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population exposed to
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A mathematical model for bacterial growth and control by antibiotics

treatment, including Quorum sensing as a special kind of communication,

is introduced. We aim in setting up a flexible model structure allowing for

fast simulations and overview about the general behavior. The deterministic

approach can be used for in silico studies of bacterial cooperative behavior in

the special case of Quorum sensing. Since antibiotic treatment is the basic

and vital way to fight pathogenic bacteria, in the present study, we propose a

modification of a reaction-di�usion model of communication processes in a

bacterial population exposed to antibiotics. The dynamical biological system

is formalized by a system of semilinear parabolic PDEs. The numerical solution

of the 2D problem is based on a hybrid computing procedure, which includes

a finite di�erence method combined with a Monte-Carlo simulation of

population dynamics. Computational experiments are performed to describe

space-time distributions of key chemical compounds characterizing Quorum

sensing during the growth of a bacterial population and its decrease resulting

from the predetermined strategy of antibiotic treatment.

KEYWORDS

bacterial communication, antibiotics action, reaction-di�usion process, model of

Quorum sensing, stochastic bacterial dynamics, computer simulation of signal

substances

1. Introduction

Bacteria are not just single cells and acting individually, but have been discovered to

form successful communities which have various possibilities to interact, within colonies

but also beyond. One such mechanism, detected in more and more bacterial species, is

the so-called “Quorum sensing” [1]. It is based on an intracellular gene regulation system

and uses signal molecules, the so-called, which are produced inside the cells and can be

transported and diffuse in the extracellular space.

Quorum sensing systems are known to control many important phenotypic changes

of the bacteria. Historically first luminescence of the marine bacterial species Vibrio

fischeri was found in the light organ of the squid Euprymna scolopes. Later, more and

more species were found to use similar systems for different purposes, like pathogenicity

and biofilm production [2]. Furthermore, Quorum sensing may even influence the
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resistance against several stressors like antibiotics to some

extent, as considered e.g., in [3].

More concretely, we consider the Gram-negative bacterial

species Pseudomonas putida IsoF, whose Quorum sensing

system is quite well-known and has been used in many previous

publications as a model organism for this purpose. Even though,

this sounds very specific, P. putida uses a type of Quorum

sensing system as many other Gram-negative bacteria also do,

with slight differences in the molecule structure, but analogous

architecture of the gene regulation system [4]. Usually, they use

so-called Acyl-homoserine lactones (short: AHL) as autoinducer

molecules. Thus, the ppu system of P. putida can be taken

as prototype system, and the mathematical modeling can

easily be transferred also to other species and their Quorum

sensing systems. As a special property, P. putida also produces

an enzyme which can degrade autoinducers, the so-called

Lactonase [5]. Corresponding models have been considered in

previous publications and can be taken as standard [6, 7].

However, as a main treatment of bacterial infections in

patients since many decades, antibiotics are used, fight against

bacterial infections and to kill or at least reduce growth of the

bacteria. We aim in setting up a simple and fast to calculate

model. This means, we focus on the most essential parts: growth

of whole colonies, decrease during the presence of antibiotics. To

keep it as simple as possible, we neglect any refined structures

of the colony growth, as they may play a minor role for our

purposes. Based on this, we want to keep the basic Quorum

sensing model in, including the Lactonase in the model setup.

By that we can always check, if (and when) the Quorum sensing

system, including the behavioral changes controlled by it, is

active or not, given a certain antibiotics treatment.

For our in silico study, we focus on the situation of bacterial

colonies, e.g., on surfaces of medical devices or on laboratory

equipment. They can be easier ”treated” than bacterial infections

in a living host, where many side aspects may play a role. We

want to set up a prototype model which is easy to handle, but

already provides the structure to be adapted to more concrete

situations. The hybrid structure contains a time-dependent

colony growth including an explicit saturation and the effect

of the antibiotics treatment on the one hand side, as well as a

classic reaction-diffusion model to describe the spread of AHL

and Lactonase molecules on a surface layer. For the antibiotics

treatment we assume for simplification that it can be applied

on the whole surface at once, e.g., by putting a water-based

layer above which contains the antibiotics in a homogeneous

concentration. Thus, it is sufficient to use one homogeneous

time-dependent variable for the antibiotics for the whole system.

The model approach allows to easily make simulations, to

place the bacterial colonies, also to handle many of them at

once. It provides a simplified structure, which can also be easily

used to control such systems, e.g., how a treatment should look

like to keep a bacterial population under control, such that it

doesn’t activate it’s Quorum sensing system and by that doesn’t

become pathogenic.

The present study aims in the development of the

mathematical model of Quorum sensing in a Gram-negative

bacterial population under the inhibitory action of antibiotics.

The overall goal is to design a hybrid model that provides

a quick approach by combining the continuous deterministic

approach (expressed by the reaction-diffusionmodel of bacterial

communication) and the discrete stochastic simulation of vital

activity of bacteria exposed to antibiotics. By that, we keep the

model as simple as possible to focus on the essential behavior.

The paper is organized as follows. The mathematical statement

of the reaction-diffusion problem, the applied numerical

method, and the computational setup are presented in Section

2. Section 3 focuses on the computer simulations of space-

time distributions of key characteristics of Quorum sensing

for P. putida bacterial species. We will perform a full cycle of

mathematical modeling and computer simulation to explore

the changes in chemical compounds characterizing bacterial

communication at varying strategies of antibiotic treatment.

2. Mathematical problem statement
and computational details

2.1. Governing equations for modeling of
bacterial Quorum sensing

The basic model of the bacterial communication process

describes the dynamics of changes in concentrations of key

chemical compounds such as AHL and Lactonase, which

characterize the “quorum level” in a bacterial population and

the “level” of its degradation, respectively [8]. The bacterial

Quorum sensing model can be referred to as a reaction-

diffusion dynamical system. In the two-dimensional case, the

mathematical model is expressed by an initial-boundary value

problem for a system of partial differential equations:

∂U

∂t
= DU1U − γUU − γL→ULU + F1(x, y, t,U), (1)

∂L

∂t
= DL1U − γLL+ F2(x, y, t,U),

0 < x < l, 0 < y < l, 0 < t ≤ tob, (2)

U(x, y, 0) = 0, L(x, y, 0) = 0, 0 ≤ x ≤ l, 0 ≤ y ≤ l, (3)

U(0, y, t) = 0, U(l, y, t) = 0, L(0, y, t) = 0, L(l, y, t) = 0,

U(x, 0, t) = 0, U(x, l, t) = 0, L(x, 0, t) = 0,

L(x, l, t) = 0, 0 < t ≤ tob, (4)
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where U(x, y, t) is the AHL concentration and L(x, y, t) is the

Lactonase concentration produced by bacteria, both given in

mol/l; l is the linear size of the solution domain in µm;

tob is the observation time in h; γU , γL→U , γL, DU , DL

are model parameters (detailed description below) associated

with the processes of diffusion and degradation of main

chemical compounds.

The governing Equations (1)–(2) describe the dynamics and

diffusion of AHL and Lactonase concentrations, the natural

degradation of AHL and Lactonase, degradation of AHL by

Lactonase due to the negative feedback, the production of

AHL and the reaction of Lactonase resulting from the positive

feedback. The generation terms F1(x, y, t, U) and F2(x, y, t,

U) are defined by the assumed normal distribution of bacterial

population density and the Hill function taking into account the

possible changes in bacterial concentration:

Fm(x, y, t,U) = N(t)
V
∑

v=1

fm exp

(

−

(

x− xvc
)2

+
(

y− yvc
)2

σ 2

)

,

m = 1, 2, (5)

f1(U) = αU + βU
Un

((

Uth

)n
+ Un

) ,

f2(U) = βL
Un

((

Uth + ε
)n

+ Un
) , (6)

where (xvc , y
v
c ) is the position of the bacterial colony with the

number v; N(t) is the normalized function defined the dynamics

of a bacterial population density; σ = σ (t), ε, αU , βU , βL, Uth,

n are model parameters, which specify the principles underlying

the time dependence of the bacterial population density and its

spatial distribution in the solution domain.

Therefore, the mathematical model is formalized by an

initial-boundary value problem for the system of semilinear

reaction-diffusion PDEs. Some remarks devoted to the existence

and uniqueness of solutions can be found in [8] supported

by theoretical reviews [9, 10]. Obviously, the construction of

analytical solutions for the considered problem meets essential

difficulties. Thus, we focus in our present study on the

application of numerical methods, namely a finite difference

method combined with a stochastic procedure for the simulation

of the bacterial population dynamics, to obtain solutions of the

problem (1)–(6).

2.2. Numerical scheme for solving the
problem

The equations of the system (1)–(2) could be written in the

following general form:

∂u

∂t
= D

(

∂2u

∂x2
+

∂2u

∂y2

)

− qu+ F, (7)

where u = U, q = γU + γL→UL, D = DU , F = F1 for Equation

(1) and u = L, q = γL, D = DL, F = F2 for Equation (2).

To solve the problem numerically, we apply a splitting finite-

difference method [11]. For instance, we use the concept of

the Peaceman-Rachford alternating direction method. Notice

that the main advantage of the method is a fairly good

correlation between accuracy and computational costs. This

method is quite simple in programming, at the same time, for

standard problems it is absolutely stable and has the second

order of accuracy with respect to space and time variables.

For small Courant numbers, this method is used even to

test other schemes. The disadvantages of this scheme include

conditional convergence when the number of spatial variables

is more than two. In addition, this method is conditionally

stable when solving problems with the Neumann and Robin

boundary conditions [11, 12]. Since our particular problem

does not have such limitations, the alternating direction method

turned out to be a promising candidate for constructing a

numerical algorithm.

Here, let us introduce �τ
h1,h2

as a space-time grid covering

the solution domain:

�τ
h1,h2

=
{

xi = (i− 1)h1, i = 1,N + 1, yj = (j− 1)h2,

j = 1,M + 1, tk = (k− 1)τ , k = 1,K + 1
}

.

To deal properly with functions, we introduce the discrete

function space of grid functions, which is isomorphic to

finite dimensional Euclidean spaces. Further, the space of grid

functions is equipped with an appropriate discrete norm (for

instance, l2 norm is further used).

Therefore, we have the following finite difference

approximation on the first temporal semi-step k + 1/2 for

i = 2, 3, ...,N, j = 2, 3, ...,M, k = 1, 2, ...,K:

[

−
Dτ

2h21

]

u
(s+1)
i−1,j +



1+
Dτ

2h21
+

τq
k+1/2
i,j

2



 u
(s+1)
i,j

+

[

−
Dτ

2h21

]

u
(s+1)
i+1,j = uki,j +

Dτ

2h22

[

uki,j−1 − 2uki,j + uki,j+1

]

+
τ

2
F̃, (8)

where the iterative sequence u(s)i,j , s = 1, 2, ..., converges to the

u
k+1/2
i,j , starting with u

(1)
i,j = uki,j; q

k+1/2
i,j = γU + γL→UL

k+1/2
i,j

for the Equation (1) and q
k+1/2
i,j = γL for the Equation (2).

In this case, we supplement the computational scheme by the

iterative procedure due to the presence of nonlinear terms in the

generation parts of equations. In order to calculate the Lactonase

concentration, we set F̃ = F
(

xi, yj, t
k,Uk

i,j

)

for the Equation (2).

Further, we suppose that F̃ = F
(

xi, yj, tk,U
(s)
i,j

)

to calculate the

AHL concentration with the Equation (1). And then, we again

solve Equation (2) with F̃ = F
(

xi, yj, tk,U
(k+1/2)
i,j

)

to obtain the

update distribution of the Lactonase concentration.
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In a similar way, we can derive the computational scheme

for the second time semi-step k+ 1:

[

−
Dτ

2h22

]

u
(s+1)
i,j−1 +



1+
Dτ

2h22
+

τqk+1
i,j

2



 u
(s+1)
i,j +

[

−
Dτ

2h22

]

u
(s+1)
i,j+1

= u
k+1/2
i,j +

Dτ

2h21

[

u
k+1/2
i−1,j − 2uk+1/2

i,j + u
k+1/2
i+1,j

]

+
τ

2
F̃, (9)

where the iterative sequence u(s)i,j , s = 1, 2, ..., converges to the

uk+1
i,j , starting with u

(1)
i,j = u

k+1/2
i,j ; qk+1

i,j = γU + γL→UL
k+1
i,j

for the Equation (1); qk+1
i,j = γL for the Equation (2); F̃ =

F
(

xi, yj, tk+1,U(k+1)
i,j

)

for (2) and F̃ = F
(

xi, yj, tk,U
(s)
i,j

)

for

(1). The systems defined by (8)–(9) are supplemented by discrete

initial and boundary conditions:

u1i,j = 0, i = 1, 2, ...,N + 1, j = 1, 2, ...,M + 1, (10)

uki,1 = 0, uki,M+1 = 0, i = 1, 2, ...,N + 1, k = 2, 3, ...K + 1,

uk1,j = 0, ukN+1,j = 0, j = 1, 2, ...,M + 1, k = 2, 3, ...K + 1,

(11)

To solve the systems of linear equations on each time layer,

we apply the Thomas algorithm.

2.3. Computational algorithm for
simulation of bacterial population
dynamics

The mathematical problem statement allows us to calculate

the space-time distributions of chemical compounds regulating

Quorum sensing for bacterial colonies, which are located at

a priori defined positions in the computational domain. At

the same time, we can provide simulations in a more realistic

manner by including the algorithm of modeling bacterial

population dynamics into the general computation scheme. In

the present study, we use the ideas of a stochastic generation

and the logistic growth of a bacterial population. The approach

to constructing a hybrid scheme combining a deterministic

model and stochastic modeling of bacterial evolution has

been proposed before and successfully tested in our previous

studies [7, 13, 14].

The computational algorithm is based on the following

assumptions. During the observation process, bacteria colonies

of circular shapes are growing stochastically on the plane

OXY according to the logistic law. First, up to three bacterial

colonies start to grow simultaneously from randomly chosen

points (xvc , y
v
c ), and besides, with different probabilities, i.e. the

probability of appearance of one colony is essentially greater

than for two and three (for example, for one colony p1 = 0.6,

for two colonies p2 = 0.3, and for three colonies p3 = 0.1).

According to the Monte-Carlo method, a new bacterial colony

can appear at a random time, but with a small probability on

each time layer (for instance, pv = 0.1). The linear size (radius)

of each bacterial colony is denoted by R(xvc , y
v
c , t). The time-

dependent value of R is calculated by the logistic law of growth:

Rv(t) =
IR0 exp(rt)

I + R0(exp(rt)− 1)
, v = 1, 2, ...V , (12)

where R0 is the initial linear size of a bacterial colony, which

can grow up by assumption to a limiting linear size of I, in

µm, and r is the parameter related to the rate of bacterial

growth in 1/h .

Here, we suppose that all bacterial colonies grow with a

similar velocity. If the colonies are overlapping, the source

functions F1 and F2 are determined by a superposition of

corresponding contributions. Note also that the parameter σ in

(5) is approximately estimated according to the “3-Sigma rule,”

specifically, as Rv(t)/3.

Further, we start the degradation of a bacterial population

by simulating the action of antibiotics at a defined time, when

the total bacterial concentration reaches 4.6 · 1011 cells/l. This

value corresponds to the normalized value of N(t) equaled

to the unit. At the same time, we stop “generating” new

bacterial colonies.

In addition, we need to formalize the relation between

the linear size of bacterial colonies and the antibiotic action.

In the present study, we apply a simplified approach. We

suppose that the concentration of antibiotics does not depend

on spatial coordinates, but is homogeneous on the whole

surface, and it can be specified as a time-dependent function.

To be precise, let us consider the antibiotics of ciprofloxacin

as an example [15]. An approximation of concentration

dynamics for ciprofloxacin can be plotted with the use of

empirical data: the maximum value reaches at time moment

4–8 h and approximately after 12–24 h the concentration

falls to a certain level. We use the Rayleigh distribution for

the approximation:

A(t) = A0t exp

(

−t2

A1

)

. (13)

Hence, we can assume for simplicity that the linear size of

each bacterial colony reduced due to antibiotic action can be

expressed as follows:

Rv(t) = R̃v(t)

(

1− θ
A2(t)

A2(t)+m

)

, v = 1, 2, ...V , (14)

where R̃v(t) is the current value of the linear size of v colony;

θ is the empirical constant provided the certain density of alive

population; the parameterm corresponds to themaximum value

of antibiotic concentration.
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Further, to determine the time-dependent bacterial density

N(t) (the normalized value) we assume here for simplicity

that this function can be described by the formula for the

growth range:

N(t) =
(

1+ exp
(

−µ(t − b1)
))−1 , t ≤ td, (15)

and we use the following expression to approximate decreasing

in the bacterial population density as a result of the degradation

due to a single antibiotic treatment:

N(t) = a+ b
(

1+ exp
(

µ(t − b2)
))−1 , t > td, (16)

where a, b1, b2, µ are approximation parameters, which, in

particular, provide a smooth behavior ofN(t) at timemoment td.

Notice that the Equations (15)–(16) provide a model

description of time-dependent behavior of the bacterial

concentration (namely, the periods of bacterial growth and

degradation to equilibrium values, the velocity of changes in

concentration, the relative level of degradation). The ”height” of

the bacterial concentration is influenced by the parameters αU ,

βU , αL, and the corresponding dimensions are correspondent to

the basic Equations (5)–(6).

Therefore, the space distribution of a bacterial population

is stochastically simulated on each time layer, taking into

account the mechanisms of growth and degradation. At

the same time, for all bacterial colonies, we calculate the

corresponding bacterial concentration in view of the growth or

degradation phase.

3. Computational experiments
results and discussions

3.1. General algorithm, specification of
the model object, and computational
setup

By construction, the procedure of model implementation

includes the Monte-Carlo simulation of bacterial population

growth, the finite difference iterative scheme to solve PDEs

and calculate the chemical compounds, the algorithm for

simulation of the degradation of a bacterial population

due to antibiotic action, and the functional dependence for

bacterial concentration, taking into account the time-dependent

decrease of the bacterial amount. The flowchart of the general

computational algorithm is shown in Figure 1.

The program implementation of 2D model of bacterial

Quorum sensing was performed in Matlab. The designed

software is intended for computer simulations of space-

time distributions of chemical compounds such as AHL

and Lactonase concentrations at given parameters. Figure 2

illustrates the program application architecture diagram. In

these terms, conducting simulations requires initialization

of the model as well as computational parameters. The

graphical user interface (GUI) permits to submit all parameters

and options that are necessary to accomplish a quorum

sensing simulation. The GUI provides options to access the

core system and modules that compute and visualize the

antibiotic strategy (as time-dependent function of an antibiotic

concentration), characteristics of bacterial populations (location

at each moment, summarized linear size, total amount, etc.),

and space-time distributions of main characteristics of quorum

sensing, namely AHL and Lactonase concentrations during the

observation process.

For instance, we will consider Pseudomonas putida IsoF as

an object of mathematical modeling [16].

Pseudomonas putida is a Gram-negative rod-shaped

bacterium of Pseudomonas genus, that lives in soils, waters,

and plants. Generally, P. putida is defined as a nonpathogenic

bacterium due to the lack of virulence-related genes [17].

P. putida IsoF is considered as an object due to its versatility

and ease of handling to examine Quorum sensing. Note

also that recent research suggests that P. putida can be a

human pathogen causing nosocomial infections in patients

with a weakened immune system like cancer patients and

newborns [18]. P. putida can provide the exchange platform for

more virulent and antibiotic resistant microorganisms such as

deadly Pseudomonas aeruginosa [19]. Most infections caused by

P. genus demonstrate resistance to certain antibiotics and their

combinations. Therefore, P. putida represents an important

model organism to perform simulations of Quorum sensing

characteristics in a bacterial population under antibiotic action.

Let us assume that we have a two-dimensional domain

limited by 0 ≤ x ≤ 100 µm and 0 ≤ y ≤ 100 µm. The time of

observation is up to 50–100 h. We choose the model parameter

values as listed in Table 1 using previously estimated values [8].

The empirical parameter θ in (14) is fixed to be 0.2. The time of

start of antibiotic action is estimated as td = 10− 16 h.

The values of the parameters for bacterial density

approximation (15)–(16) are established empirically from

microbiological experiments for Pseudomonas bacterial

species [20, 21]. We specify a following set of approximation

parameters for the bacterial dynamics: b1 = 6 h, b2 = 18 h,

µ = 1.4 1/h. Figure 3 illustrates the time-dependent behavior

of bacterial density for the species P. putida. In this case, we

suppose 30% decreasing in the bacterial population density

within 10 h due to a single antibiotic action.

In addition, we conducted a numerical study of the

stability of a constructed computational scheme. As far as

the initial and boundary conditions are strictly defined for

the corresponding chemical substances, here we examine the

stability of the computational scheme by variation of the

“amplitude part” of the generating terms defined by Fm. In

more detail, we vary the parameters of αU ,βU , and βL. Here

we assume that the parameters of αU ,βU , and βL alternately

increase by 20, 30, 40, 50% while the others remain the same
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FIGURE 1

The flowchart of the general algorithm.

(with respect to the initial values as listed in Table 1). In

order to estimate the perturbations of grid functions under

the “amplitude parameters” variation, we use the following

estimations: ξm = ‖Ūm − Um−1‖2/‖Um−1‖2,ϕm = ‖L̄m −

Lm−1‖2/‖Lm−1‖2,m = 2, 3, 4, 5, where m = 1 corresponds

to the AHL and Lactonase concentrations calculated for the

last time moment at h1 = h2 = 1 µm and τ = 0.01 h at

initial parameters listed in Table 1. For these computations we

suppose that there is only one bacterial colony located at the

central position of the computational domain with a linear size

of 10 µm.

Figure 4 shows the estimation of the perturbation

of corresponding grid functions. These data suggest

an appearance of slight perturbations of the AHL

and Lactonase concentrations under the variation of

the “source functions.” The almost linear growth of

the estimations indicates the numerical stability of the

computational algorithm.
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FIGURE 2

The program application architecture diagram.

TABLE 1 Parameter values estimated for the bacterium P. putida.

Name Meaning of parameter Value

DU Diffusion rate of AHL 100 µm2/h

DL Diffusion rate of Lactonase 1 µm2/h

γU Abiotic degradation rate of AHL 0.005545 1/h

γL Abiotic degradation rate of

Lactonase

0.5 1/h

γL→U Degradation rate of AHL by

Lactonase

0.65 · 109 l/(mol·h)

αU Low production rate of AHL 1.058 · 10−7 mol/(l·h)

βU Increased production rate of AHL 1.058 · 10−6 mol/(l·h)

βL Production rate of Lactonase 1.38 · 10−6 mol/(l·h)

Uth Threshold of AHL concentration

between low and increased activity

7 · 10−8 mol/l

ε Threshold shift for Lactonase

production

5 · 10−9 mol/l

n Degree of polymerization 2.5

3.2. Time-dependent simulations of
Quorum sensing characteristics in
bacterial population of P. putida under
antibiotics action

We conducted numerical experiments for the 2D reaction-

diffusion model combined with the procedure of the Monte-

Carlo simulation of bacterial growth and further degradation

FIGURE 3

The time dependence of the normalized bacterial density under

single antibiotic treatment.

of the population due to antibiotic action. According to the

above algorithm, one, two or three bacterial colonies with

a circular shape can start to grow at an initial time. The

initial radius R0 of each bacterial colony is set to be 1 µm.

The parameter of the rate of logistics population growth is

assumed to be r = 0.4 1/h, the limiting value of linear

size is I = 20 µm. During the bacterial evolution process,

a new bacterial colony appears with a small probability

specified as 0.1 per time step of the simulation, chosen to

be 0.5 h. Concretely, for the first simulation, we had two

bacterial colonies at the start moment and the total amount V ,

equaled to 4.
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FIGURE 4

The estimation of the perturbations of grid functions for AHL concentration (A), and the Lactonase concentration (B) under the variation of the

parameters of generating terms αU (1), βU (2), and βL (3).

FIGURE 5

The dynamics of changes in antibiotic concentration (A), and the total linear size of bacterial colonies at single antibiotic treatment (B).

In the first case, we suppose that we do a single

antibiotic treatment when the bacteria reach the critical value

of population density. The time-dependent function (13)

defining the dynamics of antibiotic concentration during the

observation time is shown in Figure 5A. The parameters of the

approximation (13) are set to be A0 = 1.65 and A1 = 32.

Here we can claim that antibiotics reach an acting maximum

concentration after 3.5–4 h after adding and acting during 10–

13 h. Figure 5B illustrates the dynamics of the total value of

linear size R(t) =
V
∑

v=1
Rv(t) of bacterial colonies. We see that

the bacterial population has time to reach the equilibrium value

before we start the degradation by antibiotics at t = 12 h. After

that, the R(t) leveled off at 2.017 µm.

The following figures (Figures 6A,B) present the space

distributions of key chemical compounds characterizing
Quorum sensing in the bacterial community, namely the AHL
and Lactonase concentrations calculated at a fixed time 12 h. In
addition, graphs in Figure 7 visualize the maximum values of

the AHL and Lactonase concentrations as time dependencies.
These data indicate that the Lactonase concentration reached

a maximum value before adding antibiotics, whereas the

AHL concentration declined slightly due to the interaction

between these players. The results suggest that the AHL

concentration fell gradually, followed by a stabilization

to the level of 4.89 · 10−10 mol/l, at the same time, the

Lactonase concentration decreases more essential and leveled

to the value of 6.76 · 10−13 mol/l. The average value of the
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FIGURE 6

The distributions of chemical compounds calculated at time 12 h: (A)—the AHL concentration; (B)—the Lactonase concentration.

FIGURE 7

The time-dependent profiles of maximum values of chemical compounds during the observation time 50 h: (A)—the AHL concentration and

(B)—the Lactonase concentration at single antibiotic treatment.

AHL concentration equals 1.36 · 10−10 mol/l at the final

time point.

This means that antibiotic action affects the enzyme,

preventing the bacterial quorum to a greater extent than the

signaling substance that provides the quorum itself. We can

observe that a small bacterial population that has been reduced

by a factor of ten is still producing signaling molecules. This

effect can be referred to as the emergence of increasing the

resistance of reduced bacterial population. Hence, we can

conclude that a single antibiotic treatment leads to a reduction

in the bacterial population under the assumed conditions of

computational experiments. However, the Quorum sensing

level in a reduced population remains very high compared

to a saturated population, and a bacterial population will

be able to quickly restore their numbers in the presence

of a nutrient medium. Therefore, the obvious strategies for

suppressing Quorum sensing are to use a multiple antibiotic

treatments strategy, an increasing antibiotic doze, a combination

of different antibiotics, or even combining application of

antibiotics and natural degrading enzymes.

3.3. A multiple antibiotic treatment
strategy: Numerical experiments

Note that due to the stochasticity underlying the simulation

of population generation and growth an exact reproduction of

the computational experiments is not possible. Let us consider

a computational experiment in which we apply a multiple

antibiotic treatment strategy. For instance, we assume that
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FIGURE 8

The dynamics of changes in the antibiotic concentration—(A) and the normalized bacterial concentration dynamics—(B) under multiple

exposure to antibiotics.

FIGURE 9

The time dependence of total linear size of bacterial colonies—(A) and the dynamics of the maximum values of the AHL concentration—(B) at

the multiple antibiotic treatment.

antibiotic treatment was done three times, specifically at 12, 24,

and 36 h (Figure 8A). In these terms, the function of bacterial

density dynamics N(t) includes three degradation phases as

presented in Figure 8B. Figure 9A shows the changes in the total

bacterial linear size R(t) during the observation time. The graph

is characterized by a sharp decline to the value of 4.8 · 10−5 µm.

The simulations suggest a more significant decrease in the AHL

concentration as presented in Figure 9B, where the maximum

value corresponds to 1.78 · 10−10 mol/l at the final time t = 50

h. Nevertheless, the quorum level remains considerable even

for a negligible population size. Concretely, the average value

of AHL concentration is equal to 4.26 · 10−11 mol/l at the

last moment. This effect is caused by the diffusion processes

and long relaxation time of the AHL concentration. Moreover,

as we mentioned above, antibiotic adding has a strong effect

on the Lactonase concentration, resulting in the suppression

of this enzyme, which in turn does not essentially inhibit the

AHL concentration.

We conducted a series of computational experiments,

varying the interval between antibiotic treatment: 4, 8, 12, 16

h with a triple sequential addition of the same concentration.

The findings allow us to conclude that all applied strategies

lead to significant degradation of the bacterial population and

a decrease in the AHL concentration. The total linear size of

the population varies in the range of 2 · 10−5 − 4 · 10−4 µm

and the average value of the AHL concentration changes from
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FIGURE 10

The dynamics of bacterial population (A–C), and the space distributions of the AHL concentration—(D–F), calculated at the corresponding

moments 5, 12, and 100 h.

FIGURE 11

The time dependence of the total linear size of bacterial colonies—(A) and the dynamics of the average value of the AHL concentration—(B).

2 ·10−11 to 8 ·10−11 mol/l at t = tob. It follows that the frequent

use (within the considered range) of antibiotics does not confer

treatment benefits.

It should be pointed out that we simulate the effect of a

powerful antibiotic action in a simplified situation, excluding the

growth of the population after treatment. However, as known,

pathogenic species of the P. genus exhibit resistant behavior [22],

i.e., capable of continuing their vital activity under antibiotic

treatment. Obviously, the intervals of antibiotic exposure should

not exceed the duration of the antibiotic action (in our case, it
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is about 16 h), otherwise the surviving population will strive to

restore equilibrium amount.

Figures 10A–C show frames of evolution of a typical

bacterial population growing in colonies under triple antibiotic

treatment 12 h apart (12, 24, 36 h, respectively). In this

computational experiment, we assume that the bacterial

population can continue to grow after antibiotic action (for

example, after 55 h), but more slowly than in the initial case (the

parameter of the logistic growth r = 0.1). Also, new bacterial

colonies can appear during simulations. The space distributions

of the AHL concentration are presented in Figures 10D–F

computed at fixed moments: at the beginning of bacterial

evolution—5 h, at the beginning of antibiotic action—12 h, and

at the final time 100 h. Figure 11 gives a detailed visualization of

time-dependence of the total linear size of the population and

the average value of the AHL concentration. Our data indicate

that after 17 h, the population restored its numbers. At the same

time, the “communication level” of the bacterial population is

only 20% of the equilibrium value in the absence of inhibition

due to antibiotics. This effect is caused by a long relaxation

time of the AHL concentration and an additional increase in the

Lactonase concentration.

4. Conclusions

In summary, we have shown that the developed hybrid

mathematical model allows to examine the behavior of key

chemical compounds characterizing bacterial communication

during antibiotic treatment. We have proposed suitable

computational techniques to conduct time-dependent

simulations of bacterial quorum sensing. The computational

procedure for the model implementation includes the

following points: First, we performed the Monte-Carlo

simulation of bacterial maturation and population growth.

Then, to estimate chemical compounds, the system of PDEs

was numerically solved with the finite difference iterative

scheme. Finally, we conducted simulations of the degradation

of a bacterial population due to antibiotic action, taking

into account the time-dependent decrease in the number

of bacteria.

The continued in silico studies of bacterial cooperative

behavior hold great promise in microbiology. Computational

experiments based on the mathematical model of Quorum

sensing in pathogenic bacteria provide a set of tools for

building a new level of understanding of the mechanisms

of response formation to external influences. The obtained

data suggest that even a small bacterial population maintains

an essential quorum, which will be able to restore the

equilibrium population size provided the nutrient medium

and in the absence of further external inhibitors (or, for

example, a weak immune system). The big advantage

of the presented approach is that it allows for a quick
overview and estimate of the system behavior, what was

our purpose here. Additional studies are required to modify

the mathematical model, e.g., by introducing space-time

distributions of bacterial biomass and antibiotic concentration,

providing more details and accuracy, but requiring more

computational effort and more detailed knowledge about

the biological system. This general approach can be useful

for further studies of optimal modes of antibiotic and other

treatments.
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