Uk |, |Yk |,∆ϕUY . As the amplitudes of
the subsystem input and output are linear inputs to the mean power,
the conditioning results in

cond(P , |Uk |) =
1

Uk
resp. cond(P , |Yk |) =

1

Yk
, (2.47)

which illustrates that the influence of a fixed error of the input or
output scales inversely to the amplitude of the corresponding quantity.
However, the conditioning for the relative phase is

cond(P ,∆ϕUY) = | tan−1(∆ϕUY)|. (2.48)

Equation (2.48) is evaluated in Figure 2.1. The latter illustrates that
∆ϕUY has a significantly higher conditioning for values around a ·π,
with a ∈ Z than provided by the conditioning of the amplitudes in
Equation (2.47). This result indicates a high sensitivity of mean power,
and even small errors in the relative phase may significantly influence
the resulting power. In contrast, for values of∆ϕUY that are around
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(2a−1)π/2, the conditioning is small. A phase of (2a−1)π/2 corresponds
to a resonance of the undamped system, where power has a small
sensitivity with respect to phase errors as a result. Undamped systems
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Figure 2.1: Conditioning of the mean power, Equation (2.46), for the
relative phase angle∆ϕUY .

have a relative phase of aπ, a ∈Z at non-resonant frequencies. The
less a system is damped, the more the relative phase approaches such
value in these frequency ranges. The phase lag from aπ, a ∈Z, which
is introduced by the (light) damping, is small for such systems but
must be determined very accurately for accurate power values due to
the high conditioning in these phase ranges.
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2.3 Energetic Network Analysis for Coupled Deterministic Systems

Example 2.1 (Two-DOF system)

This sensitivity to the relative phase can be illustrated using a two-
DOF system with variable structural damping value η, as defined by
Figure 2.2 and Table 2.1.

Uk

m2

X1

X2

k1(1+ jη)

k2(1+ jη)

m1

Yk

Figure 2.2: Schema of the two-DOF example for evaluating the phase
sensitivity of energetic quantities.

Quantity k1 k2 m1 m2 F0

Value 100 10 0.06 0.05 1

Table 2.1: Parameters for the two-DOF example.

The system has resonances at f1 = 1.49Hz and f2 = 9.78Hz. A
SISO setting is considered with an evaluation at the point of load
input. To illustrate the results of Figure 2.1, a numerical experiment is
performed. A random relative phase error between∆ϕerr ∈ [−1◦, 1◦] is
introduced on∆ϕUY and the coefficient of variation

c =
σ
�

P
�

µ
�

P
� (2.49)
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is repetitively evaluated per frequency for fixed damping values η.

σ
�

P
�

is the standard deviation of mean power for different phase er-

rors andµ
�

P
�

the corresponding mean value. The results are provided
in Figure 2.3 and are in line with the ones of Figure 2.1: The relative
phase approaches a · π/2 for non-resonant frequencies. This results
in power quantities, which are highly sensitive to∆ϕerr, and conse-
quently in c ≥ 10. In contrast, the mean power is insensitive to∆ϕerr

for frequency values close to the system resonances at f1 = 1.49Hz
or f2 = 9.78Hz. As evident from Figure 2.3, there is another, third
frequency range around fA = 7.71Hz in which power is insensitive.
The frequency fA is identified as anti-resonance; thus, the frequency
value at which the system has its maximum input impedance. Fur-
thermore, Figure 2.3 shows the influence of the (sub)system damping
on the evaluation of power: the higher the damping, the lower the
coefficient of variation becomes for non-resonant frequencies. This
is because the difference in the relative phase from π/2 is increased
out of resonance.
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Figure 2.3: Variation coefficient of the two-DOF example’s mean input
power for an uncertain∆ϕUY , illustrated on a logarithmic scale as a

function of the structural damping coefficient.
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As a result, experimental methods to measure power directly or to
provide a subsystem identification based on a transfer function repre-
sentation should be phase accurate for subsystems with light damping
in particular. At least, the qualitative phase errors introduced by the
experimental setup must be known to evaluate the results for power.
Considering an inner system representation, the relative phase is di-
rectly linked with the system damping. Therefore, numerical methods
that work on these representations should have a particular emphasis
on correct damping modeling.

Passivity of Subsystems

In order to evaluate the quantitative phase error and thus the validity
of power quantities, the true phase values of the transfer function
matrix need to be known. This is usually not given for experimen-
tal methods in which the latter just should be determined. Anyhow,
another approach is available for a baseline quality measure of ex-
perimental or numerical methods concerning phase accuracy. This
approach can be performed for any symmetric MIMO transfer func-
tion and is based on the passivity of the single subsystems in the
mechanical network. In system theory, the passivity of subsystems is

defined by the supplied work
∫ T

0
Y (t )T U (t )dt to be lower bounded

for any integration time T . The increase in energy over time does not
exceed the work supplied by the external source, thus is linked to a
time-integrated version of Equation (2.24). The passivity is ensured
for linear systems if they possess a positive real transfer function. As-
suming interface symmetry (C = B H ) and thus a symmetric matrix
of transfer functions H in the Laplace domain and using the posi-
tive real lemma, a positive real transfer function is provided if the
following three conditions hold (see Curtain [63] and Wohlers [273],
for example):

1. Hk (s ) is analytic inℜ(s )> 0

2. Hk (s ∗) =Hk (s )H for all s ∈C

3. ℜ
�

W H Hk (s )W
�

≥ 0 for any W ∈Cn×1 while s ∈C andℜ(s )> 0

The first condition is the requirement of stability and is fulfilled for sta-
ble systems. Thus, passivity includes stability. The second condition
holds for the interface-symmetric second-order systems of the thesis
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with Hermitian system matrices, which can be shown in a straightfor-
ward manner

Hk (s )
H =

�

C k

�

K k + i sgni (s )Sk + s Dk + s 2Mk

�−1
Bk

�H

= B H
k

�

K H
k + i sgni

�

s ∗
�

S H
k + s D H

k + s 2∗M H
k

�−1
C H

k =Hk (s
∗).

For rational transfer functions, the third conditions is equivalent to
the requirement, that the matrix H (iω)+H (iω)H needs to be positive
semi-definite, thus

W H
�

H (iω) +H (iω)H
�

W ≥ 0 (2.50)

holds for all W ∈Cn×1 andω ∈ (R ), while poles of H (s ) on the imagi-
nary axis need to be simple and need to have a nonnegative definite
residuum (Anderson et al. [12]). Poles on the imaginary axis of the
complex plane would be obtained for undamped systems. It turns
out that Equation (2.50) states nothing except that the mean power
balance at the subsystem interface must be larger or equal to zero for
passive subsystems without internal sources for any input vector. In
other words, the mechanical subsystems themselves do not produce
any energy but only dissipate. For a modified system definition of
Equation (2.6), respectively Equation (2.11) with velocity output Y : V ,
the mean power balance is reformulated as

P k =
ω

2
ℜ
�

i
�

U H
k +F H

ext,k

�

Hk

�

Uk +Fext,k

�

�

=
1

2
ℜ
�

•
U

H

k HV,k

•
U k

�

=
1

4

•
U

H �

HV,k +H H
V,k

� •
U ≥ 0.

(2.51)

HV,k = s Hk is the mobility, thus the transfer function matrix for the

velocity output and
•

U k =Uk +Fext,k . Equation (2.51) takes the same
form of Equation (2.50). Consequently, when the subsystem’s passivity
is preserved for any subsystem identification method, based on hard-
ware measurements or on the (manipulation of) numerical modeling,
physically meaningful energetic network analysis can be ensured in
the sense that no artificial energy sources are added.

For black-box subsystems, which provide only an outer represen-
tation sampled at distinct frequency points, the condition of Equa-
tion (2.50) can be evaluated for the mobility at these frequency sam-
ples. As

�

HV,k (iω) +HV,k (iω)H
�

= 2ℜ
�

HV,k (iω)
�

holds for interface
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symmetry, Equation (2.50) is equal to the condition of a positive semi-
definite real part of HV,k ,

ℜ
�

HV,k

�

⪰ 0, (2.52)

for all frequency samples. The diagonal entries of the sampled HV,k

thus must have a positive real part. This requirement is equal to a
negative semi-definite imaginary part of the transfer function for
a displacement output Hk , and a positive semi-definite imaginary
part for the transfer function with an acceleration output. Positive
frequenciesω are assumed in all cases.

The definiteness of matrices is closely related to the possible phase
angles between vectors and their images. For a positive semi-definite
mobility (in the sense of a positive real part of the complex power,
Equation (2.51)), the angle between W and HV,k W

∆ϕW ,HVW = arccos

 

ℜ
�

W H HV,k W
�

∥W ∥


HV,k W




!

must be between ∆ϕW ,HVW ∈
�

−π2 , π2
�

for any W ∈ Cn×1. As a result,
valid angles for the complex-valued diagonal entries of the transfer
function matrix can be derived

ϕHi i
∈











[−π, 0] for Y : W
�

−π2 , π2
�

for Y : V

[0,π] for Y : A.

(2.53)

For the measurement-based identification of passive subsystems,
these passivity indicators provide a quality check for the measured
input-to-output behavior in the frequency domain, which is used by
Allen et al. [6] and Häußler [121], for example.

The preservation of passivity is relevant not only for experimen-
tal methods but a baseline requirement also for numerical methods,
which work on the inner representation. Requirements for preser-
vation of passivity can be deduced for such methods, model order
reduction, for example. Equation (2.8) states, that real-valued sym-
metric or complex-valued Hermitian subsystem matrices K , M , D , S
are assumed for the inner representation of a second-order system
(Equation (2.6)). Thus, the second condition for passivity is fulfilled
by definition. The third condition, the requirement of positive power
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balances, needs extra consideration. While dropping the subsystem
indices2k for brevity and with the subsystem’s mobility as transfer
function

HV(s ) = s B H
�

s 2M + s D +K + i sgni (s )S
�

B ,

the third condition can be rewritten as

W H B H
h

s
�

s 2M + s D +K + i sgni (s )S
�−1
+

s ∗
�

s ∗2M H + s ∗D H +K H + i sgni
�

s ∗
�

S H
�−1

�

BW

=W H B H

�

s ∗M H +D H +
K H + i sgni (s ∗)S H

s ∗

�−1

�

s ∗M H +D H +
K H + i sgni (s ∗)S H

s ∗
+ s M +D +

K + i sgni (s )S
s

�

�

s M +D +
K + i sgni (s )S

s

�−1

BW ≥ 0

(2.54)

This reformulation follows the concept of Salimbahrami et al. [215]
closely but is changed to a complex-valued formulation and the in-
clusion of structural damping. Assuming that M , K , D and S are
Hermitian, as stated by Equation (2.8), and substituting

W̃ =
�

s 2M + s D +K + i sgni (s )S
�−1

BW ,

one arrives at

W̃ H

�

2σM +D H +D +
2σ

σ2+ω2
K +

2|ω|
σ2+ω2

S

�

W̃ ≥ 0. (2.55)

Equation (2.55) is fulfilled if the matrix in brackets is positive semi-
definite. For symmetric subsystems andσ≥ 0, this is ensured again if
the subsystem matrices are Hermitian and positive semi-definite

Dk +D H
k ⪰ 0 Mk =M H

k ⪰ 0 K k = K H
k ⪰ 0 Sk = S H

k ⪰ 0

C k = B H
k .

(2.56)

Thus, any numerical method rendering system matrices, which do not
fulfill these requirements of Equation (2.56), are not passivity preserv-
ing. Note, the signum function in the definition of the structural damp-
ing, Equation (2.14), is essential for the concept of this proof. Without
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the signum function introduced (Meerbergen [172], for example), the
part of the structural damping in Equation (2.55) would become a
complex expression, 2iσS/σ2+ω2. As a result, the semi-definiteness of
the matrix in brackets could not be proved as above.

2.4 Chapter Summary

The system theoretic preliminaries for the energetic analysis and syn-
thesis of mechanical networks were introduced. Two elements define
the corresponding subsystem coupling problem: firstly, a very general
subsystem definition, which only requires the subsystems to provide
outputs for inputs at an interface. The second element is the use of lin-
ear interface constraint equations, which allow for a free definition of
a Neumann-Neumann, Dirichlet-Dirichlet, and Neumann-Dirichlet
coupling of the subsystem inputs and outputs. The inner and outer
(transfer function) representation in the Laplace domain with zero
initial conditions were introduced for the underlying second-order
systems. In particular, it was discussed how structural damping, which
provides a displacement-proportional damping force and is needed
for many industrial models, can be introduced in these representa-
tions. Different energetic quantities were discussed, which can be
evaluated for subsystems. While this was discussed from a continuum
mechanics point of view, corresponding formulas were presented for
discretized systems. It was pointed out that mean power provides a
measure for the energy flow due to dissipation and can be calculated
solely from the subsystem inputs and outputs; thus, it is available for
any hybrid network setup. Based on a two-degrees-of-freedom sys-
tem, it was shown that the accuracy in the phase shift introduced by
the system damping can be essential for evaluating power quantities
for lightly damped systems, in particular. Thus, one needs to model
damping correctly in numerical methods and to ensure phase correct
experimental approaches. The concept of subsystem passivity was
introduced to provide a baseline quality measure for damping and
phase modeling. It was shown that passivity implies non-negative
power balances at the subsystem level and thus provides physically
meaningful energy flow analyses. Conditions for the inner and the
transfer function representation were finally derived to ensure passiv-
ity for second-order systems.
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3
FULLY MODULAR RESIDUAL BASED

SUBSYSTEM COUPLING FRAMEWORK

Subsystem coupling is mainly used for hybridization in vehicle vibroa-
coustics so far. However, there is another motivation for subsystem
coupling, which is not much considered yet in this domain. It provides
modularity, which allows for the massively parallel computation of
subsystem solutions in the online phase, thus for a significant com-
putational speedup. For multi-query applications, the latter is further
increased by modularity, as single input parameters usually can be
linked to single subsystems; this allows for recycling of large parts
of the network calculations if only a few parameters are changed.
For this, modularity is the central concept for this thesis’s numerical
framework, and an efficient and truly modular approach to subsystem
coupling is presented on the level of algebraic systems of equations.
It builds on the very general subsystem definition of Section 2.1.1.
As a result, minimum requirements for the coupling definition and
the subsystem properties are needed. Singular or black-box subsys-
tems can be coupled. Furthermore, the presented approach provides
a unifying framework for classic domain decomposition methods on

45



3 Fully Modular Residual Based Subsystem Coupling Framework

the level of algebraic equations and an explicit link between domain
decomposition and co-simulation.

3.1 Existing Methods and Limitations

Classic domain decomposition methods are available for such effi-
cient parallelized evaluation of vibroacoustic systems in the online
phase. For this purpose, domain decomposition approaches partition
the monolithic problem into (a network of) subdomains, followed
by a coupling step, thus domain integration. The latter involves the
independent and thus parallelizable solution of the subsystems and
a final synchronization step solving an interface problem.

For the first time, domain decomposition methods were intro-
duced for overlapping subdomains by Schwarz [222] in the nineteenth
century. In recent decades, domain decomposition methods with non-
overlapping subdomains gained popularity, in the iterative solution of
coupled problems, for example (see Toselli et al. [247] for an overview).
The case of non-overlapping subsystems is considered in the follow-
ing, while the focus is not on the first step of the domain partitioning,
thus exactly where and how to split. Focus is on the second step of
the subsystem coupling instead. Nevertheless, the way of subsystem
coupling, of course, is linked to the possible domain partitioning, as
discussed below.

The presented study on subsystem coupling is not restricted to
a particular partial differential equation. No reference to underlying
continuous operators is given here, but the problem of subsystem
coupling is discussed on the level of the algebraic systems of equations,
as they arise from discretization methods. To review classic domain
decomposition methods, assume a class of problems that render the
following algebraic system of equations which define the coupled
network of s subsystems











A X = F +G

B̂ X = 0

L T G = 0

. (3.1)

A is the block diagonal matrix of the single subsystem matrices,
A = diag

�

A 1, A 2, ..., A s

�

, which are typically the dynamic stiffness ma-
trices of the subsystems for structural dynamics. X contains the sub-
system primal quantities (states), which may be coupled to other
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subsystems or not, F the subsystem dual quantities that arise from
external excitation, G the subsystem dual quantities from coupling
effects between the different subsystems. In structural mechanics, X
classically contains displacements, F and G forces.

X =











X 1

...

X s











G =











G1

...

Gs











F =











F1

...

Fs











.

The coupling between the subsystems is defined firstly by the compat-
ibility of the subsystem primal quantities in the second line of Equa-
tion (3.1), which is expressed as a weighted linear combination of the
entries of X as defined by the mapping matrix B̂ ∈Rni×n . Secondly, by
the equilibrium of dual quantities in the third line of Equation (3.1),
which again is a weighted linear mapping, now of the entries of G as
given by the mapping matrix L ∈Rni×n .

Starting from that formulation, two popular approaches for do-
main decomposition methods can be introduced briefly on the level
of the algebraic equations. For a more detailed overview of classic do-
main decomposition methods, refer to Mathew [168] and Toselli et al.
[247]. The basic idea is to transform X , respectively G to fulfill either
the compatibility or equilibrium by construction. A key ingredient
is that the class of networks, which is considered in such methods,
renders a matrix operator for compatibility B̂ , which forms the null
space of the one for equilibrium L

B̂ =Null (L ) B̂ T =Null
�

L T
�

, (3.2)

and vice versa.

Primal Methods In the first approach of primal methods, a trans-
formed vector of primal quantities X is introduced, with X = L X . X
ensures the compatibility by definition

B̂ X = B̂ L X = 0,
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as Equation (3.2) holds. Simply spoken, two directly coupled states,
which consequently must take the same value, are replaced by only
one unknown in X . Thus, Equation (3.1) reduces to

(

A L X = F +G

L T G = 0
. (3.3)

One could call X an assembled quantity, which is denoted by 2 in
the following. In the general formulation, X can contain both primal
quantities, that are coupled to other subsystems, and uncoupled ones.
To solve the coupling problem, anyhow, only the coupled interface
quantities are required of each subsystem k , thus Yk and Uk . For

subsystems in the form Equation (2.9), the uncoupled quantities
•

X k

can be condensed by the subsystems’ Schur complement form

A Schur,k Yk = FSchur,k +Uk , (3.4)

which results in

�

A YY,k − A YX,k A−1
XX,k A XY,k

�

Yk =
•

F ext,k −A YX,k A−1
XX,k Fext,k +Uk . (3.5)

Using Schur complement forms, a reduced form of Equation (3.3) is
obtained

(

A Schur L Y Y = FSchur+U

L T
Y U = 0

(3.6)

with L Y being the mapping matrix for the equilibrium of the subsys-
tem inputs, Y = L Y Y and

Y =
h

Y T
1 , Y T

2 , . . . , Y T
s

iT
U =

h

U T
1 , U T

2 , . . . , U T
s

iT
.

Eliminating U in the first line of Equation (3.6) by a left hand multi-
plication with L T

Y , one renders an interface problem to solve for the
unknown primal variables, the subsystem outputs, as

L T
Y A SchurL YY = L T

Y FSchur. (3.7)

Equation (3.7) is also called Schur-complement system, which is equal
to the discretized Poincaré-Steklov operator. In structural dynamics,
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any FE assembly can be considered a primal assembly; without con-
densation of non-coupled quantities. More distinct subsystem cou-
pling approaches are provided by primal assemblies, which are com-
bined with non-parametric model order reduction in the approach of
Component Mode Synthesis (Craig et al. [58] and Hurty [126]). Again,
the internal uncoupled states usually are not condensed in such an
approach.

Dual Methods Dual approaches are an alternative. A vector of La-
grange multipliers λ can be introduced for the dual quantities result-
ing from coupling, while G =−B̂ T λ holds. This choice of transforma-
tion ensures that the equilibrium condition,

L T G =−L T B̂ T λ= 0,

is fulfilled by definition for systems where Equation (3.2) holds. Thus,
Equation (3.1) reduces to

(

A X = F − B̂ T λ

B̂ X = 0
. (3.8)

Eliminating X in the first line of Equation (3.8), one arrives at an in-
terface problem for determining the dual quantities for coupling by

�

B̂ A−1B̂ T
�

λ= B̂ A−1F . (3.9)

Again, it is sufficient to use only coupled states for constructing the
interface problem

�

B̂U A−1
SchurB̂ T

U

�

λ= B̂U A−1
SchurFSchur (3.10)

with U = −B̂ T
Uλ, A Schur and FSchur according to Equation (3.4). Dual

approaches are used in many different disciplines. They are popular
in iterative domain decomposition approaches, like for the finite el-
ement tearing and interconnecting (FETI) method (Farhat et al. [76,
77]). Preconditioned iterative algorithms are used in such an approach
to solving the interface problem of Equation (3.9). Especially for FETI,
many different variants of dual methods were developed through the
last decades; see Gosselet et al. [102] for an overview. In structural
dynamics, dual approaches are applied through the Frequency-Based
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Substructuring (FBS) formulation for Lagrange Multipliers (de Klerk
[66]). Just recently, FBS gained popularity in vehicle vibroacoustics in
order to include experimentally identified subsystems (Häußler [121]
and Van Der Seijs [260], for example).

All the above methods have in common that a homogeneous do-
main decomposition is required. The latter is defined as an assembly
according to Equation (3.1) which incorporates solely subsystems of
the same form (for second-order systems in the Laplace domain Equa-
tion (2.9) or Equation (2.6)). Subsystem primal variables are coupled
to primal variables, dual quantities to dual ones. While this restriction
sounds natural from a theory point of view, it imposes unnecessary
restrictions in practice, as shown below. In dual methods, the sin-
gle subsystem matrices A k need to be invertible, see Equation (3.9);
therefore, the systematic incorporation of singular subsystems is chal-
lenging. This inclusion requires the construction of coarse problems
in FETI methods, which differ between the single FETI formulations.
A discussion for incorporating singular subsystems for FBS, which can
be achieved by pseudo inverses or merging with other subsystems, is
provided in Allen et al. [6].

3.2 Mixed Residual Based Coupling (MRC) Framework

A valuable observation is that co-simulation algorithms also aim at
subsystem coupling. Although derived in a different context, there
is clearly a strong theoretical connection to domain decomposition
methods. Sicklinger [227] presented the Interface-Jacobian-based
Co-Simulation Algorithm (IJCSA), a very general formulation for the
co-simulation of non-linear problems. It is based on the concept of
Newton iterations and includes the definition of a Jacobi matrix for
the interface problem.

In the following, a very flexible coupling methodology for linear
subsystems is derived on the level of algebraic systems of equations,
which is based on a linearization of the IJCSA. This development re-
sults in the novel framework of mixed residual coupling (MRC). Two
essential ingredients are forming the framework, which are discussed
below. Firstly, the idea of subsystem coupling using the ordinary New-
ton method is presented for the general problem definition of Sec-
tion 2.1.1. For the latter, the notation of the parametric dependency of
quantities is dropped for brevity in the following. This concept is fol-
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lowed from the IJCSA framework with modifications for purely linear
systems. It is discussed how singular subsystems can be included in
such an approach. Secondly, a novel coordinate transformation is in-
troduced, resulting in a mixed input vector, which provides efficiency
enhancements and relates classic domain decomposition methods
to the MRC framework.

3.2.1 The Concept of Subsystem Coupling with Newton’s
Method

The general subsystem and network definition of Section 2.1.1 is one
enabler for the MRC framework. Basically, the interface constraint
equations, Equation (2.2), need to be fulfilled to obtain a coupling
between the subsystems of the network. Consequently, the residuum
vector

r =
h

R1, R2, . . . , Rns

iT
, (3.11)

which is formed of the interface constraints

R j = I j

�

Yk , Uk , k = 1, ..., ns

�

must become zero. For the limitation on arbitrary but linear coupling
between inputs and outputs (see Equation (2.3)), a matrix notation
can be found for the residuum

r =
∂ I
∂ Y

Y +
∂ I
∂U

U , (3.12)

with the matrices ∂I∂ Y ∈Rnr×nY and ∂I
∂U ∈Rnr×nU ; here nY is the overall

number of subsystem outputs in the whole network, nU is the overall
number of subsystem inputs, nr is the number of the required inter-
face constraint equations to define the network. Due to the assumed
subsystems’ interface symmetry, there are as many subsystem outputs
as inputs in the overall network, and nY = nU = nr holds for the basic
formulation of the method in this section. Symmetric subsystems are
not required for the proposed method of MRC, but the MRC frame-
work can be applied to a setting of subsystems with non-symmetric
interfaces, too. Solely the notation needs to be adapted slightly in this
case.
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To visualize the MRC approach of system definition, one can write
the coupling problem similar to Equation (3.1) as

(

Yk = Sk

�

Uk

�

k = 1, ..., ns

r = ∂I∂ Y Y + ∂I∂U U = 0
.

Compared to the form of common domain decomposition methods in
Section 3.1, this problem definition is more general. It is not restricted
to a homogeneous domain decomposition as the linear subsystems
can have any form as long as they provide an interface by Yk and Uk .
Any interface quantities can be coupled in any linear combination.
This flexibility allows handling a non-homogeneous domain decom-
position, in which the single subsystem outputs of the network are
not necessarily the same physical quantity, respectively the inputs.

An initial guess for the subsystem inputs usually does not result
in a zero residuum vector r = 0. Following the idea of IJCSA in Sick-
linger [227], the ordinary Newton method is chosen to achieve a zero
residuum vector and thus a coupled system solution. Starting with an
initial guess of 0U , an input vector U is found iteratively, which en-
sures r = 0. During iteration m , the input vector m U is updated with a
corrector m∆c . Following Newton’s method, the latter is determined
from the interface problem

m J ·m∆c =−m r . (3.13)

m J is the Jacobian matrix of the residuum (Equation (3.11)) in iteration
m . It contains the first derivative of the interface constraint equations
with respect to U and can be written as

m J =
∂ I
∂ S
·

m ∂ S
∂U

+
∂ I
∂U

=
∂ I
∂ Y
·

m ∂ Y

∂U
+
∂ I
∂U

=











∂ I1
∂ Y1
·

m ∂ Y1
∂U1
+ ∂ I1
∂U1

. . . ∂ I1
∂ Yns
·

m ∂ Yns
∂Uns

+ ∂ I1
∂Uns

...
...

...
∂ Ir
∂ Y1
·

m ∂ Y1
∂U1
+ ∂ Is
∂U1

. . . ∂ Ir
∂ Yns
·

m ∂ Ys
∂Uns

+ ∂ Ins
∂Uns











. (3.14)

The Jacobian includes the same matrices as Equation (3.12); addi-
tionally, the derivatives of the subsystem inputs with respect to their
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outputs are incorporated, which can formally be written as a block
diagonal matrix

∂ S
∂U

=
∂ Y

∂U
= diag

�

∂ Y1

∂U1
,
∂ Y2

∂U2
, . . . ,

∂ Yns

∂Uns

�

.

Equation (3.13) and Equation (3.14) hold for networks incorporating
both linear and non-linear subsystems. For the case of coupling solely
linear subsystems, as considered here, further simplifications are pos-
sible. The necessary steps for coupling linear subsystems are given
by Algorithm 3.1. The frames n in Algorithm 3.1 can be frequency
samples for a harmonic analysis or time steps for analyses in the time
domain.

Algorithm 3.1: Subsystem coupling of linear assemblies by Newton’s
Method in matrix notation form.

// select starting values
1 0Ui = 0

// loop over frames
2 for n = 0, ...nf do

// solve all subsystems in parallel
3 0Y n

i = Si

�

0U n
i

�

// initialize assembly operators

4
∂ I
∂U

n

,
∂ I
∂ Y

n

// evaluate residuum

5 0r n = ∂I∂ Y
n 0Y n + ∂I∂U

n 0U n

// calculate input/output relation of subsystems

6
∂ Y

∂U

n

=
Yi

Ui
// assemble the Jacobian

7 J n =
∂ I
∂ Y

n ∂ Y

∂U

n

+
∂ I
∂U

n

// get corrector
8 J n∆c n =−0r n

// apply corrector
9 1U n

i =
0U n

i +∆c n
i

// solve all subsystems in parallel
10 1Y n

i = Si

�

1U n
i

�
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Compared to the classic formulation of the IJCSA by Sicklinger
[227], Algorithm 3.1 involves two major simplifications for linear sys-
tems: Most prominently, networks of purely linear systems only need
one Newton iteration for convergence. Thus the input corrector has
to be determined once, and 1r = 0 is fulfilled by definition.

In addition, the derivatives of the subsystem outputs with respect
to the subsystem inputs are determined directly by the subsystem’s
input-to-output-behavior

∂ Yk

∂Uk
=

Yk

Uk
. (3.15)

As the required derivatives are provided by the transfer function of
the linear system (compare Equation (2.10)), ∂ Yk/∂Uk could be directly
replaced by Hk . Anyhow, the notation ∂ Yk/∂Uk is preferred over Hk in
this and the following chapter for consistency with IJCSA.

Note that a frame-independent ∂I/∂U n = ∂I/∂U and ∂I/∂ Y n =
∂I/∂ Y can be usually ensured. In this case, the corresponding step
four in 3.1 can be extracted from the loop for further simplifications.

Further note that only the subsystem inputs and outputs, coupled
to each other, are considered in Y and U in the following. There may
be the case that a subsystem would formally provide more inputs and
outputs for coupling, as used for the actual network. In such case, one
would slightly reformulate Equation (2.6) as

A k X k =
h

BX,k BU,k

i











FX,k

FU,k



+





0

Uk















Ỹk

Yk



=





C X,k

C Y,k



X k

, (3.16)

and only that part of the transfer function which is coupled defines
the required input-to-output behavior

∂ Yk

∂Uk
=C Y,k A−1

k BU,k . (3.17)

54



3.2 Mixed Residual Based Coupling (MRC) Framework

Example 3.1 (Homogeneous Three Subsystem Example)

The concept of Newton iterations for subsystem coupling can be
visualized by means of the example in Figure 3.1. Three subsystems
define the mechanical network, each forming a spring-mass system.
The single subsystems are connected via point interfaces to each other.
The example is used throughout the whole chapter to illustrate the
different formulations of the presented MRC framework.

F2

S2 S3 S1

m2 m3 m1
U1
Y1

U3,2
Y3,2

U3,1
Y3,1

U2
Y2

Figure 3.1: Three subsystem example. Each subsystem consists of a
coupled mass and spring.

Consider a homogeneous domain decomposition for a first setting.
All subsystem outputs are displacements, all inputs are forces (see
Table 3.1). All subsystems are of the form of Equation (2.9):

Y1 = S1(U1) (k1−ω2m1)Y1 =U1

Y2 = S2(U2)





k2−ω2m2 −k2

−k2 k2









X2

Y2



=





F2

U2





Y3 = S3(U3)





k3−ω2m3 −k3

−k3 k3



Y3 =U3.
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Subsystem S Y U

1 W F

2 W F

3 W F

Table 3.1: Input/output configuration of the subsystems for the
homogeneous decomposition of the three subsystem example.

The homogeneous domain decomposition requires solely Diri-
chlet-Dirichlet and Neumann-Neumann interface constraints to de-
fine the coupling. This results in a residuum vector of

r =

















Y2−Y3,1

U2+U3,1

Y1−Y3,2

U1+U3,2

















=
∂ I
∂ Y

Y +
∂ I
∂U

U

with

Y =

















Y1

Y2

Y3,1

Y3,2

















U =

















U1

U2

U3,1

U3,2

















and

∂ I
∂ Y

=

















0 1 −1 0

0 0 0 0

1 0 0 −1

0 0 0 0

















∂ I
∂U

=

















0 0 0 0

0 1 1 0

0 0 0 0

1 0 0 1

















.
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Assume values of k1 = k , m1 = 2m , k2 = 5k , m2 = 2m , k3 = 3k , and
m3 =m for the example throughout the whole chapter. For the initial
solution of zero subsystem inputs

0U =
h

0 0 0 0
iT

0Y =
h

0 − F2
2mω2 0 0

iT

a non-zero residuum is obtained

0r =
h

− F2
2mω2 0 0 0

iT
.

The interface Jacobian matrix needs to be formed to construct
the interface problem of Equation (3.13). This involves the evaluation
of the subsystem derivatives according to Equation (3.15), thus the
determination of the transfer functions for the linear subsystems.
While this is obtained by an inversion of the subsystem matrix A k

of Equation (2.9) for S1 and S3, S2 has an internal uncoupled state.
Consequently, the Schur complement is formed for ∂ Y2/∂U2 according
to Equation (2.12):

∂ Y2

∂U2
= A−1

2,Schur =

�

5k −
25k 2

5k −2ω2m

�−1

=
2ω2m −5k

10k mω2
.

This results in

∂ S
∂U

= diag

�

∂ Y1

∂U1
,
∂ Y2

∂U2
,
∂ Y3

∂U3

�

= diag
�

A−1
1 , A−1

2,Schur, A−1
3

�

=

















1
k−ω22m 0 0 0

0 2ω2m−5k
10k mω2 0 0

0 0 −1
ω2m

−1
ω2m

0 0 −1
ω2m

−ω2m+3k
3kω2m

















and the interface Jacobian matrix as

J =
∂ I
∂ S

∂ S
∂U

+
∂ I
∂U

=

















0 −−ω
22m+5k

10kω2m
1
ω2m

1
ω2m

0 1 1 0

−1
k−ω22m 0 1

ω2m
−ω2m+3k

3kω2m

1 0 0 1

















.
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The solution of the interface problem of Equation (3.13) provides
a corrector for the inputs of

∆c = t ·

















15F2k 2
�

−2mω2+k
�

−5F2k
�

2m 2ω4−10k mω2+3k 2
�

5F2k
�

2m 2ω4−10k mω2+3k 2
�

−15F2k 2
�

−2mω2+k
�

















with t =
�

−4 m 3ω6+50 k m 2ω4−96 k 2mω2+15 k 3
�−1

. Applying the
corrector 1U =∆c , the update of the subsystem outputs results in the
final coupled solution

1Y = t ·

















15k 2F2

10F2k (−mω2+2k )

10F2k (−mω2+2k )

15k 2F2

















.

■

Using the above concept of subsystem coupling for a homoge-
neous domain decomposition, the resulting interface problem has
some similarities with the one of three-field approaches. Three-field
approaches were initially developed to couple subsystems with non-
conforming meshes and incorporate another output field (Aminpour
et al. [9]), but were also used for mixed assemblies in structural dy-
namics (Voormeeren et al. [268]). Both approaches use Dirichlet-
Dirichlet and Neumann-Neumann constraint equations concurrently
to form the interface problem. This is in contrast to the interface
problems of the primal approach (Equation (3.7)) or dual approach
(Equation (3.7)), for which one of the constraints is fulfilled a-priori
by a suitable coordinate transformation.

The duality of the Dirichlet-Dirichlet and Neumann-Neumann
residuum equations results in redundancies in the corrector. As illus-
trated by the example, the single entries of∆c differ pairwise only by
their sign for a homogeneous domain decomposition and a one-to-
one coupling of DOFs. This redundancy leads to an interface problem,
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which is of double size compared to a classical domain decomposition.
This motivates to combine the concept of Newton iterations with a
coordinate transformation similar to classic domain decomposition
methods. Introducing a mixed input vector below, this is achieved.
But before, it is shown how one can use the framework’s flexibility to
incorporate singular subsystems.

3.2.2 Handling of Singular Subsystems

The flexibility of the above MRC framework allows to incorporate
singular subsystems in a direct and straightforward matter, which is
not possible in classic domain decomposition approaches. Singular
subsystems arise from floating substructures in structural mechanics
or mass-less subsystems in structural dynamics. Mass-less subsys-
tems can be a result of an early prototyping stage or experimental
procedures for mount characterization; for an automotive application
of the latter refer to Almirón et al. [7]. The proposed procedure for
inclusion is illustrated through a massless subsystem, which contains
a one-dimensional spring (Figure 3.2).

Uk ,2
Yk ,2

Uk ,1
Yk ,1.

Figure 3.2: A one-dimensional spring subsystem.

The subsystem is defined in the form of Equation (2.9) as

Yk = Sk (Uk ) A k Yk =Uk ↔





k −k

−k k









Yk ,1

Yk ,2



=





Uk ,1

Uk ,2



 ,

(3.18)

thus has forces as inputs and displacements as outputs. The inversion
of the subsystem matrix A k is not possible without using a pseudo-
inverse, as A k is singular. Such problem is also called a pure-Neumann
problem (see Bochev et al. [36]).

The flexible framework of the MRC presents a systematic and
straightforward possibility to handle such subsystem, given that intru-
sive access to A k is provided. No pseudo inverses are needed and the
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spring can remain an independent subsystem. To avoid the inversion
of the full A k some of the inputs and outputs can be switched. Corre-
sponding to the rank deficiency z of the subsystem system matrix A k ,
z inputs and outputs need to be interchanged. For this, a system of
the form of Equation (2.9) is rewritten as





A LL A LY

A YL A YY









L Y

Ysw



=





L U

Usw





while2sw indicates the subset of inputs and outputs, which are switched

in the following. L Y =
h

X̃ Ynosw

iT
contains the outputs not to be

switched and uncoupled internal states. L U =
h

0 Unosw

iT
is formed

accordingly by the subset of inputs Unosw, which are not switched. The
index k for indicating subsystem k is omitted for brevity. Switching
the inputs and outputs





A LL A LY

A YL A YY









L Y

�Usw



=





L U

−�Ysw



 , (3.19)

one can rearrange the subsystem as





−A LY A−1
YY A YL+ A LL −A LY A−1

YY

−A−1
YY A LY −A−1

YY









L Y

�Ysw



=





L U

�Usw



 .

The symmetry of the original subsystem matrix A can be preserved
by this scheme of switching, resulting in

∂ Yk

∂Uk
=





A−1
LL −A−1

LL A LY

−A YL A−1
LL A YL A−1

LL A LY− A YY



 . (3.20)

The basic idea of input-output switching is a concept many engi-
neers are used to as they were taught manual methods for specific
kinds of impedance coupling in their undergraduate studies. The MRC
framework here provides a systematic framework for such switching
concepts in general subsystem coupling applications.

60



3.2 Mixed Residual Based Coupling (MRC) Framework

For the spring subsystem, the rank deficiency of A k is one. Chang-
ing one input and output





k −k

−k k









�Ui ,1

Yi ,2



=





−�Yi ,1

Ui ,2



 ,

one arrives at




− 1
k 1

1 0









�Yi ,1

Yi ,2



=





�Ui ,1

Ui ,2



 (3.21)

and

∂ Yi

∂Ui
=





0 1

1 1
k



 . (3.22)

A mandatory non-homogeneous domain decomposition is ob-
tained by interchanging inputs and outputs partially. The inputs con-
tain different physical quantities, forces and displacements for the
spring example, the outputs accordingly. Thus, the interface con-
straint equations have to be adapted. Coupling constraint equations,
which were of Neumann-Neumann and Dirichlet-Dirichlet type be-
fore switching, are changed to Dirichlet-Neumann.

The stiffer the spring is, the worse conditioned Equation (3.22)
and Equation (3.22) become. As alternative an even simpler possibil-
ity is to switch all subsystem inputs and outputs. Particular caution
is required in this case, as the natural boundary conditions of a sub-
system are not fulfilled anymore by default. In structural mechanics,
for example, a full switch results in a zero displacement boundary
condition for a zero (uncoupled) input, but not a zero force. As conse-
quence, either additional residuum equations need to be defined to
constrain the uncoupled inputs and outputs, or the system must be
in Schur-complement form

A k ,Schur
�Uk = �Yk . (3.23)

In this case,

∂ �Yk

∂ �Uk

= A k ,Schur. (3.24)
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The subsystem’s A k ,Schur is not modified by switching all inputs and
outputs. However, all interface constraint equations involving the
switched subsystem need to be adapted.

Example 3.2 (Non-Homogeneous Three Subsystem Example)

Continuing the example of Section 3.2.1, interface switching to in-
clude singular subsystems in the MRC framework is demonstrated.
Assume that the three subsystem network should be enabled for a
zero mass of subsystem S3.

In a first setting, the approach of a full switch of the interface of
subsystem S3 is discussed for this and S3 takes the form of

Y3 = S3(U3)





k3−ω2m3 −k3

−k3 k3



U3 = Y3.

Subsystem S Y U

1 W F

2 W F

3 F W

Table 3.2: Input/output configuration of the subsystems for the
non-homogeneous decomposition of the three subsystem example. A full

switch of S3 is considered.

As a result, all inputs of subsystem S3 are displacements, all out-
puts forces. A non-homogeneous domain decomposition is obtained
according to Table 3.2. As all interface constraint equations involve
the interface quantities of S3, the whole coupling definition needs to
be changed to Dirichlet-Neumann type equations

r =

















Y2− �U3,1

U2+ �Y3,1

Y1− �U3,2

U1+ �Y3,2

















,
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which results in

∂ I
∂ Y

=

















0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

















∂ I
∂U

=

















0 0 −1 0

0 1 0 0

0 0 0 −1

1 0 0 0

















.

With

∂ S
∂U

= diag
�

A−1
1 , A−1

2,Schur, A 3

�

=

















1
k−ω22m 0 0 0

0 2ω2m−5k
10k mω2 0 0

0 0 3k −ω2m −3k

0 0 −3k 3k

















,

the interface Jacobian now becomes

J =
∂ I
∂ S

∂ S
∂U

+
∂ I
∂U

=

















0 2 mω2−5 k
10k mω2 −1 0

0 1 −ω2+3 k −3 k

1
−2 mω2+k 0 0 −1

1 0 −3 k 3 k

















.

The values of 0U , 0Y and 0r do not change compared to Section 3.2.1.
Solving the corresponding interface problem, the following corrector
is obtained

∆c̃ = t ·

















15F2k 2
�

k −2mω2
�

−5k F2

�

2m 2ω4−10k mω2+3k 2
�

10F2k
�

2k −mω2
�

15F2k 2

















.
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Updating the subsystems for the inputs 1U =∆c , the coupled subsys-
tem outputs are

1Y = t ·

















15k 2F2

10k F2

�

−mω2+2 k
�

5k F2

�

2m 2ω4−10k mω2+3k 2
�

−15F2k 2
�

k −2mω2
�

















.

As alternative strategy for input switching, a partial switch is already
sufficient and the first output and input of subsystem S3 are switched
in a second setting. The modified subsystem takes the form of

Y3 = S3(U3)





k3−ω2m3 −k3

−k3 k3









U3,1

Y3,2



=





−Y3,1

U3,2





→





− 1
3k−ω2m

3k
3k−ω2m

3k
3k−ω2m 3k − 9k 2

3k−ω2m









Y3,1

Y3,2



=





U3,1

U3,2



 .

The input �U3,1 is now a displacement, while U3,2 is still a force. In
contrast to the first setting, only the first two constraint equations
involving �U3,1 and �Y3,1 have to be changed to Dirichlet-Neumann type.
The remaining two interface equations are still of Dirichlet-Dirichlet
and Neumann-Neumann type:

r =

















Y2− �U3,1

U2− �Y3,1

Y1−Y3,2

U1+U3,2

















.

With

∂ I
∂ Y

=

















0 1 0 0

0 0 −1 0

1 0 0 −1

0 0 0 0

















∂ I
∂U

=

















0 0 −1 0

0 1 0 0

0 0 0 0

1 0 0 1

















64



3.2 Mixed Residual Based Coupling (MRC) Framework

and

∂ S
∂U

= diag
�

A−1
1 , A−1

2,Schur, A−1
3,mod

�

=

















1
k−ω22m 0 0 0

0 2ω2m−5k
10k mω2 0 0

0 0 ω2m 1

0 0 1 1
3k

















,

the Jacobian results in

J =
∂ I
∂ S

∂ S
∂U

+
∂ I
∂U

=

















0 2 mω2−5 k
10k mω2 −1 0

0 1 −mω2 −1

1
−2 mω2+k 0 −1 − 1

3k

1 0 0 1

















.

Again, 0U , 0Y and 0r do not change compared to Section 3.2.1, which
results in the converged inputs

1U =∆c̃ = t ·

















15F2k 2
�

k −2mω2
�

−5k F2

�

2m 2ω4−10k mω2+3k 2
�

10F2k
�

2k −mω2
�

−15F2k 2
�

k −2mω2
�

















and outputs

1Y = t ·

















15k 2F2

10k F2

�

−mω2+2 k
�

5k F2

�

2m 2ω4−10k mω2+3k 2
�

15k 2F2

















.

For both settings, a zero mass m3 = 0 is now possible, resulting in S3

being a simple spring subsystem.

■
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3.2.3 Efficiency Enhancements by a Mixed Input Vector

As discussed above, the duality of Dirichlet-Dirichlet and Neumann-
Neumann residuum equations in the definition of the interface prob-
lem leads to a redundancy in the input corrector. Considering both,
Dirichlet-Dirichlet and Neumann-Neumann constraints explicitly in
the interface problem may be beneficial for iterative solutions of the
interface problem in Equation (3.13). However, this redundancy is not
required in a direct solution of Equation (3.13) for linear subsystems.
Motivated by this, a novel coordinate transformation is introduced
as second key ingredient of the MRC framework, resulting in a mixed
input vector that avoids redundancy. Similar to a classic dual domain
decomposition method, the Neumann-Neumann constraint equa-
tions should be fulfilled implicitly by that coordinate transformation
for efficiency, while preserving the full flexibility, which was achieved
above.

The approach is illustrated in a first step with a set of minimum as-
sumptions on the problem definition. Shorter formula are presented
for a subclass of coupling problems in a second step. Without the
introduction of further assumptions on the interface definition, r and
U is formally resorted such that

∂ Î
∂ Û
=





∂ DxI
∂ DNU 0

0 ∂ NNI
∂ NNU



 (3.25)

with

I = ZIÎ = ZI





DxI

NNI



 U = ZUÛ = ZU





DNU

NNU



 .

ZU and ZI are boolean mappers to the initial ordering of interface
constraint equations and inputs. DxI are the constraint equations,
which are of Dirichlet-Neumann or Dirichlet-Dirichlet type; DxU are
the inputs which are involved in these interface constraints. NNI are
the Neumann-Neumann constraint equations and NNU the inputs,
which are constrained solely by these constraint equations. Once the
null space of ∂ NNI/∂ NNU is found, the following coordinate transforma-
tion can be defined

NNU =Null

�

∂ NNI
∂ NNU

�

NNU . (3.26)
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While NNU contains pairwise correlated inputs for the example of a
one-to-one coupling, which solely differ by their sign, the assembled
version NNU contains only one inputs for these pairs. This concept
is equal to the introduction of Lagrange-Multipliers in dual domain
decomposition methods. Using the assembled inputs provided by
the transformation of Equation (3.26), one can show that the corre-
sponding Neumann-Neumann constraint equations result in a zero
residuum by definition

NNr =
∂ NNI
∂ NNU NNU =

∂ NNI
∂ NNU

Null

�

∂ NNI
∂ NNU

�

NNU = 0 ·NNU . (3.27)

By the introduction of the transformation matrix

V = ZU





DNT 0

0 Null
�

∂ NNI
∂ NNU

�



 , (3.28)

the full input vector can be transformed

U =V Ũ .

Ũ is called the mixed input vector, accounting for the fact that it con-
tains unique assembled inputs NNU as well as non-assembled inputs

DNŨ

Ũ =





DNŨ

NNU



 .

DNT which is contained in Equation (3.28) is an arbitrary linear trans-
formation matrix of the inputs, which are constrained by Dirichlet-
Neumann interface conditions DNU = DNT · DNŨ . The matrix DNT
may be chosen as the identity matrix, alternatively any resorting or
sign switching of the inputs can be realized.
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In line with Equation (3.27), only the Dirichlet-Neumann respec-
tively Dirichlet-Dirichlet residuum equations Dxr need to be evaluated
for a mixed input vector

r̂ =
∂ Î
∂ Y

Y +
∂ Î
∂ Û

Û

=
�

∂ DxI
∂ Y

0

�

Y +





∂ DxI
∂ DNU 0

0 ∂ NNI
∂ NNU









DNT 0

0 Null
�

∂ NNI
∂ NNU

�



Ũ

=







∂ DxI
∂ Y

0






Y +





∂ DxI
∂ DNU DNT 0

0 0



Ũ =





Dxr

0



 ,

which leads to an interface problem of reduced size

J̃∆c̃ =−0
Dxr . (3.29)

∆c̃ provides the corrector for the mixed input vector Ũ , while the
subsystem inputs are obtained by

1U = 0U +V ∆c̃ .

The Jacobian matrix of the correspondingly reduced interface prob-
lem is given by

J̃ =
∂ DxI
∂ Y

∂ Y

∂ Ũ
+
∂ DxI
∂ Ũ

=

�

∂ DxI
∂ Y

∂ Y

∂U
+
∂ DxI
∂U

�

V . (3.30)

The approach to introduce a mixed input vector can be simpli-
fied for some additional assumptions on the interface definition; a
set of assumptions corresponding to Equation (3.2) stated for classic
domain decomposition methods. Assume that the Dirichlet-Dirichlet
interface constraint equations are formulated in a way that they span
the required null space

�

∂ DDI
∂ DDY

�T

=Null

�

∂ NNI
∂ NNU

�

, (3.31)

while the inputs and outputs are collocated

Y = ZU Ŷ = ZU





DNY

DDY



 . (3.32)
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Collocation means that the outputs DDY , which are constrained by
Dirichlet-Dirichlet interface conditions, must be at same position
in Y as the inputs NNU in U . This condition is fulfilled for network
definitions of mechanical subsystems in the same coordinate sys-
tem, for example. Further assume, that ∂ DNI/∂ DN Y is of full rank, so the
transformation matrix is directly given by

V =

�

∂ DxI
∂ Y

�T

. (3.33)

Then, the interface Jacobian matrix of Equation (3.30)can be rewritten
as

J̃ =
∂ DxI
∂ Y

∂ Y

∂U

�

∂ DxI
∂ Y

�T

+
∂ DxI
∂U

�

∂ DxI
∂ Y

�T

. (3.34)

The resulting calculation steps for this subcase of MRC are summa-
rized in Algorithm 3.2 on the next page.

Analyzing Equation (3.34), the coordinate transformation can re-
sult in a symmetric interface Jacobian matrix. The first summand
renders a symmetric matrix for a symmetric ∂ Y/∂U . The second sum-
mand is symmetric for

∂ DNI
∂U

�

∂ DNI
∂ Y

�T

=
∂ DNI
∂ Y

�

∂ DNI
∂U

�T

. (3.35)

Thus, defining the Dirichlet-Neumann interface constraints corre-
spondingly, symmetry is ensured and J is self-adjoint. This is ben-
eficial for the calculation of sensitivities in particular, as shown in
Section 4.1.

Example 3.3 (Non-Homogeneous Three Subsystem Example)

Again, the concept of coordinate transformation can be visualized for
the three subsystem example. The mixed input vector is introduced for
the second setting of switched inputs as defined in Section 3.2. In this
setting, one Neumann-Neumann constraint equation is contained

I4 =U1+U3,2,
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Algorithm 3.2: Mixed input vector based subsystem coupling of
linear networks, which fulfill Equation (3.31) and Equation (3.32).

// select starting values

1
0

Ũ 0
i =

ini
Ũi

// loop over frames
2 for n = 0, ...nf do

// initialize assembly operators

3
∂ DxI
∂U

n
, ∂ DxI
∂ Y

n

// choose initial input vector

4
0U n =

�

∂ DxI
∂ Y

n �T
· 0Ũ n

// solve all subsystems in parallel
5 0Y n

i = Si

�

0U n
i

�

// evaluate residuum (without Neumann-Neumann
conditions)

6 0
Dxr n = ∂ DxI

∂ Y

n 0Y n + ∂ DxI
∂U

n 0U n

// calculate input/output relation of subsystems

7
∂ Y
∂U

n

// assemble the Jacobian

8 J̃ n = ∂ DxI
∂ Y

n ∂ Y
∂U

n � ∂ DxI
∂ Y

n �T
+ ∂ DxI
∂U

n � ∂ DxI
∂ Y

n �T

// get corrector
9 J̃ n∆c̃ n =−0

Dxr n

// apply and transform corrector

10 1U n
i =

�

∂ DxI
∂ Y

n �T �0
Ũ n

i +∆c̃ n
i

�

// solve all subsystems in parallel
11 1Y n

i = Si

�

1U n
i

�

which can be removed from the interface problem by coordinate trans-
formation. Fulfilling that interface constraint a-priori by construction,
only Dxr must be evaluated

Dxr =











Y2− �U3,1

U2− �Y3,1

Y1−Y3,2











=
∂ DxI
∂ Y

Y +
∂ DxI
∂U

U
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with

∂ DxI
∂ Y

=











0 1 0 0

0 0 −1 0

1 0 0 −1











∂ DxI
∂U

=











0 0 −1 0

0 1 0 0

0 0 0 0











.

The assumptions in Equation (3.31) and Equation (3.32) hold for
the three subsystem example and ∂ DNI/∂ DN Y is of full rank. Thus, the
transformation matrix is given by

V =

�

∂ DxI
∂ Y

�T

.

As ∂S/∂U is symmetric (see Section 3.2) and Equation (3.35) holds, a
symmetric interface Jacobian matrix is obtained by

J̃ =

�

∂ DxI
∂ S

∂ S
∂U

+
∂ DxI
∂U

��

∂ DxI
∂ Y

�T

=











2 mω2−5 k
10k mω2 1 0

1 mω2 1

0 1 1
−2 mω2+k +

1
3k











.

For the initial mixed input and (non-mixed) output vector

0
Ũ =

h

0 0 0
iT

0Y =
h

0 − F2
2mω2 0 0

iT
,

the Dirichlet residuum results in

0
Dxr =

h

− F2
2mω2 0 0

iT
.

Solving Equation (3.29) for the corrector for a zero 1
Dxr , one obtains

∆c̃ = t ·











−5k F2

�

2m 2ω4−10k mω2+3k 2
�

−10k F2

�

2k −mω2
�

15k 2F2

�

k −2mω2
�











.
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After the application of the transformation 1U =∆c = (∂ DxI/∂ Y )T ∆c̃ ,
the same subsystem inputs are provided as in Section 3.2.

■

3.2.4 Dual Domain Decomposition as a Special Case of MRC
Framework

The introduction of a mixed input vector does not only allow for
smaller interface problems. It also enables one to relate the MRC
framework to classic domain decomposition methods of Section 3.1.
Thus, it provides an explicit link between domain decomposition and
co-simulation approaches. A homogeneous domain decomposition
has to be assumed for this, all outputs and inputs of the subsystems
are the same physical quantity. For such a setting, it is straightforward
to show the MRC framework’s connection to dual domain decompo-
sition on the level of the algebraic system of equations.

Further assume the general form of Equation (3.16) for all subsys-
tems. Depending on the publication, the classic dual domain decom-
position interface problem may be constructed from the inversion
of the full subsystem matrices A k according to Equation (3.9) or may
exclude non-coupled states by using the inverted subsystems’ Schur-
complements as in Equation (3.10). The more general formulation
found in literature is based on Equation (3.9); thus, the MRC formulas
are modified in the following for the overall subsystem state vector X
and G as defined in Equation (3.1). For a corresponding mapping, C Y,k

relates the subsystem outputs to the overall subsystem state variable
vector as stated by Equation (3.16), Yk =C Y,k X k . The subsystems are
again assumed to be symmetric in their inputs and outputs. Thus,
C Y,k = B T

U,k holds for the case of real-valued C Y,k , BU,k ∈R, which is
assumed in this section to be in line with the definition of classic meth-
ods in Section 3.1. Accordingly, one can construct a vector of the cou-
pled subsystem inputs in the size of the system states by Uk =C T+

Y,k Gk .

2
+ indicates a pseudo inverse in the sense that C T+

Y,k C T
Y,k = I holds.

Using that mapping, the residuum Equation (3.12) is rewritten as

r =
∂ I
∂ Y

Y +
∂ I
∂U

U =
∂ I
∂ Y

C X +
∂ I
∂U

C T+G (3.36)

with the block diagonal matrix

C = diag
�

C Y,1, C Y,2, ...C Y,ns

�

.
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As a result of the homogeneous domain decomposition, all out-
puts are constrained by Dirichlet-Dirichlet interface constraint equa-
tions, all inputs by Neumann-Neumann ones

Y = DDY U = NNU .

The indices for Y and U indicating the type of coupling are omitted
for brevity in the following. Resorting the residuum vector according
to Equation (3.25), the absence of Dirichlet-Neumann constraints is
evident

r̂ =
∂ Î
∂ Y

Y +
∂ Î
∂U

U =





∂ DDI
∂ Y C

0



X +





0
∂ NNI
∂ U C T+



G =





DDr

NNr



 .

(3.37)

Following Section 3.2.3, a mixed input vector is introduced, while
the assumptions in Equation (3.31) and Equation (3.32) hold for the
corresponding class of considered problems. ∂ DNI/∂ DN Y is of zero di-
mension as the problem does not involve any Dirichlet-Neumann
constraint equations. As a result, the coordinate transformation is
given by

G =C T U =C T V Ũ =C T

�

∂ DDI
∂ Y

�T

U . (3.38)

The mixed input vector contains solely assembled quantities Ũ =U .
As the Neumann-Neumann residuum equations are zero by construc-
tion for this transformation

NNr =
∂ NNI
∂ U

C T+G =
∂ NNI
∂ U

C T+C T

�

∂ DDI
∂ Y

�T

U = 0, (3.39)

the residuum is determined purely by Dirichlet-Dirichlet constraint
equations

Dxr = DDr =
∂ DDI
∂ Y

C X , (3.40)

resulting in

J̃∆c̃ =−DDr . (3.41)
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Considering a block version of Equation (3.17)

∂ Y

∂U
=C A−1C T ,

the Jacobian matrix is given by

J̃ =

�

∂ DDI
∂ Y

∂ Y

∂U
+
∂ DDI
∂U

��

∂ DDI
∂ Y

�T

=

�

∂ DDI
∂ Y

C A−1C T +0

��

∂ DDI
∂ Y

�T

.

(3.42)

A−1 is the inverse of the block diagonal matrix of the subsystem ma-
trices. In the case that the subsystems can be represented in the form
of Equation (3.6), C A−1C T is equal to the block diagonal matrix of
inverse subsystem Schur complements.

It can be shown in a straightforward manner, that the classic dual
domain decomposition renders the same interface problem as given
by Equation (3.41). Therefore, the dual domain decomposition in-
terface problem of Equation (3.9) is derived once again from Equa-
tion (3.8). Inserting the relation Equation (3.38) and replacing the
compatibility equation by the equivalent Dirichlet-Dirichlet residuum
equations Equation (3.40),







A X = F +
�

∂ DDI
∂ Y C

�T
U

DDr = ∂ DDI
∂ Y C X = 0

(3.43)

is obtained. The interface problem of the dual domain decomposition
is obtained by eliminating X in the first line of Equation (3.43)

 

∂ DDI
∂ Y

C A−1C T

�

∂ DDI
∂ Y

�T
!

U =
∂ DDI
∂ Y

C A−1F . (3.44)

Equation (3.44) is equal to Equation (3.41). The right hand side of
Equation (3.44) can be interpreted as the non-zero Dirichlet-Dirichlet
residuum

DDr =
∂ DDI
∂ Y

C X =
∂ DDI
∂ Y

C A−1

 

F +C T

�

∂ DDI
∂ Y

�T
0U

!

=
∂ DDI
∂ Y

C A−1F
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with 0U = 0. The expression in brackets on the left hand side of Equa-
tion (3.44) is the reduced interface Jacobian, see Equation (3.42). Fur-
thermore, U = 0U +∆c̃ =∆c̃ holds.

On an algebraic level, therefore, the dual domain decomposition
can be interpreted as a special case of the MRC framework for a ho-
mogeneous domain decomposition.

Comparing the interface problem of Equation (3.44) to the clas-
sic notation for dual approaches, Equation (3.8), one can relate the
quantities used in classic approaches to the ones of the MRC explicitly.
The vector of assembled inputs used in the MRC equals the Lagrange
multipliers in dual approaches, U =−λ. The matrix B̂ , which is used
in classic approaches, is equal to

B̂ =
∂ DDI
∂ Y

C .

3.2.5 The Primal Assembly as a Special Case of MRC
Framework

In principle, the flexibility of the MRC framework allows to express
even primal assemblies, like an FE assembly, as a special case of the
MRC framework. To emphasize the generality of the MRC framework,
it is briefly discussed how MRC can render the interface problem
Equation (3.7).

Consider all subsystems are of the form of Equation (3.6) and their
non-coupled states were condensed by calculating their respective
Schur-complement form, Equation (3.4). Consequently, all inputs and
outputs of all subsystems can be switched according to Equation (3.23)
without violating the natural boundary conditions of the underly-
ing physical problem. Again, a homogeneous domain decomposi-
tion is required, resulting in purely Dirichlet-Dirichlet and Neumann-
Neumann constraint equations. Full input switching results in a set-
ting in which the former inputs are constrained by Dirichlet-Dirichlet
constraints, the former outputs by Neumann-Neumann ones. Again,
a mixed input vector is introduced by

�U =V Ũ =

�

∂ DDI
∂ �Y

�T

U .

In structural mechanics, U now may represent assembled displace-
ments. Assembling the reduced interface problem, only DDI con-
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straints need to be considered in Equation (3.29) due to the homo-
geneous domain decomposition. Using Equation (3.24) to calculate
∂ �Y/∂ �U for the Jacobian matrix, one obtains a reduced interface prob-
lem of

∂ DDI
∂ �Y

A Schur

�

∂ DDI
∂ �Y

�T

∆c̃ =−
∂ DDI
∂ �Y

�

0−FSchur

�

.

This interface problem is equal to Equation (3.7) as L T
C = ∂ DDI/∂ �Y

holds. Thus, one could render the same interface problem with the
MRC framework as for a primal assembly. Note that the possibility to
formulate the same interface equations mainly originates from the
general coupling problem definition. This flexibility allows to modify
all subsystems, thus to redefine the primal interface problem in a dual
manner. Anyhow, the required switch of inputs and outputs requires
intrusive changes in all subsystem definitions; this results in a less
practical relevance of this setting.

3.3 Chapter Summary

For the first time, the mixed residual coupling framework was pro-
posed for coupling linear, non-overlapping subsystems. Two essential
components characterize the method.

Firstly, it is based on a very general problem definition. Subsystems
can have any form, and any linear interface constraints can be defined;
thus, non-homogeneous domain decompositions are possible. Based
on a linearized version of the Interface-Jacobian-based Co-Simulation
Algorithm, the coupling interface problem is constructed and solved
using the ordinary Newton method. The latter provides a corrector
for the subsystem inputs to ensure zero interface constraints.

Secondly, a mixed input vector was introduced by a coordinate
transformation as a novelty, reducing the interface problem’s size.
The mixed residual coupling framework combines both efficiency
and increased flexibility for coupling compared to classic domain
decomposition methods. Dirichlet-Neumann interface constraints
can be defined, and very general subsystem definitions are possible.
This flexibility allows for truly hybrid assemblies and straightforward
inclusion of Neumann-only subsystems by input switching. Two ap-
proaches for such switching were discussed.
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3.3 Chapter Summary

The coordinate transformation for the mixed input vector does
not only improve efficiency. It also provides the relation between
the framework and common domain decomposition methods. Dual-
domain decomposition methods were shown to be a special case
of the proposed framework. At the same time, an explicit link be-
tween Newton-based co-simulation and classic domain decompo-
sition is provided. This link provides a starting point to incorporate
approaches from co-simulation for including non-linear subsystems,
for example.

The method was derived on a purely algebraic level. Thus, it is
not limited to a specific physical domain or particular discretization
method. Anyhow, examples were provided context-driven for har-
monic analysis in structural mechanics.
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4
MODULAR CALCULATION OF

SENSITIVITIES FOR COUPLED PROBLEMS

The mechanical network evaluation in the online phase often incor-
porates the calculation of gradients for optimization or uncertainty
propagation applications. Thus, besides an efficient subsystem cou-
pling approach, the gradient calculation in the network must also
be computationally cheap. In the following, the modular approach
of the MRC framework of Chapter 3 is extended to a new sensitivity
calculation scheme for this purpose, which retains modularity.

4.1 Modular Calculation of Gradients for Coupled
Problems

4.1.1 Basics for Monolithic Problems

The approaches to sensitivity calculation are briefly discussed for a
monolithic problem as a basis in a first step. For this, Section 4.1.1 is
adapted from Martins et al. [167].
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A real-valued objective is defined in optimization or uncertainty
applications

q
�

p , X (p )
�

, (4.1)

which depends on the variable design parameters p and the system
state X . Sensitivities with respect to a parameter pj contained in p

dq

dpj
=
∂ q

∂ pj
+
∂ q

∂ X

dX

dpj
(4.2)

need to be provided for such applications. The evaluation of Equa-
tion (4.2) requires the calculation of the total derivative dX/dpj . Besides
the objective in Equation (4.1), a second equation is available for this,
which is given by the residuum of the problem’s governing equations

rge

�

p , X (p )
�

= 0. (4.3)

As Equation (4.3)is fulfilled for any parameter vector p , the total deriva-
tive of Equation (4.3) with respect to a design parameter pj is calcu-
lated as

drge

dpj
=
∂ rge

∂ pj
+
∂ rge

∂ X

dX

dpj
= 0. (4.4)

The total derivative of the system states dX/dpj is obtained from this
expression by

dX

dpj
=

�

∂ rge

∂ X

�−1�

−
∂ rge

∂ pj

�

. (4.5)

Inserting Equation (4.5) in Equation (4.2)

dq

dpj
=
∂ q

∂ pj
−
︸ ︷︷ ︸

−ΨT

∂ q

∂ X

− dX
dpj

︷ ︸︸ ︷

�

∂ rge

∂ X

�−1 ∂ rge

∂ pj
, (4.6)

it can be illustrated, that there are two ways of calculating sensitivities.
The first one is given by the direct approach. In a direct approach,
one calculates dX/dpj directly from Equation (4.5) by solving a linear
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system of equations for the right hand side ∂ rge/∂ pj . Thus, a system
solution is required for each design parameter. As an alternative, the
adjoint approach is provided by reformulating Equation (4.6) as

dq

dpj
=
∂ q

∂ pj
+ΨT ∂ rge

∂ pj
. (4.7)

Ψ is the adjoint variable and is given by

�

∂ rge

∂ X

�T

Ψ =−
�

∂ q

∂ X

�T

. (4.8)

With this reformulation, Equation (4.8) needs to be solved for the
right hand side (∂ q/∂ X )T instead of Equation (4.5). Consequently, one
system solution is required per objective. The adjoint approach is
preferred over the direct one in settings with more design parameters
than objectives and vice versa.

4.1.2 Sensitivities for Coupled Problems

These approaches can be adapted systematically for coupled prob-
lems, as demonstrated in the following. A framework for efficient
sensitivity analysis of coupled problems is derived based on the above
formula. Again, the two available equations for sensitivity calculations,
the objective function and the residuum of the problem’s governing
equations, are the starting point for deriving the formula. These equa-
tions now do not depend on the system states, but on the subsystem
interface quantities, thus finally on the inputs.

The reformulation of Equation (4.1) with respect to subsystem
interface quantities results in

q
�

p ,Sk

�

Uk (p ), p
�

, Uk (p ), k = 1...ns

�

, (4.9)

and for Equation (4.3) correspondingly in

rge

�

p ,Sk

�

Uk (p ), p
�

, Uk (p ), k = 1...ns

�

= 0. (4.10)

In contrast to the notation in Section 2.1.1, the parametric dependency
of the single subsystem quantities is expressed more explicitly in the
above formula in order to support the following derivations: also
the inputs U (p ) are parameter-dependent, as they result from the
network interaction, which changes if the parameters change.
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Formulation for Non-Transformed Input Vector

For the derivation of the sensitivity formula, assume no coordinate
transformation of U and thus no mixed input vector for the first. The
total derivative of the objective function, Equation (4.9), has the form
of

dq

dpj
=
∂ q

∂ pj
+
∂ q

∂ S

�

∂ S
∂ pj

+
dS
dU

∂U

∂ pj

�

+
∂ q

∂U

dU

dpj

=

�

∂ q

∂ pj
+
∂ q

∂ S
∂ S
∂ pj

�

+

�

∂ q

∂ S
∂ S
∂U

+
∂ q

∂U

�

dU

dpj
.

(4.11)

The residuum equation of the governing equations, Equation (4.10),
is again required for the calculation of dU/dp . This is provided by the
converged interface residuum for subsystem coupling

rge =
1r = 0. (4.12)

According to Equation (4.10), the derivative of Equation (4.12) is cal-
culated as

drge

dpj
=
∂ I
∂ pj

+
∂ I
∂ S

�

∂ S
∂ pj

+
dS
dU

∂U

∂ pj

�

+
∂ I
∂U

dU

dpj
= 0, (4.13)

and is rearranged for the total derivative of the subsystem inputs with
respect to the design parameter as

dU

dpj
=−

�

∂ I
∂ S

∂ S
∂U

+
∂ I
∂U

�−1�
∂ I
∂ S

∂ S
∂ pj

+
∂ I
∂ pj

�

. (4.14)

Comparing the inverted matrix to Equation (3.14), it turns out, that the
expression is the MRC interface Jacobian matrix, thus Equation (4.14)
can be reformulated as

dU

dpj
=−J −1

�

∂ I
∂ S

∂ S
∂ pj

+
∂ I
∂ pj

�

. (4.15)

Inserting Equation (4.15) into Equation (4.11), the total derivative of
the objective is finally obtained by

dq

dp
=

�

∂ q

∂ S
∂ S
∂ pj

+
∂ q

∂ pj

�

−
�

∂ q

∂ S
∂ S
∂U

+
∂ q

∂U

�

J −1

�

∂ I
∂ S

∂ S
∂ pj

+
∂ I
∂ pj

�

.

82



4.1 Modular Calculation of Gradients for Coupled Problems

(4.16)

Although Equation (4.16) involves several matrices, only a few of them
have to be computed in an expensive procedure in addition to the so-
lution of the interface problem itself in Chapter 3: the matrices ∂I/∂S
and ∂S/∂U are already used during the subsystem coupling, as well
as the factorization of the interface Jacobian J −1. ∂ q/∂S, ∂ q/∂ pj and
∂ q/∂U usually can be extracted cheaply from the objective function
definition without expensive numerical calculations. The same holds
for ∂I/∂ p , which is implicitly given by the interface definition. The
only quantity which renders significant additional numerical effort is
the calculation of the block diagonal matrix ∂S/∂ pj . However, the mod-
ular nature of the MRC framework is also present here. Parameters
are usually localized in the network and are allocated to one single
subsystem k . In this case, ∂S/∂ p is mainly zero-valued, and only that
block diagonal part needs to be evaluated, which belongs to ∂Sk/∂ p . In
summary, only a few additional computations of localized quantities
are necessary, leading to highly efficient sensitivity calculations.

As discussed for the monolithic case, there are again two practical
approaches for sensitivity calculations as defined in Equation (4.16).
The direct approach now has the form of

dq

dpj
=

�

∂ q

∂ S
∂ S
∂ pj

+
∂ q

∂ pj

�

+

�

∂ q

∂ S
∂ S
∂U

+
∂ q

∂U

�

dU

dpj
; (4.17)

with the system of equations

J
dU

dpj
=−

�

∂ I
∂ S

∂ S
∂ pj

+
∂ I
∂ pj

�

, (4.18)

which needs to be solved for the total derivative of the subsystem
inputs in addition. The factorization of J , which was calculated for the
interface problem, can be reused for the solution of Equation (4.18).

The adjoint approach results in

dq

dpj
=

�

∂ q

∂ S
∂ S
∂ pj

+
∂ q

∂ pj

�

+ΨT

�

∂ I
∂ S

∂ S
∂ pj

+
∂ I
∂ pj

�

(4.19)

with the additional system of equations

J T Ψ =−
�

∂ q

∂ S
∂ S
∂U

+
∂ q

∂U

�T

(4.20)
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for determining the adjoint variable. Here, the factorization of the
Jacobian matrix J can be reused for a self-adjoint J . Requirements
for such a symmetric J were discussed above: symmetric subsystem
transfer functions ∂ Y/∂U and the validity of Equation (3.35).

Interpreting the formula in Equation (4.17) and Equation (4.19)
from a physical point of view, the first part of the equations provides
the local, direct part of the sensitivity. This part is non-zero if the objec-
tive directly involves subsystem quantities and the design parameter
is linked to the same subsystem(s). The second part propagates the
sensitivity over the whole coupled problem, thus includes the indirect
fraction caused by the coupling.

Formulation for Mixed Input Vector

The above sensitivity formula can be extended for a mixed input vector
Ũ , thus for the efficiency enhancements in Section 3.2.3. Therefore,
Ũ is substituted for U in the derivative, Equation (4.11),

dq

dpj
=
∂ q

∂ pj
+
∂ q

∂ S

�

∂ S
∂ pj

+
dS
dŨ

∂ Ũ

∂ pj

�

+
∂ q

∂ Ũ

dŨ

dpj
. (4.21)

According to Section 3.2.3, the residuum is fully determined by the
Dirichlet-Dirichlet/Dirichlet-Neumann part

r̃ge =
1
Dxr = 0. (4.22)

Equation (4.14) thus can be rewritten as

dŨ

dpj
=−

�

∂ DxI
∂ S

∂ S
∂ Ũ

+
∂ DxI
∂ Ũ

�−1�
∂ DxI
∂ S

∂ S
∂ pj

+
∂ DxI
∂ pj

�

, (4.23)

Equation (4.16) as

dq

dpj
=

�

∂ q

∂ S
∂ S
∂ pj

+
∂ q

∂ pj

�

−
�

∂ q

∂ S
∂ S
∂U

+
∂ q

∂U

�

V J̃ −1

�

∂ DxI
∂ S

∂ S
∂ pj

+
∂ DxI
∂ pj

�

.

(4.24)

J̃ is the Jacobian matrix of the reduced interface problem according
to Equation (3.30), V the transformation matrix of Equation (3.28).
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With the direct approach, the sensitivities of the transformed coupled
problem are obtained by

dq

dpj
=

�

∂ q

∂ S
∂ S
∂ pj

+
∂ q

∂ pj

�

+

�

∂ q

∂ S
∂ S
∂U

+
∂ q

∂U

�

V
dŨ

dpj
(4.25)

while

J̃
dŨ

dpj
=

�

∂ DxI
∂ S

∂ S
∂ pj

+
∂ DxI
∂ pj

�

. (4.26)

The adjoint approach takes the form of

dq

dpj
=

�

∂ q

∂ S
∂ S
∂ pj

+
∂ q

∂ pj

�

+ Ψ̃T

�

∂ DxI
∂ S

∂ S
∂ pj

+
∂ DxI
∂ pj

�

(4.27)

with

J̃ T Ψ̃ =−

�

�

∂ q

∂ S
∂ S
∂U

+
∂ q

∂U

�

V

�T

. (4.28)

Reformulation for Classic Domain Decomposition Methods

The mixed formulation provides a systematic and modular approach
to sensitivity analysis not only for the MRC framework but also for
its special case of classic dual methods. Assuming ∂I/∂ pj = 0, which
holds for a classic approach, the above equations are reformulated in
the notation of Section 3.1 for the sake of clarity.

The direct approach is given for the classic dual domain decom-
position by

dq

dpj
=

 

∂ q

∂ X

∂
�

A−1
�

∂ pj
(F +G )+

∂ q

∂ pj

!

+

�

∂ q

∂ X
A−1+

∂ q

∂G

�

B̂ T dλ

dpj

with the system of equations for determining the total derivative dλ/dpj

�

B̂ A−1B̂ T
� dλ

dpj
=−B̂

∂
�

A−1
�

∂ pj
(F +G ) .

The adjoint formula can be rewritten as

dq

dpj
=

 

∂ q

∂ X

∂
�

A−1
�

∂ pj
(F +G )+

∂ q

∂ pj

!

+ Ψ̃T B̂
∂
�

A−1
�

∂ pj
(F +G )
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with

�

B̂ A−1B̂ T
�T
Ψ̃ =−B̂

�

∂ q

∂ X
A−1+

∂ q

∂G

�T

.

Example 4.1 (Three Subsystem Example)

The three subsystem example is continued using the setting of Sec-
tion 3.2.3 to illustrate the modular approach to sensitivity calculation.
The internal state of subsystem S2 is chosen as objective, q = X2. The
mass of subsystem S3 is defined as design parameter p =m3.

The adjoint approach is presented in the following, which is often
of particular relevance. In a first step, the objective can be rewritten
in terms of the subsystem’s S2 inputs

q = X2 =−
F2

ω2m2
−

U2

ω2m2
,

resulting in the associated partial derivatives

∂ q

∂ p
=
∂ X2

∂m3
= 0

∂ q

∂U
=
h

0 − 1
ω2m2

0 0
i ∂ q

∂ S
= 0

which are required for the sensitivity calculation. The interface con-
straint equations do not involve the design parameter p =m3 explic-
itly, thus

∂ DxI
∂m3

=
h

0 0 0
iT

.

Inserting these values into Equation (4.28) for determining the
adjoint variable results in

J̃ T Ψ̃ =−
�

∂ q

∂U
V

�T

=
h

1
2ω2m 0 0

iT
,

which provides the adjoint variable as

Ψ̃ = t ·











−5k
�

2m 2ω4−10k mω2+3k 2
�

−10k
�

2k −mω2
�

15k 2
�

k −2mω2
�











.

86



4.2 Derivatives for Mean Power as Objective Function in Harmonic
Analyses

∂S/∂ p needs to be determined additionally. As the parameter is
linked to subsystem S3 exclusively, only the component ∂S3

∂ p is non-
zero. This results in

∂ S
∂m3

= diag

�

∂ 2Y1

∂U1∂m3
,
∂ 2Y2

∂U2∂m3
,
∂ 2Y3

∂U3∂m3

�

V ∆c̃

= diag

�

0, 0,
∂ 2Y3

∂U3∂m3

�

V ∆c̃ =

















0

0

t 10kω2
�

−mω2+2 k
�

F2

0

















.

According to Equation (4.27), the total derivative of X2 with respect
to m3 is finally obtained by

dX2

dm3
=

�

∂ q

∂ S
∂ S
∂m3

+
∂ X2

∂m3

�

+ Ψ̃T

�

∂ DxI
∂ S

∂ S
∂m3

+
∂ DxI
∂m3

�

= 0+ Ψ̃T

�

∂ DxI
∂ S

∂ S
∂m3

+
∂ DxI
∂m3

�

= t 2100ω2F2 k 2
�

−mω2+2 k
�2

.

Note, as the objective and the design parameter were not directly
linked by a single subsystem, the first part of the total derivative is
zero.

■

4.2 Derivatives for Mean Power as Objective Function
in Harmonic Analyses

It is discussed in the following how derivatives can be calculated for
power quantities, the spatially integrated power at the interface of
subsystem k in particular. As for the remaining thesis, it is assumed
that the subsystem inputs are forces U : F , the outputs, respectively
states are displacements Y , X : W .
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Following Equation (2.37), the spatially integrated complex power
at the interface of subsystem k is a function of the subsystem inputs
and outputs

P =
1

2

�

F H
k Vk

�

=
ω

2

�

i U H
k Yk

�

.

For a harmonic analysis, the power, input, and output quantities can
be complex valued in general, P :Cn →C. Such formulation of power
is not holomorphic, and thus the complex derivative of P with respect
to Uk , respectively Yk does not exist. These derivatives, however, are
required for the above framework for sensitivity analysis.

Anyhow, real differentiability can be ensured for the real-valued
mean power. For this, the latter has to be formulated in terms of real-
only quantities. The latter are obtained by rearranging the complex-
valued Uk and Yk in real-valued vectors of double size. This enlarges
the number of subsystem states, inputs and outputs by a factor of two

Ŷ =





Yℜ

Yℑ



 Û =





Uℜ

Uℑ





with2ℜ =ℜ (2) and2ℑ = ℑ (2). Consequently, the whole framework
for subsystem coupling can be reformulated in real only quantities
with the double number of equations at each stage. In such formula-
tion, the mean power can be rewritten as

P =
ω

2

�

U T
ℑ,k Yℜ,k −U T

ℜ,k Yℑ,k

�

, (4.29)

which involves real quantities only, P : R2n → R. The derivative of
Equation (4.29) with respect to a parameter pj is given by

dP

dpj
=
ω

2

�

U T
ℑ,k

dYℜ,k

dpj
+

dU T
ℑ,k

dpj
Yℜ,k −U T

ℜ,k

dYℑ,k

dpj
−

dU T
ℜ,k

dpj
Yℑ,k

�

.

(4.30)

As changing the whole framework to a real-only reformulation is
not efficient from an implementation point of view, one can evalu-
ate Equation (4.30) using the complex-valued variables. Performing
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a coefficient comparison, one can show that the derivative of Equa-
tion (4.30) can be calculated by

dP

dp
=
ω

2
ℜ

�

i U H
k

�

∂ Yk

∂ p
+
∂ Yk

∂Uk

dUk

dp

�

− i Y H
k

dUk

dp

�

. (4.31)

Defining the substitute quantity �P from which the mean power is
obtained by

dP

dp
=
ω

2
ℜ

�

d�P
dp

�

, (4.32)

the above framework for sensitivity calculations can be used to calcu-
late

d�P
dp
= i U H

k

�

∂ Yk

∂ p
+
∂ Yk

∂Uk

dUk

dp

�

− i Y H
k

dUk

dp
. (4.33)

In the following, this is demonstrated without the adaptions for a
mixed input vector for readability and exemplary in the adjoint frame-
work. For the use with a mixed input vector, Ũ can be substituted
for U in the equations below. Rearranging Equation (4.33) in the for-
mulation of Equation (4.19) and Equation (4.20), d�P/dp is obtained by

d�P
dp
=

�

∂ �P
∂ S
∂ S
∂ p
+0

�

+ΨT

�

∂ I
∂ S
∂ S
∂ p
+
∂ I
∂ p

�

. (4.34)

The adjoint variable is determined by

J T Ψ =−

�

∂ �P
∂ S

∂ S
∂U

+
∂ �P
∂U

�T

(4.35)

while

d�P
dS j

=

(

i U H
j for j = k

0 else
(4.36)

and

d�P
dU j

=

(

−i Y H
j for j = k

0 else
. (4.37)

Further, a zero partial derivative ∂I/∂ p = 0 is obtained for the me-
chanical networks of the thesis, when p ̸=U j , Y j , which allows for a
simplification of the above formula.
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4.3 Chapter Summary

The Mixed Residual Coupling framework approach was extended to
calculate sensitivities in coupled networks. Efficient formulas were
presented for direct and adjoint calculation schemes. It was discussed
that only a few additional matrix quantities need to be computed for
a sensitivity calculation in the framework, which are further modular
and localized. Thus, the concept of modularity can also be followed
for sensitivity calculation. Corresponding formulas were provided
not only in the MRC framework’s notation but also for common dual-
domain decomposition methods. Furthermore, the sensitivity calcu-
lation for mean power at subsystem interfaces was discussed.
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KRYLOV-SUBSPACE LEARNING FOR FE

SUBSYSTEMS: BASICS

The subsystem coupling framework allows for parallelized and dis-
tributed calculations. Nevertheless, the computational costs for cal-
culating the energy flow through the network of full order models
(FOMs) may still be infeasible for multi-query methods in the online
phase (Algorithm 3.1 on page 53 lines 3 and 10). As initially stated,
learning the essential subsystem dynamics employing model order
reduction (MOR) techniques is a remedy to that. Therefore, MOR is
performed on a subsystem-local and decoupled level to follow the
principles of modularity and offline-online separation. As shown be-
low, Krylov-Subspace methods are an attractive choice for subsystem
coupling and evaluating power quantities in particular. This method
found applications to structural dynamics just recently, and there
are many open points for an industrial application. In the following,
these topics are addressed, and an application to large-scale industrial
subsystem models is finally enabled.
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5.1 Refined Requirements for Model Order Reduction
(MOR)

Subsystem Coupling In the context of Chapter 3, the requirements
of Section 1.3.2 for a MOR method for subsystem coupling applica-
tions can be refined. MOR must provide an optimal fitting of the input-
to-output behavior ∂ Y

∂U of floating and non-floating subsystems. For
the vibroacoustic analysis in the frequency domain, this is equal to the
transfer function matrix of the linear subsystem (see Equation (3.15)).
Neither optimal fitting of internal states is significant, nor physical
states must be preserved for coupling. As a harmonic analysis and
synthesis is performed for a limited number of frequencies and thus
in a limited frequency range

fB ∈
�

fl, fu

�

,

efficient MOR algorithms provide an accurate approximation in fB,
but not in the whole frequency domain.

Energetic Analysis As the energy should be finally analyzed in the
network, MOR must enable to evaluate power accurately. A sufficient
phase accuracy of the approximated transfer function matrix must be
ensured for this, as discussed in Section 2.3.4. Firstly, this highlights
the need for a sufficiently accurate approximation of the subsystem
damping. The possibly localized and complex damping modeling of
the industrial FOM must be considered accurately. Secondly, MOR
must preserve the passivity of the subsystems as a baseline require-
ment for phase accuracy. MOR must introduce no artificial energy
sources.

Subsystem Form Thus, no specific form of the damping matrices
S and D , like a Rayleigh damping approach, can be assumed (see
Section 2.1.2), but MOR must be developed for general industrial sub-
systems in the second-order form. Structural damping must be con-
sidered, which imposes an additional challenge. This kind of damping
is lacking in many second-order system formulations and thus in most
approaches for MOR. Both, the real-valued FOM subsystem matrices
(Equation (2.8)), as well as their interface (Equation (2.7)) are assumed
to be symmetric.
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MOR algorithms need to be capable of models with a large num-
ber of state unknowns and complex modeling techniques, as already
stated in Section 1.3.2. This complex modeling also leads to the re-
quirement of non-intrusiveness in the context of MOR: the algorithms
should directly work on subsystem matrices, which were obtained
from an arbitrary FE discretizer.

Multi-query Application The reduced-order model (ROM) must
retain parametric dependencies for later variation. This preservation
of parameters is addressed in Chapter 6. For the first, however, para-
metric dependency is omitted, and the basics of MOR are introduced.
Note that the method development of the thesis follows the principle
of generality as initially stated. Thus, MOR is not tailored for a distinct
online application but general multi-query methods.

For readability, subscripts k indicating single subsystems, as well
as the notation of parametric dependencies, are dropped in Chapter 5
and Chapter 6. Nevertheless, all derivations refer to a single subsys-
tem in these chapters. Furthermore, the wording system is used for a
subsystem for brevity.

5.2 Projection-based MOR

Well-established concepts for MOR can be used in order to reduce sin-
gle subsystems. Many of these approaches, among the basic method
followed in the thesis, rely on projection, which is introduced firstly.
The introduction is limited to the main concepts required by the pro-
posed MOR approach. More general projection theory can be found
in Saad [213].

5.2.1 The Concept of Projection

Using projection, the state vector X ∈Cn×1 of a second-order or first-
order subsystem (see Equation (2.6), respectively Equation (2.16)) can
be transformed to a new coordinate system by

X = Z X T . (5.1)
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X T is the transformed state vector. Z ∈ Cn×n is the transformation
matrix, whose columns span the subspace N providing the new coor-
dinate system

colsp(Z ) =N . (5.2)

colsp(2) is the column space of a matrix2, which is the span of the
columns of2; thus, the set of all possible linear combinations of the
column vectors of2. No information is lost in the case of a full-rank
Z . The basic idea of projection-based model order reduction is to
find a lower-dimensional subspace of the original one, on which the
system state is projected,

X ≈V X R, (5.3)

while m ≪ n for X R ∈Cm×1 and V ∈Cn×m .2R indicates a projected,
thus reduced quantity. V spans the subspaceT , colsp(V ) = T , which is
called search space or trial space in literature (see Bui-Thanh et al. [46]
and Grimme [105] exemplary). As the subspace is lower-dimensional,
information is truncated, and the state is just approximated. In order
to provide sufficient accuracy of the approximation, MOR needs to
find a sufficiently small subspace, which contains the most significant
patterns of system state X at the same time.

Inserting that approximated state into the system of equations in
Equation (2.6), the following is obtained:







�

K + i sgni(s )S + s D + s 2M
�

V X R = BU + r

Y =C V X R

(5.4)

The approximated system state vector X R usually introduces an error,
as X is not fully contained in T and a residual r is introduced

r = BU −
�

K + i sgni(s )S + s D + s 2M
�

V X R. (5.5)

Equation (5.4) is overdetermined as n equations are provided for m
unknowns. A left-hand side projection is introduced for the system
of equations to obtain a unique solution. In addition to the subspace
T on which the state is approximated, a direction of projection must
be specified via constraints for the projection. A constraint space
achieves this C with colsp(W ) = C. An alternative name for C is test
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space (see Bui-Thanh et al. [46] and Hesthaven et al. [122], for exam-
ple). A common choice for constraints is to ensure a vanishing residual
in Equation (5.4), as the residual is unknown a-priori. A zero residual
is obtained by choosing W H orthogonal to r , resulting in W H r = 0.
The latter is called the Petrov-Galerkin condition. Consequently, the
residual solely exists in the subspace which contains the truncated
basis vectors. Under the additional assumption of bi-orthogonality of
W and V , W H V = I , while I is the identity matrix, one finally results
in a well-defined system of equations for a subsystem

SR :







W H
�

K + i sgni(s )S + s D + s 2M
�

V X R =W H BU +0

Y =C V X R

,

(5.6)

or shortly

SR :







�

K R+ i sgni(s )SR+ s DR+ s 2MR

�

X R = BRU

Y =C RX R

(5.7)

with

K R =W H K V SR =W H S V DR =W H DV MR =W H M V

C R =C V BR =W H B .

(5.8)

Equation (5.7) defines the reduced-order model (ROM), which is
obtained from the original FOM by Equation (5.8). Solving the pro-
jected system for the projected state by Equation (5.7), the Petrov-
Galerkin condition is always fulfilled.

A corresponding representation can be found for first-order sys-
tems as

SI,R :







E Rs X R = A I,RX I,R+B I,RUR

YR =C I,RX I,R

, (5.9)

with

E R =W H
I E VI A I,R =W H

I A I,RVI C I,R =C IVI B I,R =W H
I B I .
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(5.10)

In the special case of T = C, the projection is orthogonal: The di-
rection of projection on T is perpendicular to T itself. For that case,
the Petrov-Galerkin conditions are often called Galerkin or Bubnov-
Galerkin conditions, and W =V can be chosen. Otherwise, the pro-
jection is called oblique.

5.2.2 Useful Properties of Projection-Based MOR

A projection-based MOR ensures specific subsystem properties, which
are helpful in the following method development and thus should be
discussed upfront.

Structure-Preserving Properties

The following matrix properties can be preserved by projection by
employing a Bubnov-Galerkin projection (W = V ). On the level of
subsystem matrices, the explicit projection of a Hermitian matrix
A = AH ∈ Cn×n by a Bubnov-Galerkin projection renders again a
Hermitian matrix A R

AH
R =

�

V H AV
�H
=V H AH V =V H AV = A R. (5.11)

Based on this formula, different cases of complex and non-complex
V as well as A are defined, where A R has the property as defined
in Table 5.1. As a result, using a Bubnov-Galerkin projection with
a complex-valued projection matrix V is not structure-preserving
in a classical sense, as real-valued symmetric FOM system matrices
become complex-valued Hermitian in the space of the ROM.

A = AH ∈Cn×n A = AT ∈Rn×n

V ∈Cn×m A R = AH
R ∈C

m×m A R = AH
R ∈C

m×m

V ∈Rn×m A R = AH
R ∈C

m×m A R = AT
R ∈R

m×m

Table 5.1: The property of A R according to Equation (5.11) in
dependence of V and A.

In addition, the definiteness of matrices is preserved for a Bubnov-
Galerkin projection. Exemplary assume a positive (semi-) definite
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matrix A, U H AU ≥ 0, then its projected counterpart A R is positive
(semi-) definite again

U H A RU =U H V H AV U = Ũ H AŨ ≥ 0 for any Ũ ∈Cm×1 (5.12)

while Ũ =V U . The same proof is possible for negative (semi-) definite
matrices.

Preservation of Passivity

These properties of a Bubnov-Galerkin projection-based MOR method
are helpful for the energetic network analysis, as they allow for the
preservation of FOM’s passivity in its ROM, even though a complex-
valued projection matrix V does not provide a structure-preserving
MOR technique in a classical sense. The passivity requirement, which
is derived in Section 2.3.4, states that a passive second-order subsys-
tem with a symmetric interface (C = B H ) requires system matrices,
which are Hermitian and positive semi-definite as defined in Equa-
tion (2.56). Employing Equation (5.11) and Equation (5.12), one can
state that these requirements for passivity preservation are met by
construction for such systems using a Bubnov-Galerkin projection-
based MOR method. Any interface-symmetric FOM system in the
form of Equation (2.6) with positive semi-definite system matrices,
which are either complex-valued Hermitian or real-valued symmetric,
provides a ROM ensuring Equation (2.56).

Invariance Property

Another important property of projection-based methods is the re-
duced model’s independence of the actual choice of V and W , but the
exclusive dependence on the information contained in the subspaces
(Salimbahrami et al. [216]). This is called invariance property in the
following. If one substitutes the projection matrices by alternative
ones, V̂ and Ŵ , this leads to the same ROM in another realization if
the same subspace is spanned

colsp (V ) = colsp
�

V̂
�

colsp (W ) = colsp
�

Ŵ
�

.

Consider a change of basis by multiplication with the non-singular
matrices T1, T2 ∈Cm×m

V̂ =V T1 Ŵ =W T2,
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resulting in the reduced model ŜR with changed system matrices

K̂ R = Ŵ H K V̂ ŜR = Ŵ H S V̂ D̂R = Ŵ H D V̂ M̂R = Ŵ H M V̂

Ĉ R =C V̂ B̂R = Ŵ H B .

(5.13)

The proof is straightforward, showing that the transfer function ĤR

resulting from ŜR is equal to HR from SR:

ĤR =C V̂
�

Ŵ H AV̂
�−1

Ŵ H B =

=C V T1

�

T H
2 W H AV T1

�−1
T H

2 W H B

=C V T1T −1
1

�

W H AV
�−1

T −H
2 T H

2 W H B =HR

(5.14)

while A = K + i sgni(s )S + s D + s 2M . Consequently, although the sys-
tem realization changes, and thus the state X̂ R is different as X R for
T1 ̸= I , the transfer function is unchanged. In fact, Equation (5.14)
states nothing except that infinitely many realizations exist for a trans-
fer function. This invariance is valuable as it allows the flexibility
to modify the projection matrices within algorithms. While such a
changed algorithm does not influence HR in exact arithmetic, more
robust results can be obtained in the presence of finite-precision
arithmetic, as discussed below.

5.2.3 Some Methods for Basis Generation

Different model order reduction techniques exist to determine the pro-
jection matrices V and possibly W . In the following, a short overview
is given, sketching the basic concept of some methods for linear sys-
tems from different disciplines. The methods are discussed in the
scope of the above-introduced requirements, and the final choice for
a MOR method is motivated.

System-Theoretic Methods

The class of system-theoretic methods is attractive from a theoretical
point of view - although less common in structural dynamics. Bal-
anced truncation is one popular approach of this class, classically
developed for first-order systems. Performing a system balancing al-
lows finding a transformed system that has states that are difficult
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(respectively easy) to reach and observe. The observability and reach-
ability gramians are used for this, which are measures for the energy
required to reach a specific system state, respectively the energy ob-
tained from observing it. This transformed system representation
allows for truncating states which require high energy to reach and
provide litte energy in observing at the same time, which is the basic
idea of balanced truncation; see Pernebo et al. [200] for one of the
first applications. As important advantage of balanced truncation,
error bounds exist (Enns [74] and Glover [100]). However, Lyapunov
equations need to be solved to obtain the required gramians, which
is computationally demanding. As a consequence, Balanced Trun-
cation is difficult to apply to large-scale systems (see Antoulas [15],
for example) and requires the introduction of additional low-rank
approximations for the solution of the Lyapunov equations (Stykel
[236]). Second-order systems, in addition, need to be transformed
to a first-order representation, losing second-order structure and in-
creasing computational effort. Alternatively, different variants were
developed for the direct application to second-order systems but with-
out the advantage of error bounds or preservation of stability (Reis
et al. [207]). In addition, classic balanced truncation methods need to
be reformulated for an approximation that is particularly accurate in
a band-limited frequency range, see Benner et al. [33], for example.
Another system-theoretic method is the Hankel-Norm Approxima-
tion, in which model order reduction is optimal with respect to the
Hankel-norm of the system. Refer to Antoulas [15] for an overview.

Data-Driven Methods

In contrast to system-theoretic approaches, there is a fundamentally
different class of data-driven methods. These methods do not uti-
lize any information from the inner representation of the underlying
subsystem but work on samples of the system outputs or states. The
starting point is a manifold of samples x 1, often called snapshots

χ =
�

x 1 x 2 ... x k

�

. (5.15)

From a data point of view, the task is to find the m principal direc-
tions - the dominant patterns - in that data set matrix Equation (5.15).
These principal directions finally form the projection matrix for the
corresponding subspace. An optimal approximation χ̂ for χ can be
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sought in a least-squares sense for the m-dimensional approximation
to the n-dimensional data set

argmin
χ̂while rank(χ̂ )=m



χ − χ̂




F
, (5.16)

with∥2∥F is indicating the Frobenius norm of a matrix, which is the
square roots of the sum of all squared matrix elements (Golub et al.
[101]). An optimality in the context of Equation (5.16) is provided by
the Eckart-Young-Mirsky-(Schmidt)-theorem (Eckart et al. [72]). The
latter provides an optimal matrix approximation χ̂ by a singular value
decomposition (SVD) of χ truncated after m singular values.

χ =
h

V Vtr

i





Θ 0

0 Θtr









N

Ntr



 (5.17)

with V ∈Cn×m is the required projection matrix, the diagonal matrix
Θ ∈Cm×m contains the m largest singular values and N ∈Cm×m . Then,
the optimal approximation of the dataset is given by

χ̂ =V ΘN H . (5.18)

No more accurate basis V exists for approximatingχ with rank m . The
same holds when the Frobenius norm in Equation (5.16)is replaced by
the spectral norm



χ − χ̂




2
. The spectral norm of a matrix is a p-norm

of order two and corresponds to the maximum singular value of that
matrix, thus∥2∥2 =max (∥2·X ∥2/∥X ∥2) for arbitrary vectors X ̸= 0 (Golub
et al. [101]).

The SVD-based method has different names in different disci-
plines. It is referred to as Proper Orthogonal Decomposition (POD),
especially if such a data set approximates the solution of a known or
unknown partial differential equation by a separation ansatz. Instead
of using a-priori determined functions like Fourier-modes as ansatz
functions, respectively, as a basis, the data-driven POD approach gen-
erates basis vectors directly from samples resulting in Equation (5.17).
The POD was initially developed in the spatial-time-continuous do-
main and Equation (5.15) contains state vectors for different time
samples (see Berkooz et al. [34] and Sirovich [230]). In structural dy-
namics, the POD is used mainly in the non-linear regime; refer to
Kerschen et al. [137] for examples. For linear(ized) systems, frequency-
domain versions exist, in which the basis is generated from samples of
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harmonic solutions in the frequency domain (Kim [139]). POD bases
are also used in many approaches related to the reduced basis method.
The latter can preserve input parameters of the FOM in the ROM; see
Haasdonk et al. [110] for an example. Karhunen-Loève expansion
(Karhunen [135] and Loève [155]) is another name for POD, and it is
also known under slight modifications as principal component analy-
sis (Hotelling [124]), empirical orthogonal functions (Lorenz [156]) or
factor analysis (Harman [117]).

Summarizing the data-driven approach, its advantage is that it
can be applied without any additional knowledge of the inner system
representation or prerequisites on system properties but can solely
work on the system’s outputs. Thus, there are no restrictions on the
inner subsystem representation and its damping modeling, and it
does not require intrusiveness. This, however, is a disadvantage at the
same time. If the inner representation of Equation (2.6) is accessible
for the MOR algorithm, not all the knowledge is used which would be
available. Naturally, this results in either less effective reduced models
or more expensive algorithms to find such ROM.

All the approaches mentioned so far, the system-theoretic and
data-driven methods, have in common that an SVD is used at some
stage of the algorithm. Antoulas [15] summarizes these methods con-
sequently under the category of SVD-based methods.

Modal Reduction

The probably best-known model order reduction technique for ba-
sis generation in structural dynamics, modal reduction, is related to
that class of methods as an eigenvalue problem is solved, which is
closely linked to an SVD. A common approach in structural dynamics
is to solve the eigenvalue problem for the non-damped second-order
system

�

K −ω2
r, j M

�

Φ j = 0, (5.19)

which has the form of a generalized eigenvalue problem (GEP)

K Φ j =λ j MΦ j . (5.20)

λ j = ω2
r, j provides the squared resonant frequency and the corre-

sponding column j in Φ the associated mode shape or eigenmode,
which is real valued for a real-valued K and M . Modal methods are
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part of standard textbooks on structural dynamics, refer to Craig et al.
[60], Géradin et al. [94], and Hambric et al. [115]. Choosing the most
significant mode shapes, one obtains the desired projection matrix
V =Φsel = subset (Φ). The questions on how to select Φsel, however, is
no trivial task if the ROM should be accurate in a limited frequency
band of interest in particular. In engineering practice, often, the mode
shapes corresponding to the lowest resonant frequencies are cho-
sen up to a user-specified frequency threshold as heuristics. Other
selection strategies are available; see Varga [264] for an overview.

The diagonalization of the reduced system matrices K R and MR is
a valuable property of the modal reduction approach when applied
to a non-damped system representation. Under the assumption of a
mass orthonormalization,

ΦT MΦ=δi j ΦT K Φ=δi jω j (5.21)

holds, where δi j is the Kronecker-delta. This results in a ROM with
decoupled DOFs, which can be solved independently from each other.
In this case, the method is called modal superposition (Tisseur et al.
[245]).

When a damped system should be represented by a modal basis
obtained from the undamped eigenvalue problem in Equation (5.20),
there are different cases to distinguish. For proportional viscous damp-
ing as defined by Equation (2.13), the viscous damping matrix D is also
diagonalized by the modal basis (which is basically the motivation
behind Equation (2.13)). From a data point of view, all system infor-
mation is already covered by projection with the real-valued mode
shapes of the non-damped system; no additional damping informa-
tion is needed but contained in the complex eigenvalues. The same
observation is made for the discussion of structural damping if S is
diagonalized by the modal basis.

The other case is a general non-proportional system damping,
due to localized damping, for example. Using mode shapes of the
undamped system as projection matrix leads to coupled degrees of
freedom in the ROM on the one hand. On the other hand, the quality
of the projection basis in such cases is questionable, as information
of the potentially complex damping modeling is missing in the sub-
space of the ROM. To include such damping modeling, a quadratic

102



5.2 Projection-based MOR

eigenvalue problem has to be solved instead of Equation (5.20), which
has the following form if structural damping is omitted:

�

K +λ j D +λ2
j M

�

Φ j = 0. (5.22)

In order to solve that quadratic eigenvalue problem, the system can be
transformed to a first-order system representation, and a generalized
eigenvalue problem can be solved (Tisseur et al. [245]). Using the
linearization scheme of Equation (2.18), the GEP is obtained as

A IΦI, j =λI, j EΦI, j (5.23)

with

ΦI =





Φ

λΦ



 . (5.24)

This GEP has the double number of unknowns compared to Equa-
tion (5.20). Mode shapes are complex valued, as well as the 2n eigen-
values, which occur in complex conjugate pairs for underdamped
systems, respectively, for modes below critical damping. Complex
modal superposition methods are possible as in the real case but
in first-order form, see Xu et al. [276]. A similar GEP can be found
for the inclusion of general structural damping by substituting K by
K̃ = K + i sgni

�

λ j

�

S in the above equations. However, a modified
solver is needed, as the matrices become complex valued, and a case
separation is needed for positive and negative imaginary parts of λ.

A modal reduction is an attractive approach for engineers, as the
modes contained in the projection matrix allow for an immediate
physical interpretation. Consequently, this approach may be the most
popular MOR technique in industry, and modal procedures are stan-
dard solvers in most commercial FE programs. However, modal bases
are not necessarily a good choice from the subsystem coupling point
of view. Modal reduction relies solely on the system matrices and
is independent of a specific subsystem input and output definition;
thus, no input-output optimal fit is obtained.

Component Mode Synthesis

Different methods were developed for enriching modal subsystem
projection matrices to address that. This class of methods is known
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as Component Mode Synthesis and includes two popular procedures:
the Craig-Bampton and the Craig-Chang method. The Craig-Bampton
method constructs a basis from eigenmodes for the subsystem with
fixed coupling interfaces and constraints modes (Craig et al. [58]).
These constraints modes correspond to static displacement shapes for
a unit displacement at the single interface DOFs. In the Craig-Chang
method, the projection matrix is constructed from eigenmodes for the
subsystem with free coupling interfaces, the rigid-body modes of the
substructure, and inertia relief attachment modes (Craig et al. [59]).
Again, inertia relief attachment modes are static displacement modes
for unit displacement at the interface DOFs, but with no other bound-
ary conditions applied at the interface. For floating substructures, as
followed in the thesis, a singular system must be solved for the rigid
body modes, which need to be considered in the basis in addition; see
Géradin et al. [94] for details. Since a part of the subspace spanned by
these free-interface modes is already included in the static displace-
ment modes, the corresponding parts are removed, leading to residual
inertia relief attachment modes. Conceptually, the methods of Rubin
[211] and MacNeal [162] employ the information for the projection
matrix; the latter method differs solely in the projection of the mass
matrix, for which only the free interface modes are considered. Classic
Component Mode Synthesis Methods are usually formulated in the
form of Equation (2.9). In such a form, the spatial interface DOFs are
directly contained in the state vector X and can be directly coupled,

the internal states
•

X are modal coordinates. Such representation is
also called superelement, which can be directly considered in a pri-
mal assembly with standard FE parts. For dual coupling, there are
distinct formulations of Component Mode Synthesis methods, dual
Craig-Bampton, which incorporates an additional interface weaken-
ing, for example (see Rixen [209]). While a Craig-Bampton method
is a remedy for a better input-output fitting, it shares the problem of
modal approaches concerning the limited damping modeling in the
ROM.

Condensation Methods

The Craig-Bampton method can also be seen as a condensation ap-
proach enriched by a modal basis. In condensation methods, the
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reduced space is exclusively formed by (primarily physical) interface
DOFs, but no internal states like generalized coordinates





•
X

Y



=V Y .

Thus, the internal states are reconstructed from a ROM that is re-
duced to the interface quantities only. Condensation methods have a
long history in structural dynamics. The most basic form is Guyan re-

duction (Guyan [109]) with a projection matrix V =
h

I ,
�

K −1
XX K XY

�T
iT

,

which corresponds to a Schur complement system of the static sys-
tem. As any mass and damping information is missing in this projec-
tion matrix, many extensions were developed during the last decades
(Friswell et al. [85], Leung [150], and O’Callahan et al. [184]). However,
the full damping information is considered in none of the methods
for general damping modeling.

The characteristics of the discussed methods are found in Table 5.2,
while the approaches are considered in their classic formulations, and
only properties are listed, which are relevant for the thesis.

BT SVD MM CMS CM KM

Optimal IO fit + o - o o +

Frequency-band fit - + o o - +

General damping o + - - - +

Adaption to 2nd order form - - + + + +

Efficiency for large X - + + + + +

Table 5.2: Thesis-relevant characteristics of model order reduction
methods in their classic formulations. BT: Balanced Truncation; SVD:
SVD-based methods; MM: Modal methods; CMS: Component Mode

Synthesis methods; CM: Condensation methods; KM: Krylov subspace
methods. The weighting is as follows. -: no; o: partly; +: yes.

5.3 The Concept of Moment Matching

There is another class of MOR methods, which is based on moment
matching. Moment matching approaches a direct fit of the input-to-
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output behavior of subsystems, thus the transfer function - locally
targeted in the domain of interest. It is an attractive concept for the
subsystem coupling application as a consequence. As shown below,
they allow for the inclusion of arbitrary damping modeling, in addi-
tion, thus potentially providing accurate power quantities. Moment
matching methods were initially developed for first-order systems
for applications in control theory. For this reason, moment match-
ing is introduced for first-order systems firstly and is extended for
second-order systems in Section 5.4.2 afterward. Consider the first-
order system of Equation (2.16) with the Laplace domain transfer
function according to Equation (2.17). The latter can be rewritten via
a Taylor series expansion around s = κ as

HI(s ) =
∞
∑

j=0

1

j !

∂HI(s )
∂ s j

�

�

�

�

s=κ
(s −κ) j−1 =

∞
∑

j=0

−m j (s −κ) j−1, (5.25)

where

m j =C I

�

�

A I −κE I

�−1
E I

� j
(A I −κE I)

−1B I (5.26)

is called the j -th (block) moment m ∈Cq×p of the subsystem around
κ in the Laplace domain; κ is the expansion point. The basic idea of
moment matching is to find a ROM SI,R which shares the first o mo-
ments with the original FOM Equation (2.16) at κ. Thus the transfer
functions of the two systems have the same o derivatives at κ; o is
called the order in the following. The moments are called Markov pa-
rameters for an expansion point ofκ→∞. If the moment matching is
performed around κ= 0, it is named Padé approximation (Baker [21]).
In that case, A must be nonsingular. A matching around k expansion
points is possible, at each point ok moments are matched as a result.

Conceptually different numerical approaches exist to perform
such moment matching. There are explicit approaches that do not
perform a projection of the subsystem’s inner representation and,
thus, are not projection-based MOR methods. Instead, the moments
are calculated explicitly in such an approach and a surrogate reduced-
order frequency response is directly forced to match these moments.
Such approaches were used for circuit design for several decades,
see Hwang et al. [127], for example, as well as the newer methods
Asymptotic Waveform Evaluation (AWE, Pillage et al. [202]) or Complex
Frequency Hopping (CFH, Chiprout et al. [56]). As no projection is
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performed, the passivity is not preserved automatically (compare
Section 5.2.2). In addition, there are several numerical issues when
using these approaches; refer to Gallivan et al. [88] for a discussion.

5.4 Basics of Krylov Subspace Construction for MOR

A numerically more robust method is provided by implicit moment
matching, which is based on the calculation of a block Krylov subspace
of order o

Ko (P ,Q ) = span
�

Q , P Q , ..., P r−1Q
	

, (5.27)

where Q is called start matrix and P continuation matrix in the fol-
lowing. span{X 1, ..., X n} defines the span of the vectors X 1 to X n . The
wording block is omitted if Q is a vector, not a matrix. Initially, Krylov
[142] introduced the sequence for eigenvalue calculations in 1931.
Implicit moment matching using Krylov subspaces became popular
starting in the 1990s by Padé approximation via the Lanczos process
(PVL, Feldmann et al. [79] and Freund [84]) and others; these meth-
ods, however, were not yet projection based. For the first time, Od-
abasioglu et al. [185] introduced an explicit projection of the system
matrices of the inner representation as defined by Equation (5.8), re-
spectively Equation (5.10). This approach, named the passive reduced-
order interconnect macromodeling algorithm (PRIMA), thus enabled
a passivity-preserving MOR method. Just recently, methods building
on these basic approaches found applications to structural dynamics;
see Lehner et al. [148], Soppa [234], van de Walle [259], and van Ophem
[262] for examples.

Hereinafter the idea of rational interpolation at ns expansion points
is followed for the explicit projection, for which the projection matri-
ces VI and WI are chosen as a combination of Krylov subspaces with
a start and continuation matrix as follows

⋃

k

Kob(k )

�

�

A I −κk E
�−1

E ;
�

A I −κk E
�−1

B I

�

⊆ colsp(VI) (5.28)

and
⋃

k

Koc(k )

�

�

A I −κk E
�−H

E H ;
�

A I −κk E
�−H

C H
I

�

⊆ colsp(WI). (5.29)

⋃

k indicates the vector-wise concatenation of k matrices, here of the
Krylov sequences at the single k expansion points, each of order o (k ),
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in one matrix. Equation (5.28) is called input Krylov subspace, Equa-
tion (5.29)output Krylov subspace. For this choice of Krylov subspaces,
one can show that in total

∑

k ob(k )+oc(k )moments are matched in
the projected ROM by the Petrov-Galerkin projection. A correspond-
ing proof can be found in Grimme [105]. For a Bubnov-Galerkin projec-
tion, thus either using exclusively the input or output Krylov subspace,
only

∑

k ob(k ) respectively
∑

k oc(k )moments are matched in the gen-
eral case.

Krylov subspaces of the form Equation (5.27) are called one-stage
in the following. In literature a common name is first-order Krylov
subspace. The contrary naming convention of the thesis is motivated
by the nature of Equation (5.27). As shown below in Section 5.4.3, also
moment-matching of certain second-order systems can be performed
using one-stage approaches. As a consequence, the different naming
convention was chosen to avoid any confusion between the chosen
Krylov subspaces and the order of the subsystem, which should be
reduced.

5.4.1 Basic Algorithms

Calculating the sequence of Equation (5.27) directly, the repetitive

multiplication of
�

A−κk E
�−1

E may again lead to numerical difficul-
ties, as pointed out by Grimme et al. [104]. The practical experience
tells that - among other factors - such numerical issues occur more
likely the more large-scale the FOM is. As a remedy, robust and well-
developed numerical algorithms exist to calculate the union of the sub-
spaces as defined in Equation (5.28), respectively in Equation (5.29).
Such algorithms utilize the invariance property of Equation (5.14)
and perform several orthonormalization steps during the sequence
construction.

Before Krylov subspace methods were used in MOR applications,
they already had a long history in the iterative solution of linear sys-
tems (refer to Golub et al. [101] for an overview) or eigenvalue extrac-
tion (Lanczos [143], Ruhe [212], and Sorensen [235]). In the scope of
these applications, many algorithmic approaches emerged, which
can be adapted for a projection matrix calculation. Corresponding
algorithms are clustered in two basic groups, Lanczos-type algorithms
(Lanczos [143]) and Arnoldi-type algorithms (Arnoldi [16]).

In a Lanczos procedure for MOR, one calculates W and V to be
bi-orthogonal, W H V = I . Following Arnoldi algorithms, the two pro-
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jection matrices are separately calculated while ensuring W H W = I
and V H V = I . While the classic Lanczos method orthogonalizes can-
didate vectors against the two previous vectors in the projection ma-
trix, the new candidate is orthogonalized against all previous vectors
in an Arnoldi approach, which is potentially computationally more
costly.

Nevertheless, classic Lanczos-type algorithms suffer from numer-
ical drawbacks and, therefore, increased implementation efforts. The
basic formulation is limited to single-input single-output (SISO) sys-
tems as found in Gugercin [108] and Salimbahrami [217], for exam-
ple. The development of versions for multiple-input multiple-output
(MIMO) systems is difficult for the general case (Gugercin [108]). The
bi-orthogonality is lost gradually, which requires re-orthogonalization
(Simon [228], for example). Breakdowns occur for a zero-length of the
candidate vector of one iteration without the possibility of continuing
in a classic formulation. Typically, both projection matrices are cal-
culated, W and V , despite the Petrov-Galerkin or Bubnov-Galerkin
approach. Salimbahrami et al. [214] introduced a Lanczos algorithm
with full orthogonalization and therefore increased computational
costs. Gallivan et al. [89] introduced a rational Lanczos procedure for
model order reduction.

Arnoldi-type algorithms are numerically more robust and, there-
fore, easier to implement (Salimbahrami et al. [214]). A basic SISO
version is provided in Algorithm 5.1 on the next page. Principal di-
rections in the basis can be identified straightforwardly due to the
orthogonality of the projection matrix, as shown below. Implemen-
tations for the block subspace in Equation (5.27), which can handle
MIMO systems, are straightforward to derive for Arnoldi-type meth-
ods. As a consequence, Arnoldi-type algorithms are used within that
work. There are two approaches to handling starting matrices instead
of vectors, thus enabling the reduction of MIMO systems: vector-wise
and block-wise implementations. The latter mainly relies on reformu-
lating vector-vector by matrix-matrix operations and an additional
QR-factorization. Another idea followed by vector-wise implemen-
tations is the modification of Algorithm 5.1 on the following page
by introducing an additional loop over the multiple starting vectors.
Both approaches are discussed by Gugercin [108].

Also Arnoldi-type iterations can break down if



j+1V





2
= 0 (Algo-

rithm 5.1, line 6). This zero-length terminates the iteration in the case
of SISO systems. In a MIMO setting, corresponding columns of the
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candidate matrix are deflated, thus removed, and the iteration can be
continued. Deflation can be considered by just slight modifications
of Algorithm 5.1, an implementation is introduced in Section 5.4.3.

A simple Gram-Schmidt orthogonalization, as introduced in Algo-
rithm 5.1, is not accurate enough in many cases to ensure sufficient
orthogonality of the basis vectors and must be replaced for numeri-
cal stability. This is discussed more in detail in Section 5.5, as well as
additional normalization steps.

Many other modifications of Arnoldi algorithms exist besides for
orthogonalization. For example, refer to the global Arnoldi method in
which the standard inner product is replaced by the Frobenius inner
product 〈V , W 〉F = tr(V H W ), where tr(2) is the trace operator. The
basis vectors are therefore called F-orthonormal in such an algorithm
(Bonin et al. [39]).

The Arnoldi algorithm is executed independently for the calcu-
lation of each of the projection matrices V (Equation (5.28)) and W
(Equation (5.29)). Following the idea of a multi-point interpolation,
Algorithm 5.1 is executed once for each expansion point κk , and the
single local projection matrices are concatenated. Again, different
approaches exist, which basically differ in the approach of concatena-
tion and the choice of the starting matrix Q for each of the expansion
points (Skoogh [232], for example). In the case Q = B is chosen for
any expansion point, the algorithm is called restarting.

Algorithm 5.1: Basic Arnoldi algorithm.

Input :Continuation matrix P , start vector q
Output :Projection matrix V

1 Function BasicOneStageArnoldi(P ,q):
2 V = [q ]
3 for j = 1,2,...k do

// calculate next mode
4 W = P · j V

// orthogonalize
5 j H =V H W
6 j+1V =W −V H j

// add to basis
7 V = [V , j+1V ]

8 return V
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5.4.2 Efficient Extension to Second-Order Systems

The concept of moment matching through Krylov subspaces can be
transferred to second-order systems. For the derivation of correspond-
ing expressions, the second-order system is linearized. A non-unique
linearization is given by Equation (2.18) and is repeated here for con-
venience

E =





D M

M 0



 A I =





K̃ 0

0 M



 B I =





B

0



 C I =
h

C 0
i

with K̃ =−K −i sgni (s )S . For brevity and without the loss of generality,
assume a moment matching at the zero expansion point κ= 0 for the
following derivations. Inserting the linearized system matrices into
Equation (5.28), one obtains the input Krylov subspace as

Kr











K̃ 0

0 M





−1



D M

M 0



 ,





K̃ 0

0 M





−1



B

0










=

Kr











K̃ −1D K̃ −1M

I 0



 ,





K̃ −1B

0










⊆ colsp(VI).

(5.30)

Starting from other linearizations than the non-unique form of
Equation (2.18), one arrives at the same expression for the input space
(Salimbahrami et al. [214]). The output space can be rewritten corre-
spondingly to Equation (5.30) as

Kr











K̃ −H D H K̃ −H M H

I 0



 ,





−K̃ −H C H

0










⊆ colsp(WI). (5.31)

One straightforward option is to stay in the first-order framework
to obtain ROMs of second-order systems. The one-stage subspaces
are then calculated numerically according to Equation (5.30) and
Equation (5.31) by corresponding algorithms from the preceding Sec-
tion 5.4.1. Refer to Freund [83] or Vandendorpe et al. [263] for such
approaches. The block-structure of the first-order system matrices of
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Equation (2.18) can be preserved after projection by rearranging VI

and WI in block-diagonal matrices,

colsp (Z ) = colsp











Z1

Z2










⊆ colsp











Z1 0

0 Z2










. (5.32)

However, as the second-order system is reformulated in a first-order
form, the number of states is doubled, increasing computational ef-
fort.

There are more economical approaches to generating Krylov sub-
spaces for second-order systems. The starting point for the derivation
of such algorithms is the observation that the matrices of both sub-
spaces, Equation (5.30) and Equation (5.31) exhibit a form of

Kr











P1 P2

I 0



 ,





Q

0










. (5.33)

This form with zero and identity matrices in the second row leads to
a Krylov sequence of the form





R 0 R 1 ... R r−1

0 R 0 ... R j−2



=





Zu

Z l



 (5.34)

with

R 0 =Q

R 1 = P1R 0

R j = P1R j−1+ P2R l−2 for j ≥ 2.

(5.35)

It is obvious from Equation (5.34) that

colsp(Z l)⊆ colsp(Zu), (5.36)

and the overall Krylov subspace is determined by Zu. The latter can
be constructed by introducing a two-stage Krylov subspace

Go

�

P1, P2;Q
�

= span
�

R 0, R 1, ...R o−1

	

= colsp
�

Zu

�

. (5.37)
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Corresponding numerical implementations are based on Arnoldi-like
procedures and mainly differ in the orthonormalization strategy, refer
to Bai et al. [19, 20], Lu et al. [157], and Salimbahrami et al. [214] for
different examples. The subspaces are called second-order Krylov
subspaces in these publications. This different naming is motivated
by the discussion above.

It follows from Equation (5.36)in combination with Equation (5.32)
that a Krylov subspace for a second-order system, which is generated
by linearization and a one-stage algorithm can be embedded in the
two-stage Krylov subspace

Kr











P1 P2

I 0



 ,





Q

0










⊆ colsp











Zu 0

0 Zu










= colsp

�

Ẑ
�

. (5.38)

A consequence of that expression is that projecting the linearized form
of a second-order system with Ẑ is equal to projecting the matrices of
the second-order system directly by Zu (see Lehner [147], for example).

The above expressions were derived assuming an expansion point
at zero, κ= 0. These expressions can be adapted straightforwardly for
arbitrary expansion points, as a moment matching around κ is equal
to a moment matching of the shifted problem ŝ = s −κk at zero (Sal-
imbahrami et al. [214]). The transfer function matrix, Equation (2.11),
of the shifted second-order system is

H =C
�

A k + ŝ D̂k + ŝ 2M
�−1

B ,

while

A k = κ
2
k M +κk D +K + i sgni

�

κk

�

S

D̂k = 2κk M +D .

The formula of the input Krylov subspace for an interpolation at
several expansion points is then found as

⋃

k

Gob(k )

�

−A−1
k D̂k ,−A−1

k M ;−A−1
k B

�

⊆ colsp(V ). (5.39)

In the case of Petrov-Galerkin projection the two-stage output Krylov
subspace is obtained by

⋃

k

Goc(k )

�

−A−H
k D̂ H

k ,−A−H
k M H ;−A−H

k C H
�

⊆ colsp(W ). (5.40)
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At each expansion point, ob(k )+oc(k )moments of the second-order
system are matched when a Petrov-Galerkin projection is applied with
the input and output Krylov subspace.

For the assumptions of the thesis for FOM subsystems, interface
symmetry C = B H and real-valued symmetric system matrices (K ,
M , D , S ), a valuable relationship between input and output Krylov
subspace can be stated. For such subsystems,

Ã k = κ
∗2
k M +κ∗k D +K + i sgni

�

κ∗k
�

S = A∗k = AH
k

D̃k = 2κ∗k M +D = D̂ ∗
k = D̂ H

k

(5.41)

holds and the output space, Equation (5.40), can be rewritten as
⋃

k

Gob(k )

�

−Ã−1
k D̃k ,−Ã−1

k M ;−Ã−1
k B

�

⊆ colsp(W ). (5.42)

As a result, the output space is the input space at the conjugate com-
plex expansion point. In the case of purely real-valued expansion
points, ℑ(κk ) = 0, it follows that the output and input Krylov sub-
spaces are equal. Due to that, 2 · ob(k ) moments are matched per
expansion point κk , although solely the input Krylov subspace is cal-
culated and a Bubnov-Galerkin projection is performed, not Petrov-
Galerkin. The subspaces are not equal in the case of complex-valued
expansion points, ℑ(κk ) ̸= 0. ob(k )moments are matched at κk , and
ob(k ) moments at the complex conjugate expansion points κ∗k im-
plicitly when applying Galerkin projection. Anyhow, the concept of a
(Bubnov) Galerkin projection is employed in the following. The latter
provides several advantages, the preservation of subsystem passivity
and computational speedup, in particular, compensating the merely
implicit match of output moments.

Note that Equation (5.42) does not hold for subsystems with non-
symmetric interface C ̸= B H . A Galerkin projection is also possible in
this case with an extended V but leads to larger ROMs in most cases.
For a short discussion, see Lehner [147] and the references therein.
Although not shown here, the same considerations regarding moment
matching by Galerkin projection are valid for first-order systems.

5.4.3 Krylov-based MOR in the Context of Damping
Modeling

The formulation for Krylov subspaces of second-order systems, Equa-
tion (5.39), respectively Equation (5.40) reveals one of the central ad-
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vantages of Krylov-based MOR. The damping matrices D and S are
used explicitly to calculate the projection matrices. Consequently,
damping information is included in the Krylov subspace without fur-
ther restrictions on D and S . Even damping models with arbitrary
frequency-dependency could be considered in a Krylov-based MOR.
In this case, the parametric model order reduction framework of Chap-
ter 6 provides the basis with the frequency of excitation as a variable
input parameter. As a result, using Krylov-based MOR can potentially
result in accurate ROMs for any damping from a methodical point
of view. This exact damping modeling provides a basis for accurate
energetic network evaluations.

An algorithm can be developed to construct two-stage Krylov sub-
spaces as a projection basis of second-order systems. Following the
basic algorithms for one-stage Krylov subspaces in Section 5.4.1, sim-
ilar procedures can be developed for two-stage approaches. However,
it is unnecessary to use two-stage Krylov subspaces for any second-
order subsystem to obtain moment-matching. One can show that for
many cases of damping modeling, moment matching can be achieved
by a one-stage Krylov subspace of the form of Equation (5.27).

A one-stage Krylov subspace can be used instead of a two-stage
one for systems with Rayleigh-damping D =αM +βK or no damping,
while ensuring the same moment-matching

Gr

�

−A−1
k D̂k ,−A−1

k M ;−A−1
k B

�

=Kr (−A−1
k M ,−A−1

k B ). (5.43)

Derivations can be found in Lehner et al. [148] starting from one-stage
Krylov subspaces, or in Beattie et al. [26] and Eid et al. [73] starting from
two-stage Krylov subspaces. There are special cases in which no damp-
ing information must be considered in the subspace, and a one-stage
algorithm matches even the double number of moments compared
to a two-stage one with the same ROM size. This holds for systems
with no damping or solely stiffness proportional Rayleigh damping,
which are expanded at κ = 0 (Eid et al. [73] and Salimbahrami et al.
[214]).

None of the above studies consider structural damping in the
case considerations. Explicit consideration of structural damping is
presented in the following. As the basis, the proof of Equation (5.43)for
Rayleigh damping is repeated from Eid et al. [73] in a refined notation.

115



5 Krylov-Subspace Learning for FE Subsystems: Basics

In the original formulation, zero structural damping S = 0 is assumed,
which results in

A k =
�

κ2
k +κkα

�

M +
�

1+κkβ
�

K

D̂k =
�

2κk +α
�

M +βK .

Reformulating D̂k in terms of A k and M provides

D̂k =
β

1+κkβ
A k+

�

2κk +α−β
κ2

k +κkα

1+κkβ

�

M = α̃A k+β̃M . (5.44)

A proof by induction is possible with this reformulated D̂k . Therefore,
the sequence blocks R j of the two-stage Krylov subspace, as defined
by Equation (5.35), are compared to the blocks of the one-stage algo-
rithm

R̃ j = P j−1Q = −
�

−A−1
k M

� j−1
A−1

k B ,

where the starting and continuation matrices are inserted as defined
in Equation (5.43). The starting matrix Q is the same for both se-
quences, thus the first two moments are related as

R 0 = A−1
k B = R̃ 0

R 1 = −A−1
k D̂k R 0 = −A−1

k

�

α̃A+ β̃M
�

R̃ 0 = −α̃R̃ 0+ β̃ R̃ 1 =
1
∑

m=0

wm R̃ m .

One can show for all subsequent two-stage blocks in the form of R j =
∑ j

m=0 wm R̃ m , that the next block is again a weighted sum of one-stage
blocks

R j+1 = −A−1
k D̂k R j − A−1

k M R j−1

=
�

−α̃− β̃A−1
k M

�

j
∑

m=0

wm R̃ m − A−1
k M

j−1
∑

m=0

wm R̃ m

= −α̃
j
∑

m=0

wm R̃ m + β̃
j+1
∑

m=1

wm R̃ m +
j
∑

m=1

wm R̃ m .

(5.45)

Thus, every block in the two-stage sequence is a linear combination
of the block one-stage sequences for Rayleigh-damping. Following

116



5.4 Basics of Krylov Subspace Construction for MOR

Section 5.2.2, the invariance property states that both projection ma-
trices, which are constructed from the two sequences, span the same
subspace. Thus, the same number of moments is matched, and the
proof is completed for Rayleigh damping. Note, the proof for systems
with no damping is also covered as a special case of Rayleigh damping
with α= 0 and β = 0.

If one now extends the above formulations for structural damping,
one obtains

A k =
�

κ2
k +κkα

�

M +
�

1+κkβ
�

K + i sgni
�

κk

�

S

D̂k =
�

2κk +α
�

M +βK .

A reformulation of D̂k in terms of A k and M includes the structural
damping matrix

D̂k =
β

1+κkβ
A k +

�

2κk +α−β
κ2

k +κkα

1+κkβ

�

M +β
i sgni

�

κk

�

1+κkβ
S

= α̃A k + β̃M +γS .

(5.46)

As a result, the blocks of the two-stage sequence are not a linear com-
bination of the one-stage sequence blocks anymore

R 0 = R̃ 0

R 1 = −A−1
k D̂k R 0 = −A−1

k

�

α̃A+ β̃M +γS
�

R̃ 0 =
�

γS − α̃
�

R̃ 0+ β̃ R̃ 1.

Therefore, a two-stage algorithm has to be used for moment match-
ing if both general Rayleigh and structural damping are included in
a subsystem. However, there are several important cases in which
one-stage algorithms can also be used in the presence of structural
damping: The proof of Eid et al. [73] can be conducted solely in cases
in which D̂k can be expressed exclusively by a weighted sum of the
two matrices A k and M . If the structural damping matrix is a linear
combination of the stiffness and mass matrix S = ϑK +ζM , D̂k can
be expressed in terms of A k and M

D̂k =
β

1+κkβ + i sgni
�

κk

�

ϑ
A k

+

 

2κk +α−β
κ2

k +κkα+ i sgni
�

κk

�

ζ

1+κkβ + i sgni
�

κk

�

ϑ

!

M = α̃A k + β̃M ,
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and the proof of Eid et al. [73] can be conducted as shown above. The
other, more relevant case is structural damping of general form, while
the Rayleigh coefficients take the form β = 0 and α≥ 0. For this case,
D̂k is represented by M only

D̂k =
�

2κk +α
�

M = β̃M . (5.47)

As a result, an expression similar to Equation (5.45) can be found

R j+1 = −A−1
k D̂k R j − A−1

k M R j−1

=
�

−β̃A−1
k M

�

j
∑

m=0

wm R̃ m − A−1
k M

j−1
∑

m=0

wm R̃ m

= β̃
j+1
∑

m=1

wm R̃ m +
j
∑

m=1

wm R̃ m ,

(5.48)

and one-stage algorithms provide the same moment matching proper-
ties as their two-stage counterpart. The above results are summarized
in Table 5.3.

S D Required Krylov sequence

Arbitrary Arbitrary Two-stage

0 0 One-stage

Arbitrary 0 or αM One-stage

0 αM +βK One-stage

ζM +ϑK αM +βK One-stage

Table 5.3: The required Krylov sequence for correct moment matching in
dependence of the subsystem damping modeling for expansion points

|κk |> 0.

In any case, structural damping incorporates some additional
challenges from an algorithmic point of view. As discussed above, the
dynamic stiffness A k necessarily becomes a complex-valued matrix,
despite the choice of κk in the Laplace domain. The projection matrix
V is complex valued per definition in such a damping setting. Classi-
cally, however, mainly real-valued projection matrices are assumed
for the notation of projection-based MOR. Motivated by this, one can
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replace the complex-valued projection matrix at an expansion point
Vκ by a real-valued one using

V̂κ =
�

ℜ
�

Vκ
�

ℑ
�

Vκ
�

�

. (5.49)

It is obvious that Equation (5.49)contains the subspace which is spanned
by Vκ

colsp
�

Vκ
�

⊂ colsp
�

V̂κ
�

. (5.50)

As Equation (5.41) holds, the complex-valued projection matrix at
the conjugate complex expansion point κ∗ is equal to the conjugate
complex projection matrix at κ

Vκ∗ =V ∗κ . (5.51)

Thus, also Vκ∗ is contained in V̂κ

colsp
�

Vκ∗
�

⊂ colsp
�

V̂κ
�

. (5.52)

For the first time, the concept was used in Ruhe [212] for eigen-
value computations with complex-valued shifts and was applied to
model order reduction of first-order systems in Grimme [105], for ex-
ample. An approach for converting the basis vectors already during
moment calculation is found in Lee et al. [145]. Lehner [147] discussed
the approach in the context of second-order systems. For matching
moments at κ and its conjugate κ∗ concurrently, z complex-valued
basis vectors can be replaced by z real ones (if no deflation is as-
sumed, which is discussed in Section 5.5.2). Computational savings
are achieved by the conversion to a real-valued basis from that per-
spective, as calculations in complex arithmetic can be replaced in
many stages of MOR. Nevertheless, moments have to be matched
explicitly at the two expansion points concurrently, regardless of the
question if matching additional moments at the conjugate expansion
points adds valuable information to the subspace or not. Potentially, it
is more effective to match moments at another expansion point than
at the conjugate complex of the current one. In practice, this leads to
larger real-valued projection matrices, and therefore larger ROMs, to
achieve some required accuracy compared to complex-valued ones.

No conversion to real-valued projection matrices is performed
in the proposed method due to that reason, but the whole system
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definition, as well as the projection-based MOR, is formulated for
complex-valued quantities in the thesis.

Large-scale models of individual subsystems in vehicle networks
usually are pure metal parts and contain solely structural damping,
thus do not require two-stage algorithms (see Table 6.1). This is an at-
tractive result, one-stage Arnoldi algorithms are more well-established
and consolidated than corresponding two-stage procedures. Never-
theless, reformulations in complex arithmetic are required, as pointed
out. In addition, numerical and practical issues also arise for one-stage
Arnoldi-type methods, when the FOM has a high number of states
and inputs and outputs. Motivated by this, the thesis focuses on one-
stage algorithms in the following. Concepts are presented to handle
industrial FOMs. The presented concepts can be straightforwardly
transferred to two-stage algorithms in future research.

5.5 Block-Arnoldi one-stage Algorithm for MIMO
Large-scale Second-Order Models

Common block-versions of the Arnoldi algorithm, as introduced in its
basic formulation by Algorithm 5.1 can be used for the construction
of one-stage Krylov subspaces; however, not without adjustments
for large-scale industrial models. The final implementation, which
is proposed in this thesis, is presented in Algorithm 5.2. It has two
significant modifications: the orthogonalization and the deflation
procedure, which are discussed below.

Algorithm 5.2 provides a generic formulation of a block-Arnoldi
procedure for incremental construction of a projection matrix. There-
fore, the above algorithm is called from an outer loop per sampling
point, at which additional moments should be matched by adding
basis vectors to the projection matrix V . For a second-order system
with structural and, respectively, or Rayleigh-damping, a continuation
matrix of

P =−A−1
k M (5.53)

and a starting matrix of

Q =−A−1
k B (5.54)

evaluated at the corresponding sampling point are provided to the
algorithm; respectively, the factorization for P in a practical imple-
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Algorithm 5.2: Modified Block-Arnoldi algorithm with references
to Algorithm 5.3 on page 123 and Algorithm 5.4 on page 125.

Input :Transformation matrix V , Krylov matrix P , starting
matrix Q , expansion order o , deflation vector length
ltol

Output :Augmented transformation matrix V
1 Function oneStageBlockArnoldi(V , P ,Q , o , ltol):

// orthogonalize starting matrix against V

2 1V = reorthoGramSchmidt(V , Q )
// orthonormalize columns of starting matrix
against each other and perform deflation

3 1V =QRdeflation(1V , ltol)
// add starting matrix to basis

4 V = [V , 1V ]
// loop over orders

5 for j = 1,2,...o-1 do
6 j+1V = P j V

// orthogonalize candidate vectors against V

7 j+1V = reorthoGramSchmidt(V , j+1V )
// orthonormalize candidate vectors against
each other and perform deflation

8 j+1V =QRdeflation( j+1V ,ltol)
// add candidate vectors to basis

9 V = [V , j+1V ]

10 return V

mentation. This finally provides a multi-point moment matching
(Equation (5.28)) by a restarting scheme. Depending on the concept
for expansion point placement, the outer loop takes a different form
(see Section 5.7); thus, it is not provided here as pseudo-code.

5.5.1 Orthogonalization Procedures for Large-Scale Models

A simple Gram-Schmidt orthogonalization as used in Algorithm 5.1
on page 110 may not be sufficient for ensuring orthogonality of the
basis vectors in the Arnoldi procedure. While this may not play a sig-
nificant role in the basis construction for small-scale models, practical
experience shows that it is an issue for industrial large-scale FOMs.
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Loss of orthogonality is very likely for such models, which is not just an
issue for the algorithm’s numerical stability but also for the deflation
strategy, which is presented below.

The classical Gram-Schmidt procedure (CGS) of Algorithm 5.1
on page 110 can be replaced by a Modified Gram-Schmidt approach
(MGS) to prevent such loss of orthogonality. Both approaches are
equivalent in exact numerics. In the presence of round-off errors,
however, the MGS method shows better numerical stability (Golub
et al. [101]). Against CGS, in which all Hi j , are calculated once and in-
dependent of each other (see Algorithm 5.1 line 5), they are calculated
subsequently in MGS while iterating through the orthogonalization
of the new candidate vector against the single previous basis vectors.
Consequently, in MGS, errors introduced during these iterations are
not summed up as in CGS, as the vectors are orthogonalized against
the errors made before.

However, even MGS procedures can be insufficient to ensure or-
thogonality (Saad [213]). Braconnier et al. [43] illustrated that issue for
the calculation of eigenvalues for a Toeplitz matrix of size 100 through
the Arnoldi algorithm. They showed that insufficient orthogonaliza-
tion using CGS or MGS severely impacted their results. Giraud et al.
[97] did not use Arnoldi procedures but orthogonalize a square matrix
of size 183. They observed a loss of orthogonality using MGS and more
significant for CGS. Re-orthogonalization is a remedy to that, in which
CGS or MGS is repeated in an iterative procedure (rCGS, respectively
rMGS). In the following, rCGS is preferred over rMGS as it allows for
more efficient implementations: a straightforward parallelization is
possible, as well as matrix-versions of the algorithms. MGS algorithms
require strictly sequential calculations in contrast. Implementations
are reported for a parallel version of CGS, for which two iterations of
CGS are faster than one iteration of MGS (refer to Giraud et al. [97]
and references herein). This can compensate for the additional nu-
merical efforts introduced by the iterative approach. Two iterations
of rCGS (or rMGS) are, in fact, already sufficient for orthogonalization
of a non-singular set of initial vectors (Giraud et al. [98]). The corre-
sponding implementation is short and presented in Algorithm 5.3. In
accordance with the block version of the Arnoldi algorithm, the rCGS
is implemented in a matrix version, too.

Note that there are other orthogonalization schemes besides Gram-
Schmidt. For example, a version of the Arnoldi algorithm is found in
Walker [270], which employs a Householder orthogonalization.
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Algorithm 5.3: Iterative Gram-Schmidt algorithm.

Input :Orthogonal basis V , candidates W
Output :Orthogonalized candidates W

1 Function reorthoGramSchmidt(V , W ):
// initialize

2 k = 0
// iteratively orthogonalize

3 while k < 2 do
4 Q =W
5 H =V H Q
6 W =Q −V H
7 k+= 1

8 return W

5.5.2 Deflation

Linear dependencies of basis vectors, hence a rank-deficiency, is an-
other possible numerical issue. This issue is particularly relevant for
a moment matching of subsystems with many in- and outputs. Lin-
ear dependencies are possibly introduced at two stages in the block
Arnoldi algorithm. The starting matrix Q can already contain linear
dependencies, or the latter are introduced during the Arnoldi itera-
tions over the single orders. These linear dependencies have to be
detected and removed from the vector candidate set V j by deflation.
In the case of deflation, the Arnoldi algorithm cannot be continued
for SISO systems. For a MIMO setting, the corresponding columns
containing linear dependent vectors are removed, and the Arnoldi
algorithm continues.

In exact arithmetic, a candidate vector has to be deflated if its
length is zero after the orthogonalization against the existing basis



Wj





2
= 0, (5.55)

where∥2∥2 indicates the Euclidean norm for a vector. Thus, the can-
didate vector is linearly dependent on the columns of the existing
projection matrix. The case of an exactly zero vector length is unlikely
in finite-precision arithmetic. However, vectors with a small vector
length in the range of machine precision would also lead to numeri-
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cally unstable divisions in the algorithm. Vectors with an Euclidean
norm smaller than a given tolerance ltol



Wj





2
≤ ltol (5.56)

have to be removed to prevent that, leading to inexact deflation. Vec-
tors, which are almost linear dependent are removed as result. As
vectors with a small but nonzero length are removed from the basis,
exact moment matching is no longer ensured, and an error is intro-
duced. In fact, the block Krylov sequence of Equation (5.27) changes
to

colsp (V ) = span
�

0R , P · 1R , ..., P r−1 · r R
	

(5.57)

which is has a modified starting matrix, which changes per sequence
step, thus is no strict Krylov sequence anymore. In the case that no
deflation occurred in step j , the starting matrix does not change and

j R = j−1R holds. Otherwise, j R is a subset of the vectors of j−1R .
Bounds for the error in the computed moments due to inexact defla-
tion are found in Gugercin [108] for first-order systems.

A standard QR factorization (Golub et al. [101]) is used for the fi-
nal orthogonalization of the candidate vectors of one iteration j+1V
against each other in Algorithm 5.2 on page 121 line 8. The QR factor-
ization enables an efficient procedure for determining the lengths of
the orthogonalized vectors before the normalization. Two matrices
are provided by a QR factorization, a set of orthonormal column vec-
tors Z and corresponding participation factors Γ , from which j+1V
can be reconstructed as j+1V = Z Γ . For corresponding implementa-
tions of the QR factorization (Anderson [13]), Γ is upper tridiagonal;
the absolute values on its diagonal determine the vector lengths of the
column vectors of Z before normalization as required for deflation
according to Equation (5.56). An implementation is found in Algo-
rithm 5.4 on the facing page. The same procedure is used in order to
determine (almost) linear dependencies in the starting vector Q in
Algorithm 5.2 line 2.

Another common approach, which is followed in literature, is de-
termining the rank of j+1V by a rank-revealing QR (Hong et al. [123],
for example). Arnoldi algorithms, which utilize such a rank-revealing
QR can be found exemplary in Bonin et al. [38] and Gugercin [108].
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Algorithm 5.4: Deflation algorithm.

Input :Candidate vectors W , deflation length ltol

Output :Orthonormal and deflated transformation matrix W
1 Function QRdeflation(W ):

// get QR factorization
2 [Z ,Γ ] = qr(W )

// get initial vectors lengths
3 L = diag(Γ )

// find vectors not to deflate
4 I incl = find(abs(L )> ltol)
5 W = Z (:, I incl)
6 return W

5.5.3 Efficiency Enhancements for MIMO Systems

Apart from the numerical challenges that arise with large-scale in-
dustry FOMs, there is a conceptual challenge in Krylov-based MOR
for such systems. When matching o moments at ns non-conjugate
expansion points, the ROM size is

m = o nsnU .

A Bubnov-Galerkin projection by the complex-valued input Krylov
subspace without deflation is assumed for this. Obviously, the ROM
size depends linearly on the number of inputs nU of the FOM. Dealing
with subsystems of large-scale industrial assemblies, this linear de-
pendency constitutes a bottleneck of Krylov subspace methods: such
models have many inputs in the range of a few dozen to hundreds
for vehicle models. As several expansion points are usually needed,
the size of ROMs can grow prohibitively large. Thus, the dependency
of the ROM size m on the number of inputs nU has to be reduced
by appropriate methods to obtain efficient ROMs. For this purpose,
common methods are found in the literature.

Overview over Different Approaches

There are a-priori methods for breaking the linear dependency. The
term a-priori refers here to a reduction of the starting or continuation
matrix before the subsequent Krylov sequence vectors are calculated.
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SVDMOR is such an a-priori method, which was introduced by Feld-
mann [78]; an illustrative description is found in Tan et al. [240]. The
basic idea is to find a lower rank representation of the subsystem in-
terface (called terminals in SVDMOR literature), thus a condensed
form of the maps B = B̃ Ṽ H and C = C̃ Z̃ H . The transfer function then
takes the form of

H = Z̃ C̃ A−1B̃ Ṽ H = Z̃ H̃ Ṽ H ,

in which a smaller ñU × ñU transfer function H̃ is nested. The latter
can be reduced in a second step by applying the standard Krylov
method or any other model order reduction technique. In the original
formulation, the required interface projection matrices Ṽ and Z̃ are
determined from an SVD of the 0th order block moments at κ= 0 for
a first-order system (Equation (5.26))

m 0 = Z̃ ΘṼ H .

Liu et al. [154] introduced the extended SVDMOR (ESVDMOR) method.
It follows the idea of SVDMOR, but the low-rank approximation is
obtained from different enriched moment matrices. Higher-order mo-
ments are considered in addition, and the SVD is applied to separate
moment matrices associated with the inputs, respectively outputs.

Tangential interpolation is another approach for a reduced depen-
dency of the ROM size on the number of inputs. It is directly linked
with Krylov-based MOR and was introduced by Gallivan et al. [87, 90].
The concept is not to match the transfer function at the expansion
points κk (and possibly higher-order moments of it) in total but just
in tangential right directions t r,k when constructing the input Krylov
subspace

HR(κk )t r,k =H (κk )t r,k . (5.58)

As a result, the starting matrix for the Krylov sequence reduces to
Q =−A−1

κk
B t r,k . For the construction of the output Krylov subspace,

corresponding left directions are determined, which are multiplied to
Equation (5.58) on the left-hand side. The calculation of appropriate
tangential directions t r,k is closely related to the determination of
expansion points. In a greedy basis construction, tangential directions
can be determined along with expansion points from residuals for
the next moments to be matched (Druskin et al. [70]). For H2-optimal
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MOR, tangential directions are an enabler for MOR of MIMO systems
and can be determined in several ways (Bunse-Gerstner et al. [49]).
The concepts of H2-optimal MOR and greedy search are introduced
more detailed in Section 5.7.

The projection matrix generation through the Arnoldi algorithm
occurs in the offline phase, decoupled from later online assembly
evaluations. The offline phase is less time-critical than the execution
times in the online phase. Consequently, it may be a good compro-
mise to choose a computationally more demanding approach of an
a-posteriori approach for ROM size reduction. The benefit of these
extra efforts is that as much information (moments) as possible can be
used, as the significant directions are chosen a-posteriori after the cal-
culation of each full Vκ at expansion point κ. This potentially leads to
more accurate models for a given ROM size than a-priori approaches.
For example, van Ophem [262] compares corresponding a-priori and
a-posteriori methods. Identifying principal directions is closely linked
to data-driven approaches for MOR (compare Section 5.2.3). In line
with that, van Ophem [262] uses an SVD for determining the most sig-
nificant directions in the Krylov sequence vectors a-posteriori. Com-
pared with an a-priori method employing an SVDMOR-like approach
but using a moment around κ ≠ 0, a better approximation is observed
in the vicinity of the expansion points.

A-posteriori Approach of the Thesis

In the method introduced in the following, no SVD on the whole pro-
jection matrix is performed. The Arnoldi procedure, as presented in
Algorithm 5.2 on page 121, calculates orthogonal basis vectors and
consequently provides already information about the linear depen-
dency without any extra calculations. Based on that, a more geometri-
cal approach is possible using vector lengths to identify the significant
directions in a set of candidate vectors for a currently calculated mo-
ment matrix of the MIMO transfer function. Each of the candidate
vectors is the component of the considered moment for a specific
column, respectively row in the transfer function matrix, while the
considered moment may not be equally important for all columns
and rows. The concept can be illustrated by the situation in Figure 5.1:
Two orthonormal vectors, V1 and V2, span the current subspace, to
which a third direction should be added by the candidate vector W3.
W3 is calculated in line 6 of Algorithm 5.2 on page 121 or is given by
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the starting matrix. Prior to orthogonalization, W3 has some angle ϕ
to the already existing subspace and an initial vector length



W3





2
.

The non-normalized vector Ṽ3 is obtained by orthogonalization of
W3. The vector length l3 =



Ṽ3





2
is obtained depending on the initial

angle α and the initial vector length


W3





2
when no normalization is

performed

l3 =


Ṽ3





2
=


W3





2
sin(ϕ).

In Krylov subspace methods, a small vector length l3 thus can have
two reasons. Firstly, the initial angle ϕ may be small as the candidate
vector, the component of the calculated moment for a specific column,
respectively row, is almost linearly dependent on the already spanned
subspace. Thus, it may be a reasonable approximation to represent
the moment for this part of the transfer function by the existing basis.
Secondly, the initial candidate vector length



W3





2
may be small; thus,

the considered moment is small for the correlated column/row of the
transfer functions. As a result, the moment contribution is small, and
the vector may also be omitted for the basis.

Having the block of candidate vectors for an expansion point, the
idea is to include these with vector lengths



Ṽ j



> ltol in the projection
matrix, as they add the important information to the basis. The se-
lected vectors are normalized afterward. The concept of using vector
lengths as selection criteria is already found in Salimbahrami [217],
from which also Figure 5.1 was adapted. However, it is the first time
that it is reported for use in an industry-scale model to the authors’
knowledge. Salimbahrami [217] also proposes selection criteria based
on the initial angles α. The vector length Ṽ is here preferred as it
combines both, initial vector length and angle.

The approach described above is nothing else than the inexact
deflation procedure of Section 5.5.2 but for a larger ltol. No additional
implementations are necessary. No computationally more demand-
ing SVD on the whole projection matrix needs to be performed, but
the results of the cheaper QR factorization of the candidate vectors at
the current iteration are used. This is called augmented deflation in
the following. Conceptually the same as inexact deflation, moment
matching is not fulfilled exactly anymore as a result (see Section 5.5.2).
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V1

V2

Ṽ3

W3

ϕ

l3

Figure 5.1: Visualization of the orthogonalization procedure during basis
generation, adapted from Salimbahrami et al. [214].

5.6 Error Analysis for Reduced Subsystems

A Krylov-based MOR allows for a local fit in the band-limited (Laplace)
domain of interest, thus for efficient ROMs. As one major drawback, it
is challenging to find reliable and efficient error bounds for that band-
limited domains, but heuristics are utilized in practice to estimate the
error (Antoulas [15] and Grimme [105]).

The starting point for developing heuristics is the frequency-
dependent error in the matrix of transfer functions

ϵH =H −HR, (5.59)

respectively some norm of that error matrix. In signal and system
theory, there are many norms associated with specific properties of
the signal or system. Such norms are the two norm H2 or the infinity
norm H∞. Refer to Soppa [234] for some overview over corresponding
norms and to Panzer et al. [190] for an exemplary use in the context
of Krylov-based MOR. These kinds of norms have in common that
they provide information in a global manner, as they are evaluated
over the whole (semi-) infinite time or frequency domain. In contrast,
the error quantities in a limited frequency band are of interest when
performing harmonic network analysis. Consequently, local errors
need to be analyzed at distinct frequencies, and∥2∥ is some norm for
the evaluation at a frequency point.
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It was pointed out in Section 2.3.4 that a sufficient phase accuracy
of the transfer function matrix is required to enable accurate power
quantities. This requirement is not sufficiently represented by a norm
of ϵH when developing an error measure to account for a later power
evaluation in the coupled network. As a practical remedy, norms of
the relative error can be evaluated instead



ϵH,rel



=



H −HR





∥H ∥
=



ϵH





∥H ∥
, (5.60)

where ϵH,rel is again a matrix. This is an attractive approach for an
energetic analysis; by assessing the relative error, an upper bound for
the phase error ϕϵH

is obtained

tanϕϵH
=



ϵH





∥H ∥

√

√

√

1−
ϵT

H H

∥H ∥


ϵH





<



ϵH





∥H ∥
. (5.61)

Thus, the relative error provides phase and amplitude errors con-
currently and can account for the sensitivity of power quantities for
phase errors. A geometric interpretation of Equation (5.61) is found
in Figure 5.6 for the case of a SISO system.

∥H ∥

ℜ(H )

ℑ(H )



HR





∥ϵ∥

ϕ

ϕϵ

Figure 5.2: The relationship between the different components of the
relative ROM error for SISO systems.

Equation (5.59) provides the error of the 0th order moment of a
transfer function. Corresponding errors can be calculated for any
higher-order moment, too. Expressions, which allow for an efficient
evaluation during the Arnoldi algorithm, are found in Lee et al. [145].

All the above expressions have in common that the FOM must be
solved at each considered frequency point. This need foils the idea
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of model order reduction, which should avoid the evaluation of the
FOM. As a remedy, heuristics are used for error evaluation.

Two categories for approximations to the reduction error can be
distinguished: extrapolatory and residual expressions. In extrapola-
tory error expressions, the reference solution is approximated by a
second ROM. The error is then approximated by



ϵH



=


H −HR



≈


HR,2−HR



, (5.62)

respectively



ϵH,rel



=



H −HR





∥H ∥
≈



HR,2−HR







HR,2





. (5.63)

HR,2 may result from a reference ROM with interlaced expansion
points. Grimme [105] initially suggested that approach, who called
this kind of approximation complementary. Other choices for HR,2

are available in the literature. A ROM with increased moment order
at the expansion points of the basis can be used (Bechtold et al. [29]
and van de Walle [259]). In Grimme et al. [104] a weighted form of
Equation (5.63) is proposed, in which a weighted sum of the differ-
ences between the current model with reduced models from several
preceding iterations is calculated.

Such complementary error formulas are cheap to evaluate, but
they require an additional reduced model. In addition, the quality of
the approximation depends on the rate of convergence of the refer-
ence ROM to the solution of the FOM. Around the expansion points
of the reference ROM, the approximation is supposed to give locally
reasonable results, but this may not be the case for frequencies with
a large distance to the expansion points. Both models, the ROM and
reference ROM, may have the same (significant) error compared with
the full system solution in such regions. Consequently, the error es-
timate may indicate a minimal error but hide the true one. Soppa
[234] reports oscillating errors in such regions. However, a good ap-
proximation quality of complementary errors is reported for many
applications (Grimme [105] and van de Walle [259]).
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The second class of error estimators is based on residual expres-
sions. For a subsystem, which is excited by the inputs U , the residual
in Laplace domain is

rU = BU − AV X R = BU − AV A−1
R V H BU

= A
�

A−1BU −V A−1
R V H BU

�

︸ ︷︷ ︸

ϵX

= AϵX. (5.64)

This allows to calculate the error of a subsystem’s state vector intro-
duced in the full order model by the reduced order model’s solution
from the residual as

ϵX = A−1rU . (5.65)

In order to calculate the error of the transfer function, the following
input residual can be evaluated

rB = B − AV A−1
R V H B = A

�

A−1
s B −V A−1

R V H B
�

︸ ︷︷ ︸

ϵB

= AϵB. (5.66)

The error in the transfer function is obtained from

ϵH =C ϵB =C A−1rB. (5.67)

When XC is introduced as the solution of the dual (adjoint) problem,

AT XC =C T , (5.68)

and is inserted in Equation (5.67), one obtains a formula which is
equal to the dual weighted residual method (DWR)

ϵH =C A−1rB = X T
C rB. (5.69)

Applications of the DWR in model order reduction are found in Meyer
et al. [175] and Voormeeren [269].

Taking a submultiplicative matrix norm of Equation (5.67), the
following inequality holds



ϵH



=


C A−1rB



<


C A−1






rB



<∥C ∥


A−1






rB



 . (5.70)

The inverse of the dynamic stiffness matrix A must be calculated to
evaluate Equation (5.70). This gives no computational savings against
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calculating the true error directly from Equation (5.59). Nevertheless,
Equation (5.70) can be used to calculate various approximations to
the error norm



ϵH



. The first and most basic approach is to omit the

first part


C A−1


 and just to assume a correlation between



ϵH



∼


rB



 . (5.71)

It is impossible to determine the quantitative error from this expres-
sion. However, Equation (5.71) potentially provides the qualitative
trend of the true error ϵH . The qualitative trend may allow for deter-
mining the locations of maxima in the error in regions of the con-
sidered domain, in which the amplification by



A−1


 is not too high.
Equation (5.71) consequently fails at system resonances with a low
modal damping coefficient.

Another option is to approximate the adjoint solution by replacing
the state of the full order system by the one of the ROM, either by the
current one (Bodendiek et al. [37]) or by an extrapolated one as in
complementary error estimates (Voormeeren [269]),



ϵH



<


C A−1






rB



≈


C R A−1
R







rB



 . (5.72)

Here, the same discussion holds as for complementary error approxi-
mations. The (extended) ROM needs to show sufficient convergence
against the FOM solution for giving valuable results.

The third approach is to calculate some upper bound on


A−1




and therefore a bound on the error


ϵH



. Feng et al. [80]discuss several
approaches for that. Corresponding methods, however, need an eigen-
value extraction from problems of FOM system size so that additional
approximations need to be introduced for cost-efficient calculations.

Note, in the error expressions of Feng et al. [80], the residual rC

of the dual problem Equation (5.68) is employed in addition. In fact,
Equation (5.69) can be reformulated as (see Grimme [105])

ϵH = r H
C A−1rB. (5.73)

Involving dual systems, several other reformulations of Equation (5.69),
respectively Equation (5.73) exist. Feng et al. [81] recently proposed a
promising error estimate based on such reformulation, which, how-
ever, requires the construction of additional subspaces.

Although inversions of the FOM dynamic stiffness matrix may be
avoided, any error estimate based on residuals needs matrix-vector,
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respectively matrix-matrix multiplications of the full system size com-
plexity. These costs can still form a severe computational bottleneck
in a workflow if the latter requires the error estimate to be evaluated
extensively many times. Methods thus should be limited to a reason-
ably low number of error estimator evaluations. As an alternative,
the residue can be calculated cheaply as a side product for certain
algorithms (see for example Gallivan et al. [89] and Skoogh [232]).

Corresponding to the idea of energetic analysis, which is followed
throughout the thesis, a logical consequence would be to extend the
(force-based) residual expressions to some energetic error measure.
However, any extension of residuals leads to zero-valued expressions
for a Galerkin projection as the residual does not exist in both the test
and search spaces. The consequence is to monitor the error in the
transfer function in both magnitude and phase, as discussed above.

5.7 Selection of Expansion Points in Laplace Domain

The Krylov-based MOR method, as presented above, answers how to
match moments in a reduced model, but not on where in the Laplace
domain and on to what order. In fact, one can generate very efficient
and very poor ROMs with Krylov subspaces, depending on the choice
of the expansion points and the expansion orders.

A limit for the maximum order at an expansion point is implic-
itly provided by the extended deflation of Section 5.5.3, although it
may not be very efficient: If all candidate vectors in the iteration of
an expansion order are deflated because they are below the mini-
mum vector length, the expansion is naturally stopped at this iteration
step. However, the question of the expansion point placement in the
Laplace domain remains completely open in the above algorithms.

In principle, any complex-valued Laplace variable can be chosen
as an expansion pointκ. However, as follows from Equation (5.39) and
Equation (5.40)moment matching atκ= 0 is not possible for a floating
second-order subsystem, thus without Dirichlet boundary conditions
applied. In such a setting, K is singular and A = K as a result, too,
which allows for no direct calculation of the required inverse.

Grimme [105] analyzed the effect of purely real and imaginary ex-
pansion points through the approximation of eigenvalues. He made
the basic observation that purely imaginary expansion points κ =
iω lead to a better local approximation on the imaginary axis of
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the Laplace domain aroundω. Real-valued expansion points κ=σ,
in contrast, provide a better global approximation over the whole
frequency domain, but with lower local accuracy, especially around
lightly damped eigenvalues. Nevertheless, an acceptable approxima-
tion is often also obtained around κ = iσ. In general, the choice of
purely imaginary expansion points is more intuitive from a structural
dynamics point of view, as the harmonic system analysis is performed
along the imaginary axis of the Laplace domain. This choice allows
controlling the error locally in the limited frequency band of inter-
est. Therefore, expansion points on the imaginary axis of the Laplace
domain are chosen in the following.

On the imaginary axis, expansion points could be placed manually
by a try and error principle or in a fixed spacing. However, this is un-
likely to result in a (pseudo-) optimal expansion point placement and,
therefore, efficient ROMs. As a remedy, automated procedures exist.
In such procedures, a training is performed, in which more optimal
locations for expansion points are determined. Two major strategies
are available: H2-optimal methods and greedy search strategies.

The first class is formed by H2-optimal methods. The H2-norm of
the transfer function is defined as

∥H ∥H2
=

√

√

√ 1

2π

∫ ∞

−∞
tr
�

H H (iω)H (iω)
�

dω. (5.74)

In the context of H2-optimality, methods seek to construct (pseudo-)
optimal ROMs for which



ϵH





H2
is minimized, at least locally. Gugercin

et al. [106, 107] introduced the iteratively corrected rational Krylov
algorithm (IRKA), approaching that optimality for a prescribed num-
ber of expansion points, thus model size. Therefore, solely 0th and
1st order moments are calculated at these expansion points, which
are shifted iteratively to the optimal locations for a first-order SISO
system. The expansion points for the next iteration are the eigenval-
ues of the ROM in the current step, mirrored at the imaginary axis. In
the general case, therefore, the expansion points are complex valued
with both real and imaginary parts. The iteration is continued as long
as the change in the eigenvalues is above a prescribed error thresh-
old. The concept can be extended to MIMO systems with tangential
interpolation (compare Section 5.5.3 and see Bunse-Gerstner et al.
[49], Gugercin et al. [107], and Van Dooren et al. [261]). In the original
form, IRKA is a fixed-point iteration. Other versions, which provide
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monotonic decay in contrast to classic IRKA, employ Newton itera-
tions (Beattie et al. [28]) or trust-region methods (Beattie et al. [27]),
but need still further development (Panzer [189]). A formulation of
IRKA for second-order systems can be found in Wyatt [275] or Soppa
[234].

IRKA is a powerful method; however, it is not without drawbacks.
There are challenges, especially concerning practical applications for
large-scale models. IRKA considers the error in the transfer function
globally over the whole frequency range as H2-optimal method, but
not locally limited in the frequency band of interest. ROMs from IRKA,
therefore, may be larger as required for that application. In addition,
no error control on the transfer function is included in the original
formulation, as solely the shift of eigenvalues is monitored. Moreover,
the computations for the projection matrix generation are expensive
as a repetitive factorization of A is required for all expansion points,
which are shifted in each iteration.

The other class of training methods employs greedy search strate-
gies to determine the placement of expansion points or the necessity
for additional orders. In a greedy search, information is added one
after the other to the basis. The best location for the next imaginary
expansion point or additional orders is determined per step, based on
an error measure evaluated over candidate samples. The latter form
the training set, from which the location for adding information is cho-
sen as the sample with the maximum error measure. Many different
greedy approaches can be found in literature, differing among others
in the used error measure or the training set. One may take the true
error of higher-order moments on a fixed training set into account to
iteratively add orders at expansion points (Lee et al. [145], or Soppa
[234]). As determining the true error is not feasible for large-scale
industrial FOMs, error estimates can be used as a proxy according
to Section 5.6. Different residual expressions may be used, refer to
Bodendiek et al. [37], Druskin et al. [69], and Grimme et al. [104] for
examples. van de Walle [259] utilizes an extrapolatory error estimate.

Greedy approaches are attractive for practical algorithms for large-
scale industrial models. Having the flexibility of error control, greedy
approaches are suited for a targeted fitting of models for a frequency
range of interest, as corresponding error expressions can be evalu-
ated. The training phase can be computationally efficient when using
approximations for the error. However, the selection of the training
set and the quality of the error estimate are crucial for the final ROM
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accuracy. The frequency range in which the model should be valid
must be screened sufficiently during training. If the greedy search
concept should be extended to parametric subsystems, this imposes
a particular challenge. In principle, the flexibility of a greedy search
allows for a straightforward extension to such a setting. Nevertheless,
an additional dimension is added for each parameter, for which the
ROM should be valid.

5.8 Chapter Summary

The concept of projection-based model order reduction was intro-
duced to apply subsystem coupling approaches. For subsystems with
a large number of states, an approximate subsystem model can be ob-
tained by projecting the inner representation on a smaller subspace.
In the offline phase, appropriate projection matrices are found for
the single subsystems, decoupled from the assembly and preserving
the interface structure. In the online phase, the resulting ROMs are
used to evaluate the assembly in significantly less time.

After several MOR methods were discussed to calculate such pro-
jection matrices, the Krylov subspace method was chosen. The at-
traction of this approach for the energetic network analysis of vehicle
structures was discussed. It is promising for subsystem coupling ap-
plications as it implicitly provides moment matching, respectively in-
terpolation, of the input-to-output behavior of the subsystems, the rel-
evant quantity for coupling. The interpolation is achieved locally con-
trolled, thus allowing for the targeted fit of the ROM in band-limited
domains of interest. Arbitrary damping information can be included
in the projection matrix, which is essential for accurate damping mod-
eling in the ROM and, therefore, accurate energy flows. The basic con-
cepts of Krylov subspaces for second-order systems were discussed,
with emphasis on the inclusion of structural damping. The latter,
which is usually not included in corresponding formulations of the
method, leads to complex-valued projection matrices and, thus, sub-
system matrices. As a consequence, a complex notation was followed
for the projection framework. It was shown that a complex-valued
Bubnov-Galerkin projection preserves passivity following the novel
formulation of Section 2.3.4. Therefore, a Bubnov-Galerkin projection
was chosen using input Krylov subspaces concatenated from bases at
several purely imaginary shifts of the Laplace variable.
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A newly modified one-stage Arnoldi algorithm was introduced
with particular emphasis on the application to large-scale industrial
models. It was derived that this algorithm provides moment matching
for second-order systems with Rayleigh damping and arbitrary struc-
tural damping. A modified orthogonalization procedure and a novel
QR-based deflation procedure achieved applicability to large-scale
industrial models. In addition, it includes a geometric approach for
augmented deflation, allowing a reduction of the size of ROMs with
many in- and outputs.

General error measures for ROMs were discussed. Based on those
error considerations, two basic classes of adaptive training methods
were discussed for an adaptive selection of expansion points in the
Laplace domain. It was pointed out that a greedy training approach is
conceptually promising for industrial models and allows for targeted
model refinement in the Laplace domain.
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6
KRYLOV-SUBSPACE LEARNING FOR FE
SUBSYSTEMS: PARAMETRIC SYSTEMS

The Krylov-based MOR approach needs to be extended for massive
multi-query applications in the online phase, in which subsystem
design parameters like the shell thickness or mass loading are var-
ied. A method must be developed to preserve the explicit parametric
dependency in the reduced model within pre-defined value bounds,
thus without the need to repeat the whole process of Krylov-based
MOR each time the parameters are varied.

Vehicle networks usually contain several hundreds of variable de-
sign parameters. Here, the subsystem coupling approach is the first
enabler, as it allows for mapping the global parameters to the single
subsystems. Reduced subsystem models do not have to cover this very
high-dimensional parameter space as a result, but still high orders up
to d ≤ 15. At the same time, full-order vehicle subsystems have large-
scale state vectors, as discussed above, and the basis generation may
be computationally costly. The design of corresponding algorithms is
challenging in light of this combination. In the following, a method
is proposed to cope with this combination; many paragraphs follow
closely Ullmann et al. [254] for this. For method development, it is
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assumed throughout the chapter that the subsystem dynamics are
highly parameter dependent but limited at a distinct parameter sam-
ple. In other words, the number of resonant modes of the subsystems
is moderate (nres < 20) in the frequency ranges of interest.

6.1 From Non-Parametric to Parametric Model Order
Reduction (pMOR)

6.1.1 A Classification Scheme for pMOR

In the context of the offline-online separation principle of the the-
sis, methods for parametric model order reduction (pMOR) can be
classified according to the approaches chosen for the three necessary
steps:

1. parameter sampling for identifying samples at which informa-
tion should be included in the ROM subspace, thus the training
strategy in the offline phase.

2. the projection matrix construction itself at the selected param-
eter values in the offline phase.

3. the ROM generation at a requested parameter set in the online
phase.

This scheme is also followed by Benner et al. [32], who provide an ex-
tensive overview of pMOR methods. The first two steps were already
discussed in Chapter 5 for non-parametric MOR and can be adapted
for pMOR. For the second step of projection matrix generation, the
approach of Krylov subspaces according to the preceding chapter is
used. Several advantages of Krylov subspace methods were already
discussed above, the direct approximation of the input-to-output be-
havior or the correct damping modeling, for example. Furthermore,
Krylov subspace methods are also attractive for pMOR in particular,
as the ability to add information locally targeted to the reduced model
can be extended to the multi-dimensional parameter domain. Thus,
it provides more control over the ROM training in high-dimensional
but bounded domains as it would be possible with modal methods,
for example. For Krylov subspace methods, the initial training step to
determine parameter sampling points for expansion is closely linked
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to the discussion of expansion point placement in the Laplace do-
main as provided in Section 5.7. However, it is more challenging for
parametric problems: corresponding design parameter samples need
to be determined in addition to the position of expansion points in
the Laplace domain. The sampling strategy is extended in Section 6.2
with a new approach to meet that challenge.

The third step of ROM generation contains the basic concept of
handling parameter variations in the ROM during the online phase.
This step is not addressed yet and allows for a classification of pMOR
methods in two basic schemes: local and global approaches. In global
approaches, a projection basis is found, which covers the whole pa-
rameter space. Local approaches generate non-parametric ROMs at
different parameter samples in the offline phase. These local ROMs
are interpolated over the parameter space for any parameter sample
at which the system should be evaluated in the online phase. Generi-
cally chosen interpolating basis functions are used for this. The basic
concepts are visualized in Figure 6.1.
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Figure 6.1: Visualization of the local versus global concatenation
approach for parametric model order reduction.
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Different concepts for interpolation exist in local methods: Am-
sallem et al. [11], Borggaard et al. [41], and Son [233] interpolate the
local projection matrices. Amsallem et al. [10], Degroote et al. [67],
and Panzer et al. [188] perform an interpolation of the reduced system
matrices. Baur et al. [23] and Baur et al. [25] use an interpolated re-
duced transfer functions. In the context of the latter, an interpolation
in the pole-residue form recently received attention (Yue et al. [277,
278]).

Local pMOR methods are attractive as no information about the
parametric dependency is necessary. The basis functions for the inter-
polation are chosen generically, as polynomials, for example, which do
not precisely reproduce the underlying parametric dependency of the
interpolated quantity. This choice of basis functions enables pMOR
approaches for parameter-black-box subsystems, which provide the
outputs for any input and design parameters, but no knowledge about
the output’s analytic dependency on the design parameters. For inter-
polation of reduced system matrices or bases, the resulting ROMs are
usually of small size and independent of the number of local ROMs
in the parameter space. These advantages, however, come along with
several drawbacks.

Analyzing the three necessary steps for pMOR, two stages can
be challenging for systems with high-dimensional design parameter
space. The latter needs to be sufficiently covered in both the first step
of model training and the third step of ROM generation. The required
coverage can potentially result in the curse of dimensionality arising
from these two steps - depending on the pMOR method. Local ap-
proaches suffer from that curse of dimensionality at least for the third
step of ROM generation for varying parameter values. The required
number of local ROMs grows exponentially with the number of param-
eters for regular interpolation grids; thus, the computational costs to
construct the ROMs in the offline phase and perform the interpolation
in the online phase. As a result, higher-dimensional parameter spaces
up to an order of d = 15 cannot be covered with classic formulations.
Remedies are available, the application of sparse grids according to
Baur et al. [23] and Geuss et al. [95], for example. However, hundreds
to thousands of FOM evaluations are still needed in the offline phase,
which is infeasible for industrial FOMs due to their large-scale nature.
There is a second class of methods to remedy that, which is discussed
in the following section.
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6.1.2 The Global Basis Approach

A global basis method is a promising approach for such subsystems, as
it appeared to be suitable for ROM generation in higher-dimensional
parameter spaces (Benner et al. [32]). If an efficient training strat-
egy is utilized, potentially fewer FOM system solutions are needed
compared to local approaches, thus also considering the high com-
putational costs of solving large-scale FOM systems.

In global approaches, one projection matrix Vg is found, thus one
ROM which is valid over the whole parameter space at any parameter.
Vg can be obtained by assembling local bases at different parameter
points

Vg =
�

V1 V2 ... Vz

�

, (6.1)

with Vi being the local basis for a design parameter sample p i . By
selecting a sufficiently high number of local bases and appropriate
locations in the parameter space for their generation, Vg is valid for the

whole bound d -dimensional parameter space of interest p z ∈
�

p l, pu

�

,
where d is the number of dimensions.

The single Vi are computed using the Krylov subspace methods
of Chapter 5 in the following. Thus, one matches transfer function
moments in one dimension along the Laplace variable s , as defined by
Equation (5.25). Some methods extend the concept of moment match-
ing to additional parameter dimensions for pMOR. Refer to Benner
et al. [31] and Daniel et al. [64] for one approach. Such a method refor-
mulates the transfer function’s moments, thus its derivatives, for ad-
ditional parameter dimensions. Although conceptually promising, es-
tablished algorithms like Arnoldi-type approaches need to be at least
modified, and generality for arbitrary parameter dependencies is an
open topic as discussed by Baur et al. [24]. Therefore, such extension
is not followed in the thesis, but moments solely with respect to the
Laplace variable are calculated at samples in the multi-dimensional
parameter space.

The global basis approach avoids most of the drawbacks of local
approaches. A potential pitfall of global bases is a larger ROM size
compared to local pMOR. Nevertheless, when the number of resonant
modes nres of the subsystems is moderate in the frequency range of
interest, the size of each local basis is limited. Such setting is assumed
in the thesis (nres < 20) as indicated above. An additional disadvantage
arises when the global approach is used in its basic formulation as
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visualized in Figure 6.1. The system matrices of the FOM change each
time a parameter is changed. This change requires the projection of
the system matrices according to Equation (5.8) after each parameter
change during the online phase. The repetitive projection forms a
computational bottleneck, as the right-hand side projection has a
time complexity of O(n 2m ), where n is the size of the FOM.

An affine matrix decomposition of the FOM system matrices can
be introduced for the global method to avoid these repetitive projec-
tions of the system matrices. The affine matrix decomposition of the
parameter-dependent matrix A(p ) is given by

A(p ) =
h
∑

j=1

f j (p )A j , (6.2)

while f j (p ) are scalar functions of the parameter vector p and the
affine matrices A j ∈Cn×n are parameter independent. Affine matrix
decompositions may be accessible directly in a parameter-white-box
approach, indirectly in parameter-gray-box settings, or just approxi-
mated in a parameter-black-box constraint. These cases are discussed
in the section below. The knowledge of the affine decomposition of a
matrix allows computing its projection by

A R(p ) =V H
g A(p )Vg =

h
∑

j=1

f j (p )V
H

g A j Vg =
h
∑

j=1

f j (p )A R, j . (6.3)

Consequently, it is possible to precompute the projections A R, j once
the projection basis is found. Afterward, A R(p ) can be evaluated in
the online phase for any parameter value by a weighted superposi-
tion of the single A R, j , without the need of projections. Combining
the global basis method with an affine matrix decomposition, as il-
lustrated in Figure 6.2, an efficient pMOR procedure is available for
many large-scale FOMs. This combination is already well established,
in particular in a class of techniques under the name of reduced basis
methods (Patera et al. [193]). In these methods, the parameter sam-
pling is performed using a greedy search strategy, and a global basis is
constructed, mainly using Proper Orthogonal Decomposition (POD),
refer to Sirovich [230].

If such a combined global basis method is used instead of a local
pMOR approach, the challenge of interpolation is shifted to an earlier
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Figure 6.2: Workflow visualization of the global basis approach in
combination with an affine matrix decomposition.

stage of the pMOR process. The interpolation rules for the FOM sys-
tem matrices need to be constructed at the beginning of the offline
phase. This shifted interpolation contrasts local methods, in which
an interpolation scheme between different ROMs needs to be evalu-
ated in the online phase. This shift leads to a significant advantage of
global basis methods: there is a known low-rank dependency of the
FOM system matrices with respect to many commonly used design
parameters, which thus can be derived analytically. In contrast, the
analytic relationship between the reduced systems in a local pMOR
is usually unknown but generically approximated. Thus, additional
knowledge is potentially available in global basis approaches to meet
the curse of dimensionality in the step of ROM generation, as the sys-
tem immanent interpolating basis functions are known. No generic
interpolation scheme must be found on a possibly dense sample grid.

Following the global basis framework, two fundamental challenges
remain open for the moment: Firstly, how corresponding affine ma-
trix decompositions can be found. This is addressed in Section 6.1.3.
Secondly, how an efficient global basis can be found to obtain a mini-
mized ROM size for the desired accuracy. The latter question results
in how a training phase can be designed, which provides a pseudo
optimal sampling point placement in the high-dimensional param-
eter space and utilizes as little as possible FOM evaluations for the
inclusion of large-scale industrial systems. Section 6.2 addresses such
a training strategy.
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Algorithm 6.1: Construction of system matrices by an affine de-
scription.

Input :System representation S, parameter vector p
Output :System matrices A, M

1 Function evaluateSystemAt(S, p):
// read affine description from system object

2 S→ fK,i (p ), K i , fM,i (p ), Mi , fS,i (p ), S i , fD,i (p ), Di

// evaluate system matrices of S at p

3 K =
∑

i fK ,i (p )K i

4 M =
∑

i fM ,i (p )Mi

5 S =
∑

i fS ,i (p )S i

6 D =
∑

i fD ,i (p )Di

// get frequency of excitation
7 ω= p (end)

// calculate dynamic stiffness
8 A = K + i S + iωD −ω2M
9 return A, M

6.1.3 Affine Decomposition for Second-Order System
Matrices

To evaluate an affine matrix decomposition at a parameter sample
numerically, Equation (6.2) can be reformulated as an interpolation
problem

a (p ) =Ω f̂ (p ) (6.4)

with the vectorized matrix a (p ) = vec
�

A(p )
�

. f̂ (p ) ∈Ch×1 contains the
h basis functions for interpolation and Ω ∈Cna×h the corresponding
interpolation coefficients, respectively vec

�

A j

�

per column. na is the
length of a (p ).

An implementation for the evaluation and projection of affine
second-order system matrices is presented in Algorithm 6.1, respec-
tively Algorithm 6.2. Note that a representation of the system matrices
in terms of an affine decomposition is not only valuable for avoiding
repetitive projections in pMOR but also allows for analytic sensitivity
calculations (see Algorithm 6.4 on page 160).

Although it is assumed in the following that such representation
of the system matrices exists for the considered design parameters,
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it is not guaranteed that the corresponding affine decomposition is
accessible. As the presented work postulates the principle of non-
intrusiveness, existing FE assembly routines are used as the basis
for the pMOR of industrial models. However, commercial FE pro-
grams do not provide white-box access to their source code; thus, one
cannot directly extract Ω and f̂ (p ) from the code. Instead, two non-
intrusive approaches can be distinguished to reconstruct those quan-
tities: parameter-black-box and parameter-gray-box approaches.

Algorithm 6.2: Projection of an affinely decomposed full-order sys-
tem.

Input :System representation S, projection matrix V
Output :Reduced system representation SR

1 Function projectSystem(S,V ):
// read affine description from system object

2 S→ fK,i (p ), K i , fM,i (p ), Mi , fS,i (p ), S i , fD,i (p ), Di

// project affine matrices
3 for i = 1 to hK do
4 K R,i =V H K i V

5 for i = 1 to hM do
6 MR,i =V H Mi V

7 for i = 1 to hS do
8 SR,i =V H S i V

9 for i = 1 to hD do
10 DR,i =V H Di V

// write affine description to reduced system
object

11 SR← fK,i (p ), K R,i , fM,i (p ), MR,i , fS,i (p ), SR,i , fD,i (p ), DR,i

12 return SR

Parameter-Gray-box Approaches

In the case of a parameter-gray-box system, the program source code
is not accessible for intrusive changes. However, additional knowledge
is available on the parametric dependency of the FOM system matri-
ces on p . The basis functions for f̂ (p ) are known analytically and are
entirely determined. The knowledge of basis functions allows for an
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exact interpolation: the interpolation coefficients Ω, respectively the
affine matrices, can be obtained by

Ω =χF −1
p . (6.5)

χ =
�

a (p1) ... a (ph )
�

is a snapshot matrix and Fp =
�

f̂ (p1) ... f̂ (ph )
�

the
matrix of corresponding function values.

Basis functions are known for many parameters of vibroacoustic
FE models in practice. There is a large class of parameters for which
the whole system matrices or parts of it are linearly dependent. This
linear dependency holds for material parameters of many finite el-
ement formulations: the dependency of the stiffness matrix on the
modulus of elasticity E , of the mass matrix on the mass density ρ,
of the damping matrices on the structural damping coefficient η or
the Rayleigh damping coefficients α and β . Furthermore, discretized
components in the model, like linear springs or viscous dampers,
introduce linear dependencies on their characterizing parameters.

In the context of specific mechanical modeling, the basis functions
are also known for many cases of geometric parametrization. For
modeling shells by triangular plate elements, the system matrices
depend on the thickness through a cubic polynomial. For the use of
Euler-Bernoulli and Timoshenko beam elements, the parametrization
for the element length and cross-section dimensions is known. If more
general element formulations are used, solid elements, in particular,
the derivation of Equation (6.4) is also possible for shape parameters
characterizing variations like stretch or warping. Refer to Fröhlich
et al. [86] for an exemplary parametrization, another one is found in
Section 6.2.5.

Parameter-Black-box Approach

In contrast, neither the underlying FE code is accessible nor additional
knowledge about the parameter dependency of the system matrices
is available in a parameter-black-box approach. However, an approxi-
mated parametric dependency can be found by an inexact interpola-
tion, again in the form of Equation (6.4). f̂ (p ) are generically chosen
basis functions in this case, typically polynomials. Alternatives are
available, like regression methods, a Gaussian kernel regression (see
Rasmussen et al. [205] for an illustrative explanation) or the method
of moving least squares (Levin [151]).
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Another conceptually different approach to Equation (6.4) is given
by the Discrete Empirical Interpolation Method (DEIM). The DEIM
combines interpolation with projection and was introduced by Chat-
urantabut et al. [52] for the approximation of non-linear problems.
Later it was used for the approximation of nonaffinely parametrized
linear operators, see Antil et al. [14] and Benner et al. [32]. In the DEIM,
the interpolation coefficients Ω are determined from an SVD of z pa-
rameter samples of a (p )

ΩΘN H =
�

a (p1)...a (p z )
�

. (6.6)

Afterward, discrete values of f̂ (p ) are obtained by enforcing Equa-
tion (6.4) not to approximate a (p ) for its full parametric dependency,
but to be exact for the requested parameter value p . Ensuring the
equivalence of the left and right-hand side of Equation (6.4) for any
value in a (p )would result in a highly overdetermined system of equa-
tions, as z ≪ na . As a remedy, the constraint is imposed only on some
entries of a (p ) and a permutation matrix O is introduced for the selec-
tion of the corresponding entries in a (p ). Then, Equation (6.4) takes
the form of

O T a (p ) =O TΩ f̂ (p ). (6.7)

This results in the required interpolation coefficients for a parameter
sample p

f̂ (p ) =
�

O TΩ
�−1

O T a (p ). (6.8)

The DEIM determines O by a greedy approach, refer to Chaturantabut
et al. [52] for details. Following the approach of POD and DEIM, an
approximate affine matrix decomposition is finally obtained in the
form of Equation (6.4). Apart from a black-box case, there are several
other settings in which the DEIM method is useful: for obtaining an
approximate decomposition when no affine decomposition theoreti-
cally exists for the FOM system matrices; for gray-box models, if the
decomposition consists of many terms (h ≫ 1) and should be reduced
to a smaller h .

As a drawback of the approach, no analytic functions f̂ (p ) are

found, but discrete samples of the latter. The factor
�

O TΩ
�−1

O T can
be pre-computed for efficiency improvements, however, a (p )must
be evaluated at p . For any change in the parameters, the evaluation
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of a (p ) requires the assembly of the FOM system matrices; thus, the
external FE code is executed. The need to evaluate the FOM matrices
and to exchange them between different programs foils the concept
of a highly efficient pMOR code. The modification of the FE assembly
code can be a remedy (see Negri et al. [181]), as only a few entries of
a (p ) are required in Equation (6.8). Such a modification, however, is
intrusive and needs full access to the FE source code, which is not the
case in a black-box setting.

In the following, the discussion focuses on parameter-gray-box
systems, for which an exact affine matrix decomposition can be cal-
culated. Only round-off errors are present as a consequence, and it is
assumed that no errors are introduced for the generation of the affine
matrix decomposition.

6.2 OGPA: Optimization-Based Greedy Parameter
Sampling for Training

While the global basis approach faces the curse of dimensionality in
the third step in pMOR methods, this is not necessarily the case for
the first step of model training. For Krylov subspace methods, both
proper sampling positions in the bounded high-dimensional param-
eter space of interest, as well as expansion points in the band-limited
Laplace domain, have to be determined for the construction of each
local basis Vg in Equation (6.1), thus the training. This identification
is achieved by a proper training strategy discussed in the following
for an application to large-scale industrial models.

Note that the thesis postulates strict separation of the online and
the offline phase. This separation implies that one trains the global
basis for the whole admissible parameter space a-priori to the ac-
tual multi-query application in the online phase. No feedback of the
multi-query application into the parametric reduced-order model
(pROM) training is considered. Refer to Section 8.2.3 for a short dis-
cussion on potentially alternative concepts in the context of vehicle
optimizations with pROMs.
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6.2.1 Available Concepts for High-Dimensional Point
Placement

The challenge of expansion point placement in the Laplace domain
was discussed for non-parametric MOR in Section 5.7. As indicated
above, finding appropriate samples in the parameter space is even
more complex for pMOR methods, as not the one-dimensional fre-
quency domain but higher-dimensional bound spaces must be cov-
ered. Therefore, the following overview is adapted from Ullmann et al.
[254]. As in the non-parametric case, sampling-based greedy search
strategies are attractive for such training. They are not globally optimal
with respect to some norm, what IRKA-like concepts in the param-
eter domain can provide (see Baur et al. [24], Hund et al. [125], and
Tomljanović et al. [246]). However, neither integrating the considered
error measure over the high-dimensional parameter space nor the
repetitive factorization of the system matrix A at all sampling points
is necessary during a greedy search. Thus, greedy approaches are an
attractive choice as an enabler for pMOR methods, which should be
applied to large-scale industrial models.

To ensure that a greedy search determines efficient ROMs, it must
provide sufficient coverage of the typically non-convex error measure.
An appropriate training set usually is chosen for this, at which the
error function is sampled and the ROM is trained. However, sufficient
coverage by a training set is difficult for the d -dimensional parameter
spaces of industrial FOMs, where the dimension d is high. Using reg-
ular sampling grids results in a time complexity of O(n d

sam) for nsam

samples per parameter dimension d . Sampling a 15-dimensional
parameter space just coarsely by three samples per parameter dimen-
sion already requires 14 ·106 grid points; this highlights the curse of
dimensionality for the training phase of basis generation.

Several remedies are available for that. Non-regular sampling
strategies can be used for the generation of a training set; refer to
McKay et al. [170] for an example who used Latin Hypercube Sam-
pling. Several adaptive greedy approaches were developed as an alter-
native to static training sets. Corresponding methods follow different
refinement strategies, refer to Chellappa et al. [53], Haasdonk et al.
[110], and Hesthaven et al. [122]. In that context, Sen [224] introduced
a multi-stage procedure, Paul-Dubois-Taine et al. [194] used addi-
tional surrogate models to identify regions for sampling refinement.
As in local methods, sparse grids are another alternative and provide
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adaptive hierarchical greedy approaches, see Bungartz et al. [48] and
Zenger [282]. This approach was already applied in global reduced
basis methods, refer to Chen et al. [55] and Peherstorfer et al. [199].

As a further remedy, there are greedy methods that follow a grid-
free sampling approach as introduced by Bui-Thanh et al. [46] and Bui-
Thanh [47]. Again, the concept already found several applications in
the context of reduced basis methods, refer to Iapichino et al. [128] and
Urban et al. [258]. Opposed to the above-discussed greedy approaches,
the maximization of the error measure is not performed on a fixed
or adaptive grid. Instead, the constrained non-linear optimization
problem

j popt = argmax
p∈[p l,pu]





ϵ
�

p
�





 (6.9)

is solved for the j -th expansion point position j popt to be added to
the global basis at the j -th greedy iteration. The objective ϵ

�

p
�

is an
error function of the ROM, from which some norm is taken. At each
iteration, an initial random guess of the parameter position j p0 is pro-
vided as the starting point for optimization. Furthermore, an initial
ROM with Vg = V0 is required for the initial error evaluations, thus
starting the overall greedy procedure. Afterward, the original method
of Bui-Thanh et al. [46] employed a gradient-based optimization for
the solution of Equation (6.9) in each greedy iteration. Bui-Thanh et al.
[46] developed the concept for systems both in a steady and unsteady
configuration. For the latter, the error control was performed in the
time domain for the state solution, and the error measure was inte-
grated over the whole relevant time span for each parameter sample

ϵ
�

p
�

=

∫

t

ϵ
�

p , t
�

dt (6.10)

to obtain the optimization objective. In each greedy iteration, opti-
mization of this integrated error was performed to identify j popt in
the first step. In the second step, a local basis was generated from the
span of the state solutions over time at the parameter sample j popt

by the POD method and was added to the global basis. In the case of
a steady-state problem, naturally, calculations in the time dimension
are unnecessary.
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6.2.2 Novel Grid-Free Training Strategy for Harmonic
Analyses

Problem Definition

The grid-free sampling approach provides the basic concept to meet
the curse of dimensionality in the training phase of large-scale in-
dustrial models in the following. Therefore, a new training strategy is
developed for band-limited frequency-domain analyses of mechani-
cal networks and Krylov subspace methods. The method as proposed
in Ullmann et al. [254] is called optimization-based greedy parameter
sampling (OGPA) in the following. The error measure is evaluated in
the frequency domain; it is developed goal-oriented for the MIMO
subsystem transfer function matrix in subsystem coupling. Similar to
the original method of Bui-Thanh et al. [46] a gradient-based approach
to optimization is chosen. Therefore, gradients are derived efficiently
in the framework of Chapter 4 for high-dimensional parameter spaces,
thus based on an adjoint formulation.

Several algorithmic considerations are necessary for the applica-
tion of large-scale industrial models. First, an error estimate is devel-
oped in Section 6.2.3 to limit the computationally expensive FOM
solutions to a minimum. The use of an error estimate typically re-
sults in a trade-off between the ROM accuracy for a fixed ROM size,
hence the efficiency, and the required computational efforts, which
are necessary for an error evaluation in the subspace generation. Bui-
Thanh et al. [46] showed this effect for their time-domain approach
by comparing the true error function against a cheaper estimation
by the residual, which is introduced in the FOM by the ROM solution.
Utilizing the latter, more expansion points were necessary to obtain a
prescribed error. This higher number of required expansion points
illustrates that a point placement based on error estimates is poten-
tially less optimal. Anyhow, the use of error estimates is mandatory for
the application to large-scale industrial models as usually thousands
of error evaluations are required.

Employing Krylov subspaces for the local bases, which should be
valid over a band-limited frequency range, not only the optimal po-
sition in the parameter space has to be found as in the method of
Bui-Thanh et al. [46]. However, appropriate sampling points in the
Laplace domain are also required to determine the expansion points
for each local basis. As the expansion points are placed on the imagi-
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nary axis of the Laplace domain, the expansion points are completely
described by a frequency-domain representation κ = iω (compare
Section 5.7). There are two basic approaches to include the frequency
dependency of the system in the optimization process. Firstly, one
can implement a separation principle according to the approach of
Bui-Thanh et al. [46] for arbitrarily time-dependent problems. Such
an approach utilizes an objective function for which the error is inte-
grated over the relevant frequency band according to the time-domain
equivalent in Equation (6.10). The optimization of Equation (6.9) is
performed, and the parameter sample is identified at which the local
ROM is constructed. Subsequently, the expansion point positions in
the frequency domain are calculated for the Krylov subspace by an-
other appropriate method. As the integration of an error expression
similar to Equation (6.10) potentially requires an extensive sampling
along the frequency axis and thus is computationally expensive, the
separation strategy prohibits the application to large-scale industrial
FOMs even for error estimates.

Secondly, there is another strategy in which the second-order sys-
tem of Equation (2.11) is considered one steady-state problem with
an additional parametric dependence on the circular frequency of
excitationω. The latter defines an additional parameter dimension
and can be included in the enlarged parameter space represented by

p̃ =
�

p T ,ω
�T

. (6.11)

Furthermore, the following considers only one expansion point on
the frequency axis per local basis. As a result, the definition of the
parameter vector in Equation (6.11)enables the optimization problem
solution in Equation (6.9) to provide both the position of the local
basis in the parameter space as well as the frequency position of the
expansion point. This approach avoids integration and is chosen to
formulate the optimization problem for large-scale vehicle FOMs. For
simplicity, the wording of expansion point position is considered to
cover both the position of the local Krylov subspace in the parameter
domain and the frequency position of the corresponding expansion
points.

The error measure is potentially a highly non-convex and un-
known function in the parameter space, especially as no frequency do-
main integration is considered. Globalized optimization approaches
are required to find the global maximum of such an objective function
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with a sufficiently high probability. As discussed in Appendix A.2, one
may utilize a heuristic multi-start framework, incorporating several lo-
cal gradient-based optimizations for starting points determined from
a global randomized search phase. Such an approach results in con-
siderably more computational efforts in each greedy iteration step, as
it requires a significantly high number of objective evaluations. Glob-
alized approaches become impractical in the case of the application
to large-scale FOMs as a result, even for cheap error estimates chosen
as objective. Thus, another more practical approach must be found
as an enabler, incorporating only a single local gradient-based opti-
mization per greedy iteration. The approach for local optimization is
developed in Section 6.2.3 in detail.

Supplements for Relaxing Semi-Optimal Point Placement

Following a purely local optimization approach, the expansion point
placement is likely to be semi-optimal with respect to a greedy ap-
proach, as one places the expansion point at the global maximum of
the error estimate only with low probability. Consequently, the gen-
erated ROMs are less effective in their ratio of ROM size to accuracy.
Although avoiding an actual globalized optimization by a multi-start
framework but performing solely one gradient-based optimization,
one may utilize the framework’s concept of an additional phase of
heuristic global search upfront to relax that semi-optimal placement.
Several approaches are available for such a global phase to pre-select
the starting point j p̃0 at each j th iteration of the greedy search algo-
rithm; refer to Urban et al. [258] for applications in the context of ROM
training. A computationally cheap approach is followed in OGPA, and
a simple search for the maximum error measure on an initial candi-
date parameter set, sampled uniformly random, precedes the local
optimization in each greedy step

j p̃0 = argmax
p̃k ,k=1..npre





ϵ
�

p̃k

�





 . (6.12)

ϵ
�

p̃k

�

is the same error measure as used as objective function in the
local optimization. The initial sampling set is typically chosen to be
small, npre ≤ 150, to enable the application to industrial models. As
a small sampling provides only a coarse sampling of the parameter
domain, it is re-selected at each greedy iteration.
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Figure 6.3: Flow diagram for the pMOR training and validation as
adapted from Ullmann et al. [254].

From the initial problem definition perspective, the semi-optimal
placement of expansion points in the parameter domain also results
from using an error estimate instead of the true error. As a result,
expansion points may not necessarily be placed at the local maxima of
the true error, and the latter is unknown in its absolute magnitude. To
address that, a baseline validation procedure for j p̃opt is introduced by
a two-step approach: in an additional step after each optimization, the
maximum norm of the true relative error at this candidate parameter
sample point is evaluated in-situ. In the most conservative approach,
the error must fulfill the following inequality

j ϵmax
H,rel =max

k ,l

| j Hk l − j HR,k l |
| j Hk l |

> ϵlim
rel , (6.13)
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where j Hk l is a transfer function matrix’ entry in the k th row and l th

column. Thus, the maximum error at the candidate position j p̃opt

must be large enough justifying to add a new local basis at this posi-
tion to Vg. ϵlim

rel is the user-defined error threshold, the targeted maxi-
mum relative error of the ROM transfer function after the training. As
the same relative error threshold is considered for all entries of the
transfer function H , the approach of Equation (6.13) is conservative.
In alternative formulations of Equation (6.13), another relaxed error
threshold may be introduced for the relative error of transfer function
entries with a small magnitude. Refer to Section 8.2.2 for an example.

Error Control

The necessarily chosen approach for the greedy search does not allow
for a robust quantitative evaluation of the ROM accuracy at any stage
of the ROM generation process. This lacking robustness implies two
questions that remain open so far. Firstly, an approach is required
to determine the ROM accuracy once the greedy training has ended.
No training set is available from basis generation due to the grid-
free approach, which would allow estimating the error bound directly
from the sampling or some interpolation in between. An additional
validation set is introduced for this purpose. The true error in the
transfer functions is evaluated on this set after basis generation but
still in the offline phase. Again, this leads to the curse of dimensionality
trying to assess the error over the holistic high-dimensional parameter
domain. Only statistical measures are employed as a remedy, and
the distinct maximum error remains unknown. This is discussed in
Section 6.2.4 in detail.

Secondly, a method must be found to determine when to terminate
the greedy training. A practical approach is to employ the two-step
procedure for the expansion point selection to define a stopping crite-
rion for the greedy procedure. The basic idea is to consider the fact that
nskipMax successive iterations result in local maxima withϵmax

H,rel < ϵ
lim
rel as

an indicator for an accurate ROM over the whole parameter domain;
thus with errors below the prescribed tolerance. Consequently, the
ROM training is ended after nskipMax iterations without an expansion
point added. As the termination of the training was due to the desired
result of an accurate ROM, this is considered a lucky breakdown. After-
ward, the ROM accuracy can be re-evaluated in the a-posteriori ROM
evaluation, see Section 6.2.4. In addition, the number of maximum
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greedy iterations nitMax is defined as a fallback, after which the train-
ing is ended in any case. Thus, if nitMax iterations were performed, but
no lucky breakdown occurred, there is a bad breakdown. The latter
indicates that it was not possible to find a ROM in nitMax−1 iterations,
which covers the parameter domain with the targeted accuracy. In
this case, the basis generation can be restarted with different settings,
which are chosen manually: most prominently, the deflation tolerance
ltol may be lowered, the maximum number of iterations nitMax may be
increased as well as the Krylov order o . The parameter space [p l, pu]
may be narrowed or the training error tolerance ϵlim

rel may be increased.
Alternatively, no restart is performed, but the ROM is evaluated for
its qualification for the desired application in the a-posteriori ROM
evaluation.

The stopping criterion finally defines the overall workflow of OGPA.
The procedure for the training of the basis is summarized in Figure 6.3
on page 156. The latter already includes the residual-based error esti-
mate r introduced below.

Implementation Aspects

A pseudo code for OGPA is provided in Algorithm 6.3 on the next
page. The one-stage Krylov subspace in the implementation of Algo-
rithm 5.2 on page 121 is employed for the expansion of the projection
matrix Vg in each step of the greedy algorithm, as described in Sec-
tion 5.5. The algorithm allows for the moment matching of second-
order systems, which include viscous Rayleigh or structural damping
(see Table 5.3 on page 118). A two-stage procedure can replace it
for correct moment matching of second-order systems with general
damping modeling. Full use of the affine matrix decomposition con-
cept is made to obtain an efficient code for the expansion point search.
After each update of the global projection basis Vg, the single affine
matrices are projected once in Algorithm 6.3 lines 4, respectively 15,
which call Algorithm 6.2 on page 147. Then, during the greedy iter-
ation, the FOM and ROM system matrices are evaluated efficiently
for changing parameter combinations employing Algorithm 6.1 on
page 146. After the calculation of an initial ROM for 0p̃0, the local op-
timization is performed in line 10 of Algorithm 6.3. It is described in
Section 6.2.3 below, that this employs a minimization of the negative
residual, for which the implementation is provided along with its gra-
dient in Algorithm 6.5 on page 167. Line 9 of Algorithm 6.3 includes the

158



6.2 OGPA: Optimization-Based Greedy Parameter Sampling for
Training

Algorithm 6.3: Main greedy search pMOR algorithm.

// define
1 parameter space [p l, pu], Krylov order o , deflation tolerance

ltol, maximum number of iterations nitMax, number of
iterations for lucky breakdown nskipMax, initial parameter
point 0p̃0, training error tolerance ϵlim

rel
// provide

2 full-order model S
// initialize

3 Vg = [], k = 0, j = 0, S→ B
// update system representations at 0p̃0

4 [A, M ] =evaluateSystemAt(S, 0p̃0)
// get initial basis and ROM for 0p̃0

5 Vg = oneStageBlockArnoldi (Vg, −A−1M , −A−1B , o , ltol)
6 SR = projectSystem(S,Vg)

//
// greedy search loop over parameter space

7 while j < nitMax and k < nskipMax do
8 j ++

// get random starting point
9

j p̃0 = getNextStartPoint( j )
// obtain new canditate for Sampling i popt

10
j p̃opt =minimize(negativeResidual(p ), jp̃0, p l, pu)
// update system representations at j p̃opt

11 [A, M ] = evaluateSystemAt(S, j p̃opt)
12 A R = evaluateSystemAt(SR, j p̃opt)

// calculate the transfer function error

13 ϵmax
H,rel =max ∥C A−1 B−C R A−1

R BR∥
∥C A−1 B∥

// for sufficiently large error expand basis
14 if ϵmax

H,rel > ϵ
lim
rel then

15 Vg = oneStageBlockArnoldi (Vg, −A−1M , −A−1B , o , ldefl)
16 SR = projectSystem(S,Vg)
17 k = 0

18 else
19 k ++
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greedy search-based determination of the following starting point for
optimization according to Equation (6.12). As this involves a straight-
forward evaluation of the error estimate on a parameter set chosen
from a uniformly random distribution, no pseudocode is provided
for this.

Several implementation details, which are required for a high-
performative code, are omitted in the above algorithms for readability:
the reuse of the matrix factorization of Aκ is not noted explicitly, as
well as the possible parallelization of the code, Algorithm 6.5 in partic-
ular. Furthermore, depending on the available computer memory and
the sparsity of the FOM matrices, it can be beneficial to precompute
matrix-vector products and hold them in memory, which are used
several times in one iteration.

Algorithm 6.4: Derivative calculation of the system matrix utilizing
its affine description.

Input :System S, parameter vector p , parameter index k
Output :Gradient of system matrix ∂ A

∂ pk

1 Function evaluateSystemGradientsAt(S, p , k):
// read affine description from system container

2 S→ fK, j (p ), K j , fM, j (p ), M j , fS, j (p ), S j , fD, j (p ), D j

// evaluate system matrices of S at pk

3
∂ K
∂ pk
=
∑hK

j
∂ fK, j

∂ pk
(p )K j

4
∂M
∂ pk
=
∑hM

j
∂ fM, j

∂ pk
(p )M j

5
∂ S
∂ pk
=
∑hS

j
∂ fS, j

∂ pk
(p )S j

6
∂D
∂ pk
=
∑hD

j
∂ fD, j

∂ pk
(p )D j

// get frequency of excitation
7 ω= p (end)

// calculate gradient of dynamic stiffness

8
∂ A
∂ pk
= ∂ K
∂ pk
+ i ∂ S

∂ pk
+ iω ∂D

∂ pk
−ω2 ∂M

∂ pk

9 if pk isω then
10

∂ A
∂ pk
+= i D −2ωM

11 return ∂ A
∂ pk
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6.2.3 Formulation of the Local Optimization Problem

A suitable error estimate needs to be developed as an objective func-
tion to formulate the local optimization problem. The workflow of
Section 6.2.2 aims at a practical approach to minimize the neces-
sary error evaluations during greedy training. Nevertheless, dozens of
greedy iterations may be necessary, each involving hundreds of objec-
tive function evaluations. As a result, a suitable error measure must
be primarily cheap for the application to large-scale vehicle FOMs.

This requirement motivates the use of residual expressions as
discussed in Section 5.6. Residuals are an attractive choice as they
use the FOM matrices without the necessity of factorizations of the
latter. Among residual-based error estimates, the evaluation of the
input residual as defined by Equation (5.71) is the cheapest approach.
Neither it requires the construction of additional subspaces for error
calculation, nor the estimation of



A−1


. Consequently, it is chosen as
the objective function for the pMOR framework in the present work.
Rewriting Equation (5.66), the residual associated with the ROM error
in the subsystem transfer functions is

rB = B − AVgX R,B (6.14)

with the ROM solution

X R,B = A−1
R V H

g B . (6.15)

Equation (6.14) provides a matrix expression per parameter point
with rB ∈Cn×nU . To obtain the scalar objective function for optimiza-
tion r , a norm has to be chosen for Equation (6.14), which must be
submultiplicative to fulfill Equation (5.70). Following a conservative
approach, the Frobenius norm is evaluated, as it is submultiplicative
and gradients can be calculated for it

r =− log10

�


rB





F

�

. (6.16)

In the case that rB is a vector quantity, the Frobenius norm is equal to
the vector length. The multiplication by −1 is introduced to enable
optimization algorithms that usually aim to minimize expressions.
Thus, the maximization of the error results in a minimization of the ob-
jective in Equation (6.16). The logarithm in Equation (6.16) accounts
for the fact that the norm of the residual usually varies by orders of
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magnitude in the parameter space. As a result, convergence criteria
would be hard to determine without taking the logarithm.

The framework of Section 4.1.1 is followed to provide derivatives
of r for the gradient-based optimization algorithm. There are usually
multiple design parameters, but precisely one objective r , so the ad-
joint approach for gradient calculation is an efficient choice. Consider
the case of a single input single output (SISO) system with H = c A−1b
in a first step to derive the gradients for the general case of a MIMO
system in the adjoint framework. As c H =C H and b = B are column
vectors, the residual rb of Equation (6.14) is a column vector, too. With
the auxiliary expression

d


rb





2

F

dpj
= 2ℜ

�

r H
b

drb

dpj

�

, (6.17)

the adjoint approach of Equation (4.7) provides the gradient as

dr

dpj
= k





∂


rb





2

F

∂ pj
+ΨT ∂ rR

∂ pj





= kℜ

�

2r H
b

∂ A

∂ pj
X̃ +ΨT ∂ A R

∂ pj
X R,b

�

.

(6.18)

k = 1/
�

2∥rb∥2

F
log(10)

�

is obtained from applying the chain rule to the

square root and the logarithm of


rb





2

F
. X̃ =VgX R,b is introduced for

brevity. Two different residual expressions are contained in Equa-
tion (6.18). One residual is rb, which is used as the error estimator and
is introduced when the ROM solution is substituted in the FOM resid-
ual according to Equation (6.14). The other residual rR is the residual
of the governing equations, the residual of the solution of the ROM
itself. In contrast to rb, rR is zero by construction (see Equation (4.3))

rR =bR− A RX R,b = 0. (6.19)

This is in line with the projection theory of Section 5.2.1, where the
constraint space is chosen for a zero residual. Following Equation (4.8),
the adjoint Ψ is obtained from the solution of

�

∂ rR

∂ X R,b

�T

Ψ =−





∂


rb





2

F

∂ X R,b





T

. (6.20)
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The left hand side of the equation is provided by the partial derivative
of Equation (6.19) as ∂ rR/∂ X R,b = A R. The right hand side by deriving
the SISO version of Equation (6.14) while utilizing Equation (6.17) as
∂∥rb∥2

F/∂ X R,b =−2r H
b AVg. Thus, Equation (6.20) results in

Ψ =
�

AT
R

�−1 �−2r H
b AVg

�T
. (6.21)

Following the adjoint approach, the Hessian matrix h ∈Cd×d , which
contains the second derivatives, can be provided to corresponding
optimization algorithms, in addition. Papadimitriou et al. [191] dis-
cussed different approaches for the calculation of Hessian matrices. In
the following, an adjoint-adjoint method is demonstrated. Therefore,
the original Hessian is augmented by adding two adjoint matrices

hi j =
d2 r̃

dpi dpj
=

d2r

dpi dpj
+µi

drR

dpj
+νi

drΨ
dpj

. (6.22)

where rΨ is the residual of the adjoint equation (Equation (6.20)),
which is zero by definition

rΨ =
∂ rR

∂ X R,b
Ψ +

∂ r

∂ X R,b
= 0. (6.23)

Calculating the derivatives in Equation (6.22) and choosing the two
adjoints µi and νi such, that all required total derivatives vanish, one
arrives at a formulation of one entry in the Hessian matrix as

hi , j =
∂ 2r

∂ pi ∂ pj
+Ψ

∂ 2rR

∂ pi ∂ pj
+µi

∂ rR

∂ pj
+νi

∂ 2r

∂ X R,b∂ pj

+νiΨ
∂ 2rR

∂ X R,b∂ pj
.

(6.24)

Two additional adjoint variables need to be determined as

�

∂ rR

∂ X R,b

�T

νT
i =−

�

∂ rR

∂ pj

�T

(6.25)

and

�

∂ rR

∂ X R,b

�T

µT
i =−

�

∂ 2r

∂ pi ∂ X R,b
+Ψ

∂ 2rR

∂ pi ∂ X R,b
+p j

∂ 2r

∂ X R,b∂ X R,b

�T

.
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(6.26)

For the objective of the SISO system residual, one obtains

d2r

dpi dpj
=kℜ






2





�

∂ A

∂ pj
X̃

�H
∂ A

∂ pi
+2r H

b

∂ 2 A

∂ pi ∂ pj



 X̃

+Ψ
∂ 2 A R

∂ pi ∂ pj
+µ j

∂ A R

∂ pj
X R,b

+2νi V T
g



rb
∂ A

∂ pj
+

�

∂ A

∂ pj
X̃

�H

A





T

+νi

∂ AT
R

∂ pj
ΨT






.

(6.27)

The adjoints are obtained from the solution of

AT
Rν

T
i =−

�

∂ A R

∂ pj
X R,b

�T

(6.28)

respectively

AT
Rµ

T
i =−

 

2r H
b

∂ A

∂ pi
Vg+2

�

�

AVg

�H ∂ A

∂ pi
X̃

�T

+Ψ
∂ A R

∂ pi

−2νi

�

AVg

�

AVg

!T

.

(6.29)

The gradient formulation for SISO systems provides the starting point
for deriving the gradients and the Hessian for the general multiple-
input multiple-output (MIMO) case. For the latter, the residual rB of
Equation (6.14) is not a vector but a matrix with as many columns
as the number of inputs. In order to extend the above framework for
gradient calculation for MIMO systems, the squared Frobenius norm
is considered as the sum of the squared column vector lengths of the

residual


rB,i





2

F



rB





2

F
=

nU
∑

i=1



rB,i





2

F
= tr

�

r H
B rB

�

, (6.30)

164



6.2 OGPA: Optimization-Based Greedy Parameter Sampling for
Training

where tr (2) is the trace of a matrix, thus the sum of its diagonal entries.
The adjointΨ is calculated for the nU objectives of the squared column

lengths


rB,i





2

F
as a result. Ψ becomes a matrix, which is obtained from

nU right-hand sides according to Equation (6.21) as

Ψ =
�

AT
R

�−1 �−r H
B AVg

�T
. (6.31)

With that, Equation (6.18) is extended for MIMO systems to

dr

dpj
= kℜ

 

tr

�

r H
B

∂ A

∂ pj
X̃ +ΨT ∂ A R

∂ pj
X R,B

�

!

(6.32)

with k = 1/
�

∥rB∥2

F
log(10)

�

and X̃ =VgX R,B. Equation (6.28)to Equation (6.33)
are adapted correspondingly to calculate the Hessian for MIMO sys-
tems:

d2r

dpi dpj
= kℜ









tr






2





�

∂ A

∂ pj
X̃

�H
∂ A

∂ pi
+2r H

B

∂ 2 A

∂ pi ∂ pj



 X̃

+Ψ
∂ 2 A R

∂ pi ∂ pj
+µ j

∂ A R

∂ pj
X R,B

+2νi V T



rB
∂ A

∂ pj
+

�

∂ A

∂ pj
X̃

�H

A





T

+νi

∂ AT
R

∂ pj
ΨT















(6.33)

The additional adjoints become matrices, too,

AT
Rν

T
i =−

�

∂ A R

∂ pj
X R,B

�T

(6.34)

and

AT
Rµ

T
i =−

 

2r H
B

∂ A

∂ pi
Vg+2

�

�

AVg

�H ∂ A

∂ pi
X̃

�T

+Ψ
∂ A R

∂ pi

−2νi

�

AVg

�

AVg

!T

.

(6.35)
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To calculate the gradients of the objective function r , the solution
of the adjoint system in Equation (6.31) is needed, along with the
derivatives of the system matrices ∂ A/∂ pj and ∂ A R/∂ pj . As the affine
matrix decomposition is known for the dynamic stiffness, derivatives
of A and A R can be obtained analytically. A pseudo code for such
derivative calculation is provided in Algorithm 6.4 on page 160. The
calculation of the adjoints is computationally cheap, as it is obtained
from the ROM. In addition, the factorization of A R can be reused for
real-valued projection matrices as the matrix is self-adjoint. For the
general case of a complex-valued Vg, A R is not self-adjoint, and an
additional factorization is required.

The sum of the required matrix-matrix and matrix-vector multi-
plications of FOM size complexity is computationally more demand-
ing than the solution of the ROM for the adjoint variables for many
large-scale systems. This is especially the case for the calculation of
the Hessian matrix. For d parameters, 2d adjoints have to be calcu-
lated in addition. Equation (6.34) has to be solved d times, which
solely incorporates inexpensive operations of ROM size complexity.
Equation (6.35), which also needs to be solved d times, involves eight
additional matrix-matrix multiplications of FOM size for one of the re-
quired d right-hand sides. Equation (6.33) has to be evaluated (d+1)d/2

times when the symmetry of the Hessian is exploited, ten matrix-
matrix multiplications of FOM size are required for each evaluation.
The last step requires 550 multiplications of FOM size complexity for
one Hessian matrix evaluation already for a ten-parameter setting.
There are alternatives to the adjoint-adjoint approach for Hessian
calculation, which reduce the required (ROM) system solves of the
reduced system, but not significantly the required number of FOM ma-
trix multiplications, see Papadimitriou et al. [191]. For large-scale in-
dustrial FOMs, the Hessian evaluation is thus computationally expen-
sive, although several matrix-matrix products may be pre-calculated
and stored in memory.

As a result, an optimization algorithm is chosen in the follow-
ing, which avoids the explicit evaluation of the Hessian matrix for
the above objective function. Specifically, the method of Sequential
Quadratic Programming (SQP) is used. This algorithm incorporates an
estimation of the Hessian matrix via the Broyden-Fletcher–Goldfarb-
Shanno approach, see Appendix A.1, for a further explanation of the
algorithm.
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Algorithm 6.5: Error indicator function for pMOR training.

Input :Parameter vector p , reduced-order system SR,
full-order system S

Output :Objective value r , gradient of the objective ∂ r
∂ p

1 Function negativeResidual(p , SR, S):
//
// residual

2 A = evaluateSystemAt(S, p )
3 A R = evaluateSystemAt(SR, p )
4 X R = A−1

R BR

5 rB = B − AVgX R

6 r =− log10(


rB





F
)

//
// sensitivites
// adjoint variable

7 Ψ =
�

AT
R

�−1 �−r H
B AVg

�T

// loop over parameters
8 for j = 1 to d do
9

∂ A
∂ pj
= evaluateSystemGradientsAt(S, p , j )

10
∂ A R
∂ pj
= evaluateSystemGradientsAt(SR, p , j )

11
∂ r
∂ pj
= 1

∥rB∥2

F
log(10)

ℜ
�

tr
�

r H
B
∂ A
∂ pk

VgX R+ΨT ∂ A R
∂ pj

X R

�

�

12 return r , ∂ r
∂ p

6.2.4 A-Posteriori Model Quality Evaluation

The method proposed in Section 6.2.2 provides an implicit evaluation
of the ROM error solely. As indicated above, this leads to the require-
ment of an additional workflow step to assess the quality of the ROM
over the whole bound design parameter space robustly a-posteriori
to the training. An additional sample set for validation is introduced
for this, on which the true relative error ϵmax

H,rel is evaluated before the
online phase. The true error is assessed as for the two-step validation
scheme during training; in the conservative approach according to
(the left-hand side of) Equation (6.13).

It is impossible to evaluate the maximum error magnitude in the
whole admissible parameter space reliably during the training. Thus,
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it is not possible for the a-posteriori error evaluation. Necessarily,
the curse of dimensionality has to be also faced at this stage. This
is achieved by the basic concept not to assess the magnitude of the
maximum ϵH,rel quantitatively in the bound parameter space but to
consider more robust statistical measures. Consequently, histograms
are provided for the examples, which are discussed below. Such an
approach demonstrates the potential of the proposed pMOR method
descriptively. However, even providing such statistical measures as
mean and variance may be challenging for large-scale industrial mod-
els. The convergence rates may be low in high-dimensional parameter
spaces, and a rather large validation set may still be required, while
the FOM needs to be solved for each validation set sample to evaluate
ϵH,rel. Furthermore, one can only estimate the confidence levels of the
obtained statistic measures by additional computationally extensive
sampling approaches.

A sufficiently small validation set can be used if the information
in the statistical evaluation is reduced and a bi-nominal setting is
followed. The latter implies that one does not consider the actual
magnitude of the error except whether it is below the error thresh-
old or not; thus, solely two events are considered, a good and a bad
outcome. Success, respectively a good outcome is defined as an error
which is lower than the error threshold, ϵmax

H,rel ≤ ϵ
lim
rel . Accordingly, an

error of ϵmax
H,rel > ϵ

lim
rel is classified as a bad outcome for a parameter

sample, respectively an overshoot. The drop in information leads to
a relaxed requirement for the ROM quality. This is demonstrated in
Section 6.2.5. Even high errors of the ROM are accepted if there are
only a few overshoots, which can be a sufficient requirement for many
multi-query methods.

The application of a binomial setting as a quality indicator for
engineering simulation outputs was already proposed by Lehar et
al. [146] and Zimmermann et al. [284]. The latter introduced the ap-
proach to estimating failure probabilities for vehicle crash simulations.
Zimmermann et al. [284] determined solution spaces in complex engi-
neering models on that basis. In the following, this concept is adapted
to model order reduction while the remaining section closely follows
the notation in Lehar et al. [146].

The framework of Bayesian inference is used to provide statisti-
cal measures on that bi-nominal setting; to determine a subjective
probability of a good outcome, a , including the confidence level, re-
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spectively the probability for that assumed subjective probability of
success. The main advantage of these measures is the fact that the
width of confidence intervals shows a fast convergence for prescribed
values of the confidence level a , as pointed out by Lehar et al. [146]:
in the case of an actual a close to one or zero, thus good or very poor
ROM quality, only a small validation set is necessary to obtain high
confidence levels for relatively narrow confidence intervals.

In the following, these statistical measures are further described.
The starting point is the Bayes theorem, which is obtained in its most
basic form by

P (A|B) =
P (B|A)P (A)

P (B)
. (6.36)

In a general context, A and B are events, P (A) and P (B) are the prior
probabilities of that events without any further conditions assumed.
P (A|B) is a conditional probability, alternatively posterior probabil-
ity under the condition that the event B occurred; P (B|A) a corre-
sponding conditional probability. In the context of MOR, the involved
quantities describe the following: B is an observed result from an
experiment in which the ROM error was assessed. It is defined as a
result of e parameter samples with ϵH,rel ≤ ϵlim

rel and therefore a good
outcome within nsam samples, which were calculated during the ex-
periment in total. A is a probability itself, the probability of a good
outcome specifically. P (A|B) the probability of that probability under
the condition that the experimental result occurred as specified, thus
the confidence level. For the bi-nominal setting, Equation (6.36) can
be rewritten as

p
�

a |e , nsam

�

=
p
�

e , nsam|a
�

p (a )
∫ 1

0
p
�

e , nsam|g
�

p (g )dg

=

�nsam
e

�

a e (1−a )nsam−e p (a )
∫ 1

0

�nsam
e

�

g e (1− g )nsam−e p (g )dg
,

(6.37)

where g is used as sequence variable for integration and p () is a prob-
ability density.

The basic concept is to assume prior distributions in a first step,
which are uniform between zero and one, as no knowledge about
these distributions is available prior to the experiment. In a second
step, the results from the experiment are used to update that initial
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guess utilizing Bayes theorem. Thus, the prior probabilities are con-
stant, p (a ) = p (g ) = const., and can be removed from Equation (6.37).
Furthermore, as the probability of a good outcome a is unknown to
the experiment upfront, it is not practical to specify a single value for
it a-priori. Such a guess typically does not reflect the actual proba-
bility, leading to low confidence levels. Instead, the confidence level
p
�

a |e , nsam

�

is determined for confidence intervals of a instead, al <
a < au. Finally, Equation (6.37) can be reformulated for confidence
intervals of a as (Lehar et al. [146])

P
�

al < a < au|e , nsam

�

=

∫ au

al
z e (1− z )nsam−e dz

∫ 1

0
g e (1− g )nsam−e dg

. (6.38)

z is used as another sequence variable for integration. Equation (6.38)
finally allows to determine the confidence level, that the probability a
for a sufficient ROM accuracy ϵmax

H,rel ≤ ϵ
lim
rel at any requested parameter

combination p is in the confidence interval al < a < au. In a practical
approach, the user predetermines the latter upfront, and the confi-
dence level is returned for the true error provided, which is calculated
at nsam uniformly distributed parameter values.

6.2.5 Cantilever Solid Beam Example

The Model Setting In order to demonstrate the approach of OGPA
and benchmark it against some other methods, a MIMO beam sub-
system is considered the first example. It is illustrated in Figure 6.4
and was already discussed in Ullmann et al. [254]. The beam has a
high-dimensional parameter space, for which the system matrices are
parameterized. The latter are available in their affine decomposition
for reproduction in Ullmann [250]. An interface-symmetric MIMO set-
ting is considered incorporating two interface nodes, each providing
six DOFs, which results in twelve inputs and twelve outputs. The local
coordinate system in which the inputs and outputs are formulated
is rotated intrinsically by ϕz = 30◦ and ϕx = 20◦ for the first interface
node, and by ϕz = 15◦ and ϕx = 25◦ for the second node. This rotation
introduces additional coupling terms between the single inputs and
outputs. The model’s geometry is conceptually simple as a straight
beam is considered. Nevertheless, the example has relevance for in-
dustrial applications: modeling techniques for standard industrial
models are used, provided by the commercial FE software Simulia
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E1 ρ1 η1 E2 ρ2 η2 a L1 L2 ω

×104 ×10−10 ×10−3 ×104 ×10−9 ×10−3

p l 2.5 7 5 0.85 1 5 20 200 200 0

pu 7.5 10 50 3.5 5 50 24 300 400 3000

Table 6.1: Lower and upper bounds of the parameter values for the
cantilever beam example. All units are omitted as they are in Newton,

millimeter and ton.

ABAQUS 2017 Hotfix 2. The beam is discretized by elements of type
C3D8I, which are linear hexagon 3D elements with eight nodes and
additional DOFs for incompatible modes. A relatively coarse mesh
of three elements in each cross-section dimension and 40 elements
per section length is introduced; the additional two interface nodes
are tied to the corresponding surfaces of the beam via kinematic cou-
plings. This modeling results in 13164 DOFs, including several internal
DOFs not directly linked to spatial DOFs but introduced by the ele-
ment formulation.

Nine variable input parameters are chosen to be preserved in
the reduced model: the cross-section width a , and per section, the
material density ρi , the Elastic modulus Ei , the structural damping
coefficient ηi as well as the section length L i .

L1

a

b = 16

L2

Section 2

Section 1

1

2

x
y

z

Figure 6.4: Schematic drawing of the cantilever beam example adapted
from Ullmann et al. [254].
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PMOR aims to extract the use-case-required information of the
subsystem representation in the relevant frequency band and for
the variable parameters in their range of validity. The latter must be
specified already for the training of the pROM as a result. In the fol-
lowing, the parameter bounds are chosen according to Table 6.1. A
ten-dimensional bounded parameter space has to be covered, while
the frequencyω is included as an additional parameter dimension.
The chosen parameter space leads to a significant variance in the sub-
system’s input-to-output behavior over the parameter range, which
needs to be covered by the global basis. This is visualized for two en-
tries of the transfer function in Figure 6.5: for a parameter set which
is called soft bound, another called hard bound, and a third one with
arbitrary parameter values called base state as a baseline. The upper
bound values are chosen for ρi and L i , the lower bound values for b ,
Ei , andηi in the soft setting. In the hard setting, the values are defined
oppositely.
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Figure 6.5: Magnitude of the transfer function matrix at (a) the diagonal
element for node 1 DOF 5 (ϕy-rotation); (b) the off diagonal element,

relating node 1 DOF 1 (x -direction) to node 2 DOF 2 (y -direction). Three
parameter settings are considered, the soft and hard bound setting as well
as a third one with arbitrary parameter values as baseline. Per setting, the
solid line belongs to the transfer function of the FOM, the starred values to

the one of the ROM.
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Affine Matrix Decompositon As there is no ability to access the
source code of the ABAQUS FE program, the affine matrix decom-
position needs to be reconstructed from parameter samples of the
FOM system matrices. An exact interpolation problem should be
formulated for the beam example; thus, a parameter-gray-box ap-
proach is followed. For the latter, the required interpolation basis
functions f j (p ) need to be determined. The starting point is the brick
element formulation in terms of the linear ansatz functions as found
in Zienkiewicz et al. [283], for example. Basis functions can be derived
from that formulation for the specific geometric parametrization. The
exemplary procedure can be found in Fröhlich et al. [86], who derived
a more complex geometric parametrization for shape optimization.
In addition, reverse engineering is required for the affine representa-
tion of the internal DOFs of the specific C3D8I elements in ABAQUS,
resulting in the element stiffness matrix

K e = E

�

K e,1+ b K e,2+ L K e,3+ b L K e,4+
b

L
K e,5+

L

b
K e,6

�

,

where K e,i are constant-valued parameter-independent matrices. The
DOFs which are condensed in the kinematic coupling can be repre-
sented affinely by

K e = E

�

K e,7+ b 2 K e,8+
b

L
K e,9+

b 2

L
K e,10+

b 3

L
K e,11

�

,

which again was found by reverse engineering. This results in an affine
representation of the overall beam stiffness matrix as

K =E1

�

K 1+ b K 2+ L1 K 3+ b L1K 4+ b 2 K 5+
b

L1
K 6+

L1

b
K 7

+
b 2

L1
K 8+

b 3

L1
K 9

�

+E2

�

K 10+ b K 11+ L1 K 12+ b L1K 13

+b 2 K 14+
b

L1
K 15+

L1

b
K 16+

b 2

L1
K 17+

b 3

L1
K 18

�

.

Correspondingly, the structural damping matrix takes the form of

S =η1K ,

using the same affine matrices as the stiffness matrix and introducing
solely an additional scaling by the structural damping coefficients.
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Accordingly, the affine matrix decomposition of the mass matrix
can be recovered, which is given for a single C3D8I elements as

Me =ρb LMe,1,

and for the kinematic coupling as

Me =ρL
�

b Me,2+ b 3Me,3

�

,

with the parameter-independent matrices Me,i . This results in a glob-
ally assembled mass matrix of

M =ρ1b L1

�

M1+ b 2M2

�

+ρ2b L2

�

M3+ b 2M4

�

.

Consequently, at least nine parameter samples of the system ma-
trices per section are required to recalculate the affine matrices K i ,
S i and Mi according to Equation (6.5). The corresponding samples
were obtained by ABAQUS, and values smaller than the threshold
|Ki j | < 1 · 10−7 and |Mi j | < 1 · 10−20 were not interpolated but set to
zero. In addition, a scaling of the parameters was introduced while
sampling to increase the accuracy by avoiding numerical cancellation.

Note that the affine matrix decomposition needs to be derived
for the specifically chosen parametrization. If the other cross-section
value a should be included as a variable parameter, for example, the
above formula can be extended as found in Ullmann [250].

OGPA Training Results An OGPA training, according to Section 6.2.2,
generates a parametric reduced order model for this setup. The meta
parameters for the training are chosen according to Table 6.2. Fur-
thermore, the center point in parameter space is chosen as the initial
expansion point 0p̃0. The SQP algorithm in the MATLAB R2018b im-
plementation is used for the local optimizations. The default settings
are used for this algorithm, but the maximum number of residual
evaluations per local optimization is limited to nmaxFun = 200. Thus,
non-converged parameter results may be accepted, for which the
optimization algorithm could not find a minimum within nmaxFun

objective evaluations.
Nineteen expansion points are added in 20 iterations of the greedy

training for these settings. Afterward, nskipMax = 12 iterations provide
an expansion point candidate, which has a true error smaller than
ϵlim

rel , thus are discarded in the two-step validation. The greedy search
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Description Name Value

Deflation length ldefl 1 ·10−9

Krylov order o 3

Max. no. of greedy iterations nitMax 50

Skipped iterations for lucky breakdown nskipMax 12

Sample set for pre-selection of n p̃0 npre 50

Max. no. of residual calculations per iteration nmaxFun 200

Error threshold ϵlim
rel 5 ·10−3

Table 6.2: Meta parameters for pROM training of the beam example.

is ended after 32 iterations in a lucky breakdown, leading to a ROM
size of m = 235.

The expansion point positions in parameter space are found in
Table 6.3. In the latter, a general tendency of OGPA for problems in
structural dynamics is visualized by a color scheme: the algorithm
tends to place expansion points at the boundaries of specific parame-
ter dimensions. If one concentrates on the original input parameter
space without considering the additional frequency dimension, only
34 out of 171 parameter samples are no bound values. These find-
ings confirm the observations by Maday et al. [163], which stated this
general tendency for greedy approaches. This tendency is evident
for the damping parameters η1 and η2 in particular, for which the
lower bound values are obtained except for one iteration. Based on
heuristic experience, this is a general tendency of OGPA, and mainly
lower bound damping values are chosen for the basis construction of
any structural model. This behavior can be utilized in practice, and
the lower bound damping parameters can be directly used for basis
construction if the parameter space dimension should be reduced for
training.

As discussed in Section 5.5.3, the Krylov subspace depends lin-
early on the number of inputs if no deflation is considered. For the
MIMO setting of the example, 20 expansion points with three orders
and twelve inputs thus would result in a ROM size of m = 720. This
illustrates that the ROM size reduction by inexact deflation is signifi-
cant for this example, and 485 out of 720 candidates for basis vectors
are omitted in the final basis.
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Figure 6.6: Histogram of the maximum relative error ϵmax
H,rel per parameter

sample. ϵlim
rel , which was used as error threshold in the training phase is

indicated by the red vertical line.

As evident from Figure 6.5, a good ROM quality is achieved for
the three visualized parameter settings. The ROM quality is assessed
more systematically in the following. According to Section 6.2.4 an
a-posteriori validation set is introduced for this, on which the max-
imum relative error is assessed statistically. In an industrial setting,
the validation set usually needs to be small, as evaluating the true
error is computationally expensive for large-scale FOMs. However,
as the FOM size n = 13164 is moderate for this first example, a large,
randomly distributed validation set of size nsam = 2 ·104 can be used,
which allows for a more detailed error discussion in the following.
The relative error distribution is calculated according to the left-hand
side of Equation (6.13) and is visualized in Figure 6.6 for this large set.
As visualized in the latter, solely one error overshoot with a value of
ϵmax

H,rel = 6.5 · 10−3 is observed, which is slightly larger than the error

tolerance of ϵlim
rel = 5 ·10−3 for training. Consequently, one obtains a

100% confidence level for a probability of a good ROM outcome in
between 99.9%< a < 100%

P (99.9%< a < 100%|19999, 20000) = 100%,
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when the Bayesian framework of Section 6.2.4 is employed. The Bayesian
framework indicates this good ROM quality already with a small sam-
ple set; the latter is the standard scenario for large-scale industrial
models. A validation set of 200 parameter points containing the over-
shoot already would have given P (98.5%< a < 100%|199, 200) = 80.5%,
a set of 500 samples P (98.5%< a < 100%|499, 500) = 99.6%.

E1 ρ1 η1 E2 ρ2 η2 a L1 L2 f0

×10−10 ×10−9

50000 8.5 0.0275 21750 3.0 0.0275 22 250 300 755.0

75000 7.0 0.005 8500 1.2 0.005 24 200 367 60.8

75000 7.0 0.005 8500 1.0 0.005 22.8 261 313 42.2

75000 7.0 0.005 32900 1.0 0.005 21.2 206 347 20

75000 7.0 0.005 35000 1.0 0.005 21.1 215 321 20

75000 7.0 0.05 35000 1.0 0.05 24 200 200 20

25000 7.0 0.005 35000 2.3 0.005 24 300 400 437.0

75000 7.0 0.005 8500 5.0 0.005 20 200 400 863.3

49567 7.0 0.005 21779 2.8 0.005 20 300 400 127.6

75000 7.0 0.005 8500 2.5 0.005 24 200 400 305.5

25000 7.0 0.005 35000 2.2 0.005 20 200 202 475.7

75000 7.0 0.005 8500 5.0 0.005 24 300 251 130.3

75000 9.1 0.005 8500 1.0 0.005 20 294 200 316.9

25000 10 0.005 8500 5.0 0.005 20 300 400 1500

75000 7.6 0.005 8500 5.0 0.005 20 300 306 1500

25000 7.0 0.005 35000 3.3 0.005 20 300 282 201.9

75000 7.0 0.005 8500 2.1 0.005 24 200 377 1335.6

25000 7.0 0.005 35000 5.0 0.005 20 261 400 140.3

71360 7.0 0.005 8500 5.0 0.005 23.6 300 230 1500

25000 10 0.005 35000 1.1 0.005 20 300 255 1500

Table 6.3: Overview of the optimized parameter samples for the greedy
iterations in the beam example. All units are omitted. Green color-coded

values belong to the lower bound, and blue color-coded values to the
upper bound of the parameter range. The first line corresponds to the
parameter values which were chosen generically for the initial Krylov

subspace, thus are no result of the greedy search.

Performance of Alternative Training Strategies The comparably
large validation set also allows discussing the performance of OGPA in
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the context of more classic greedy search strategies with comparable
costs as the OGPA setting. The following methods are compared:

• M-O50-50: OGPA with a lowered maximum number of resid-
ual evaluations per local optimization nmaxFun = 50 for further
efficiency enhancements. The remaining settings are chosen
according to Table 6.2.

• M-RF400: greedy search strategy with a training set of 400 ran-
dom parameter samples, which are fixed for all iterations.

• M-RC100: as M-RF400, but with a training set of 100 random
parameter samples changing for each new iteration.

The same residual error indicator as for OGPA (Equation (6.16)) is used
for all these greedy approaches to ensure comparability. The results
from these methods are mapped to the performance of two baseline
scenarios:

• M-WC: worst-case scenario in which the expansion points are
placed arbitrarily in the parameter space without any training
strategy at all.

• M-BC: quasi best-case scenario, in which an extensive greedy
search is performed on the validation set by using the true rela-
tive error.

Each method which includes a random parameter sampling com-
ponent exhibits some statistical variation in its results. Consequently,
the following discussions are based on mean results for each approach,
obtained from a linear average of five independent algorithm execu-
tions. An exception is M-BC utilizing a static validation set for training,
thus does not require any averaging.

Many publications investigate the performance of pMOR methods
by analyzing the maximum error and its decay rate for an increasing
basis size, but not by a probabilistic framework as in Section 6.2.4. The
maximum relative error is analyzed accordingly for the above meth-
ods in a first evaluation to align with these studies. The visualization
of the results in Figure 6.7 provides two essential findings. Firstly, the
obtained maximum error for the three analyzed methods M-O50-50,
M-RC100, and M-RF400 are in between the worst and best-case point
placement results. All these three methods involve a point placement
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Figure 6.7: Comparison of the decrease of the maximum relative error
ϵmax

H,rel on the validation set for an increasing basis size in the context of
different methods for training. Averaged results are presented for five

independent algorithm executions per method.

based on the error estimate of Section 6.2.3. This shows that this error
indicator provides a valuable objective for training, although only the
rough trend of the true error ϵH is provided. Secondly, OGPA outper-
forms more classic greedy search strategies for sufficiently large basis
sizes when the same error indicator is used, and the meta parameters
are set for all methods such that comparable numerical efforts are
obtained (see Figure 6.7). At a basis size of m = 230, OGPA excels the
other two methods by an error smaller by one order of magnitude.
Thus, the approach of OGPA is valuable, especially for applications in
which the maximum relative error is essential.

In a second analysis, the a-posteriori error evaluation is performed
according to Section 6.2.4. Again, OGPA provides the best results
around the converged basis size of m = 230: on average, there are
five error overshoots within nsam = 2 ·104 samples for this approach.
Anyhow, the proposed error analysis by Bayesian inference leads to an-
other perspective on the ROM quality and thus often relaxed require-
ments. This is evident from the analysis of the alternative methods:
the classic greedy search approach of M-RF400 also provides a small
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number of 22 overshoots; even a purely random point placement by
the method of M-WC produces a relatively small number of 203 over-
shoots on average. Evaluating the results of M-WC with Bayesian infer-
ence, still a confidence interval of P (98.5%< a < 100%|19797, 20000) =
94.7% can be obtained. In other words, the superiority of OGPA is less
distinct for an error analysis with Bayesian inference. As a result, sim-
pler training strategies than OGPA may be chosen for applications
where the maximum error is not crucial, as long as there are not pro-
hibitively many error overshoots.

6.3 Chapter Summary

An approach for model order reduction with the preservation of vari-
able input parameters was developed, enabling large-scale FOMs with
moderate modal density but a higher-dimensional input parameter
space. A possible curse of dimensionality has to be faced for such high
dimensional parameter spaces at two stages of the procedure: the
training of the ROM in the offline phase and the evaluation of the
ROM in the online phase. A global basis approach was chosen to ad-
dress the latter, and local projection matrices for different parameter
samples are concatenated in a global projection matrix, which is valid
over the whole parameter space. Affine matrix decompositions are
found as a parameter interpolation scheme for the system matrices.
This approach avoids the curse of dimensionality in the online phase.
It was briefly discussed how such a decomposition can be constructed
non-intrusively to reuse standard commercial FE assemblers.

A high-dimensional input parameter space in the training phase
is even more challenging as large-scale FOMs are considered. Only
a few FOM system solutions are possible, but the model needs to be
trained for the analytically unknown, non-convex error function in the
high-dimensional parameter space. To enable the training for such
models and thus to meet the curse of dimensionality in this phase, an
optimization-based greedy search strategy was introduced (OGPA) for
global basis generation. Motivated by the application of optimization-
based strategies in reduced basis methods, the concept was trans-
ferred to a global basis construction through subspace algorithms
and for the frequency-domain analysis of mechanical networks. The
excitation frequency is considered an additional parameter dimen-

180



6.3 Chapter Summary

sion, and local bases, constructed at one expansion point, are added
in each greedy iteration.

A goal-oriented error estimate was developed as an optimization
objective for the application to subsystem coupling. This estimate
is based on a residual expression as an indicator for the MIMO sys-
tem’s transfer function matrix error over the relevant parameter space.
The gradient calculation of the objective was discussed. Based on the
framework of Chapter 4, the gradients can be evaluated efficiently
by an adjoint approach. Local optimizations are performed by using
the gradients in the SQP optimization algorithm, providing local max-
ima of the error estimate. The global maximum of the error, however,
remains unknown. As a remedy, firstly, a two-step selection proce-
dure was introduced to account for the possibly non-optimal candi-
date expansion point placement. Secondly, an additional validation
sampling set was introduced, on which the true error in the trans-
fer function is evaluated after basis generation but before the online
phase. Again, such evaluation is challenging for combining a large-
scale FOM and high-dimensional input parameter space. Probability
theory was employed to allow for a small validation set and simultane-
ously provide a reliable statement of ROM quality. A binomial setup
was chosen, providing the probability of the transfer function matrix
entries of the ROM below a given error tolerance. Confidence intervals
are provided in addition. The efficiency of the pMOR approach was
demonstrated based on a numerical example of a cantilever beam
with a ten-dimensional parameter space.
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7
EXPERIMENTAL METHODS FOR THE

ENERGETIC NETWORK ANALYSIS

For several purposes, experimental techniques for energetic network
analysis are relevant during a virtual development process. The first
application is the provision of reference measurements, either to vali-
date numerical results or as a basis for a model updating like inverse
parameter identification. Especially if damping parameters should be
fitted, energetic quantities can be attractive as a reference. The sec-
ond application is the inclusion of subsystems from a measurement-
based identification in hybrid assemblies. However, such experimen-
tal methods can be challenging for energetic network analysis. As
shown below, the lack of phase accuracy of measurement setups may
require extra efforts for power evaluations, and systems may even
lose their passivity. A method to correct systematic phase errors is
introduced as a remedy. The focus is on SISO techniques for reference
measurements, but with theoretical extensions to MIMO settings for
an experimental subsystem identification.

For this, many paragraphs of Section 7.1 and Section 7.2 are repro-
duced from Ullmann et al. [256]. Assume a second-order system with
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displacements as output Y : W , and forces as input U : F , as defined
in Section 2.1.2 for the whole chapter.

7.1 Challenges for the Experimental Acquisition of
Energetic Quantities

There are various challenges for measurements in structural dynam-
ics, especially in the context of subsystem coupling. Continuous stress
and displacement quantities need to be determined at the subsys-
tem interfaces. Discretizing the latter, multi-axial force, moment, and
displacement quantities must be evaluated concurrently at the same
spatial locations. While this may be feasible for translational DOFs, the
measurement of rotational DOFs requires extra effort. Furthermore,
measurement points may not be directly accessible by measurement
equipment. Additional error sources are present in standard exper-
imental subsystem identification; an overview is provided in Allen
et al. [6]. The remainder of this chapter does not focus on these gen-
eral challenges of experimental methods. However, aspects that arise
additionally from the direct measurement of energetic quantities and
experimental subsystem identification for energetic network analysis
are discussed.

7.1.1 Evaluation of Power Quantities

The measurement of power quantities in mechanical systems dates
back to the 1970s. From then on, experimental approaches were de-
veloped to determine structure-borne sound power at arbitrary cut-
ting sections inside basic mechanical (sub-)systems, such as trusses,
beams, or plates. The displacement function is known from the an-
alytical solution of such an idealized mechanical system and allows
to calculate power from an acceleration sensor array. Corresponding
methods are developed by Arruda et al. [17], Freschi et al. [82], Halk-
yard et al. [113], Linjama et al. [153], Mandal [164], Pavić [196], Szwerc
et al. [237, 238], Troshin et al. [248], Verheij [265], and Williams et al.
[272]. Mandal et al. [165] provide an overview. Such methods are inher-
ently limited to analytical systems; complex geometric structures are
excluded. Thus, only a few applications of such approaches may be
found for industrial structures, but one must focus on the experimen-
tal acquisition of power quantities at the discrete inputs and outputs
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of the assembled network or the decoupled subsystems. Technically,
the evaluation of complex power at discrete points is straightforward
for measurement systems, which provide the option to evaluate cross
power spectra

P =
iω

2
U H Y =

iω

2
SUY , (7.1)

where SUY is the cross power spectrum between the input and output
signal. Practically, the challenging acquisition of power quantities for
lightly damped systems was highlighted in Section 2.3.4, as the phase
accuracy plays a key role. The required level of accuracy implies the
presence of specific problems in experimental methods. It is known
that each element in the measurement chain introduces a phase error.
The sensors alone may have a systematic phase error that is consid-
erably larger than the required accuracy. For example, impedance
heads can have an absolute phase error that approaches ϕerr = 5◦

(PCB Model 288D01 Data Sheet [197]).
Unfortunately, relative phase errors between force and accelera-

tion channels are not documented in most cases. In addition, there
is a dearth of systematic studies regarding the general phase accu-
racy of experimental methods and ways to improve them. Ganguly
et al. [91]discusses the phase accuracy of frequency response function
measurements; however, the study is limited to the particular case of
capacitive sensors, and power quantities are not considered.

7.1.2 Determination of Energetic Measures

In addition to the analysis of mean power, the evaluation of the overall
system energy might be of interest. The determination of energies
may not only be valuable for network analysis but can also be used
for damping characterization (see Ullmann et al. [256]). However, the
measurement of energies is also not straightforward. Apart from the
Lagrange energy, which can be calculated from the (sub)system input
impedance by Equation (2.36), in general, one must integrate energy
over the volume of the (sub)system (compare Equation (2.26)). Strains
and stresses must be integrated over the system volume to obtain the
potential energy, respectively, the velocities and mass distribution for
kinetic energy. However, only the system input-to-output behavior
can be directly measured. One computationally expensive remedy is
fitting an inner system representation on the measurement data by
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parametric system identification, from which energies can be calcu-
lated. Some aspects of such system identification are discussed briefly
in Section 7.3. Another remedy to estimate energies from measured
subsystems was discussed by Bobrovnitskii [35]. He showed for a SISO
setting that the energies of a system in harmonic vibration could be
estimated solely from its input-to-output behavior. For general MIMO
systems of Section 2.1.2, the concept of Bobrovnitskii [35] is extended
by:

E pot ≈
ω2

8
Y Hℜ

�

∂ ∂U
∂ Yω

∂ ω
−
∂U
∂ Y

ω2

�

Y =
ω2

8
Y Hℜ

�
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∂ ω
−

H −1

ω2
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Y

(7.2)

E kin ≈
ω2
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∂ ω
+
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ω2

�
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(7.3)

Corresponding formulas can be found for any other choice of in-
puts and outputs. Most publications use corresponding formula-
tions, which are based on impedances H −1/iω= F/V , thus for velocities
V as outputs. Reformulating Equation (7.2) and Equation (7.3) for
impedances and assuming a SISO setting, one arrives at the formula
of Bobrovnitskii [35]

E pot ≈−
1

8
|V |2ℑ

�

∂ Z

∂ ω
−

Z

ω

�

(7.4)

E kin ≈−
1

8
|V |2ℑ

�

∂ Z

∂ ω
+

Z

ω

�

, (7.5)

where Z = H −1/iω.
The above formulas allow for calculating the potential and kinetic

energy from the inputs and outputs of any system. Nevertheless, Equa-
tion (7.2) to Equation (7.5) provide the correct energy quantities solely
for undamped systems. It is only an approximation for damped struc-
tures, with an increasing error when damping increases. A discus-
sion for the general MIMO case is found in Kim et al. [138], who use
corresponding impedance formulations of Equation (7.2) and Equa-
tion (7.3).

Besides the approximation properties for damped systems, the
sensitivity of the energy approximation to phase errors must be eval-
uated. The latter is discussed for the potential energy approximation
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of SISO systems (Equation (7.4)), while generality for the MIMO case
and the kinetic energy is preserved. The conditioning of the potential
energy approximation becomes a more complex expression than that
of mean power as provided in Equation (2.48). As an alternative, Equa-
tion (7.4) can be rewritten for the direct dependency on the relative
phase as

E pot ≈
1

8

�

|F ||V |
∂ ∆ϕFV

∂ ω
cos(∆ϕFV)

+

�

−
∂ |V |
∂ ω

|F |+
|F ||V |
ω

−
∂ |F |
∂ ω
|V |

�

sin(∆ϕFV)

�

.

(7.6)

This reformulation already gives insight into the sensitivity of power
with respect to the relative phase: Equation (7.6) potentially becomes
sensitive to phase errors as soon as the cosine term grows sufficiently
large. The latter is the case for frequencies in the vicinity of resonances.
There, ∂ ∆ϕfv/∂ ω takes high values for structures with light damping
in particular and moderate phase errors thus are not expected to
significantly distort the energy estimate of Equation (7.4).

Example 7.1 (Two-DOF system)

This assumption is validated in the following, and the calculation of
the potential energy from interface quantities is exemplarily discussed
for the two-DOF example of Section 2.3.4 as visualized in Figure 2.2
on page 37. A two-step error evaluation needs to be performed, as
the potential energy is calculated through the approximation in Equa-
tion (7.4), but not the correct solution which is provided by

E
ex

pot =
1

4

�

k1|X1−X2|2+k2|X2|2
�

. (7.7)

X1 and X2 are the two states of the two-DOF system, k1 and k2 the
two stiffness values according to Table 2.1 on page 37.
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In the first step, the approximation error is evaluated, thus the
difference between Equation (7.4) and Equation (7.7). As no analyt-
ical function of the system’s input-to-output behavior is generally
available, the derivative of the input impedance must be calculated
through finite differences. The use of finite differences implies intro-
ducing the step size as an additional variable in the discussion on the
error. This discussion is not performed explicitly in the following, but
a step size of∆ f = 0.3Hz is chosen as a good compromise between
numerical stability and accuracy for the example.
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Figure 7.1: (a) Representation of the error of the energy estimate,
Equation (7.4), compared with the correct solution of the potential energy
of the two-DOF system, Equation (7.7); (b) Logarithmic representation of
the coefficient of variation of the energy estimate, Equation (7.4), which is

introduced by the uncertainty in the relative phase.

The error, which is introduced by the approximation in Equa-
tion (7.4) against the correct solution in Equation (7.7) is visualized
in Figure 7.1(a). The latter illustrates that the error is negligible for
most frequency ranges and small structural damping values, while it
increases for increased damping. Furthermore, the error significantly
increases in the proximity of the anti-resonance fA= 7.71Hz and re-
sults in negative energies, which is in line with the observations in
Bobrovnitskii [35]. Consequently, as negative energies are nonphysical
for passive systems, no error is calculated in such a case (Figure 7.1(a)).
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In the second step, the sensitivity of the error approximation with
respect to phase errors is evaluated. According to Section 2.3.4, a
random relative phase error between∆ϕerr ∈ [−1◦, 1◦] is introduced
on∆ϕUY and the coefficient of variation for the potential energy is
evaluated (compare Equation (2.49)). Furthermore, random noise
is added to the frequency phase response to distort the calculation
of finite differences, resulting in a standard deviation ofσ= 0.3 over
frequency. The results are provided in Figure 7.1(b), indicating that the
potential energy estimate is less sensitive to phase errors. A coefficient
of variation with respect to phase errors of c < 10−3 is obtained for
damping values η< 0.01.

■

As any industrial subsystem incorporates damping, the measure-
ment-based energy determination is always incorrect. The two-DOF
example illustrates that the energy estimate has a small error for low
damping values, which increases with increasing damping. This is con-
trary to the dependency of the error in power on subsystem damping.
Concurrent evaluations of energy and power in mechanical networks
may be critical due to that reason.

7.2 The Concept of Phase Correction for Reference
Measurements

As discussed in Section 7.1.1, the relative phase accuracy is crucial
for correct power quantities of lightly damped systems. This requires
additional efforts for a measurement-based acquisition of power, as
each component of the measurement chain introduces a phase error,
which can be significant. In the following, an approach is discussed to
enable an experimental and direct determination of power quantities
for lightly damped systems.

The basic concept is to analyze the measurement chain’s overall
systematic phase error and calculate an individual compensation per
distinct channel pair and frequency point. These corrections should
be test-specimen independent, thus independent of the system that
is measured but purely determined by the measurement chain. The
following approach is discussed for network reference measurements
with a SISO setting. The basis for discussion is a benchmark problem
with locally collocated assembly input and output. The measurement
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at such collocated points allows for a measurement chain incorporat-
ing an impedance head and a two-channel data acquisition (DAQ)
interface. It is discussed in Section 7.3 how one can extend the method-
ology to the measurement-based identification of lightly damped
subsystems.

Several effects on the measurement of phases lead to systematic
phase offsets and random errors (see ISO 16063 [1]). In the following,
the focus is on systematic errors, and three sources of an erratic phase
are considered:

1. leakage in signal processing.

2. phase lags in the DAQ interface.

3. phase offsets introduced by the impedance heads .

Leakage in the signal processing results in a distorted phase. It
cannot be compensated by a general correction factor but must be
reduced by appropriate excitation profiles and postprocessing strate-
gies, which is discussed in Section 7.2.2.

In contrast, the other two sources of a systematic phase error are
related to the measurement hardware. As it is assumed that these
phase lags are test-specimen independent, test setups can be intro-
duced for their identification per distinct channel pair in Section 7.2.3.
As a result, a complex-valued phase correction factor

Ξϕ =ΞIH ◦ΞDAQ (7.8)

can be introduced to the channel pairs to compensate for the phase
lags in the measurement hardware during postprocessing. ◦ is the
Hadamard product, Ξϕ is the vector of complex-valued correction
factors for the used combinations of input and output channels per
frequency point. A corrected cross-power spectrum can be calculated
from this correction factors by

S c
UY =U H (Ξϕ ◦Y ). (7.9)

The superscript2c indicates the correction for the phase lag of the
measurement hardware in the following. Corrected power quantities,
phase angles and input impedances can be calculated accordingly by
introducing Ξϕ in Equation (7.1), Equation (2.45) and Equation (7.4).
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7.2.1 A Benchmark Problem for Validation

A benchmark problem is introduced, which provides the basis for dis-
cussing the phase correction method. The lightly damped benchmark
problem, initially presented in Ullmann et al. [256], has a SISO set-
ting with a unidirectional and collocated measurement of input and
output. The benchmark allows discussing effects in power measure-
ments of lightly damped systems. It is also the basis for evaluating the
validity of a test-specimen independent phase correction approach.

The basic concept is a network of subsystems that correlate to
basic analytical systems. A truss with a circular cross-section is sus-
pended from a clamped beam with a rectangular cross-section (see
Figure 7.2). Combined uniaxial sensors, the impedance heads IH:1
and IH:2, are placed at the truss interfaces to measure forces and ac-
celerations concurrently. The mounting structures holding the clamp,
truss, and beam are manufactured from the aluminum alloy EN AW-
6060 to provide a lightly damped system and, thus, a challenging
measurement benchmark.

F0

Sensor IH:2

Sensor IH:1

LB = 860 mm

L
T
=

40
0

m
m

Mass

Truss

Beam

x
y Mounting

structure
Mounting
structure

Figure 7.2: Basic concept of the benchmark structure for power
measurements in uniaxial direction according to Ullmann et al. [256].

A two-dimensional FE model is employed without considering
the sensors to find an initial design of the geometrical parameters.
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A coarse discretization consists of 24 cubic beam elements and ten
linear truss elements. The frequency range of interest is chosen as
f ∈ [1 Hz, 800 Hz], in which structure-borne power is analyzed at both,
resonant and non-resonant frequencies. Three well-separated reso-
nances should be presented that have symmetric mode shapes in the
x -y plane of the system and with the truss vibrating along its longitu-
dinal direction only (Table 7.3). The two sensors, IH:1 and IH:2, are
only loaded on the longitudinal axis for these mode shapes. In order
to tune the benchmark system for these resonances, the diameter of
the truss cross section is chosen as D = 0.016 m, the rectangular beam
cross section dimensions as b = 60 mm and t = 10 mm. Furthermore,
an additional steel mass m = 1.13 ·103 t is mounted between the lower
end of the truss and excitation. For the aluminum material, the mod-
ulus of elasticity has a value of E = 7 ·104 N mm−2, the mass density is
ρ = 2.85t mm−3 and a structural damping coefficient is specified as
η= 0.001.

fr,1 fr,2 fr,3

Figure 7.3: Mode shapes of the first resonances with the truss vibrating
along its longitudinal direction only.

7.2.2 Phase Errors due to Leakage

Using the lightly damped benchmark structure, phase correction is dis-
cussed for three considered components of the measurement chain:
impedance heads, DAQ, and signal processing. As indicated above,
no correction factor can be found for the latter to compensate for
leakage, but one must identify a combination of a suitable excitation
profile and postprocessing strategy.

A numerical experiment is performed based on the simplified two-
dimensional FE model of the benchmark structure introduced above
and shown in Figure 7.2. Five excitation profiles are examined as listed
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in Table 7.1. In order to calculate the time-domain response of the
structure at IH:1 for these excitation profiles, a modal basis of the
ten lowest mode shapes is considered for computational efficiency
reasons. A preliminary modal refinement study showed convergence
for that basis size. Each modal displacement is time-integrated by
means of the Newmark-β time integration scheme (Belytschko et al.
[30]) with a sampling rate of fs = 1/∆t = 102.8 kHz. Afterward, the sig-
nals are transformed into the frequency domain using a short-time
Fourier transformation (STFT) and Hanning windows. The settings
for the transformation are contained in Table 7.1 per excitation pro-
file. Tw is the window length of the STFT segments, θ their overlap.
The first harmonic is extracted to identify the time-independent fre-
quency response, except for signal profile p5, for which an averaging
is performed.

Parameters STFT postprocessing

No. Profile Speed Ttot Tw θ

p1 Stepped sine Tf = 8 s resp. 1.5 s 2640 1 -

p2 Linear chirp ∆ f = 1 Hz s−1 980 1 0.9

p3 Linear chirp ∆ f = 1 Hz s−1 980 10 0.99

p4 Logarithmic chirp ∆ f = 1 Hz s−1 1300 1 0.9

p5 Pseudo-random Tp = 1 s 600 1 0.9

Table 7.1: Excitation profiles and corresponding postprocessing
strategies, which are evaluated for the numerical study of the 2D
benchmark system. Tp is the hold-off time period for a decaying

homogenous solution, Tf the time a single frequency is kept. Tw is the
window length of the STFT segments, θ their overlap.

Figure 7.4 visualizes the resulting phase errors of the transformed
time signals from this numerical experiment against the direct har-
monic solution of the system in the frequency domain. The phase
error is generally below 1% except for some resonance shifts. Nev-
ertheless, the error in the power quantities is significant for several
excitation profiles, as shown in Figure 7.5. For the latter, the power
values are normed by the square of the frequency-dependent load am-
plitude |F |2 to limit the discussion on the influence of the identified
phase angle.
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Figure 7.4: (a) Relative phase between input and output at the virtual
sensor point IH:1 for the excitation profiles in the time domain and the

harmonic solution in the frequency domain as reference; (b) Error of the
relative phase at the different excitations with respect to the harmonic

solution in the frequency domain.
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Figure 7.5: Numerical power spectra error at IH:1 for the different
excitation profiles in the time domain with respect to the harmonic

solution in the frequency domain.
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Figure 7.6 illustrates the correspondingly normed power quan-
tities and shows an erratic response around the lowest resonance
frequency in particular. For such low resonant frequencies, systems
with low damping possess a long-time homogeneous solution, which
may still be present in measuring other excitation frequencies. Corre-
spondingly, the stepped sine excitation p1 provides accurate power
quantities. Each excitation frequency is held constant for a lengthy
time period of Tp until the homogeneous solution decays. Using a
transient chirp signal excitation (p2 to p4) can provide accurate power
quantities, too. However, leakage necessarily is present; the amount
depends on the selected parameters of the STFT, the window length
Tw in particular. For a small window length of Tw = 1 s, the frequency
response of the power erratically indicates a non-passive system in
the proximity of the first resonance as a result. Consequently, accu-
rate power quantities may require larger window lengths for direct
measurement by a chirp excitation for lightly damped systems. Al-
ternatively, other transformation strategies are available for such an
excitation. Such concepts are discussed by Orlando et al. [187] in the
scope of the measurement of frequency response functions for modal
analyses.
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Figure 7.6: Numerical power spectra at IH:1 in the longitudinal direction
of the truss for both, the different excitation profiles in the time domain
and the reference harmonic solution in the frequency domain. All power

spectra are normed by |F |2.
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Leakage can be avoided at all if a periodic multi-sine signal with a
period length of Tp is used. Such periodic excitation is provided by the
pseudo-random signal p5 as found in Phillips et al. [201]. Furthermore,
several averages can be taken to reduce noise as the signal is periodic.
It is evident from Figure 7.6 and Figure 7.5 that this excitation profile
provides accurate power quantities for a direct measurement as a
result.

7.2.3 Systematic Phase Errors in the Measurement
Hardware

In contrast to leakage compensation, correction factors can be found
for the phase lag of the measurement hardware, as discussed above.
The DAQ interface and the impedance heads are considered for this,
and test setups are introduced under the assumption of test-specimen
independent phase lags. While the latter is reasonable for the DAQ
interface, such an assumption requires additional elaboration for
impedance heads.

Data Acquisition Interface

A SIEMENS SCADAS III system is used in the final experiments, and
the systematic phase lag is evaluated for its two channel pairs to which
the impedance heads IH:1 and IH:2 are later connected. Therefore, a
test setup is introduced as follows: Each channel pair is connected to
a one-channel signal generator by equal-length cables and a Y-branch
adapter. The signal generator provides a chirp voltage signal (profile
p3 listed in Table 7.1), which is recorded by the two channels concur-
rently. The resulting channel pair should have a zero relative phase
∆ϕDAQ = 0 assuming that the cables and adapters do not influence
the phase. The correction factors ΞDAQ are calculated for each of the
two channel combinations j = {1, 2} directly from the Fourier spectra
of channel voltage signals as a result,

ΞDAQ, j =
v j 1v ∗j 2

|v j 1v ∗j 2|
, (7.10)

where v is the complex-valued amplitude of the voltage signal.
For robustness, the measurement on the test setup is repeated

six times for each of the two channel pairs. The resulting mean val-
ues, standard deviation, and extreme values of the relative phase are
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Figure 7.7: Measured relative phase of the SCADAS III DAQ channel pairs
used for the power measurements ((a) channel pair used for IH:1 and (b)

channel pair used for IH:2).

provided in Figure 7.7. The latter provides two essential findings on
the phase lag of the DAQ interface: Firstly, all relative phase lags are
small (∆ϕerr < 2 ·10−3). Secondly, they are practically a linear function
of the frequency in the considered frequency range. The linear fre-
quency dependency is an indicator for a constant time shift, which is
introduced into the measurement (Ganguly et al. [91]).

Impedance Heads

The systematic phase lags are classified into two groups for impedance
heads: test-object-dependent and independent errors. Test-object-
dependent errors originate from the mechanical interaction between
the sensor spring-mass system and the attached test structure, which
alters the frequency response of the coupled sensor-test-object sys-
tem compared to the tested structure itself. This alteration is an issue
for setups with force sensors in general and thus impedance heads:
Force sensors need to be connected in series to the structure along
the load path, leading to a mechanical mistuning of the test system.
The latter mainly occurs around the additional resonances added by
the sensor. The influence of such effects on the signal amplitudes was
thoroughly investigated for several decades, refer to Brownjohn et al.
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[45], Hakansson et al. [112], Haughton [120], Merkel et al. [174], and
Rasmussen [206]. For the considered benchmark structure and used
impedance heads, a study on the mechanical mistuning is available
in Ullmann et al. [256], which focuses on the relative phases, not am-
plitudes. The study showed that the phase lags resulting from such
mistuning are slight in the benchmark case. As a result, no compen-
sation is provided for them in the following.

The situation is different for the second group of systematic phase
errors, which are test-object independent. Consequently, these phase
lags do not result from the mechanical interaction of the sensor and
the test object. As demonstrated below in accordance with Ullmann et
al. [256], these test-object-independent errors need to be considered
for any sensor combination.

Two-channel FFT

Shaker

Calibration mass mL

Impedance head

Figure 7.8: Schematic drawing of the top-mass setup for the impedance
head phase measurements according to Ullmann et al. [256].

A test setup is created according to Figure 7.8 to identify these rela-
tive phase errors between force and acceleration signals of impedance
heads. Such a setup is known from calibration experiments for imped-
ance head signal amplitudes; refer to Scott et al. [223] for an example.
The impedance head, for which the phase error should be determined,
is mounted on a uniaxial shaker table. A mass as ideal as possible is
placed on top of the impedance head. In the proposed test setup, three
different masses are used, whose values are between m = 76.3 ·10−6 t
and m = 6.1 ·10−4 t. Given that the masses are ideal, they have a purely
imaginary impedance

Z = iωmL. (7.11)

198



7.2 The Concept of Phase Correction for Reference Measurements

A zero relative phase∆ϕIH = 0◦ should be measured for the acceler-
ation signal A and force signal F at this imaginary impedance. As a
result, the phase error is directly provided by the measured phase for
each of the two impedance heads j = {1, 2},

ΞIH, j =
Fj A∗j
|Fj A∗j |

Ξ−1
DAQ, j . (7.12)

ΞDAQ, j is the phase correction of the DAQ which is used for the test
setup, Fj and A j are the force and acceleration Fourier spectra.

The test-object-independent phase error of the impedance heads
should be measured using the test setup. The setup, however, includes
dependent phase errors itself, as they were discussed above. The latter
result from the mechanical interaction of the sensor’s mass-spring
system with the mass loading. The phase response of the coupled sys-
tem is measured and not the one of the mass alone. Such test-object-
dependent phase errors should not hide the test-object-independent
phase errors. Thus, the test-object-dependent error needs to be quan-
tified first to determine the suitability of the test setup.

This is performed numerically using the model, which was pro-
vided by the sensor manufacturer DYTRAN and is shown in Figure 7.9
and Table 7.2.

kT

mA

Top mT

Base mB

Shaker

kF kA

Attached Zin

X1

X2

X3

X4

Figure 7.9: Impedance head model scheme.
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Quantity mB mA mT kF kA kT η

Value 6.5 ·10−9 2.5 ·10−8 5.5 ·10−10 1 0.25 0.25 0.01

Table 7.2: Impedance head model parameters scaled by kF .

Uniform hysteretic damping is assumed with η= 0.01, which is
a conservative estimate of the damping inside the sensor structure;
therefore, also of the relative phase. The relative phase is evaluated
at the top mass mT for the cross correlation between the force in the
force crystal spring, kF , and the displacement of mT ,

SUY = (1− i η)kF(X1−X3)(X3)
∗. (7.13)

As the input impedance Zin is purely imaginary (compare Equa-
tion (7.11)), the test-object-dependent phase error in the test setup
is equal to the phase of SUY in Equation (7.13) deviating from aπ
with a ∈Z. The corresponding phase error is evaluated for both the
lowest and highest mass loading used in the top-mass setup of Fig-
ure 7.8 and is visualized in Figure 7.10. Figure 7.10(b) illustrates that
the test-object-dependent phase error inside the impedance head
model is small for the span of used mass loadings,∆ϕerr < 0.04◦. Ac-
cordingly, the above top-mass setup can provide an approximation of
test-structure independent phase lags, which are significantly larger
than∆ϕerr≫ 0.04◦.

With this known range of validity for the test setup, the test-object-
independent phase error of the impedance heads is measured. Again,
a chirp excitation (profile p3 of Table 7.1) is chosen, and the phase
correction value is calculated based on twelve measurements as visu-
alized in Figure 7.11; four for each mass.

Comparing the averaged phase results for the impedance head
measurements of Figure 7.11 with the ones of the DAQ interface in
Figure 7.7, they are similar in that they are again an almost linear func-
tion of frequency, indicating again a constant time shift as the reason
for the phase lags. Nevertheless, the mean results differ as there are
frequency ranges in which they deviate from the linear phase func-
tion; combined with this is a significant standard deviationσ. These
frequency ranges are linked with test setup resonances, resulting from
imperfections of the theoretically perfect uniaxial setup and distort-
ing the phase function. For the different masses mL, the resonant
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Figure 7.10: (a) Relative phase between force input and displacement
output calculated at the top-mass, mT , of the impedance head model. (b)
The error of the relative phase due to mechanical interaction of the sensor
system and the mass. Two mass loads, mL, are evaluated: the lightest and

heaviest masses used in the top-mass setup.
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Figure 7.11: Relative phase of the two impedance heads used for the
power measurement obtained by the top-mass setup ((a) IH:1, (b) IH:2).

Three different masses are used, and four measurements are performed for
each mass.
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frequency ranges are shifted, which leads to a moderate effect on the
median value of all measurements but a significant one on the mean
and standard deviation. To compensate for these artifacts from im-
perfections of the test setup, not the mean value is directly employed,
but the correction value is obtained from a (bi-)linear regression of
the median value. The final phase correction from the regression
approaches ∆ϕIH = 3◦ at a frequency of f = 800Hz for the single
impedance heads.

Note that for frequency ranges in which the test setup is not in
resonance, the phase has a standard deviation of σ ≈ 0.1◦, which is
small compared to the mean value. This slight standard deviation indi-
cates that the influence of the mass loading is small for the evaluated
masses; thus, it validates the test setup and confirms the numerical
simulations above.

In comparing the magnitude of∆ϕIH with the one of∆ϕDAQ, one
observes that the latter is smaller both in terms of mean and standard
deviation. The mean of∆ϕDAQ is smaller by three orders of magnitude
compared to the mean of the impedance heads; it is even smaller
than the expected distortion of phase results in the top-mass setup.
Accordingly, the complex correction value of the overall measurement
chain is simplified to the following:

Ξϕ ≈ΞIH . (7.14)

7.2.4 Results for the Benchmark Problem

The potentials of the method for phase correction are demonstrated
for the benchmark problem of Section 7.2.1 in the following. To vali-
date measured power results, the hardware realization of the bench-
mark must correlate with a numerical model. In the first step, a FE
model is found for this, which provides a reference for the power
quantities. The hardware realization and the numerical model are
presented in detail. Both are available online for reproduction in Ull-
mann [251]. In the second step, the measurement results for power
are discussed using the correlated benchmark.

Correlation Hardware and Numerical Model

Hardware realization The hardware realization of the mechanical
system in Section 7.2.1 should satisfy the idealized mechanical model-
ing assumptions as far as possible. Two identical pyramidal supports
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are developed for this, as they provide a clamp condition for the beam
and open space under the beam of h = 720 mm height, which allows
suspending the truss vertically for avoiding bending loads. The pyra-
mids are manufactured from 32 mm thick aluminum plates screwed
together by 54 M10 screws per pyramid and to a foundation by 12
screws to ensure sufficient stiffness at the clamping. The beam is ex-
tended by 150 mm at each end to directly clamp the beam onto each
of the pyramid supports by six M8 screws, resulting in an overall beam
length of L̃B = 860 mm+2 ·150 mm= 1160 mm.

BEAM:01 :02 :03 ...

PCB model 356A15
DYTRAN model 5860B

TRUSS:01

:02

...

IH:2

IH:1

Shaker

Figure 7.12: Hardware realization of the benchmark structure, including
the sensor instrumentation for uniaxial phase and power measurements in

the longitudinal direction of the truss.

Two impedance heads from DYTRAN, model 5860B, are installed
at the positions IH:1 and IH:2; thus, between the beam and truss, and
truss and mass, respectively. 10-32 UNF screws connect the impedance
heads to the neighboring subsystems. As impedance heads are typ-
ically used to measure signals at the load point of a structure, they
specify a side of the sensor that should be mounted to the test struc-
ture and another for the shaker attachment. The impedance heads are
installed for the benchmark structure with the test-structure attach-
ment site oriented toward the global y axis as defined in Figure 7.2.
Furthermore, 19 triaxial accelerometers from PCB, model 356A15, are
mounted to identify mode shapes as indicated in Figure 7.12. An LMS
Qsources integral shaker is suspended below the mass. As this shaker
is self-aligning, it minimizes the out-of-plane excitation.
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The numerical model A more detailed three-dimensional linear
FE model is introduced, which is found based on preliminary mesh
convergence studies to prevent shear locking in the modeling of the
pyramids. The resulting discretization is found in Table 7.3 and visu-
alized in Figure 7.13. The FE program Simulia ABAQUS 2017 Hotfix 2
is used for the assembly and all evaluations of the benchmark model
in the following.

Pyramid support

BeamTruss

Mass

F

Impedance head

Clamp

Clamp

Accelerometers

Accelerometers

Impedance head

Figure 7.13: FE model of the benchmark structure.

Although the mesh is rather fine, the model implies several simpli-
fications: tie contacts model all screw connections. Discrete spring ele-
ments with a stiffness value of kT and kR for the translational and rota-
tional DOFs, respectively, are introduced to represent the impedance
heads as well as point masses. The chosen values for the DYTRAN
impedance heads are listed in Table 7.3. Kinematic couplings tie the
spring reference points to each subsystem interface connected to the
impedance heads.

The system is loaded in the global y -direction by a distributed
load on the lower mass surface to avoid singularities. The net load am-
plitude equals the frequency response of the excitation force, which is
obtained from the experiment below. This setting allows comparing
the resulting frequency responses of the power and other energetic
quantities from simulation and experiment. Anyhow, neither is there
a perfect uniaxial excitation in the hardware realization nor a perfect
response along the y -axis due to manufacturing tolerances or inexact
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Part Modeling Material/

properties

Beam 39 925 tetrahedron/brick elements Aluminum

Truss 4288 tetrahedron/brick elements Aluminum

Mass 5600 tetrahedron/brick elements Steel

Pyramid 19 144 quadrilateral shell elements Aluminum

Impedance head Spring element kT = 1.1 ·106 N mm−1

kR = 1.0 ·107 N mm−1

Concentrated mass m = 3.7 ·10−5 t

Accelerometer Concentrated mass m = 1.2 ·10−5 t

Table 7.3: Modeling of the different FE parts for the benchmark structure.
All elements have linear element ansatz functions.

sensor positioning. An additional 1% of the net uniaxial excitation in
y -direction is added to the remaining system coordinate directions to
account for the effect of such geometrical imperfections qualitatively
but not quantitatively.

The chosen material parameters are listed in Table 7.4. A uniform
structural damping value of η= 0.0025 is introduced for the elements
of the entire structure. The assumption of structural damping is a
common engineering approach for metal parts and is validated below.

Material E ν ρ η

Aluminum 7.05 ·104 N mm−2 0.3 2.65 ·10−9 t mm−3 0.0025

Steel 2.1 ·105 N mm−2 0.3 7.86 ·10−9 t mm−3 0.0025

Table 7.4: Material properties of the FE model for the benchmark
structure. ν is the Poisson value.

Correlation The simulation model is validated against the actual
hardware representation through modal analysis. An eigenvalue anal-
ysis of the undamped numerical model is performed, and an experi-
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mental modal analysis with a hammer excitation of the upper beam.
Fourteen numerical and eleven experimental resonances are identi-
fied up to a frequency of f = 800 Hz. The numerical mode shapes are
provided in Figure 7.14. The natural frequencies, mode shapes, and
damping modeling are correlated for the experimental and numerical
analysis in the following.

(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4 (e) Mode 5

(f) Mode 6 (g) Mode 7 (h) Mode 8 (i) Mode 9 (j) Mode 10

(k) Mode 11 (l) Mode 12 (m) Mode 13 (n) Mode 14

Figure 7.14: Normal mode shapes for the FE model’s resonances up to
f = 800 Hz.

Usually, normal modes are obtained from the eigenvalue prob-
lem of the undamped simulation model. However, the experimental
modal analysis provides damped mode shapes; they contain relative
phase information for the vibration of the single spatial points and are
generally complex valued. A common approach is to transform the
measured complex mode shapes to corresponding undamped normal
modes to enable direct comparability to the simulation model; refer
to Alvin et al. [8]. Such transformation omits the mode shape’s phase
information, thus dropping information. Pappa et al. [192] proposed
the modal phase collinearity (MPC), which can be written as (Alvin
et al. [8])

MPC =

�

ℑ(Υ j )T ℑ(Υ j )−ℜ(Υ j )Tℜ(Υ j )
�2
+4

�

ℜ(Υ j )T ℑ(Υ j )
�2

�

ℑ(Υ j )T ℑ(Υ j ) +ℜ(Υ j )Tℜ(Υ j )
�2 (7.15)
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to evaluate the amount of phase information, thus complexity, before
the transformation. Υ j is a damped mode shape obtained from an
experimental modal analysis. If the phase is correlated, all points
vibrate within the same phase for a mode shape, and the MPC is equal
to one; for an uncorrelated phase, the MPC equals zero. For a mode
shape with a fully correlated phase, the transformation does not omit
information on the mode itself. Consequently, Alvin et al. [8] state
that a corresponding unambiguous normal mode Υ̃ j can be found for
a Υ j with MPC > 0.9.
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Figure 7.15: (a) Complexity of the experimentally determined mode
shapes evaluated by means of the MPC; (b) MAC evaluation between the

simulation model and experiment.

The MPC is evaluated for the experimental modal analysis of
the benchmark structure in Figure 7.15(a). All mode shapes have an
MPC > 0.95 apart from modes 4 and 11; therefore, they are almost
correlated in phase and are transformed into approximate real-valued
mode shapes. In the next step, these normal modes are compared to
the ones of the undamped simulation model using the modal assur-
ance criterion (MAC, Allemang [5])

MAC =
|ΦH

i Υ̃ j |2

ΦH
i Φi Υ̃

H
j Υ̃ j

, (7.16)

where Φi is a mode shape obtained from simulation. The resulting
MAC matrix is shown in Figure 7.15(b). The latter indicates a good
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correlation between the experimental and numerical mode shapes
in the lower-frequent modes in particular. Although the MAC value
decreases for mode shapes with increasing resonant frequency due
to a more significant influence of geometrical imperfections, mode
14 still has a MAC value of 0.86. The MAC of mode 13 is an exception
as it indicates a poorer correlation with a MAC = 0.65. Nevertheless,
one can explain this by a lack of observability caused by the experi-
mental setup rather than by an actual poor correlation. The sensor
instrumentation of the beam is on its longitudinal axis; thus, it is un-
able to capture all beam rotations around this axis as indicated by the
corresponding mode shape of the simulation model (see Figure 7.14).

Furthermore, the frequency values of the experimental and nu-
merical resonances mapped through the MAC analysis are compared
in Table 7.5. The latter shows that the frequency values differ only by
a maximum of 6.7%.

No. fr ξ

EMA (Hz) FEM (Hz) Error (%) EMA (%) FEM (%)

1 8.5 0.125

2 9.6 0.125

3 33.6 35.5 -5.4 0.18 0.125

4 111.7 0.125

5 136.2 141.8 -3.9 0.54 0.125

6 143.2 147.7 -3.0 0.20 0.125

7 201.8 205.3 -1.7 0.04 0.125

8 281.0 284.6 -1.3 0.15 0.125

9 319.0 339.1 -5.9 1.1 0.125

10 378.0 405.4 -6.8 0.93 0.125

11 393.0 413.2 -4.9 0.35 0.125

12 606.6 607.3 -0.1 0.1 0.125

13 669.3 688.4 -2.7 0.42 0.125

14 730.0 741.7 -1.6 0.1 0.125

Table 7.5: Natural frequencies fr and modal damping values ξ of the
benchmark structure for both the experimental and numerical model.
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The correct damping representation in the numerical model is
essential for a meaningful power evaluation and can be evaluated
qualitatively and quantitatively for the FE model by the modal cor-
relation. Qualitatively, one can state that the constant damping dis-
tribution over the entire spatial simulation model domain is admis-
sible based on the high MPC values of the mode shapes from the
experiment. In the case of highly localized damping, the phase of
the mode shape would be uncorrelated. For a quantitative assess-
ment, the frequency dependency of the damping is evaluated based
on the modal damping ratios. Because the overall FE model includes
a frequency-independent structural damping factor, the latter can be
directly transformed into equivalent modal damping ratios using

ξ=
η

2
·100%, (7.17)

which results in a constant modal damping ratio of ξ= 0.125 for the
simulation model. Table 7.5 shows that, on average, the experimen-
tally determined values coincide well with this value for the mode
shapes 3, 8, and 14. These mode shapes are similar to the one of Ta-
ble 7.3 and include a vibration of the truss almost uniaxially along its
longitudinal axis; The corresponding resonant frequencies are called
longitudinal resonances in the following. As these mode shapes are
mainly excited in the following experiments, the damping modeling
of the simulation model is validated for this experimental setup.

Results

The experimental results for the power quantities and relative phases
are analyzed at the impedance heads based on the validated bench-
mark structure. In the following, the mean value µ from 12 measure-
ment runs is calculated, and the standard deviation σ is evaluated
while a normal probability distribution of all measured quantities is
assumed.

The experimental results at IH:1 and IH:2 are analyzed for post-
processing without phase correction in the first step. Figure 7.16 com-
pares the relative phase at IH:1 for the experimental results against
the numerical ones and shows that the relative phase diverges the
more the frequency increases, resulting in a maximum difference of
almost 3◦. Due to that mismatch, the experimentally determined rel-
ative phase is partly in the wrong quadrant of the imaginary plane
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Figure 7.16: Relative phases between input and output,∆ϕUY , at IH:1,
evaluated statistically for the experiment and compared with the

simulation; (a) detail for a range between∆ϕUY =−181◦ and
∆ϕUY =−175◦; (b) between∆ϕUY =−5◦ and∆ϕUY = 6◦.

(see Figure 7.16(b) and compare Equation (2.53)). The corresponding
power quantities in Figure 7.17 wrongly indicate a non-passive system
behavior as a result, except in frequency ranges close to resonances.
This result visualizes the challenge of correctly determining power
quantities for non-resonant frequencies and lightly damped systems.

The phase correction of Equation (7.9) provides a remedy. As a
result, the relative phases differ from the ones of the simulation by
a maximum value of 0.2◦ (see Figure 7.16). This value is equal to the
span of the scatter band, which is obtained from the phase correction
of the impedance heads; refer to Section 7.2.3. The corrected phases
enable experimentally determined power quantities that match the
ones of the simulation qualitatively and quantitatively, as shown in
Figure 7.18. On a qualitative scale, the mean power is mainly positive
and indicates a passive system for most frequencies when the phase
correction is applied. This matches the results of the FE model and
is discussed in more detail below. Furthermore, the experimentally
determined power quantities reasonably match the ones of the simu-
lation also qualitatively with a maximum mismatch of the mean by
5 · 10−7 W; apart from the lowest resonance frequency. The latter is
due to the experimental design, in which the auto-power spectrum
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Figure 7.17: Mean power results at the impedance heads from
simulation and measurement; the latter has no phase correction for the

measurement chain ((a) IH:1 and (b) IH:2).

of the experimental shaker excitation is used for the FE calculations.
At the lowest resonant frequency of the experimental setup, the force
level drops significantly in a very narrow frequency band due to the
light damping of the corresponding mode. As the numerical and ex-
perimental mode differs by two hertz (see Table 7.5), a significantly
higher force is applied to the simulation in the first resonance than in
the experimental setup.

It is evident from Figure 7.18 that there are frequency ranges in
which negative power values are still obtained at IH:1 for the experi-
mental phase-corrected results, but also the simulation model. For
the simulation model, this is the case around the resonances at fr,9 =
339.1Hz and fr,10 = 405.4Hz, which are linked to the experimental
resonances at fr,9 = 319.0Hz and fr,10 = 378.0Hz by the MAC (see
Table 7.5). The corresponding frequency range is provided more in
detail in Figure 7.19, which illustrates the lack of observability using
the impedance heads: Geometrical imperfections of the benchmark
and inexact excitation result in an energy flow not only via the mea-
sured translational DOF at IH:1, but also via the remaining DOFs, the
rotational ones in particular. The power of the remaining DOFs has a
larger magnitude than the one of the negative power in the transla-
tional y -direction P y in the vicinity of the two resonance frequencies.
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Figure 7.18: Mean power results at the impedance heads from
simulation and measurement; the latter has a phase correction for the

measurement chain ((a) IH:1 and (b) IH:2).

Thus, the overall power is positive, and passive system behavior is
obtained, although P y is negative. In summary, the negative power
values are not an issue of insufficient phase correction in these fre-
quency ranges but are an artifact of the experimental setup causing a
lack of observability. Note that, in general, moment-loading due to
imperfections can affect the accuracy of the impedance head force
sensor. The results from impedance heads can be erratic for setups
not vibrating in the uniaxial direction, potentially providing another
reason for apparent non-passive system behavior.

For the lightly damped benchmark, accurate energy estimates can
be obtained from measurement in addition. This is demonstrated for
the potential energy using the approximation of Equation (7.4). The
potential energy is insensitive to the phase error (Figure 7.20), as dis-
cussed in Section 7.1.2. The values coincide well with those obtained
from the simulation. In combination with the physically meaningful
power quantities measured, it is possible to estimate structural damp-
ing, which is demonstrated in Ullmann et al. [256] for the benchmark
structure.

212



7.2 The Concept of Phase Correction for Reference Measurements

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

250 300 350 400 450

Min/max
±σ

Mean
Sim. P̄y

Sim.
∑

P̄i

Figure 7.19: Mean power results at IH:1 for the frequency range of
resonances that load the impedance head with a moment. For the

simulation, power is evaluated for the translational DOF in y -direction
(sim. P y ) and for the sum of all DOFs (sim.

∑

Pi ).

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

0 100 200 300 400 500 600 700 800

Po
te

n
ti

al
en

er
gy
(J
)

Frequency (Hz)

Sim.
Uncorrected mean

Min/max
±σ

Mean

Figure 7.20: Potential energy obtained for the FE simulation by means of
approximation of Equation (7.4) at IH:1. The approximation is also used to

calculate the energy in the experimental setup.
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7.3 Consequences for the Experimental Identification
of Subsystems

The results for phase-corrected SISO reference measurements of en-
ergetic quantities can be transferred to the measurement-based iden-
tification of MIMO subsystems. The input-to-output behavior of the
latter is required for coupling with a network and, thus, must be iden-
tified. The following briefly introduces the basic concepts of corre-
sponding methods before the phase correction is discussed. Refer to
Tangirala [242] for a recent and more complete overview of experi-
mental subsystem identification.

For a measurement-based characterization of subsystems, one
approach is to model the subsystem by the directly measured input-to-
output behavior sampled at distinct frequency points. No underlying
subsystem realization is determined, respectively inner representa-
tion. This is a classic approach for experimental substructuring in
structural dynamics, with many applications in the automotive in-
dustry; see De Klerk [65], for example. The direct determination of
the input-to-output behavior is also called non-parametric system
identification (Tangirala [242]). Different techniques are available for
a non-parametric characterization. In the most basic approach, the
input-to-output behavior of subsystem k is determined directly from
the division of the Fourier spectra of the measured inputs and outputs
according to Equation (7.18)

Hk , j l =
Yj l

Ul
. (7.18)

In theory, this approach provides an accurate system description
for a harmonic excitation. In practice, averaging, respectively smooth-
ing techniques are required in combination with suitable excitation
signals to account for measurement noise and the required short mea-
surement times, refer to Phillips et al. [201] for some methods. In the
presence of noise, the input-to-output behavior is commonly not esti-
mated from the averaged Fourier transforms of the input and output
signals but from averaged power spectra, as defined in Equation (2.30).
Power spectra allow to filter out uncorrelated noise, which leads to
zero cycle-averaged power, refer to Section 2.3.1. Depending on the
noise modeling, different averaged cross- and auto-power spectra
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can be used, leading to different estimators for the input-to-output
behavior,

H1 =
S YU

S UU

H2 =
S YY

S YU

,

for example, where S UU and S YY are the averaged auto-power of the
input, respectively output and S YU is the averaged cross-power of
the input and output. Different averaging techniques may be applied
to the power spectra combined with different excitation signals. For
example, the Welch estimator can perform averaging in the frequency
domain. A time-domain averaging of power spectra is obtained by the
method of Blackman-Tuckey. Refer to Brandt [44] for an explanation
of these different averaging strategies. Alternative averaging methods
are also discussed by Phillips et al. [201].

Conceptually simple, the entries of the input-to-output matrix are
not based on one underlying model. Correspondingly, every matrix
entry has individual errors, leading to inconsistencies between the
different inputs and outputs. As one result, spurious peaks can be
observed in the coupled response, as discussed by Rixen [208]. In-
consistencies are introduced again by both systematic and random
errors. The propagation of random errors to the coupled response
was investigated by Voormeeren et al. [267] using a first-order approx-
imation and Meggitt [173]. In addition, the nature of non-parametric
approaches without an underlying model does not guarantee that the
measured input-to-output behavior is consistent with basic model as-
sumptions of mechanical systems. Instead, additional postprocessing
is required to ensure reciprocity or passivity, like averaging transfer
functions and brute-force shifting of the phases to the right quadrant
of the complex plane.

As an alternative to the above methods, parametric approaches
are available for system identification. In such methods, usually, a first-
order model is (iteratively) fitted on the observation of the subsystem
outputs and, optionally, inputs. Approaches work either on time or fre-
quency domain data. A fitted inner system representation is available
as a result, from which the input-to-output behavior is calculated.
Inconsistencies in the input-to-output behavior thus are avoided.
Physical properties of the mechanical system, such as reciprocity, can
be imposed as a constraint during the identification. In structural me-
chanics, parametric system identification is already well-established
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for experimental modal analysis, see Alvin et al. [8]. Attractive from a
mathematical point of view, corresponding methods are less common
in subsystem coupling applications of mechanical networks. For some
applications, refer to Sjövall et al. [231] in the context of airplanes or
to Bylin et al. [50], who characterize an automotive body in white.
Recently, Kammermeier et al. [134] performed a comparison between
parametric and non-parametric approaches for structural dynamics.

It was observed for validation measurements in Section 7.2.4 that
systematic phase errors can result in energetic quantities indicating
non-passive systems. This issue is also present for system identifica-
tion of lightly damped subsystems, which is demonstrated numeri-
cally in the following.

Example 7.2 (Three Subsystem Example)

Consider the three-subsystem example of Section 3.2, as visualized
in Figure 3.1 on page 55 and with the values of Table 7.2. The 2× 2
transfer function of subsystem S3 is assumed to be identified by a
non-parametric experimental method. Further, it is assumed that two
accelerometers, one at each output, are used, and one force sensor is
relocated for the two necessary measurements.

Subsystem k m η

S1 5000 8 ·10−4 0.01

S2 5000 7 ·10−4 0.01

S3 5000 2 ·10−3 0.01

Table 7.6: Parameter values for the three degree-of-freedom example.

The coupled system is evaluated twice, once for the analytic solu-
tion of S3 and once for a phase-distorted measured transfer function.
To obtain the latter, a constant and frequency-independent time de-
lay between acceleration and force signal of∆t = 10−5 s is added to
the analytic solution for each combination of acceleration and force
sensor. This is in the order of the phase errors introduced in the above
validation measurements and results in a systematic phase shift of
∆ϕFA= 3.6 ◦ at f = 1000 Hz.
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Figure 7.21: Absolute value of the displacement solution at the load
point of S2 in the three degree-of-freedom example. The continuous line

corresponds to the reference solution, the starred line to the phase
distorted one.

While the systematic phase distortion in the input-to-output be-
havior of S3 visually has only a minor effect on the displacement
response of the example (see Figure 7.21), this is not the case for the
network input power in Figure 7.22. The phase distortion leads to a
non-passive network in the non-resonant region between the two
lower resonances. Negative results are obtained for the input power
in this frequency range.

The effects of a systematic phase shift are observed correspond-
ingly for analyzing the energy balance of subsystemS3 (see Figure 7.23).
Between the two lower resonances, the power between subsystem S2

and S3 and the dissipated power are negative. S3 apparently generates
energy, and a net flow is obtained from subsystem S3 to S2.

■

Passivity is no longer provided for the example on both subsystem
and network levels due to phase distortion. Although it is an essential
property of mechanical systems, passivity preservation is rarely dis-
cussed in the context of measurement-based subsystem identification.
Some approaches are available for parametric identification based on
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Figure 7.22: The input power at the load point of S2 in the three
degree-of-freedom example. The continuous line corresponds to the

reference solution, the starred line to the phase distorted one.

first-order systems. These methods modify the input and output map
B I , respectively C I , to provide a passive subsystem input-to-output
behavior. Liljerehn et al. [152] project the system on a modal basis
and force each mode to be passive in the transfer function by calcu-
lating a minimal phase correction per mode to ensure that. McKelvey
et al. [171] use an optimization procedure for B I and C I resulting in
passive transfer functions. Such approaches ensure a passive system
description but do not necessarily recover the true phase angles and,
thus, the exact subsystem damping modeling.

Conceptually different, the phase errors can already be reduced in
the input signals before system identification. The concept of phase
correction, which was introduced in Section 7.2, therefore, can be
extended to subsystem identification with sensors for setups in which
the subsystem inputs and outputs are not obtained spatially collo-
cated. Each non-collocated force and acceleration sensor combina-
tion must be measured to identify the relative phase error between
the signals. The sensor test setup of Figure 7.8 can be modified for
this purpose as illustrated in Figure 7.24.
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Figure 7.23: The power quantities of the energy equilibrium at subsystem
S3 in the three degree-of-freedom example. P 31 is the power in the

interface between S1 and S3, P 32 the one in the interface between S2 and
S3, P diss is the power dissipated in S3. The continuous lines correspond to

the reference solution, the starred lines to the phase distorted one.

Two-channel FFT

Shaker

Calibration mass mL

Force sensor

Acceleration sensor

Figure 7.24: Schematic of an adapted top-mass setup for the relative
phase measurements of single sensor combinations.

The relative phases are measured according to the assumptions
of Section 7.2.3, and the complex correction factors are calculated
using Equation (7.12). Each entry in the input-to-output behavior
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is then multiplied by the complex-valued correction factor for the
corresponding combination of acceleration and force signal. System-
atic phase errors resulting from the measurement hardware can be
reduced for subsystem identification using such a setup.

Note that model assumptions used in subsystem identification
methods may introduce additional phase shifts. An example is the
virtual point transformation, which utilizes the concept of local rigidi-
ties around interfaces. Haeussler et al. [111] investigate the resulting
phase errors from that model assumption and possible remedies.

7.4 Chapter Summary

The measurement-based evaluation of energetic quantities was ex-
amined for validation measurements and subsystem identification.
The measurement of discrete power quantities was discussed theoret-
ically, and the possibility of estimating energies from the measured
input-to-output behavior, which is more erratic, the higher the system
damping is.

Practically, the unidirectional power measurement at driving points
was discussed for network validation. A benchmark structure was
introduced for this discussion, with a correlated numerical represen-
tation to analyze the experimental methods. All the required data to
reproduce the benchmark are available online. Based on the bench-
mark structure, error sources for measuring system input power at
driving points were identified, which are relevant for practical setups.
Such errors can not only distort the magnitude of power but can re-
sult in a wrong sign of input power and, therefore, indicate spurious
non-passive networks. It was shown that apparent non-passivity of
networks could result from wrong model assumptions for calculating
the energy balance for uniaxial measurements at driving points. There
may be energy flow also over the remaining degrees of freedom at
the driving point, caused by imperfections but not observed by the
unidirectional sensor setup. Significant and systematic phase errors
introduced by each element of the measurement chain are another
source of spurious non-passivity.

To compensate for these systematic phase errors, the influence
of the time-to-frequency transformation was discussed. Complex-
valued phase corrections were introduced to reduce the systematic
phase errors that arise from the sensors and the DAQ interface. The
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phase errors are assumed to be test-specimen independent but solely
determined by the measurement chain. Corresponding test setups
could be thus introduced for identifying the phase errors of each mea-
surement chain component. When the phase correction was applied,
the power results were significantly improved for the benchmark struc-
ture’s driving point measurements.

Phase errors do not only distort driving point measurements for
network validation but also play a significant role in system identi-
fication. This role was discussed shortly in the context of energetic
network analysis theoretically. After general concepts for system iden-
tification were summarized, it was shown that systematic phase errors
potentially lead to spurious non-passive subsystems and, therefore,
networks. As a remedy, it was discussed how the concept of phase
correction could be extended to subsystem identification.
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APPLICATIONS OF ENERGETIC NETWORK

SYNTHESIS

The performative numerical framework, combined with measurement-
based validation methods, finally enables multi-query applications for
complex industrial models in the online phase, while vibrational en-
ergy flows can be evaluated. As initially discussed, this opens up new
possibilities for a robust end-to-end virtual vehicle development pro-
cess, employing uncertainty quantification, inverse methods, global
sensitivity analyses, and globalized synthesis. This chapter demon-
strates the latter for a low-frequency setup in which global deflection
shapes of the overall system dominate the response. Two numeri-
cal examples are introduced to show how the proposed approach
allows maximizing the solution space for vibration minimization in
frequency bands with arbitrarily complex constraints. The first ex-
ample of a 2D radiating system provides the first basis for discussing
the globalized synthesis of the mechanical network. The gains from
subsystem coupling in the online phase are presented as well as a val-
idation of the use of a power-based objective. The second component
of the numerical framework, parametric model order reduction, is
needed in the offline phase as another central aspect of the second
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8 Applications of Energetic Network Synthesis

example: an industrial model of a vehicle consisting of a car body in
white with an attached rear axle system, which can be finally synthe-
sized.

This chapter focuses on highlighting the general potentials of the
combination of subsystem coupling in the online phase and para-
metric model order reduction in the offline phase for an end-to-end
virtual development process for vibroacoustic design. The in-depth
and holistic discussion of all necessary concepts for a final application
of globalized optimization, the necessary feedback loop into a distinct
part design, for example, are out of scope for this chapter. The same
also holds for validating the models to distinct hardware realizations,
but the models are taken as they are.

8.1 Two-Dimensional Beam Assembly

8.1.1 The Model and Network Definition

A network of two-dimensional (2D) Euler-Bernoulli beams is first
discussed, as illustrated in Figure 8.1, and for geometry details in
Figure 8.2. It is conceptually simple but complex enough to discuss
basic effects originating from real industrial systems. The model is
derived from the example as published by Ullmann et al. [252] and
discussed in Sicklinger et al. [226], but has different parameter settings
and an additional beam replacing the initially used disc subsystem at
the bottom.

Six beams, discretized by Euler-Bernoulli beam elements, are cou-
pled via eight bushings. The bushings are modeled by springs in the
translational and rotational directions without cross-coupling terms.
The horizontal beam on top is coupled to an acoustic Helmholtz fluid.
In the first setting, assume a free field setting; thus, an acoustic halfs-
pace is modeled. Twenty-two outputs are provided for the evaluation
of sound pressure levels in the fluid, which are placed at two half circles
with radii ra = 1800 mm and ri = 800 mm as indicated in Figure 8.1.

All subsystem matrices were generated with the commercial FE
software Simulia ABAQUS according to Table 8.1. An external har-
monic load is applied at the center point of the bottom beam with
fx = 1+0.1i and fy = 1.

The coupling of the single subsystems is performed using the MRC
framework of Chapter 3 according to the network representation in
Figure 8.3. The beam subsystems should not contain variable de-
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r = 2000
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Figure 8.1: Sketch of the two-dimensional radiation example. The red
crosses highlight the 22 points, in which the sound pressure level is
evaluated. The circles in between the beams schematically indicate

bushings. All units are in millimeters.

sign parameters and are provided as transfer function representation,
calculated from the implicit ABAQUS subsystem models by Equa-
tion (2.11). The bushing subsystems with variable design parameters
should allow for a zero mass, thus being singular if one chooses an
implicit inner representation. To enable a systematic modular treat-
ment of these subsystems, the MRC framework provides flexibility by
choosing an explicit form with a partial input switching according to
Section 3.2.2, and three inputs are switched per bushing subsystem.
Each nodal interface of the subsystems has three DOFs. As a result,
24 constraint equations each of Dirichlet-Dirichlet and Neumann-
Neumann, Dirichlet-Neumann, and Neumann-Dirichlet type are re-
quired for assembly definition. This leads to an interface problem of
size nint = 96 before introducing a mixed input vector and nint = 72
afterward.
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Part Cross section parameters Discretization by elements

Fluid Thickness d = 1000 Finite domain: 32836 AC2D4

Sommerfeld radiation conditon:

394 ACIN2D2

Beam-top rect.: a = 1, b = 1000 100 B23

Beam-1 Box: a = 50, b = 20, t = 2 54 B23

Beam-2 Box: a = 50, b = 20, t = 2 54 B23

Beam-3 Box: a = 50, b = 20, t = 2 50 B23

Beam-4 Box: a = 50, b = 20, t = 2 52 B23

Beam-5 Rect.: a = 20, b = 60 22 B23

Each bushing 1 CONN3D2

(stiffness + structural damping)

Table 8.1: The parts of the two-dimensional beam example. The beams
have a rectangular cross section, respectively a box cross section with

thickness t . All units are in millimeters.

Beam-top

air

x

y

Beam-1

Beam-2

Beam-3
Beam-4

l1 = 400

l2 = 300

l4 = 350

l3 = 150

Figure 8.2: Detailed view on the positions of the four interface nodes of
the radiating beam.
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Beam-top + fluid
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Beam-5

Beam-2 Beam-3 Beam-4

BU-6 BU-8BU-7

BU-1 BU-4BU-3

Figure 8.3: Network representation of the two-dimensional radiation
example. Red colored subsystems are represented by a transfer function

form, green colored by an explicit form with switched inputs and outputs.

8.1.2 Approach for Virtual Synthesis in Industrial
Vibroacoustics

Optimization of Coupled Problems The optimization problem,
Equation (A.1), is defined based on the subsystem coupling approach
of MRC in Chapter 3. From a mathematical point of view, the optimiza-
tion problem of sound transmission minimization can be formulated
for the coupled problem as

min
pi∈R

q
�

p ,Si

�

Ui (p ), p
�

, Ui (p ), i = 1...ns

�

subject to

(

ci

�

p ,Si

�

Ui (p ), p
�

, Ui (p ), i = 1...ns

�

≤ 0

ce

�
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�
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�
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�
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�
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�

is an objective function de-
scribing the sound transmission problem and is a function of the
design parameters p and the inputs and outputs of the ns subsys-
tems.

ci

�
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8 Applications of Energetic Network Synthesis

equality constraints. These constraints can define lower and upper
parameter bounds but may also include non-linear equations, like
a minimum net stiffness of axle systems in vehicle acoustics or the
maximum amount of added masses. Modular and thus efficient gra-
dients of the objective and constraint equations can be provided to
optimization algorithms by the approach of Section 4.1.2.

A significant reduction of computational complexity can be ob-
tained by subsystem coupling if solely few and highly localized param-
eters are varied, like bushing parameters for the 2D example. Splitting
the complex coupled problem in a network of subsystems allows for
localized and modular re-calculations of only these small-scale bush-
ing subsystems. The remaining subsystems need to be updated solely
in the first optimization iteration.

Power-Based Objective for Optimization The sound pressure levels
(SPLs) are the final relevant objective for acoustic design. However,
single point-wise sound pressure levels may be highly sensitive to
uncertainties in the considered network, particularly the radiating
subsystem. Increased robustness is possible if more integral values are
considered. Evaluating sound pressure levels at a very high number
of points is one option, as it is possible for the 2D example.

An energetic approach is another remedy, which is followed in
many studies on optimization, mainly for free field problems; refer to
the references in Marburg [166] for examples. These studies use the
overall radiated sound energy, mean power, respectively, as the objec-
tive; thus, the objective provides an integral quantity to determine the
radiation into a fluid. No local measure is obtained, like SPLs at single
points, but a global one, which accounts for the overall radiation.

Anyhow, evaluating the radiated sound power is impossible for
general black-box subsystems, like experimentally determined ones.
The latter do not expose their internal states, which need to resolve
the pressure and velocities spatially over the whole radiating surface
to calculate the radiated sound power. The potential inclusion of
such a black-box subsystem as the radiator requires an alternative
energetic approach: mean power is not evaluated at the radiating
surface but spatially integrated at the subsystem’s coupling interface.
All required quantities, radiator subsystem inputs and outputs are
available at the latter, and power can be calculated according to Equa-
tion (2.37) on page 32. The corresponding input power is provided
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for the two-dimensional example in Figure 8.4. Thus, one has a de
facto separation of the mechanical network into a passive side, the
radiating receiver, and an active side, the source, which incorporates
all remaining subsystems. Despite the attractiveness of power as a
proxy inside the structure, it is not without drawbacks, like any other
quantity, which is not directly evaluated at the radiator but at a larger
distance. This is reflected critically in Section 8.1.3.

In line with the A-weighting of sound pressure levels, also power
quantities are A-weighted for better correlation. An A-weighting is
introduced by multiplying the non-square values by the frequency-
dependent transfer function

Ha =
7.39705 ·109ω4

(iω+129.4)2(iω+676.7)(iω+4636)(iω+76655)2
. (8.2)

To provide scalar optimization objectives q , the frequency-dependent
power is calculated from the radiator subsystem input and output
quantities and integrated numerically over the corresponding fre-
quency band in which it should be minimized

qP =

∫

fB

P r H 2
a d f ≈Z

�n
P r,a,∆ f

�

(8.3)

with the trapezoidal rule Z
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nF is the number of discrete frequency points. According to Equa-
tion (2.38) the A-weighted mean power at discrete frequency samples
is given by

n
P r,a =−π · n f ℑ

�

n U H
r

n Yr

�

n H 2
a .

Assume that subsystem j = r is the radiator subsystem. As in the
preceding part of the thesis, the inputs of the radiator are considered to
be forces, the outputs displacements. For other subsystem definitions,
Equation (8.3) can be adapted accordingly.
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Following Equation (4.31)on page 89, the gradient for Equation (8.3)
can be provided to gradient-based optimization approaches as

dqP

dpj
=

∫

fB

dP r,a

dpj
d f =π

∫

fB

f ℜ

�

d�P
dp

�

H 2
a d f

=πZ

 

n f ℜ

�n
d�P
dp

�

n H 2
a ,∆ f

! (8.4)

with the substitute quantity �P according to Section 4.2. For the 2D ex-
ample, employing the adjoint approach to gradient calculation is effi-
cient, as there is exactly one objective but multiple design parameters.
Thus, the samples

n d�P/dp can be obtained in the adjoint framework
according to Equation (4.34) to Equation (4.37) on page 89.

Setup and Design Parameter Selection

To benchmark the band-limited reduction of power in the interface be-
tween the active and passive side, three frequency ranges are selected
for the 2D example based on the base state response in Figure 8.4:
fB1 ∈ [75 Hz, 140 Hz], fB2 ∈ [340 Hz, 434 Hz], and fB3 ∈ [650 Hz, 770 Hz].
In the base configuration, all spring stiffness values are chosen as
ki ,0 = 1000 Nmm−1, and ki ,0 = 1000 Nmm rad−1, respectively. The aim
is to reduce the global radiation by using the power objective, which is
benchmarked against a direct optimization of the spatially averaged
sound pressure level, evaluated over all 22 sound pressure level out-
puts of this example. The corresponding averaged sound pressure is
visualized in Figure 8.5.

A classic parametric optimization is performed for the 2D exam-
ple: The stiffness parameters of the three bushing subsystems at input
nodes 1, 3, and 4 of the radiator (BU-1, BU-3, and BU-4) are chosen
as design parameters. The same stiffness values are assumed for the
two translational DOFs of each bushing, while the rotational stiffness
is fixed to its nominal value. This setup results in a three-dimensional
parameter space, in which the stiffness value of each bushing is varied
within ki ∈

�

50 Nmm−1, 10000 Nmm−1
�

. As only design parameters of
bushing subsystems are considered, the single iterations during opti-
mization in the online phase are computationally cheap, as discussed
above. Only three subsystems of size n = 6 need to be updated when
MRC is used, along with the solution of the interface problem of size
nint = 72.
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Figure 8.4: A-weighted structure-borne sound power for the initial
parameter configuration with ki ,0 = 1000 Nmm−1, evaluated at the four

input nodes of the two-dimensional example’s radiating beam.
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Figure 8.5: A-weighted sound pressure level for the initial parameter
configuration with ki ,0 = 1000 Nmm−1, averaged over the 22 observation

points of the two-dimensional example.

Algorithmic Approach to Globalized Optimization Vibroacoustic
design by numerical optimizations has already been discussed for
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several decades; see Marburg [166] for an early overview. However, the
application is still challenging for complex and large-scale industrial
models: the objective functions are usually highly non-convex, and
thus, a local gradient-based optimization does not result in the global
optimum with a high probability. Refer to Hambric [114] for a vibroa-
coustic example. As a result, such an approach does not necessarily
provide a high impact on the sound pressure levels.

This issue can be illustrated for the summed-up power in fre-
quency range fB2 as a function of two bushing parameters of the 2D
example in Figure 8.6. It is evident that if one optimizes for these two
parameters, one arrives at the global minimum at kBU2 = 7379 Nmm−1

and kBU3 = 50 Nmm−1 only if the initial point is in a limited parameter
range around these values. For other starting points, one obtains one
of the three other local minima, which have an objective function
value larger by a factor of four or more, resulting in a less effective
optimization.
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Figure 8.6: The power-based objective in frequency band fB1 in
dependence of two design parameters kBU2 and kBU3. The non-convex

shape of the objective function highlights the need for globalized
optimization.

Heuristic approaches are available to cope with such non-convex
objective functions, as briefly discussed in Appendix A.2. These meth-
ods seek to find the global optimum in a heuristic way, thus without
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a guarantee but computationally feasible. A multi-start scheme is
utilized in the following, in which multiple local gradient-based opti-
mizations are performed for starting points determined in a global
phase. The latter incorporates a random search procedure. Network
evaluations for an extensive number of parameter samples are neces-
sary for such algorithms. For the problems which are discussed in this
chapter, up to ncalc ≈ 106 evaluations of the objective in Equation (8.3)
are necessary, while each objective evaluation incorporates several
system solutions at distinct frequency points. The computation of
gradients counts on top. This vast number of required system solu-
tions and gradient calculations highlights the need for the efficient
numerical framework introduced in the thesis.

In the following, the globalized multi-start optimization method of
Ugray et al. [249] is used in the implementation provided by MATLAB
R2018b and described in Appendix A.2. This method uses a scatter
search procedure in the global phase, which is formulated for one
initial parameter vector p0. Based on the results of the scatter search
and filters, single gradient-based optimizations are performed again
using the SQP algorithm as described in Appendix A.1. As an initial
parameter vector p0 must be provided to the method of Ugray et al.
[249], the result from the globalized optimization is dependent on p0.
Several runs of globalized optimization are performed for this example
due to this reason, and the results are averaged. In each run, another
random parameter vector is chosen as p0 to enable a more robust
discussion focused on power-based synthesis in vibroacoustics.

Results Ten runs of globalized optimization are performed for each
considered frequency band and averaged results are presented for
each in Figure 8.7. The scattering of results is provided by visualizing
the standard deviation as metainformation. In addition, results from
ten local optimizations per frequency band are provided, for which
the starting points were selected as the first ten points of the 3D Sobol
sequence.
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Figure 8.7: Globalized optimization results in the grayed frequency
bands employing the power objective. Power quantities at the radiator
inputs and SPLs are provided for the non-optimized base state and the

optimized one. Averaged values, minima, and maxima are provided for the
latter, which result from ten independent runs of globalized optimization.

In addition, results from ten local optimizations are visualized.
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A relatively high number of objective function evaluations is al-
ready required for this conceptually simple example with low dimen-
sional design parameter space. On average, 2700 objective evaluations
are needed, each incorporating the solution at 60 frequency points
in 25 local optimizations per power-based optimization globalized
optimization in frequency band three. The power-based globalized
optimization significantly reduces both transmitted mean power and
sound pressure levels over the whole acoustic domain.

The optimal values for the stiffness parameters of the rubber bear-
ings are found for frequency band two as kBU1 = 1270, kBU2 = 50,
kBU3 = 3715, for frequency band three as kBU1 = 2557, kBU2 = 2359,
kBU3 = 360. Thus, compared to the nominal setting with kBU = 1000,
two bushings are hardened for each frequency band, while one is soft-
ened. All ten globalized optimizations for the two frequency bands
yield that stiffness values.

As visualized in Figure 8.7(b) and Figure 8.7(c), the results from
the globalized approach outperform seven out of ten single local op-
timizations; for three local optimizations, the results are the same.
The local optimizations result in - partly significantly - higher mean
power and, therefore, sound pressure levels, which scatter depending
on the selected initial points. This highlights the need for globalized
optimization in structural dynamics. Globalized optimization even
provides lower sound pressure levels than all ten local optimizations
for frequency band fB1, see Figure 8.7(a). Anyhow, the heuristic nature
of the globalized approach of Ugray et al. [249] becomes evident in
Figure 8.7(a): it is also dependent on a starting point and does not
necessarily provide the true global optimum. Significant different stiff-
ness values are obtained according to Table 8.2 and the optimized
power and sound pressure levels from the single runs of globalized
optimization scatter as visualized in Figure 8.7(a).

It is worth noting that the results permit overcoming simplifica-
tions like the design paradigm of making bushings as soft as possible.
The latter is commonplace in vehicle acoustics but originates from
local wave considerations in high-frequency regions. In such a setting,
a very soft bushing and a stiff connection point of the car body lead
to an increased impedance mismatch, thus increased reflection and
less sound transmission to the car body. Clearly, these considerations
can not be valid for low-frequency ranges in general, but soft bush-
ings may amplify the overall system’s global and strongly coupled
deflection shape. Consequently, choosing solely lower bound values
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No. of occurrence Optimized parameters

kBU1 kBU2 kBU3

3 308 50 142

2 9484 137 129

1 948 50 139

1 390 50 50

1 440 50 50

1 130 50 50

1 340 50 141

Table 8.2: Parameter values for globalized optimization in frequency
band fB1, which is repeated ten times.

for the bushings, the transmitted power and sound pressure levels are
increased in each frequency band (see Figure 8.7).

8.1.3 Performance of Power as Objective Function

In the following, the performance of power should be discussed in
more detail. Emphasis is on evaluating the correlation with sound
pressure levels compared to other objectives. One has to leave the
black-box approach to subsystems for this, as the internal states of
the radiator need to be evaluated for a full assessment of radiation.
Later in Section 8.2.4, an alternative approach to an analysis of the
performance of power is performed on interface data only.

Free Field Problems

The use of mean power in the interface between the active and pas-
sive side of the network was motivated by the radiated sound power
objective in many studies on optimization. The latter directly corre-
lates with the sound radiation and thus with the spatially mean sound
pressure levels for free field problems. When mean power is evalu-
ated at the interface of the radiating subsystem, in turn, it provides
an optimal proxy if the following proportionality holds

P r = P r,diss+P r,rad
(a)
∝ P r,rad

(b)
∝ϱavg, (8.5)
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8.1 Two-Dimensional Beam Assembly

while ϱavg is the spatially averaged sound pressure inside the fluid,
and∝ indicates a direct proportionality. Proportionality (a) is only
provided if the dissipated power in the radiator is zero, P r,diss = 0, or
the radiation ratio

r r =
P r,rad

P r,diss

(8.6)

is constant for the parameter variations during optimization. The
latter implies that the operational deflection shape of the radiator
does not change, except its magnitude. This is not exactly the case in
any industrial system, which has a non-weakly coupling between the
active and passive side, the source, and the radiator, respectively.

Proportionality (b) is not obtained if acoustic short circuits occur
in the spatial vicinity of the radiator. At evaluation points very close
to the radiator, thus there can be non-zero sound pressure levels due
to near fields, although the net integral radiated energy is zero.

As a result, there is no proportionality as stated by Equation (8.5)
in general. A proportionality, however, is not required for a valuable
optimization objective, as long as the latter provides a correlation in
a weaker sense, that it allows for a robust qualitative assessment and
sgn

�

∂ P r/∂ p
�

= sgn (∂ ϱavg/∂ p) holds for most of the design parameter
space.

Potentially, power can be a robust indicator, as it provides a global
view of the overall vibration of the damped radiator, although eval-
uated locally. At least this holds for radiating structures, which do
not have zero or highly localized damping, which is dominant in the
net energy equilibrium. From a data point of view, power combines
primal and dual quantities and their phase correlation. There are no
mismatched units when summing up translational and rotational
degrees of freedom. Thus, all available information at the interface
between the active and the passive side is considered and condensed
in one quantity, and a maximum of information potentially provides
a more robust insight into the system dynamics. Indeed, heuristic
studies in the past indicated that structure-borne sound power inside
the radiating structure can show proportionality to SPLs for geomet-
rically simple structures, refer to Sicklinger et al. [226] and Singh et al.
[229]. The latter also validated this in hardware experiments.

A heuristic study is performed based on the 2D example in the
following to evaluate if a power objective provides such a correlation.

237



8 Applications of Energetic Network Synthesis

The above optimization showed that minimization of power results in
a significant decrease of mean sound pressure levels for this example
(see Figure 8.7(a) to Figure 8.7(c)). In the next step, the performance
of the power objective should be assessed by comparing the results of
globalized optimization to the ones with alternative local objectives
at the radiator subsystem interface. A reference optimization provides
a benchmark, using the average sound pressure level at all evaluation
points in the fluid directly as objective

qS =

∫

fB

H 2
a

np
∑

j=1

ϱ2
j d f =Z

�

n H 2
a

n U H
r

n H H
r,p−U

n Hr,p−U
n Ur ,∆ f

�

.

(8.7)

Hr,p−U is that part of the transfer function of subsystem r , which re-
lates the subsystem inputs to the sound pressure outputs, and np is
the number of evaluation points, which is np = 22 for the 2D exam-
ple. Gradients can be provided for real-valued design parameters pj ,
which do not belong to the radiating system as

dqS

dpj
=Z

 

ℜ

�

n U H
r

n H H
r,p−U

n Hr,p−U

n dUr

dpj

�

n H 2
a ,∆ f

!

. (8.8)

dUr/dpj is calculated in the modular, adjoint framework of MRC as

dUr

dpj
= ΨT

�

∂ I
∂ S

∂ S
∂ pj

+
∂ I
∂ pj

�

, (8.9)

while the adjoint is obtained from

J T Ψ =−
�

∂Ur

∂U

�T

with
dUr

dU j
=

(

I for j = r

0 else
. (8.10)

Again, ten runs of globalized optimization are performed with
random initial parameter points for each frequency band. The results
are provided in Figure 8.8 for the three different frequency ranges.
An optimization, which is directly based on the sound pressures in
Equation (8.7), does not exactly provide the same results (mean and
variance) as a power-based one since there is no one-by-one relation
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Figure 8.8: Optimization results utilizing the three different optimization
objectives power, velocities, and forces in the grayed frequency bands.
Power quantities at the interface of the radiating subsystem and mean
SPLs are provided for the non-optimized base state and the optimized

parameter values per objective function. Averaged values, minima, and
maxima are provided for the latter, which result from ten independent

runs of globalized optimization.

between power and SPLs. Anyhow, it can be stated that the results pro-
vide a comparable reduction of sound pressure level, as summarized
in Table 8.3.
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In addition, two other objectives in the interface between the
active and passive side are considered for comparison, which are
established in daily engineering work: Firstly, the sum of the squared
translational velocities at the four interface nodes of the radiator

qV =

∫

fB

np
∑

j=1

�

V 2
x +V 2

y

�

d f = 4π2Z
�

n f 2n H 2
a

n Y H
r,tr

n Yr,tr,∆ f
�

,

(8.11)

while Yk ,tr are the displacement outputs of the radiating subsystem r
corresponding to translational DOFs. Secondly the sum of the squared
translational forces in this cutting section

qF =

∫

fB

np
∑

j=1

�

F 2
x + F 2

y

�

d f =Z
�

n H 2
a

n U H
r,tr

n Ur,tr,∆ f
�

, (8.12)

with Ur,tr as the inputs of the radiating subsystem r , which correspond
to translational DOFs of the np = 4 interface points. Gradients can
be provided for Equation (8.11) and Equation (8.12) according to the
derivation for Equation (8.7) for real-valued design parameters pj . Ro-
tations or moments are ignored in Equation (8.11)and Equation (8.12),
as a summation of rotational and translational inputs or outputs is
hindered due to different units.

The results are visualized in Figure 8.8 and summarized in Ta-
ble 8.3, again averaged over ten globalized optimizations per frequency
band and objective. The results for using Equation (8.11) and Equa-
tion (8.12) are of averaging quality. The use of the force-based objec-
tive, Equation (8.12), only leads to a slight improvement in∆ fB2 and
∆ fB3. The velocity objective, Equation (8.11), performs even worse,
and the sound pressure levels are amplified but not reduced after
optimization in∆ fB3. Thus, none of the two alternative objectives can
provide a comparably robust reduction of sound pressure levels as
power does for the 2D example. Structure-borne sound power at the
interface of the radiator not only provides robust optimization results
for sound pressure, but one can also anticipate the results from the
optimizations based on forces and velocities on the sound pressure
levels, see Figure 8.8(a) to Figure 8.8(c).

The (out)performance of the power objective always needs to be
discussed for a specific system and design parameter setting, which
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8.1 Two-Dimensional Beam Assembly

Objective ∆LB1 (dB) ∆LB2 (dB) ∆LB3 (dB)

Power (Equation (8.3)) 19.3 4.4 5.6

Force (Equation (8.12)) 15.5 1.2 0.8

Velocity (Equation (8.11)) 6.8 4.3 −4.0

Sound pressure (Equation (8.7)) 23.2 5.7 5.5

Table 8.3: Reduction of the integrated average sound pressure level
according to Equation (8.7) for the different optimization objectives and

frequency bands. The results were averaged for the different runs of
globalized optimization. Positive values correspond to a reduction.

is usually possible only after optimization. Section 8.2.4 presents an
approach to anticipate when and why a power-based objective po-
tentially provides different optimal parameters than more trivial ob-
jectives. However, no statement is possible about the performance
concerning sound pressure levels.

For the 2D example, therefore, another discussion is presented,
which approaches to assess the different quality of correlation of the
objectives with SPLs in an illustrative way. The black-box setting of
MRC is left for this, and the parameter setting is simplified to ensure
mechanical interpretability: the initially three stiffness parameters are
changed uniformly within k ∈

�

50 Nmm−1, 20000 Nmm−1
�

, thus the
design parameter space is reduced to 1D. No frequency band is con-
sidered to integrate the objective, but the correlation is analyzed for
one single frequency point f = 720 Hz. The correlation of the different
objectives in the interface between the passive and active side and
the averaged sound pressure levels is visualized for 400 logarithmic
spaced samples of k in Figure 8.9.

Figure 8.9 in combination with Figure 8.10 illustrates several fun-
damental findings for the different objectives. The latter provides the
radiation ratio r r , the radiation efficiencyσrad and the spatially aver-

aged squared velocities V 2
⊥ , which are perpendicular to the radiating

surface. The radiation efficiency is defined as

σrad =
P rad

ρaircairSV 2
⊥

, (8.13)

whileρair is the density of air, cair the speed of sound, S the area of the
radiating surface. A radiation efficiency of one indicates that the radi-

241



8 Applications of Energetic Network Synthesis

1

2

3

4

5

6

7

8

0.04 0.08 0.12 0.16 0.2 0.24 0.28

P
ow

er
(1

0−
6

W
)

Summed SPL (Pa)

k = 50

k = 2071

k = 3299
k = 3892

k = 5497

k = 13333

(a)

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

0.04 0.08 0.12 0.16 0.2 0.24 0.28

Su
m

m
ed

sq
u

ar
ed

ve
lo

ci
ty

(1
0−

4
m

2
s−

2
)

Summed SPL (Pa)

k = 50

k = 1340
k = 2071

k = 3154

k = 3951

k = 5335

k = 13333

(b)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0.04 0.08 0.12 0.16 0.2 0.24 0.28

Su
m

m
ed

sq
u

ar
ed

fo
rc

es
(N

2
)

Summed SPL (Pa)

k = 50k = 893

k = 2071

k = 3154

k = 4323
k = 5335

k = 12369

(c)

Figure 8.9: Correlation between the proxy (a) power, (b) squared
translational velocities and (c) squared forces with sound pressure levels
summed at the 22 evaluation points of the 2D example at f = 720 Hz for

the 1D parameter space.

ator behaves like a piston radiator in a one-dimensional fluid. These
quantities require spatial integrals at the radiator, which may not be
possible for general black-box subsystems but can be performed for
the 2D example.

When using the velocity-based objective of Equation (8.11), one
aims to reduce the radiated sound pressure levels by reducing the
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Figure 8.10: The (a) radiation ratio r r , (b) the radiation efficiencyσrad

and (c) the spatially averaged squared velocities V 2
⊥ for the 2D example at

f = 720 Hz with 1D parameter space.

average velocity V 2
⊥ of the radiator. However, as shown in Figure 8.9(b)

and Figure 8.10(c), one may not necessarily reduce the average ve-
locity, which is perpendicular to the radiator surface; even in the
case of the 2D example, in which the radiating surface is directly at-
tached to the radiator subsystem’s inputs and outputs. Correspond-
ingly, the velocity objective, Equation (8.11), has its minimum at k =
1340 Nmm−1, which is not the minimum of the sound pressure level
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8 Applications of Energetic Network Synthesis

at k = 2071Nmm−1. V 2
⊥ , in contrast, is decreasing until a value of

k = 1950Nmm−1 is obtained. The mismatch results from the fact
that the amplitudes of local quantities are observed at single points
without any phases considered. This local information does not allow
observing the radiator’s global deflection shape. In addition, there is

no direct correlation of V 2
⊥ with the sound pressure levels. V 2

⊥ may
stay constant for varying k and thus changing deflection shapes of
the radiator. Nevertheless, the radiation efficiency, Equation (8.13),
may change and the radiated sound power as a consequence.

Contrary trends are possible, too: in between k = 1950 Nmm−1 and

k = 3520 Nmm−1, V 2
⊥ increases in line with the velocity objective. How-

ever, the radiation efficiency decreases, and so does the sound pres-
sure level until it reaches its minimum at sample k = 3154 Nmm−1.

These deficiencies are not found in the power-based objective
in the same way. The observation problem is relaxed, as the input
power does not provide local information but a global one; it is related
to the overall energy of the radiating subsystem. Also, the radiation
efficiency has direct feedback on the energy balance and, therefore,
the input power. As a result, only the minimum of power correlates
with the minimum of sound pressure level at f = 720 Hz, but not the
ones of the other proxy objectives.

Based on this, one can explain the optimization results for fre-
quency band∆ fB3 = [600 Hz, 770 Hz] in Figure 8.8(c), where power is
the only valuable optimization objective. Solely the latter leads to a

reduction of both, V 2
⊥ andσrad over the whole frequency band. This

is visualized in Figure 8.11.
Anyhow, Figure 8.9 also shows that power at the interface between

the active and passive side is a more robust but not perfect proxy. As
stated above, there is no one-to-one correlation with the mean sound
pressure levels, which is linked to the changing deflection shape of the
radiator in a strongly coupled system, when the stiffness k is varied.
As a result, the radiation ratio r r changes, thus the ratio between
input power and radiated one. The changing radiation efficiency is
one reason for that change, although it is not the only influence, as
evident in the slightly different functions of r r andσrad in Figure 8.9.
Consequently, the exact minimum of SPL may be missed, and there is
no unique sound pressure level for a power value in Figure 8.9. Anyhow,
these observations also hold for the other objectives considered in
Figure 8.9.
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Figure 8.11: The perpendicular velocities of the beam surface, spatially
averaged over the latter for frequency band fB3,∈ [650 Hz, 770 Hz], as well
as the radiation efficiency according to Equation (8.13). The spectra are

provided for the optimization results of each of the three considered
objectives and the base state.

Cavity Problems

Power-based objectives are mainly used for free field settings so far,
which allow for a consistent discussion on the relationship between
energy in the radiating subsystem and radiation into the fluid. How-
ever, when the acoustic vehicle quality should be improved finally for
passengers of vehicles, the acoustic fluid forms a cavity in the vehi-
cle but no free field. In preparation for such a vehicle setting, it can
be validated heuristically in the following paragraphs that the above
power-based objective is also valuable for a cavity setting of the 2D
example.

The above 2D example is modified, and the radiating subsystem
is changed according to Figure 8.12. The radiator now encloses the
whole fluid, which is a half-circle with a radius of r = 2000mm. In
addition, a non-radiating structure was added instead of the right-
hand side support. This modification accounts for the fact that in
a later vehicle assembly, the radiator, respectively the car body, has
structural parts, which have no direct boundary to the fluid. All beams
of the radiator have the same cross-section and a structural damping
value of η= 0.01, and the non-radiating structure has an increased
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Figure 8.12: Modified radiating subsystem for the assessment of the
cavity setting. The air cavity is fully enclosed by a beam structure. The four
interface points are indicated by blue points. All units are in millimeters.

value ofη= 0.05. A non-damped fluid withηA = 0 is considered a limit
case. The remaining network of the 2D example remains unchanged.

Again, a globalized optimization is performed using the four objec-
tives above. Three slightly shifted frequency bands are considered for
separate optimizations:∆ fB1 ∈ [105 Hz, 145 Hz],∆ fB2 ∈ [360 Hz, 430 Hz],
and∆ fB3 ∈ [660 Hz, 760 Hz]. The globalized optimization is repeated
five times for the first points of the 3D Sobol sequence as initial pa-
rameter points, and the average reduction of sound pressure levels is
presented in Table 8.4.

In cavity settings, the radiation ratio is significantly smaller, and
in the above setting with ηA = 0, it is even zero. There is no propor-
tionality according to Equation (8.5) anymore, and the discussion of
Section 8.1.3 regarding the change of radiation ratio and radiation
efficiency is not meaningful anymore. However, even in this limit case
setting, the power objective still provides the most reasonable results
of the three proxies at the interface between the active and passive
side, as visualized in Table 8.4. Note, power provides even better re-
sults on average than a direct optimization of sound pressure levels
in frequency range fB2. Again, this is due to the heuristic nature of the
globalized optimization approach.

246



8.1 Two-Dimensional Beam Assembly

Objective ∆LB1 (dB) ∆LB2 (dB) ∆LB3 (dB)

Power (Equation (8.3)) 14.5 3.6 4.1

Force (Equation (8.12)) 5.9 1.5 0.4

Velocity (Equation (8.11)) 9.3 3.3 −3.0

Sound pressure (Equation (8.7)) 21.4 5.5 4.0

Table 8.4: Reduction of the integrated average sound pressure level
according to Equation (8.7) for the different optimization objectives and

frequency bands for the cavity setting of Figure 8.12 and ηA = 0. The results
are averaged for the different runs of globalized optimization. Positive

values correspond to a reduction.

What remains from the above discussion for the cavity setting is
that mean power provides global information on the overall vibration
of the damped radiator, although calculated from local interface data.
Global information is not provided by the other proxies used in the
interface. Apart from limit cases like zero or highly localized damping
inside the radiator, heuristic experience confirms that power in the
interface between the active and passive side provides a more robust
measure for the overall vibration of the radiator and, thus, for the mean
sound pressure inside the fluid. Thus, the power-based objective is
used for the optimization of the following vehicle problem with an
acoustic cavity.

Motivated by the fact that mean power at the interface provides a
valuable objective even for zero radiated energy, one could even sim-
plify the modeling for cavity settings. Assuming that the fluid loading
has only a minor influence on the radiator itself, similar results as in
Table 8.4 would have been obtained for the power-based objective
with no fluid modeled. Authors like Schaal et al. [220] follow this idea.
This approach can be relevant for daily engineering business, as in-
serting fluids in car body FE models is time-expensive. If one could
leave this step, time savings during the virtual development process
would be possible.
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8.2 BMW 3series

The potentials of the numeric framework for a virtual end-to-end
development process are presented finally for an energetic network
synthesis of an industrial vehicle example. The 2019 BMW 3series
is considered, for which structure-borne sound from road-induced
noise should be reduced in the passenger cabin. The model consists
of the rear axle attached to the car body, each modeled numerically
by finite elements and visualized in Figure 8.13. Several components
of the actual car are not modeled, like the wheels, the powertrain, and
the interior. These components would be necessary to validate the
numerical model against actual measurements of complete vehicles in
hardware. Such validation, however, is not the aim of this example, but
the gains from the numerical framework on industrial vehicle systems
should be discussed. This discussion is enabled by the example, as
the model has the complexity of a complete vehicle model.

x

y
z

Figure 8.13: The BMW 3series rear axle example. The car body, thus the
passive receiver, which is filled with an acoustic Helmholtz fluid, is colored

blue. The rear axle system as the active source is colored orange.
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As no wheel is modeled, an excitation is applied directly at the
driver-side wheel carrier representing road-induced noise. For the
synthetic setting, a translational harmonic force with amplitude f =
�

fx, fy, fz

�

= [0.5, 0.2, 1.0] acts at the wheel hub, constant over the whole
frequency range. Thus, the resulting frequency response functions
can be considered a kind of unit transfer function that needs to be
scaled over frequency for different road profiles. A frequency range
of f ∈ [10 Hz, 300 Hz] is defined for analysis and synthesis of road-
induced noise.

Again the reduction of structure-borne sound should be obtained
by a globalized optimization for mean power at the radiator subsys-
tem interface. In contrast to the above 2D example, anyhow, not only
stiffness parameters of bushings should be optimized, but also geo-
metric parameters of other subsystems of the axle. Parametric model
order reduction is required for this in addition to the modular sub-
system coupling approach. Therefore, the step of parametric model
order reduction is discussed for the BMW 3series after the model de-
scription below. Finally, a strategy is discussed to use these pROMs in
optimization approaches, and the results are presented.

8.2.1 Model and Network Definition

The rear axle of the BMW 3series is a five-arm axle system. Five control
arms define the kinematics on both sides of the axle. Each control arm
has bushings at its two ends, connecting the wheel carrier with the
rear axle carrier. The latter is mounted elastically to the car body by
another four bushings. The vertical dynamics are delimited by a shock
absorber, respectively damper, and a suspension spring on each side,
which are supported by one of the control arms and the car body.

All subsystems of the vehicle model are discretized in the com-
mercial FE software ABAQUS and illustrated in Figure 8.14. The five
control arms (C1 to C5) are modeled by shell elements, as well as
the rear axle carrier (RC). To each other (bushing) subsystem, these
models have a single node as an interface with six degrees of freedom
(DOFs), placed in the center of gravity of the neighboring bushing sub-
systems. The nodes are connected to the shell models by kinematic
couplings. This interface modeling results in minimal interfaces and
leads to a small interface problem, as discussed below. The wheel
carrier (WC) is modeled from solid elements. The shock absorber (SA)
and suspension spring (SP) are constructed from shell and beam ele-
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ments, discrete frequency-dependent spring and damper elements.
Also, these parts show the same interface modeling, except the inter-
face of SA, which provides three points for the car body connection.
The bushings are modeled as springs, dampers, and mass points with
coincident points.

The subsystem of the vehicle body is considered a trimmed body
model with fluid (TB). The bare-metal passenger cabin is entirely
filled with a mesh of acoustic Helmholtz elements. The structural and
acoustic domains are coupled via a tie contact; thus, a fully coupled
structure-fluid interaction is considered. Ninety-seven evaluation
points are distributed over the whole fluid, on which the sound pres-
sure levels can be evaluated to assess the overall sound radiation into
the car interior.

x

y

z

SA

SP

RC

WC

C1

C2

C4

C5

C3

Figure 8.14: The FE model of the five-arm rear axle for the BMW 3series.
On one side, the connection points to the car body are indicated by red

circles, and the single subsystems are marked as follows. SA: shock
absorber; SP: suspension spring; C1-C5: the five control arms; WC: wheel

carrier; RC: rear axle carrier. The single colors of the model surfaces are
introduced for visualization purposes without additional meaning.

The mechanical network is defined in the MRC framework of Chap-
ter 3, thus in a distributed manner to enable a highly efficient localized
parameter evaluation on the one hand. On the other hand, the idea
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of a hybrid assembly with subsystems from different data sources
should be illustrated by this example. Thus, the single subsystems
are treated differently and coupled in different representations, al-
though they exclusively result from an implicit FE system. The final
assembly is visualized in Figure 8.15 for one side of the axle, including
the number of internal states of the subsystems. The control arms
(C1 to C5) on each axle side and the rear axle carrier (RC) are cou-
pled in their inner representation, thus implicit form of Equation (2.6).
For these subsystems, design parameters pk should be preserved for
later variations, like shell thicknesses, mass densities, point masses,
or the modulus of elasticity. The trimmed body (TB), shock absorbers
(SA), its connecting mount, suspension springs (SP), and the bushings,
which connect the body and the rear axle carrier (RC-TB1 to RC-TB4),
and the wheel carrier (WC) are provided each in transfer function rep-
resentation of Equation (2.10). The latter is calculated from the FOM
by Equation (2.11) for all subsystems, except for the trimmed body, for
which it is calculated from a non-parametric projection-based ROM
using component mode synthesis (CMS). The latter incorporates the
modes shapes of the 600 lowest eigenvalues of the subsystem’s un-
damped and unconstrained eigenvalue problem, as well as free inter-
face modes following the Craig-Chang method (Craig et al. [59]). For
none of these subsystems, design parameters are kept variable as a
result.

The bushings between the wheel carriers and the control arms
and between the latter and the rear axle carrier are considered in an
early design phase. In this phase, rough estimates about the stiffness
of bushings are available, but there is no mass information. Therefore,
they are modeled as six-dimensional springs with structural damp-
ing. As they are massless, they can be considered as single subsys-
tems by using an explicit subsystem formulation as introduced in
Section 3.2.2. This allows for a consistent modular treatment also of
these subsystems, thus the localized variation of the corresponding
stiffness values.

In total, a network of 44 subsystems is obtained. The axle system
is symmetric in its geometry and other subsystem parameters, which
should be preserved during an optimization. Thus, when a bushing
on the driver is changed, it is also changed on the co-driver’s side.
This symmetry can be exploited in the network definition. Only the
driver-side subsystems of the network are calculated for a parameter
variation. The outputs of the corresponding subsystems on the other
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Figure 8.15: The BMW 3series rear axle assembly’s network presentation
incorporating the FOM subsystems. Only the axle’s loaded left side is

visualized, which is mirrored on the right side. Red-colored subsystems
correspond to a transfer function representation, yellow-colored to an
implicit finite element form, green-colored to explicit bushings with

switched inputs and outputs. The light-brown colored subsystem is in a
CMS representation. For subsystems in implicit representation, the

number of internal states is provided by n .

side are subsequently recovered from the geometric manipulation of
the driver-side outputs by mirroring on the longitudinal vehicle axis.

The 44 subsystems provide 62 nodal connections for the intercon-
nections between the subsystems, each having six DOFs. As a partial
switch of the interfaces quantities is performed for the massless sub-
systems according to Section 3.2.2, thus the network definition results
in 20 nodal interfaces with Dirichlet-Neumann/Neumann-Dirichlet
constraint pairs and 42 with Dirichlet-Dirichlet/Neumann-Neumann
constraint pairs. The latter nodal interfaces can be reduced to half of
the twelve required interface constraint equations using the mixed
formulation according to Section 3.2.3. This network definition leads
to an interface problem of size nint = 744 without a mixed formula-
tion, and finally nint = 492 with the mixed input vector of the MRC
framework.
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8.2.2 Parametric Model Order Reduction of Large-scale
Subsystems in the Offline Phase

Suppose design parameters inside large-scale FOM subsystems should
be varied, like the rear axle carrier RC. In that case, the single parame-
ter variations in the network become expensive, even for the applica-
tion of MRC in Figure 8.15. As a consequence, the parameters of such
subsystems can not be included in a globalized optimization with-
out an additional parametric model order reduction. Using pMOR,
any parameters of arbitrary subsystems may be extensively sampled
during the online phase. As a result, one can maximize the solution
space for optimization (performing a holistic network uncertainty
quantification or inverse parameter estimation, respectively). In the
following, the pMOR procedure is discussed exemplarily for two large-
scale subsystems. Finally, the network representation of the BMW
3series rear axle incorporating pROM subsystems is introduced, as
used for globalized optimization below.

Control Arm C1

Control arm 1 (C1) has four interface nodes for connections to four
other subsystems. Each node has three translational and rotational
DOFs, leading to an interface size of 24 inputs and outputs. The model
was assembled using the ABAQUS STRI3 shell-like triangular plate
elements, point masses, and multi-point constraints, resulting in an
FE discretization with 33474 DOFs.

For the globalized parameter optimization below, a parametriza-
tion is introduced as follows: Three cross-sections are defined, as
visualized in Figure 8.2.2. In each cross section, the shell thickness
can be varied independently in the range of ti ∈ [1.5 mm, 3.5 mm].
Two point masses m1 and m2 with range mi ∈

�

0 t, 10−4 t
�

are intro-
duced as variable parameters, in addition. The frequency-range of
interest is defined as f ∈ [1 Hz, 1000 Hz], for the first. The parameter
setting results in a 6D parameter space, in which the system dynam-
ics must be represented by the global basis Vg. Significantly different
system dynamics need to be covered in the parameter space, which
is visualized for two example transfer functions of H ∈C24×24 in Fig-
ure 8.17. Following the analytic beam example of Section 6.2.5, a soft
setting with mi = 10−4 t, ti = 1.5 mm, and a hard setting with mi = 0 t,
ti = 3.5 mm is defined for visualization.
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section 1
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Figure 8.16: The control arm C1 of the BMW 3series rear axle and its
sections and point masses for parametrization in pMOR training. The

points marked with blue labels show the four connection points to other
subsystems.

The commercial FE software ABAQUS is used, so no direct access
to the required affine matrix decomposition is possible. Anyhow, ad-
ditional knowledge is available on the affine functions f j (p ), as one
knows, that the dependency of the element matrices on the shell thick-
ness can be reconstructed by cubic basis functions for the ABAQUS
STRI3 elements. The dependency of the mass matrix on the point
masses is linear. Thus, a parameter-gray-box approach can be fol-
lowed to recover the affine decomposition from parameter samples
of the system matrices (see Equation (6.5) on page 148), and the affine
matrix decomposition of the CA1 results in

M =m1M1+m2M2+
3
∑

j=1

�

t j M1, j + t 3
j M2, j

�

K =
3
∑

j=1

�

t j K 1, j + t 3
j K 2, j

�

S =
3
∑

j=1

�

t j S1, j + t 3
j S2, j

�

.
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Description Name Value

Deflation length ldefl 1 ·10−8

Krylov order o 2

Max. no. of greedy iterations nitMax 50

Skipped iterations for lucky breakdown nskipMax 12

Sample set for pre-selection of n p̃0 npre 50

Max. no. of residual calculations per iteration nmaxFun 200

Error threshold ϵlim
rel 5 ·10−3

Table 8.5: Metaparameters for pROM training of the control arm C1.

The OGPA training is performed as described for the analytic ex-
ample in Section 6.2.5; the specific settings are provided in Table 8.5.
As a result of the analytic beam example of Section 6.2.5, 0p̃0 for the
initial basis to start the greedy search is defined as a combination of
the parameter values of the soft setting (t j = 1.5 mm and m j = 10−4 t)
along with the band middle frequency f = 500 Hz.

Compared to the analytical example in Section 6.2.5, there is an
adaption in the in-situ and a-posteriori error evaluation for indus-
trial models. The range of values in the transfer function matrix is
typically widespread for such models. Also, very small entries may be
incorporated, for which it is not economical to ensure the above error
threshold. The latter would result in unnecessarily large pROMs. Thus,
the error control of Equation (6.13) on page 156 is slightly modified
and a relaxed error limit ϵrlx

rel is defined for these small entries

j ϵmax
H,rel ≥

(

ϵlim
rel for |Hk l |>Hsw

ϵrlx
rel for |Hk l | ≤Hsw

, (8.14)

where Hsw is a user-defined threshold to separate the magnitude of
transfer function matrix entries into small and large values. For the
control arm, Hsw = 5 ·10−9 and ϵrlx

rel = 2 ·10−1 is defined.
In summary, there are several meta-parameters to fine-tune the

procedure of OGPA. In practice, however, most of the parameters can
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be kept as described above for reasonable first results, but only ldefl and
ϵlim

rel (possibly along with Hsw and ϵrlx
rel) should be defined mandatory

by the user.
OGPA identifies 25 additional parameter sample points in the

first 29 iterations. Afterward, no more parameter samples are found
which exceed ϵlim

rel = 5 · 10−3, respectively ϵrlx
rel = 2 · 10−1 in the in-situ

error evaluation. The algorithm terminates in a lucky breakdown
after 40 iterations, and a pROM of size m = 424 is obtained. Inexact
deflation significantly increases the reduced model’s efficiency for
the large-scale MIMO setting. It allows including information on the
system dynamics for more parameter sample points without resulting
in inefficiently large pROMs. Without deflation, a global basis size of
m = 1248 would have been obtained for local bases at 25 expansion
points.
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Figure 8.17: Absolute value of the transfer function at (a) the diagonal
entry for node 1 DOF 4, (b) the entry for node 1 DOF 4 (rotation around

x -axis) to node 4 DOF (rotation around y -axis). The solid line belongs to
the transfer function of the FOM, the starred line to the one of the pROM.

In line with the cantilever beam example of Section 6.2.5, a gen-
eral tendency in the parameter samples can be identified when the
frequency dimension is excluded. The accepted parameter sampling
points n p̃opt contain mostly values from the bounds of the variable
parameter space, as 114 out of 150 sample values are bound values,
either of the lower or upper parameter bounds.
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After basis generation, an a-posteriori error evaluation is performed
as described in Section 6.2.4. A validation set of size nsam = 2000 is
chosen, which is formed by the first elements of the corresponding
Sobol sequence. More extensive sampling, as in the case of the ana-
lytic example in Section 6.2.5, is not efficient even for that mid-scale
industrial FOM. To account for the training strategy, the error evalua-
tion in the a-posteriori is adapted according to Equation (6.13) and
Equation (8.14) and the maximum error

j ϵmax
H,rel =







max
k ,l

| j Hk l− j HR,k l |/| j Hk l | for |Hk l |>Hsw

0 for |Hi j | ≤Hsw

(8.15)

is determined per parameter sample j . Thus, the error is evaluated
only for transfer function entries larger than |Hk l |>Hsw. The corre-
sponding histogram of the maximum error distribution is found in
Figure 8.18. On the sample grid, the largest error is ϵmax

H,rel = 1.2·10−2. Six
error overshoots are counted out of 2000 samples; thus, an accurate
pROM is obtained. The potentially high pROM transfer function accu-
racy is also reflected in the confidence interval provided by Bayesian
inference, which provides

P (99%< a < 100%|1994, 2000) = 99.9%.

Rear Axle Carrier RC

As an additional example for pMOR, the 3series rear axle carrier (RC)
is analyzed. Figure 8.19 illustrates the subsystem and its 14 6DOF
connection points to 14 bushing subsystems, resulting in both, 84
inputs and outputs. Again a FE discretization by the FE software
ABAQUS is used. Triangular plate-like shell elements STRI3 are con-
sidered along with several multi-point constraints, which connect
single parts of the structure and the interface nodes to the shell. The
discretized model has 258708 DOFs in total. Again, a parametriza-
tion similar to the control arm C1 is chosen for parameter optimiza-
tion, but also with the mass density to identify regions for additional
mass covers. The RC is partitioned into four segments, as visualized
in Figure 8.20. The shell thickness is varied independently in each
segment from t j ∈ [1.3 mm, 2.3 mm] and the material density ρ j ∈
�

5.5 ·10−9 tmm−3, 13 ·10−9 tmm−3
�

. A relevant frequency range of f ∈
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Figure 8.18: Histogram of the maximum relative transfer function error
of Equation (8.15) in logarithmic representation for the a-posteriori error

evaluation of the control arm C1 pROM on the validation set. ϵlim
rel is

indicated by the red vertical line.

[20 Hz, 500 Hz] is defined, in which the later optimization of the vehi-
cle assembly is performed. This parametrization leads to a 9D param-
eter space that the global basis must cover in total.

As in the preceding control arm example, the affine decomposition
of the system matrices, Equation (6.4), needs to be reconstructed in a
gray-box approach from samples at fixed parameter values, resulting
in the decomposition of

M =M0+
4
∑

j=1

�

t j M1, j + t 3
j M2, j

�

K = K 0+
4
∑

j=1

�

t j K 1, j + t 3
j K 2, j

�

S = S0+
4
∑

j=1

�

t j S1, j + t 3
j S2, j

�

.

Thus, nine affine terms are needed for both of the two matrices, K and
M , for their cubic dependency on the single ti . The linear influence
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Figure 8.19: The BMW 3series rear axle carrier and its interface nodes.
The nodes with black labels one to four are the connection points to the

car body, and the ones with blue labels five to nine are the interface to the
driver’s side control arms. The gray labeled nodes ten to fourteen define

the interface to the passenger’s side control arms.

of ρ j on M , respectively η j on S , can be considered with the same
decomposition.

The amplitudes of two exemplary transfer functions of H ∈C84×84

are provided in Figure 8.21 for a visualization of the system dynamics,
which need to be covered over the parameter space. For the latter,
again, a soft setting withρ j = 13 ·10−9 tmm−3, t j = 1.3 mm, and a hard
setting with ρ j = 5.5 ·10−9 tmm−3, t j = 2.3 mm is defined.

The training settings for OGPA are chosen according to Table 8.6.
As in the training for C1, the parameter values of the soft setting along
with f = 250Hz are chosen as initial point 0p̃0, which defines the
initial local basis.

During 23 greedy iterations, the parameter sample j p̃opt from the
greedy optimization is omitted five times in the in-situ error evalu-
ation according to Equation (8.14) until the last expansion point is
found. Afterward, no local basis is added in twelve subsequent op-
timizations, and the OGPA finishes with a lucky breakdown after 35
greedy iterations in total. In summary, 18 local bases are sampled in
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section 1

section 3

section 2section 4

Figure 8.20: Partitioning of the rear axle carrier into different sections for
parametrization in pROM training.
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Figure 8.21: Absolute value of the transfer function at the (a) diagonal
entry for node 3 DOF 5 (rotation around x -axis), (b) off diagonal entry

relating node 3 DOF 5 and node 7 DOF 1 (translation in x -direction). The
solid line belongs to the transfer function of the FOM, the starred line to

the one of the pROM.
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Description Name Value

Deflation length ldefl 1 ·10−7

Krylov order o 2

Max. no. of greedy iterations nitMax 50

Skipped iterations for lucky breakdown nskipMax 12

Sample set for pre-selection of n p̃0 npre 150

Max. no. of residual calculations per iteration nmaxFun 200

Error threshold ϵlim
rel 5 ·10−3

Relaxed error threshold ϵrlx
rel 2 ·10−1

Transfer function amplitude threshold for ϵrlx
rel Hsw 5 ·10−9

Table 8.6: Metaparameters for pROM training of the rear axle carrier.

the parameter space in addition to the one of 0p̃0, and a basis size of
m = 798 is obtained.

The discussion of the parameter sample positions can be repeated
for the rear axle carrier. Again, the parameter sample points j p̃opt

contain mostly values from the bounds of the parameter space when
one does not consider the frequency dimension. Thus, only 39 of 144
sample values are no bound values. As for the preceding examples,
inexact deflation plays a significant role in basis reduction. Nineteen
expansion points would result in a model size of m = 3192 for no de-
flation. Compared to the actual size of m = 798, 75% of the candidate
vectors for Vg are omitted during basis generation.

It is evident from Figure 8.21 that the resulting pROM visually
replicates the transfer function for the base, soft, and hard bound
in an accurate manner. For a more systematic analysis of the error,
a validation set of size nsam = 1000 is chosen, and the a-posteriori
ROM error evaluation is performed. Evaluating the error according to
Equation (8.15) in Figure 8.22 shows that the error j ϵmax

H,rel is below ϵlim
rel

for 997 samples. Three error overshoots are obtained, which result in
a statistical ROM quality according to Bayesian inference of

P (99%< a < 100%|997, 1000) = 99.0%.
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Figure 8.22: Histogram of the relative transfer function error of
Equation (8.15) in logarithmic representation for the a-posteriori error

evaluation of the rear axle carrier on the validation set. ϵlim
rel is indicated by

the red vertical line.

Reduced Network Definition

The pMOR training procedure is repeated for all subsystems, including
variable (design) parameters for the later multi-query methods. In
the globalized optimization of the assembly below, usually, only a
limited number of subsystems should be changed, at least in later
development stages. Consequently, one may include pROMs only
for these single subsystems and consider the remaining ones by a
transfer function representation. Anyhow, one may approach a more
holistic optimization of the overall system in earlier phases and, thus,
of all subsystems. Moreover, although one may want to change only
a few subsystems, one needs to identify the most sensitive design
parameters by screening in a step preceding assembly optimization.
Such a screening maximizes the solution space with only a limited
number of design parameters, which is discussed shortly below.

Consequently, all implicit FOM parts are replaced for the follow-
ing by pROM subsystems. The system analysis and synthesis should
be performed in a frequency range in between f ∈ [1 Hz, 500 Hz]. As
a result, the pROM of C1 presented above is trained for an unnec-
essarily wide frequency range. As visualized in Figure 8.17(a) and
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Figure 8.17(b), significantly less system dynamics of C1 have to be cov-
ered for f ∈ [1 Hz, 500 Hz], enabling smaller pROMs. In Appendix B,
the training of an alternative pROM of C1 in the reduced frequency
range is presented, as well as for the other control arms. The corre-
sponding reduced network representation is visualized in Figure 8.23
based on these pROMs.
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Figure 8.23: The BMW 3series rear axle assembly incorporating pROM
subsystems (yellow-colored). The subsystem size and the number of

preserved parameters are provided for these subsystems.

The computational efforts for single parameter evaluations are
reduced drastically using the pROM network. There is no subsystem
with more than m = 798 internal states; most are significantly smaller.
On average, the subsystem size was reduced by 99.1%. Anyhow, 56 vari-
able parameters in the pROMs and 60 in the bushing subsystems are
still preserved for multi-query methods applied to the whole vehicle
assembly of this section. Despite the drastic reduction of subsystem
size, only small errors are introduced when power is evaluated in the
pROM network instead of the FOM equivalent. On the frequency sam-
ple grid of Figure 8.24, the evaluation of the relative error of the mean
power P r at the radiator, thus the car body interface

ϵP =
|P r −P R,r |
|P r |

(8.16)

equals max f ϵP = 1.2 ·10−3. This error is in the same range as the error
threshold used for pROM training.
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Figure 8.24: Relative error of the mean power P r in the interface
between axle system and car body, which is introduced by the evaluation

of the pROM network instead of the FOM representation. The error is
evaluated according to Equation (8.16) for the nominal parameters.

8.2.3 Synthesis With pMOR in the Online Phase

Methodology

Globalized network optimization of the BMW 3series rear axle assem-
bly is performed according to Section 8.1.2 in the following. Again,
the objective is the mean power evaluated at the interface between
the active and passive side of the network, thus at the car body inter-
face, and integrated over band-limited frequency ranges according
to Equation (8.3). Again, the method of Ugray et al. [249] in the imple-
mentation of MATLAB R2018b is chosen for globalized optimization,
which incorporates gradient-based local optimizations. For the latter,
the same SQP algorithm is employed as for the 2D example, with ana-
lytical gradients provided by Equation (8.4) according to Section 4.2.

Thus, the basic setup is as for the 2D example, but with the addi-
tional need for error control in the online phase; thus, to manage the
error, which is introduced in the objective using pROM subsystems
instead of the FOM representations.

In a wider sense, there are two basic strategies for such error con-
trol in literature. The first is following a strict separation between the
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offline and online phase, mainly in the context of reduced basis meth-
ods (Dihlmann et al. [68] and Oliveira et al. [186] ). In these methods,
one pROM is trained in the offline phase, which is used for calculat-
ing the objective during the whole online phase. Error estimates are
introduced to validate the results from such an approach with pROMs
against the FOM model. The optimization algorithm may use distinct
paths through the possibly high-dimensional design parameter space.
Thus, unnecessary information may be contained in the pROM for
the latter’s training on the whole admissible high-dimensional de-
sign parameter space; respectively, it may not be possible to find a
practical training strategy to cover it robustly. This is the motivation
for the second strategy to use adaptive pROMs, as found in Fröhlich
et al. [86], Tomljanović et al. [246], Yue et al. [279], and Zahr et al. [281].
Starting with a very inaccurate pROM, the latter is refined iteratively
along the optimization path in the design parameter space. Thus,
the offline-online principle is levered as one performs the pROM
training and optimization side-by-side. Many flavors of such adap-
tive approaches with different pROM updating strategies and thus
with different model management strategies exist. Several adaptive
methods are also found under the name of multi-fidelity approaches;
refer to Peherstorfer et al. [198] for an overview. Prominently, one can
mention model management strategies, which are based on classic
trust-region algorithms, but use (p)ROM models; see Alexandrov et al.
[2] for an early work.

Modularity is a key concept for the methods of this thesis. The
concept of offline-online separation was postulated to ensure this for
using pMOR. This separation excludes adaptive methods for error
control during optimization, and the pROMs were trained indepen-
dently of the actual optimization for the whole admissible parameter
space in Section 6.2.

The omission of adaptive methods has not necessarily the pro-
claimed drawback of a significant decrease in efficiency and feasibility
when one follows the thesis framework. With subsystem coupling,
the training is performed on a subsystem-local level. The individual
training needs to cover a significantly smaller design parameter space
as it would be required for one monolithic pROM of the whole (ve-
hicle) network. This subsystem-local training potentially relaxes the
issue of prohibitively large parameter spaces that cannot be covered
holistically by one training and enables efficient procedures in an
offline-online scheme.
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Modularity implies that the error control during pROM training in
the offline phase is performed on a subsystem-local level, not consid-
ering the coupling operator and thus not explicitly the error in the final
network. Despite this fact, the proposed model management strat-
egy does not include continuous error control on the FOM network
level in the online phase. This non-continuous error control is due to
another essential requirement in the thesis: all approaches need to
apply to large-scale industrial models. A globalized optimization of
the latter in a high-dimensional parameter space requires an exten-
sive amount of iterations; the continuous monitoring of the error, in
turn, is computationally expensive. As a result, the optimization of
such systems may become too expensive, although pROMs are used.
This may also be the case when error estimates are evaluated instead
of the true error; refer to Section 5.6. Instead, the error of the reduced
objective qR

�

p
�

with respect to the true one q
�

p
�

is evaluated solely
at the end of the optimization. In the following, the relative error is
considered

ϵq,rel

�

p
�

=
|qR

�

p
�

−q
�

p
�

|
q
�

p
� . (8.17)

Note, in contrast to Equation (8.1), solely the objective’s dependency
on p is noted explicitly for brevity.

Multi-start algorithms like the one of Ugray et al. [249] provide
several parameter candidates j p lopt for the global minimum, from
which usually the one with the smallest objective function value is
considered as the heuristic global minimum. Two procedures are dis-
cussed for an error management strategy in the following. In method
A, the true objective value q

�

j p lopt

�

is evaluated in the FOM network
for all parameter candidates, which were obtained from the global-
ized optimization of the pROM network. The one with the smallest
value is selected as the heuristic global optimum. Anyhow, evaluat-
ing the objective in the FOM network at all parameter candidates
is usually computationally costly, as the industrial FOM subsystems
are large-scale. This motivates another method B, in which one as-
sumes that the pROM network provides results that are accurate over
the relevant parameter range on a qualitative scale; thus, the rank-
ing of the parameter candidates concerning their objective function
values is assumed to be the same in the FOM and pROM network.
Then, one can start with that parameter sample which has the lowest
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qR

�

j p lopt

�

and evaluate the error ϵq,rel

�

j p lopt

�

. In the case it is above

the user-defined threshold ϵlim
rel , one can discard that parameter candi-

date and repeat the error evaluation with the next smallest qR

�

j p lopt

�

.
The corresponding procedures are illustrated in Figure 8.25.
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Figure 8.25: Flow diagram for the error control during globalized
multi-start optimization on networks of pROMs. Two options are provided,

differing in the final selection of the appropriate local minimum.

In summary, such an error control strategy ensures applicability
to large-scale industrial models. No intrusive changes to the global
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optimization algorithm are needed, but the latter can be used as a
black box. Anyhow, there are drawbacks of such a strategy: the path
to the true minima of the FOM network may be hidden for the single
local gradient-based optimization, as only the obtained minima are
error-controlled but not each iteration. Such a scenario cannot be
detected during code execution, which augments the heuristic nature
of globalized optimization. Gradients can be provided analytically
for the affine pROMs, but are not error controlled against the FOM
counterparts, neither in the online phase nor in training during the
offline phase in the current implementation. As a result, the proposed
approach requires pROM subsystems that are sufficiently accurate
over the subsystem design parameter spaces. This required accuracy
is the motivation to invest computational efforts into the training
phase of the pROMs through OGPA.

Setup and Design Parameter Selection

The frequency band of fB ∈ [175 Hz, 195 Hz] is selected, in which the
mean power in the interface to the car body should be minimized
(see Figure 8.26). The frequency range mainly contains two dominant
resonances, resulting in a transmitted energy peak.
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Figure 8.26: Mean power P r in the interface between axle system and
car body. The frequency band fB, in which the power should be minimized

is indicated by a gray box.
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In total, the mechanical network of Figure 8.23 provides 117 vari-
able design parameters for optimization. One may not change all of
these parameters concurrently as neither can optimization algorithms
efficiently cope with such high-dimensional parameter space, nor may
it be feasible from a process point of view at later vehicle development
stages at least. Thus, the most influential design parameters must be
identified to maximize the solution space for a minimal set of pa-
rameters. In an end-to-end development process, this identification
is performed necessarily prior to optimization. Several approaches
of global sensitivity analysis methods are available for such identi-
fication; a prominent one is the variance-based sensitivity analysis
found in Saltelli et al. [218]. As such approaches need to screen the
high-dimensional parameter space with sufficient accuracy, they are
multi-query applications on their own and potentially require exten-
sive parameter evaluations. Here, the numerical framework of the
thesis is the enabler, too.

In order to limit the discussion on optimization itself, another
approach is taken in the following, which chooses a more high-level
parametrization and is valuable for an early development stage in par-
ticular. At this stage, it is assumed that a first design of bushings and the
rear axle carrier should be found. For nine control arm bushings (WC-
C2 to WC-C5 and RC-Cx), all stiffness parameters vary proportionally
per bushing. Thus, each of the bushings has one stiffness parameter,
which can be varied between k j ∈

�

500 Nmm−1, 100000 Nmm−1
�

. This
corresponds to the stiffness value along the longitudinal axis direc-
tion of the control arm. The other three stiffness parameters of each
bushing are varied proportionally according to the stiffness ratio of
the initial bushing geometry. Parameters of WC-C1 are not included
in the design parameter space, as the bushing is a ball bearing. For
the rear axle carrier, the shell thickness is varied independently in
each segment for t j ∈ [1.3 mm, 2.3 mm] and the material density for

ρ j ∈
�

7.8 ·10−9 tmm−3, 13 ·10−9 tmm−3
�

. The latter indicates where an
additional mass loading is effective. This parametrization results in a
17D design parameter space linked to parameters in eleven subsys-
tems.

Results

As initially discussed, optimal parameter choice is a non-linear, non-
convex problem for strongly coupled systems in the low-frequency
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domain. This is also the case for the BMW 3series example with its
17D design parameter space, as visualized in Figure 8.27. The latter
provides the power objective at the interface of the car body (Equa-
tion (8.3)) for the frequency band fB as a function of the bushing values
in C1-RC and C2-RC. The function is highly non-convex with several
local minima.
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Figure 8.27: The power-based objective in the considered frequency
band fB in dependency of two design parameters kC1−RC and kC2−RC

(bushing stiffnesses). The non-convex shape of the objective function
highlights the need for globalized optimization.

In correspondence with the highly non-convex, parameter-high-
dimensional objective function, a significant amount of objective eval-
uations are required for globalized optimization. The reduced network
of Figure 8.23, anyhow, enables such an optimization approach. It was
possible to perform the globalized optimization below on a consumer
hardware laptop in less than a day (Intel Core i7-8850H, 32GB DDR4-
RAM, Windows 10). Seventy-two local optimizations were performed
with 18477 parameter evaluations at 21 frequency points each, which
resulted in 388.017 system solutions, times two for the gradient cal-
culation. Out of 72 local optimizations, 14 parameter combinations
j p lopt are provided as candidates for the global minimum of the re-
duced network. Method A is selected for error control according to
Figure 8.25 and all parameter combinations j p lopt are evaluated in
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the non-reduced FOM network. The resulting power objective values
are presented in Figure 8.28, along with the error the objective qR

introduces for these parameter values (Equation (8.17)).
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Figure 8.28: The power-based objective function values of Equation (8.3)
evaluated in the FOM network for the different parameter candidates for

the global minimum, j p lopt, as obtained during the globalized
optimization of the pROM network. The local minima are sorted for

increasing values of the objective value in the reduced network qR. In
addition, the relative errors which were introduced by the latter are

provided according to Equation (8.17).

It is evident from Figure 8.28 that low relative errors in the range of
10−5 are introduced for all possible minima in the objective when the
latter is evaluated in the pROM network instead of the FOM equivalent.
Thus, the pROM network has a high fidelity in the analyzed parameter
positions. With this in mind, one could follow a more effective strategy
for error analysis and use strategy B of Figure 8.25.

Following Figure 8.28, the globalized minimum of the objective
from the reduced network qR(0p lopt) is selected as final optimization
results as the corresponding evaluation in the FOM network is the
lowest, too. Note, the first four parameter candidates 0p lopt to 3p lopt

providing a minimum objective value are equal except round-off er-
rors. The resulting mean power in the interface between the rear axle
and car body is visualized in Figure 8.29. A significant reduction by
two orders of magnitude is achieved for the mean power in the consid-
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ered frequency band. This significant improvement is also reflected
in the results for the sound pressure levels (SPLs) averaged over all 97
evaluation points, ϱavg, and an average reduction of∆ϱavg = 28 dB is
obtained for the SPLs (compare Figure 8.30). These results highlight
the potential of globalized optimization for vehicle networks. Such
improvement certainly is only possible in an early development stage
when a significant number of parameters can be varied. Anyhow, pos-
sibly several of the 17 design parameters could have been omitted
in the optimization setup without reducing the solution space, as no
global sensitivity analysis for screening was performed prior to the
optimization.
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Figure 8.29: The mean power in the interface between the rear axle and
the car body before and after globalized optimization utilizing the

power-based objective in frequency band fB ∈ [175 Hz, 195 Hz].

The resulting optimal parameter values pgopt for the globalized
minimum of mean power are provided graphically in Figure 8.31.
Again, the presence of globally coupled operational deflection shapes
in the low-frequency domain leads to the fact that pgopt is not formed
from basic commonplaces like lower bound values for bushing stiff-
ness quantities and upper bounds values for mass loadings or shell
thicknesses. Eight of nine bushings tend to be stiffer after optimization.
For one bushing, the upper bound value is obtained. Only for three
of the four thickness parameters of the rear axle carrier, the upper
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Figure 8.30: The mean sound pressure level, spatially averaged over 97
evaluation points in the car body cavity before and after globalized
optimization utilizing the power-based objective in frequency band

fB ∈ [175 Hz, 195 Hz].

bound value is chosen to stiffen the problem, but not for the fourth.
Without any mass constraints provided, the upper bound for addi-
tional mass loading is obtained only for two sections of the rear axle
carrier. In summary, using a numeric optimization approach based
on a global search enlarges the solution space for optimal parameter
combinations and provides new possibilities for structural design in
vibroacoustics, which one may not have anticipated.

8.2.4 Performance of Power as Optimization Objective -
continued

For the 2D example above, the power-based objective was advanta-
geous for an optimization-based SPL reduction compared to other
objectives in the interface between the active and passive sides of the
network. This discussion is revisited for the BMW 3series example,
and globalized optimization of the rear axle is repeated for the mean
SPL as the direct objective function, as provided by Equation (8.7) for
the np = 97 evaluation points in the fluid. Furthermore, additional
runs of globalized optimization are performed for the objectives of
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Figure 8.31: The obtained parameter combination pgopt for the
minimization of mean power in the frequency band fB ∈ [175 Hz, 195 Hz]

for the BMW 3series, indicated by the red line. The initial parameter values
are provided by the gray line in addition, as well as the lower and upper

bound values. k indicates a stiffness, ρ a mass density, and t a shell
thickness parameter.

Equation (8.11)and Equation (8.12), which solely rely on squared sums
of either input or output amplitudes at the interface. Figure 8.32 and
Figure 8.33 provide the corresponding results. They show that power-
based and directly SPL-based optimization provide a similar SPL re-
duction, proofing mean power in the interface between the car body
and the axle system as a valuable optimization criterion.

Anyhow, it is evident from the same figures that also the objectives
solely relying on squared sums of either inputs or outputs provide
similar SPL reductions in the vehicle example. This result is contrary to
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the one of the 2D radiation example, in which a power-based objective
introduced a significant gain in the optimization results. Reasons for
the different behavior are discussed in the following; now based on
interface data only, as this is the available data for general hybrid
mechanical networks.
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Figure 8.32: The mean power in the interface between the rear axle and
the car body before and after globalized optimization in frequency band

fB ∈ [175 Hz, 195 Hz] for the power-, velocity-, sound pressure-, and
force-based optimization.

To anticipate, one can find the reasons for this behavior in the fact
that the interface points of the BMW 3series car body are stiff at which
the axle is mounted. Such stiff interface points are not a random result
for vehicle systems but the consequence of a fundamental vehicle de-
sign paradigm. Following the latter, one aims to ensure an impedance
mismatch between the car body and the bushing elements to which
the rear axle is mounted. The impedance mismatch implies that the
interface points of the car body need to be stiff without significant
resonant effects present.

Two major deficiencies of squared amplitude-based objectives
were discussed above for the 2D radiation example, differentiating a
power-based objective from these proxies. Firstly, the latter objectives
cannot include rotational DOFs, which thus need to be unobserved.
This issue, however, is not relevant in the numerical vehicle example.
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Figure 8.33: The spatially mean sound pressure levels before and after
globalized optimization in frequency band fB ∈ [175 Hz, 195 Hz] for the

power-, velocity-, sound pressure-, and force-based optimization.

Only 4% of the power-based objective value, thus the band-integrated
mean power, result from moment contributions for the nominal pa-
rameter setting. This minor contribution is due to minimal angular
velocities at the stiff interface points.

Secondly, the lack of phase information was highlighted for squared
amplitude-based objectives. Except simply running the optimization,
it is challenging to assess the significance of phase information for
optimization, as the phase relations would need to be evaluated over
the whole design parameter range of the coupled problem. However,
there is an approach to provide first indications without running the
optimization itself, given that the passive side, the receiver, is not
changed during optimization. This setup of an unchanged receiver
is followed for the thesis examples. In such a setup, one can iden-
tify reasons for the different objectives’ performance in the receiver’s
transfer function properties based on a procedure as follows and
without assessing the whole possible parameter space. Therefore, the
relationship between the power-based and the velocity-output-based
objective is exemplified; a corresponding discussion is possible for
the force-input-based objective. Assume the velocities as Yv = iωYr

and the transfer function relating force inputs and velocity outputs
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Hv = iωHr , while the subscript2r again is referring to the radiating
subsystem. For the first, assume that there is no output and input of
the receiver, which is related to rotational DOFs. Then the ratio of the
power-based and velocity-based objective is expressed as

∆=
ℜ
�

Y H
v H −1

v Yv

�

2Y H
v Yv

=
Y H

v ℜ
�

H −1
v

�

Yv

2Y H
v Yv

. (8.18)

The analysis of the theoretical range of a system’s ratio∆ indicates the
relative performance of the two objectives. If the ratio changes only
slightly during the parameter optimization, the performance is similar
for the mean power objective and the sum of squared velocities. As
a result, it is examined how large the potential span of∆ is in what
follows.

An upper and lower bound for∆ can be calculated from the eigen-
value decomposition of the matrix Π = ℜ

�

H −1
v

�

, which is obtained
from

�

Π −λ j I
�

V j = 0, (8.19)

with V =
�

V1 ... Vp

�

providing the orthonormal eigenvectors and the
corresponding eigenvalues Λ= diag(λ j ). The eigenvalues do not cor-
respond to resonant frequencies or any other frequency value but
are a property of the matrixΠ at one distinct frequency point. As the
eigenvectors are orthonormal, V V H = I holds and one can describe
the energy flow at the radiating subsystem’s interface in a modal basis
through V ,

P =
1

2
Y H

v ΠYv =
1

2
Y H

v V V HΠV V H Yv =
1

2
ΨHΛΨ =

1

2

∑

i

|Ψi |2λi ,

(8.20)

with

Ψ =V H Yv. (8.21)

Thus, the eigenvectors of V provide the principal orthogonal direc-
tions in which energy can be transmitted in a subsystem interface.
They are referred to as power modes and Equation (8.20) as power
modal decomposition as a result.

277



8 Applications of Energetic Network Synthesis

On an abstract level, this is equal to the concept of power mode
decomposition as introduced by Jianxin et al. [132] and used for re-
ceiver characterization by several others (Ji et al. [131] and Weisser
et al. [271]). The latter use a decomposition of force inputs, not veloc-
ity outputs. However, using the abstract input/output concept of the
thesis, any output can be considered an input and vice versa if the
subsystem is reformulated. When H −1

v is assumed as the subsystem
transfer function, the velocities are the subsystem’s inputs for the lat-
ter, the forces its outputs. So, the concepts are the same if the method
of Jianxin et al. [132] is interpreted for generic types of inputs. Anyhow,
the notation is kept as above for clarity, and formulas are presented
for output quantities.

Equation (8.21) provides the transformed velocity vector in power
modal coordinates. As V H V = I holds, the squared velocity sum
in the denominator of Equation (8.18) can be calculated from the
transformed components as

Y H
v Yv = Ψ

H Ψ =
∑

i

|Ψi |2. (8.22)

As a result, Equation (8.18) can be rewritten as

∆=

∑

i |Ψi |2λi

2
∑

i |Ψi |2
(8.23)

and bounds can be finally provided by the minimum and maximum
eigenvalue ofΠ:

1

2
λmin ≤∆≤

1

2
λmax. (8.24)

In the case thatλmin is in the same order of magnitude as λmax, the po-
tential change of the ratio of the mean power and the sum of squared
velocities in the radiating subsystem’s interface is limited for parame-
ter variations.

If Y H
v Yv contains translational and rotational components, the

transfer function entries are linked to different dimensions. Although
mathematically still valid, the bounds of Equation (8.24) may be hard
to interpret. This issue is addressed by Moorhouse [176], who intro-
duced a scaling procedure for mobility matrices resulting in unit diag-
onal entries and dimensionless interface DOFs. This procedure can
be adapted to a scaling ofΠ by S = diag(

p

Πi i ),

Π̃ = S−1ΠS−1. (8.25)
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Dimensionless velocities Ỹv = S Yv are defined correspondingly. A
ratio adapted from Equation (8.18) is formulated using these scaled
values as

∆̃=
Ỹ H

v Π̃Ỹv

2Ỹ H
v Ỹv

, (8.26)

for which lower and upper bounds can be provided again as

1

2
λ̃min ≤ ∆̃≤

1

2
λ̃max. (8.27)

λ̃i are the eigenvalues of

�

Π̃ − λ̃i I
�

Ṽi = 0. (8.28)

The mean power is calculated from these scaled values as

P =
1

2
Ỹ H

v Π̃Ỹv =
1

2
Ψ̃H Λ̃Ψ̃ =

1

2

∑

i

|Ψ̃i |2λ̃i . (8.29)

Again, Equation (8.27) does not provide bounds for the ratio of the two
above-used objectives, mean power with rotational components, and
the sum of velocities without. However, another insight is provided
into the behavior of the receiver: |Ỹv,i |2 = |Yv,i |2Πi i is the point-wise
power for a velocity input with amplitude |Yv,i | at input i of the re-
ceiver. Thus, the denominator of Equation (8.26) provides twice the
sum of the point-wise power values; the energy one would transmit to
the receiver if no coupling between the single interface DOFs but the
same output amplitudes would be present. As a result, Equation (8.26)
is a measure of the coupling between the interface quantities and the
potential importance of phase relations between the velocity com-
ponents. Indirectly, this gives insight into the potential gain of the
power-based objective of Equation (8.3) as the phase relation is fully
considered in this objective compared to the others, which solely use
the amplitude information in the interface. In other words, if the ratio
of Equation (8.26) changes significantly along the optimization path
in the design parameter space, the power-based objective is likely to
provide different optimization results than a velocity or force-based
objective.
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As the above-used optimization objectives do not include a fre-
quency point, but a band fB, a frequency-band integrated version of
the ratio ∆̃ can be introduced

�∆=

∫

fB
Ỹ H

v Π̃Ỹvd f

2
∫

fB
Ỹ H

v Ỹvd f
, (8.30)

where the nominator contains the power objective, Equation (8.3), in
terms of power modes

qP =

∫

fB

P r d f =
1

2

∫

fB

Ψ̃H Λ̃Ψ̃d f ≈Z

 

∑

i

|n Ψ̃i |2
n
λ̃i ,∆ f

!

. (8.31)

The A-weighting is omitted for brevity.
Equation (8.28) needs to be solved at every sampled frequency

point in the frequency band. Although mathematically independent,
the underlying mechanical properties of the subsystem change con-
tinuously over frequency. Thus, the power modes from the eigen-
value decomposition also change continuously when the frequency
is changed, as noted by Weisser et al. [271], and distinct power modes
can be tracked over the single frequencies by a MAC procedure.

The frequency band integration adds complexity to the analysis of
eigenvalues for examining the potential span of the ratio �∆. An appro-
priate approach to eigenvalue analysis is developed for this setting
in the following, starting from the different mechanisms to minimize
qP during optimization. Therefore, a power-modal point of view is
utilized. There is the trivial option, in which the excitation |n Ψ̃i |2 of the
different power modes is decreased uniformly for all components in
the frequency band. This decrease does not lead to a change of �∆ and
may not be assessed by an eigenvalue analysis. In lower frequency
ranges, the energy is transmitted to the receiver mainly over a couple
of different power modes in the frequency band. Thus, there are two
other possibilities, which lead to a reduction of �∆:

• vertical shift at a frequency point: choosing other dominant
power modes with smaller eigenvalues for the main excitation
per frequency point. Thus, the excitation |n Ψ̃i |2 of the single
power modes, which are tracked over the frequency band, is
changed in integral over the frequency band.
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• horizontal shift across frequencies: keeping the excitation of
a single tracked power mode constant in integral over the fre-
quency band but shifting peaks of the excitation to a frequency
point, at which the amplification by the eigenvalues is reduced.
Such frequencies correspond to regions of resonances or anti-
resonances of the receiver, in which the phase coupling plays a
more significant role.

A vertical shift at a distinct frequency point requires two things:

1. a sufficiently large span of the eigenvalues of the receiver, and

2. a significant change of the shape of the (transformed) velocity
vector at the considered frequency point during optimization.

A horizontal shift across several different frequencies also has two
requirements:

1. a significantly changing function of the eigenvalues over fre-
quency per tracked power mode, and

2. the ability of the optimization setup for the coupled problems
to shift modal excitations to such region.

The second prerequisite for both shift types needs to be assessed
over the whole relevant design parameter space of the entire coupled
problem and cannot be evaluated just from the receiver subsystem
data. However, the first prerequisite of both shifts can be examined
from the isolated analysis of the eigenvalues of the receiver transfer
function matrix. This examination is provided for the examples of this
chapter in the following.

For this, the eigenvalues are provided for the car body (TB) of
the BMW 3series numerical example, the latter with a similar per-
formance of all objectives in Figure 8.34(a). As a comparison, the
same is repeated in Figure 8.34(b) for the receiver of the 2D exam-
ple, which showed a varying objective performance. Analyzing the
properties of the car body in Figure 8.34(a) for the frequency band
fB ∈ [175 Hz, 195 Hz], the eigenvalue distribution has a large span be-
tween the minimum and maximum value. Thus, the first requirement
for a vertical shift is met. Examining the first prerequisite for a hor-
izontal shift, the span of eigenvalues changes only slightly over fB,
as no explicit (anti-) resonant behavior is present. In fact, one can
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Figure 8.34: The eigenvalues of the transfer function matrixΠ according
to Equation (8.28) for (a) the BMW 3series body, (b) the 2D example’s

receiver. Equation (8.28) is solved per frequency point, and a MAC
procedure reconstructs the continuous functions of eigenvalues. The

lowest and highest eigenvalue are highlighted, while the remaining ones
are grayed for clarity.

approximate band-integrated power with small relative errors around
1% for the car body as

qP =

∫

fB

P r d f =
1

2

∫

fB

Ψ̃H Λ̃Ψ̃d f ≈
1

2

∫

fB

Ψ̃H d f Λ̃

∫

fB

Ψ̃d f . (8.32)

Thus, the possibility of a horizontal shift is disqualified, as shifting the
excitation of a tracked power mode to another frequency point inside
fB has no effect on the power objective qP , thus on �∆. The exclusion of
a horizontal shift already indicates why the different objectives lead
to a comparable SPL reduction.

The option of a vertical shift can be further assessed for its sec-
ond requirement when the coupled problem is considered, and the
power-modal decomposition is compared before and after the above
power-based globalized optimization of the BMW 3series. The ap-
proximation of Equation (8.32) is considered, and integral values are
evaluated for this. The integral excitation of power modes changes
between single modes as visualized by the two graphics on the left of
Figure 8.35. Thus, the globalized optimization changes each tracked
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8.2 BMW 3series

power mode’s individual contribution to the frequency band’s overall
power, as shown on the right-hand side of Figure 8.35. Nevertheless,
this interchange of modal excitation is limited mainly to neighboring
modes, and the clusters of dominantly excited modes remain relatively
constant. As the associated eigenvalues do not change in these clus-
ters significantly, the band-integrated ratio �∆ only slightly changes
from �∆= 0.18 before optimization to �∆= 0.17 afterward for the BMW
3series example, which leads to an equivalent performance of mean
power and other objectives for the vehicle example.
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Figure 8.35: The power modal decomposition of the BMW 3series. The
values are integrated over the frequency band fB ∈ [175 Hz, 195 Hz] for

each power mode; thus, one scalar per mode is obtained. The two
left-hand side plots represent the modal excitation before and after

optimization, and the right-hand side ones the corresponding modal parts
of the overall power. A scaling of the color scheme of each plot is

performed for the minimum and maximum values.

In summary, although only complete with a consideration of the
coupled problem, the analysis of the receiver eigenvalues in Figure 8.34(a)
for the first prerequisite of both shift types already indicated equiva-
lent objective performance. It showed the system’s lack of a changing
�∆ due to horizontal shifting. The key point here is the non-resonant
behavior of the stiff receiver interface, which leads to a limited change
of the eigenvalues over frequency.
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8 Applications of Energetic Network Synthesis

The limitations from constant eigenvalue functions over fB are
highlighted when the analysis is repeated for the free-field 2D example
of Section 8.1. The latter showed large differences in the optimization
results for the different objectives in fB3 ∈ [660 Hz, 770 Hz], in particu-
lar. Starting with the isolated analysis of the receiver, the comparison
of Figure 8.34(b) with Figure 8.34(a) shows that the overall spread of
eigenvalues is similar to the car body on average. However, the change
of eigenvalues over frequency is more significant, leading to a maxi-
mum eigenvalue spread at f = 720 Hz. The latter is an anti-resonance
of the receiver, at which several diagonal entries of the transfer func-
tion show a local maximum. Consequently, the first prerequisite for
horizontal shifts is met, and the latter can lead to a significant change
of �∆.
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Figure 8.36: The power-modal decomposition of the free field 2D
radiation example. The optimization results for power-based optimization

in the frequency band fB3 ∈ [660 Hz, 770 Hz] are recapped. The two
left-hand side plots represent the modal excitation over frequency before
and after optimization, and the right-hand side ones the corresponding

modal parts of the overall power integrated over frequency. The position of
the anti-resonance at f = 720 Hz is marked by a vertical line. A scaling of

the color scheme of each plot is performed for the minimum and
maximum values.

Taking the coupled problem of the 2D example into account, the
modal excitation is indeed shifted horizontally to the receiver’s anti-
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resonance at f = 720 Hz during optimization, especially for the power
modes with lower eigenvalues. This shift is visualized on the left-hand
side of Figure 8.36. In contrast to the vehicle example, the shift leads to
a significant change of the band-integrated ratio �∆ from �∆= 0.70 be-
fore power-based global optimization to �∆= 0.14 afterward. Although
the frequency-band-integrated power in the interface is decreased
from 5.1 ·10−4 to 1.2 ·10−4, the large change of the ratio ∆̃ results in
an increase of the denominator of the latter, the point-wise summed
up powers from 7.4 ·10−4 to 8.0 ·10−4. Minimizing the overall power
leads to the opposite effect in the point-wise powers, highlighting
the changing importance of cross-coupling terms and, thus, phase
information before and after optimization for the 2D example.

8.3 Chapter Summary

The potentials arising from the numerical framework and the use of
energetic quantities were highlighted for the online phase. Therefore,
the example of a globalized optimization for a band-limited, low-
frequency sound pressure level (SPL) reduction was chosen, which
forms an integral part of a virtual end-to-end development process.
Based on a two-dimensional example, it was discussed how numerical
optimization benefits from the modular approach of MRC. A power-
based objective was utilized, which measures the frequency-band
integrated energy flow into the passive network side, the receiver. The
need for globalized optimization was stressed to maximize solution
spaces, arising from the high non-convexity of the power objective
function. A multi-start framework for globalized optimization employ-
ing the power-based objective provided a robust reduction of SPLs in
each of the three chosen frequency bands, which was comparable to
a direct optimization of SPLs. More significant SPL reductions were
obtained compared to local optimization approaches or alternative
objectives in the receiver’s interface, which solely rely on amplitude
information. The latter difference was mainly explained by the fact
that power combines all available local information in the interface
and provides a global view of the receiver’s energy.

A BMW 3series assembly of a trimmed body and a five-arm rear
axle was provided as an industrial example. Different types of sub-
systems were coupled by the MRC framework, which was combined
with pMOR employing OGPA. The latter is necessary, as many FOM
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8 Applications of Energetic Network Synthesis

subsystems are computationally too expensive for repetitive parame-
ter evaluations during optimization. The effectiveness of OGPA was
discussed in detail for two subsystems. On average, the size of sub-
systems was reduced by two orders of magnitude in the BMW 3series
assembly, while several dozens of parameters were still available for
optimization. For the latter, the introduction of pMOR required the
development of a multi-fidelity model management strategy for error
control. Two variants were provided for a strict separation between
the offline and online phases. Again, globalized optimization was per-
formed by a multi-start framework using the power-based objective
for one frequency band, which resulted in an SPL reduction of several
orders of magnitude for a 17D design parameter space. It turned out
that the power objective in the interface of the receiver does not pro-
vide more significant SPL reductions than amplitude-based objectives
for the vehicle example. An eigenvalue analysis approach based on
a power mode decomposition was introduced for an explanation. It
was shown that the stiff design of the car body - the receiver - interface
limits the possible eigenvalue shifts in the power-modal space. Solely
such a shift would change the ratio of power and amplitude-based
objectives, thus resulting in different optimization results.
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9
SUMMARY AND OUTLOOK

An end-to-end virtual development process for vehicle vibroacoustics
requires the application of many multi-query methods for robustness.
Such methods imply thousands to millions of different parameter eval-
uations, which is impossible with state-of-the-art FE modeling. There-
fore, a highly performative numerical framework was introduced for
the frequency-domain analysis of structure-borne sound problems.
The focus was on linear systems with separable modal behavior. The
framework relies on distributed calculations employing subsystem
coupling and parametric model order reduction for a significant re-
duction of subsystem size. The subsystem coupling was performed
based on the MRC framework introduced in the thesis. MRC formu-
lates the coupling problem based on residual equations for generic
subsystem inputs and outputs on the level of algebraic equations. It is
thus truly modular with a minimum set of requirements for the sub-
systems. Standard methods like Frequency Based Substructuring were
shown to be subcases. Furthermore, MRC allows for hybridization to
increase robustness; single subsystems with unknown modeling can
be replaced by experimentally determined ones. Parametric model
order reduction was introduced to reduce the subsystem size by or-
ders of magnitude while preserving several parameters for later varia-
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9 Summary and Outlook

tion. A projection matrix was constructed based on Krylov subspaces,
which are appealing for use in subsystem coupling applications as a
Taylor-series-expansion-like moment matching of transfer functions
is implicitly obtained. The method was formulated for subsystems
with structural damping. An automated training was introduced to
ensure the pROM model quality for the whole considered parameter
space. A grid-free approach using local optimizations was chosen,
which enables the reduction of complex industrial FE subsystems.

The potential of the numerical framework for multi-query meth-
ods was finally demonstrated on a globalized optimization of both
an academic and an industrial vehicle example for structure-borne
sound transmission. A corresponding algorithm that requires hun-
dreds of thousands of parameter evaluations could be run on a con-
sumer hardware laptop using the numerical framework within one
day.

The robustness of a virtual development process is also increased
by a proper postprocessing quantity, which is used as a more integral
proxy for sound pressure levels. In the thesis, mean power was used,
which was evaluated at the radiating subsystem’s inputs. Therefore,
one emphasis was on correct power evaluation throughout the nu-
merical method development. Measurement-based methods were
discussed for validation and as a first step for hybridization. It was
worked out that phase accuracy plays a significant role, especially for
the power-based analysis of lightly damped subsystems. It was shown
heuristically for numerical optimization that a power-based objec-
tive can provide a benefit against alternative objectives, especially for
academic examples. Anyhow, more simplified engineering measures
may be used for many vehicle applications providing comparable
performance. This comparable performance was explained using a
power mode decomposition, showing the limited solution space for
receiving structures without distinct modal behavior observable at its
inputs.

In summary, the following novelties were introduced per chapter
to enable an end-to-end virtual development process for vehicle vi-
broacoustics:
Chapter 2 (basics):

• extended passivity requirements for systems with structural
damping and, thus, complex-valued system matrices.

Chapter 3 (subsystem coupling):
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• newly formulated framework of MRC for the efficient coupling
of linear systems with a maximum of flexibility.

• new approach for the systematic inclusion of pure Neumann
subsystems.

• integration of common substructuring methods into the new
formulation of MRC.

Chapter 4 (gradient calculation):

• modular approach to calculating gradients in subsystem cou-
pling applications by means of MRC.

Chapter 5 (non-parametric model order reduction):

• consequent reformulation and discussion of Krylov-based model
order reduction for structural damping. An extended proof for
the use of one-stage Krylov subspaces was presented.

• adaptions of the Arnoldi algorithm for industrial applications
with respect to efficient deflation and orthogonalization con-
cepts.

• first rigorous application of existing deflation concept to large-
scale industrial models.

Chapter 6 (parametric model order reduction)

• provision of an efficient reduced-order model training strategy
extending grid-free approaches to frequency-domain analyses
of industrial models.

• introduction of a goal-oriented and cheap error estimate for
subsystem coupling applications.

• extension of an a-posteriori error evaluation concept based on
Bayes theorem for the new context of model order reduction.

Chapter 7 (experimental methods):

• systematic discussion of necessity for phase-correct measure-
ments in the context of energetic quantities.
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• introduction of the phase correction concept for phase-correct
measurements.

• provision of a benchmark system.

Chapter 8 (application):

• application of the new reduced-order model training strategy
to industrial models.

• globalized optimization of a complete vehicle example on a
consumer-hardware laptop.

• extensive discussion of the performance of a power-based opti-
mization objective against others. The power mode decomposi-
tion was generalized for this.

The presented work motivates further research in virtual end-to-
end low-frequency vibroacoustic vehicle development with an evalu-
ation of energies. The numerical methods of the thesis could be fur-
ther improved. For example, the training of parametric reduced mod-
els could be combined with parameter-local approaches, in which
the subsystem parameter space would be split, and different pROMs
would be trained for each region. A look-up table would manage the
latter. Such an approach would enable pMOR for even higher sub-
system parameter space dimensions. Global optimization of vibroa-
coustic systems could be further enabled for practical applications.
This enabling would include the enrichment by the necessary step,
in which the optimization results are transferred back into hardware.
Different optimization algorithms could be benchmarked, like evo-
lutionary ones. The numerical framework enables the application
of many other elements of a virtual end-to-end development pro-
cess involving multi-query approaches, which were not discussed yet
by the thesis. Global sensitivity analysis to identify relevant parame-
ter sets is a predecessor for numerical optimization and uncertainty
quantification. Inverse parameter identification approaches may be
used to validate and update numerical models against their corre-
sponding hardware realization. Such methods are again boosted by
the presented work, thus providing completely new possibilities in
low-frequency industrial structure-borne sound problems.
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APPLIED OPTIMIZATION ALGORITHMS

An overview of the concepts and algorithms of constrained non-linear
optimization is provided, which are utilized throughout the thesis.
The following assumes deterministic problems with a continuous and
bound parameter domain and continuously differentiable constraint
and objective functions. The latter are considered to be scalar without
loss of generality.

A.1 Local Gradient-Based Optimization Through SQP

Sequential Quadratic Programming (SQP) is a class of algorithms that
share the same basic concept for constrained optimization of non-
linear convex problems. This concept is illustrated in the following,
while a line search method is described in an inequality formulation.
Refer to Nocedal et al. [183] for both more detailed substeps and a
more comprehensive overview.
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Given the following non-linear optimization problem

min
pi∈R

q
�

p
�

subject to

(

ci

�

p
�

≥ 0

ce

�

p
�

= 0,

(A.1)

one may define a corresponding Lagrange Function

L
�

p , λ̃
�

= q (p )− λ̃





ce

�

p
�

ci

�

p
�



= q (p )−λcei

�

p
�

, (A.2)

where λ̃ is the vector of Lagrange multipliers. The Karush-Kuhn-Tucker
(KKT) conditions state the first-order necessary conditions, which are
that a point (popt, λ̃opt) minimizing q (p ) and fulfilling the constraints
satisfies

dL
�

popt, λ̃opt

�

dp
= 0 (A.3)

ce, j

�

popt

�

= 0 (A.4)

ci, j

�

popt

�

≤ 0 (A.5)

λ̃ j ≥ 0 (A.6)

λ̃ j cei, j

�

popt

�

= 0. (A.7)

Equation (A.7) states that either the constraint cei, j is zero or it’s corre-
sponding Lagrange multiplier, respectively both. As a consequence,
one may rewrite the KKT condition of Equation (A.3) as





dL(popt,λopt)
dp

g (popt)



=





dq (popt)
dp −λ dg (popt)

dp

g (popt)



= 0. (A.8)

g (p ) is the active set, including all equality constraints ce

�

p
�

as well as

the subset of inequality constrains ci

�

p
�

which are active. Inequality
constraints are active if they take the form of an equality constraint at
the considered parameter point p , thus are zero.

Given the case the active set would be known, a Newton iteration
may be performed for convex problems to find an appropriate direc-
tion d for a given p to obtain popt iteratively. If the active set would
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remain constant for the parameter range of one Newton iteration, one
may have fast convergence. An alternative approach to solve Equa-
tion (A.8) for popt is discussed in the following, which provides the
Lagrange multipliers simultaneously. Using Newton’s iteration on the
KKT first-order optimality conditions is equal to solving the quadratic
subproblem with linearized constraints in order to determine the step
direction d ,

min
di∈R

q
�

p
�

+d T
dq

�

p
�

dp
+

1

2
d T

d2L
�

p ,λ
�

dp 2
d

subject to
dg

�

p
�

dp
d + g

�

p
�

= 0.

(A.9)

The active set is not known in advance; thus, the solution of Equa-
tion (A.9) needs to be determined iteratively in a nested iteration
loop per main iteration of the solution of the actual problem in Equa-
tion (A.1). A line search approach can be utilized to solve the quadratic
subproblem iteratively. One may again formulate a Lagrange function
and use the KKT condition of Equation (A.3) for determining the step
direction and Lagrange multipliers per nested iteration from a system
of equations corresponding to the one of Equation (A.8). The latter
may be solved directly using a null space method, conjugate-gradient
approach, or similar; refer to Nocedal et al. [183] for an overview. The
step length of a nested iteration is equal to one if there is no addi-
tional blocking constraint. The latter is an inequality constraint not
contained in the active set g

�

p
�

during one iteration to solve Equa-
tion (A.9) but limiting the allowed step size to a value smaller than one.
In that case, the active set in the next nested iteration is enlarged by
the corresponding blocking constraints. Thus, the iterative solution of
the quadratic optimization problem, Equation (A.9), provides updates
for the active set. Correspondingly, constraints may also be removed
from the active set for a step direction of zero length in one nested
iteration. In this case, the inequality constraint with the most negative
Lagrange multiplier is removed from the active set as it violates the
KKT condition of Equation (A.6).

Suppose there is no negative Lagrange multiplier for a zero step
direction length. In that case, all KKT conditions are fulfilled for the
quadratic subproblem, and the nested loop has identified its mini-
mum, thus determined the step direction d for the main iteration.
Then, one may determine a feasible step length for the main iteration,
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ensuring a sufficiently smaller merit function value. Different choices
are available for merit functions, like penalty functions combining
the objective function value and some weighted sum of constraint
violation measures. An example is found in Powell [203].

Formulating the quadratic subproblem for a Newton iteration
approach to Equation (A.1), the Hessian matrix d2 L/dp 2 needs to be cal-
culated explicitly, which may be expensive. Thus, one may replace the
true Hessian by an estimate N in Equation (A.9), resulting in a quasi-
Newton method. Such an estimate is based on the approximation of
the change of the Hessian matrix during two subsequent iteration
steps

d2q
�

j+1p − j p
�

dp 2
≈

dq
�

j+1p
�

dp
−

dq
�

j p
�

dp
= j y , (A.10)

which is valid for a region near popt in which the Hessian is positive
definite. As a result, the estimate N is chosen to fulfill the correspond-
ing secant equation

j+1N · j s = j y , (A.11)

where j s = j+1p − j p is the j th step. Utilizing the secant information
with the additional conditions of symmetry and low-rank differences
between the estimate in successive iteration steps, one can derive the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula

j+1N = j N −
j N · j s · j s T · j N

j s T · j N · j s
+

j y j y T

j y T j s
. (A.12)

Refer to Nocedal et al. [183] for the explicit derivation.
Multiple distinct SQP algorithms exist, differing in the merit func-

tion used, additional step acceptance criteria, or the Hessian matrix
approximation. Practical algorithms include correction mechanisms
for the latter, which ensure the Hessian estimate to be positive definite,
which is a requirement for the above derivations. Again, different ap-
proaches exist for this correction. Furthermore, algorithms may split
the re-calculation of the active set from the solution of the quadratic
subproblem, or the above line search approach may be replaced by a
trust-region method. Throughout the thesis, the SQP implementation
of MATLAB R2018b is used. This implementation uses a line search
strategy as described above, a BFGS strategy for the approximation
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of the Hessian according to Powell [203, 204]. The merit function in
the main iteration loop is similar to the ones used by Han [116] and
Powell [203, 204].

A.2 Globalized Optimization Using a Multi-Start
Method

Gradient-based algorithms like SQP assume convex problems for de-
termining the objective’s minimum. Therefore, such an approach may
not find the global objective’s minimum for non-convex problems
but identify a local one solely. Another method has to be determined
for such problem classes, and one may choose a heuristic approach
incorporating a random search as a compromise between computa-
tional feasibility and the probability of identifying the actual global
minimum. An overview of appropriate random search approaches is
found in Zabinsky [280].

Two-phase methods are a subclass of random search approaches,
incorporating a global and a local phase. Again, different methods
may be used for the phases. In the following, the essential motivation
is to combine the advantages of heuristic global search approaches
with the ones of local gradient-based optimization; thus, it is a natural
extension of the above-described SQP algorithm for local optimiza-
tion. The global search provides potential starting points j p0 for the
single local optimizations in such a two-phase method, leading to
a multi-start scheme. The particular method, which is employed, is
based on the Multistart Framework for Global Optimization by Ugray
et al. [249].

The framework utilizes the idea of scatter search to generate trial
points in the first phase of global screening. Scatter search is a general
algorithmic framework, which can be defined according to Glover
[99] and allows for a heuristic search on a problem domain. It is a
population-based method, therefore linked with evolutionary pro-
gramming as it utilizes an existing population, which is a set of ntrial

trial points, to generate the next set iteratively. The first starting pop-
ulation is generated for an overall starting point p0, the parameter
bounds, their center point, and a diversification approach. The latter
is a greedy approach, and that point from a random set is chosen
which is most distant from its nearest neighbor per iteration. Scatter
search then uses a geometric approach to combine pairs of points
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of the existing population to new candidates within the parameter
bounds in the main iteration loop until a stopping criterion is met.
Therefore, hyper-rectangles are defined along the line in the parame-
ter space given by the considered point pair. Random sample points
are placed in these rectangle domains afterward. The distinct method
used for generating the trial points in the following is described in
Ugray et al. [249].

Once the trial points j p0 are found, the method of Ugray et al. [249]
starts local gradient-based optimizations in the second phase, which
is the local one. One may choose a simple multi-start approach in this
phase, thus running local optimization for all trial points determined
in the global phase. However, such an approach would be inefficient.
One may approach the same local minimum from many trial points,
resulting in an unnecessarily large amount of computationally ex-
pensive local optimizations. Ugray et al. [249] introduced a filtering
approach as a remedy incorporating two filters in the local phase.
The first is the distance filter, and the gradient-based optimization is
started for a trial point j p0 solely if







j p0− k p lopt







2
>τdist · rk (A.13)

holds for all k local minima k p lopt which were already identified previ-
ously during the run. τdist is a user-defined distance threshold factor.
rk is the radius of the basin of attraction for the k th local minimum.
Thus, the idea is that spherical basins of attraction exist around the
local minima, in which any starting point is likely to result in an opti-
mization result of the corresponding local minimum.

The second filter is the merit filter, defining another condition for
the start of a local optimization at j p0,

u
�

j p0, w
�

< ulim. (A.14)

ulim is the local solver threshold, which is dynamically determined
by the algorithm. u (p , w ) is the score function, which is chosen as
the penalty function for the violation of the optimization problem’s
non-linear constraints

u (p , w ) = q (p ) +w T viol
�

c (p )
�

. (A.15)
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viol
�

c (p )
�

is the vector of magnitudes of violation for the constraints of
the problem definition in Equation (A.1). w are non-negative penalty
weights and are determined by

w j > |λopt, j |, (A.16)

where λopt is the vector of Lagrange multipliers in Equation (A.2) for
a local minimum of the objective. This vector is directly obtained
from the algorithm performing a local optimization as described in
Appendix A.1, and w is updated after each identification of a local
minimum if necessary. Initially, a starting value can be assumed for
the penalty weights, 1000, for example.

If both filter conditions are met, a local gradient-based optimiza-
tion is performed for j p0. In the case this optimization step suc-
cessfully provides j p lopt, it is checked if j p lopt was already detected
and registered previously for another trial point. This check is per-
formed numerically, evaluating if the differences




j p lopt− k p lopt





2
<

τpmax
�

1, jp lopt

�

and | j qlopt−k qlopt|<τqmax
�

1, j qlopt

�

are smaller than
user-defined threshold values τp, respectively τq, for all k already
available local minima. If not, j p lopt is registered as an additional
local minimum in the overall run of the optimization software.

In any case of a successful run of the local optimization, ulim is
replaced by the score u

�

j p0, w
�

, and the radius rk of the basin of
attraction is updated to the maximum of the current value, if existing,
and the distance




j p0− j p lopt





2
.

Counters are introduced to monitor the case of subsequent trial
points, for which one of the filter conditions is not met; thus, no local
optimization is performed. One counter counts the violation of the
merit filter condition. Given the case the counter has a value larger
than the user-defined nmaxCyle, the local solver threshold is updated
as

ulim = ulim+τPT

�

1+ |ulim|
�

, (A.17)

where τPT is the user-specified penalty threshold factor. Furthermore,
one counter per basin of attraction is introduced to monitor the dis-
tance filter for each registered local minimum. If a counter exceeds
nmaxCyle, the corresponding basin radius rk is updated as

rk = rk · (1−τBR), (A.18)

where the basin radius factor τBR is again user-defined.

299



A Applied Optimization Algorithms

The algorithm finally terminates once all trial points are analyzed
and assumes that registered local minimum as the global one, which
has the lowest objective function value k qlopt.

Initial values are required for the local solver threshold ulim and
basins of attraction rk at the start of the second phase to prevent the
algorithm from running an optimization simply for the first trial point
evaluated. Therefore, a local optimization is performed upfront to
the second phase, while the trial point with the lowest score function
value in the trial set, the most promising one, is chosen as starting
point. If the local optimization was successful, the optimization result
could be used to register a first local minimum with a radius of basin
attraction, the penalty weights could be updated, and the local solver
threshold.

The software MATLAB provides an implementation of the method,
which is used in the version of R2018b throughout the thesis. The algo-
rithmic approach implemented in MATLAB coincides with the above
description. However, it uses another local optimization starting from
p0 at the beginning of the overall algorithm. The resulting extra infor-
mation is used to determine the initial ulim as well as an additional
initial basin of attraction. Furthermore, the algorithm uses only a sub-
set of nphase1 trial points to select the starting point of the optimization
at the end of phase one. This subset is then removed from the trial
point set for the second phase. While different algorithms for gradient-
based local optimization could be utilized, the SQP method according
to Appendix A.1 is employed exclusively for the thesis setting. Further-
more, the settings of Table A.1 are considered if not explicitly specified
differently.
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Description Name Value

Size of trial point set ntrial 1000

Size of trial point subset for optimization nphase1 200

Distance threshold factor τdist 0.75

Penalty threshold factor τPT 0.2

Basin radius factor τBR 0.2

Number of wait cyles for the counters nmaxCyle 20

Threshold values for equal minima τp, τp 10−6

Table A.1: Standard settings for the global search as applied in the thesis.
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PROMS OF THE CONTROL ARMS FOR

THE BMW 3SERIES

PROMs are calculated for the five different control arms in the BMW
3series rear axle to define the reduced network of Section 8.2.2, which
finally enables the use of globalized optimization algorithms. All con-
trol arm subsystems are divided into different sections, in which the
mass densityρi and the shell thickness ti can be varied independently
of each other. In addition, point masses mi are placed on the control
arms. The division into sections and the positions of the point masses
are visualized for the single control arms C1 to C5 in Figure B.1 to Fig-
ure B.5. The corresponding settings result in a 12D parameter space
for C1 and a 9D one for C2 to C5, while one dimension is the frequency
of excitationω ∈ [20 Hz, 500 Hz]. The parameter bounds are given in
Table B.3.

As for the remaining BMW 3series, the commercial FE software
Simulia ABAQUS 2017 Hotfix 2 is used to define all subsystems, and
STRI3 elements are utilized to model the shell structure of the control
arms. This modeling allows for a parameter-gray-box approach to
reconstruct the affine matrix decompositions required for the global
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Figure B.1: The control arm C1 of the BMW 3series rear axle and its
sections and point masses for parametrization in pMOR training

performed for global optimization. The points marked with blue labels
show the four connection points to other subsystems.

basis approach to pMOR. Refer to Section 8.2.2 for the explicit formu-
las.

The parameters of Table B.1 are chosen as meta settings for the
reduction of the control arms through OGPA. Except for the diverging
training settings of Table B.2 for the control arm C1, the meta parame-
ters are not further tuned per control arm; thus, a lower ROM quality
may be accepted for single control arms. The corresponding training
results are summarized for the control arms in Table B.4. The latter
also provides a-posteriori error evaluation results for a validation
sample set of size nsam = 2000.
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Description Name Value

Deflation length ldefl 1 ·10−7

Krylov order o 2

Max. no. of greedy iterations nitMax 100

Skipped iterations for lucky breakdown nskipMax 12

Sample set for pre-selection of n p̃0 npre 50

Max. no. of residual calculations per iteration nmaxFun 200

Error threshold ϵlim
rel 5 ·10−3

Relaxed error threshold ϵrlx
rel 2 ·10−1

Transfer function amplitude threshold for ϵrlx
rel Hsw 5 ·10−9

Table B.1: Metaparameters for the pROM training of the BMW 3series
rear axle control arms.

Description Name Value

Deflation length ldefl 5 ·10−8

Sample set for pre-selection of n p̃0 npre 150

Table B.2: Metaparameters for pROM training of the control arm C1
deviating from the specification in Table B.1.
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C1 C2 C3 C4 C5

mi

�

×10−4� p l 0 0 0 0 0

pu 2.5 2.5 2.5 5 5

p0 2.5 2.5 2.5 5 5

ti
p l 2.1 1.3 1.3 1.3 1.3

pu 3.1 2.7 2.7 2.8 2.7

p0 2.1 1.3 1.3 1.3 1.3

ρi

�

×10−9� p l 2.5 2.5 2.5 3 2.5

pu 11 12 12 12 12

p0 11 12 12 12 12

Table B.3: The lower and upper bound values of the design parameters
for the control arms C1 to C5 as well as the parameter sampling point 0p0
of the initial basis. All units are omitted as they are in Newton, millimeter

and ton.

d n m nit nexp novershoot P

C1 12 33474 274 34 21 4 100.0%

C2 9 10758 131 33 15 20 96.6%

C3 9 10884 141 31 17 22 92.1%

C4 9 7386 108 26 14 24 84.5%

C5 9 14838 137 28 16 11 100.0%

Table B.4: The training results for each of the BMW 3series control arms.
The FOM model size n , the ROM model size m , the greedy iterations per

training nit, the resulting number of expansion points nexp are provided. In
addition, the results from an a-posteriori error evaluation on a set of

nsam = 2000 random samples are given by the number of error overshoots
novershoot as well as conditional probability
P
�

98.5%< a < 100%|2000−novershoot, 2000
�

.
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Figure B.2: The control arm C2 of the BMW 3series rear axle and its
sections and point masses for parametrization in pMOR training

performed for global optimization. The points marked with blue labels
show the four connection points to other subsystems.
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Figure B.3: The control arm C3 of the BMW 3series rear axle and its
sections and point masses for parametrization in pMOR training

performed for global optimization. The points marked with blue labels
show the four connection points to other subsystems.
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Figure B.4: The control arm C4 of the BMW 3series rear axle and its
sections and point masses for parametrization in pMOR training

performed for global optimization. The points marked with blue labels
show the four connection points to other subsystems.
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Figure B.5: The control arm C5 of the BMW 3series rear axle and its
sections and point masses for parametrization in pMOR training

performed for global optimization. The points marked with blue labels
show the four connection points to other subsystems.
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