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Abstract: Deep eutectic solvents (DESs) are a class of green and tunable solvents that can be formed
by mixing constituents having very low melting entropies and enthalpies. As types of materials that
meet these requirements, plastic crystalline materials (PCs) with highly symmetrical and disordered
crystal structures can be envisaged as promising DES constituents. In this work, three PCs, namely,
neopentyl alcohol, pivalic acid, and neopentyl glycol, were studied as DES constituents. The solid–
plastic transitions and melting properties of the pure PCs were studied using differential scanning
calorimetry. The solid–liquid equilibrium phase diagrams of four eutectic systems containing the
three PCs, i.e., L-menthol/neopentyl alcohol, L-menthol/pivalic acid, L-menthol/neopentyl glycol,
and choline chloride/neopentyl glycol, were measured. Despite showing near-ideal behavior, the
four studied eutectic systems exhibited depressions at the eutectic points, relative to the melting
temperatures of the pure constituents, that were similar to or even larger than those of strongly
nonideal eutectic systems. These findings highlight that a DES can be formed when PCs are used as
constituents, even if the eutectic system is ideal.

Keywords: deep eutectic solvents; green solvents; solid–solid transition; solid–liquid equilibria;
melting properties; differential scanning calorimetry

1. Introduction

Deep eutectic solvents (DESs) are eutectic systems prepared by mixing two or more
compounds to form a mixture with a melting temperature significantly lower than that
of the individual constituents [1,2]. As a new generation of designer and green solvents,
DESs are promising alternatives for overcoming the drawbacks of conventional solvents—
particularly, their toxicity and environmental impacts [3–5]. Various DESs have been
reported as potential green solvents that outperform conventional organic solvents in
extraction, separation processes, and bioapplications [6–12].

For various applications, DESs must be liquid at the operating temperature. The
solid–liquid equilibrium (SLE) phase diagram of DESs allows for identifying the melting
temperature of the system at any composition. The SLE phase diagram and the position of
the eutectic point depend on the nonideality of the liquid phase, the melting properties of
the pure components, and the type of the formed solid phases [13].

In fact, the term DES is only applied for eutectic systems showing a substantial negative
deviation from ideal behavior, i.e., strong hydrogen bonding interactions [14]. In many
cases, mixing halide salts as hydrogen bond acceptors (HBAs) with carboxylic acids [15–17],
polyols [18], sugars [19], sugar alcohols [20], or amides [21,22] as hydrogen bond donors
(HBDs) results in the formation of eutectic systems with a substantial negative deviation
from ideality and a low eutectic temperature. Accordingly, many studies regarding the
SLE of DESs have focused on ionic constituents as HBAs. Nevertheless, the applicability of
ionic DESs is somewhat restricted due to their high hygroscopicity, their thermal instability,

Molecules 2022, 27, 6210. https://doi.org/10.3390/molecules27196210 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27196210
https://doi.org/10.3390/molecules27196210
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-1443-1517
https://orcid.org/0000-0001-9820-7410
https://doi.org/10.3390/molecules27196210
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27196210?type=check_update&version=1


Molecules 2022, 27, 6210 2 of 12

and the toxicity of some halide salts [23]. Moreover, the strong electrostatic interactions
occurring in the liquid phase endow ionic DESs with viscosity and a high density [24–28].

To overcome the main drawbacks of ionic DESs, particularly their toxicity and hy-
groscopicity, natural organic compounds have recently been suggested as constituents of
hydrophobic nonionic eutectic systems [29–32]. Simple organic compounds have been
used to prepare nonionic eutectic systems that were found to be superior to ionic DESs and
ionic liquids in terms of viscosity, economy, and performance [33,34]. However, because
most nonionic eutectic systems studied in the literature are nearly ideal mixtures, their
eutectic temperature is not significantly lower than the melting temperatures of the pure
constituents [6,35]. To construct eutectic systems with a large depression in the melting
temperature at the eutectic point, mixing components that have low melting entropies and
enthalpies is an effective strategy [36]. For instance, constituents with rigid and symmetri-
cal molecular structures have been shown to possess sufficiently low melting entropies to
form eutectic systems with low eutectic temperatures [35].

The present work studies plastic crystalline materials (PCs) as constituents of eutectic
systems with low eutectic temperatures. PCs are solid compounds with disordered and
symmetrical crystal structures, i.e., a cubic lattice, and thus they possess extremely low
melting entropies and enthalpies. Due to their unique mechanical and conducting prop-
erties, PCs have been used in various applications [37,38]. In this study, three PCs that
have the chemical nature of commonly used DES constituents, namely, monocarboxylic
acids, alcohols, and diols, were investigated. The three PCs were mixed with L-menthol
or choline chloride (ChCl) to form four eutectic systems. The solid–plastic transition and
melting properties of the pure PCs and the SLE phase diagram of the four eutectic systems
were measured using differential scanning calorimetry (DSC). The SLE phase diagram was
modeled to obtain the position of the eutectic point of the system.

2. Results and Discussion
2.1. Properties of Pure PCs

Due to their symmetrical crystal structure, PCs exhibit an extremely low melting
entropy. Timmermans [39] reported an upper limit of 5 kcal mol−1 K−1 (~2.5 R) for the
melting entropies of PCs. As a result of their very small melting entropies, PCs tend to have
higher melting temperatures than their chemical isomers. Figure 1 shows a comparison
between the melting properties of various pentyl (C5) alcohol (Figure 1A), monocarboxylic
acid (Figure 1B), and diol (Figure 1C) chemical isomers. As seen in Figure 1A, the melting
temperatures of linear C5 alcohols (1-, 2-, and 3-pentanol) are similar. In contrast, tert-
amyl and neopentyl alcohols exhibit significantly higher melting temperatures. Neopentyl
alcohol is the only C5 alcohol that is solid at room temperature. Similarly, the melting tem-
perature of pivalic acid (Figure 1B) and neopentyl glycol (Figure 1C) are significantly higher
than those of their chemical isomers. The melting entropies of tert-amyl alcohol, neopentyl
alcohol, pivalic acid, and neopentyl glycol are below Timmermans’s limit, indicating that
these compounds are PCs.
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and 3-methylbutanoic acid; Miller [43] for 1,5-pentanediol; and Mellan [44] for 2,4-pentanediol. The 
melting entropies of 3-methylbutanoic acid and 2,4-pentanediol are unavailable in the literature and 
were estimated using the method of Jain et al. [45]. 
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Figure 1. Melting temperatures (Tm) and melting entropies (∆sm/R) of various isomers of C5 alcohols
(A), monocarboxylic acids (B), and diols (C). Experimental data were taken from Lohmann et al. [40]
for 1-, 2-, and 3-pentanol; Parks et al. [41] for tert-amyl alcohol; Timmermans [42] for valeric and
3-methylbutanoic acid; Miller [43] for 1,5-pentanediol; and Mellan [44] for 2,4-pentanediol. The
melting entropies of 3-methylbutanoic acid and 2,4-pentanediol are unavailable in the literature and
were estimated using the method of Jain et al. [45].

Upon cooling, PCs transform from high-symmetry disordered solid states (plastic
states) to low-symmetry ordered solid states [37]. The solid–plastic transition can occur in
a single or several phase transitions, and the associated enthalpy is larger than the plastic–
liquid transition, i.e., the melting [39,46]. Figure 2 shows the DSC curves of the studied PCs,
namely, neopentyl alcohol, pivalic acid, and neopentyl glycol. As seen in Figure 2, a single
solid–plastic transition was observed. The solid–plastic transition (first peak) enthalpy
was larger than the melting enthalpy (second peak). The largest difference between the
solid–plastic transition and melting temperatures was observed in neopentyl alcohol, and
the largest difference between the solid–plastic transition and melting enthalpies was found
for neopentyl glycol.
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Figure 2. Differential scanning calorimetry curves of neopentyl alcohol (A), pivalic acid (B), and
neopentylglycol (C), showing the solid–plastic transition temperature (TS→P) and enthalpy (∆hS→P)
and the melting temperature (TP→L) and enthalpy (∆hP→L).

2.2. Eutectic Systems with PCs

In this work, the SLEs of three eutectic systems containing L-menthol and PCs were
determined using DSC. Figure 3 shows the SLE phase diagram of L-menthol/neopentyl
alcohol, L-menthol/pivalic acid, and L-menthol/neopentyl glycol.

No eutectic temperature for the L-menthol/neopentyl alcohol eutectic system (Figure 3A)
could be measured due to the kinetic limitations in crystallization. The measured SLE data of
the L-menthol liquidus line in the range of xalcohol < 0.3 indicated that the system behaves ideally.
Moreover, due to the similar chemical nature of L-menthol and neopentyl alcohol, i.e., both are
alcohols, the liquid solution is expected to be ideal. Therefore, the eutectic temperature was
estimated using the ideal solution model as 259.2 K. The solid–plastic transition of neopentyl
alcohol did not influence the SLE phase diagram of the system because the solid–plastic
transition temperature was lower than the eutectic temperature of the system.
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Figure 3. Solid–liquid phase diagram of L-menthol/neopentyl alcohol (A), L-menthol/pivalic acid
(B), and L-menthol/neopentyl glycol (C).

As can be observed in the SLE phase diagram of the L-menthol/pivalic acid eutectic
system shown in Figure 3B, the L-menthol liquidus line showed a slight negative deviation
from the ideal behavior similar to that observed in L-menthol-based eutectic systems
containing other monocarboxylic acids [35]. Meanwhile, the pivalic acid liquidus line
showed a slightly positive deviation from the ideal behavior. Correspondingly, the eutectic
temperature of the system was slightly higher than the ideal eutectic temperature.

Figure 3C displays the SLE phase diagram of the L-menthol/neopentyl glycol eutectic
system, which exhibited a slightly positive deviation from the ideal behavior in the liquidus
lines of L-menthol and neopentyl glycol. Accordingly, the eutectic temperature was higher
than the ideal eutectic temperature. However, the difference between the eutectic temper-
ature of the system and the melting temperature of neopentyl glycol was approximately
110 K, which is considerably high for a nearly ideal eutectic system.

As seen in Figure 3B,C, the course of the liquidus lines of pivalic acid and neopentyl
glycol above the solid–plastic transition temperature was very steep due to the small melt-
ing enthalpies of the PCs. The slope of the liquidus line of the PCs decreased significantly
below the solid–plastic transition temperature due to the relatively large solid–plastic
transition enthalpy compared with the melting enthalpy. The order of the depression
at the eutectic point relative to the melting temperature of the pure constituents was
L-menthol/neopentyl alcohol > L-menthol/neopentyl glycol > L-menthol/pivalic acid,
which was consistent with the difference between the solid–plastic transition and melting
temperatures of the pure PCs (see Figure 2). Thus, the large difference between the solid–
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plastic transition and melting temperatures resulted in a more significant depression at the
eutectic point.

ChCl-based eutectic systems containing diols, such as ChCl/ethylene glycol, have been
studied extensively [18,47–50]. Owing to the low melting temperature and slightly negative
deviation from the ideal behavior of most diols, a small depression at the eutectic point is
observed in ChCl-based eutectic systems containing diols [18,51,52]. In this work, neopentyl
glycol, which possesses a high melting temperature, was mixed with ChCl. Figure 4 shows
the SLE phase diagram of the ChCl/neopentyl glycol eutectic system. ChCl is thermally
unstable and its melting properties cannot be measured or estimated indirectly [13]. Thus,
the ChCl liquidus line could not be calculated. The eutectic temperature was significantly
lower than the melting temperature of pure neopentyl glycol (~96 K). Despite the slightly
negative deviation from the ideal solution behavior, a large depression at the eutectic point
was observed in the system.
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black line is the ideal liquidus line of neopentyl glycol, and the blue line was calculated using the
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2.3. Comparison with Other Eutectic Systems

The eutectic systems studied in this work exhibited very low eutectic temperatures
compared with the melting temperatures of the pure constituents. Table 1 compares the
experimental eutectic temperatures and the differences between the eutectic temperatures
and the melting temperatures of plastic or common solid materials (Texp

e − Tm,2) in various
eutectic systems. First, three L-menthol-based eutectic systems containing monocarboxylic
acids, namely, L-menthol/pivalic acid, L-menthol/cyclohexane carboxylic acid, and L-
menthol/capric acid, are compared. The three eutectic systems are ideal mixtures [35],
among which L-menthol/pivalic acid possesses the lowest eutectic temperature and the
largest depression at the eutectic point. Thus, when selecting eutectic system constituents
from a pool of substances sharing similar chemical natures, PCs can be expected to form
deeper eutectics.
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Table 1. A comparison between the melting temperatures of pure constituents (Tm), the experimental
eutectic temperatures (Texp

e ), and the depressions at the eutectic points relative to the melting temper-
atures (Texp

e − Tm,2) of the pure constituents of eutectic systems studied in this work and found in
the literature.

Component 1 Component 2 Tm,2/K Texp
e /K (Texp

e − Tm,2)/K

L-menthol Pivalic acid a,b 308.7 260.6 −48.1
Cyclohexane carboxylic

acid [35] 299.4 265.0 −34.4

Capric acid [35] 303.9 279.0 −24.9
Neopentyl alcohol a,b 328.9 259.2 c −69.7

Thymol [53] 322.7 271.7 −51.0
Phenol [54] 313.9 261.3 −52.6

Neopentyl glycol a,b 401.2 291.8 −109.4
Camphor a [32] 450.4 275.7 −174.7
Borneol a [32] 480.6 286.7 −193.9
Sobrerol [32] 420.2 – d –

Choline chloride a Neopentyl glycol a,b 401.2 305.1 −96.1
Urea [55] 405.2 297.7 −107.5

Betaine Urea [56] 405.2 359.3 −45.9

Sulfamic acid Urea [57] 405.2 351.1 −54.1

Note: a plastic crystalline material; b measured in this work; c ideal eutectic temperature; and d the eutectic
composition is near pure L-menthol.

Second, three L-menthol-based eutectic systems containing alcohols, i.e., L-menthol/
neopentyl alcohol, L-menthol/thymol, and L-menthol/phenol, are compared. L-menthol/
thymol and L-menthol/phenol show strong negative deviations from the ideal
behavior [53,54]. In contrast, L-menthol/neopentyl alcohol is an ideal eutectic system.
As seen in Table 1, the values of (Texp

e − Tm,2) are considerably small for L-menthol/thymol
and L-menthol/phenol. At the same time, L-menthol/neopentyl alcohol shows a signifi-
cantly low eutectic temperature. Thus, ideal eutectic systems containing PCs can possess
lower eutectic temperatures than strongly nonideal eutectic systems.

Third, four eutectic systems containing L-menthol with constituents having high
melting temperatures, namely, neopentyl glycol, camphor, borneol, and sobrerol, are
compared. As seen in Table 1, the L-menthol/neopentyl glycol, L-menthol/camphor, and
L-menthol/borneol eutectic systems show significantly low eutectic temperatures, with
(Texp

e − Tm,2) values of larger than 100 K. In contrast, the eutectic temperature of the L-
menthol/sobrerol eutectic system is almost equal to the melting temperature of L-menthol,
and its eutectic composition is very close to that of pure L-menthol. This can be attributed
to the large difference between the melting temperature of L-menthol and sobrerol [36].
Thus, deep eutectic systems containing constituents that have large differences between
their melting temperatures can be formed when the constituent with the high melting
temperature is a PC.

ChCl is a PC with a significantly large difference between its solid–plastic transi-
tion temperature (351.2 K [13]) and its melting temperature, which should be at least its
decomposition temperature (~575 K). This property renders ChCl suitable for forming
DESs. The ChCl/urea eutectic system was the first DES that was found to be liquid at
room temperature [55]. Urea and neopentyl glycol possess similar melting temperatures;
however, urea is not a PC. As seen in Table 1, ChCl/neopentyl glycol shows a similar
eutectic temperature and (Texp

e − Tm,2) value to those of ChCl/urea, forming a liquid
solution near room temperature. A comparison of a DES containing betaine or sulfamic
acid as an HBA instead of ChCl and urea as an HBD with the ChCl/urea eutectic system
revealed that the eutectic temperature of the latter is significantly lower than that of the
betaine/urea and sulfamic acid/urea eutectic systems. This clearly emphasizes the unique
character of ChCl—and PCs in general—for forming DESs. In conclusion, eutectic systems
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showing significant depressions at the eutectic points were obtained using PCs as one or
both constituents. The very low melting entropies and enthalpies of the PCs contributed to
the significant depressions in the melting temperatures of the mixtures.

3. Materials and Methods
3.1. Eutectic Systems

ChCl (≥98%), L-menthol (≥99%), neopentyl alcohol (≥99%), pivalic acid (≥99%),
and neopentyl glycol (≥99%) were purchased from Merck (Germany). The ChCl and
neopentyl glycol were dried under vacuum (~1 mbar) at 358 and 313 K, respectively, for
at least 24 h. The water content of the pure constituents was checked using a Karl Fischer
coulometer (Hanna Instrument, Woonsocket, RI, USA) to ensure that it was below 0.1 wt%.
The four eutectic systems, namely, L-menthol/neopentyl alcohol, L-menthol/pivalic acid,
L-menthol/neopentyl glycol, and ChCl/neopentyl glycol, were prepared by weighing the
pure constituents using a balance (precision 0.1 mg, Sartorius, Germany) and mixing them
in sealed vials under heat until clear liquids were formed.

3.2. DSC

The solid–plastic transition and melting properties of the pure PCs and the SLE
data were measured using a DSC instrument (NETZSCH DSC 200 F3, Germany), which
was calibrated using adamantane, bismuth, cesium chloride, indium, tin, and zinc as
the calibration standards. The standard uncertainties of the sensitivity and temperature
measurements were determined to be 0.3% and 0.1 K, respectively.

The DSC crucibles were filled in triplicate with the pure PCs. The samples were melted
at a heating rate of 5 K min−1, followed by a 5 min isothermal run, and then they were
crystallized at a cooling rate of 5 K min−1 to a final temperature of 193 K. A second heating
run was performed at a rate of 5 K min−1. The transition temperature and the transition
enthalpy were determined using the second heating run as the onset temperature and
the peak area, respectively. The solid–plastic transition and melting temperatures and
enthalpies of neopentyl alcohol, pivalic acid, and neopentyl glycol are shown in Table 2.

Table 2. Transition temperatures (Ttr) and enthalpies (∆htr) and melting temperatures (Tm) and
enthalpies (∆hm) of the studied plastic crystalline materials.

Compound Ttr/K ∆htr/kJ mol−1 Tm/K ∆hm/kJ mol−1

This work Literature This work Literature This work Literature This work Literature

Neopentyl
alcohol 235.9 ± 0.1 242.1 a 4.46 ± 0.06 4.6 a 328.9 ± 1.2 328.1 a 4.01 ± 0.03 3.5 a

Pivalic acid 279.7 ± 0.1 278.3 b 7.99 ± 0.32 8.18 b 308.7 ± 0.2 309.1 b 2.15 ± 0.13 2.27 b

Neopentyl
glycol 314.7 ± 0.1 315.2 a 12.86 ±

0.20 12.8 a 401.2 ± 0.1 402.5 a 4.16 ± 0.06 4.3 a

Note: a data were taken from Granzow [58], and b data were taken from Singh and Glicksman [59].

The eutectic system samples were quenched at 198 K for one hour and annealed at 253 K for
one day to facilitate the crystallization. The crystallized samples were ground to a fine powder
using a mortar and pestle in a cold room at 253 K. The DSC crucibles were filled with the ground
solid in triplicates. The solidus and liquidus temperatures of the samples were measured using
DSC at a rate of 5 K min−1. The solidus and liquidus temperatures were determined as the onset
and peak maximum temperatures of the corresponding peaks, respectively. The experimental
SLE data can be found in Tables S1–S4 in the Supplementary Materials.
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3.3. SLE Modeling

The experimental SLE data confirmed that the system is of the simple eutectic type.
The liquidus line of the components showing no solid–plastic transition was calculated
as follows:

ln xL
i γL

i = −∆hm,i

RT

(
1− T

Tm,i

)
(1)

where xL
i and γL

i are the mole fraction and activity coefficients of component i in the liquid
phase, respectively; T is the liquidus temperature; ∆hm,i and Tm,i are the melting enthalpy
and temperature of component i, respectively; and R is the universal gas constant.

For the PCs, the liquidus line was calculated as follows [60]:

ln xL
i γL

i = −∆hm,i

RT

(
1− T

Tm,i

)
− ∆htr,i

RT

(
1− T

Ttr,i

)
(2)

where ∆htr,i and Ttr,i are the solid–plastic transition enthalpy and temperature of component
i, respectively.

The SLE phase diagram of the L-menthol-based eutectic systems was calculated
assuming the ideal solution model, i.e., γL

i = 1, using Equations (1) and (2) for the L-
menthol and the PCs, respectively. The solid–plastic transition and melting properties of
the PCs measured in this work (Table 2) were used, and those of L-menthol were taken
from the literature (Tm,i = 314.6 K and ∆hm,i = 13.74 kJ mol−1 [35]).

The ChCl/neopentyl glycol eutectic system showed a negative deviation from the
ideal behavior. The activity coefficients of neopentyl glycol in the ChCl/neopentyl glycol
eutectic system were calculated using the following Redlich–Kister polynomial equation,
with one parameter [61]:

ln γL
i =

A
RT

(1− xi) (3)

The binary interaction parameter A was fitted to the neopentyl glycol experimental
liquidus data (Texp

i ), minimizing the following objective function:

F(T) =
n

∑
i=1


(

Texp
i − Tcal

i

)2

n


1
2

(4)

where n is the number of data points. The calculated binary interaction parameter A was
−2.9192 kJ mol−1.

4. Conclusions

This work demonstrates the formation of eutectic systems with low eutectic tempera-
tures using PCs as constituents. Three PCs having chemical natures resembling common
HBDs used in the DES literature, namely, monocarboxylic acids, alcohols, and diols, were
selected in this work. The solid–plastic transition and melting properties of the three PCs
were measured using DSC. The SLE phase diagrams of four eutectic systems containing
the three PCs and L-menthol or ChCl were determined via DSC and modeled using the
ideal solution model and Redlich–Kister polynomial equation (with one parameter).

The SLE phase diagrams reported in this work showed that PCs can form eutectic
systems with large depressions at the eutectic points relative to the melting temperatures of
the pure constituents. Despite having melting temperatures significantly higher than those
of their structural isomers, the PCs possess very low melting enthalpies and entropies,
increasing the slopes of the liquidus lines of the pure constituents above the solid–plastic
transition temperatures and resulting in low eutectic temperatures. However, because the
solid–plastic transition enthalpies are larger than the melting enthalpies of the PCs, the
slopes of the liquidus lines below the solid–plastic transition temperatures become less
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steep. Hence, PCs with large differences between the solid–plastic transition temperatures
and the melting temperatures were found to form deeper eutectics.

Despite the nearly ideal behavior observed in the studied systems, the eutectic temper-
ature depressions were comparable or even larger than those observed in strongly nonideal
eutectic systems containing common crystalline solids. For practical applications, it is
more important to have a DES that is liquid and lowly viscous at the operating conditions
independent of the nonideality of the system. Thus, ideal eutectic systems containing PCs
could be promising green solvents for various applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27196210/s1, Table S1. Solid–liquid equilibria data
of the L-menthol/neopentyl alcohol eutectic system. Table S2. Solid–liquid equilibria data of the L-
menthol/pivalic acid eutectic system. Table S3. Solid–liquid equilibria data of the L-menthol/neopentyl
glycol eutectic system. Table S4. Solid–liquid equilibria data of the ChCl/neopentyl alcohol eutec-
tic system.
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