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Abstract: The occurrence of aircraft icing can significantly affect flight performance. One of the most
important aspects in the study of anti-icing technology for aircraft is the distribution of overflow
water. Owing to the external airflow pressure, shear stress, and surface tension, the water film breaks
up to form steady rivulets. Experiments on NACA0012 airfoil surfaces were conducted based on an
open straight-flow and low-speed wind tunnel. Simultaneously, an engineered three-dimensional
rivulet model considering the surface roughness was established based on the energy-minimum
principle. A comparison between the simulation and experimental results shows that the errors in
the water film breakup location and the flow velocity of rivulets are less than 20%, and the errors in
the spacing and width of rivulets are less than 40%. In addition, the effects of surface temperature
and uniform roughness on water film breakup were investigated. Furthermore, the rivulet model
was applied to the numerical calculation of the thermal performance of hot-air anti-icing systems.
The simulations reveal that the uniform roughness of the wing surface causes the water film to break
earlier. As the surface roughness increases, the thickness, spacing, and width of the rivulets increase,
and the rivulet flow velocity decreases.

Keywords: aircraft anti-icing; water film breakup; rivulet model; simulation

1. Introduction

When an aircraft passes through clouds containing supercooled water droplets, ice
may accumulate on the surfaces of windward components. Ice increases the weight of the
aircraft, destroys its aerodynamic profile, and seriously affects its flight performance [1];
therefore, it is likely to cause serious accidents. To ensure the safety of the flight, modern
commercial aircraft are always equipped with anti-icing systems [2]. Current wing anti-
icing systems used in aircraft tend to achieve dry evaporation within the protected zone
under continuous maximum-icing conditions. There is no good solution for simulating
overflow water and ice under intermittent maximum icing conditions. With the continuous
development of composite materials and electrothermal anti-icing technology, wet evapora-
tion has been widely used. This is because composites often have temperature limitations.
Effective simulations of overflow water and ice caused by insufficient protection are a
prominent issue in the development of aircraft anti-icing systems.

Under the influence of airflow pressure, shear stress, and evaporation, the thickness of
the water film on the surface changes in the flow direction. When the water film thickness
reaches a critical value, the water film breaks up into rivulets under the dominant effect of
surface tension. The rivulets reduce the area of effective heat and mass transfer between the
water, the airfoil surface, and the external airflow, thereby reducing the evaporated water.
Water is more likely to flow out of the protected zone and thus freeze, which is harmful
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to the aircraft. Therefore, it is important to accurately simulate the process of water film
breakup and the rivulet formation.

Since the 1920s, research on aircraft anti-icing technology has been conducted in de-
veloped countries [3]. Many research results have been obtained from both experimental
and simulation analyses. In the 1920s, icing wind tunnels with simple constructions were
already being used for ground-based experiments. Early experiments mostly used invasive
methods to measure film thickness [4]. It was not until the end of the 20th century that
non-invasive measurement methods began to be developed. In 1999, Johnson et al. [5]
successfully measured the spacing, flow velocity, and dynamic contact line of rivulets on
an inclined plate by using fluorescence imaging. In 2005, Hoffmann et al. [6] measured
the thickness and flow velocity of rivulets by using a particle-tracking method. In 2012,
Hagemeier et al. [7] measured the water film thickness, contact angle, and flow velocity
using photoluminescence and generalised an empirical equation between the dynamic con-
tact angle and Ca number. In 2014, Zhang et al. [8] measured the water film thickness and
rivulet flow patterns on the surface of a NACA0012 airfoil using digital image-projection
technology. It was concluded that the water film broke up and formed rivulets outside
of the droplet impingement zone. The spacing and width of the rivulets decreased with
increasing air speeds. In 2017, Bonart et al. [9] used photoluminescence to establish an
empirical equation between a single rivulet area and the Re and Ka numbers by conducting
experiments on an inclined smooth surface. In 2020, Liu et al. [10] found through experi-
ments that the initial roughness at the leading edge of the wing increased the thickness,
width, and spacing of the rivulets.

Simulation studies of aircraft anti-icing systems began in the 1950s, with Messinger [11]
first proposing a thermodynamic icing model in 1953. The model calculated the icing rate
and volume under the given flow field and droplet impact characteristics by establishing
the energy balance equation. This laid the foundation for the numerical calculation of
icing. Most of current engineering studies on aircraft anti-icing are based on the Messinger
model. They do not consider the transition from the water film to rivulets under the
influence of aerodynamic forces, surface tension, and the wetting characteristics of the
skin. The earliest rivulet model was proposed by Hobler [12] in 1965, and was developed
by Mikielewicz and Moszynski [13] in 1975. The model stated that the water film broke
up when it reached a critical thickness, following the conservation of mass, conservation
of energy, and energy-minimum principles to produce steady rivulets. It also assumed
that the gas–liquid interface shape of a rivulet is part of a semicircle and that the velocity
distribution is one-dimensional. In 1991, Al-Khalil [14] introduced a two-dimensional
velocity distribution model for rivulets under shear stress. The critical thickness, spacing,
and radius of rivulets were obtained. The effect of water film breakup on the performance
of aircraft anti-icing systems was analysed. Rothmayer [15] considered the effect of surface
wave phenomena in the water film model and established the Plante boundary layer
model based on the Navier–Stokes equations. In 2004, Saber [16] used the minimum total
energy criterion to investigate the breakup process of thin liquid films flowing on vertical
or inclined planes under interfacial shear stress. Since 2006, Silva [17,18] has developed
a heat-transfer model for two-dimensional electrothermal anti-icing surfaces based on
Al-Khalil’s theory. They considered the influence of water film flow and surface wetting
characteristics on the heat transfer performance. In 2008, Wang et al. [19,20] carried out
a series of studies on wind-driven water film flow on rough surfaces. Based on the high
Reynolds number boundary layer theory, several viscosity-dominated properties of water
film were investigated, including the flow and heat transfer processes of the water film and
phenomena caused by surface instability of two-dimensional water film. In 2016, Dong and
Zheng [21] accurately simulated the water film and rivulet distribution on the surface of
the NACA 0012 airfoil and obtained the thickness and width of rivulets.

Researchers have made extensive and successful efforts on experimental and sim-
ulation studies of overflow water on airfoil surfaces. However, most simulations have
focused on the water film thickness and the effect of the rivulet model on heat transfer
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characteristics. There are few studies on the water film breakup location and the profile
parameters of rivulets. Systematic simulations of the effects of roughness and surface
temperature on rivulets have not been conducted. This paper develops a three-dimensional
mathematical model of the water film breakup to better simulate the water film breakup
location and the thickness, spacing, width, and flow velocity of the rivulets. It is validated
by experiments. The simulation model is also used to investigate the effects of surface
roughness and temperature on the breakup of the water film and the effect of the rivulet
model on the performances of anti-icing systems.

2. Mathematical Models
2.1. Water Film Flow Model

In the case of icing, the water film thickness generally does not exceed 10−4 m, which is
much smaller than the dimensions in the flow direction. Therefore, the water film flow can
be assumed to be a purely shear-driven process, yielding a linear velocity distribution of

v(y) =
τ

µ
·y (1)

For a single control volume, the following equation can be obtained from the conser-
vation of mass.

.
min, f =

.
mimp, f −

.
mevap, f =

.
mout, f (2)

where the expressions for the impinging and evaporating water flows within the volume
are as follows:

.
m′′imp, f = V∞·LWC·β (3)

.
m′′evap, f =

h
cp,air
·
(

Pr
Sc

) 2
3
·Mwater

Mair
·
(

Pv,sat(Ts) − Pv,l

Pl − Pv,sat(Ts)

)
(4)

In Equation (3), V∞ is the air speed, LWC is the liquid-water content of air, and β is
the local collection coefficient of the water droplets. In Equation (4), h is the convective
heat transfer coefficient of the surface, Pr and Sc are the Prandtl and Schmidt numbers,
respectively, Mwater and Mair are the relative molecular masses of water and air, respectively,
Pv, sat (Ts) is the saturated water vapour pressure at wall temperature, and Ts, and Pl,
and Pv, l are the air pressure and water vapour partial pressure outside the boundary
layer, respectively.

The average velocity of the water film flow can be calculated using Equation (1):

v
=

1
δ f

∫ δ f

0
v(y)dy =

τδ f

2µ
(5)

Assuming a single control volume with an inflow width l, the mass flow rate within
the volume can be calculated by

.
m f = ρ

v
lδ f =

ρτlδ f
2

2µ
(6)

The thickness of the water film can be calculated as

δ f =

√
2µ

.
m f

ρτl
(7)

where
.

m f =
1
2

( .
min, f +

.
mout, f

)
(8)
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2.2. Rivulet Flow Model
2.2.1. Two-Dimensional Water Film Breakup Model

According to the experiments, the surface is always wetted, and the water film does
not break up in the impingement zone. As the water flows downward, the flow of water
decreases owing to evaporation. The water film breaks up under surface tension, and
rivulets form. Based on the minimum-energy principle, when the water film thickness δf
is less than the critical thickness h0, the water film breaks up. It is assumed that multiple
independent rivulets of the same shape and equal distance form, as shown in Figure 1.
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in the centre of the rivulet is 

Figure 1. Schematic diagram of water film breakup.

Since the surface tension is the main force that maintains the external shape of the
rivulets, one can assume that the rivulet has a shape that forms part of a circle. It is also
assumed that the surface has a fixed contact angle of θ0 and that the distance between two
adjacent rivulets is λ. The outer-edge of the rivulet is shear-driven and follows a laminar
flow model, with a no-slip boundary condition at the bottom. Therefore, a coordinate
system for the velocity distribution of the rivulet flow can be established, as shown in
Figure 2.
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According to the stream profile shown in Figure 2, the velocity at the highest point in
the centre of the rivulet is

v =
τ

µ
(1 − cos θ 0)R (9)

Due to the fact that the velocity at the highest point decreases linearly to zero along
the profile of the gas–liquid interface and that the velocity at any point on the interface also
decreases linearly to zero along the thickness direction to the wall, the final expression for
the velocity distribution of the rivulet model can be obtained as

v(x, y) =
τR
µθ0

(1 − cos θ 0)(θ 0 −arcsin x
R )√

R2 − x2 − R cos θ0
(y − R cos θ 0) (10)

Owing to the small cross-sectional size of the rivulet, its physical parameters and
surface tension can be assumed to be constant. The fluid is a noncompressible Newtonian
fluid. The flow is a fully developed steady-state free-surface laminar flow. The critical
thickness h0 of the water film breakup and the shape parameters of the rivulets can be
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calculated by relating the conservation of mass and energy equation before and after the
breakup of the water film and the energy minimum equation at the breakup location.

Based on the velocity distribution in Equations (1) and (10), the mass equations for
the water film and rivulets can be obtained by integration as Equations (11) and (12),
respectively.

.
m′f =

.
m f

λ
=
∫ h0

0
ρv(y)dy =

ρτ

2µ
h2

0 (11)

.
m′r =

.
mr

λ
=

2
λ

∫ R sin θ0

0

∫ √R2− x2

R cos θ0

ρv(x, y)dydx =
ρτ

λµ
φ(θ0)R3 (12)

where

φ(θ 0) =
1 − cos θ0

θ0
(

θ0
2

4
+

sin2 θ0

4
+ cos2θ0 − cos θ0) (13)

Similarly, the energy equations for the water film and rivulets can be obtained by
integration as Equations (14) and (15), respectively.

E′f =
E f

λ
=
∫ h0

0

ρ

2
v2(y)dy + σlv+σls =

ρτ2

6µ2 h0
3+σlv+σls (14)

E′r =
Er

λ
=

2
λ
(
∫ R sin θ0

0

∫ √R2 − x2

R cosθ0

ρ

2
v2(x, y)dydy + θ0Rσlv +

(
λ

2
− R sinθ0

)
σsvR sinθ0σls) (15)

where σlv is the surface tension at the gas–liquid interface, σsv is the surface tension at the
solid–gas interface, and σls is the surface tension at the solid–liquid interface. They are
all constants.

After introducing the Laplace–Young equation for the three-phase contact surface,
Equation (15) can be written as

E′r =
ρτ2

3λµ2 g(θ0)R4 +

(
2Rθ0

λ
+ cos θ0 −

2R sinθ0cos θ0

λ

)
σlv+σls (16)

where

g(θ 0) = (
1 − cos θ0

θ0
)2(

θ0
3

6
+

θ0

4
+

7
4

sin θ0cos θ0 − 2θ0cos θ0) (17)

In addition, the expression for the local wetting factor, i.e., the ratio of the wetted area
to the overall area, can be obtained from the geometric profile equation of the rivulets:

F =
2R sinθ0

λ
(18)

Combining the conservation of mass, conservation of energy, and lowest energy
principle equations, one obtains

.
m′f =

.
m′r (19)

E′f= E′r (20)

∂(E′r)
∂F

= 0 and
∂2(E′r)

∂F2 > 0 (21)

Then,

h+ =
3
2
(2θ 0 − sin 2θ0)

1
3
[h+g(θ 0)]

2
3

φ(θ 0)
− (1 − cos θ 0) (22)

where h+ is defined as a dimensionless critical thickness expressed as

h+ =
ρτ2h0

3

6µ2σlv
(23)
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When the contact angle of the surface is determined, the dimensionless critical thick-
ness h+ can be solved iteratively using Equation (22). Combined with the local shear stress,
Equation (23) is used to solve the critical thickness h0 for water film breakup. Outside of
the droplet impingement zone, when the water film thickness δf is less than h0, the water
film breaks up, and a steady rivulet flow forms.

When Equations (18)–(20) are combined, the local wetting factor, radius, spacing, and
thickness of the rivulets at the breakup location can be solved:

F = −
h+g(θ 0)

(θ 0 − sin θ0cos θ0)

[
sin θ0

φ(θ 0)

] 3
2

F −
1
2 +

sin θ0(1 − cos θ 0+h+
)

θ0 − sin θ0cos θ0
(24)

R = h0(
sin θ0

φ(θ 0)F
)

1
2

(25)

λ =
2R sin θ0

F
(26)

δr= (1 − cos θ 0)R (27)

Due to the fact that water film breakup does not occur within the impingement
zone, i.e., there is no impingement water entering the rivulet region, the following mass
conservation equation is available for a single control volume:

.
min,r −

.
mevap,r =

.
mout,r (28)

Based on Equations (24)–(27) and the rivulet profile, the mass flow rate of evaporated
water before and after water film breakup can be obtained using the following equation:

.
m′′evap,r =

θ0F
sin θ0

.
m′′evap, f (29)

Based on Equation (12), the mass flow rate within a single control volume and the
rivulet radius can be deduced as

.
mr =

ρτl
λµ

φ(θ 0)R3 (30)

R = [
λµ

.
mr

ρτlφ(θ 0)

] 1
3

(31)

Similarly, the local wetting factor F and thickness δr can be calculated using
Equations (26) and (27). In addition, based on the profile and flow velocity of the rivulets,
the mass flow rate of a single rivulet can be obtained as

.
mrivulet = vR2(θ0 − sin θ0cos θ0) (32)

2.2.2. Three-Dimensional Mass Flow Allocation Model

For three-dimensional surface water films, the direction of the shear force is not
necessarily perpendicular to the grid edges, i.e., each grid may have multiple water inflow
and outflow surfaces. The direction of the shear force can be used to determine the mass
distribution of the overflow water. A hexahedral grid can be considered as an example, as
shown in Figure 3. Faces one and two are the inflow surfaces and faces three and four are
the outflow surfaces.
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According to the mass balance criterion, the mass flow rate of water flowing into the
control volume is equal to the mass flow rate of water flowing out of it. Therefore, the
three-dimensional Messinger mass conservation equation can be established as

∑
i

.
min,i +

.
mimp −

.
mevap = ∑

i

.
mout,i (33)

where ∑
i

.
min,i is the mass flow rate into the current control volume and ∑

i

.
mout,i is the mass

flow rate out of the control volume. Depending on the direction of the shear stress, the
mass flow rate distribution scheme can be obtained as

.
mout,3 = ∑

i

.
mout,i·

l3

∣∣∣∣→τ · →n3

∣∣∣∣
l3

∣∣∣∣→τ · →n3

∣∣∣∣ + l4

∣∣∣∣→τ · →n4

∣∣∣∣ (34)

.
mout,4 = ∑

i

.
mout,i ·

l4

∣∣∣∣→τ · →n4

∣∣∣∣
l3

∣∣∣∣→τ · →n3

∣∣∣∣ + l4

∣∣∣∣→τ · →n4

∣∣∣∣ (35)
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The rivulet model assumes that multiple equally spaced rivulets of the same shape are
formed when the water film breaks up. To retain this feature better when extending the
two-dimensional rivulet model to a three-dimensional model, m is introduced to represent
the total number of rivulets.

m =

l1

∣∣∣∣→τ · →n1

∣∣∣∣ + l2

∣∣∣∣→τ · →n2

∣∣∣∣
λ

(36)

where l1 and l2 are the side lengths of faces one and two, respectively. By distributing the
total number of rivulets on the outflow face according to the direction of the shear stress,
one obtains

m3 = m ·
l3

∣∣∣∣→τ · →n3

∣∣∣∣
l3

∣∣∣∣→τ · →n3

∣∣∣∣ + l4

∣∣∣∣→τ · →n4

∣∣∣∣ (37)

m4 = m ·
l4

∣∣∣∣→τ · →n4

∣∣∣∣
l3

∣∣∣∣→τ · →n3

∣∣∣∣ + l4

∣∣∣∣→τ · →n4

∣∣∣∣ (38)
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In the subsequent calculation grid, the number of rivulets on all of the inflow surfaces
is superimposed to obtain the total number. The average spacing of the rivulets is calculated
using Equation (36):

−
λ =

l1

∣∣∣∣→τ · →n1

∣∣∣∣ + l2

∣∣∣∣→τ · →n2

∣∣∣∣
m

(39)

2.3. Roughness Model

The roughness of the airfoil surface affects the flow process of the water film when
it is driven by a constant air speed. First, the expression for the Reynolds number of the
water film is defined as

Re f =
QV
L·νl

(40)

where L is the wetting width of the water film and νl is the kinematic viscosity of the
liquid. According to the equation proposed by Myers [22] for predicting the thickness of a
continuous water film, one obtains

h3

3

(
σ

∂3h
∂x3 − ρg

∂h
∂x

cos α + ρg sin α

)
+

h2

2
T1= µQV (41)

For a two-dimensional water film, the above equation can be simplified as

2ρl g sin αh3+3τh2= 6µlQV (42)

where ρl is the density of the water film, g is the acceleration of gravity, µl is the viscosity of
the liquid, QV is the volume flow rate, and h is the average water film thickness. Then,

h = (
2µlQV

τ
)

1
2 (43)

Due to the fact that the air flow rate is much greater than the liquid flow rate during
the flow of the water film, the expression for the airflow shear force can be obtained as

τ = f i
1
2

ρaU2
a (44)

where fi is the interfacial shear factor, Ua is the air speed, and ρa is the air density. The
relationship between the interfacial shear coefficient fi and the water film thickness can be
obtained by combining Equations (40), (42), and (44):

fi =
4µlRe f L

h 2ρlρaU2
a

(45)

According to Equation (45) and the experimental summary of Zhao et al. [23], the
relationships between the Reynolds number and the average thickness of the water film
and those between the Reynolds number and the interfacial shear coefficient were obtained
for different roughness values, as shown in Figure 4.

Based on the expression shown in Figure 4b, one can assume that

fi= C·Re−0.1144
f (46)

A linear fit to the relationship between the coefficient C and the roughness factor
Rz yields

fi = (0.0039 − 11.7422Rz)·Re−0.1144
f (47)
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Combining Equations (44) and (47) reveals that the expression for the modified shear
force τr considering roughness is

τr = (1 − 3003.1151Rz)·τ (48)
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Figure 4. Relationships between the Reynolds number of water film and the average thickness and
interfacial shear coefficient under different roughness values: (a) Relationship between the Reynolds
number of water film and the average thickness of water film [23]; (b) Relationship between the
Reynolds number of water film and the interfacial shear coefficient.

3. Experimental System

To verify the accuracy of the theoretical model, experiments were conducted on the
flow and breakup of water films on the wing surface at low air speeds. The experimental
platform was based on an open straight-flow and low-speed wind tunnel in the Human–
Machine and Environmental Engineering Laboratory of Beihang University, as shown in
Figure 5. It mainly consisted of a wind tunnel, spray device, image observation system,
data acquisition system, and data-processing system.
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Figure 5. Water film breakup experimental system.

As shown in Figure 5, the main body of the wind tunnel included a fan, stabilisation
section, contraction section, test section, and diffusion section. The fan model used was
an SCH-HD900D4-L180, which was controlled by an ABB controller. The air speed was
calibrated by using a CP300 multifunctional differential pressure transmitter with an
adjustable range of 0–30 m/s. Figure 6 shows the relationship between wind speed in the
test section of wind tunnel and the frequency of the fan. It can be seen from the calibration
results that there was a good linear relationship between them. The experiment shows that
the fan has good frequency-conversion stability.

The length of the test section was 1000 mm, with a cross section of 300 mm × 400 mm.
The experiments were conducted at an air pressure of 0.3 MPa. High-pressure air was
mixed with water and passed through a siphon air-atomising nozzle. Water droplets
impinged on the airfoil to form a water film. The tests showed that the median particle
size of the nozzle was 30 µm. A high-performance camera (CANON, EOS 5D Mark IV)
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was used to capture video through the top viewing window of the test section at 60 fps.
The camera was connected to a computer for real-time remote control, monitoring, and
data transfer. The captured video images were postprocessed using Photoshop. The actual
length was calibrated using pixels (1 pixel≈ 0.253 mm). The camera calibration uncertainty
was 0.2 pixels. The width, spacing, flow distance, and other parameters of rivulets were
measured and calculated in pixels. The manual data-processing uncertainty was 1 pixel.

The experimental samples were NACA0012 straight-wing and sweptback-wing mod-
els, both with a chord length of 150 mm and span of 80 mm, as shown in Figure 7. The
sweep angle of the sweptback wing was 20◦.
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Figure 7. Experimental samples: (a) Straight wing; (b) Sweptback wing.

The static contact angle of the wing surface, measured with a static contact angle-
measuring instrument and analysed using the image-profiling method, was 97 ± 2◦. The
schematic diagram of the experimental measurement is shown in Figure 8. The experi-
mental temperature was 21.9 ◦C. In order to better observe the experimental phenomenon
of water film breakup, the air speed was set from 15 to 30 m/s. The total water flow rate
was constant. The liquid water content was 4.80–8.50 g/m3. The liquid water content was
calibrated by measuring the mass difference of the sponge before and after absorbing the
water. The mass difference was divided by the product of the upwind area of the sponge,
air speed, and testing time to obtain the liquid water content. An EX-H series microbalance
was used, whose measurement range was 0–210 g with a measurement error of 0.02 mg.
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4. Results and Analysis
4.1. Validation of the Simulation Model

The Fluent user-defined function was used to simulate and analyse the same conditions
as the experiments to verify the accuracy of the rivulet model. First, the droplet movements
were programmed and modelled based on the Eulerian transport equations, and then the
local droplet collection efficiencies on the surface of the wing were calculated. This method
has been validated and applied by many researchers [24,25]. The water droplet collection
efficiencies for the straight wing are shown in Figure 9. Second, the relevant program was
written according to the theoretical model to calculate the overflow water distribution and
water film breakup process on the wing surface, based on the results of the airflow field
and water droplet impingement characteristics.
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Research on dynamic contact angles has generally addressed forward and backward
angles in the flow direction. The angles on either side of the rivulet cross section have
been less well studied. However, they can significantly affect the rivulet flow shape. The
experiments showed that the contact angles on both sides of the rivulet were significantly
less than the static contact angle of 97.4◦ when the air speed was low. Observing the
experimental phenomena at different air speeds indicated that the contact angle may be
related to the surface material properties and air speed.

Owing to the small number of studies on the side contact angle of the rivulet, the
contact angle on both sides of the rivulet is unknown. To determine the value of the
contact angle, a range of contact angles was considered from 2◦ to 64◦ at an air speed of
30 m/s. The results of the simulation are shown in Table 1, where A is the cross-sectional
width of a single rivulet and λ is the distance between the centre lines of each rivulet. The
width and spacing of the rivulets decrease with increasing contact angle. Simulation and
experimental results reveal that the simulation error for the profile of the rivulets was
minimised when the contact angle of the current theoretical model was set at 2◦ to 4◦. For
simplicity, a uniform contact angle of 2.5◦ was used for the subsequent simulations for all
test conditions.

Table 1. Comparison of rivulet shape parameters under different contact angles.

Contact Angle (deg) A (mm) λ (mm)

Simulation

2 2.75 2.51
4 1.57 1.89

16 0.41 0.55
32 0.20 0.27
64 0.09 0.13

Experiment - 1.74 ± 0.30 3.22 ± 0.30
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In order to illustrate the experiments more visually, the experimental phenomenon of
water film breakup observed at an air speed of 20 m/s is shown in Figure 10.
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Figure 10. The experimental phenomenon captured at an air speed of 20 m/s.

Comparisons of the experimental and simulated results for the straight and sweptback
wings are shown in Figures 11 and 12, where the contact angle is 2.5◦. The deviations
between simulation and experimental observation are shown as well. The results reveal
that the error between the experiment and the simulation was less than 40% for the spacing
and width of the rivulet flow and less than 20% for the water film breakup location and
rivulet flow velocity, indicating that the simulation method is feasible.
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Figure 11. Comparison of experiment and simulation results for a straight wing: (a) The spacing
between rivulets; (b) The width of the rivulets; (c) Water film breakup location as a percentage of the
total chord; (d) Rivulet velocity at 1/2 chord position.

In addition, the following rules can be obtained:

• When the flow rate of the water supply from the nozzle is constant, an increase in
the air speed delays the breakup of the water film. This is because, when the air
speed increases, the shear force on the surface of the wing also increases, resulting in a
decrease in the critical thickness of the water film breakup.
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• The width and spacing of the rivulets decrease as the air speed increases. However, the
velocity of the rivulet flow gradually increases. According to Equations (9) and (23)–(26),
the rivulet flow velocity is proportional to τ1/3, and the spacing of the rivulets is
proportional to τ−2/3. Thus, the shear stress increases with an increase in air speed,
resulting in an increasing rivulet velocity and a decreasing rivulet spacing.
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The simulations were performed under the same conditions with hexahedral meshes
and triangular prism meshes at a 30-m/s air speed. The results obtained for each parameter
are very close. The water film breakup location is shown in Figure 13, where the blue
area represents the continuous water film region, the green area represents the rivulet flow
region, and the red area represents the location where the water film breaks up. This shows
that the simulation model is well adapted to different grid topologies. The grid shape does
not affect the calculation results.
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4.2. Effect of Surface Temperature on Water Film Breakup

To study the effect of surface temperature on water film breakup, the simulation was
carried out at a wind speed of 30 m/s and a liquid water content of 8.0 g/m3, keeping
the ambient temperature constant at 268.15 K and changing the surface temperature from
275.15 to 293.15 K. The results are presented in Table 2.

Table 2. Parameters of water film breakup under different surface temperatures.

Surface Temperature
(K)

A
(mm)

λ
(mm)

Thickness at the Breakup Location
(10−5 m)

Breakup Location
x/c (%)

Velocity
(mm/s)

275.15 2.46 2.88 3.14 16.93 113.13
278.15 2.45 2.85 3.11 16.03 112.48
283.15 2.41 2.81 3.07 15.15 110.82
293.15 2.30 2.71 2.95 12.71 105.82

The data in Table 2 shows that, as the surface temperature increases, the water film
breakup location moves forward, and the thickness, spacing, width, and flow veloc-
ity of the rivulets all decrease. When the surface temperature increases by 5 ◦C (from
278.15 to 283.15 K), the water film breakup location shifts forward by 5.49% and the thick-
ness, spacing, width, and flow velocity of the rivulets decrease by 1.29%, 1.40%, 1.63%,
and 1.48%, respectively. This is because the higher the surface temperature, the greater
the evaporation of the water. Consequently, the amount of water overflow on the airfoil
surface decreases.

4.3. Effect of Roughness on Water Film Breakup

According to the roughness model in Section 2.3, the simulation was performed by
taking a roughness factor Rz from 150 to 300 µm at an air speed of 30 m/s and a liquid
water content of 11.0 g/m3. The results are presented in Table 3.

Table 3. Parameters of water film breakup under different roughness factors.

Rz
(µm)

A
(mm)

λ
(mm)

Thickness at the Breakup Location
(10−5 m)

Breakup Location
x/c (%)

Velocity
(mm/s)

150 4.67 5.44 5.93 42.27 107.19
200 4.68 5.46 5.96 20.91 86.69
250 5.82 6.56 7.16 12.71 68.09
300 11.26 11.11 12.19 12.71 45.87

Based on the data, the following rules can be obtained:

• When the surface of the wing has a uniform roughness, an increase in roughness causes
the water film to break earlier. This is because, according to Equation (48), an increase
in roughness results in a smaller surface shear than that of a smooth surface. When
Equation (23) is combined, it is found that the dimensionless critical thickness becomes
smaller; therefore, the water film breaks up earlier.

• The thickness, width, and spacing of the rivulets increase with increasing surface
roughness. This is because, as the surface roughness increases, the surface shear stress
decreases. Combined with the experimental phenomenon, an increase in surface rough-
ness increases the resistance to water flow, which is manifested by the water flowing
more slowly and the width and spacing of rivulets becoming larger. From a theoretical
point of view, the same conclusion can be drawn from Equations (10) and (25)–(27).

• A comparison of the last two rows in Table 3 shows that the water film breakup
location does not change when the roughness increases to a specific value. This is
because the water film breakup location moves forward and coincides with the water
impingement limit. Since the experiments showed that the water film does not break
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up within the impingement range of the water droplets, the breakup location does not
move forward, even if the roughness increases further. Therefore, it can be concluded
that when the water flow rate is relatively high, water film breakup should occur
outside of the impingement limit. However, there is a critical value of roughness such
that, when the roughness is greater than or equal to it, water film breakup occurs at
the impingement limit.

• As the air speed increases, the droplet impingement zone increases, i.e., the impinge-
ment limit shifts back. Therefore, it can also be concluded that, as the air speed
increases, the critical value of the roughness also increases.

4.4. Effect of Water Film Breakup on Anti-Ice System

The influence of the water film breakup phenomenon on the thermal anti-icing perfor-
mance was further investigated. Based on previous research on the coupled heat-transfer
characteristics of thermal anti-icing systems [24,26], the corresponding anti-icing character-
istics of electrothermal anti-icing systems considering water film breakup were simulated
and analysed by means of the coupled heat-transfer of the inner and outer skin. First, the
heat load of the outer skin of the wing was calculated based on the external flow field and
droplet impingement. Then, the solid thermal conductivity and air–droplet two-phase
fluid heat-transfer effects were calculated simultaneously. The mass and energy equations
were solved until the wall temperature and heat flow reached equilibrium, at which time
the calculation was complete. A calculation flowchart is shown in Figure 14.
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Figure 14. Flow chart of heat transfer coupling calculation.

As an example, when the ambient temperature was 268.15 K, the air speed was set
to 30 m/s, and the liquid water content was 0.1 g/m3. For simplicity, a uniform heat flux
boundary was used to heat the leading edge of the inner skin of the wing. The thermal
conductivity of the skin was set to 120 W/m·K. The heat flux in the heated area was
4 W/cm2. The heating range is shown in Figure 15. It was approximately 14.7% of the total
chord length of the wing.
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Figure 15. Heated area of the anti-ice system.

The simulations show that, after considering the water film breakup, the rivulet
spacing is 0.78 mm, the width is 0.58 mm, and the breakup location is at approximately
12.7% of the total chord length of the wing. Figure 16 shows the contours of the amount of
runback water on the wing surface for the water film and rivulet models. Figure 17 shows
the chordal distribution of the overflow water for the water film and rivulet models at the
centre of the wingspan. The areas with positive horizontal coordinates represent the upper
surface of the wing, and the areas with negative horizontal coordinates represent the lower
surface. In addition, the black dotted line represents the limit of the heated zone, and the
blue dashed line represents the droplet impingement limit. The impingement limit of water
is approximately 12.7% of the total chord length.
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Figure 17. Distribution of the water flow rate along the chord.

As shown in Figure 17, the heated zone completely covers the water impingement
zone. In the heated zone, two curves appear to coincide in the figure. With the rivulet
model, the area of the overflow water is extended from 23.7% to 32.4% of the chord length
(an increase of 8.7%). This is because of the reduced area of overflow water compared



Aerospace 2022, 9, 570 17 of 18

with the traditional water film model. As a result, the area of heat exchange with the
environment is reduced, and the amount of water evaporating naturally decreases, resulting
in an increase in the range of overflow water. This shows that the rivulet model can better
simulate the distribution of overflow water on the wing surface and provide guidance for
better designs of anti-icing systems.

5. Conclusions

In current simulations in the field of aircraft anti-icing, the water film breakup location
and the shape of rivulets have not been investigated in detail. A systematic summary of the
effects of the surface temperature and roughness on the water film breakup phenomenon is
also required. Based on a summary of previous theoretical models, an engineered water
film breakup model, i.e., rivulet model, was established. Simulations of the water film
breakup location and parameters, such as the thickness, spacing, width, and flow velocity
of rivulets, were performed, and they were verified experimentally. Comparisons between
the simulation and experiment showed that the errors in the water film breakup location
and rivulet flow velocity were less than 20%, and the errors in the rivulet spacing and
width were less than 40%. In addition, the effects of the surface temperature and uniform
roughness on water film breakup were investigated. The rivulet model was also applied to
the hot-air anti-icing process on the wing surface. The following laws were derived.

• At a given water supply flow rate, an increase in air speed delays the breakup of the
water film. Meanwhile, the width and spacing of the rivulets decrease, and the rivulet
flow velocity increases.

• An increase in surface temperature advances the breakup of the water film. The
thickness, spacing, width, and flow velocity of the rivulets decrease with an increasing
surface temperature.

• If uniform roughness exists on the surface, the increased roughness causes the water
film to break earlier. The thickness, spacing, and width of the rivulets increase, and
the rivulet flow velocity decreases with an increasing surface roughness.

• When the water flow rate is relatively large, there is a critical value of roughness,
causing water film breakup to occur at the water impingement limit when the rough-
ness is greater than or equal to this value. At this point, the breakup location no
longer changes. As the air speed increases, the impingement limit moves downstream;
therefore, the critical value of the roughness increases.

These findings will help with the simulation, design, and optimization of anti-icing
systems for aircraft. The future scope will be extending the experiment further to cover a
wider range of environmental conditions. For example, higher surface roughness and air
speeds could be investigated to verify if similar laws could be obtained. In addition, the
experimental platform can be optimized to further measure the cross-sectional geometric
parameters of rivulets. Thus, the rivulet shape function will be modified, and the theoretical
model will be optimized.
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