
TECHNISCHE UNIVERSITÄT MÜNCHEN

TUM School of Engineering and Design

Dynamic Analysis of Composite Plates in Thermal

Environments:
Numerical and Experimental Studies

Sourav Chandra

Vollständiger Abdruck der von der TUM School of Engineering and Design der

Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz: Prof. Dr.-Ing. KlausDrechsler

Prüfer der Dissertation: 1. Prof. Dr.-Ing. Steffen Marburg

2. Prof. Dr. SantoshKapuria

Die Dissertation wurde am 07.11.2022 bei der Technischen Universität München

eingereicht und durch die TUM School of Engineering and Design am 06.06.2023

angenommen.





"Take up one idea. Make that one idea your life — think of it, dream of it, live on that

idea. Let the brain, muscles, nerves, every part of your body, be full of that idea, and

just leave every other idea alone."

The Complete Works of Swami Vivekandanda (Volume I)





I dedicated this thesis to

My mother Sumitra Chandra, my father Ananda Kishore Chandra, and my uncle Barun Kr. Datta for
their unconditional love and support

and
the Almighty God





Acknowledgment

While walking down memory lane at the end moment of my journey as a doctoral researcher, I

must confess that the lane I left behind was defined by those who surrounded me. This journey

was overwhelmed with the mixed experience of struggle, challenges, happiness, and blessing.

However, this kaleidoscopic journey would never have been so adventurous and enjoyable without

the strong support from my well-wishers. Now, I take this opportunity to pay my homage to those

well-wishers.

I convey my deepest gratitude to Prof. Dr.-Ing. Steffen Marburg, my supervisor and professor

of the Chair of Vibroacoustics of Vehicles and Machines. Your guidance approach allows me to

grow as an independent researcher. Furthermore, your valuable guidance and suggestions helped

me to achieve my research goal, and encouraged me to learn from you. As an ideal doctor father

(Doktorvater in German), you have always supported me in the difficult spell of the research.

Thank you Steffen, for showing untiring patience and faith in me, and giving me the freedom to

explore my research.

I wanted to thank my mentor, Dr.-Ing. Kheirollah Sepahvand for his valuable suggestions while

developing the German Academic Exchange Services (DAAD) research proposal. The discussions

with you during the initial days of my doctoral research helped me understand the stochastic finite

element methods.

I sincerely thank Prof. Dr. Vasant Matsagar, Dogra Chair Professor in the Department of Civil

Engineering, Indian Institute of Technology (IIT) Delhi, who inspired me while conducting this

research. The discussion with you during your stay in Munich and Berlin has helped me to formu-

late the research objectives. You also motivated me to break my inertia and subsequently expand

the research domain. Furthermore, you have given me the opportunity to work in the Multi-Hazard

Protective Structures (MHPS) laboratory at IIT Delhi during the final period of my doctoral re-

search.

I also pay my gratefulness to Dr. Marcus Maeder, the Academic Adviser of our chair, for navigat-

ing me with novel ideas while conducting experiments at Weimar. I could remember our countless

meetings, which finally brought our experimental article to its present form. Dear Marcus, your

suggestions and discussions have helped me a lot to shape this dissertation.

I was grateful to Prof. Dr. Arup Guha Nioygi (Professor, Jadavpur University, Kolkata, India) and

Prof. Dr. Sreyashi Das (Associate Professor, Jadavpur University, Kolkata, India), who introduced

me to the research field of composite structures and finite elements; and inspired me to conduct the

research. I am always thankful to both of you for igniting my research aspiration.

vii



I would like to express my thanks to Elke Reichardt, Sabine Crnjanowic, and Martina Sommer for

helping me with administrative tasks at the Chair- especially Elke’s cooperation deserves much

acknowledgment. I also wanted to thank all the colleagues in our chair, and special thanks go

to Bettina Chocholaty, Martin Eser, Karl-Alexander Hoppe, Christopher Jelich, Felix Kronowet-

ter, Simone Preuss, Christian Kronowetter, Magdalena Scholz, Xiaodong Sun, Yuanyuan Liu, Dr.

Patrick Langer, Zhe Liu, Johannes Schmid and Jonas Schmid. I should offer my gratitude to Zhe

for taking the pain to read the first draft of my manuscripts. My present colleagues at the MHPS

laboratory at IIT Delhi also deserve the heartfelt gratitude, and the gratitude goes to Kusum Saini,

Rudroneel Manna, Sarranya Banerjee, Yash Chordiya, Sreenitya Singamsetty, Daniel H. Zelleke,

Akshay Baheti, Harshada Sharma, and Dr. Pravin S. Jagtap. You, the noble minds of TUM and

IIT Delhi, have always surrounded me and made my journey more exciting and enjoyable.

My journey in the TUM would never been started without the inspiration and support of Dr. Atanu

Sahu, Assistant Professor, National Institute of Technology (NIT) Silchar, and his wife, Dr. Anuja

Roy. You are the persons who have motivated me to apply to the DAAD-PhD Scholarship program,

and held me strongly during all the difficult spells of my doctoral research.

This homage remains incomplete without mentioning the friends whom I met in Germany, and

become my closest friends. I wish to convey my gratitude to Nikhil Ghodichore (IIT Delhi,

India), Debdeep Sarkar (Ruhr-Universität Bochum, Germany), Komal Jhala (TUM, Germany),

Anoop Kodakkal (TUM, Germany), Dr. Somdatta Goswami (Assistant Professor, Brown Uni-

versity, USA), Dr. Trinetra Mukherjee (Université de Bretagne Occidentale, France) for their

continual encouragement and valuable suggestions. Dear Dr. Ajay Singh (University of Luxem-

bourg, Luxembourg), my days in Munich would be more complicated without your support and

encouragement. Thanks for your continuous motivation.

I would like to express my deepest thanks to the DAAD for financially supporting this doctoral

research work. Additionally, the last semester of this doctoral research work is supported by the

Industrial Research & Development (IRD) Unit of IIT Delhi, I am also indebted to IIT Delhi.

When it comes to extending gratitude towards family, at the first opportunity, I convey my gratitude

to Frau Houshyar-Frazin Elfriede, I used to call her Oma, with whom I stayed during the entire

period of Munich. It is due to her love and affection, I never felt that I was away from home for

such a long time. During the alarming period of Corona breakout, we have tried to support each

other in our own way. Oma, thank you for your unconditional love and untiring attitude. I pray for

your good health and happiness. I also express my gratitude to her daughter Frau Carreta and her

family, who have considered me like their family member.

Expressing gratitude towards my mother, Sumitra Chandra, and my father, Ananda Kishor Chan-

viii



dra, would not be enough to convey my homage towards them; rather, I am honored to be their

child. Without the support from my parent, this journey would remain as an untold story. They

have strengthened my wings with their love and affection so that I can dare to fly. Dear Mam

and Baba, I can hardly understand the austerity you have sustained during these days; however,

your blessings are always with me. My family remains incomplete without mentioning my cousin-

sister, Ishita Pal, and her two daughters. It is due to them, my parents never felt lonely, even though

I was away from them for such a long duration. The silent prayer of my grandmother Kananbala

Datta, needs to be acknowledged in my upbringing and my entire education. Now, it is the time

to express my love and gratitude to my uncle (Chotomamau), Barun Kr. Datta, the best gift to my

life. He always remains on my side as a friend, philosopher, and guide. He inspired me to believe

in my own strength and extract positivity in every life spell. Chotomamu, I am incredibly grateful

to have you by my side.

The last but by no means the least, I am thankful to the Almighty for His countless blessing and

giving me the strength to accept the life gracefully.

"I do not pray to protect me from perils, let me be fearless.

Amidst sorrow and pain, I may not be consoled, let me overcome."

– Rabindranath Tagore (collected from the Geetanjali).

Munich, 09 November 2023

ix





Kurzfassung

In der vorliegenden Arbeit werden numerische und experimentelle Studien zu dynamischen Analy-

sen von laminierten Verbundstrukturen in unterschiedlichen thermischen Umgebungen vorgestellt.

Die numerischen Studien zielen darauf ab, die deterministischen und stochastischen dynamischen

Reaktionen von unversteiften und versteiften laminierten Verbundplatten bei unterschiedlichen

Temperaturen zu untersuchen. In der experimentellen Studie wird eine innovative, auf der op-

erationellen Modalanalyse (OMA) basierenden Messstrategie vorgestellt, um die experimentellen

Modalantworten von laminierten Verbundplatten bei verschiedenen Temperaturen zu bewerten und

anschließend die temperaturabhängigen elastischen und dämpfenden Eigenschaften zu ermitteln.

Verbundwerkstoffe werden zunehmend in der Automobil, und Luft- und Raumfahrtindustrie einge-

setzt, wo die aus Verbundwerkstoffen hergestellten Strukturen thermisch variierenden Umgebun-

gen und dynamischen Belastungen ausgesetzt sind. In Anbetracht der umfangreichen Anwendung

von Verbundwerkstoffstrukturen in der Automobil- und Luft- und Raumfahrtindustrie soll in dieser

Forschungsarbeit das deterministische und stochastische Verhalten der dynamischen Reaktion von

Verbundwerkstoffplatten in unterschiedlichen thermischen Umgebungen untersucht werden.

Die deterministische numerische Analyse beinhaltet eine verallgemeinerte Finite-Elemente (FE)

Formulierung, um das dynamische Verhalten von einfachen und versteiften laminierten Verbund-

platten in thermischer Umgebung zu analysieren. Die detaillierte Analyse der ungedämpften und

gedämpften dynamischen Antworten führt zur Erkenntnis, die versteiften Platten gegenüber den

einfachen Platten in thermischer Umgebung zu berücksichtigen. Im Allgemeinen verschlechtern

sich die elastischen Eigenschaften der Verbundplatten mit zunehmender Temperatur, während

die viskoelastischen Dämpfungseigenschaften mit zunehmender Temperatur bis zur Glasüber-

gangstemperatur ansteigen. Für die numerische Analyse werden die temperaturabhängigen Ma-

terialeigenschaften aus den in der Literatur verfügbaren statischen und quasistatischen Versuchen

abgeleitet. Die Dämpfungseigenschaften der Platten werden mithilfe von verschiebungsbasier-

ten und energiebasierten Ansätzen bewertet, wobei versteifte Platten bei höheren Temperaturen

bessere Dämpfungseigenschaften aufweisen. Für die stochastische dynamische Analyse wird die

verallgemeinerte polynomiale Chaosmethode (gPC) als Metamodell verwendet, um die Unsicher-

heit in der dynamischen Durchbiegung für einfache Platten aufgrund eines zufälligen mittleren

Temperaturanstiegs zu bewerten.

In der experimentellen Analyse werden die modalen Eigenschaften mehrerer antisymmetrischer

Kreuzlagen- und Winkellagenlaminate unter Verwendung der OMA bei verschiedenen Tempera-

turen bewertet. Die berührungslosen Anregungs- und Messstrategien werden eingesetzt, um die
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Herausforderungen bei der Durchführung des Experiments in einer geschlossenen Wärmekammer

zu bewältigen. Dieses Verfahren kann eingesetzt werden, um die in-situ Modaldaten einer Struk-

tur zu schätzen, ohne die Eingangsdaten zu erfassen. Darüber hinaus werden diese Modaldaten

verwendet, um die deterministischen temperaturabhängigen Materialeigenschaften von Verbund-

werkstofflamellen zu ermitteln. Für die Ermittlung der Materialeigenschaften wird ein zweistu-

figer Optimierungsalgorithmus verwendet. Der ermittelte Schermodul verschlechtert sich mit

zunehmender Temperatur; dies deutet auf eine starke Temperaturabhängigkeit des Schermoduls

hin.

Diese Dissertation dient als Grundlage für die Entwicklung einer leiseren und sichereren Ver-

bundwerkstoffstruktur in thermischer Umgebung. Die ersten beiden Veröffentlichungen ebneten

den Weg zur Kontrolle der dynamischen Reaktion von Verbundwerkstoffstrukturen und damit zur

Schaffung einer ruhigeren Umgebung. Die dritte Veröffentlichung befasste sich mit dem experi-

mentellen Verfahren zur Abschätzung der deterministischen temperaturabhängigen Materialeigen-

schaften von Verbundwerkstofflamellen in situ. Diese Arbeit kann erweitert werden, um die Un-

sicherheit in den Materialeigenschaften abzuschätzen. Die auf einem Metamodell basierende

stochastische dynamische Analyse wird in der vierten Veröffentlichung vorgestellt und kann er-

weitert werden, um die Zuverlässigkeit einer Verbundwerkstoffstruktur in thermischer Umgebung

zu untersuchen.
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Abstract

In the present thesis, numerical and experimental studies on dynamic analyses of laminated com-

posite structures in varying thermal environment are presented. The numerical studies aimed to

investigate deterministic and stochastic dynamic responses of both unstiffened and stiffened lami-

nated composite plates at different temperatures. The experimental study presented an innovative

measurement strategy, based on operational modal analysis (OMA), in order to evaluate exper-

imental modal responses of laminated composite plates at different temperatures and to subse-

quently identify the temperature-dependent elastic and damping properties. The composite mate-

rials are increasingly used in the automobile and aerospace industries, where the structures made of

composite materials are exposed to thermal environment together with dynamic loads. Considering

the extensive application of composite structures in the automobile and aerospace industries, this

research work intended to study the deterministic and stochastic behaviors of dynamic response of

composite plates in varying thermal environment.

The deterministic numerical analysis includes a generalized finite element (FE) formulation to

analyze dynamic response of unstiffened and stiffened laminated composite plates in thermal envi-

ronment. The detailed analysis of undamped and damped dynamic responses has suggested to con-

sider the stiffened plates rather than the unstiffened plates in varying thermal environments. Gen-

erally, elastic properties of composite lamina degrade with the increment of temperature, whereas

the viscoelastic damping properties increase with the increment of temperature until the glass

transition temperature is reached. For the numerical analysis, the temperature-dependent material

properties are derived from the static and quasi-static tests as available in research literature. The

damping performance of the plates is evaluated by using the displacement-based and energy-based

approaches, where stiffened plates show better damping performance at higher temperatures. For

stochastic dynamic analysis, the generalized polynomial chaos (gPC) expansion method is used as

a metamodel to evaluate stochasticity in dynamic deflection for unstiffened plates due to random

mean temperature increment.

In the experimental analysis, modal characteristics of several antisymmetric cross-ply and angle-

ply laminates are evaluated by using OMA at different temperatures. The noncontact-based exci-

tation and measurement strategies are used to address the challenges in conducting the experiment

within an enclosed thermal chamber. This procedure can be implemented to estimate the in situ

modal data of a structure without recording the input data. Furthermore, this modal data is used

to identify the deterministic temperature-dependent material properties of composite lamina. A

two-stage optimization algorithm is used for the material properties identification. The identified
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shear modulus degrades subsequently with the increment of temperature; this indicates a strong

temperature dependency for the shear modulus.

This thesis serves as a groundwork towards designing quieter and safer composite structures in

thermal environment. The first two publications have paved the way to control the dynamic re-

sponse of composite structures in order to create a quieter environment. The third publication has

dealt with the experimental procedure to estimate the deterministic in situ temperature-dependent

material properties of composite lamina. This work can be extended to estimate the uncertainty

in the material properties. The metamodel-based stochastic dynamic analysis is presented in the

fourth publication and can be extended to investigate the reliability of a composite structure in

thermal environment.
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Chapter 1

Introduction

The idea of potential usage of composite materials in aerospace industries as the principal struc-

tural materials was first perceived by N. A. de Bruyne [20], and he presented his idea at the Royal

Aeronautical Society, UK, in 1937. Since the late 1930s, the application of composite materials in

aerospace and automobile industries has increased in a broad range of areas. Essentially, different

socio-economic factors such as cost of energy, consequence of pollution, and quality of life are

the key drivers towards the movement of composite technology in the transportation sector. Fur-

thermore, scarcity of cheap source of energy stimulates the new technological development in the

transportation sector with aims of weight reduction and minimum energy usage without compro-

mising comfort, reliability, and safety of passengers. In this scenario, composite materials draw

significant attention to engineers and researchers. Apart from these benefits, composite materials

impart excellent mechanical properties in terms of strength, fatigue resistance, corrosion resis-

tance, fire resistance, and stability while subjected to varying kind of environmental exposures.

Furthermore, composite materials present superior mechanical properties and strength to weight

ratio. In recent years, technological development in aerospace and lightweight structural engineer-

ing is focusing to replace conventional structural materials with composite and/or hybrid materials

by blending metallic and nonmetallic fibers and polymers.

Initial large-scale application of composite materials in commercial aircraft was observed in 1985.

Thereupon the Airbus A320 reduced 15% of the air-frame weight by introducing composite mate-

rials in vertical and horizontal stabilizers. Furthermore, the new age commercial aircraft such as

the Boeing B787 and the Airbus A380 comprise composite materials in about 50% of their total

empty mass of the structure [52]. In addition to aerospace industry, composite materials are used

extensively in automobile industry to manufacture high-speed trains, sports-cars, etc. To develop

quiet and safe composite structures for aerospace and automobile vehicles, the corresponding re-

3



1 Introduction

search and development are much needed.

Composite plate-/shell-like structures are used in the fuselage and wing box of an aircraft. These

structures are integrated with stiffeners to improve the structural efficiency in terms of load-

carrying capacity, dynamic response, buckling, stress concentration, etc. Furthermore, stiffened

composite plates/shells contribute to weight reduction by reducing plate thickness without show-

ing any buckling tendency. Therefore, the advantages of plate-/shell-like composite structures can

exploited efficiently by attaching appropriate stiffeners.

A composite materials is a two-phase system. On the one hand, the phase which is stiffer and

stronger, and usually discontinuous, is termed as “reinforcement” (dispersed phase). On the other

hand, the less stiff and weaker phase is continuous and is called “matrix” (continuous phase) [139].

A generalized classification of composite materials based on the constituent phases is shown in Fig-

ure 1. Among the different composites, the graphite-epoxy, carbon-epoxy, and IM7-(intermediate

modulus carbon fibers)PEEK (polyetheretherketone) composites are extensively used in various

components of aircraft and unmanned aerial vehicles. For example, the carbon-epoxy and carbon-

PEEK composites are used in the fuselage and wing-box of the Airbus A350 [116]. It is also found

that the application of composite materials reduces the inspection and maintenance costs of the

structure. During the high-speed maneuvering of a vehicle, the ambient temperature of the vehicle

skin increases due to aerodynamic heating. The variation in temperature ultimately modifies the

material properties of the composite structure, thereby vibrational characteristics of the structure

also modified due to thermal variation. Generally, the matrix phase influences the temperature-

dependent behavior of elastic and damping properties of a composite lamina. A subsonic flight

(i.e., cruising speed less than 1 Mach) of an aircraft may encounter a temperature variation be-

tween −55 ◦C and 60 ◦C. The skin temperature of a supersonic flight cruising at 2.4 Mach could

reach up to 150 ◦C due to aerodynamic heating [120]. It is noted that thermosetting resin such as

epoxy is widely used in composite materials of aircraft structures. Generally, the glass transition

temperature, Tg, of epoxy increases with the increment of the temperature of cure. For example,

epoxy-based composites which are cured at 120 ◦C and 150 ◦C temperatures, have a upper limit of

the glass transition temperature of 100−130 ◦C and 150 ◦C, respectively [40]. Thereby, the glass

transition temperature of a composite material is dominated by the glass transition temperature of

the corresponding matrix base. Furthermore, the PEEK, a thermoplastic resin-based composite, is

a preferable choice where temperature of a structure is potentially high. The PEEK-based resin

has the high glass transition temperature, i.e., around 390 ◦C. A list of operating temperatures

for different resin types are given in [41]. Moreover, the graphite-epoxy and IM7-PEEK compos-

ite materials are characterized by a very low coefficient of thermal expansion. Therefore, these
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composite materials are extensively used in aerospace structures.

Composite materialsComposite materials
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Figure 1: Classification of composite materials based on constituent phases

As highlighted earlier, laminated composite plates made of graphite-epoxy and IM7-PEEK com-

posites are extensively used in important structural components of aircraft and automobiles. Dur-

ing maneuvering, these structures are exposed to varying thermal environments and dynamic loads.

To ensure a safe design of these composite structures along with maintaining a quieter environ-

ment, numerical and experimental studies on dynamic analyses of composite plates in thermal

environment are essential.

Outline of the dissertation

This dissertation is presented in two parts. In the first part, contributions are discussed chapter-

wise, and the appended publications are included in the second part. The present discussion is the

part of Chapter 1, where the state of the art for dynamic analysis of composite plates/shells is sum-

marized, followed by a discussion of the research contributions. In Chapter 2, applied numerical

and experimental methodologies are discussed. The summary of individual appended publications

is given in Chapter 3. Afterwards, the results and novelty of the present work are discussed in

Chapter 4 with reference to the available research literature. Finally, this dissertation is concluded

by discussing its research outcomes and future research outlooks in Chapter 5. Additionally, vali-

dation studies related to Publication 2 are given in Appendix A.
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1.1 State of the art

1.1.1 Plate theories

In 1959, Pister and Dong [131] presented the classical laminated plate theory (CLPT) for the

analysis of laminated composite plates. This study is considered as the most fundamental study

for the development of laminated composite plate theory. In the following years, Reissner and

Stavsky [142] and Dong et al. [38] have analyzed laminated composite plates subjected to static

load using the CLPT. In the CLPT, the shear deformation along the thickness has been ignored,

which is posed as one of the limitations of the CLPT. Since then, extensive research has been

carried out to address the limitation of the CLPT in various stages. The limitation of the CLPT has

been addressed with the introduction of first-order shear deformation theory (FSDT) [107, 141,

191, 197]. In the FSDT, the shear strain is assumed to be constant throughout the thickness. A

shear correction factor is introduced in this theory to account for the nonlinearity of the shear strain

along the thickness. The shear correction factor is a dimensionless quantity which accounts for the

discrepancy between the constant variation of the shear strain according to the CLPT and the

actual nonlinear variation of the shear strain. Typically, the finite element (FE) method [9, 12, 43]

is considered as a widely accepted structural analysis tool within the scientific community. The

analysis of composite plates is carried out using the CLPT or the FSDT within the finite element

(FE) framework. To overcome limitations of the FSDT, FE formulations based on various higher-

order shear deformation theories (HSDTs) [69, 74, 79, 100] and zigzag theory [39, 76] have been

developed. These theories are extended to estimate the thermoelastic stress distribution [39, 72,

76, 111, 132, 168] of laminated composite and sandwich plates subjected to quasi-static load.

Moreover, the transient response of laminated composite plates and shells has been studied in [71,

82] using the HSDTs.

A few review articles have been appeared which summarize the historical development of the

mechanics of composites [64] and various shear deformation theories [73, 74, 98, 101, 138]. Since

the early development and application of laminated composite plates, large-scale studies were

conducted based on different plate theories. Many state of the art surveys are conducted in bending,

vibration, and buckling of laminated composite plates, and a few selected studies [75, 149, 150,

202] are suggested here for reading. Furthermore, with the increasing usage of composite plates

for research and industrial applications, several text books [7, 33, 139, 185] are available to works

related to mechanics of composites.

While using composite plates as a principal structural member in spacecraft, aircraft, automobiles,

etc., the dynamic behavior of laminated composite plates in varying thermal environments need to

6



1.1 State of the art

be studied. Notwithstanding the inevitability, the vibration amplitude of a composite structure in

varying thermal environments should be minimized by implementing a suitable damping evalua-

tion strategy and devising appropriate design features so that structural performance and reliability

can be improved. It was mentioned earlier that stiffened panels made of laminated composite

plates are efficiently used to reduce the magnitude of vibration. A brief review of the past stud-

ies on the vibration of laminated composite plates subjected to external loads in varying thermal

environments is presented in what follows.

1.1.2 Vibration of composite plates in thermal environment

Theoretical and experimental studies on thermal effects in composite materials were initiated by

Halpin [58]. Later, Halpin and Pagano [59] and Whitney and Ashton [190] studied the bending,

buckling, and vibration of laminated composite plates in thermal environment. They used the gen-

eralized Duhamel-Neumann form of Hooke’s law to develop the governing equations of laminated

composite plates. The decrease in the dimensionless natural frequencies of graphite-epoxy lami-

nated composite plates due to the increase in the temperature and moisture content has been shown

by Ram and Sinha [134]. They used the FSDT to conduct the dynamic analysis by considering

the effect of the temperature and moisture content related residual stress. The decrement of the

dimensionless natural frequencies is mainly caused due to the degradation in the elastic properties

of the graphite-epoxy composite lamina with the increase in temperature and moisture content.

Furthermore, free vibration behavior of thick composite plates [127] and shells [102, 103] in hy-

grothermal environment has been studied by implementing various HSDTs. Shen and Yang [163]

and Shen et al. [162] have carried out a nonlinear flexural vibration analysis of functionally graded

shear-deformable fiber-reinforced laminated composite cylindrical shells in hygrothermal condi-

tion.

Transient response of composite plates and shells in thermal environment has been assessed by

various researchers. Huang et al. [67] studied the dynamic response of shear-deformable laminated

composite plates in hygrothermal environment using the HSDT. Later, Shen et al. [164, 165] have

examined the transient response in terms of the central deflection and bending moment for the

elastically supported shear-deformable laminated composite plates using the HSDT as proposed

by Reddy [139]. Naidu and Sinha [110] described variations in the nonlinear transient response of

thick doubly-curved graphite-epoxy laminated composite shells with the changing hygrothermal

environments. Researchers also examined the free and forced vibration responses of the graphite-

epoxy composite shells with multiple delaminations [125] and initial imperfection [112] in varying

hygrothermal environments. Recently, Garg and Chalak [51] have presented a state-of-the-art
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review article on the application of various FE formulations for analyzing laminated composite

and sandwich plates and shells in hygrothermal environment.

1.1.3 Damping in composite plates

Different types of damping

Controlling the dynamic response in lightweight structures made of laminated composite plates

or shells is a challenging task, although essential to ensure structural safety and passengers’ com-

fort. Additionally, structural vibration control ensures a better fatigue life and a quieter operational

environment. The vibration control of a structure is achieved by implementing a suitable damp-

ing strategy. Based on the mechanism, structural damping is classified into two broad categories:

passive damping and active damping. The passive damping in composite plates refers to energy

dissipation due to the interaction between fibers and matrix [62, 63]. Since passive damping is an

inherent property of a composite material, this damping is known as the intrinsic or inherent damp-

ing of composite structures [183]. Often, single or multiple viscoelastic layer(s) are embedded into

a host composite laminate to improve the efficiency of passive vibration control [44, 135]. On the

other hand, different active vibration control strategies are implemented by attaching smart mate-

rials, e.g., piezoelectric materials (PZMs) [77] and shape memory alloys (SMAs), with the host

composite plates. These smart materials require external power supply while being operational.

Generally, piezoelectric alloy (PZA) patches or PZA layers are embedded in a composite laminate

to improve the damping performance of the plate. Furthermore, SMA materials are available in dif-

ferent forms, such as SMA particles, SMA fibers, SMA wires, SMA sheets, etc. [25, 48, 152, 201],

and embedded in the laminated composite plates according to the functional requirements. Two

primary damping mechanisms and the associated damping materials are illustrated in Figure 2.

Other than these two damping mechanisms, semi-active damping mechanism is also used in vibra-

tion control, however not included in this discussion.

This dissertation is mainly concerns with temperature-dependent inherent damping behavior of

laminated composite plates. Therefore, upcoming discussions focus on viscoelastic damping be-

havior of composite materials in varying thermal environments.

Viscoelastic behavior of composites in thermal environment

Active damping imparts better vibration control at the expense of the efficient control algorithm

and external power supply, and these extra costs often render the system economically nonviable.
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Damping in laminated 
composite plate

Damping in laminated 
composite plate

passive dampingpassive damping

inherent dampinginherent damping viscoelastic damping layerviscoelastic damping layer

active dampingactive damping

shape memory alloyshape memory alloy piezoelectric materialpiezoelectric material

Figure 2: Classification of damping for laminated composite plates

Acknowledging these facts, passive damping is considered as the most cost-effective vibration

control strategy along with lower maintenance effort. Moreover, the passive damping mechanism

is more sensitive to temperature and is specifically influenced by the viscoelastic behavior of the

matrix part of the composites. In various temperature regimes of interest, the viscoelastic behavior

of composite materials is described by the glassy (near-room temperature), transition, and rubbery

regions [114]. The temperature-dependent variation in storage moduli and damping loss factor

of a typical viscoelastic material is shown in Figure 3. It indicates that the damping loss factor

increases with the increment of temperature from the glassy region and reaches its maximum value

at the glass transition temperature, Tg. The damping loss factor decreases with further increment

of the temperature beyond the glass transition temperature (Tg). The glass transition temperature

lies within the transition region. Notably, higher magnitude of damping properties at the elevated

temperature can be advantageously used for passive vibration control at higher temperature region.

In contrast to the damping behavior, storage modulus decreases with the increment of temperature.

In the glassy region, the degradation in the storage modulus is at a slower rate, whereas in the

transition region, a rapid degradation in the elastic moduli is observed. Essentially, beyond the

glass transition temperature, composite materials behave like a rubbery material, and its load-

carrying capacity becomes almost negligible [41]. Hence, the knowledge of the glass transition

temperature is essential for the efficient application of a composite material for a given operative

temperature range.

Traditionally, the application of an individual control technique in the form of either passive damp-

ing or active damping is preferred by researchers in the field of structural vibration control or

acoustic control. However, in few studies [10, 55, 91, 184] it is found that active vibration control

supported by passive vibration control has shown distinct advantages of robustness and stability

over the individual vibration control mechanism. Furthermore, this combined control strategy
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Figure 3: A representative diagram describing the temperature effect on storage modulus and loss
factor of a typical isotropic viscoelastic material

leads to an overall weight reduction as a result of smaller actuator size and lesser power require-

ment. The high bandwidth control of lightweight structures is greatly improved by adapting the

combined control strategy in order to improve the damping performance. Furthermore, the first

stage implementation of passive damping reduces the vibration suppression effort of the smart

controller when the structure is subjected to impulse loading and equipped with the combined con-

trol strategy [57]. Therefore, studying the inherent damping performance of laminated composite

plates in thermal environment has emerged as a potential research opportunities pertaining to its

easy and cost-effective applications as well as higher damping capacity at elevated temperatures.

The past studies on inherent damping analysis of laminated composite plates are described in the

following.

Inherent damping in composite plates

The energy dissipation through the surface of a vibrating plate is due to the contribution of the

inherent damping characteristics of composite plates. Furthermore, the inherent damping in a

composite plate is contributed by the viscoelastic behavior of the matrix part and the interaction

between fibers and matrix. The mathematical representation of passive damping of a vibrating

structure is not very straightforward, hence various damping models have been developed to rep-

resent passive damping mathematically. A detailed description of different damping models is

found in [2]. Damping models such as Maxwell, Voigt, and standard viscoelastic models are used

to predict the passive damping capacity [177] of a structure and were subsequently incorporated

into the FE formulation. The complex modulus method and the strain energy method are widely
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implemented procedures to estimate the passive damping in laminated composite plates within the

FE framework; see references [22, 183] for more details. A brief discussion on numerical and

experimental damping analysis of composite plates is presented in the subsequent paragraphs.

Damping model: complex modulus method

In 1962, Neumark [113] introduced the concept of complex moduli to evaluate viscoelastic damp-

ing in a dynamic system. Neumark has acknowledged that the stress-strain relationship of vis-

coelastic materials is harmonically time-dependent in a steady state condition. Even before pub-

lishing this article [113], Kerwin [78] had mentioned that the damping loss factor for a constrained

viscoelastic damping layer is dependent on frequency and temperature. Note that the frequency

dependent loss factor, η(ω), for a viscoelastic material is presented by the ratio between the loss

modulus, E ′(ω), and the storage modulus, E(ω), such that η(ω) = E ′(ω)
E(ω) . Here, the loss modu-

lus accounts for the energy dissipation, and the storage modulus is a representation of the energy

which is recoverable. Moreover, the complex elastic modulus, E∗, of an isotropic viscoelastic ma-

terial is expressed as: E∗ = E(1+ iη). Later, Hashin [61] has presented a microscopic viscoelastic

analysis for fiber-reinforced composites by using the composite cylinder assemblage model. In his

subsequent articles, Hashin has also studied dynamic behavior of particulate composites [62] and

fiber-reinforced composites [63] in the framework of microscopic complex modulus method.

Damping model: strain energy method

The idea of energy dissipation from a dynamic system originated from the work of Ungar and

Kerwin [186]. They described that the specific damping coefficient (SDC) of a structure, which is

under a steady-state of vibration, is a ratio between the energy dissipated per circle and the total

energy associated with the vibration. Adams and Bacon [1] extended the work of Ungar and Ker-

win [186] for laminated composite plates, insofar as the authors decomposed the dissipated energy

of the composite plate in the direction of the principal stress components of the constituent lamina

and subsequently discussed the contribution of the dissipated energy with respect to the total dis-

sipated energy along the principal stress direction. In further works, Saravanos and Chemis [145]

described that during vibration of a composite plate a part of the dissipated energy transforms into

heat, which leads to increasing the temperature of the plate. They reported that the increment of

the ambient temperature influences matrix dominated damping components, e.g., shear SDC and

transverse SDC of the associated lamina. The continual research of Saravanos and Chemis [146]

contributed to development of a micromechanical damping theory based on the individual energy
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dissipation characteristics of fibers and matrix. Moreover, this micromechanical theory considers

the effect of the variation of temperature and moisture concentration on the damping parameters.

However, the accuracy of this method depends on the prior knowledge of the elastic and damping

properties of fibers and matrix as well as on the application of a suitable micromechanical model.

Influence of temperature

The magnitudes of the damping parameters along the principal stress directions of a lamina differ

at varying temperature states. For viscoelastic materials such as lamina, increasing tendencies of

the damping values are observed with the increment of temperature. To obtain better damping

performance at higher temperature by utilizing higher damping values, researchers investigated

increase in the damping capacity of composite laminates at different elevated temperatures [19,

21, 37]. Additionally, the damping capacity of composite laminates can be improved further by

incorporating layers of polymer having viscoelastic characteristics [8, 13, 14, 135].

Generally, dynamic mechanical analysis (DMA) of a composite laminate is carried out to evaluate

the variation in the elastic and damping properties with respect to temperature and frequency. A de-

tailed investigation using DMA of the IM7-PEEK composite lamina has been carried out by Melo

and Radford [105] and evaluated the corresponding frequency- and temperature-dependent elastic

and damping parameters. Later, Sefrani and Berthelot [153] conducted a combined experimental-

numerical analysis to estimate the temperature-dependent bending modulus and loss factors of

unidirectional glass fiber composite lamina. In recent times, inverse methods [66, 94, 204] have

been used to estimate the temperature-dependent elastic and damping properties of the composite

lamina by using experimental modal data. The literature review indicates that the researchers and

scientists typically used two experiment-based procedures to estimate modal damping values of

composite plates, namely: (1) DMA and (2) inverse methods. Thermal environment has signifi-

cant influence on the damping parameters of composite lamina, however, their impacts on dynamic

response are yet to be studied in details. The few studies available in research literature, which have

studied the damped dynamic response of composite plates due to inherent damping, are described

in the following subsection.

Inherently damped vibration of composite plates

The damped dynamic response of composite structures was studied to investigate the controlling

efficacy of the inherent damping properties. The transient response of laminated composite plates,

having inherent damping properties, was studied by Zabaras and Perveze [130, 200]. Besides these
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studies, Yi et al. [198] discussed the influence of temperature on the damped dynamic response of

cross-ply and angle-ply composite cylindrical shells by considering the temperature-independent

elastic and damping properties. In addition to these time domain analyses, frequency domain

analysis of the IM7-PEEK composite plates has been carried out by Jeyaraj et al. [68] in varying

thermal environments by considering the temperature-dependent elastic and damping properties

of the associated lamina. The contrasting temperature-dependent behavior of elastic and damping

properties of such composite lamina has mandated for a detailed investigation to evaluate the damp-

ing performance of the composite laminate at different temperatures. Note that Jeyaraj et al. [68]

did not quantitatively evaluate the damping performance of the IM7-PEEK composite laminate in

varying temperatures, even though the quantitative assessment of damping is absolutely necessary

to identify a suitable laminae configurations for providing the best damping performance.

1.1.4 Vibration of stiffened plates

To exploit the full potential of plate-like structures, plates can be reinforced by attaching stiffen-

ers. Furthermore, the addition of stiffeners offers an overall reduction in the amplitude of dynamic

response with the cost of minimum weight penalty. Different forms of stiffeners are used in sev-

eral components of aircraft, car bodies, and hulls of ships to avoid large deflection and buckling

phenomenon. For example, a large number of cross stiffeners and a few number of longitudinal

stiffeners offer rigidity to the fuselage, which is a thin-walled shell-like structure, of a pressurized

aircraft [4]. Additionally, the wing, torsional box, and rib of an aircraft benefit in term of better

stability and stiffness through an attached optimized form of stiffener(s). Over the years, these

parts of an aircraft are replaced with composite materials. Thereby stiffened composite structures

need a detailed investigation for the purpose of extensive application in the aircraft structure for

better performance and accurately predicting their thermo-mechanical dynamic response.

Various FE strategies are developed to study the bending and dynamic behavior of isotropic [34,

108, 121] and orthotropic [34, 108, 109, 182] stiffened plates. The increased application of stiff-

ened composite structure suggests to conduct dynamic analyses of stiffened laminated composite

plates [26, 92, 124]. In order to analyze stiffened plates, researchers have proposed different mod-

eling techniques. Chattopadhyay et al. [26] idealized a stiffener as the Timoshenko beam element

while analyzing a blade-stiffened composite plate. Qing et al. [133] studied free vibration behavior

of stiffened laminated composite plates considering the compatibility of displacement and stress

between the plate, modeled with plate element, and the stiffener, modeled with the refined beam

and torsional element. Ray and Satsangi [137] developed a scheme to analyze arbitrarily oriented

hat-stiffeners, where the initially determined stiffness matrix of the stiffener has been transferred
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to the plate depending on the position of the stiffener. They idealized the stiffener as a three-node

beam element. Unlike the previous studies, Pal and Niyogi [124] and Yu et al. [199] modeled the

stiffener(s) as plate elements. While analyzing the dynamic response of stiffened laminated and

sandwich folded plates, Pal and Niyogi [124] modeled both stiffened and folded plates using plate

elements by introducing suitable transformation. The modeling of folded and stiffened composite

plates is based on the original work of Niyogi et al. [117]. The formulation proposed by Yu et

al. [199] is based on the absolute nodal coordinate formulation. This formulation is more efficient

to describe large deformation problems, but these are not within the scope of the present study.

It is noteworthy that the plate-plate element model offers better interface compatibility than the

plate-beam model while analyzing a stiffened structure.

Significant numbers of research articles have discussed free vibration behavior of stiffened lam-

inated composite plates [26, 124, 133, 137, 167], however, transient analysis of these plates is

rarely available. Based on the analysis framework presented in references [26, 137], Kumar and

Mukhopadhyay [87] studied dynamic deflection of stiffened laminated composite plates for dif-

ferent kinds of stiffeners. Furthermore, Pal and Niyogi [124] present a limited discussion on the

dynamic deflection of stiffened folded plates. In recent times, Thakur et al. [181] thoroughly dis-

cussed the dynamic behavior of laminated composite folded plates in hygrothermal environment

by applying the nonpolynomial shear deformation theory.

The recent developments in the aerospace and automobile industries deal with replacing conven-

tional structural materials with composite materials, whereby stiffened composite plates are used

extensively in various forms to ensure structural stability and safety. In operating condition, these

structures are exposed to thermal environment. Considering these facts, understanding dynamic

behavior of stiffened laminated composite plates in varying thermal environments is an essential

to conduct research on; however, research work reported in this domain are less. Moreover, the

damping performance of these stiffened plates due to the temperature-dependent elastic and damp-

ing properties has never been explored.

1.1.5 Parameter identification of composites

Since the considerable upsurge in application of composite materials in critical structural compo-

nents of aerospace and high-speed vehicles, the knowledge on the temperature-dependent prop-

erties of these materials is essential for the simulation engineer. Furthermore, there has been a

constant need to develop a user-friendly experimental procedure for dynamic analysis of compos-

ite plates in varying thermal environments in order to determine the in situ temperature-dependent
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elastic and damping properties of composite materials. Unlike conventional structural materials,

composite materials are not isotropic material but rather transversely anisotropic. The material

properties characterization of composite materials was based on suitable assumptions of homoge-

nization. For the practical application, the estimation of macro-mechanical properties of composite

plates at the lamina level serves the purpose. The macro-mechanical properties are expressed along

the principal stress direction of the lamina.

Over the last three decades, significant research has been dedicated to estimate the material prop-

erties of composites. This research is mainly devoted to improve the experimental procedure and

the associated numerical strategy. For material properties identification of composite lamina, two

broad approaches are chosen: (1) experimental approach and (2) numerical approach. Under the

category of the experimental material properties identification scheme, static and dynamic mea-

surements are conducted. The static destructive tests involve tensile tests, compression tests, bend-

ing tests, torsion tests, etc. to acquire stresses and strains of a specimen, and directly evaluate

elastic properties by applying the fundamental stress-strain theory. Many of these test procedures

have been standardized by the International Organization for Standardization and the American

Society for Testing and Materials [31, 32]. To evaluate elastic parameters of a composite lami-

nate, separate tests need to be conducted, therefore the identification of all elastic parameters by

using separate test procedures is time-consuming. Under the category of numerical approach, two

methods, i.e., forward methods and inverse methods are used. In these methods, experimental

data are used to derive the material properties of composite lamina, numerically. In forward meth-

ods [145, 146], the lamina properties are estimated by solving the stress and strain fields based

on closed-form solutions or by applying the FE method using the underlying mechanics virtual

work principle. Within the category of forward methods, the properties of lamina are estimated by

knowing the properties of constituent parameters, i.e., fibers and matrix, geometry of the specimen,

and well-posed sets of the boundary conditions. Note that, the properties of constituents param-

eters are evaluate experimentally beforehand. In contrast to forward methods, macro-mechanical

properties of composite lamina can be identified based on the given knowledge of the boundary

conditions and measurement of the displacement (or strain) fields, which are known as inverse

methods [6, 70, 180].

The development of different micro-mechanical theories [1, 115, 145, 147] endeavors to predict the

elastic and damping properties of composite lamina. Additionally, the contribution of hygrother-

mal environments has an influence on the elastic and damping properties of a composite lamina,

which was thoroughly studied by Saravanos and Chemis [146] with reference to the previously de-

veloped micro-mechanical theory [145]. Basically, these studies fall under the category of forward

15



1 Introduction

methods. The accuracy of the estimated properties depends on the knowledge of the constituents

materials, e.g., elastic and damping properties of fibers and matrix, ratio between fibers and matrix,

and behavior of the fibers-matrix interface. Essentially, both the direct experimental approach and

numerically assisted forward approach often do not provide the in situ material properties while

the composite plates are subjected to the dynamic loading in operating condition.

In this context, inverse methods have appeared with the most realistic solution, according to which

elastic and damping properties of composite lamina can be determined by using the in situ dy-

namic test data of composite plates [172, 187]. The primary idea of the implementation of inverse

methods is to minimize the error function, which is a difference between measured and simulated

modal values, using an appropriate optimization technique. The elastic properties of composite

lamina are predicted by Soares et al. [170] and Bledzki et al. [18, 143] utilizing experimentally de-

rived modal frequencies of composite plates. In these studies, the computational efficiency of the

optimization scheme was improved by employing the response surface method as a metamodel.

For a deeper insight into inverse methods, several books [6, 70, 180] can be referred. Furthermore,

Sol et al. [173, 174] and Visscher et al. [188, 189] evaluated damping properties of composite lam-

ina using inverse methods. In these studies, modal data of composite plates are derived by using

experimental modal analysis (EMA). Following the principle of the EMA, both input signal and

output response are recorded to evaluate frequency response functions and thereby enable estimat-

ing modal characteristics of the vibrating plates. Review articles by Tam et al. [178, 179] can be

referred to get an overall idea of the recent development (e.g., optimization algorithm, optimization

function, etc.) of inverse methods for parameter identification of composite lamina.

Temperature-dependent properties

Since composite materials are viscoelastic in nature, the corresponding elastic and damping prop-

erties are frequency- and temperature-dependent. To simulate the realistic dynamic behavior of a

composite structure in thermal environment, it is crucial to consider temperature-dependent ma-

terial properties. Hence, simulation engineers essentially require the detailed knowledge of the

temperature-dependent elastic and damping properties of the real structure in operating condition.

In such a situation, inverse methods can be used appropriately to evaluate the temperature-depend-

ent elastic and damping properties of composite lamina. The temperature-dependent modal data

are collected by conducting experiments within the thermal enclosure. Nevertheless, continual

development of the experimental procedure and identification strategy is under process. Fred-

eriksen [45] and his co-workers [128] conducted the EMA using unidirectional glass-epoxy and

carbon-epoxy laminated composite plates within a thermal enclosure, and they determined the
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associated temperature-dependent elastic properties. Later, Sefrani and Berthelot [153] have esti-

mated temperature-dependent damping properties of the unidirectional glass-fiber composite beam

utilizing the experimental data. In these studies [45, 128, 153], the corresponding composite plate,

which is placed inside the thermal chamber, is excited by an impulse hammer by implementing

suitable modification in the excitation strategy. Additionally, both the input signal and output

response are recorded to estimate the modal data of the plate, which increase complexity in the

experimental procedure and data storage efficiency. Li et al. [93, 94] identified the temperature-

dependent elastic and damping properties of composite lamina by using inverse methods for con-

ducting the experiment within a thermal chamber. Instead of using the impulse hammer method,

aerodynamic impulse was used to excite the plate, and a laser Doppler vibrometer was used to

measure the nodal response of the vibrating plate.

In addition to inverse methods, the DMA is also used to measure the elastic and damping proper-

ties at different temperatures. In the DMA, an oscillating force is applied to a small unidirectional

(or multidirectional) laminated composite beam type sample. The analysis of the response to that

force determines the material properties; see the textbook by Menard [106] for more detailed dis-

cussions on the DMA. This quasi-static experimental procedure can predict five elastic parameters

and three damping parameters at different temperatures and frequencies [104]. However, the fre-

quency range of the DMA is limited between 0− 100 Hz. Applying the DMA, Melo et al. [105]

thoroughly studied the temperature- and frequency-dependent elastic and damping properties of

the IM7-PEEK composite lamina. The composite properties identified at the low frequency range

using a small test sample is questioned for its applicability to real structures operating at a higher

frequency regimes.

Upon reviewing the background research work, further improvement in the experimental procedure

for inverse methods is felt necessary to make the procedure more user-friendly and realistic. In this

way, the in situ experimental data can be recorded and subsequently the temperature-dependent

modal parameters of the composite plate, and the temperature-dependent material properties of

the corresponding lamina can be estimated. Nevertheless, the DMA evaluates temperature- and

frequency-dependent elastic and damping properties of a lamina, however in quasi-static condi-

tions. The implementation of the DMA-estimated elastic and damping properties for dynamic

analysis of a composite structure in a higher frequency range has raised the concern of its applica-

bility. Therefore, an inverse method is used to evaluate the in situ temperature-dependent material

properties of composite lamina by utilizing dynamic test data.

17



1 Introduction

1.1.6 Uncertainty quantification of dynamic response

In the engineering sector, computer simulations are widely used to reproduce and predict the be-

havior of complex physical systems. Despite of the drastic growth in computational power and

the continual improvement of the computer modeling of dynamic systems, two salient challenges

still existing: firstly, inevitable modeling-related errors, and secondly, lack of precise knowledge

of input parameters, since it is hardly possible to obtain exact material properties due to their in-

herent variabilities and the paucity of information. Therefore, the effect of uncertainties needs to

be considered during the computer simulation of a physical system. In this dissertation, modeling-

related uncertainties are assumed to be negligible while the influence of the uncertainties in input

parameters are considered. Hence, to ensure a safe design for a composite structure in thermal

environment, the associated uncertainty quantification of the dynamic response of a composite

structure is essential by implementing a computationally efficient numerical procedure.

Uncertainty quantification of dynamic response in an engineering system is a much needed and

challenging area of research in recent times. Primarily two methods, namely the intrusive method

and the nonintrusive method, are used for uncertainty quantification [175]. The numerical model-

ing of a structural system is assumed to interpret the relationship between input and output param-

eters. Generally, the dynamic analysis of composite structures is conducted by using the FE-based

numerical modeling. The intrusive method, which adopted the governing equations of a structure

as the deterministic model, has limited application. The application of the intrusive method for

uncertainty quantification of a FE-based structural system is a computationally challenging task.

The nonintrusive method, which realizes the deterministic model for a set of input parameters, can

be used instead of the intrusive method. The so-called MC simulation is the well-known nonin-

trusive scheme. Nevertheless, the low convergence rate has limited the applicability of the MC

simulation. In contrast, metamodels are extensively used for uncertainty quantification of engi-

neering systems [175, 176]. In the metamodel setup, major computational cost is utilized to train

the metamodel. Overall, metamodels offer sufficient accuracy in uncertainty quantification with

minimum computational cost. The spectral methods are polynomial metamodels based on func-

tional analysis. The polynomial chaos (PC) expansion method is widely used as a spectral method,

and it is based on the pioneering work by Ghanem and Spanos [54]. In the context of the spectral

finite element method, the spectral representation of the PC has been done by using the Hermite

polynomial functions. Since then, this method has been generalized and popularized in the field

of stochastic structural mechanics [171]. An extensive research work has been dedicated to gen-

eralize this spectral method for different random spaces by adopting suitable basis functions from

the Askey family of hypergeometric polynomials [160, 193–196]. This generalized setup of the
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PC expansion is referred as “generalized polynomial chaos (gPC) expansion”. Additionally, the

perturbation method, a non-sampling based approach, is also used for uncertainty quantification of

composite plates. According to the perturbation method, random parameters are expanded by the

Taylor series expansion. The Taylor series expansion up to first-order is used to develop the first-

order perturbation technique (FOPT), which is implemented to estimate the response uncertainty

in engineering systems [3, 29, 50, 65] with lower level of randomness in input parameters. Studies

by Sepahvand et al. [155–157] are dedicated to evaluate uncertainty in eigenfrequencies and mode

shapes due to random elastic parameters and randomness in fiber orientations using the gPC expan-

sion method. Furthermore, different variants of this method are explored to assess uncertainty in

lamination parameters [151], frequency response function [35], eigenfrequencies [129], and static

deflection [27, 148] of laminated composite plates. Limited applications of the FOPT are also

found in the literature [56, 90, 166] on uncertainty quantification of different response parameters

of composite plates.

Effect of uncertainty in thermal environment

A few studies on uncertainty quantification of the time-independent dynamic response of com-

posite plates without considering any thermal effect are available in research literature. However,

the contribution of the temperature variation in uncertainty quantification of dynamic response is

an essential area of research to ensure structural safety of composite plates in varying thermal

environments. Uncertainty in the first eigenfrequency, arising due to the randomness in the indi-

vidual system parameters at varying temperature states, is documented in literature, e.g., by Lal

and Singh [89] and Kumar [84, 85]. Stochastic free vibration response of elastically supported

laminated composite plate in hygrothermal environment was studied by Kumar et al. [86] using

micro-mechanical theory. Their studies implemented the FOPT to model the uncertainty propa-

gation where the level of uncertainty remains within a smaller range. Unlike the earlier studies

which assumed a uniform temperature distribution, Lal and Singh [88] studied stochasticity in the

thermal buckling temperature due to nonuniform distribution of temperature for a laminated com-

posite plate resting on an elastic foundation with random system properties. Applying generalized

high-dimensional model representation, Dey et al. [36] discussed the propagation of ply-level and

material uncertainties to the first three eigenfrequencies at the temperature range of 125−375 K.

This discussion reveals that stochastic dynamic analysis of displacement parameters of compos-

ite plates in varying thermal environments has never been studied, although it is a very important

research field to ensure the structural safety of a composite structure which is subjected to dy-

namic loading in varying thermal environments. The present dissertation contributes to fill this
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research gap by conducting stochastic dynamic analysis of composite plates in random thermal

environments.

1.2 Research contributions

This dissertation contributes to the domain of dynamic analysis of composite structures with com-

plex geometry in varying thermal environments by developing a generalized FE framework. The

literature review pointed out that the elastic properties of carbon- or graphite-based lamina de-

grade with the increment of temperature, thus contributing to the loss of stiffness to the associated

composite plate. The addition of stiffener(s) improves stiffness of the plate and can be advanta-

geously used to reduce the amplitude of the dynamic response of the composite plates at elevated

temperatures. Furthermore, the inherent damping capacity of composite lamina increases with

the increment of temperature up to glass transition temperature of the composite lamina. In this

connection, the damping behavior of these stiffened plates also needs to be understood prior to

their realistic application in varying thermal environments. Furthermore, knowledge on the in situ

temperature-dependent elastic and damping properties of composite lamina level is essential for

deterministic and stochastic analysis of composite plates in varying thermal environments.

While composite structures have numerous applications in aerospace and transportation industries,

the detailed dynamic analyses of composite plates, specifically for the stiffened plates in varying

thermal environments, are severely limited. As a part of this research work, the following research

gaps are addressed:

• Study both the undamped and damped dynamic behavior of unstiffened and stiffened lami-

nated composite plates in varying thermal environment. Moreover, there is a need to develop

a generalized FE framework to analyze the complex geometry, e.g., of stiffened plates.

• Develop an efficient numerical strategy to quantify the damping performance of composite

plates for different combinations of stiffener, lamina sequences, etc. at different tempera-

tures, and thereby identify the configuration which imparts the best damping performance in

varying thermal environments.

• Develop a combined experimental and numerical mechanism to evaluate in situ dynamic

characteristics of a composite plate at different temperatures, and thereby estimate deter-

ministic in situ temperature-dependent material properties by using inverse methods.

• Uncertainty in temperature and material properties propagates into dynamic response, and

the corresponding stochastic dynamic behavior needs to be analyzed for further designing
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these structures in thermal environment.

The four publications are appended to this dissertation to address the stated research gaps. Publi-

cations 1 and 2 contribute to fill the initial two research gaps. The third research gap is discussed

in Publication 3. Additionally, stochastic dynamic analysis of composite plates is carried out in

connection with random temperature increment in Publication 4, which is intended to address the

fourth research gap.

Publications 1 and 2 are sequentially dedicated to undamped and damped dynamic analyses of

unstiffened and stiffened laminated composite plates in varying thermal environments. These pub-

lications are furnished with a detailed literature review to understand the background of the con-

ducted investigations. Herein, a generalized FE formulation is developed to analyze unstiffened

and stiffened laminated composite plates in varying thermal environments. The FE formulation

is developed with reference to the Hamilton’s variational principle. Moreover, in Publication 2

an innovative energy-based strategy is developed to assess the damping performance of compos-

ite structures. This energy-based approach has outperformed the conventional displacement-based

approach in assessing the damping performance. Notably, the conventional displacement-based

approach exploits the idea of the logarithmic decrement to estimate the damping performance. De-

tailed parametric studies are carried out to identify the best configuration of a stiffened plate in

order to obtain the highest damping performance at different temperatures.

Furthermore, the temperature-dependent material properties of carbon-epoxy lamina are estimated

by applying an inverse method, and presented in Publication 3. It deals with a combined experimental-

numerical procedure. In this work, a novel noncontact-based operational modal analysis (OMA)

of a composite plate is presented within a thermal enclosure by addressing previously counted

limitations. Furthermore, the experimentally evaluated modal data are utilized to estimate the

deterministic temperature-dependent elastic and damping properties of composite lamina imple-

menting a two-stage genetic algorithm. The FE framework, which is developed in Publication 2,

is incorporated in the optimization algorithm.

The stochastic dynamic analysis of composite plates due to random temperature increment is pre-

sented in Publication 4 by using the gPC-based metamodel. The previously developed determinis-

tic model is used to generate training data set to train the gPC-based metamodel. The gPC expan-

sion method is used to evaluate the statistical properties of eigenfrequencies and transient response

at different random temperatures. This publication can be viewed as an initial stepping stone to as-

sess the reliability of carbon- or graphite-based laminated composite structures in varying thermal

environments. Detailed summaries of these publications are given in Chapter 3.

This dissertation chronologically addresses the identified research gaps. The initial two publica-
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tions are the building blocks for the remaining two publications. In a nutshell, the present disser-

tation presents detailed numerical and experimental investigations in the field of dynamic analysis

of composite plates in varying thermal environments.

22



Chapter 2

Theory and Applied Methods

This chapter is dedicated to describe the theoretical background of the numerical and experimental

procedures which are adopted in this dissertation. Herein, a brief overview of the relevant theories

is given, whereas detailed descriptions of the adopted methodologies are presented in the respective

publication.

2.1 Laminated composite plates

A laminate is a plate-like structure which consists of two or more unidirectional laminae or plies

staking together in unidirectional or multidirectional orientations. A lamina (or ply) is a plane layer

of unidirectional fibers suspended in a matrix. A lamina is considered as an orthotropic material

with the principal material axis in the direction of fibers, i.e., the in-plane longitudinal direction,

normal to the direction of fibers in the plane of lamina, i.e., the in-plane transverse direction, and

normal to the plane of the lamina. These principal axes of a lamina are designated as 1, 2, and 3,

respectively, and form the basis of the lamina coordinate (1, 2, 3) system. Analysis of laminates has

been done by adopting an unified laminate coordinate (x, y, z) system, because the principal lamina

axes of a lamina can vary layer-wise. The coordinate systems are shown in Figure 4 with reference

to the composite lamina and the associated laminate. The angle between the laminate axis x and the

lamina axis 1 is designated by θ . When laminae stacking sequences are symmetric about the mid-

plane of the laminate, the laminate is referred to as a “symmetric laminate”; whereas if a lamination

scheme becomes antisymmetric about the mid-plane of the laminate, the laminate is denoted as an

“antisymmetric laminate”. Lamina sequences of typical symmetric and antisymmetric laminates

are shown in Figure 4. Conventionally, lamina sequence is designated from bottom layer to the top

layer by the symbol θ .
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Figure 4: Typical representation of the lamina coordinate (1, 2, 3) system, the laminate coordinate
(x, y, z) system, and symmetric and antisymmetric laminates

The modeling of a composite structure for static and dynamic analyses has been done on macro-

scopic level, where the influence of the material discontinuity at the microscopic level of a lamina

is neglected. In the case of a fiber-reinforced composite lamina, the heterogeneity at the lamina

level, due to the existence of two constituent materials, i.e., fibers and matrix, has been avoided by

determining homogeneous properties of the lamina on the macroscopic scale. The homogenized

material properties of a lamina are derived by applying the concept of representative volume ele-

ments. The reference [139] can be referred for a detailed discussions on the representative volume

elements to obtain the homogenized material properties of a lamina. However, homogenization to

obtain the lamina properties is not within the scope of the present investigation; instead, lamina

properties are taken from the literature or derived from the experimental measurement.

In order to describe the macromechanical behavior of a lamina, the state of the three-dimensional

stress and strain is represented by the generalized Hooke’s law. The three-dimensional state of

stress or strain in a continuum is described by the stress or strain tensor, respectively. In general,

tensor components on an infinitely small cube are described in such a way that the first component

of the subscript denotes the direction of the force and the second component of the subscript

denotes the plane on which the force is acting. To illustrate this description, a three-dimensional

stress tensor, σij (i, j = 1,2,and 3), for an infinitely small cube is shown in Figure 5. Upon

this basic notation and the coordinate systems, constitutive relationships of a composite plate are

developed by using the basic frameworks of the continuum mechanics.
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Figure 5: Three-dimensional stress tensor (σij) in the Cartesian coordinate (1, 2, 3) system

2.2 Modeling of laminated composite plates

In this section, the modeling of laminated composite plates within the framework of the finite

element method (FEM) is described. To this end, constitutive relationships of lamina and laminates

are discussed and, finally, incorporated into the FE framework for dynamic analysis.

2.2.1 Constitutive relationship of a lamina

A Cartesian coordinate system is used to describe the stress-strain relationship of a composite

lamina. For linear anisotropic materials, the constitutive relationship is presented as

σij =Cijklεkl, (2.1)

in which σij is the three-dimensional stress tensor and the associated strain tensor is εij in accor-

dance with the tensorial notation. Furthermore, Cijkl are material coefficients which contain 81

elastic constants for anisotropic materials. Due to the symmetry of σij = σji and εij = εji, the

material coefficients follow a symmetric relationship, such that

Cijkl =Cjikl, Cijkl =Cijlk. (2.2)

Moreover, the strain energy per unit volume, i.e., strain energy density function, W , is defined as

W =
1
2

Cijklεijεkl. (2.3)

25



2 Theory and Applied Methods

Using mathematical identity, the following relationship is obtained

∂ 2W
∂εij∂εkl

=
∂ 2W

∂εkl∂εij
, (2.4)

that conforms to the relationship of Cijkl =Cklij. Finally, elastic constants for anisotropic materials

are related as

Cijkl =Cklij =Cjikl =Cijlk, (2.5)

and thus, the number of independent elastic coefficients is reduced to 21. Instead of writing in the

tensorial form, the constitutive relationship for anisotropic materials can be written in a contracted

single subscript notation for the stress and strain components as well as in a double subscript

notation for the elastic constants. The constitutive relationship for anisotropic materials with 21

elastic constants is presented as

σ1 = σ11

σ2 = σ22

σ3 = σ33

σ4 = τ13

σ5 = τ23

σ6 = τ12


=



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C52 C53 C45 C55 C56

C16 C26 C36 C46 C56 C66





ε1 = ε11

ε2 = ε22

ε3 = ε33

ε4 = 2ε13 = γ13

ε5 = 2ε23 = γ23

ε6 = 2ε12 = γ12


, (2.6)

where in, C21 =C12, C31 =C13, C32 =C23, C41 =C14, C42 =C24, C43 =C34, C51 =C15, C52 =C25,

C53 = C35, C54 = C45. Furthermore, σ1, σ2 denote the inplane normal stresses, σ3 denotes the

out-of-plane normal stress, σ4, σ5 denote the out-of-plane shear stress, and σ6 denotes the inplane

shear stress. Additionally, ε1, ε2, ε3, ε4, ε5, and ε6 are the corresponding strain components. This

constitutive relationship is expressed in a compact form as

σσσ =CCCεεε. (2.7)

Here CCC denotes the compliance matrix, and σσσ and εεε denote the stress and strain vectors, respec-

tively. Furthermore, an orthotropic material is characterized by the three planes of symmetry that

are mutually orthogonal. In this case, only 9 independent elastic constants, i.e., C11, C12, C13,

C22, C23, C33, C44, C55, and C66, are used to describe the material adequately. A unidirectional

lamina which is subjected to an on-axis loading can be modeled by the orthotropic material be-

havior. Moreover, the behavior of fiber-reinforced materials is defined by transversely isotropic

materials’ behavior. In this type of materials, the major coordinate axis is aligned along the fiber

26



2.2 Modeling of laminated composite plates

direction, and the isotropic behavior is assumed in the cross-sectional direction of the fiber axis.

The compliance matrix, CCC, for transversely isotropic materials takes the following form

CCC =



C11 C12 C12 0 0 0

C12 C22 C23 0 0 0

C12 C23 C22 0 0 0

0 0 0 C44 0 0

0 0 0 0 1
2(C22 −C23) 0

0 0 0 0 0 C44


, (2.8)

and the corresponding independent elastic constants are only 5. A fiber-reinforced composite

lamina having fibers parallel to the lamina axis 1 (cf. Figure 4) is assumed to be a thin plate, hence

plane stress condition can be applied quite adequately. Due to the application of this condition, the

stress normal to the plate surface, i.e., σ3, is neglected. Considering the principal lamina axes 1

and 2, the relation between elements of the compliance matrix and the engineering constants, i.e.,

E11, E22, G12, G23, ν12, and ν21, of a lamina is given by

C11 =
E11

1−ν12ν21
, C12 =

ν12E11

1−ν12ν21
, C22 =

E22

1−ν12ν21
,

C44 = G12,C55 = G23, C66 = G12.

(2.9)

In the above relationships, fibers are oriented in the direction of the lamina axis 1, and the flat sur-

face of the lamina lies on the 1-2 plane. These relationships are termed as the “on-axis relations”.

By ignoring the normal stress component (σ3), the constitutive relationship of a composite lamina

is obtained after implementing a necessary row-wise rearrangement and written as

σ1

σ2

σ6

σ4

σ5


=



C11 C12 0 0 0

C12 C22 0 0 0

0 0 C66 0 0

0 0 0 C44 0

0 0 0 0 C55





ε1

ε2

ε6

ε4

ε5


. (2.10)

To develop the constitutive relationship of composite laminate, the constitutive relationship of

lamina, cf. Eq. (2.10), requires to be expressed in the laminate coordinate (x, y, z) system by

employing suitable transformation, and this relationship is known as the “off-axis relations”; see

Figure 4. In the laminate coordinate (x, y, z) system, the stress-strain relationship of a specific

lamina, say the kth lamina, is expressed in the following form by accounting for the thermal effect:
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

σx

σy

τxy

τxz

τyz


k

=



Q11 Q12 Q16 0 0

Q12 Q22 Q26 0 0

Q16 Q26 Q66 0 0

0 0 0 Q44 Q45

0 0 0 Q45 Q55


k



εx − ex

εy − ey

γxy − exy

γxz

γyz


k

. (2.11)

Herein, the principal thermal strain components are presented in the laminate coordinate (x, y, z)

system as

ex = e1 cos2
θ + e2 sin2

θ , ey = e1 sin2
θ + e2 cos2

θ , exy = (e1 − e2)cos2θ , (2.12)

where the thermal strains, e1 and e2, are expressed with reference to the lamina coordinate (1, 2,

3) system and are given by

e1 = α1∆T, e2 = α2∆T, (2.13)

in which α1 and α2 are the coefficients of thermal expansion along the axes 1 and 2, respectively,

and ∆T denotes the uniform variation of the temperature with reference to the room temperature.

The compact representation of Eq. (2.11) for the kth lamina is given by

σσσk = QQQk
{

εεεk −αααk∆T
}

. (2.14)

The elements of the off-axis constitutive relationship matrix, QQQ, of a lamina are defined as

Q11 =C11 cos4
θ +2(C12 +2C66)sin2

θ cos2
θ +C22 sin4

θ ,

Q12 = (C11 +C22 −4C66)sin2
θ cos2

θ +C12(sin4
θ + cos4

θ),

Q22 =C11 sin4
θ +2(C12 +2C66)sin2

θ cos2
θ +C22 cos4

θ ,

Q16 = (C11 −C12 −2C66)sinθ cos3
θ +(C12 −C22 +2C66)sin3

θ cosθ ,

Q26 = (C11 −C12 −2C66)sin3
θ cosθ +(C12 −C22 +2C66)sinθ cos3

θ ,

Q66 = (C11 +C22 −2C12 −2C66)sin2
θ cos2

θ +C66(sin4
θ + cos4

θ),

Q44 =C44 cos2
θ +C55 sin2

θ ,

Q45 = (C55 −C44)sinθ cosθ ,

Q55 =C55 cos2
θ +C44 sin2

θ .

(2.15)

Thus, the stress-strain relationship for an arbitrarily oriented lamina is derived by considering the
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2.2 Modeling of laminated composite plates

effect of temperature variation in the laminate coordinate (x, y, z) system. Based on this stress-

strain relationship, the resultant forces and moments of the associated laminate are derived, which

is described in the next subsection.

2.2.2 Constitutive relationship of a laminate

A laminated composite plate of thickness h consists of n numbers of unidirectional laminae bonded

together to act as an integral continuum. Laminae in a laminate may have the same or different

thickness and may have unidirectional or multidirectional lamina sequences. The geometry of an

undeformed laminated composite plate is shown in Figure 6.

x

2

3

1

𝜃

x, u0

W

L

θx

θy

h

y, v0

z, w0

θz Layer 1

Layer 𝑛

Figure 6: Geometry of a laminated composite plate showing positive direction of displacements
and rotations

Herein, plates are assumed to be thin, therefore, the first-order shear deformation theory (FSDT)

is employed for analysis. The FSDT is applied here with suitable modification for laminated

composite plates as proposed by Yang, Norris, and Stavasky (YNS) [197]. The assumptions for

the application of the FSDT are:

• the material is linear and elastic;

• the thickness of the plate is small compared to the other two dimensions;

• the deflection of the laminated composite plate is very small;

• the normal to the mid-plane remains straight before deformation but are not necessarily

normal to the mid-plane after deformation; and

• the transverse normal stress is negligibly small and has not been considered.
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2 Theory and Applied Methods

The undeformed and deformed geometries of a thin composite plate along the x-z and y-z planes are

shown in Figure 7. The components of the generalized displacement vector, d̄dd, at a distance z from

the mid-plane are described in terms of the in-plane displacements, u0 and v0, at the mid-plane, the

out-of-plane displacements, w0, of the mid-plane. Furthermore, θx and θy are the rotations about

the x-axis and y-axis, respectively. The generalized displacement components are given as
u

v

w

=


u0 + zθy

v0 − zθx

w0

 ,

{
θx

θy

}
=

{
∂w
∂y −ϕy

−∂w
∂x +ϕx

}
, (2.16)

where ϕx and ϕy are the shear rotations in the x-z and y-z planes. The generalized displacement

vector is presented by d̄dd = {u v w θx θy}T. The assumption of small deflection is imple-

mented to evaluate the linear strain vector, εεε = {εx εy γxy γxz γyz}T, at a distance z from the

mid-plane; thereby, the first-order terms are considered to evaluate the linear strain vector (εεε). The

kinematic relation to evaluate the components of the linear strain vector (εεε) is expressed by

εx =
∂u0

∂x
+ z

∂θy

∂x
= ε0x + zκx, εy =

∂v0

∂y
− z

∂θx

∂y
= ε0y + zκy,

γxy =
∂u0

∂y
+

∂v0

∂x
+ z(

∂θy

∂y
− ∂θx

∂x
) = γ0xy + zκxy,

γxz = ϕx =
∂w
∂x

+θy = γ0xz, γyz = ϕy =
∂w
∂y

−θx = γ0yz.

(2.17)

Herein, ε0x, ε0y, γ0xy, κx, κy, κxy, γxz, and γyz are the mid-plane strain terms, and the corresponding

vector representation is

{ε
∗}= {ε0x ε0y γ0xy κx κy κxy γxz γyz}T. (2.18)

The constitutive relationship of a laminate is established in two steps. Initially, the constitutive

relationship of a lamina, cf. Eq. (2.11), is expressed in terms of the linear strain, cf. Eq. (2.17).

Finally, the lamina stress vector is integrated over the laminate thickness (h) to obtained the stress-

resultants vector, FFF r, and the mid-plane strain vectors of the laminate. The constitutive relationship

for the kth lamina in the laminate coordinate (x, y, z) system is presented as
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𝑥

𝑧

𝑧𝜃y𝑢0

𝑧

−𝑤,x

−𝑤,x𝜃y

𝜑x
mid-plane

mid-plane normal

Undeformed shape Deformed shape

(a) Cross-section along the x-z plane

𝑦

𝑧

−𝑧𝜃x𝑣0
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−𝑤,𝑦−𝜃𝑥

𝜑y
mid-plane

mid-plane normal

Undeformed shape Deformed shape

(b) Cross-section along the y-z plane

Figure 7: Deformation of a laminated composite plate in the x-z and y-z planes
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
σx

σy

τxy


k

=
[
Qij
]

k


ε0x + zκx

ε0y + zκy

γ0xy + zκxy


k

−
[
Qij
]

k


ex

ey

exy


k

, for i, j = 1, 2, and 6 (2.19)

and {
τxz

τyz

}
k

= κ
[
Qij
]

k

{
ϕx

ϕy

}
k

, for i, j = 4 and 5. (2.20)

Herein, the shear correction factor, κ = 5/6, is considered to account for nonlinear distribution

of the transverse shear strains along the laminate thickness. The laminae stresses are integrated

over the thickness of the laminate to account for the thickness-wise laminate property. Due to

integration, the stress terms lead to the stress-resultant terms, whereas the strain terms lead to the

mid-plane strain terms. Accordingly, the in-plane forces of the laminate are obtained as
Nx

Ny

Nxy


k

=
∫ h/2

−h/2


σx

σy

τxy


k

dz =
n

∑
k=1

∫ zk

zk-1


σx

σy

τxy


k

dz

=
n

∑
k=1

∫ zk

zk-1

[
Qij
]

k


ε0x + zκx

ε0y + zκy

γ0xy + zκxy


k

dz−
n

∑
k=1

∫ zk

zk-1

[
Qij
]

k


ex

ey

exy


k

dz

= Aij


ε0x

ε0y

γ0xy

+Bij


κ0x

κ0y

κ0xy

−Aij


ex

ey

exy

 for i, j = 1, 2, and 6.

(2.21)

Similarly, the corresponding moments and shear forces are computed as
Mx

My

Mxy


k

=
∫ h/2

−h/2


σx

σy

τxy


k

zdz =
n

∑
k=1

∫ zk

zk-1


σx

σy

τxy


k

zdz

=
n

∑
k=1

∫ zk

zk-1

[
Qij
]

k


zε0x + z2κx

zε0y + z2κy

zγ0xy + z2κxy


k

dz−
n

∑
k=1

∫ zk

zk-1

[
Qij
]

k


zex

zey

zexy


k

dz,

= Bij


ε0x

ε0y

γ0xy

+Dij


κ0x

κ0y

κ0xy

−Bij


ex

ey

exy

 , for i, j = 1, 2, and 6,

(2.22)
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and {
Qx

Qy

}
k

=
∫ h/2

−h/2

{
τxz

τyz

}
k

dz =
n

∑
k=1

∫ zk

zk-1

{
τxz

τyz

}
k

dz

=
n

∑
k=1

∫ zk

zk-1

κ
[
Qij
]

k

{
ϕx

ϕy

}
k

dz

= ¯Aij

{
γxz

γyz

}
, for i, j = 4 and 5.

(2.23)

Finally, the stress-resultant vector, FFF r = {Nx Ny Nxy Mx My Mxy Qx Qy}T, is devel-

oped with reference to Eqs. (2.21), (2.22), and (2.23). Now, the constitutive relationship of the

laminate is expressed as

FFF r = DDDεεε
∗−DDDeee∗, (2.24)

in which eee∗ = {ex ey exy 0 0 0 0 0}T is the mid-plane thermal strain vector, and DDD

indicates the stress-resultant and mid-plane strain relationship matrix in the form of

DDD =


A B 0

B D 0

0 0 Ā

 . (2.25)

The elements of the DDD matrix, i.e., A , B, D , and Ā , are shown in Publication 1.

Thermal strain

Components of the initial strain vector, εεεnt = {εxnt εynt γxynt γxznt γyznt}
T, which are described

by the nonlinear portion of the overall stress [119], due to thermal load are given as

εxnt =
1
2
(u2

,x + v2
,x +w2

,x), εynt =
1
2
(u2

,y + v2
,y +w2

,y),

γxynt = (u,xu,y + v,xv,y +w,xw,y),

γxznt = (u,xu,z + v,xv,z), γyznt = (u,yu,z + v,yv,z).

(2.26)

The generalized displacement terms in Eq. (2.26) are expressed in terms of the mid-plane displace-

ment, cf. Eq. (2.16), and subsequently, the initial strain vector (εεεnt) is presented in a compact form

as

εεεnt =
1
2

RRRddd∗, (2.27)
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in which the RRR matrix relates the initial strain vector (εεεnt) and the vector of partial derivative of

mid-plane displacement, ddd∗; for the RRR matrix, see Publication 1. Moreover, the partial derivative

of mid-plane displacement (ddd∗) is given by

ddd∗={u0,x u0,y v0,x v0,y w0,x w0,y θx,x θx,y θy,x θy,y θx θy}T, (2.28)

with reference to the mid-plane displacement vector, ddd={u0 v0 w0 θx θy}T.

Equations of motion

For a three-dimensional elastic body, the conservation of momentum is stated as

∇ ·σσσ +B = ρ
∂ ḋdd
∂ t

(2.29)

where σσσ is the stress tensor, the symbol ∇ denotes the classical differential operator, B indicates

the body force, ρ denotes density of the elastic material, and ḋdd is the velocity field in relation

to the displacement field ddd, which is described as the mid-plane displacement in this work. The

governing equation of motion for a solid body is obtained by summing up the forces and moment

acting on the representative volume of the body. In the absence of the body force (B), the equations

of motion for the three-dimensional elastic body is given as [139]

σx,x + τyx,y + τzx,z = ρ ü, σxy,x + τy,y + τzy,z = ρ v̈,

τxz,x + τyz,y +σz,z = ρẅ.
(2.30)

For application in a composite plate, the expanded representations of u, v, and w, cf. Eq. (2.16),

are incorporated into Eq. (2.30) and finally render the equations of motion for the kth lamina. To

consider the contribution of all laminae, an integration over the thickness of the laminate is carried

out, which yields the following relationship

Nx,x +Nyx,y = p̄ü0 + r̄θ̈x, Nxy,x +Ny,y = p̄v̈0 − r̄θ̈y,

Qx,x +Qy,y +q = p̄ẅ0,

Mx,x +Myx,y −Qx = r̄ü0 + q̄θ̈x, Mxy,x +My,y −Qy = r̄v̈0 − q̄θ̈y,

(2.31)
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in which (p̄, r̄, q̄) =
∫ h/2
−h/2 ρ(1,z,z2)dz. The equations of motion for the composite plates can be

written in a matrix form after applying suitable rearrangement and presented as

Nx,x +Nyx,y

Nxy,x +Ny,y

Qx,x +Qy,y +q

−Mxy,x −My,y +Qy

Mx,x +Myx,y −Qx


=



p̄ 0 0 r̄ 0

0 p̄ 0 0 r̄

0 0 p̄ 0 0

r̄ 0 0 q̄ 0

0 r̄ 0 0 q̄





ü0

v̈0

ẅ0

θ̈x

θ̈y


, (2.32)

wherein, r̄ is calculated as zero. Above equation can be written in compact form as

FFF = M̄MMd̈dd, (2.33)

where FFF denotes the force vector, M̄MM is the inertia matrix, and d̈dd represents the acceleration vector.

2.2.3 Finite element (FE) formulation

Numerical implementation of the mathematical modeling of vibrating composite plates in thermal

environment has been done by using the finite element (FE) approach. In the FE idealization, the

plate domain, Ω , is visualized and modelled as an ensemble of finite numbers of user-defined ele-

ments, Ωe, of simple geometry. These elements are connected at finite number of joints, which are

known as “node”s [118]. These nodes serve as data points for polynomial interpolation on an ele-

ment, Ωe, of the underlying physical quantities. For further explanation, the in-plane displacement

in longitudinal direction (u) is assumed to be a physical quantity. This physical quantity within

an element, say an 8-node plate plate element, can be represented in terms of nodal values of the

element by identifying appropriate polynomial functions, and can be written as

u ≈ û =
nn

∑
i=1

Niuuue,i, (2.34)

in which uuue = {u1 u2 u3 u4 u5 u6 u7 u8}T indicates the corresponding ith nodal displace-

ment for the element Ωe, and polynomial-based interpolation function is denoted by Ni, which is

often known as “shape function” [9, 118]. These interpolation functions are chosen in such a way

that the solution is continuous over the entire domain. The total number of nodes in each element

is given by nn. Generally, two types of interpolation functions are used in the FE analysis: firstly,

the Lagrange interpolation function, in which only the physical quantity of interest is continuous

and interpolated, and the element based on this function is known as “C0 element”, where higher
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derivatives of the quantity are not continuous; secondly, the Hermite polynomial, in which the

physical quantity of interest and its higher derivatives are continuous [9]. The corresponding ele-

ment is known as “Cm element”, where m (1, 2, ... ) indicates the order of the derivative, which

needs to be continuous.

In the present analysis, an 8-node C0 isoparametric plate element is chosen to discretize the com-

posite plate domain. The use of the isoparametric element facilitates applicability of the same

shape function for the geometry and the physical quantity of interest as well. With reference to

𝜁1

𝜁2

1 (−1,−1) 2 3 (1, −1)

5 (1, 1)6

4
8

7 (0, 1)

(0, 0)

Ω

Ωe

𝑥

𝑦

Figure 8: Arbitrary plate geometry (Ω ) along with representation of an 8-node isoparametric ele-
ment (Ωe) in the natural coordinate (ζ1, ζ2) system

Figure 8, the interpolation functions for the 8-node serendipity element is expressed as [30, 117]

Ni(ζ1,ζ2) = (1+ζ1ζ1,i)(1+ζ2ζ2,i)(ζ1ζ1,i +ζ2ζ2,i −1)/4, for i = 1, 3, 5, and 7

Ni(ζ1,ζ2) = (1−ζ
2
1 )(1+ζ2ζ2,i)/2, for i = 2 and 6

Ni(ζ1,ζ2) = (1−ζ
2
2 )(1+ζ1ζ1,i)/2, for i = 4 and 8

(2.35)

where ζ1 and ζ2 are the natural coordinates of the element, and ζ1,i and ζ2,i denote the magnitudes

at the ith node.

The FSDT-based analysis of a composite plate is governed by the five degrees of freedom (DOFs),

i.e., u0, v0, w0, θx, and θy, and the plane area of the plate geometry is depicted with reference to

the x and y coordinates. Thus, coordinates (xe and ye) inside an element are interpolated by the

shape functions, Ni, and the associated nodal values, xe,i and ye,i, as

x ≈ x̂ =
nn=8

∑
i=1

Ni(ζ1,ζ2)xe,i, y ≈ ŷ =
nn=8

∑
i=1

Ni(ζ1,ζ2)ye,i. (2.36)
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2.2 Modeling of laminated composite plates

Additionally, the DOFs in terms of mid-plane displacement (ddd) are expressed by the same shape

function [30, 140], as

ddd ≈ d̂dd = NNNddde, (2.37)

in which ddde = {u01 v01 w01 θx1 θy1 ... u08 v08 w08 θx8 θy8}T is the nodal mid-plane

displacement vector, and NNN = ∑
8
i=1 Ni(ζ1,ζ2)III5 is the shape function matrix with III5 as the 5× 5

identity matrix. Finally, the strain displacement relationship of a laminate is developed in terms of

nodal displacements, as will be discussed in the next subsection.

Strain and displacement relationship

The mid-plane strain vector (εεε∗) relates with the nodal mid-plane displacement vector, ddde, as

εεε
∗ = BBBddde, (2.38)

where the strain-displacement matrix, BBB, is expressed as

BBB =
8

∑
i=1



Ni,x 0 0 0 0

0 Ni,y 0 0 0

Ni,y Ni,x 0 0 0

0 0 0 0 Ni,x

0 0 0 −Ni,y 0

0 0 0 −Ni,x Ni,y

0 0 Ni,x 0 Ni

0 0 Ni,y −Ni 0


, for i = 1 to 8. (2.39)

Subsequently, the initial thermal strain (εεεnt), which is derived in Eq. (2.27), is presented in terms

of the nodal mid-plane displacement vector (ddde), as

εεεnt =
1
2

RRRGGGddde, (2.40)

where GGG is the shape function matrix corresponding to ddd∗; see Publication 1 for details of the RRR

and GGG matrices.
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2.2.4 Governing equation

The governing equation of a structural system, which is subjected to dynamic loading, is derived

from the constitutive relationship of the material model following the equations of energy con-

servation in continuum mechanics. The constitutive relationship and the equation of motion of

a laminate are discussed in the previous subsections. The FE formulation is used to derive the

governing equation of composite plates following the laws of the conservation of energy. Herein,

a brief discussion on the development of the FE-based governing equation of laminated composite

plates is given, however for deeper understanding, readers may refer [7, 12, 30, 43, 140, 203].

The governing equation of laminated composite plates in thermal environment has been derived

by obtaining equations of motion using the Hamilton’s variational principle. It states that the

motion of a system from time instant t1 to t2 is such that the time integral of the difference between

the potential energy, E, and the kinetic energy, K, remains stationary for the true path, however

vanishes at the end of the interval. The energy dissipation, Q, due to the dissipative force vector,

fff diss, is also considered while developing the equations of motion. Notationally, it is presented as

∫ t2

t1
δ (E−K+Q)dt = 0. (2.41)

The potential energy consists of the combination of the strain energy, U, and work done by the

external load, W, which are related as: E=U−W. Moreover, the total elemental potential energy

is due to the contribution of elemental mechanical strain energy, Ume, and elemental thermal strain

energy, Ute. They are given as

Ume =
1
2

∫
Ae

εεε
∗TFFF rdAe, Ute =

∫
Ve

εεε
T
ntσσσ rdVe, (2.42)

where σσσ r denotes the residual stress matrix. The elemental work done, We, due to the external

load vector, qqq, is written as

We(t) =
∫

Ae

dddTqqqdAe. (2.43)

Additionally, the elemental kinetic energy (Ke) and the elemental damping energy (Q) are pre-

sented in the following manner

K=
1
2

∫
Ae

ḋdd
T
M̄MMḋdddAe, Q=

∫
A

dddTC̄CCḋdddAe, (2.44)

in which C̄CC is the proportional matrix which accounts for the energy dissipation characteristics of

the structure and relates to the dissipative force vector ( fff diss) such that fff diss = C̄CCḋdd. The elemental
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2.2 Modeling of laminated composite plates

matrices are obtained from the energy equations, so that

KKKe =
∫ 1

−1

∫ 1

−1
BBBTDDDBBB|JJJ|dζ1dζ2, KKKGe =

∫ 1

−1

∫ 1

−1
GGGTSSSrGGG|JJJ|dζ1dζ2,

MMMe =
∫ 1

−1

∫ 1

−1
NNNTM̄MMNNN|JJJ|dζ1dζ2, CCCe =

∫ 1

−1

∫ 1

−1
NNNTC̄NNN|JJJ|dζ1dζ2,

PPPe =
∫ 1

−1

∫ 1

−1
NNNTqqq|JJJ|dζ1dζ2.

(2.45)

Here, elemental matrices, i.e., KKKe, KKKGe, MMMe, and CCCe denote the elemental stiffness matrix, the

elemental geometric stiffness matrix, the elemental mass matrix, the elemental damping matrix,

respectively; whearas, PPPe denotes the elemental external load vector. In Eq. (2.45), SSSr indicates the

initial-stress resultant matrix [134]. Furthermore, |JJJ| is the determinant of the Jacobian matrix, JJJ.

These elemental matrices, as obtained by using the FE formulation, are assembled to obtain global

matrices of the composite structure.

This dissertation studies the influence of the addition of the stiffener(s) to reduce the dynamic

responses in thermal environment. Further, the stiffener is oriented in a coordinate system which

is different from the coordinate system of the plate. To consider the influence of different parts in

a particular coordinate system, i.e., the global coordinate system, a necessary transformation has

been performed prior to the assembling operation. During transformation θz drilling DOF has been

incorporated in the mid-plane displacement vector (ddd). A detailed discussion on the transformation

procedure is available in Publication 1.

It is noteworthy that the Jcaobian matrix, JJJ, facilitates the coordinate mapping between the physical

coordinate (x, y) system and the natural coordinate (ζ1, ζ2) system [9, 140]. The inverse of the

Jacobian matrix, a function of the natural coordinates, can be evaluated easily by applying the

Gaussian quadrature rule of specific order. The elemental area, de, in the physical space can thus

be obtained by numerical integration in the natural coordinates within the ranges of −1 and 1 and

further multiplied with the determinant of the Jacobian matrix (|JJJ|), as: dAe = |JJJ|dζ1dζ2.

To evaluate the governing equation, only necessary fundamentals are provided here without giving

mathematically complete and rigorous derivations, which is otherwise available in Publications 1

and 2. Following this strategy, energy equations are incorporated into the Hamilton’s variational

principle to obtain the damped governing equation of composite plates in thermal environments.

The governing equation is written as

[
KKK′′′+KKK′′′

G
]
ddd′′′(t)+CCC′′′ḋdd′′′(t)+MMM′′′d̈dd′′′(t)=PPP′′′(t), (2.46)
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in which the matrices with prime represents the related global matrices in the global coordinate

system after applying necessary transformation due to the stiffener(s). The global matrices, i.e.,

KKK′′′, KKK′′′
G, CCC′′′, and MMM′′′, and the global load vector, i.e., PPP′′′, are derived from the associated elemental

matrices and vector, respectively. Here, the mid-plane displacement of stiffened plates is expressed

in the global coordinate system, and is denoted by ddd′′′. The global damping matrix (CCC′′′) is derived

indirectly considering definitions of the Rayleigh damping or the modal expansion damping; see

Publication 2 and references [53, 130] for further details. The detailed discussion and step-by-step

derivation of the governing equation are given in Publications 1 and 2.

The homogeneous solution of the governing equation, cf. Eq. (2.46), by ignoring damping matrix,

provides undamped eigenfrequencies, fm, at different temperatures. The damped modal frequen-

cies, fdm, and modal damping values, ηm, are obtained at different temperatures after conducting

damped free vibration analysis by taking damping matrix into consideration. Additionally, tran-

sient responses of displacement and stresses are studied to understand the effect of adding stiffen-

ers in thermal environments by implementing the Newmark’s integration technique. Notably, the

constant average acceleration scheme of numerical integration is implemented by considering the

necessary assessment of consistency and accuracy of the algorithm. Overall, undamped or damped

frequencies, modal damping values, and time histories of displacement and stresses are considered

to be the quantities of interest within the purview of this investigation.

2.3 Viscoelastic modeling

The application of polymeric materials such as epoxy in laminated composite plates or sandwich

plates, makes the plate viscoelastic. Thus, the behavior of these plates can not be explained by the

theory of elasticity or viscosity alone. During the deformation of such materials, a part of the total

energy is dissipated as heat through viscous loss and the remaining energy is stored elastically.

Therefore, the theory of viscoelasticity is used to describe dynamic behavior of composite plates.

Various classical mathematical models such as the Maxwell, Kelvin-Voigt, and Poynting-Thomson

models, which were used to describe the dynamics of viscoelastic materials as a combination of

damper and elastic spring. The elastic spring simulates the elastic behavior, whereas the damper

captures the viscous behavior. However, these classical models have some merits and demer-

its [11]. Some improved models, e.g. the Laplace transformation approach, are nowadays imple-

mented to explain the viscoelastic behavior. The time-dependent behavior of these materials is

primarily characterized by creep and relaxation. A detailed description of various damping models
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2.3 Viscoelastic modeling

can be found in numerous textbooks [11, 28, 99] and report [2]. The basic idea and derivation of

the viscoelastic model for a composite lamina are briefly outlined below.

Viscoelastic damping model of composite materials

The viscoelastic properties of a lamina follow the transversely isotropic material behavior. Initially,

viscoelastic behavior of isotropic materials is described and thereafter implemented in composite

lamina. The Boltzmann superposition principle is used to explain the viscoelastic behavior of

isotropic materials by considering the effect of time-varying relaxation strain on the time history

of the relaxation stress. This principle is based on the following two key ideas:

• response to any event is linear; and

• all separate events lead to independent responses.

While developing the model for an isotropic material, it is assumed that stress, σ , and strain, ε , are

harmonically time-dependent at a frequency ω (rad/s) and described as

σ(t) = σ0eiωt, ε(t) = ε0eiωt. (2.47)

𝑡1 𝑡2 𝑡3

𝜀1

𝜀2

𝜀3

St
ra
in

Time

(a) Input: strain relaxation profile

𝑡1 𝑡2 𝑡3

𝜎1
𝜎2

𝜎3

St
re
ss

Time

(b) Output: stress relaxation profile

Figure 9: Superposition of relaxation stresses resulted from stepped relaxation strains. Numeri-
cally, for example, the time-dependent relaxation stress, σ2(t), due to the stepped relax-
ation strain, ε2(t), is expressed by: σ2(t) =

∫ t2
−∞

h(t2 − τ)dε2(τ).

The linear viscoelastic constitutive relationship is developed with consideration that the stress state

at a time, t, is a superposition of stress steps from all the strain changes at all time, τ , before t, and
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is mathematically presented with reference to Figure 9, as

σ(t) =
∫ t

−∞

h(t − τ)dε(τ), (2.48)

where τ is a time variable describing history before time, t, and h(t) is the relaxation modulus.

The relaxation modulus is the ratio between the stress and amplitude of the relaxation strain. The

above equation is rewritten by involving the strain rate, ε̇(τ), as

σ(t) =
∫ t

−∞

h(t − τ)ε̇(τ)dτ. (2.49)

As the strain, ε(τ), is time-dependent, the strain rate, ε̇(τ), can be written as

ε̇(τ) = iωε0eiωτ , (2.50)

and is substituted in Eq. (2.49) by following the principle of superposition, and thus leads to

σ(t) = iωε0

∫ t

−∞

h(t − τ)eiωτ dτ. (2.51)

Applying the change of variable t ′ = t − τ in Eq. (2.51) leads to

σ(t) = iωε0

∫
∞

0
h(t ′)eiω(t−t′) dt ′. (2.52)

Since e−iωt′ = cos ωt ′− isin ωt ′, Eq. (2.52) can be restated as

σ(t) = ε0
(
E(ω)+ iE ′(ω)

)
eiωt, (2.53)

with the definitions of

E(ω) = ω

∫
∞

0
h(t ′)sin wt ′ dt ′, E ′(ω) = ω

∫
∞

0
h(t ′)cos wt ′ dt ′. (2.54)

Now the constitutive relationship of an isotropic linear viscoelastic material is presented as

σ(ω) = E∗(ω)ε(ω), (2.55)

where E∗(ω) is the complex elastic modulus which accounts for the energy dissipation under
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harmonic vibration, and is written as

E∗(ω) = E(ω)+ iE ′(ω), (2.56)

in which the real part, E(ω), is termed as the “storage modulus”, and the imaginary part, E ′(ω), is

termed as the “loss modulus”. The ratio between the loss modulus and storage modulus is defined

as the loss factor, η . Accordingly, the complex elastic modulus, E∗(ω), is shown as

E∗(ω) = E(ω)
(
1+ iη(ω)

)
. (2.57)

Hence, frequency-independent complex elastic moduli of a composite lamina can be presented in

the lamina coordinate (1, 2, 3) system, as

E∗
11 = E11(1+ iη11), E∗

22 = E22(1+ iη22), G∗
12 = G12(1+ iη12), (2.58)

where η11, η22, and η12 are the damping loss factors along the longitudinal, transverse, and

shear directions, respectively. The loss factors are determined by adopting various approaches:

(1) conducting micro-mechanical analysis by knowing the properties of the constituent materi-

als [145, 146], (2) applying quasi-static measurement technique, i.e., DMA [105], and (3) applying

a combined experimental-numerical procedure [94, 153, 204] which is based on the idea of inverse

methods. In this dissertation, Publication 3 presents an innovative inverse method to identify the

deterministic temperature-dependent elastic and damping properties of the composite lamina.

The consideration of the energy dissipation due to viscoelastic behavior of composites has been

made by incorporating the global damping matrix (CCC′′′) in the governing equation, cf. Eq. (2.46).

For the purpose of damped dynamic analysis of stiffened laminated composite plates in thermal

environment, the damping matrix is developed based on the Rayleigh damping or the modal ex-

pansion damping procedures. In Publication 2, a detailed comparative study of these two damping

procedures is given to identify the best damping evaluation approach. The best approach is used to

evaluate the global damping matrix for conducting further damped dynamic analysis of composite

plates in varying thermal environments.

2.4 Material properties identification

In Section 2.2, the FE-based modeling of laminated composite plates in thermal environment has

been discussed in order to evaluate response quantities of interest, i.e., eigenfrequencies, modal
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damping values, and time history of displacement and stress. In this forward modeling approach,

physical laws, i.e., constitutive relationships of lamina and laminate, are integrated into the FE

modeling to calculate the quantities of interest. However, the accuracy in the calculations depends

on the assumed values of the material properties. Therefore, sound knowledge of the material

properties in terms of elastic moduli and damping loss factors is essential to simulate the dynamic

response of a composite structure at different temperatures. Based on the actually measured modal

parameters, the in situ material properties, often known as “model parameters”, can be inferred,

and this procedure is known as “inverse methods”.

System parameters: 𝝑

𝝑: 𝐸11, 𝐸22, 𝐺12, 𝜂11, 𝜂22, 𝜂12, 

T, L,W, h

Quantities of interest: χ

χ: 𝑓𝑚, 𝜂𝑚, 𝑑

Forward model

Inverse model

G

G -1

G : Forward operator

G -1: Inverse operator

Figure 10: A representative diagram of forward methods and inverse methods

Assuming from a naive viewpoint that a forward model can predict error-free values of a quantity of

interest, χχχ , by knowing the model parameters ϑϑϑ . The forward model is mathematically represented

as

χχχ = G (ϑϑϑ), (2.59)

in which G is regarded as the forward operator. On the other hand, the identification of model

parameters (ϑϑϑ ) by using inverse method is mathematically presented as

ϑϑϑ = G−1(χχχ), (2.60)

where G−1 is regarded as the inverse operator. In Figure 10, the basic idea of the forward meth-

ods and the inverse methods is illustrated. This setup of the forward and inverse methods remains

under the purview of deterministic analysis, where errors related to the measurement and inherent

randomness in the system parameters are neglected. However in a real-case scenario, the inher-

ent uncertainties in the identified model properties introduce uncertainties to the system response,
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and the stochastic inverse methods can be used to evaluate stochastic model parameters of the

system. For additional information regarding the application of the stochastic inverse methods,

where propagation of uncertainties is considered to estimate uncertainties in the elastic and damp-

ing properties of composite plates, see research literature [23, 24, 158, 159] for more detailed

discussions. Nevertheless, this dissertation intends to identify the temperature-dependent elastic

and damping properties of composite lamina by neglecting influence of the uncertainties.

The implementation of an inverse method to estimate the temperature-dependent elastic and damp-

ing properties is carried out in two phases: firstly, the modal parameters of a laminated compos-

ite plate are evaluated experimentally at different temperatures, and secondly, the temperature-

dependent model parameters are estimated by minimizing the error between experimental and

numerical modal responses at each temperature state. Ideally, an inverse method leads to solving

an optimization algorithm which intends to minimize the error between measured modal response

and simulated modal response as derived from a forward model. A brief description of the experi-

mental procedure and the optimization algorithm is given in the following subsections.

2.4.1 Experimental procedures

In order to estimate the temperature-dependent modal parameters, e.g., eigenfrequencies, modal

damping values, and modeshapes, composite plates are tested within an enclosed thermal cham-

ber where a specific control of temperature and moisture states is possible. Based on the adopted

measurement strategy and system identification technique, the experimental procedures can be

broadly classified in two ways: experimental modal analysis (EMA) and operational modal analy-

sis (OMA).

The EMA has been used for decades to extract modal parameters of a structure. According to

the EMA, the structure is excited by a single or several known dynamic forces, and the associated

responses are recorded at nodal points. Finally, modal parameters in the frequency range of interest

are extracted from the measured input and output data. The input-output-based procedure such as

the EMA is considered as a reliable system identifier, which allows to validate the accuracy of the

frequency response function by observing the coherence function. However, in reality, measuring

input forces is often unfeasible and thus limits applicability of the EMA.

Even though the EMA is a well-established approach, it is often not suitable for large structures,

e.g., bridge, building, etc., where the vibration level is very low and the measurement of excita-

tion forces, i.e., earthquake induced loads, wind loads, etc., is not a very easy task. Therefore,

the OMA techniques have been developed, where modal parameters are extracted by using the

45



2 Theory and Applied Methods

measured output response only. The unmeasured input forces are modeled as stochastic quantities

with unknown parameters with known behavior, such as a white noise excitation. In mechanical

engineering, the OMA is used to evaluate the modal properties of a car body and aeroplane struc-

ture in operating condition. Different analysis algorithms, such as Stochastic Subspace Iteration

(SSI), Enhanced Frequency Domain Decomposition (EFDD) techniques, etc., are used to estimate

modal properties. Since, this dissertation is not claiming any contribution regarding improvement

of these algorithms, the available algorithms in the commercial OMA software are used for the

modal properties estimation; see [5, 15, 60, 96, 123, 161] for the SSI and the EFDD algorithms.

In this dissertation, a laminated composite plate, which is tested at a specific temperature within a

thermal chamber, is excited by an acoustic white noise signal, and subsequently nodal velocities

are recorded in time domain. Instead of using the EMA, the OMA is preferred in such a case, since

collecting input forces acting on the plate surface due to white noise excitation is a challenging

task. Additionally, the SSI or the EFDD algorithm is used to estimate the experimental modal

frequencies and modal damping values at different temperatures.

2.4.2 Material properties identification

The identification of the temperature-dependent model parameters, i.e., elastic moduli and damp-

ing loss factors, of a composite lamina is presented as a solution of the assigned optimization

problems after knowing the measured and simulated eigenfrequencies and modal damping values.

The optimization problems for the applied inverse method is sequentially stated as follows

• For the identification of elastic moduli:

r̄∗1 = argmin
r̄rr1

C (r̄rr1),

subject to r̄rr1min < r̄rr1 < r̄rr1max,

(2.61)

in which C (r̄rr1) is the objective function where r̄1 =
{

E11
E11
E22

E11
G12

}T
is evaluated to

estimate the elastic moduli, i.e., E11, E22, and G12, of the composite lamina.

• For the identification of damping loss factors:

r̄∗2 = argmin
r̄rr2

C (r̄rr2),

subject to r̄rr2min < r̄rr2 < r̄rr2max,

(2.62)
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in which C (r̄rr2) is the objective function with r̄2 =
{

η11 η22 η12

}T
containing the vector

of damping loss factors of the composite lamina.

A brief description of the inverse method for the deterministic identification of the temperature-

dependent elastic and damping properties of a composite lamina has been presented. The detailed

discussions of the experimental procedure and the implemented optimization algorithms are avail-

able in Publication 3.

2.5 Uncertainty quantification

In the earlier sections, numerical schemes for deterministic forward and inverse models for dy-

namic analysis and material properties identification, respectively, of composite plates in thermal

environment have been discussed. The forward operator (G ) of the dynamic model describes the

deterministic mapping from RP to RQ, where P, Q ≥ 1. In the deterministic analysis, for a set

of input vector, ϑϑϑ = {ϑ1 ϑ2 ... ϑP} ∈ RP, the model evaluation G (ϑϑϑ) renders a set of output

vector, χχχ = {χ1 χ2 ... χQ} ∈ RQ. Here, the numbers of input and output variables are de-

noted by P and Q, respectively. Within the present scope of study, the input vector involves a set

of elastic properties, damping properties, temperature, dimensions, external loading, etc., and the

corresponding output variables result in a set of modal frequencies and modal damping values of

the composite plate as well as displacement and stresses at a specific node of the adopted FE mesh.

By recalling the forward model, cf. Eq. (2.59), the deterministic analysis is represented by

χχχ = G (ϑϑϑ). (2.63)

With the existence of the uncertainty in the input parameters (ϑϑϑ ), the probabilistic framework

is needed to be introduced in the numerical analysis. Consider a probability space (Ω ,F ,P)

where Ω is a probability space with σ -algebra F , and P indicates the probability measure of

the random field. Furthermore, consider K sets of input random variables, which are represented

by ΘΘΘ ∈ RK×P, for uncertainty analysis. Without loss of generality, the input random variables are

assumed to be independent. The realization of the random input variables (ΘΘΘ ) generates a random

response matrix, XXX ∈ RK×Q, as

XXX = G (ΘΘΘ). (2.64)

For the sake of simplicity, the single random response X ∈ RK×1 is considered for further discus-

sion. The random response quantity X is characterized with a finite variance, i.e., E[X2] < +∞.
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The probabilistic response of X is characterized by the mean, µX, and standard deviation, σX.

Primarily, various sampling-based techniques are used to evaluate these statistical quantities of

interest (µX and σX) by repetitive realization of the function G (ΘΘΘ).

Well-known methods for uncertainty quantification of structural systems are reviewed in Sec-

tion 1.1.6. Accordingly, the Monte Carlo (MC) simulation is used to evaluate statistical quanti-

ties of interest by realizing a large numbers of the functions, i.e., G (ΘΘΘ). However, this method is

computationally demanding and suffers to meet the required convergence criteria. In such circum-

stances, different metamodeling techniques are implemented to overcome these limitations. The

generalized polynomial chaos (gPC) expansion method has appeared as one of the most popular

metamodeling techniques with extensive application in the engineering sector. In this modeling

technique, the spectral representation of the random fields using appropriate orthogonal polynomi-

als contributes to achieve a rapid convergence.

Computational FE model

Input random variables: 𝚯 Random output: 𝛸

𝛸 ≡ G (𝚯)

Output of training 

samples

MC Simulations-based 

uncertainty quantification

Metamodel-based 

uncertainty quantification

𝛸 = G (𝚯)

𝜇Χ, 𝜎Χ𝜇Θ, 𝜎Θ

Trained surrogate model

Figure 11: A representative diagram of uncertainty quantification of a dynamic system using MC
simulation and surrogate model

Overall, the aim of these two stochastic methods is to evaluate the stochastic parameters of interest,

i.e., mean and standard deviation. A schematic diagram of MC simulation-based and metamodel-

based uncertainty quantification techniques is illustrated in Figure 11. A brief outline of these two

methods is given below.
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Monte Carlo (MC) simulation

In the Monte Carlo (MC) approach, the direct evaluation of a large numbers of response quantity

X(= G (ΘΘΘ)) is used in order to estimate the mean and standard deviation. A sufficiently large

random input sample ΘΘΘ = {ϑϑϑ
(1)

ϑϑϑ
(2) ... ϑϑϑ

(K)}T is drawn from the joint probability density func-

tion fΘΘΘ . The statistical parameters, i.e., mean, µX,mc, and standard deviation, σX,mc, of random

response are obtained as

µX,mc =
1
K

K

∑
i=1

G (ϑϑϑ (i)), σX,mc =

(
∑

K
i=1

(
G (ϑϑϑ (i))−µX,mc

)2

K −1

) 1
2

.
(2.65)

From the statistical view point, these parameters are also random in nature due to the randomness

of selecting ϑϑϑ
(i). Nonetheless, the convergence rate of the MC estimator is quite slow (∝ 1√

K
), thus

it is computationally demanding based on the required accuracy.

Generalized polynomial chaos (gPC) expansion method

The polynomial chaos (PC) expansion is presented as an approximation of the random response

by using multivariate orthogonal polynomials, Ψj, in the finite basis up to terms S and is expressed

as

X = G (ΘΘΘ)≈
S

∑
j=0

ajΨj(ξ̄ξξ ). (2.66)

Under this setup, the Hermite polynomial is used as an orthonormal polynomial in conjunction with

the deterministic coefficients, aj with multi-index j [16, 154, 160]. The orthogonal polynomial ba-

sis function is expressed in terms of multidimensional random variable, ξ̄ξξ ∈ RK×P. Moreover, the

total number of terms in pth order truncated polynomial is S+1, where S+1 = (p!+P!)
p!P! . Generally,

the selection of orthogonal polynomial basis functions is made with respect to the joint probabil-

ity density function (PDF) of the input random variable ΘΘΘ . In other words, the PDF of the input

random variables and the orthogonal polynomials belong to the same random space, otherwise

necessary space transformation needs to be carried out [160]. The PDFs of random input variables

and the corresponding optimal orthogonal polynomials are illustrated in Table 1. Since the method

can handle frequently used random space by using the corresponding optimal polynomials, term

“generalized” has been introduced, and the process is known as the “generalized polynomial chaos

(gPC) expansion method”.
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Table 1: The random variables and the corresponding optimal orthogonal polynomials
Random variables Optimal orthogonal polynomials
Gaussian Hermite
Gamma Laguerre
Beta Jacobi
Uniform Legendre

The orthogonality relation for multidimensional univariate polynomials is satisfied as

E[ψs,ψt ] = r2
δst, (2.67)

in which r2 = E[ψ2
s ] and δst denote the norm of the polynomials and the Kronecker delta, respec-

tively.

The estimation of the model response by using the gPC expansion method turns into the determi-

nation of the unknown deterministic coefficients (aj). To determine these coefficients, there are

two distinct methodologies available:

• Intrusive method: By this method, the selected expansions are inserted into the governing

partial differential equations, and coefficients are obtained by the Galerkin’s projection tech-

nique. The approximation with respect to Eq. (2.66) is regarded as discritization in stochastic

dimension, which is then combined with spatial FE discritization, hence it is named spectral

stochastic finite element method (SSFEM). Detailed discussions of this technique are avail-

able in [54, 160]. Nevertheless, the intrusive method leads to solve a huge matrix system,

hence high computational cost arises in terms of time and memory.

• Nonintrusive method: Alternative to the previous method, the nonintrusive method has

emerged in the domain of the SSFEM. In this setup, deterministic model evaluation has

been done at some preselected collocation points. It is noteworthy that the deterministic

model is either in the form of the governing partial differential equations or the FE model of

the system, and this deterministic model is often known as “black-box” [97, 160]. Finally,

the stochastic error minimization is carried out by using the least-square minimization tech-

nique to obtain the unknown deterministic coefficients, aj. Moreover, the selection of the

order of the orthogonal polynomials and choice of the collocation points are the key factor

for achieving rapid convergence. The collocation points (or experimental design) are derived

from: the roots of higher order orthogonal polynomials, the Latin Hypercube Sampling, and

the Sobol sequence sampling, etc. Readers may refer to [16, 17, 49, 80, 95, 176] for detailed

discussions on the application of different sampling schemes.
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Once the unknown deterministic coefficients are evaluated, the statistical parameters (µX,gPC and

σX,gPC) of quantity of interest are obtained, as

µX ,gPC = a0 σX ,gPC =

(
S

∑
j=1

a2
j r2

) 1
2

. (2.68)

In this dissertation, the nonintrusive approach of determination of the unknown coefficients is

implemented where collocation points are selected based on the roots of the higher order polyno-

mials. In Publication 4, uncertainties in time-independent parameters, i.e., eigenfrequencies and

time-dependent parameters, i.e., time history of displacement are investigated due to randomness

in the temperature variation. The application of the gPC expansion method in time domain in-

volves the evaluation of the unknown deterministic coefficients at each time instance, and finally,

random responses are evaluated at each time instance; see [80, 83, 144] for the application of the

gPC expansion method for stochastic time domain analysis. The modified representation of the

gPC expansion method for stochastic time domain analysis of a dynamic system is

X(ΘΘΘ , t) = G (ΘΘΘ , t)≈
S

∑
j=0

aj(t)Ψj(ΘΘΘ). (2.69)

Knowing the influence of the random variation of temperature at different mean temperature states

for laminated composite plates has been of a great interest to the research community, and the

subsequent effect on the quantities of interest, i.e., eigenfrequencies and transient response, are

discussed in Publication 4.

2.6 Material properties

In order to conduct numerical simulation, material properties of the considered composite ma-

terial needs to be known beforehand. To assess the dynamic behavior of composite plates in a

considerably large temperature range, the composite material should be selected in such a way

that the material remains stable within the given temperature range. Considering stability aspect

of composite plates, the temperature range remains below the glass transition temperature. This

dissertation aims to investigate the dynamic behavior of composite plates at the temperature range

of 0◦−125◦ C. To this end, carbon- or graphite-based composites with high glass transition tem-

perature are adopted in this investigation. The carbon- or graphite-based composites are widely

used in different high-performance composite structures for the purpose of application in commer-
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cial aircraft and high-speed trains. Generally, two types of polymer matrices, i.e., thermoset and

thermoplastic, are used in these composites. The epoxy is a type of thermoset resin and widely

utilized to manufacture carbon- or graphite-based composites. The epoxy resin demonstrates a

tendency of moisture absorption in both the cured and uncured stages. This limitation of ther-

moset resins resulted in the development of thermoplastic resins, such as Polyether ether ketone

(PEEK) and Polyether ketone ketone (PEKK). The carbon- or graphite-based composites having

thermoplastic and thermoset matrices are considered in this dissertation as a natural choice in view

of their realistic applications in the aerospace and transportation industries. For the numerical

analysis using the FE-based forward operator, the composite materials are selected based on the

availability of the temperature-dependent material properties in the literature/report. Herein, the

graphite-epoxy and the IM7-PEEK composites are selected for the numerical analysis by consid-

ering availability of the temperature-dependent material properties in the given temperature range.

The temperature-dependent elastic properties of graphite-epoxy lamina are shown in Table 2 and

is adopted from [134]. The temperature-dependent elastic properties of the graphite-epoxy com-

posite lamina are used for conducting stochastic dynamic analysis of the composite plates in Pub-

lication 4. The temperature-dependent elastic properties of the IM7-PEEK composite lamina are

presented in Table 3 and adopted after suitable interpolation in the experimental data as avail-

able in [136]. The detailed interpolation procedure of elastic properties is stated in Publication

1. Similar interpolation strategy was implemented to evaluate the temperature-dependent damping

loss factors of IM7-PEEK composite lamina using the available experimental data in [105]. The

temperature-dependent material properties of the IM7-PEEK composite lamina are used for nu-

merical analysis in Publications 1 and 2. Additionally, the experiment was conducted by using the

T700 carbon-epoxy laminated composite plates, where the availability of the composite materials

along with necessary lamina sequences was the decisive factors. The experimental investigation

using the T700 carbon-epoxy composite plate and the identified material properties are presented

in Publication 3.

Table 2: Elastic moduli of graphite-epoxy lamina at different temperatures, cf. [134]
Temperature

Elastic moduli 300 K 325 K 350 K 375 K 400 K 425 K
E11 (GPa) 130 130 130 130 130 130
E22 (GPa) 9.5 8.5 8.0 7.5 7.0 6.75
G12 (GPa) 6.0 6.0 5.5 5.0 4.75 4.5
ν12 (-) 0.3 0.3 0.3 0.3 0.3 0.3

G13 = G12, G23 = 0.5G12, ν21 = ν12
E22
E11

.
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Table 3: Material properties of IM7-PEEK lamina at different temperatures, cf. [105, 136]
Temperature

Material properties 0 ◦C 25 ◦C 50 ◦C 75 ◦C 100 ◦C 125 ◦C
E11 (GPa) 159.4 160.9 160.3 159.7 159.1 158.6
E22 (GPa) 9.7 9.7 9.3 8.9 8.6 8.2
G12 (GPa) 7.7 7.7 7.1 6.6 6.0 5.4
ν12 (-) 0.290 0.289 0.286 0.282 0.279 0.275
η11 (%) 0.45 0.51 0.55 0.65 0.72 0.70
η22 (%) 0.75 0.73 0.81 0.91 1.01 1.26
η22 (%) 1.05 1.01 1.09 1.43 1.48 1.49

G13 = G12, G23 = 0.5G12, ν21 = ν12
E22
E11

.

This dissertation intends to investigate the dynamic behavior of carbon- or graphite-based compos-

ite structures in thermal environment. To this end, suitable numerical and experimental procedures

are developed and presented. Therefore, the consideration of three different types of composite

materials does not influence the overall research aim.
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Chapter 3

Summary of Appended Publications

In the preceding chapter, short summaries of the enclosed four publications along with the salient

results are presented. The salient contributions of this dissertation are subdivided into two parts; the

first part is devoted to develop the FE formulation to conduct deterministic and stochastic dynamic

analyses of unstiffened and stiffened laminated composite plates in varying thermal environments,

and in the second part, a novel OMA-based experimental procedure is presented to study the modal

characteristics of composite plates in varying thermal environments and subsequently identify the

temperature-dependent elastic and damping properties using an inverse method. This dissertation

contributed in different research fields of dynamic analysis of composite structures as highlighted

in Figure 12. However, the primary contributions are oriented towards the central theme, i.e.,

numerical and experimental studies deals with dynamic analysis of laminated composite plates

in thermal environments, reported in the dissertation. The publication-wise contributions of the

appended publications with respect to numerical and experimental investigations is illustrated in

Figure 12.

The contributions of the individual publication in terms of deterministic and stochastic analyses

are shown in Figure 12. It is observed that Publications 1 and 2 presented a detailed discussion on

undamped and damped dynamic analyses of unstiffened and stiffened laminated composite plates

in varying thermal environments. These deterministic analyses are aimed to study the influence of

the stiffener as well as lamina sequences at different temperatures. Furthermore, in Publication 3,

a novel experimental procedure has been presented by conducting an OMA-based modal analysis

of composite plates in varying thermal environments in order to deterministic identification of the

temperature-dependent elastic and damping properties of composite lamina. For material proper-

ties identification, a mixed experimental-numerical procedure is implemented by minimizing the

difference between the experimentally and numerically derived modal responses. This procedure
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Publication 1:

• Undamped dynamic analysis of unstiffened and stiffened plates

• developed a generalized FE formulation for these plates

• studied overall response reduction due to application of 

stiffener, i.e., performance enhancement U
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Publication 2:

• Damped dynamic analysis of unstiffened and stiffened plates

• developed a generalized FE formulation for damped analysis

• studied damping performance: displacement-based approach 

and energy-based approach

• studied effect of excitation frequency on damped response

Publication 3:

• Developed an experimental procedure to conduct experimental 

dynamic analysis in thermal environments; apply noncontact-

based OMA

• developed an inverse method to identify the deterministic 

temperature-dependent elastic and damping properties

• studied frequency dependency of the identified properties

Publication 4:

• Stochastic dynamic analysis in random 

temperature

• used the gPC expansion method

• studied random time-dependent response

Thermal Environment

Figure 12: Schematic diagram of the dissertation structure in terms of research publications and
the associated contributions

is known as the inverse method. Finally, uncertainty in dynamic response due to the random vari-

ation in temperature has been discussed in Publication 4. While using optimization algorithms to

minimize the deviation of the experimental and numerical modal responses in Publication 3 and

generating training data for the gPC-based metamodel in Publication 4, the FE-based numerical

procedures developed in Publications 1 and 2 are implemented. The key results and the novel

contributions of the attached four publications are summarized in the following sections.
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3.1 Publication 1

3.1 Publication 1

Dynamic Response of Stiffened Laminated Composite Plate in Thermal En-
vironment

Submission status: This article has been published in the journal of Composite Structures.

Novelty and key results: Over the last few decades, composite materials are increasingly used in

aircraft and high-speed vehicles as primary structural materials. To understand the dynamic char-

acteristics of these composite structures in thermal environment, conducting a detailed dynamic

analysis is essential. Typically, the elastic properties of composite materials degrade with increas-

ing temperature, accordingly, the amplitude of dynamic response of composite plates is higher at

elevated temperatures. In such a situation, stiffened plates can be used to suppress the amplitude

of the dynamic response.

To analyze the undamped dynamic response of unstiffened and stiffened laminated composite

plates in thermal environment, a generalized FE formulation using the FSDT is developed. The

development of the FE formulation is inferred from the Hamilton’s variational principle by imple-

menting appropriate coordinate transformation for the stiffener. A detailed dynamic analysis of

the IM7-PEEK unstiffened and stiffened composite plates was conducted by using different plate

geometries and lamina sequences. The stiffened plate with stiffener oriented parallel to the longer

edge made-up of antisymmetric cross-ply laminates (i.e., 0◦/90◦/0◦/90◦) presented the highest first

non-dimensional frequencies (NDFs) within the considered temperature range of 0−125 ◦ C and

thus indicated the highest stiffness compared to other plate geometries and the lamina configura-

tions. Moreover, the occurrence of dynamic instability in unstiffened plates at elevated temperature

can be avoided by adding stiffener. Stiffened plates offered overall suppression of dynamic deflec-

tion and normal stress. In the given temperature range, the stiffened plate which imparted the

highest stiffness showed also the maximum response reduction. This stiffened plate also presented

a higher rate of response reduction with the increment of stiffener depths; furthermore, the rate of

response reduction is the highest at 100 ◦C.

Such outcomes indicate the advantage of the application of the stiffened plates at elevated temper-

ature. Various parameters, e.g., lamina sequences, depths and orientations of stiffeners, etc. need

to be selected optimally to maximize the dynamic response reduction at different temperatures.

The generalized FE formulation can be further applied to analyze the composite structures with

complex geometry, e.g., folded plates or box-like structures, etc. in varying thermal environments.

Specific contribution to the publication: Chandra proposed the analysis framework and imple-

mented it through MATLAB. After developing the appropriate numerical model, Chandra was
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responsible for conducting validation studies and subsequent parametric studies. Furthermore,

Chandra wrote the original draft of the manuscript and coordinated with all the other coauthors.

58



3.2 Publication 2

3.2 Publication 2

Damping Analysis of Stiffened Laminated Composite Plates in Thermal En-
vironment

Submission status: This article has been published in the journal of Composite Structures.

Novelty and key results: Generally, viscoelastic damping properties of composite materials in-

crease with the increment in temperature up to glass transition temperature, whereas elastic prop-

erties degrade with increasing temperature. Beside the increment in the amplitude of dynamic

response, higher viscoelastic properties can contribute to control the dynamic response at elevated

temperatures. Considering this contrasting behavior of the elastic and damping properties with

respect to the temperature increment, the damping performance of the unstiffened and stiffened

IM7-PEEK laminated composite plate is studied for the sake of the various application of compos-

ite structures in varying thermal environments.

The damping performance of the unstiffened and stiffened laminated composite plates is studied

for various geometries and lamina sequences in varying thermal environments, i.e., 0−125 ◦C by

using the displacement-based and the energy-based approaches. In FE method, the modal expan-

sion damping is used to derive the damping matrix, and the proposed numerical model was vali-

dated by published results; cf. Appendix A. Based on the detailed parametric studies conducted,

it is observed that the energy-based approach is the most robust one to evaluate the damping per-

formance over the displacement-based approach. Furthermore, studies showed that the stiffened

antisymmetric cross-ply (i.e., 0◦/90◦/0◦/90◦) laminated composite plate with stiffener oriented

parallel to the longer edge imparts the best damping performance at 100 ◦C. Overall, stiffened

plates presented a better damping performance and improved response reduction efficiency near

the resonance frequency at elevated temperatures.

The detailed parametric study explained the underlying relations between plate geometries, lam-

ina sequences, and temperature-dependent material properties to achieve the best damping perfor-

mance. The detailed analysis revealed that the stiffened plates can better utilize the higher damping

properties to improve the damping performance at elevated temperatures than unstiffened plates.

Specific contribution to the publication: Chandra developed the analysis framework and imple-

mented it through MATLAB. In addition, Chandra was responsible for conducting all simulations,

data visualizations, and the corresponding interpretations. Furthermore, Chandra wrote the origi-

nal draft and coordinated with all the other coauthors.
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3.3 Publication 3

Identification of Temperature-Dependent Elastic and Damping Parameters
of Carbon-Epoxy Composite Plates Based on Experimental Modal Data

Submission status: The article has been published in the journal of Mechanical Systems and

Signal Processing.

Novelty and key results: To simulate a realistic dynamic response of composite plates in vary-

ing thermal environments, knowledge of the in situ temperature-dependent elastic and damping

properties is essential. Several limitations in the experimental procedure need to be addressed

regarding the evaluation of the in situ temperature-dependent materials properties of composite

lamina using inverse methods. To overcome these limitations, an innovative OMA-based exper-

imental procedure is presented, and the in situ temperature-dependent material properties of the

T700 carbon-epoxy composite plates are evaluated by using experimental modal data.

The output-only OMA of the carbon-epoxy composite plate was conducted within an enclosed

thermal chamber where the freely suspended plate was excited by a white noise acoustic excitation,

and the associated nodal responses were measured by laser Doppler vibrometers. The output

responses are used to derive the temperature-dependent modal characteristics of the plate. To

identify the deterministic temperature-dependent elastic and damping properties of the composite

lamina, a two-stage optimization strategy was implemented under the framework of an inverse

method. The identified temperature-dependent material parameters indicated that the transverse

modulus and shear modulus degrade rapidly with the increment in temperature. Additionally,

inherent uncertainties in the composite plates play a major role in the identification of material

properties, therefore the implementation of the stochastic identification technique is recommended.

This work presented a novel noncontact-based experimental strategy to estimate modal properties

of the composite plates in thermal environment where only output responses are measured on real-

time basis. The temperature-dependent elastic properties of the composite lamina are evaluated

by conducting experiment with several samples of two types of laminates, i.e., symmetric cross-

ply and angle-ply laminates and showed a nominal variation in the identified elastic properties;

however, the corresponding trend of the temperature dependency can be assessed with sufficient

accuracy. Furthermore, critical assessment of the error between experimentally and numerically

simulated modal frequencies suggests the necessity to derive the in situ elastic properties of com-

posite lamina while mimicking the actual operating conditions instead of adapting static or quasi-

static test procedures.

Specific contribution to the publication: Chandra conducted the experiments and post-processing
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of the experimental data in cooperation with Maeder. Chandra also involved in developing the nu-

merical setup for inverse method in consultation with Maeder and Marburg. Chandra wrote the

original draft of the manuscript while considering suggestions of all the other coauthors.
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3.4 Publication 4

Stochastic dynamic analysis of composite plate with random temperature in-
crement

Submission status: This publication has been published in the journal of Composite Structures.

Novelty and key results: The material properties of composite materials and surrounding thermal

environment are uncertain in nature. Hence, dynamic response of composite plates become also

uncertain. The estimation of uncertainties in dynamic response is essential for the safe design of

a structure. This publication deals with the uncertainty quantification of dynamic response due to

randomness in the ambient temperature, and this randomness is propagating to the temperature-

dependent elastic properties. The nonintrusive gPC expansion method is used for the uncertainty

quantification of dynamic response at different mean temperatures of increasing order.

The nonintrusive one-dimensional gPC expansion method is used to evaluate uncertainty in eigen-

frequencies and the dynamic deflection of the graphite-epoxy laminated composite plates due to

randomness in the mean temperature in increasing order ranging from 325 K to 400 K with a step

size of 25 K. The parametric studies showed that uncertainty in the eigenfrequencies increases with

the increment of the mean temperature. Furthermore, the amplitude of the mean central deflection

decreased in delayed time domain due to the increment in the mean temperature; however, the

pattern of the associated dispersion in the time domain is altered with the types of loading, e.g.,

pulse and impulse loads, and lamina sequences. Furthermore, it is also seen that the PDFs of the

peak dynamic deflection became non-Gaussian and unsymmetric with the increment in the mean

temperature.

This publication studied the influence of the randomness in temperature on the dynamic response

of graphite epoxy composite plates. The study describes efficiency of the application of the gPC

expansion method for stochastic dynamic analysis of composite plates due to randomness in the

mean temperature. On the basis of the presented numerical examples, the stochastic behavior of

dynamic deflection is investigated, and the uncertainty in the dynamic deflection evidently plays a

significant role in the reliability analysis of composite plates in varying thermal environments.

Specific contribution to the publication: Chandra developed the analysis framework and was

responsible for conducting all simulations, data visualizations, and corresponding interpretations.

Furthermore, Chandra wrote the original draft and coordinated with all coauthors to accommodate

their suggestions.
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Chapter 4

Discussion of Results

In this chapter, the scientific contributions of this dissertation with regards to the existing litera-

ture in the domain of numerical and experimental investigations of dynamic behavior of carbon-

and graphite-based composite structures in varying thermal environments are discussed. In Chap-

ter 3, the novelty and the key contributions of each publication surpassing the existing research are

described. The initial two publications are assumed as the primary bedrock for this dissertation,

which presents generalized FE formulations for dynamic analysis of unstiffened and stiffened lam-

inated composite plates in thermal environments. These publications initially presented a detailed

literature review to explain the state-of-the-art research status, and finally numerical analyses are

presented to address the identified research gaps. Perceiving the requirement to estimate the in situ

temperature-dependent material properties of composite lamina, an efficient inverse method is pre-

sented in Publication 3. Using this inverse method, the temperature-dependent elastic and damping

properties of composite lamina are evaluated. The last publication is considered an initiative for

quantifying the uncertainties in dynamic response of laminated composite plates in varying thermal

environments.

Within the scope of Publication 1, a generalized FE formulation has been developed with refer-

ence to the Hamilton’s variational principle to analyze unstiffened and stiffened composite plates

in varying thermal environment. So far, different researchers [112, 125, 164, 165] have studied

dynamic response of unstiffened plates and shells in varying thermal environments. Additionally,

few studies on the free-vibration analysis of unstiffened and stiffened plates in thermal environ-

ment are available, cf. [134, 167, 169]. However, the influence of the addition of stiffener to

laminated composite plates in varying thermal environment has not been studied in detail. This

publication aims to fill this gap by conducting a detailed dynamic analysis of unstiffened and stiff-

ened laminated composite plates to quantify responses in terms of deflection and normal stress.
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Furthermore, a sequential development of the generalized FE formulation for analysis of these

plates is presented herein. In this generalized FE framework, a suitable coordinate transformation

is incorporated to accommodate the stiffener geometry. The geometric stiffness matrix, which is

developed due to the temperature variation related prestressing effect in the composite laminates,

is also incorporated in the governing equation. Since engineers commonly consider the FSDT to

analyze the thin composite structures using commercial software, this study adopts the FSDT to

develop the required FE framework for analysis of stiffened plates. Additionally, the FSDT can

predict the static and dynamic responses for thin composite plates with sufficient accuracy. De-

tailed validation studies are included in the publication to ensure the correctness of the developed

FE framework, and the results obtained subsequently. Four different laminates, namely symmetric

and antisymmetric cross-ply laminates, i.e., 0◦/90◦/90◦/0◦ and 0◦/90◦/0◦/90◦, and symmetric and

antisymmetric angle-ply laminates, i.e., 45◦/−45◦/−45◦/45◦ and 45◦/−45◦/45◦/−45◦, are used

for the numerical analysis. The dynamic analysis of these plates was carried out at six different

temperatures, i.e., 0 ◦C, 25 ◦C, 50 ◦C, 75 ◦C, 100 ◦C, and 125 ◦C, to investigate the influence of

the stiffener(s) on reducing the magnitude of the transient response of deflection and normal stress.

The stiffener oriented parallel to the longer or shorter edge is considered for this analysis.

Furthermore, the literature review given in Publication 2 has pointed out the necessity of con-

ducting dynamic analysis to assess the inherent damping performance of unstiffened and stiffened

laminated composites plates in varying thermal environment. The damped dynamic response of

unstiffened laminated composite plates due to inherent damping was studied by Zabaras and Per-

vez [200], where they used the definition of Rayleigh damping to obtain the damping matrix.

Furthermore, Yi et al. [198] discussed the time-dependent behavior of the viscoelastic composite

shells at two different temperatures without considering temperature-dependent material properties

and the geometric stiffness matrix. To utilize the inherent damping capacity of composite lamina

for controlling the dynamic response of composite plates in varying thermal environments, a com-

parative assessment of the damping performance at different temperatures is necessary; however,

related studies are not available. In this respect, Publication 2 is the first attempt to investigate

the damped dynamic response of unstiffened and stiffened laminated composite plates at different

temperatures. The governing equation developed in Publication 1 is modified accordingly to con-

duct damped dynamic analysis in Publication 2, and it subsequently enables to explore the effect

of the addition of the stiffener in order to mitigate the dynamic response at different temperatures.

For numerical analysis, the temperature-dependent elastic and damping properties of the IM7-

PEEK composite lamina were used. These temperature-dependent material properties are adopted

from the existing research literature, where elastic properties are evaluated from static tests [136],
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and damping properties are evaluated from quasi-static DMA procedure [105]. The temperature-

dependent properties for these publications are derived from the test data using piecewise linear

interpolation and extrapolation techniques; see Publication 1 for detailed discussions. A gener-

alized observation on these temperature-dependent properties indicates that the elastic properties

degrade with the increment of temperature with reference to the room temperature (25 ◦C), whereas

the magnitude of the damping parameters increases with the increment of temperature.

Even though the inherent damping capacity of laminated composite plates is less in comparison

to the active damping capacity, it is absolutely necessary to understand the inherent damping per-

formance of a composite plate prior to consider for the active damping. There is no such study

available where damping performance of composite plates due to inherent damping is evaluated.

In their study, Zabaras and Pervez [200] and Yi et al. [198] rely on the visual observation to

understand the damping performance. In the domain of the earthquake engineering, different

displacement-based performance criteria are used to assess the control performance of passive

and active dampers; see Elias et al. [42]. Publication 2 proposed the displacement-based and the

energy-based mechanisms to assess the inherent damping performance of unstiffened and stiffened

laminated composite plates in varying thermal environments. The displacement-based criterion

relies on the definition of the logarithmic decrement of damped response as obtained at a given

nodal point. Since the energy-based approach considers all nodal displacements in order to evalu-

ate damping performance, this approach has appeared as the best suited approach to evaluate the

inherent damping performance.

For damped dynamic analysis reported in Publication 2, the damping matrix was developed by

using the Rayleigh damping approach and the modal expansion damping approach, wherein the

modal expansion damping approach was identified as the best approach to simulate the damped

response of stiffened laminated composite plates at elevated temperatures. The successful imple-

mentation of the Rayleigh damping is based on some assumptions (see [53]), and the unfullfillment

of these criteria often leads to develop a damping matrix that is not positive semi-definite. Thereby,

the time domain response becomes unbounded. The occurrence of the unbounded dynamic re-

sponse has been noticed for 45◦/−45◦/−45◦/45◦ stiffened laminated composite plates with stiff-

ener oriented parallel to the longer edge at 75 ◦C temperature. This numerical response-related

instability has been addressed by implementing the concept of the modal expansion damping to

develop the damping matrix. Henceforth, for further analysis in this article the modal expansion

damping is used to develop the damping matrix.

It is found that, due to having only a very nominal contribution of inherent damping, the difference

between the NDFs and the damped non-dimensional frequencies (dNDFs) is almost negligible.
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However, the modal damping values are deemed to mitigate the dynamic response. Among the

considered laminates, 45◦/− 45◦/45◦/− 45◦ unstiffened plate presents the highest first NDF and

the lowest peak undamped dynamic deflection at all temperatures. Therefore, this unstiffened

plate provides the highest stiffness and also shows the best damping performance at 0 ◦C accord-

ing to the energy-based approach; cf. Publication 2. Note that, according to the displacement-

based approach, the best damping performance was given by 0◦/90◦/90◦/0◦ unstiffened plate at

0 ◦C. However, the reliability of the energy-based approach is significantly better than that of the

displacement-based approach, as the former approach considers the dynamic behavior of the entire

composite structure to estimate the damping performance, whereas the latter approach is based on

a particular nodal displacement. The 0◦/90◦/0◦/90◦ stiffened plate with a stiffener oriented parallel

to the longer edge imparts the highest first NDF and the lowest peak undamped dynamic deflec-

tion at all temperatures, which indicates that this configuration imparts the best stiffness among

the considered plates in this study. Furthermore, this plate shows the best damping performance

at 100 ◦C, as derived using the energy-based approach, whereas the displacement-based approach

recommends this stiffened plate geometry with 45◦/− 45◦/45◦/− 45◦ laminate to offer the best

damping performance. Finally, the detailed investigation ensured the reliability of the energy-

based approach to evaluate the damping performance of composite plates.

The undamped dynamic analysis in Publication 1 showed that the addition of stiffener improves

the stiffness of a composite plate to a sufficient extent; accordingly, the amplitude of dynamic

deflection and normal stress is also reduced, even at elevated temperatures. The increment of the

stiffener depth has reduced the amplitude of dynamic deflection; however, the rate of reduction

of the amplitude has reduced with the increment of stiffener depth. The numerical analysis in

Publication 2 suggested that the damping performance of the stiffened plates is better than that of

the unstiffened plates. Moreover, stiffened plates show a better damping performance at higher

temperature, i.e., 100 ◦C, whereas the damping performance of unstiffened plates is better at lower

temperature, i.e., 0 ◦C. It is recommended to use the energy-based approach to estimate damping

performance. At the higher temperature range, i.e. 75−100 ◦C, the effect of the inherent damping

capacity for stiffened laminated composite plates is better to reduce the peak dynamic deflection

near the resonance frequency.

Publications 1 and 2 are independent research articles; however it is conveneint to discuss their sci-

entific contributions together due to having a similarity in material properties and the considered

plate geometries. Firstly, these publications have presented a sequential development of a general-

ized FE formulation for dynamic analysis of unstiffened and stiffened laminated composite plates

in varying thermal environments. This FE framework can be further extended to analyze differ-
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ent complex geometries, i.e., folded plates, stiffened folded plates, rectangular box-like structures,

shell structures, etc. Secondly, an efficient mechanism to assess damping performance of a com-

posite structure has been presented in Publications 2. Thirdly, presented numerical examples show

that stiffened plates offer a better damping performance at higher temperatures by using higher

inherent damping properties of composite lamina at elevated temperatures. Based on this idea,

the damping performance of composite plates can be improved further at elevated temperatures by

incorporating interleaved damping layers.

Earlier it has been mentioned that in Publications 1 and 2, the temperature-dependent elastic and

damping properties of IM7-PEEK composite plates are taken from published research data [105,

136], where static and quasi-static test procedures are used to derive the material properties. It is

noteworthy that Kodur et el. [81] has aptly summarized different standard and nonstandard static

and quasi-static test protocols to estimate strength and elastic properties of composite lamina along

the principal lamina directions at varying temperatures. Therefore, to evaluate material proper-

ties of lamina using static and quasi-static test procedures, several tests are needed to be carried

out. Furthermore, these tests are a time-consuming process and involve various modeling- and

sampling-related uncertainties. In this scenario, a unified test procedure is necessary to evaluate

the temperature-dependent elastic and damping properties of a lamina. Furthermore, the conven-

tional static and quasi-static measurement techniques do not accounts for the frequency-dependent

characteristics of composite lamina in a higher frequency range, although the consideration of the

frequency-dependent material properties is important to predict the in situ dynamic response in

the given frequency range. To address these limitations of static and quasi-static direct methods,

inverse methods can be used to evaluate the in situ temperature-specific material properties using

dynamic test data, where only a single experiment needs to be performed at a particular temper-

ature. In Publication 3, an innovative test protocol using the operational modal analysis (OMA)

is presented to derive the temperature-dependent modal characteristics, and then the temperature-

dependent material properties of a composite lamina are evaluated by utilizing the experimentally

derived modal data.

Publication 3 contributes to the experimental aspect of this dissertation. In operating condition, it

is very challenging to accumulate the input load data on a vehicle structure, whereas the output

response can be recorded without much difficulty. Considering necessity for the ease of practical

application of an experimental procedure, a novel experimental strategy has been presented in this

publication, and subsequently evaluated the temperature-dependent material properties. To ensure

the objective of practical applicability of the test procedure, the OMA is adopted, in which only

the time domain data of the output response is recorded, and it is utilized to evaluate the modal
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properties of a composite structure. Importantly, for the classical experimental modal analysis

(EMA) both input load data and output response data are required. This publication intends to

present an innovative OMA to evaluate modal characteristics of a composite plate at different

temperatures.

Several experimental analyses [18, 46, 47, 143, 170] were conducted by researchers to estimate

material properties of composite lamina at ambient temperature using inverse methods. However,

conducting dynamic analysis within an enclosed thermal chamber to evaluate the temperature-

dependent material properties of a composite lamina is obviously a challenging task. Frederik-

sen [45] and Pedersen and Frederiksen [128] described the EMA-based experimental strategy to

measure the modal data at different temperatures. They used temperature-resistant impact hammer

to excite the composite plate inside the thermal enclosure, and lightweight accelerometers were

attached to the plate to detect the dynamic response. They simulated free-free boundary conditions

while experimenting with the plate. Recently, Li et al. [93, 94] presented an experimental strategy

which used acoustic pressure to excite the composite plate. The plate is fixed at one end and placed

inside the thermal chamber. The laser Doppler vibrometer is used to measure the dynamic response

of the plate. In the present study, T700 carbon-epoxy laminated composite plates were considered

to estimate the temperature-dependent material properties. To this end, the composite plate with

free-free boundary conditions is excited by acoustic white noise signal inside the thermal cham-

ber, and the nodal dynamic response of the plate was measured by two laser Doppler vibrometers.

The measured data were post-processed to extract modal parameters for the T700 carbon-epoxy

antisymmetric cross-ply and angle-ply laminated composite plates following the guideline of the

OMA. The nature of variation of the temperature-dependent eigenfrequencies and eigen modes for

the cross-ply and angle-ply laminates are discussed in detail. In the adopted inverse method, a

two-stage optimization strategy is implemented to identify the temperature-dependent elastic and

damping properties. The two-stage optimization strategy is based on the idea of the associated

sensitivity of the identified properties. Generally, the elastic properties are more sensitive than

the inherent damping properties while evaluating eigenfrequencies. The consistency in the iden-

tified elastic properties indicates the reliability of the adopted inverse strategy and the associated

experimental protocol. The experimentally evaluate temperature-dependent behavior of eigenfre-

quencies for antisymmetric angle-ply and cross-ply laminates has been discussed with reference

to the fiber angle and the corresponding mode shapes. This study also confirms the frequency-

dependent behavior of the identified elastic properties and indicates the importance of conducting

dynamic tests and measurements to identify the material properties of composite lamina instead of

merely considering static and quasi-static test procedures.
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The experiment was conducted with two sets of cross-ply and angle-ply laminates. The determinis-

tic material properties of 8 numbers of plate samples are estimated separately by using the proposed

inverse method; however, the identified properties of eight plate samples indicate the existence of

uncertainties in the material properties. Therefore, it was suggested to evaluate uncertainties in the

material properties by using stochastic inverse methods. Sephavand et al. [154, 158] and Chandra

et al. [23, 24] used the gPC-based inverse method and the Bayesian inference technique to estimate

stochasticity in the material properties of composite lamina at the room temperature. These inverse

methods can be implemented to identify the stochastic temperature-dependent material properties

of composite lamina, and considered as a future research outlook. Hence, it is absolutely nec-

essary to study the uncertainties in the dynamic response of composite plates in varying thermal

environments. However, due to the absence of the in situ statistical data of the material properties

for carbon-based composite lamina at different temperatures, in Publication 4 an assumed statisti-

cal parameters are utilized for stochastic dynamic analysis of composite plates in varying thermal

environments.

Publication 4 is devoted to study stochastic dynamic behavior of composite plates in thermal en-

vironment. In fact, stochastic dynamic behavior of graphite-epoxy composite plates due to ran-

dom temperature increment is presented in this publication. The stochastic analysis is conducted

by using the gPC expansion method. The gPC expansion method is a well-established compu-

tationally efficient metamodel to derive the stochastic dynamic response of an engineering sys-

tem. However, the applicability of this metamodel to evaluate the stochastic dynamic response

of composite plates is very limited. The first-order perturbation technique (FOPT) is used quite

extensively [122, 126] to quantify uncertainties in static response and eigenfrequencies. Lal and

Singh [89], Kumar et al. [84, 85], and Dey et al. [36] studied uncertainty in static response and

eigenfrequencies at different temperatures due to random material and geometric properties. In

this respect, this publication studied for the first time uncertainty in dynamic response due to

randomness in temperature by using the gPC expansion method. The graphite-epoxy laminated

composite plate is used for this analysis. The elastic properties of the graphite-epoxy composite

lamina are temperature-dependent, therefore uncertainty in temperature propagate into the mate-

rial properties. For numerical analysis, mean temperatures are considered in the order of 325 K,

350 K, 375 K, and 400 K. The uncertainty in time domain deflection for symmetric cross-ply and

angle-ply laminates subjected to pulse and impulse loadings is presented as well. The gPC method

is successfully applied to estimate stochastic time domain deflection due to single random param-

eter, i.e., temperature. With the increment of mean temperature, the mean eigenfrequencies have

decreased, whereas the associated standard deviations have increased. Furthermore, consideration

of impulse loading shows a higher level of uncertainty in the delayed time domain, whereas in the
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case of the pulse loading, the level of uncertainty decreases in the delayed time domain. The PDF

of the peak dynamic deflection shows a larger dispersion at higher temperature. The level of un-

certainties varies in time and temperature domains, which suggests to conduct detailed stochastic

dynamic analysis of composite plates in varying thermal environment by considering uncertainty

in the material and geometric properties. In this respect, the sparse gPC expansion method can be

utilized to accommodate a large number of random parameters; see [16, 17] for further readings.

Overall, this publication will pave the way towards a reliable design of composite structures in

thermal environment.

To summarize these discussion, it can be mentioned that the stated research gaps are addressed in

this dissertation through the four publications. This work partially contributes to the broad field of

numerical and experimental analyses of composite structures in thermal environments. A general-

ized FE formulation is developed to analyze unstiffened and stiffened laminated composite plates

in varying thermal environments. The displacement-based and energy-based mechanisms to eval-

uate inherent damping performance of composite structures in varying thermal environment are

developed. Furthermore, the detailed parametric studies indicate the best possible configuration

of stiffener orientation, stiffener depth, lamina sequence, and temperature state to obtain the best

damping performance. The experimental procedure to measure the in situ dynamic characteris-

tics of composite plates in thermal environment is presented; it subsequently enable to identify

the deterministic in situ temperature-dependent elastic and damping properties by exploiting the

previously developed FE formulation. Finally, the stochastic dynamic analysis of composite plates

due to random temperature increment is presented.
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Chapter 5

Conclusions

5.1 Summary of major outcomes

To conclude this research work, the major outcomes and their implication in the scientific field are

summarized. Nowadays, composite materials are used to develop different structural parts of air-

craft, high-speed vehicles, etc., and these structures are exposed to thermal environment and also

subjected to dynamic loads. While developing prototypes of these types of composite structures,

the associated research involves knowledge of the state-of-the-art literature, development of a suit-

able structural system, numerical analysis of the structural system and subsequently performance

evaluation of the structure to identify the best configuration of the structural system. The first two

papers contributed to the development of this research field. Furthermore, knowledge of the in situ

material properties of the composite lamina is essential to simulate the dynamic response of the

prototype structure considering the influence of the operating frequencies and temperature. This

requirement has been discussed in Publication 3 with reference to the experimental procedure to

identify the in situ material properties. To ensure structural safety, probabilistic analysis of the

structure is necessary by quantifying uncertainty in dynamic response due to randomness in mate-

rial properties and thermal environment. In Publication 4, uncertainty in the dynamic response has

been evaluated due to randomness in the varying temperatures. Overall, this dissertation partially

contributed at different stages to the development of a prototype composite structure for application

in thermal environment.

The outcomes are illustrated in accordance with the two broad fields of contributions, i.e. numeri-

cal analysis and experimental analysis of composite plates. The major contributions regarding the

numerical analysis are the following:
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• FE-based numerical tool has been developed using the FSDT for conducting dynamic analy-

sis of thin unstiffened and stiffened laminated composite plates in thermal environment. This

generalized FE formulation is derived with reference to the Hamilton’s variational principle

for undamped and damped dynamic analyses.

• The modal expansion damping appeared as the best suited approach to develop the damping

matrix for conducting damping analysis of a composite structure with complex geometry in

varying thermal environments than that of the Rayleigh damping.

• In general, elastic properties of composite lamina degrade with the increment of temperature,

whereas the associated inherent damping values increase with the increment of temperature

until the glass transition temperature is reached. To quantify the inherent damping perfor-

mance of composite plates at different temperatures, the displacement-based and energy-

based mechanisms are proposed. Among these two, the energy-based mechanism appeared

as the most reliable approach for the damping performance assessment.

• It is observed that the lamina sequences and stiffener orientation govern the overall stiffness

of a composite plat. Among the considered unstiffened and stiffened laminated composite

plates, the best damping performance is obtained for the configuration which offered the

highest stiffness. Thereby, the unstiffened composite plate with antisymmetric angle-ply

laminate and the stiffened composite plate with a stiffener oriented parallel to the longer

edge with antisymmetric cross-ply laminate are identified as the best configuration to offer

the best damping performance for unstiffened and stiffened plates, respectively.

• The stiffened plate configuration imparted highest damping performance at 100 °C by uti-

lizing higher stiffness property as obtained by attaching a stiffener, whereas the unstiffened

plates presented the best damping performance at 0 °C.

• Near the resonance frequency, stiffened plates presented a better response reduction perfor-

mance due to inherent damping capacity of the composite lamina at elevated temperatures,

i.e., 75−100 °C.

• The gPC expansion method is efficiently used for the stochastic dynamic analysis of com-

posite plates due to the random temperature increment.

• The stochastic dynamic analysis of laminated composite plates showed a significant amount

of uncertainty in the dynamic deflection in time and temperature domains. The dispersion of

the PDFs of the peak dynamic deflection increased with the increment of the mean temper-

ature. Furthermore, the nature of the PDFs became non-Gaussian at elevated mean temper-

atures.
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With respect to the experimental procedure with composite plates and the corresponding identifi-

cation of the in situ temperature-dependent elastic and damping properties of composite lamina,

the following main contributions are identified:

• A novel noncontact-based experimental strategy is proposed for the experimental dynamic

analysis of a composite plate within a thermal enclosure. The output-only OMA is imple-

mented to extract the temperature-dependent modal characteristics of the composite plate in

varying thermal environments. Furthermore, the consistency in the extracted eigenfrequen-

cies ensured reliability of the presented experimental protocol.

• The experimental data showed that the temperature dependency of the eigenfrequencies is

governed by the fiber angle and the temperature-dependent elastic properties of the associ-

ated composite lamina and mode shapes of the plate.

• The proposed two-stage optimization algorithm efficiently identified the deterministic temp-

erature-dependent elastic properties of the composite lamina and subsequently evaluates the

trends of temperature-dependent behavior of the elastic properties. Additionally, uncertain-

ties in the identified material properties were also observed.

• The identified elastic properties of the composite lamina are frequency-dependent, which

suggested to consider the dynamic modal analysis to evaluate the in situ material properties

in operating frequency range. Therefore, the present experimental procedure is preferred

over the traditional static tests and quasi-static DMA, in which the material properties are

not estimated by acknowledging the operational frequency range of higher magnitude.

5.2 Future research outlooks

The numerous potential research avenues can be explored as a direct consequence of this research

work. In this regard, the blank space in Fig. 12 can be refereed to identify the future research

scopes. Few future scopes of development are listed below:

• The damping performance of the unstiffened and stiffened laminated composite plates at

different temperatures is studied in this work. The developed FE formulation can be directly

utilized to investigate the damping performance of unstiffened and stiffened laminated folded

plates. Furthermore, the damping performance of these structures can be studied under

different dynamic loads, e.g., impulse load, step load, sinusoidal load, etc.

• The current work is focused on the composite plates. Different forms of shell structure can

be studied to evaluate their damping performance and stochastic behavior.
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• To achieve higher damping performance, viscoelastic damping layers can be inserted within

the host composite plate, and the corresponding damping performance in thermal environ-

ment can be evaluated before considering for an industrial application.

• The inherent damping properties of a composite structure also contribute to control the in-

terior and exterior acoustic responses. The inherent damping properties of composite struc-

tures influence the acoustic control in thermal environment and this research field needs

further investigation.

• The efficiency of passive damping for structural and acoustic controls is limited. A passive-

active hybrid control mechanism can be exploited to improve the individual control perfor-

mance.

• The current work investigates stochastic dynamic response of composite plates due to uncer-

tainties in temperature. Additionally, material and geometric properties of composite plates

are also random in nature. The existing gPC-based metamodelling framework can be im-

proved to accommodate a large number of random variables to evaluated the uncertainties in

dynamic response in varying thermal environments.

• The present work considers the FSDT to analyze composite plates. This work can be ex-

tended to consider various higher-order plate theories to analyze thick plates and shells and

subsequently evaluate their damping performance and uncertainties in dynamic response at

different temperatures.

• The proposed experimental protocol can be improved further to minimize the model-related

uncertainties, as having appeared in the identified damping properties. Furthermore, stochas-

tic inverse methods can be implemented to estimate uncertainties in the material properties

of composite lamina at different temperatures.
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Appendix A

Validation Studies

The validation studies are conducted to ensure correctness and reproducibility of a numerical

model-generated output. In Publication 1, the FE-based numerical model for an undamped dy-

namic analysis of unstiffened and stiffened laminated composite plates has been validated sequen-

tially. However, detailed validation studies for damping analysis of unstiffened and stiffened lami-

nated composite plates were not included in Publication 2 due to brevity. In this chapter, validation

examples for the FE-based numerical model for damping analysis of composite plates at the room

temperature are presented. Herein, the modal damping values and damped dynamic responses of

laminated composite plates are compared with the published results. The validation of the present

FE model to analyze undamped dynamic response of unstiffened and stiffened laminated compos-

ite plates in thermal environment has been presented in Publication 1.

Modal damping values for unstiffened plates

The modal damping values in terms of SDCs, Ψm, of an unstiffened plate are calculated by us-

ing the viscoelastic damping formulation at the room temperature (i.e., 25 ◦C), and the present

results are compared with the results that are published by Hu and Dokainish [66]. An 8-layered

laminated composite plate, Plate 734 as denoted in [66], with lamina sequence (0◦/90◦)2s with

free-free boundary conditions is taken for the analysis. The dimension of the plate is (227×227×
2.05) mm3. The plate is discretized into 4× 4 mesh. The elastic and damping properties of this

plate is given in Table 4. The damped eigenfrequencies, fdm, and the modal SDCs, Ψm, are cal-

culated by using the present FE formulation and presented in Table 5. The results obtained by

using the present FE formulation are in close agreement with the results that reported by Hu and

Dokainish [66].
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Table 4: Properties of the composite lamina of the unstiffened laminated composite Plate 734,
cf. [66], at room temperature, i.e. 25 ◦C, to validate the damped eigenfrequencies and
modal damping values

Parameters Properties
Elastic moduli* (GPa) E11=34.49 E22=9.40 G12=G13=4.49
Poisson’s ratio (-) ν12 = 0.30 - -
Damping (%) Ψ11=0.87 Ψ22=4.75 Ψ12=6.13
Density (kg/m3) ρ = 1813.9 - -
* G23 = 0.5G12, ν21 = ν12

E22
E11

.

Table 5: Comparison of the damped eigenfrequencies, fdm, and the modal SDCs, Ψm, as calcu-
lated using the present FE formulation, and that reported by Hu and Dokainish [66] for
(0◦/90◦)2s unstiffened laminated composite Plate 734

Mode,
m

Present study Hu and Dokainish [66]
fdm

(Hz)
Ψm
(%)

fdm
(Hz)

Ψm
(%)

1 66.37 5.91 66.43 5.93
2 126.42 2.34 126.30 2.22
3 160.14 1.33 160.00 1.49
4 184.17 4.17 184.00 4.21
5 206.37 3.20 206.10 3.22

Damped response for unstiffened plates

The damped dynamic response of an unstiffened laminated composite plate is evaluated at the room

temperature and compared with the published results given in [200]. The elastic and damping

parameters as well as the density of the considered composite lamina, which is designated as

Material III in [200], are given in Table 6. The damped eigenfrequencies, fdm, and the modal SDCs,

Ψm, of (0◦/90◦/0/90)s unstiffened laminated composite plate with free-free boundary conditions

are calculated by using the present formulation and compared with those given by Zabaras and

Pervez [200]. The dimension of the composite plate is (227× 227× 2.05) mm3, and the plate is

discretized into 6×6 mesh. A good agreement between the results as obtained by using the present

FE formulation and those reported in [200] is observed in Table 7. The initial six rigid modes are

ignored in the modal analysis.

The damped dynamic response of a 2-layered (0◦/90◦) composite plate, using the composite ma-

terial as described in Table 6, is calculated by implementing the present formulation. The plan
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Table 6: Properties of the composite lamina (Material III) at room temperature, i.e., 25 ◦C, to
validate the modal damping values for the unstiffened laminated composite plate, cf. [192,
200].

Parameters Properties
Elastic moduli* (GPa) E11=37.78 E22=10.91 G12=G13=4.91
Poisson’s ratio (-) ν12 = 0.30 - -
Damping (%) Ψ11=0.87 Ψ22=5.05 Ψ12=6.91
Density (kg/m3) ρ = 1813.9 - -
* G23 = G12, ν21 = ν12

E22
E11

.

Table 7: Comparison between the damped eigenfrequencies, fdm, and the modal SDCs, Ψm, calcu-
lated by using the present FE formulation, and as reported by Zabaras and Pervez [200]
for (0◦/90◦/0◦/90◦)s unstiffened laminated composite plate.

Mode,
m

Present study Zabras et al. [200] Lin et al. [200]
fdm Ψm fdm Ψm fdm Ψm

(Hz) (%) (Hz) (%) (Hz) (%)
1 69.48 6.66 59.4 6.26 66.3 7.12
2 133.56 2.52 132.13 2.75 129.28 2.51
3 168.23 1.40 170.28 2.1 167.1 1.57
4 193.80 4.63 187.34 4.54 187.76 4.91
5 216.37 3.54 239.74 2.99 211.15 3.67

area of the considered plate is (227×227) mm2, and the plate thickness is derived from the given

aspect ratio of L/h = 5. The plate is with simply-supported boundary conditions in all sides and

is subjected to the pulse loading of q(t) = 100 N/m2 over the entire plan area of the plate. The

damped dynamic deflection, w, as calculated by using the Rayleigh damping and the modal ex-

pansion damping (considering first 20 modes) are plotted along with that given by Zabaras and

Pervez [200] in Figure 13. The damped dynamic deflection obtained from the ANSYS® simula-

tion is also shown in this figure. The figure shows that the mitigation of the deflection amplitude

in the time domain as derived by using the present formulation follows the similar trend as ob-

tained from the ANSYS® simulation and Zabaras and Pervez [200]. However, periodicity of the

calculated responses are not matching exactly with the reference response plot as obtained from

the ANSYS® simulation and Zabaras and Pervez [200]. The nonmatching of the response period-

icity is due to the discrepancy between the calculated damped eigenfrequencies and that evaluated

by the ANSYS® simulation and in [200]. The first eigenfrequency obtained from the present FE

formulation, ANSYS® simulation, and Zabaras and Pervez [200] are 2193 Hz, 2122 Hz, and 2391

Hz (approximately), respectively, and all three are within an allowable limit. This validation study

confirms that present FE formulation can evaluate damped dynamic response of unstiffened lami-
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nated composite plates with sufficient accuracy, and thereby used in Publication 2.
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Figure 13: Comparison between the damped transient response of the deflection, w, as obtained
by using the present FE formulation, and that reported by Zabaras and Pervez [200] for
(0◦/90◦) unstiffened laminated composite plate with all four edges simply-supported
subjected to pulse loading, q(t) = 100 N/m2, over the entire plan area

In these validation examples, the damped eigenfrequencies, modal damping values, and the damped

dynamic response of unstiffened laminated composite plates at the room temperature are calculated

using the present FE formulation. The results are matched well with the corresponding results as

obtained in the literature and the ANSYS® simulation. In Publication 1, this numerical model

has been validated for undamped dynamic analysis of both unstiffened and stiffened laminated

composite plates in thermal environment. Therefore, the presented FE formulation can be used

to evaluate the modal damping values and damped dynamic response of unstiffened and stiffened

laminated composite plates in thermal environments, as used in Publication 2.
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A B S T R A C T

Composite materials are increasingly used in aerospace and automobile sectors. These materials are character-
ized by high stiffness and light-weight in comparison to conventional structural materials. During high-speed
maneuvering of these vehicles, associated composite structures are subjected to dynamic loadings and are
often exposed to varying thermal environments. To ensure high load carrying capacity and to avoid thermal
buckling, stiffened laminated composite plates are preferred in some important structural components, e.g.,
aircraft’s fuselages, wings etc., than unstiffened laminated composite plates. For safe designing of these
structures, it is thus necessary to investigate the dynamic behavior of stiffened laminated composite plates
in thermal environment. In this paper, the dynamic response of stiffened laminated composite plates made
of polyetheretherketone (PEEK) with intermediate modulus (IM7) carbon fibers in thermal environment has
been investigated. Furthermore, development of a generalized finite element (FE) formulation using an 8-node
isoparametric plate element employing first-order shear deformation theory (FSDT) has also been presented
to analyze unstiffened and stiffened laminated composite plates in thermal environment. Detailed parametric
study reveals that the dynamic deflection and the corresponding normal stress decrease with adding stiffener,
and decreases further with increasing depth of the stiffener in thermal environment.

1. Introduction

Laminated composite structures have enormous potential to be
used in various engineering disciplines such as aerospace, transport,
and naval industries, and construction of specialized civil engineering
structures owing to inherent advantages in their material properties.
Due to their superior elastic properties, such laminated composite
plates offer higher load-carrying capacity than plates made of conven-
tional structural materials. During high-speed maneuvering, specific
parts of an aircraft and automobile structures often experience a rise
in temperature while being subjected to a dynamic excitation. Fur-
ther, dynamic response of composite structures varies significantly due
to degradation in the elastic properties of the composite materials
with changing temperature. Hence, accurately evaluating the dynamic
response of unstiffened and stiffened laminated composite plates in
thermal environment is crucial.

Theoretical and experimental studies on thermal effects in compos-
ite materials were initiated by Halpin [1]. Later, Halpin and Pagano [2],
and Whitney and Ashton [3] have studied the bending, buckling,
and vibration of laminated composite plates in thermal environment.

∗ Corresponding author.
E-mail address: sourav.chandra@tum.de (S. Chandra).

Whitney and Ashton [3] used a generalized Duhamel–Neumann form
of Hooke’s law to develop governing equations of laminated composite
plates using a semi-analytical method, e.g., the Ritz method. Later,
the Ritz method [4] has been used to analyze different static [5] and
dynamic [6,7] problems of composite plates with regular geometry.
However, the difficulty of finding suitable basis functions limited the
application of the Ritz method for complicated geometry and boundary
conditions. Instead, the finite element (FE) method has been developed,
where the plate domain is discretized into small finite elements ap-
plying simple basis functions, to overcome the limitation of the Ritz
Method.

Nowadays, high-strength composites such as graphite–epoxy,
carbon–epoxy, carbon–carbon, and intermediate modulus carbon fibers-
polyetheretherketone (IM7-PEEK) are used to manufacture important
structural components of aircraft and high-speed automobile vehicles,
because they offer high elastic strength, high glass transition temper-
ature, and low coefficient of thermal expansion. Ram and Sinha [8]
showed that dimensionless natural frequencies of the graphite–epoxy
laminated composite plate decrease with the increment in temperature

https://doi.org/10.1016/j.compstruct.2022.116049
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and moisture concentration. They used the FE method for conducting
dynamic analysis by incorporating the first-order shear deformation
theory (FSDT) which includes residual stress developed due to variation
in temperature and moisture concentration. Patel et al. [9] presented
static, buckling, and free vibration analyses of thick composite plates
using an 8-node element with thirteen degrees of freedom (DOFs)
per node in hygrothermal environment. They derived the associated
governing equations based on the Lagrangian equations of motion
for static, buckling, and free vibration analyses. Furthermore, various
stochastic analyses [10–12] of laminated composite plates using the
FSDT are found in the literature. Mangala et al. [13,14] developed a
hierarchical higher-order shear deformation theory (HSDT) to analyze
doubly-curved laminated composite shells in hygrothermal environ-
ment. They studied free vibration response of laminated composite
shells in different hygrothermal environments. Naidu and Sinha [15,16]
presented non-linear static and free vibration analyses for thick doubly-
curved graphite–epoxy laminated composite shells based on the Green–
Lagrange strains in hygrothermal environment. Shen and Yang [17]
and Shen et al. [18] carried out a non-linear flexural vibration analysis
of functionally graded shear deformable fiber-reinforced laminated
composite cylindrical shells in hygrothermal condition. Several stud-
ies [16,19–21] related to buckling analysis of laminated composite
plates in thermal environment were also conducted, which are not
under the scope of the present study.

Recently, the differential quadrature method (DQM) has appeared
as an alternative numerical approach to analyze thick, moderately
thick, and thin laminated skew plates and laminated composite plates
[22,23]. In these studies the large amplitude free vibration response for
the associated composite plates are evaluated based on the modified
DQM after implementing suitable modification to the conventional
DQM. Because of easier estimation of higher-order derivatives, applica-
tion of the DQM is most suitable for non-linear free vibration analysis
of thick plates, even though, the DQM can deal with regular geometry
only, e.g., rectangular plates, and cylindrical and spherical shells [24].
The DQM was used [25] to study bending, buckling, and free vibration
behavior of microcomposite plates reinforced by functionally graded
single-walled carbon nanotube (FG-SWCNT) in hygrothermal environ-
ment. However, the FE method with the low-order (C0) continuity has
been widely used by research community to analyze thin laminated
composite plates with regular and complicated geometries.

Transient response of unstiffened composite plates and shells in
thermal environment had been assessed by some researchers. Parhi
et al. [26] studied free and forced vibration response in terms of
central deflection and normal stress, due to multiple delaminations in
carbon–epoxy laminated composite shells using the FSDT at varying
temperatures and moisture concentrations. Huang et al. [27] studied
non-linear free vibration and dynamic response of the shear deformable
laminated composite plates using the HSDT including hygrothermal
effects. General von Kármán-type equation of motion was used in
this study to incorporate the hygrothermal effect. Shen et al. [28,29]
examined transient response in terms of central deflection and bending
moment of the shear deformable laminated composite plates resting on
an elastic foundation, based on the HSDT as proposed by Reddy [30].
Makhecha et al. [31] presented dynamic analysis of laminated com-
posite plates subjected to thermal and mechanical loadings using a
new higher order theory. Based on the formulation had proposed
in [15], Naidu and Sinha [32] extended their investigation to study the
non-linear transient response of thick doubly-curved graphite–epoxy
laminated composite shells in thermal environment. However, in these
successive studies [15,16,32], a comprehensive discussion related to
the derivation of the governing equations is not readily available,
particularly unavailable for stiffened structures. In an another study,
Nanda and Pradyumna [33] investigated free vibration and transient
response of graphite–epoxy laminated composite cylindrical and spher-
ical shells with imperfection in hygrothermal environment. They used

the FSDT with von Kármán-type non-linear kinematics without explic-
itly presenting development of the associated governing equations, and
they also did not consider the effect of adding the stiffeners.

To extend the horizon of the research, some related studies of com-
posite plates in thermal environment are included herein. Bandyopad-
hyay et al. [34] investigated transient response of the delaminated pre-
twisted conical composite shells due to multiple low-velocity impacts
in a hygrothermal environment. Malekzadeh and Monajjemzadeh [35]
studied dynamic response of elastically supported functionally graded
(FG) plates subjected to a concentrated moving load in thermal envi-
ronment. Non-linear thermal flutter analysis of supersonic symmetric
laminated composite plates was presented by Niu et al. [36], employing
the DQM. Non-linear dynamic analysis of composite plates, subjected to
a harmonic excitation, with initial geometric imperfection was studied
in [37]. A stochastic dynamic response analysis for graphite–epoxy
laminated composite plates due to random temperature increment was
presented by Chandra et al. [38], employing the FSDT for conducting
the dynamic analysis. Furthermore, various FE formulations based on
the HSDT [39–46] and zigzag theory [47,48] have been developed to
evaluate the thermoelastic stress distribution in the laminated com-
posite and sandwich plates subjected to static loading. In this context,
recently Garg and Chalak [49] have provided a state-of-the-art review
on the application of various FE formulations for analysis of laminated
composite and sandwich plate and shell structures in hygrothermal
environment.

Unlike unstiffened laminated composite plates, stiffened laminated
composite plates offer reduction in the dynamic deflection, and have
thereby become an attractive alternative for response reduction with
a minimum weight penalty. Thus, stiffened plate type structures are
advantageously used in aircraft fuselages, car bodies, hulls of the
ship, and bridge decks for avoiding large deflection and buckling
phenomenon. However, it is observed from the literature review that
transient response analysis in thermal environments has been primarily
restricted to unstiffened plates and shells. Herein, this research gap
is addressed by conducting a detailed dynamic analysis of stiffened
laminated composite plates in a thermal environment.

With the inception of the idea of applying stiffeners in a structural
system, various FE models have been developed to study the bending
and dynamic behaviors of isotropic [50–52] and orthotropic [51–54]
stiffened plates. Attaf and Hollaway [55] had first presented a vibration
study of an eccentrically stiffened glass-reinforced plastic composite
plate subjected to in-plane loads using a 4-node plate element. Lee and
Lee [56] investigated the influence of the stiffener size and location by
conducting a free vibration analysis. They idealized the stiffener as a
Timoshenko beam element. Chattopadhyay et al. [57] analyzed a blade-
stiffened composite plate using an 8-node isoparametric stiffened plate
bending element. Qing et al. [58] studied free vibration behavior of
a stiffened laminated composite plate by accounting the compatibility
of displacement and stress between the plate and stiffener. In their
study, the plate has been modeled by triangular elements whereas the
stiffener has been modeled with refined beam and torsional elements.
Talebitooti et al. [59] and Golchi et al. [60] used the DQM to study the
buckling and dynamic behaviors of FG orthogonally stiffened cylindri-
cal shells and truncated conical shells, respectively. However, due to
easier implementation, the FE method was preferred over the DQM for
analyzing stiffened structures.

Very limited numbers of study on stiffened laminated composite
plates are available in the literature, and the available studies are
predominantly related to free vibration analysis using the FE method.
Patro et al. [61] presented a brief discussion on free vibration re-
sponse of stiffened laminated composite plates in thermal environment
using the FE model. Sit and Ray [62] evaluated natural frequencies
of a bridge deck with closely-spaced box stiffeners made of a glass
fiber-reinforced polymer (GFRP) composite plate with increasing tem-
perature. Moreover, Ray and Satsangi [63] presented stress analysis of
hat-stiffened laminated composite plates subjected to transverse static
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loading. Yu et al. [64] presented a composite plate–plate element model
which describes the mechanical behavior of a stiffened plate structure
using an absolute nodal coordinate formulation. This model is more
appropriate for solving a large deformation problem. The eigenfre-
quency and random modal damping of a stiffened laminated composite
plate for various lamina sequences were studied using the FSDT by
Chandra et al. [65]. Assuming the importance of the stability aspect of
stiffened composite structures, the maximum buckling load of stiffened
laminated shell panels, based on the particle swarm optimization (PSO)
and genetic algorithm (GA), was evaluated in [66]. Finally, some
experimental modal analyses of stiffened laminated composite plates
in thermal environment were reported [67,68] in recent years.

Limited literature is available on the studies related to transient re-
sponse of stiffened laminated composite plates. Kumar and Mukhopad-
hyay [69] presented the transient response analysis of an arbitrarily
oriented stiffened laminated composite plate using the FSDT and tri-
angular plate bending elements. Free and forced vibration response of
stiffened laminated and sandwich folded plates for various crank angles
have been studied by Pal and Niyogi [70]. They modeled the plate and
stiffener using 9-node plate elements considering an additional drilling
DOF per node with proper transformation based on the FSDT which
was originally proposed by Niyogi et al. [71] for analysis of laminated
composite folded plate structures. Additionally, a few studies [72–74]
on transient analysis of stiffened plates and shells subjected to air blast
loading are available in the literature. Goel et al. [75] investigated the
dynamic response of different stiffener configurations for a rectangular
plate subjected to air blast loading. However, these studies did not
account for any thermal effect.

A careful synthesis of the literature suggests that a significant
research contribution, especially on understanding bending and free
vibration [8,9,14,15,32] behaviors of the composite structures in ther-
mal environment, using various plate theories have been reported for
laminated composite plates and shells. However, dynamic analysis of
stiffened laminated composite plates in thermal environment is almost
absent in the literature, and it would be necessary to investigate the
dynamic deflection experienced, and stress induced in these plates at
different thermal environments. This analysis, further contributes to
understand response reduction characteristics of stiffened laminated
composite plates in comparison to the corresponding unstiffened plates
in varying thermal environments. Moreover, sequential development
of a generalized FE formulation based on the energy equation for
analysis of unstiffened and stiffened laminated composite plates in
thermal environment is not readily available in the literature. In this
context, the novel contributions of this study are in two folds: firstly, a
systematic development of the generalized FE formulation for dynamic
analysis of unstiffened and stiffened laminated composite plates with
reference to the Hamilton’s variational principle including the effect
of temperature variation, and secondly, a detailed dynamic analy-
sis for stiffened laminated composite plates in thermal environment
for different orientations of the stiffener and lamina sequences and
subsequently understand the response reduction characteristics of the
stiffened plates. The systematic development of the generalized FE
formulation can further be extended for dynamic analysis of stiffened
shells, and unstiffened and stiffened folded plates in thermal environ-
ment. Overall, the detailed dynamic analysis gives a deep insight on
the dynamic behavior of these plates for their industrial application in
thermal environment.

To address the efficient application of stiffened laminated composite
plates in a real-life situation, various parametric studies have been
conducted in thermal environment that varies between 0 ◦C and 125 ◦C
temperature. Here, dynamic response of the deflection and normal
stress for stiffened laminated composite plates at different temperatures
is evaluated for various parameters such as lamina sequences, plates
thickness, stiffener orientations and depths. The main objectives of
the present study include the following: (a) to conduct a comparative
study of eigenfrequency in terms of non-dimensional frequency (NDF)

of unstiffened and stiffened IM7-PEEK laminated composite plates for
various lamina sequences at different temperatures; (b) to assess the
transient response of the deflection and normal stress of unstiffened
and stiffened IM7-PEEK laminated composite plates considering various
lamina sequences and depths of stiffener at different temperatures; (c)
to investigate the effect of the addition of the stiffeners for reducing
the amplitude of transient response of the deflection and normal stress
with reference to an unstiffened plate in various thermal environments.

The layout of this paper can briefly be summarized as follows.
Section 2 describes the FE formulation developed for dynamic analysis
of unstiffened and stiffened laminated composite plates in a thermal
environment. Next, a detailed validation study is carried out and pre-
sented in Section 3. In Section 4, results from various parametric
studies are reported to understand the behavior of stiffened laminated
composite plates in thermal environment. Finally, conclusions derived
from the present study are summarized in Section 5.

2. Mathematical formulation

In this section, an FE formulation is presented for unstiffened and
stiffened laminated composite plates to evaluate their transient re-
sponse of the deflection and normal stress in various thermal envi-
ronments. The FE formulation is established to analyze a stiffened
laminated composite plate (cf. Fig. 1(a)) with length, 𝐿; width, 𝑊 ;
uniform thickness, ℎ; and stiffener depth, 𝑑s. A laminate consisting of 𝑛
numbers of unidirectional lamina with equal thickness is considered
for the analysis. The FE formulation is developed by employing the
FSDT, assuming that the thickness of the laminate is very small in
comparison with the in-plane dimensions. It is assumed during analysis
of stiffened plates that the plate and stiffener are in perfect contact.
An 8-node isoparametric plate element with five DOFs and one drilling
DOF per node (cf. Fig. 1(b)) has been implemented here with the
proper transformation to establish a generalized formulation for ana-
lyzing unstiffened and stiffened laminated composite plates in thermal
environments. The constitutive relationship of unstiffened plate and the
stiffener are developed based on the five DOFs, and then the drilling
DOF of the plate element has been included into the FE formulation to
perform the transformation to consider the stiffener orientation. The
formulation adopted here for analyzing stiffened plates is known as
folded plate formulation [71].

2.1. Constitutive relationship of the composite laminate

In equivalent single layer theory such as the FSDT, the mid-plane
is considered as the reference plane to evaluate the displacement field.
A generalized displacement vector, {𝑑} = {𝑢 𝑣 𝑤 𝜃x 𝜃y}T, based
on the FSDT is expressed, assuming that the normal to the mid-plane
of the plate remains straight before and after bending. In FSDT, the
non-linear distribution of the transverse shear strain is considered by
employing a shear correction factor, 𝜘 = (5∕6) [8]. The generalized
displacement field of the composite laminate at a distance 𝑧 from the
mid-plane (Fig. 1(a)) is expressed as

𝑢 = 𝑢0 + 𝑧𝜃y,
𝑣 = 𝑣0 − 𝑧𝜃x,
𝑤 = 𝑤0.

(1)

Here, 𝑢 and 𝑣 are in-plane translations along the 𝑥 and 𝑦 axes, respec-
tively; 𝑤 is out-of-plane deformation along the 𝑧 axis; and rotations of
the transverse normal about the 𝑥 and 𝑦 axes are denoted by 𝜃x and
𝜃y, respectively. In Fig. 1(a), rotation about the 𝑧 axis is denoted by 𝜃z.
Parameters 𝑢0, 𝑣0, and 𝑤0 are mid-plane displacements along the 𝑥, 𝑦,
and 𝑧 axes, respectively. Shear rotations, 𝜑x and 𝜑y, in the 𝑥 − 𝑧 and
𝑦 − 𝑧 planes of the composite plate are evaluated as

𝜑x = 𝑤,x +𝜃y,
𝜑y = 𝑤,y −𝜃x.

(2)
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Fig. 1. (a) Stiffened laminated composite plate, showing the positive direction of the displacement components of a laminate in the laminate coordinate (𝑥, 𝑦, 𝑧) system, and fiber
orientation, 𝜃, for a particular lamina in the lamina coordinate (1, 2, 3) system; (b) 8-node 𝐶0 isoparametric element showing DOFs at each node including 𝜃z drilling DOF; (c)
Time history of pulse loading for a duration of 𝑡d s with a amplitude of 𝑞 N/mm2.

The elements of the linear strains vector, {𝜀} = {𝜀x 𝜀y 𝛾xy 𝛾xz 𝛾yz}T,
at a distance 𝑧 from the mid-plane of the laminate is derived from
Eqs. (1) and (2), and written in the form of

𝜀x = 𝑢0,x + 𝑧𝜃y,x,
𝜀y = 𝑣0,y − 𝑧𝜃x,y,
𝛾xy = 𝑢0,y + 𝑣0,x + 𝑧(𝜃y,y − 𝜃x,x),
𝛾xz = 𝜑x,
𝛾yz = 𝜑y.

(3)

The linear mid-plane strain terms from Eq. (3) are now defined as
𝜀0x = 𝑢0,x, 𝜀0y = 𝑣0,y, 𝛾0xy = (𝑢0,y + 𝑣0,x), 𝜅x = 𝜃y,x, 𝜅y = −𝜃x,y, and
𝜅xy = (𝜃y,y − 𝜃x,x). The stress–strain relationship for the 𝑘th lamina
is expressed in terms of the laminate coordinate (𝑥, 𝑦, 𝑧) system for
uniform increment in temperature, 𝛥𝑇 , as

{𝜎}k = [𝑄]k
{
{𝜀}k − {𝛼}k𝛥𝑇

}
. (4)

In this equation, the stress vector, {𝜎}k = {𝜎x 𝜎y 𝜏xy 𝜏xz 𝜏yz}T
k ,

for the 𝑘th lamina is obtained by relating linear and thermal strains
employing the transformed reduced stiffness matrix, [𝑄]k, for the 𝑘th

lamina represented in terms of the fiber angle, 𝜃, and elastic constants
of the lamina [8]. The coefficients of thermal expansion of a lamina
is expressed in the laminate coordinate (𝑥, 𝑦, 𝑧) system, as {𝛼} =
{𝛼x 𝛼y 𝛼xy 0 0}T. Henceforth, the stress–strain relationship of a lam-
ina in thermal environment is expressed in the laminate coordinate (𝑥,
𝑦, 𝑧) system.

The stress–strain relationship of the lamina is then integrated over
the thickness of the laminate. As a consequence, the stress vector, {𝜎},
leads to stress-resultant vector,
{𝐹r} = {𝑁x 𝑁y 𝑁xy 𝑀x 𝑀y 𝑀xy 𝑄x 𝑄y}T, and the corre-
sponding strain vector, {𝜀}, leads to mid-plane strain vector, {𝜀∗}. Thus,
stress-resultant vector, {𝐹r}, of the laminate is derived by integrating
Eq. (4) over the thickness of the laminate comprising of all 𝑛 numbers
of lamina, and can be expressed as

{𝐹r} = [𝐷]
{
{𝜀∗} − {𝑒∗}

}
, (5)

where the mid-plane strain vector, {𝜀∗}, of the composite laminate is
given by

{𝜀∗} = {𝜀0x 𝜀0y 𝛾0xy 𝜅x 𝜅y 𝜅xy 𝛾xz 𝛾yz}T, (6)

and the corresponding mid-plane thermal strain vector, {𝑒∗}, is given
by

{𝑒∗} = {𝑒x 𝑒y 𝑒xy 0 0 0 0 0}T. (7)

Here, thermal stress-resultant vector, {𝐹N} = [𝐷]{𝑒∗}, is defining as,
{𝐹N} = {𝑁Nx 𝑁Ny 𝑁Nxy 𝑀Nx 𝑀Ny 𝑀Nxy 0 0}T. In Eq. (5),
the stress-resultant and mid-plane strain relationship matrix, [𝐷], is
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given as

[𝐷] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐴11 𝐴12 𝐴16 𝐵11 𝐵12 𝐵16 0 0
𝐴21 𝐴22 𝐴26 𝐵21 𝐵22 𝐵26 0 0
𝐴61 𝐴62 𝐴66 𝐵61 𝐵62 𝐵66 0 0
𝐵11 𝐵12 𝐵16 𝐷11 𝐷12 𝐷16 0 0
𝐵21 𝐵22 𝐵26 𝐷21 𝐷22 𝐷26 0 0
𝐵61 𝐵62 𝐵66 𝐷61 𝐷62 𝐷66 0 0
0 0 0 0 0 0 𝐴̄44 𝐴̄45
0 0 0 0 0 0 𝐴̄54 𝐴̄55

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

with [𝐷] being a symmetric-matrix, i.e., 𝐴ij = 𝐴ji, 𝐵ij = 𝐵ji, 𝐷ij = 𝐷ji,
and 𝐴̄ij = 𝐴̄ji, where

𝐴ij =
𝑛∑

𝑘=1
∫

𝑧k

𝑧k-1

[𝑄ij]kd𝑧, 𝑖, 𝑗 = 1, 2, 6

𝐵ij =
𝑛∑

𝑘=1
∫

𝑧k

𝑧k-1

[𝑄ij]k(𝑧)d𝑧, 𝑖, 𝑗 = 1, 2, 6

𝐷ij =
𝑛∑

𝑘=1
∫

𝑧k

𝑧k-1

[𝑄ij]k(𝑧2)d𝑧, 𝑖, 𝑗 = 1, 2, 6

(9)

and

𝐴̄ij =
𝑛∑

𝑘=1
∫

𝑧k

𝑧k-1

𝜘[𝑄ij]kd𝑧, 𝑖, 𝑗 = 4, 5 and 𝜘 = 5∕6. (10)

Here, [𝑄ij]k (cf. Eq. (A.1)) is transformed reduced stiffness matrix of
the 𝑘th lamina in the laminate coordinate (𝑥, 𝑦, 𝑧) system, and elements
of the corresponding matrix are denoted by (𝑄ij)k for the 𝑘th lamina.
Thus, [𝐷] matrix is obtained by (𝑄ij)k are obtained from (𝐶ij)k, after
proper transformation from the lamina coordinate (1, 2, 3) system based
on the fiber orientation to the laminate coordinate (𝑥, 𝑦, 𝑧) system for
the 𝑘th lamina. (𝐶ij)k are the elements of the stress–strain matrix [𝐶]k
(cf. Eq. (A.2)) for the 𝑘th lamina in the lamina coordinate (1, 2, 3)
system. Here, 𝐸11 and 𝐸22 are elastic moduli; 𝐺12, 𝐺13, and 𝐺23 are
shear moduli; and 𝜈12 and 𝜈21 denote Poisson’s ratios of the lamina
in the lamina coordinate (1, 2, 3) system. Moreover, while calculating
the [𝐷] matrix at a given temperature, the corresponding temperature-
dependent elastic moduli, shear moduli, and Poisson’s ratio of the
composite lamina are considered.

Components of the initial strain vector, {𝜀nt} =
{𝜀𝑥nt 𝜀𝑦nt 𝛾𝑥𝑦nt 𝛾𝑥𝑧nt 𝛾𝑦𝑧nt}

T, due to the thermal load in static condi-
tion are described by the non-linear portion of the overall strain, and
are given as

𝜀𝑥nt =
1
2
(𝑢2

,x + 𝑣2
,x +𝑤2

,x),

𝜀𝑦nt =
1
2
(𝑢2

,y + 𝑣2
,y +𝑤2

,y),

𝛾𝑥𝑦nt = (𝑢,x𝑢,y + 𝑣,x𝑣,y +𝑤,x𝑤,y),
𝛾𝑥𝑧nt = (𝑢,x𝑢,z + 𝑣,x𝑣,z),
𝛾𝑦𝑧nt = (𝑢,y𝑢,z + 𝑣,y𝑣,z).

(11)

The displacement terms (i.e., 𝑢, 𝑣, and 𝑤) in right side of Eq. (11) are
expressed in terms of the mid-plane displacement with reference to
Eq. (1). In this way, the initial strain vector, {𝜀nt}, can be written in
a compact from, as

{𝜀nt} = 1
2
[𝑅]{𝑑∗}, (12)

where [𝑅] is relationship matrix of non-linear strain vector, {𝜀nt}, and
vector of partial derivative of displacement, {𝑑∗}, (cf. Eq. (A.3)). The
vector of partial derivative of displacement, {𝑑∗} = [𝐺]{𝑑}, is written
as

{𝑑∗}={𝑢0,x 𝑢0,y 𝑣0,x 𝑣0,y 𝑤0,x 𝑤0,y 𝜃x,x 𝜃x,y 𝜃y,x 𝜃y,y 𝜃x 𝜃y}T,

(13)

where [𝐺] is the shape function matrix (cf. Eq. (A.4)) correspond to
{𝑑∗}, and {𝑑} = {𝑢0 𝑣0 𝑤0 𝜃x 𝜃y}T is the mid-plane displacement
of laminate.

2.2. Equations of motion

The equations of motion of the composite laminate in thermal
environment are derived based on the Hamilton’s variational principle,
as

∫
𝑡2

𝑡1
𝛿(E −K)d𝑡 = 0. (14)

Here, E and K are total potential and kinetic energies, respectively,
within an arbitrary time interval (𝑡1, 𝑡2). The total potential energy,
E, can be written as a summation of strain energy, U, of the laminate,
and work done, W, by externally applied uniformly distributed pulse
loading, 𝑞(𝑡), (cf. Fig. 1(c)) for a duration of 𝑡d s in the direction of
the generalized displacement vector, {𝑑}, i.e., E = U − W. The total
potential energy, E, can be stated for the composite laminate in the
thermal environment, which is expressed as

E =
(
1
2∫A {𝜀∗}T[𝐷]{𝜀∗}d𝐴+ 1

2 ∫A{𝑑
∗}T[𝑆r]{𝑑∗}d𝐴

)

−
(
∫A{𝑑}

T{𝑞(𝑡)}d𝐴
)

,
(15)

in which [𝑆r] (cf. Box II) is the initial-stress resultant matrix. The initial
stress-resultant vector, {𝐹 i} =
{𝑁 i

x 𝑁 i
y 𝑁 i

xy 𝑀 i
x 𝑀 i

y 𝑀 i
xy 𝑄i

x 𝑄i
y}

T, is induced into the com-
posite laminate due to variation in the temperature under static condi-
tion. The externally applied load vector is denoted by {𝑞(𝑡)}.

The kinetic energy, K, of the composite laminate is presented as

K = 1
2 ∫A{𝑑̇}

T[𝑀̄]{𝑑̇}d𝐴, (16)

where {𝑑̇} is the velocity vector in accordance with {𝑑}. In Eq. (16),
[𝑀̄] is the inertia matrix of the composite laminate, and given as

[𝑀̄] =

⎡⎢⎢⎢⎢⎢⎣

𝑝̄ 0 0 0 0
0 𝑝̄ 0 0 0
0 0 𝑝̄ 0 0
0 0 0 𝑞 0
0 0 0 0 𝑞

⎤⎥⎥⎥⎥⎥⎦

, (17)

in which (𝑝̄, 𝑞) = ∫ ℎ∕2
−ℎ∕2 𝜌(1, 𝑧

2)d𝑧, and 𝜌 denotes the density of the
composite laminate. The expression for equation of motion is formed by
combining Eqs. (15) and (16) into the Hamilton’s variational statement
in Eq. (14), and presented as

𝛿 ∫
𝑡2

𝑡1

[
1
2 ∫A{𝜀

∗}T[𝐷]{𝜀∗}d𝐴 + 1
2 ∫A{𝑑

∗}T[𝑆r]{𝑑∗}d𝐴−

∫A{𝑑}
T{𝑞(𝑡)}d𝐴 − 1

2 ∫A{𝑑̇}
T[𝑀̄]{𝑑̇}d𝐴

]
d𝑡 = 0.

(18)

The Hamilton’s variational principle as derived in Eq. (18) is further
used to develop the FE formulation of the composite laminate under
thermal environment in the next section.

2.3. Finite element formulation

The orthotropic laminated composite plate is mathematically mod-
eled by employing the finite element method (FEM) where solution
domain is discretized into finite subdomains. The entire structural
domain is discretized by an 8-node 𝐶0 isoparametric plate elements
with five DOFs, i.e., 𝑢0, 𝑣0, 𝑤0, 𝜃x, and 𝜃y, at each node, as shown in
Fig. 1(b). The time dependent mid-plane displacement vector, {𝑑(𝑡)}
of an element, ‘e’ is expressed in terms of the elemental nodal dis-
placement vector, {𝑑e(𝑡)}, using an 8-node serendipity interpolation
functions, [𝑁], [8], and is expressed as

{𝑑(𝑡)} = [𝑁]{𝑑e(𝑡)}. (19)
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⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑢0
𝑣0
𝑤0
𝜃x
𝜃y
𝜃z

⎫⎪⎪⎪⎬⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

cos(𝑥′, 𝑥) cos(𝑦′, 𝑥) cos(𝑧′, 𝑥) 0 0 0
cos(𝑥′, 𝑦) cos(𝑦′, 𝑦) cos(𝑧′, 𝑦) 0 0 0
cos(𝑥′, 𝑧) cos(𝑦′, 𝑧) cos(𝑧′, 𝑧) 0 0 0

0 0 0 cos(𝑥′, 𝑥) cos(𝑦′, 𝑥) cos(𝑧′, 𝑥)
0 0 0 cos(𝑥′, 𝑦) cos(𝑦′, 𝑦) cos(𝑧′, 𝑦)
0 0 0 cos(𝑥′, 𝑧) cos(𝑦′, 𝑧) cos(𝑧′, 𝑧)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑢′0
𝑣′0
𝑤′

0
𝜃′x
𝜃′y
𝜃′z

⎫⎪⎪⎪⎬⎪⎪⎪⎭

, (26)

Box I.

Accordingly, the mid-plane strain vector, {𝜀∗(𝑡)}, is calculated from the
known nodal displacement vector employing the strain–displacement
matrix, [𝐵], [71] with reference to Eqs. (6) and (19), as

{𝜀∗(𝑡)} = [𝐵]{𝑑e(𝑡)}. (20)

The mathematical statement of the Hamilton’s variational principle for
the element, ‘e’, is derived with reference to Eq. (18), and presented as

∫
𝑡2

𝑡1

[
∫Ae

𝛿{𝑑e(𝑡)}T[𝐵]T[𝐷][𝐵]{𝑑e(𝑡)}d𝐴e+

∫Ae

𝛿{𝑑e(𝑡)}T[𝐺]T[𝑆r][𝐺]{𝑑e(𝑡)}d𝐴e − ∫Ae

𝛿{𝑑e(𝑡)}T[𝑁]T{𝑞(𝑡)}d𝐴e+

∫Ae

𝛿{𝑑e(𝑡)}T[𝑁]T[𝑀̄][𝑁]{𝑑e(𝑡)}d𝐴e

]
d𝑡 = 0,

(21)

where [𝐺] is the matrix of shape functions which is given in Eq. (A.4).
Shape function matrix for 8-node isoparametric element is shown by
[𝑁]. Since, the virtual displacement vector, 𝛿{𝑑e(𝑡)}, is arbitrary in
nature, Eq. (21) is valid for any virtual displacement, and the FE model
for the element, ‘e’, of the laminated composite plate is written in the
form of
[
[𝐾e]+[𝐾Ge]

]
{𝑑e(𝑡)}+

[
𝑀e

]
{𝑑e(𝑡)}={𝑃e(𝑡)}. (22)

Here, the elemental stiffness matrix, [𝐾e]; the elemental geometric stiff-
ness matrix, [𝐾Ge]; and the elemental mass matrix, [𝑀e], are obtained
as

[𝐾e] = ∫Ae

[𝐵]T[𝐷][𝐵]d𝐴e,

[𝐾Ge] = ∫Ae

[𝐺]T[𝑆r][𝐺]d𝐴e,

[𝑀e] = ∫Ae

[𝑁]T[𝑀̄][𝑁]d𝐴e.

(23)

The elemental geometric stiffness matrix, [𝐾Ge], is developed for initial
deformation due to thermal load. The elemental dynamic load vector,
{𝑃e(𝑡)}, is given by

{𝑃e(𝑡)} = ∫Ae

[𝑁]T{𝑞(𝑡)}d𝐴e. (24)

Elemental thermal force vector, {𝑃Ne}, due to thermal stress-resultant
vector, {𝐹N}, is evaluated as

{𝑃Ne} = ∫Ae

[𝐵]T{𝐹N}d𝐴e. (25)

2.4. Transformation matrix for stiffened plate

A transformation matrix, [̄ ], is developed to relate the local dis-
placement vector, {𝑑}, of a unstiffened plate and stiffener, and the
global displacement vector, {𝑑′}, of a stiffened plate as shown in Fig. 2.
The displacement vectors, {𝑑} and {𝑑′}, are expanded by appending 𝜃z
drilling DOF (cf. Fig. 1(b)) prior to the transformation. This relationship
is given in Box I, where cos(𝑥′, 𝑥) represents the direction cosine of the
least angle between positive 𝑥 and 𝑥′ axes, and the subsequent direction

cosine terms also possess the similar meaning. In the FE formulation,
transformation matrix, [̄ ], for each nodal displacement is written in
compact form with reference to Box I, as

{𝑑} = [̄ ]{𝑑′}. (27)

The transformation matrix, [̄ ], possesses the property of orthogonality.
Finally, the transformed elemental stiffness matrix, [𝐾 ′

e]; the trans-
formed elemental geometric stiffness matrix, [𝐾 ′

Ge]; the transformed
elemental mass matrix, [𝑀 ′

e]; the transformed elemental dynamic load
vector, {𝑃 ′

e(𝑡)}; and transformed elemental thermal force vector, {𝑃 ′
Ne},

are expressed in the global coordinate system of the stiffened plate,
such as

[𝐾 ′
e] = [ ]T[𝐾e][ ],

[𝐾 ′
Ge] = [ ]T[𝐾Ge][ ],

[𝑀 ′
e] = [ ]T[𝑀e][ ],

{𝑃 ′
e(𝑡)} = [ ]T{𝑃e(𝑡)},

{𝑃 ′
Ne} = [ ]T{𝑃Ne},

(28)

in which [ ] = [𝐼]
⨂

[̄ ] with [𝐼] being the identity matrix of size
8 × 8. The [ ] denotes the corresponding elemental transformation
matrix of size 48 × 48. Prior to applying the transformation in Eq. (28),
the 40 × 40 elemental stiffness, elemental geometric stiffness, and
elemental mass matrices are expanded to 48 × 48 size by inserting 𝜃z
drilling DOF, at each node of the element. The off-diagonal terms in the
transformed elemental matrices corresponding to 𝜃z drilling DOF are
considered as zero, whereas a very small positive value is inserted in the
corresponding leading diagonal terms of the elemental stiffness matrix
to avoid numerical instability [76]. In general, the inserted positive
value of the leading diagonal is assumed to be 105 times smaller than
the smallest leading diagonal term. Similarly, the corresponding force
vectors are enlarged to 48 × 1 by inserting zeroes in the corresponding
𝜃z positions. This formulation is often referred as the folded plate
formulation [77,78], and is used here to model the stiffened plate. The
transformed elemental stiffness matrix, [𝐾 ′

e]; the transformed elemental
geometric stiffness matrix, [𝐾 ′

Ge]; the transformed elemental mass ma-
trix, [𝑀 ′

e]; the transformed elemental dynamic load vector, {𝑃 ′
e(𝑡)}; and

the transformed elemental thermal force vector, {𝑃 ′
Ne}, are assembled

to obtain the global stiffness matrix,
[
𝐾 ′]; the global geometric stiffness

matrix,
[
𝐾 ′

G
]
; the global mass matrix,

[
𝑀 ′]; the global dynamic force

vector,
{
𝑃 ′(𝑡)

}
; and the global thermal force vector, {𝑃 ′

N}, respectively.

2.5. Solution process

Due to variation of the ambient temperature, the temperature of un-
stiffened and stiffened laminated composite plates is varied uniformly,
and an equilibrium state is achieved. The two-stage solution procedure
to analyze composite plates in varying temperature is explained in what
follows. In the first stage of solution, the initial global displacement,
{𝑑′i}, due to the uniform variations of temperature in static condition is
obtained by solving the equation of static deflection, which is expressed
as

[𝐾 ′]{𝑑′i} = {𝑃 ′
N}. (29)
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Fig. 2. Transformation from local displacement vector, {𝑑}, to global displacement vector, {𝑑′}, where the least angle between the positive 𝑥 and 𝑥′ axes, 𝑦 and 𝑦′ axes, and 𝑧
and 𝑧′ axes are represented by (𝑥′ , 𝑥), (𝑦′ , 𝑦), and (𝑧′ , 𝑧), respectively.

Now, initial strain vector, {𝜀∗i}, is evaluated from the initial elemen-
tal nodal displacement vector, {𝑑′ie}, by using Eq. (20), and subse-
quently initial stress-resultant vector, {𝐹 i}, is evaluated with reference
to Eq. (5), and given as

{𝐹 i} = [𝐷]{𝜀∗i} − {𝐹N}. (30)

The elements of the initial stress-resultant vector, {𝐹 i}, are used to
develop the initial-stress stiffness matrix, [𝑆r], cf. Eq. (A.5).

The second stage of solution involves free and forced vibration
analysis of unstiffened and stiffened laminated composite plates due
to uniform variation of the temperature. The global FE model for the
forced vibration in thermal environment is presented in the following
form[[
𝐾 ′]+[𝐾 ′

G
]]{

𝑑′(𝑡)
}
+
[
𝑀 ′]{𝑑′(𝑡)}={

𝑃 ′(𝑡)
}
. (31)

The transient response in terms of deflection, 𝑤, and normal stress, 𝜎x,
for unstiffened and stiffened laminated composite plates with uniform
temperature distribution subjected to a pulse loading (cf. Fig. 1(c)) is
sought by solving Eq. (31) using Newmark’s average integration tech-
nique. Furthermore, the homogeneous solution of Eq. (31) yields the
eigenfrequencies, 𝑓m, for unstiffened and stiffened laminated composite
plates in thermal environment.

2.6. Computation of stresses

The global displacement of unstiffened and stiffened laminated
composite plates is taken to calculate the nodal mid-plane strain vector,
{𝜀∗}, using Eq. (20). To evaluate {𝜀∗}, the global displacement vector,
{𝑑′}, of unstiffened and stiffened laminated composite plates is trans-
formed into the laminate coordinate (𝑥, 𝑦, 𝑧) system of an element in
accordance with Eq. (27). The elements of the strain vector, {𝜀}, at any
point on the laminate at a distance 𝑧 from the mid-plane are evaluated
in the laminate coordinate (𝑥, 𝑦, 𝑧) system with reference to Eq. (3), as

𝜀x = 𝜀0x + 𝑧𝜅x, 𝜀y = 𝜀0y + 𝑧𝜅y, 𝛾xy = 𝛾0xy + 𝑧𝜅xy. (32)

The stress at the interface of the laminate for the 𝑘th lamina are
obtained from these strains using the stress–strain relationship matrix,
(cf. Eq. (4)) of the laminate, and is presented as

⎧⎪⎨⎪⎩

𝜎x
𝜎y
𝜏xy

⎫⎪⎬⎪⎭k

=
⎡
⎢⎢⎣

𝑄11 𝑄12 𝑄16
𝑄21 𝑄22 𝑄26
𝑄61 𝑄62 𝑄66

⎤
⎥⎥⎦k

⎧⎪⎨⎪⎩

𝜀x
𝜀y
𝛾xy

⎫⎪⎬⎪⎭k

, (33)

in which 𝑄12 = 𝑄21, 𝑄16 = 𝑄61, and 𝑄26 = 𝑄62. These stresses are
expressed in the laminate coordinate (𝑥, 𝑦, 𝑧) system, and are evaluated
at each Gauss point. The stresses are evaluated at 2 × 2 Gauss points
of an element. The nodal stress is computed by averaging the stresses
as obtained from the surrounding Gauss points. For instance, a nodal
stress at node ‘𝑈 ’ (cf. Fig. 3) is evaluated by averaging the stresses

Fig. 3. 2 × 2 Gauss points ( ) in elements for calculation of the nodal stresses at the
node ( ) ‘𝑈 ’.

computed at the Gauss points 1, 2, 3, and 4. The nodal stresses at each
time step are calculated from the corresponding time dependent global
displacement vector,

{
𝑑′(𝑡)

}
, and are presented in the time domain.

3. Verification and mesh convergence study

3.1. Verification of FE model

A detailed validation study of the present FE formulation for dy-
namic analysis of unstiffened and stiffened laminated composite plates
in thermal environment has been presented in this section.

3.1.1. Unstiffened plate formulation in thermal environment
A square graphite–epoxy laminated composite plate with a dimen-

sion of (100 × 100 × 1) mm3 has been taken for free vibration analysis
in thermal environment, and compared with results that reported by
Ram and Sinha [8]. The material properties of the graphite–epoxy
composite plate at 300 K temperature are presented in Table 1. The
coefficients of thermal expansion of the composite lamina in fiber
direction and perpendicular to the fiber direction are denoted by 𝛼1
and 𝛼2, respectively. Here, the eigenfrequencies, 𝑓m, are normalized to
obtained NDFs, 𝜆m, which are defined as 𝜆m = 2𝜋𝑓m𝐿2(𝜌∕𝐸22ℎ2)1/2.

The NDFs, 𝜆m, for 0◦∕90◦∕90◦∕0◦ laminated composite plate with
simply-supported boundary conditions at all four edges are computed
by discretizing the plate by 4 × 4 FE mesh, and are presented in Table 2.
The NDFs, 𝜆m, are calculated at 325 K temperature without considering
temperature-dependent elastic properties of the graphite–epoxy lamina.
It is observed that the calculated NDFs, 𝜆m, of the graphite–epoxy
laminated composite plate at temperature 325 K are in good agreement
with the results reported by Ram and Sinha [8]. The good comparison
between the calculated and the presented results indicates that the
present formulation can be used to conduct a free vibration analysis
of laminated composite plates in thermal environment with sufficient
accuracy.
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Table 1
Properties of the graphite–epoxy composite lamina at 300 K temperature for validation
study of FE formulation for analyzing unstiffened laminated composite plate in thermal
environment, cf. [8].
𝐸11 𝐸22 𝐺12 = 𝐺13 𝐺23 𝜈12 𝜌 𝛼1, 𝛼2
(GPa) (GPa) (GPa) (GPa) (–) (kg/mm3) (/K)

130 9.5 6.0 3 0.3 1.6 × 10-6 −0.3 × 10-6,
28.1 × 10-6

𝜈21 = 𝜈12
𝐸22
𝐸11

.

Table 2
Comparison of the NDFs, 𝜆m, obtained by using the present FE formula-
tion, and that reported by Ram and Sinha [8] for free vibration analysis
of the 0◦∕90◦∕90◦∕0◦ graphite–epoxy laminated composite plate at 325 K
temperature.

Mode, 𝑚 NDF, 𝜆m

Present study Ram and Sinha [8]

1 8.097 8.088
2 19.196 19.297
3 39.324 39.324

𝜆m = 2𝜋𝑓m𝐿2(𝜌∕𝐸22ℎ2)1/2.

Table 3
Properties of the composite lamina at room temperature (i.e., 25 ◦C) for validation
study of the folded plate formulation for analyzing the stiffened laminated composite
plate, cf. [71].
𝐸11 𝐸22 𝐺12 = 𝐺13 = 𝐺23 𝜈12 = 𝜈21 𝜌
(GPa) (GPa) (GPa) (–) (kg/mm3)

60.7 24.8 12 0.23 1.3 × 10-6

3.1.2. Stiffened plate formulation by using folded plate theory
The folded plate formulation has been used here for modeling a

stiffened plate structure with various orientation of the stiffener. The
NDFs as presented by Niyogi et al. [71] for the single folded plate
are calculated by using the present FE formulation. In this example,
NDFs, 𝛬m, are defined as 𝛬m = 2𝜋𝑓m𝐿

(
𝜌(1 − 𝜈2

12)∕𝐸11
)1/2. The material

properties of the composite folded plate are given in Table 3. The
length of the folded plate is 𝐿 = 1500 mm, and the length of each
fold is taken as 𝐿∕2, as shown in Fig. 4. The crank angle between
the two folds is denoted by 𝛽. A mesh size of 8 × 4 in each fold is
considered for conducting the FE analysis. Two crank angles, such as
𝛽 = 90◦ and 𝛽 = 180◦ are taken for calculation of the first three NDFs,
𝛬m, for 45◦∕ − 45◦∕45◦ laminated single-folded cantilever plates using
the present FE formulation, and commercially available FE software
such as ANSYS®. A good agreement between the results is found from
Table 4 for the crank angles, 𝛽 = 90◦ and 𝛽 = 180◦. It endorses that
the present FE formulation can be further considered for analysis of
stiffened (i.e., for the crank angle, 𝛽 = 90◦) laminated composite plates.
Similarly, the corresponding results have shown the correctness of the
present FE formulation for analysis of unstiffened (i.e., for the crank
angle, 𝛽 = 180◦) laminated composite plates.

3.1.3. Validation of transient response
To verify the transient response of unstiffened and stiffened lami-

nated composite plates in thermal environment, numerical solutions for
three examples are compared in this section. In the first example, the
transient response in terms of central deflection, 𝑤, and normal stress,
𝜎x, of a laminated composite plate, subjected to a uniformly distributed
pulse loading, 𝑞 = 10 N/cm2 over the entire plate surface for a duration
of 𝑡d = 1.5×10-4 s, is evaluated, and compared with the results presented
by Kant et al. [79]. The size of the plate is (250 × 250 × 50) mm3.
The plate domain is discretized into a 4 × 4 mesh. The material
properties of the laminated composite plate considered for this analysis
are given in Table 5. The time dependent central deflection, 𝑤, and the
corresponding normal stress, 𝜎x, at the bottom of 0◦∕90◦∕0◦ unstiffened

Fig. 4. Geometry of the cantilever single-folded plate with fixed-free boundary
conditions.

Table 4
Comparison of the NDFs, 𝛬m, obtained by using the present FE formulation, ANSYS®

simulations, and that reported by Niyogi et al. [71] for free vibration analysis of
45◦∕ − 45◦∕45◦ laminated single-folded cantilever plates (cf. Fig. 4) with crank angles,
𝛽 = 90◦ and 𝛽 = 180◦.

Crank angle, 𝛽 Mode, 𝑚 NDF, 𝛬m

Present study Present ANSYS® Niyogi et al. [71]

90◦
1 0.0383 0.0408 0.0381
2 0.0763 0.0747 0.0753
3 0.1422 0.1441 0.1406

180◦
1 0.0157 0.0148 0.0158
2 0.0379 0.0405 0.0378
3 0.0964 0.0920 0.0948

𝛬m = 2𝜋𝑓m𝐿
(
𝜌(1 − 𝜈2

12)∕𝐸11
)1/2.

Table 5
Properties of the composite lamina at room temperature (i.e., 25 ◦C) for validation
study of the transient response of the unstiffened laminated composite plate, cf. [79].
𝐸22 𝐸11 𝐺12 = 𝐺13 = 𝐺23 𝜈12 = 𝜈21 𝜌
(GPa) (GPa) (GPa) (–) (kg/mm3)

21 25𝐸22 0.5𝐸22 0.25 0.8 × 10-6

laminated composite plate with simply-supported boundary condition
at all four edges are calculated, and are illustrated in Fig. 5. Comparison
of the transient response in terms of the central deflection, 𝑤, and the
corresponding normal stress, 𝜎x, in Fig. 5, confirms a good agreement
between the response obtained in the present FE formulation, and those
obtained from [79].

In order to ensure the accuracy of the present FE code for analysis
of stiffened laminated composite plates, the transient response in terms
of deflection and normal stress is compared with the results obtained
from ANSYS® simulation. In the given verification example a 2-mm
thick IM7-PEEK stiffened laminated composite plate with a plan area
of (150 × 100) mm2, and a 12-mm deep centrally placed stiffener
parallel to the shorter edge of the plate (cf. Fig. 6) is taken for this
validation study. The simply-supported boundary condition at all four
edges of the plate including the stiffener is adopted for the analysis of
the stiffened plate as shown in Fig. 6. The lamina sequence is taken
as 0◦∕90◦∕90◦∕0◦. The plan area of the stiffened plate is subdivided into
8 × 6 mesh size, and the corresponding mesh for the stiffener is 6 × 1. A
uniformly distributed pulse loading of 𝑞 = 0.001 N/mm2 for a duration
of 𝑡d = 2 × 10-3 s is applied over the entire plate surface, and transient
response is evaluated at the mid-span of the half-plate as divided by
the stiffener. The elastic properties of the IM7-PEEK composite plate
for analysis at room temperature (25 ◦C) are given in Table 6. The
time step for transient analysis is taken as 𝛥𝑡 = 10-5 s. Fig. 7 shows the
transient response in terms of deflection, 𝑤, and corresponding normal
stress, 𝜎x, at the bottom surface of the plate. The trend of the transient
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Fig. 5. Comparison of the transient response, 𝑤, (left) and the corresponding, 𝜎x, (right) obtained by using the present FE formulation, and that reported by Kant et al. [79]
for 0◦∕90◦∕0◦ laminated composite plate with simply-supported boundary condition at all four edges, subjected to pulse loading, 𝑞 = 10 N/cm2, over the entire plan area at room
temperature (i.e., 25 ◦C).

Fig. 6. Top view of a stiffened plate showing the simply-supported boundary condition
at 𝑥′ = 0 and 𝐿, and 𝑦′ = 0 and 𝑊 .

Table 6
Properties of the IM7-PEEK composite lamina at 25 ◦C temperature for validation study
of the transient response of the stiffened laminated composite plate, cf. [80].
𝐸11 𝐸22 𝐺12 = 𝐺13 𝐺23 𝜈12 𝜌
(GPa) (GPa) (GPa) (GPa) (–) (kg/mm3)

160.9 9.7 7.7 3.85 0.289 1.578 × 10-6

𝜈21 = 𝜈12
𝐸22
𝐸11

.

Table 7
Properties of the composite lamina at 300 K and 400 K temperatures for validation
study of transient response of unstiffened laminated composite plate in thermal
environment, cf. [26].

Temp. 𝐸11 𝐸22 𝐺12 = 𝐺13 𝜈12 𝜌 𝛼1, 𝛼2
(K) (GPa) (GPa) (GPa) (–) (kg/mm3) (/K)

300 172.5 6.9 3.45 0.25 1.6 × 10-6 −0.3 × 10-6,

400 172.5 5.08 2.73 0.25 28.1 × 10-6

𝐺23 = 0.4𝐺12, 𝜈21 = 𝜈12
𝐸22
𝐸11

.

response in terms of deflection, 𝑤, and normal nodal stress, 𝜎x, is in
close agreement with the ANSYS® results.

As the third validation example, transient response of a (0◦∕90◦)10
laminated composite plate in thermal environment is compared with
that reported by Parhi et al. [26]. The temperature-dependent material
properties of the laminated composite plate are presented in Table 7.
The transient response in terms of the central deflection, 𝑤, of a
(500 × 500 × 5) mm3 composite plate subjected to uniformly distributed
pulse loading, 𝑞 = 100 N/m2, for a duration of 𝑡d = 0.03 s in thermal
environment is evaluated, and is presented in Fig. 8. The analysis of
the plate has been carried out with simply-supported boundary con-
dition at all four edges considering the temperature-dependent elastic

properties of the lamina. A close match of the transient response in
terms of the central deflection, 𝑤, at 300 K and 400 K temperatures is
observed between that obtained from the present FE formulation and
Parhi et al. [26], which confirms that the present FE formulation can
adequately predict the trends of transient response, 𝑤, of unstiffened
laminated composite plates in thermal environment.

Based on the three validation examples presented in this section, the
dynamic response of laminated composite plates subjected to the pulse
loading in room temperatures and in elevated temperature are calcu-
lated by using the present FE formulation. The results are compared
with the dynamic response of unstiffened laminated composite plates in
thermal environment, and the dynamic response of stiffened laminated
composite plates in thermal environment. A detailed dynamic analysis
of stiffened laminated composite plates subjected to pulse loading in
thermal environment is not available in the literature. Therefore, the
present FE formulation is used for studying the NDFs and dynamic
response in terms of deflection and normal stress of stiffened laminated
composite plates in thermal environment.

3.2. Mesh convergence study

In the present study, the IM7-PEEK composite plate is used for
conducting dynamic analysis in various thermal environments. The
analysis of IM7-PEEK laminated composite plate is carried out in a
temperature range varying from 0 ◦C to 125 ◦C, including that at the
room temperature, i.e., 25 ◦C. The temperature-dependent material
properties of the IM7-PEEK composite plate are obtained from the
experimental data which are presented by Rawal and Misra [80].
The temperature-dependent elastic properties at a specific tempera-
ture for the present analysis are computed by linear interpolation
and extrapolation based on the available test data at −150 ◦F, 77 ◦F
(room temperature), and 250 ◦F [80]. The experimentally identified
elastic properties of the unidirectional 08 IM7-PEEK laminate at these
temperatures are shown in Table 8. The average values of 𝐸11 and
𝐸22 are obtained by averaging the corresponding values in tension
and compression (cf. Table 8), and used further to compute the
temperature-dependent elastic moduli. The experimentally obtained
coefficients of the thermal expansion at 77 ◦F (i.e., 25 ◦C) are de-
picted in Table 8. For the purpose of this study, temperature-dependent
elastic properties of the IM7-PEEK composite lamina at the specified
temperature, namely 0 ◦C, 25 ◦C, 50 ◦C, 75 ◦C, 100 ◦C, and 125 ◦C,
are computed using the ‘FORECAST’ function in the ‘MS excel’, and
presented in Table 9. The elastic properties at 0 ◦C temperature are
evaluated based on the corresponding experimental values at −101 ◦C
and 25 ◦C. Similarly, the temperature-dependent elastic properties at
the remaining temperatures are determined from the experimental
elastic properties as known at 25 ◦C and 121 ◦C temperatures. The
nature of variation of the temperature-dependent elastic properties, as
evaluated by the stated procedure based on the available test data, of
the IM7-PEEK composite lamina are shown in Fig. 9.
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Fig. 7. Comparison of the transient response, 𝑤, (left) and the corresponding, 𝜎x, (right) obtained by using the present FE formulation and ANSYS® simulation for 0◦∕90◦∕90◦∕0◦ IM7-
PEEK stiffened laminated composite plate with stiffener oriented parallel to the shorter edge, for all four edges simply-supported, and subjected to pulse loading, 𝑞 = 0.001 N/mm2,
over the entire plan area at room temperature (i.e., 25 ◦C).

Fig. 8. Comparison of the transient response, 𝑤, obtained by using the present FE formulation, and that reported by Parhi et al. [26] for (0◦∕90◦)10 laminated composite plate
with all four edges simply-supported subjected to pulse loading, 𝑞 = 100 N/m2, over the entire plan area at 300 K (left) and 400 K (right) temperatures.

Fig. 9. Experimentally identified [80] and computed temperature-dependent elastic properties for unidirectional IM7-PEEK composite lamina.

In this study, 25 ◦C temperature is considered as a reference tem-
perature. The density, 𝜌, of the IM7-PEEK laminated composite plate
is 1.578 × 10-6 kg/mm3 [80]. The coefficients of thermal expansion
of the IM7-PEEK composite lamina are 𝛼1 = −0.126 × 10-6 ∕◦C and
𝛼2 = 31.3 × 10-6 ∕◦C (cf., Table 8), and assumed as the temperature

independent. The mesh convergence study is conducted using a (150 ×
100× 2) mm3 rectangular plate with various mesh sizes at three salient
temperatures such as 0 ◦C (below the room temperature), 25 ◦C (room
temperature), and 125 ◦C (above the room temperature). The mesh
convergence study has been carried out for the first three NDFs, 𝜆1, 𝜆2,
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Table 8
Experimentally identified elastic properties of the unidirectional 08 IM7-PEEK laminated
composite at −150 ◦F, 77 ◦F, and 250 ◦F temperatures, cf. [80].

Experimental
elastic properties

Temperature

−150 ◦F
(−101 ◦C)

77 ◦F
(25 ◦C)

250 ◦F
(121 ◦C)

𝐸11, tension (Msi) 21.90 23.87 24.30
𝐸11, compression (Msi) 22.53 22.80 21.72
𝐸11, average (GPa) 153.2 160.9 158.6

𝐸22, tension (Msi) 1.46 1.40 1.18
𝐸22, compression (Msi) 1.41 1.40 1.22
𝐸22, average (GPa) 9.9 9.7 8.3

𝐺12 (Msi) 1.08 1.12 0.8
𝐺12 (GPa) 7.4 7.7 5.5

𝜈12 (–) 0.295 0.289 0.276

𝛼1 (𝜇in/in/◦F) – −0.07 –
𝛼1 (∕◦C) – −0.126 × 10-6 –

𝛼2 (𝜇in/in/◦F) – 17.42 –
𝛼2 (∕◦C) – 31.3 × 10-6 –

Table 9
The temperature-dependent elastic properties of the IM7-PEEK composite lamina at
various temperatures, computed based on the experimental data given in Table 8.

Elastic properties Temperature

0 ◦C 25 ◦C 50 ◦C 75 ◦C 100 ◦C 125 ◦C

𝐸11 (GPa) 159.4 160.9 160.3 159.7 159.1 158.6
𝐸22 (GPa) 9.7 9.7 9.3 8.9 8.6 8.2
𝐺12 (GPa) 7.7 7.7 7.1 6.6 6.0 5.4
𝜈12 (–) 0.290 0.289 0.286 0.282 0.279 0.275

𝐺13 = 𝐺12, 𝐺23 = 0.5𝐺12, 𝜈21 = 𝜈12
𝐸22
𝐸11

.

Table 10
The first three NDFs, 𝜆m, and peak dynamic deflection, 𝑤, for various mesh sizes using
0◦∕90◦∕0◦∕90◦ IM7-PEEK laminated composite plate with simply-supported boundary
condition at all four edges at 0 ◦C, 25 ◦C, and 125 ◦C temperatures.

Temperature Dynamic
response

Present study, mesh size

4 × 2 6 × 4 8 × 6 12 × 8

0 ◦C

𝜆1 24.58 23.98 23.96 23.95
𝜆2 47.15 42.17 42.04 42.01
𝜆3 97.05 74.87 74.01 73.86
Peak 𝑤 (mm) 0.0360 0.0368 0.0371 0.0370

25 ◦C

𝜆1 22.72 22.09 22.07 22.06
𝜆2 45.39 40.23 40.10 40.07
𝜆3 95.61 73.23 72.36 72.20
Peak 𝑤 (mm) 0.0421 0.0434 0.0432 0.0431

125 ◦C

𝜆1 14.46 13.62 13.59 13.59
𝜆2 38.41 33.16 33.02 32.98
𝜆3 91.21 70.01 69.09 68.93
Peak 𝑤 (mm) 0.1229 0.1353 0.1361 0.1359

𝜆m = 2𝜋𝑓m𝐿2(𝜌∕𝐸22ℎ2)1/2.

and 𝜆3, and the peak dynamic deflection, 𝑤, for mesh sizes 4 × 2, 6 × 4,
8 × 6, and 12 × 8 using the present FE formulation. A 0◦∕90◦∕0◦∕90◦

unstiffened laminated composite plate with simply-supported boundary
condition at all four edges is considered for this study, and results are
presented in Table 10. Variation in the NDFs for gradually finner mesh
sizes such as 6 × 4, 8 × 6, and 12 × 8 are negligible, even with the
rise in temperature. Further, the peak dynamic deflection, 𝑤, obtained
for mesh sizes 6 × 4, 8 × 6, and 12 × 8, has not shown significant
variation at different temperatures. However, for accurate computation
of average nodal stress, the 8 × 6 mesh size is adopted for further
analysis in this paper.

4. Numerical study

4.1. NDFs of the unstiffened and stiffened plates

The effect of rise in temperature for the unstiffened and stiff-
ened laminated composite plates with various lamina sequences on the
NDFs, 𝜆m, is investigated. A 2-mm thick unstiffened plate and stiffened
plates with centrally placed stiffeners oriented parallel to the longer
and shorter edges are considered for the analysis, cf. Figs. 10(a), 10(b),
and 10(c). Plates 1, 2, and 3 are designated for the unstiffened plate,
the plate with stiffener oriented parallel to the longer edge, and the
plate with stiffener oriented parallel to the shorter edge, respectively.
The size of the plan area of the plate is (150 × 100) mm2. The depth of
the stiffener, 𝑑s, is 12 mm. The simply-supported boundary condition at
all edges (cf. Fig. 6) of the laminated composite plates is adopted for
the analysis.

The lowest three NDFs of the unstiffened Plate 1 with different
lamina sequences for temperature ranging between 0 ◦C and 125 ◦C
with 25 ◦C interval are presented in Table 11. Four layered symmet-
ric and antisymmetric cross-ply laminates such as 0◦∕90◦∕90◦∕0◦ and
0◦∕90◦∕0◦∕90◦, respectively, and four layered symmetric and antisym-
metric angle-ply laminates such as 45◦∕ − 45◦∕ − 45◦∕45◦ and 45◦∕ −
45◦∕45◦∕− 45◦, respectively (cf. Fig. 10(d)) are taken for the analysis. It
is observed from Table 11 that the NDFs, 𝜆m, of Plate 1 are decreasing
with the increment in the temperature due to degradation in the ma-
terial properties of the IM7-PEEK composite plates above the reference
temperature, i.e., 25 ◦C. The NDFs, 𝜆m, at 0 ◦C temperature, i.e., below
the reference temperature, are higher than that of the NDFs, 𝜆m, at
the reference temperature, although 𝐸11 of the IM7-PEEK composite
lamina at 0 ◦C temperature is less than that at 25 ◦C temperature. The
relatively higher NDFs, 𝜆m, observed at 0 ◦C temperature are attributed
to the stiffening effect caused in the laminated composite plate, as the
initial stress induced in the plate below the reference temperature is
tensile in nature. Furthermore, the NDFs, 𝜆m, of the angle-ply laminates
are higher than that of the cross-ply laminates for both symmetric and
antisymmetric cases. The 45◦∕ − 45◦∕45◦∕ − 45◦ laminate exhibits the
highest NDFs, 𝜆m, at all temperatures, which is attributed to the non-
zero in-plane and bending stiffness coupling, 𝐵ij, (cf. Eq. (8)) due to
the antisymmetric lamina sequence, and the higher shear stiffness of
the angle-ply laminate.

The 0◦∕90◦∕90◦∕0◦ unstiffened laminated composite plate shows the
lowest NDFs at all temperatures, and exhibits instability at 125 ◦C tem-
perature. The instability arises at 125 ◦C temperature as the combined
stiffness matrix does not remain positive-definite at this temperature.
Due to rise in temperature of the laminated composite plate, an initial
stress is developed which is compressive in nature, and based on the
state of the temperature-dependent initial stress, the geometric stiffness
matrix, [𝐾 ′

G], is developed. Therefore, the combined stiffness matrix,
i.e.,

[
[𝐾 ′] + [𝐾 ′

G]
]
, does not remain positive-definite with the rise in

temperature above reference temperature, i.e., 25 ◦C, from 100 ◦C
to 125 ◦C which leads to instability in the unstiffened Plate 1 with
0◦∕90◦∕90◦∕0◦ laminate at 125 ◦C temperature.

The NDFs, 𝜆m, of the stiffened Plates 2 and 3, made-up with the
laminates stated earlier are presented in Tables 12 and 13, respectively.
From the tables it is found that the NDFs, 𝜆m, of the stiffened plates

are higher than the corresponding unstiffened plates, as expected.
The NDFs, 𝜆m, of the stiffened plates for a particular laminate are
decreasing with the rise in temperature because of the similar reasons
as discussed for the unstiffened laminated composite plates. However,
no instability is observed at 125 ◦C temperature for the stiffened plates
with 0◦∕90◦∕90◦∕0◦ laminate.

The first NDF, 𝜆1, of the stiffened Plate 2 with 0◦∕90◦∕90◦∕0◦ lam-
inate is higher than the stiffened Plate 3 with same laminate at 0 ◦C
and 25 ◦C temperatures; whereas, the first NDF, 𝜆1, of the stiffened
Plate 3 with 0◦∕90◦∕90◦∕0◦ laminate is higher than the stiffened Plate 2
at above 25 ◦C temperature. It indicates that the stiffness of the stiffened



Composite Structures 300 (2022) 116049

12

S. Chandra et al.

Table 11
The NDFs, 𝜆m, of 2-mm thick cross-ply and angle-ply IM7-PEEK unstiffened laminated composite Plate 1
with simply-supported boundary condition at all four edges at various temperatures.

Lamina
sequence

Mode,
𝑚

NDF, 𝜆m

0 ◦C 25 ◦C 50 ◦C 75 ◦C 100 ◦C 125 ◦C

0◦∕90◦∕90◦∕0◦
1 19.84 17.57 15.09 12.22 8.25 –
2 49.20 47.66 45.97 43.65 40.97 –
3 50.86 48.30 46.57 45.58 44.29 –

0◦∕90◦∕0◦∕90◦
1 23.96 22.07 20.24 18.30 15.99 13.59
2 42.04 40.10 38.40 36.74 34.76 33.02
3 74.01 72.36 71.48 70.74 69.64 69.09

45◦∕ − 45◦∕
−45◦∕45◦

1 25.90 24.21 22.70 21.15 19.35 17.64
2 46.22 44.37 42.93 41.53 39.86 38.47
3 71.76 70.13 69.17 68.36 67.17 66.50

45◦∕ − 45◦∕
45◦∕ − 45◦

1 27.10 25.55 24.26 22.96 21.47 20.15
2 50.33 48.84 47.95 47.14 46.10 45.46
3 70.04 68.35 67.31 66.40 65.12 64.35

𝜆m = 2𝜋𝑓m𝐿2(𝜌∕𝐸22ℎ2)1/2.

Fig. 10. Geometry of the unstiffened Plate 1 and stiffened Plates 2 and 3, and lamina sequences for the laminates.

Table 12
The NDFs, 𝜆m, of 2-mm thick cross-ply and angle-ply IM7-PEEK stiffened laminated composite Plate 2 with
simply-supported boundary condition at all four edges at various temperatures.

Lamina
sequence

Mode,
𝑚

NDF, 𝜆m

0 ◦C 25 ◦C 50 ◦C 75 ◦C 100 ◦C 125 ◦C

0◦∕90◦∕90◦∕0◦
1 51.26 48.27 45.41 42.45 38.97 35.55
2 53.74 52.70 51.69 50.79 49.42 48.29
3 73.94 71.52 69.39 67.37 64.80 62.64

0◦∕90◦∕0◦∕90◦
1 59.83 59.34 58.82 58.44 57.46 56.70
2 69.50 71.19 72.71 73.82 74.24 74.95
3 83.42 83.95 84.47 84.83 84.48 84.54

45◦∕ − 45◦∕
−45◦∕45◦

1 56.67 55.91 55.11 54.44 53.22 52.24
2 71.50 69.50 68.11 66.83 65.12 63.90
3 97.94 96.22 95.39 94.72 93.52 92.94

45◦∕ − 45◦∕
45◦∕ − 45◦

1 57.00 56.28 55.55 54.97 53.86 53.01
2 70.53 68.55 67.17 65.91 64.24 63.06
3 102.51 101.05 100.73 100.58 99.93 100.02

𝜆m = 2𝜋𝑓m𝐿2(𝜌∕𝐸22ℎ2)1/2.
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Table 13
The NDFs, 𝜆m, of 2-mm thick cross-ply and angle-ply IM7-PEEK stiffened laminated composite Plate 3 with
simply-supported boundary condition at all four edges at various temperatures.

Lamina
sequence

Mode,
𝑚

NDF, 𝜆m

0 ◦C 25 ◦C 50 ◦C 75 ◦C 100 ◦C 125 ◦C

0◦∕90◦∕90◦∕0◦
1 49.87 48.21 47.00 45.86 44.41 43.32
2 61.79 60.84 60.29 59.83 58.88 58.26
3 74.00 71.74 69.89 68.14 65.90 64.10

0◦∕90◦∕0◦∕90◦
1 42.73 40.66 38.80 36.95 34.74 32.74
2 53.05 51.73 50.75 49.88 48.65 47.77
3 86.65 84.81 83.57 82.51 80.93 79.93

45◦∕ − 45◦∕
−45◦∕45◦

1 50.97 49.36 48.29 47.30 46.03 45.14
2 55.27 53.96 53.11 52.35 51.28 50.58
3 94.54 92.74 91.70 90.81 89.43 88.64

45◦∕ − 45◦∕
45◦∕ − 45◦

1 51.72 50.18 49.22 48.35 47.21 46.47
2 56.70 55.53 54.88 54.34 53.48 53.03
3 101.89 100.54 100.35 100.34 99.84 100.07

𝜆m = 2𝜋𝑓m𝐿2(𝜌∕𝐸22ℎ2)1/2.

laminated composite plates with stiffener oriented parallel to the longer
edge has the higher stiffness above the 25 ◦C temperature for all the
considered laminates, except for the 0◦∕90◦∕90◦∕0◦ laminate. The first
NDF, 𝜆1, of 0◦∕90◦∕0◦∕90◦, 45◦∕− 45◦∕− 45◦∕45◦ and 45◦∕− 45◦∕45◦∕− 45◦
laminates are higher for the plate with the stiffener oriented parallel to
the longer edge (Plate 2) than the plate with stiffener oriented parallel
to the shorter edge (Plate 3) at all the respective temperatures. This is
attributed to the fact that 0◦∕90◦∕90◦∕0◦ laminate has lower strength
due to the null terms, 𝐵ij (cf. Eq. (8)) for symmetric lamina sequences,
and lower shear strength due to the cross-ply lamina sequence. Further,
due to the rectangular plate configuration, 90◦ lamina in the shorter
direction and the stiffener oriented parallel to the longer edge could
not increase stiffness of the stiffened Plate 2 than the stiffened Plate 3 in
which the stiffener is oriented parallel to the shorter edge. Furthermore,
rate of reduction of the first NDF, 𝜆1, with the increase in temperature is
lower for the stiffened Plate 2 with of 0◦∕90◦∕0◦∕90◦, 45◦∕−45◦∕−45◦∕45◦
and 45◦∕− 45◦∕45◦∕− 45◦ laminates than that of the stiffened Plate 3.
The first NDF, 𝜆1, for 0◦∕90◦∕0◦∕90◦ laminate has shown the highest
value for the stiffened Plate 2 compared to the Plates 1 and 3 at all
respective temperatures, due to fact of antisymmetric lamina sequences
and the stiffener orientation parallel to the longer edge. Therefore, it
is recommended to use antisymmetric cross-ply laminate and provide
a stiffener parallel to the longer direction for the stiffened laminated
composite plate with rectangular plan area.

The first NDF, 𝜆1, of the stiffened Plates 2 and 3 are approximately
two times larger in all individual laminates at a specific temperature
than the unstiffened Plate 1 with a cost of 12% and 8% mass addition,
respectively. The first NDF, 𝜆1, of the stiffened plate with stiffener
oriented parallel to the longer edge (Plate 2) is higher than the stiffened
plate with stiffener oriented parallel to the shorter edge (Plate 3) for
all the laminates except for the 0◦∕90◦∕90◦∕0◦ laminate above 25 ◦C
temperature. The stiffened Plate 2 with 0◦∕90◦∕0◦∕90◦ laminate has
appeared as the best configuration due to the fact of providing the
highest first NDF, 𝜆1, in all the considered temperatures, and the lowest
rate of reduction of the first NDF, 𝜆1, with the increase in temperature.

4.2. Transient response of the unstiffened and stiffened plates

The transient response in terms of deflection, 𝑤, and the correspond-
ing normal stress, 𝜎x, are evaluated using the FSDT for the unstiffened
and stiffened IM7-PEEK laminated composite plates at different tem-
peratures. The transient response, 𝑤 and 𝜎x for the unstiffened Plate 1
are evaluated at mid-span, i.e., at node ‘𝑈𝑃1 ’ (cf. Fig. 10(a)); whereas,
for the Plates 2 and 3, the transient response, 𝑤 and 𝜎x, are determined
at nodes ‘𝑈𝑃2 ’ and ‘𝑈𝑃3 ’ (cf. Figs. 10(b) and 10(c)), respectively. The
nodes ‘𝑈𝑃2 ’ and ‘𝑈𝑃3 ’ are the locations of the peak deflection for the
Plates 2 and 3, respectively. A uniformly distributed pulse loading, 𝑞 =
0.001 N/mm2 is applied over the flat plate surface for a duration of 𝑡d =

Table 14
Peak dynamic deflection, 𝑤, and normal stress, 𝜎x, at ‘𝑈𝑃1

’ for the cross-ply and the
angle-ply IM7-PEEK laminated composite Plate 1, subjected to pulse loading at various
temperatures with simply-supported boundary condition at all four edges.

Temp. Peak 0◦∕90◦∕
90◦∕0◦

0◦∕90◦∕
0◦∕90◦

45◦∕− 45◦∕
−45◦∕45◦

45◦∕− 45◦∕
45◦∕ − 45◦

0 ◦C 𝑤 (mm) 0.0532 0.0371 0.0314 0.0286
𝜎x (N/mm2) 1.92 1.18 0.77 0.56

25 ◦C 𝑤 (mm) 0.0686 0.0432 0.0350 0.0323
𝜎x (N/mm2) 2.53 1.34 0.84 0.65

50 ◦C 𝑤 (mm) 0.0970 0.0540 0.0426 0.0374
𝜎x (N/mm2) 3.55 1.66 1.06 0.74

75 ◦C 𝑤 (mm) 0.1543 0.0690 0.0519 0.0436
𝜎x (N/mm2) 5.56 2.14 1.28 0.87

100 ◦C 𝑤 (mm) 0.3503 0.0938 0.0637 0.0519
𝜎x (N/mm2) 12.52 2.85 1.55 1.03

125 ◦C 𝑤 (mm) – 0.1361 0.0812 0.0621
𝜎x (N/mm2) – 4.14 1.98 1.23

0.004 s (cf. Fig. 1(c)), and the corresponding transient response, 𝑤 and
𝜎x is evaluated for the same time duration. The boundary conditions,
lamina sequences, and dimension of the plates are maintained the same
as stated in Section 4.1. A converged time step of 𝛥𝑡 = 10-5 s is adopted
for conducting the transient analysis using the Newmark’s method. The
nodal stress is computed by averaging the stresses obtained from the
surrounding Gauss points. The transient response in terms of 𝑤 and 𝜎x
of the Plates 1, 2, and 3 at the specified location, are shown in Figs. 11,
12, and 13, respectively. Accordingly, the peak dynamic deflection, 𝑤,
and the corresponding peak normal stress, 𝜎x, are calculated for the
Plates 1, 2, and 3, and are presented in Tables 14–16, respectively in
the temperature range varying from 0 ◦C to 125 ◦C.

It is observed from the trends in the plots that the amplitude of
dynamic deflection of the laminated composite plates is increasing
with the rise in temperature from 0 ◦C to 125 ◦C due to degradation
of the elastic moduli of the IM7-PEEK composite lamina above the
reference temperature and initial stress in the composite laminate due
to variation in temperatures. The largest peak dynamic deflection is
observed for the unstiffened Plate 1 with 0◦∕90◦∕90◦∕0◦ laminate at
100 ◦C temperature (cf. Table 14) because of the null terms, 𝐵ij (cf.
Eq. (8)) owing to the symmetric nature of the laminate, and relatively
lesser contribution of shear strength to stiffness in the cross-ply lami-
nate as compared to the other laminates considered in the study. It is
also observed from Table 14 that the peak dynamic deflection of the
unstiffened Plate 1 with 45◦∕−45◦∕45◦∕−45◦ laminate has remained the
lowest as compared to the other laminates at different temperatures
due to imparting highest stiffness as indicated in Section 4.1. It is
seen from Figs. 11, 12, and 13 that the amplitude of the transient
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Fig. 11. Dynamic deflection, 𝑤, and normal stress, 𝜎x, at ‘𝑈𝑃1
’ for the cross-ply and the angle-ply IM7-PEEK laminated composite Plate 1 subjected to pulse loading at various

temperatures with simply-supported boundary condition at all four edges.

response in terms of the normal stress is increasing with the increment
in temperature for the earlier mentioned laminates of the Plates 1, 2,
and 3, as anticipated. It is also observed from Table 14, that the peak
normal stress is obtained for the unstiffened Plate 1 with 0◦∕90◦∕90◦∕0◦

laminate at 100 ◦C temperature, while the corresponding minimum
value is obtained for 45◦∕− 45◦∕45◦∕− 45◦ laminate at all respective
temperatures. Moreover, a significant increment in the amplitude of
dynamic deflection and the normal stress is observed with the rise
in temperature from 75 ◦C to 100 ◦C for the unstiffened Plate 1 with
0◦∕90◦∕90◦∕0◦ laminate. This large magnitude of deflection increment
is noticed as the unstiffened Plate 1 with 0◦∕90◦∕90◦∕0◦ laminate is
approaching towards the instability beyond 100 ◦C temperature.

Addition of stiffeners sufficiently reduces the dynamic deflection
and normal stress for the laminates considered. The Tables 15 and 16
reveal that the stiffened Plate 2 with 0◦∕90◦∕0◦∕90◦ laminate and the
stiffened Plate 3 with 0◦∕90◦∕90◦∕0◦ laminate show the least peak dy-
namic deflection in thermal environment. The peak dynamic deflection
for the unstiffened Plate 1 with 0◦∕90◦∕90◦∕0◦ laminate is higher than
the corresponding response of the unstiffened Plate 1 with 0◦∕90◦∕0◦∕90◦

laminate at all temperatures, as in-plane and bending stiffness coupling
terms, 𝐵ij, in [𝐷] matrix become zero for 0◦∕90◦∕90◦∕0◦ laminate due
to the symmetry in the lamina sequence. It is to be noted that the
deflection of the stiffened Plate 2 at node 𝑈𝑃2 is governed by the
cylindrical (i.e., uni-directional) bending, whereas the deflection of
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Fig. 12. Dynamic deflection, 𝑤, and normal stress, 𝜎x, at ‘𝑈𝑃2
’ for the cross-ply and the angle-ply IM7-PEEK laminated composite Plate 2 subjected to pulse loading at various

temperatures with simply-supported boundary condition at all four edges.

the stiffened Plate 3 at 𝑈𝑃3 is governed by bi-directional bending. In
case of the stiffened Plate 2, 0◦∕90◦∕90◦∕0◦ laminate shows the higher
peak dynamic deflection than 0◦∕90◦∕0◦∕90◦ laminate, similar to the
unstiffened Plate 1. In this case, due to the absence of in-plane and
bending stiffness coupling terms, 𝐵ij, for 0◦∕90◦∕90◦∕0◦ laminate, the
deflection at node, 𝑈𝑃2 in cylindrical bending is higher than that of the
stiffened Plate 2 with 0◦∕90◦∕0◦∕90◦ laminate. Whereas, the deflection
of the stiffened Plate 3 with 0◦∕90◦∕0◦∕90◦ laminate is higher than that
of the plate with 0◦∕90◦∕90◦∕0◦ laminate, owing to the null bending-
twist coupling terms, 𝐷16 and 𝐷26, which reduces contribution in
stiffness when the plate with the antisymmetric laminate undergoes bi-
directional bending as compared to that when the symmetric laminate

is used in the plate. Hence, the peak dynamic deflection of the stiffened
Plate 3 with 0◦∕90◦∕90◦∕0◦ laminate are less than the corresponding
response of the stiffened Plate 3 with 0◦∕90◦∕0◦∕90◦ laminate at all tem-
peratures. The amplitude of dynamic deflection of the stiffened Plate 2
are the lowest than the stiffened Plate 3 in all respective laminates
except 0◦∕90◦∕90◦∕0◦ laminate at different temperatures. The rate of
increment in the peak dynamic response with the rise in temperatures is
less for the stiffened plates than the unstiffened plates, as seen from the
response reported in Tables 14–16. It is observed from Tables 15 and 16
that the stiffened Plate 2 with 0◦∕90◦∕0◦∕90◦ laminate shows the lowest
peak dynamic deflection and normal stress at all temperature. It is
observed that the peak normal stress for the stiffened Plate 2 ( Table 15)
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Fig. 13. Dynamic deflection, 𝑤, and normal stress, 𝜎x, at ‘𝑈𝑃3
’ for the cross-ply and the angle-ply IM7-PEEK laminated composite Plate 3 subjected to pulse loading at various

temperatures with simply-supported boundary condition at all four edges.

with 45◦∕− 45◦∕45◦∕− 45◦ laminate at all different temperatures show
the lowest value however, the peak dynamic deflection of 0◦∕90◦∕0◦∕90◦

laminate is less than 45◦∕− 45◦∕45◦∕− 45◦ laminate at all temperatures.
Thus, stiffened plates are preferred as compared to unstiffened

plates for reducing amplitude of the dynamic deflection and the cor-
responding normal stress. The selection of the stiffener orientation for
rectangular plates is governed by the lamina sequence. The
0◦∕90◦∕0◦∕90◦ stiffened laminated composite plate with the stiffener ori-
ented parallel to the longer edge is recommended to achieve maximum
response reduction in terms of deflection at all temperatures.

4.3. Effect of the depth of stiffener

In order to study the effect of the depth of stiffener, 𝑑s, the first
NDF, 𝜆1, is evaluated for the IM7-PEEK stiffened laminated composite
Plates 2 and 3 for 0◦∕90◦∕90◦∕0◦ and 45◦∕− 45◦∕− 45◦∕45◦ laminates at
0 ◦C, 25 ◦C, and 100 ◦C temperatures, and are presented in Table 17.
The depths of stiffener, 𝑑s, taken for this study are 8 mm, 12 mm, and
16 mm. The stiffened Plate 2 with the stiffener depth 12 mm made-up
of 0◦∕90◦∕90◦∕0◦ laminate shows the highest value of the first NDF, 𝜆1,
than the plate with the stiffeners 8 mm and 16 mm at all respective
temperatures.
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Table 15
Peak dynamic deflection, 𝑤, and normal stress, 𝜎x, at ‘𝑈𝑃2

’ for the cross-ply and the
angle-ply IM7-PEEK laminated composite Plate 2, subjected to pulse loading at various
temperatures with simply-supported boundary condition at all four edges.

Temp. Peak 0◦∕90◦∕
90◦∕0◦

0◦∕90◦∕
0◦∕90◦

45◦∕− 45◦∕
−45◦∕45◦

45◦∕− 45◦∕
45◦∕ − 45◦

0 ◦C 𝑤 (mm) 0.0064 0.0043 0.0049 0.0051
𝜎x (N/mm2) 0.25 0.14 0.13 0.18

25 ◦C 𝑤 (mm) 0.0068 0.0045 0.0050 0.0052
𝜎x (N/mm2) 0.28 0.15 0.14 0.18

50 ◦C 𝑤 (mm) 0.0073 0.0047 0.0054 0.0056
𝜎x (N/mm2) 0.29 0.17 0.16 0.19

75 ◦C 𝑤 (mm) 0.0079 0.0051 0.0057 0.0059
𝜎x (N/mm2) 0.31 0.18 0.17 0.21

100 ◦C 𝑤 (mm) 0.0088 0.0055 0.0062 0.0063
𝜎x (N/mm2) 0.36 0.20 0.18 0.23

125 ◦C 𝑤 (mm) 0.0096 0.0057 0.0067 0.0069
𝜎x (N/mm2) 0.37 0.19 0.20 0.25

Table 16
Peak dynamic deflection, 𝑤, and normal stress, 𝜎x, at ‘𝑈𝑃3

’ for the cross-ply and the
angle-ply IM7-PEEK laminated composite Plate 3, subjected to pulse loading at various
temperatures with simply-supported boundary condition at all four edges.

Temp. Peak 0◦∕90◦∕
90◦∕0◦

0◦∕90◦∕
0◦∕90◦

45◦∕− 45◦∕
−45◦∕45◦

45◦∕− 45◦∕
45◦∕ − 45◦

0 ◦C 𝑤 (mm) 0.0055 0.0075 0.0070 0.0066
𝜎x (N/mm2) 0.72 0.78 0.38 0.27

25 ◦C 𝑤 (mm) 0.0057 0.0080 0.0073 0.0069
𝜎x (N/mm2) 0.76 0.85 0.39 0.28

50 ◦C 𝑤 (mm) 0.0060 0.0086 0.0078 0.0074
𝜎x (N/mm2) 0.80 0.90 0.41 0.29

75 ◦C 𝑤 (mm) 0.0064 0.0093 0.0084 0.0079
𝜎x (N/mm2) 0.83 0.98 0.44 0.31

100 ◦C 𝑤 (mm) 0.0068 0.0101 0.0090 0.0083
𝜎x (N/mm2) 0.88 1.05 0.46 0.32

125 ◦C 𝑤 (mm) 0.0073 0.0111 0.0097 0.0090
𝜎x (N/mm2) 0.91 1.16 0.48 0.34

The first NDF, 𝜆1, increases in the higher rate with the increment in
the depths of stiffener of the stiffened Plate 2 with 45◦∕− 45◦∕− 45◦∕45◦
laminate at all respective temperatures. Whereas, with the increment in
the depths of stiffener in the stiffened Plate 3 with the corresponding
laminate, the first NDF, 𝜆1, is increased marginally. Symmetric angle-
ply laminate, i.e., 45◦∕ − 45◦∕ − 45◦∕45◦ offers comparatively higher
shear stiffness than the corresponding symmetric cross-ply laminate,
and increment in the depths of stiffener oriented parallel to the longer
edge increases bending stiffness of the stiffened plates in higher rate
than that of the stiffener oriented parallel to the shorter edge; which
advocates the highest rate of increment of the first NDF, 𝜆1, with
the increment of the depths of stiffener for the stiffened Plate 2 with
45◦∕−45◦∕−45◦∕45◦ laminate at all respective temperatures. As expected,
the first NDF, 𝜆1, of all the stiffened plates decreases with the increment
in temperature.

In addition, the corresponding transient response in terms of deflec-
tion, 𝑤, at nodes ‘𝑈𝑃2 ’ and ‘𝑈𝑃3 ’ of the Plates 2 and 3 are presented in
Figs. 14 and 15, respectively. It is observed from the transient response,
𝑤, for the stiffened Plate 2 in Fig. 14 that the amplitude of dynamic de-
flection is decreasing with the increment in the stiffener depth for both
the laminates as bending stiffness of the stiffened laminated composite
plates increases with increment of the depths of stiffener. The similar
trend is also observed for the stiffened Plate 3 with the stiffener oriented
parallel to the shorter edge in Fig. 15. The mass of the structure is
increased at the rate of 4% and 2.67% with every addition of 4 mm
depth to the stiffener in the orientation of the longer and shorter
directions, respectively in comparison with the unstiffened plate. It
has indicated that the 12-mm deep stiffener oriented parallel to the

longer edge becomes more effective as the consecutive rate of reduction
in the amplitude of the dynamic deflection is higher than the 16-
mm deep stiffener with a marginal increment in the mass. A marginal
reduction in the amplitude of the dynamic deflection is observed for
the stiffened Plate 3 with the increment of the stiffener depths in the
considered temperatures. This dynamic behavior of the stiffened Plate 3
is supported by the earlier observation of marginal increment of the
first NDF, 𝜆1, with the increment of the depths of stiffener. This implies
that the stiffness of the Plate 3 has not increased sufficiently with an
increment in the stiffener depths. Rate of variation in the amplitude
of the dynamic deflection is reducing with the increment in depths of
stiffener for a laminate. With the increment of the stiffener depth, the
rate of reduction of the amplitude of dynamic deflection is highest for
the stiffened Plate 2 (Fig. 14) at 100 ◦C temperature, which attributed
to the fact of higher rate increment of the bending stiffness with the
increment of the stiffener depths for the stiffener oriented parallel to
the longer edge, and this effect became significant for stiffened Plate 2
at 100 ◦C temperature.

4.4. Adding stiffener vis-á -vis thickening unstiffened plate

In order to limit the peak dynamic deflection in thermal environ-
ment, the stiffness of plates is needed to be increased. The increment in
the structural stiffness can be achieved by two ways: (1) by increasing
the thickness of the plate, and (2) by addition of stiffener(s) to the plate.
The transient response in terms of deflection, 𝑤, and normal stress, 𝜎x,
at the node ‘𝑈𝑃1 ’ of the unstiffened Plate 1 for various thicknesses such
as 2 mm, 4 mm, and 6 mm are compared with transient response at ‘𝑈𝑃2 ’
and ‘𝑈𝑃3 ’ of 2-mm thick stiffened Plates 2 and 3 with an 8-mm deep
stiffener attached parallel to the longer and shorter edges of the plate to
investigate effectiveness of adding the stiffener in thermal environment.
The corresponding transient response, 𝑤 and 𝜎x, are illustrated in
Fig. 16, for 0◦∕90◦∕0◦∕90◦ laminate at 0 ◦C, 25 ◦C, and 100 ◦C tempera-
tures. It is observed that addition of the stiffener oriented parallel to the
longer edge can reduce the amplitude of dynamic deflection and normal
stress more effectively in comparison to the increment in the thickness
of the unstiffened plate at higher temperature. The corresponding peak
dynamic deflection, 𝑤, and normal stress, 𝜎x, are computed from the
transient response, and are given in Tables 18 and 19, respectively.

The percentage reduction in the peak dynamic deflection and nor-
mal stress is computed with respect to the 2-mm thick unstiffened plate
(cf. Tables 18 and 19). The percentage reduction in the peak dynamic
deflection for 4-mm and 6-mm thick unstiffened plates are 85.7%
and 95.7% at 0 ◦C temperature. However, addition of an 8-mm deep
stiffener oriented parallel to the longer and shorter edges with 2-mm
thick plate reduces the peak dynamic deflection by 80.3% and 77.1%
with the expense of only 8% and 5.3% mass increment, respectively.
Further, the stiffened Plate 2 could reduce the peak dynamic deflection
by 82.4% and 90.4% at 25 ◦C and 100 ◦C temperatures, respectively,
and the reduction in the peak dynamic deflection of the stiffened Plate 3
at the corresponding temperatures are 79.2% and 87.1%. The 6-mm
thick plate reduces the dynamic deflection marginally with the rise
in temperature, in comparison with the 4-mm thick unstiffened plate.
Therefore, it can be inferred that the rate of reduction in the dynamic
deflection for the unstiffened plates reduces with the increment in
the plate thickness. Furthermore, the rate of percentage reduction
in the dynamic deflection is increased for the stiffened plate with
the increment in temperature as compared to the unstiffened plate.
However, percentage of reduction of transient response, 𝑤, for the
stiffened Plate 3 is less as compared to the stiffened Plate 2. Thus,
the stiffened plate with a stiffener oriented parallel to the longer
edge could reduce the dynamic deflection sufficiently with very less
penalty of adding mass as compared to the increment in plate thickness.
Advantage of addition of the stiffener in the longer direction for reduc-
ing dynamic deflection also predominant at the higher temperatures.
From Table 19, it is also observed that the corresponding peak normal
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Table 17
First NDF, 𝜆1, for 0◦∕90◦∕90◦∕0◦ and 45◦∕− 45◦∕− 45◦∕45◦ IM7-PEEK stiffened laminated composite Plates 2
and 3 with the depths of stiffener, 𝑑s, as 8 mm, 12 mm, and 16 mm at 0 ◦C, 25 ◦C, and 100 ◦C temperatures
for simply-supported boundary condition at all four edges.

Types of
stiffened plate

𝑑s NDF, 𝜆1

0◦∕90◦∕90◦∕0◦ 45◦∕− 45◦∕− 45◦∕45◦

0 ◦C 25 ◦C 100 ◦C 0 ◦C 25 ◦C 100 ◦C

Plate 2
8 mm 42.65 41.63 38.57 41.14 40.08 36.63
12 mm 51.26 48.27 38.97 56.67 55.91 53.22
16 mm 50.60 47.50 37.53 70.22 68.10 63.17

Plate 3
8 mm 49.61 47.98 44.28 50.50 48.96 45.64
12 mm 49.87 48.21 44.41 50.97 49.36 46.03
16 mm 50.09 48.45 44.61 51.17 49.56 46.23

𝜆1 = 2𝜋𝑓1𝐿2(𝜌∕𝐸22ℎ2)1∕2.

Fig. 14. Dynamic deflection, 𝑤, at node ‘𝑈𝑃2
’ for the Plate 2 with 0◦∕90◦∕90◦∕0◦ and 45◦∕− 45◦∕− 45◦∕45◦ IM7-PEEK laminated composite plates for different depths of stiffener, 𝑑s,

subjected to pulse loading at 0 ◦C, 25 ◦C, and 100 ◦C temperatures for simply-supported boundary condition at all four edges.

Fig. 15. Dynamic deflection, 𝑤, at node ‘𝑈𝑃3
’ for the Plate 3 with 0◦∕90◦∕90◦∕0◦ and 45◦∕− 45◦∕− 45◦∕45◦ IM7-PEEK laminated composite plates for different depths of stiffener, 𝑑s,

subjected to pulse loading at 0 ◦C, 25 ◦C, and 100 ◦C temperatures for simply-supported boundary condition at all four edges.

stress is decreased with the attachment of stiffener oriented parallel
to the longer and shorter edges (i.e., Plates 2 and 3, respectively) in
comparison to the Plate 1 with 2 mm thickness, specifically at the higher
temperature. However, the performance of the reduction of the peak
normal stress of the stiffened Plate 3 is less than the Plate 1 with varying
thickness and the stiffened Plate 2. The advantages of addition of the

stiffener oriented parallel to the longer edge for reducing the dynamic

response in thermal environment with some mass increment are also

revealed from the tables. Therefore, the stiffened plate with the stiffener

oriented parallel to the longer edge is the preferable choice than the

stiffened plate with the stiffener oriented parallel to the shorter edge
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Table 18
Comparison of the peak dynamic deflection, 𝑤, of IM7-PEEK laminated composite Plate 1 with various thicknesses and the
Plates 2 and 3 with 8-mm deep stiffener oriented parallel to the longer and shorter edges, respectively at 0 ◦C, 25 ◦C, and
100 ◦C temperatures for 0◦∕90◦∕0◦∕90◦ laminate with simply-supported boundary condition at all four edges.
Geometry of plate 0 ◦C 25 ◦C 100 ◦C % of

mass
diff.

𝑤
(mm)

% of
diff.

𝑤
(mm)

% of
diff.

𝑤
(mm)

% of
diff.

Plate 1, ℎ = 2 mm 0.0371 – 0.0432 – 0.0929 – –
Plate 1, ℎ = 4 mm 0.0053 −85.7 0.0055 −87.3 0.0067 −92.8 100
Plate 1, ℎ = 6 mm 0.0016 −95.7 0.0017 −96.1 0.0019 −97.9 200
Plate 2, ℎ = 2 mm,
𝑑s = 8 mm 0.0073 −80.3 0.0076 −82.4 0.0089 −90.4 8.0

Plate 3, ℎ = 2 mm,
𝑑s = 8 mm 0.0085 −77.1 0.0090 −79.2 0.012 −87.1 5.3

Fig. 16. Dynamic deflection, 𝑤, and normal stress, 𝜎x, at node ‘𝑈𝑃1
’ for the Plate 1 with various thicknesses, and at node ‘𝑈𝑃2

’ and ‘𝑈𝑃3
’ for the Plates 2 and 3, respectively with

8-mm deep stiffener oriented parallel to the longer and shorter edges for 0◦∕90◦∕0◦∕90◦ IM7-PEEK laminated composite plates with simply-supported boundary condition in all four
edges, subjected to the pulse loading at temperatures 0 ◦C, 25 ◦C, and 100 ◦C, respectively.

Table 19
Comparison of the peak normal stress, 𝜎x, of IM7-PEEK laminated composite Plate 1 with various thicknesses and the Plates 2
and 3 with 8-mm deep stiffener oriented parallel to the longer and shorter edges, respectively at 0 ◦C, 25 ◦C, and 100 ◦C
temperatures for 0◦∕90◦∕0◦∕90◦ laminate with simply-supported boundary condition at all four edges.
Geometry of plate 0 ◦C 25 ◦C 100 ◦C % of

mass
diff.𝜎x

(N/mm2)
% of
diff.

𝜎x
(N/mm2)

% of
diff.

𝜎x
(N/mm2)

% of
diff.

Plate 1, ℎ = 2 mm 1.18 – 1.34 – 2.8 – –
Plate 1, ℎ = 4 mm 0.32 −72.9 0.34 −74.6 0.4 −85.4 100
Plate 1, ℎ = 6 mm 0.15 −87.3 0.16 −88.1 0.17 −93.9 200
Plate 2, ℎ = 2 mm,
𝑑s = 8 mm 0.24 −79.7 0.250 −81.3 0.29 −89.6 8.0

Plate 3, ℎ = 2 mm,
𝑑s = 8 mm 0.80 −32.2 0.86 −35.8 1.08 −61.4 5.3
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for the response reduction of 𝑤 and 𝜎x in thermal environment using
0◦∕90◦∕0◦∕90◦ laminate.

5. Conclusion

The dynamic analysis of unstiffened and stiffened IM7-PEEK lam-
inated composite plates in thermal environment has been presented
by considering the temperature-dependent elastic properties. For this,
a generalized finite element formulation, that can analyze unstiffened
and stiffened laminated composite plates is developed with reference
to the Hamilton’s variational principle. In the presented finite element
formulation, the first-order shear deformation theory has been imple-
mented by including an additional drilling degree of freedom to ac-
count for three translations and three rotations per node, and the ther-
mal effects. The accuracy of the present finite element formulation has
been verified with the results reported in the literature and that with
ANSYS® simulations, and a good agreement has been obtained. The
non-dimensional frequencies and the transient response in terms of de-
flection and normal stress are studied for different stiffener orientations
in various thermal environment including below reference temperature,
i.e., at 0 ◦C. To address the research gap, the performance of the
considered stiffened plates with various depth of stiffeners, which are
oriented parallel to the longer and shorter edges, are studied in varying
thermal environments. The plates are analyzed considering symmetric
and antisymmetric cross-ply and angle-ply lamina sequences. It is found
that the non-dimensional frequencies decrease with the increment in
temperature above the reference temperature for both unstiffened and
stiffened plates. Further, the non-dimensional frequencies of unstiff-
ened and stiffened plates below the reference temperature are higher
than that at the reference temperature. The stiffened plate with the
stiffener oriented parallel to the longer edge with 0◦∕90◦∕0◦∕90◦ IM7-
PEEK laminate exhibits the highest first non-dimensional frequency
at all respective temperatures. The stiffener can advantageously be
used to avoid dynamic instability, as observed for 0◦∕90◦∕90◦∕0◦ unstiff-
ened IM7-PEEK laminated composite plate at 125 ◦C, of unstiffened
laminated composite plates at higher temperature.

Lamina sequences play a crucial role in transient response of un-
stiffened laminated composite plates in thermal environment. The plate
with the antisymmetric angle-ply laminate exhibits lower transient
response in terms of the deflection and normal stress at all temper-
atures as compared to the plates with symmetric angle-ply as well
as symmetric and antisymmetric cross-ply laminates. Provision of the
stiffener reduces the transient response in terms of deflection and
normal stress significantly. The stiffened plate with stiffener oriented
parallel to the longer edge and made-up of antisymmetric cross-ply
laminate offers the lowest transient response in terms of the deflection
at all temperatures; whereas, the lowest normal stress is observed in
case of the stiffened plate made-up of antisymmetric angle-ply laminate
with the stiffener oriented parallel to the longer edge. Moreover, it is
observed that the peak dynamic deflection of stiffened plates reduces
further by increasing the stiffener depth, although, the rate of reduction
decreases with the increment in the stiffener depth. The stiffened
plate with stiffener oriented parallel to the longer edge offers higher
rate of reduction in the peak dynamic deflection with the increasing
stiffener depth, and is notable at the higher temperature. Study shows
that the 12-mm deep stiffener can be considered as the most effective
depth for achieving significant dynamic response reduction in thermal
environment. Further, the rate of reduction in the magnitudes of the
peak dynamic deflection and normal stress for stiffened plates with
stiffener oriented parallel to the longer edge is higher in comparison
with the associated unstiffened plates with incremental thickness, at
the higher temperature than at the lower temperature. These outcomes
will guide designers and engineers for efficient selection of the stiff-
ener orientation and stiffener depth based on the considered laminae
sequences and the operating temperature.
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Appendix

Transformed reduced stiffness matrix of the 𝑘th lamina in the
laminate coordinate (𝑥, 𝑦, 𝑧) system:

[𝑄]k =

⎡
⎢⎢⎢⎢⎢⎣

𝑄11 𝑄12 𝑄16 0 0
𝑄21 = 𝑄12 𝑄22 𝑄26 0 0
𝑄61 = 𝑄16 𝑄62 = 𝑄26 𝑄66 0 0

0 0 0 𝑄44 𝑄45
0 0 0 𝑄54 = 𝑄45 𝑄55

⎤
⎥⎥⎥⎥⎥⎦

. (A.1)

Stress–strain relationship matrix of the 𝑘th lamina in the lamina
coordinate (1, 2, 3) system:

[𝐶]k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐶11 = 𝐸11
1−𝜈12𝜈21

𝐶12 = 𝜈12𝐸11
1−𝜈12𝜈21

0 0 0

𝐶21 = 𝜈12𝐸11
1−𝜈12𝜈21

𝐶22 = 𝐸22
1−𝜈12𝜈21

0 0 0

0 0 𝐶66 = 𝐺12 0 0

0 0 0 𝐶44 = 𝐺13 0

0 0 0 0 𝐶55 = 𝐺23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A.2)

Non-linear strain vector, {𝜖nt}, and vector of partial derivative of
displacement, {𝑑∗}, relationship matrix:

[𝑅]T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢0,x + 2𝑧𝜃y,x 0 𝑢0,y + 2𝑧𝜃y,y 0 0
0 𝑢0,y + 2𝑧𝜃y,y 𝑧𝜃y,x 0 0

𝑣0,x − 2𝑧𝜃x,x 0 𝜃0,y − 𝑧𝜃x,y 0 0
0 𝑣0,y − 2𝑧𝜃x,y −𝑧𝜃x,x 0 0

𝑤0,x 0 0 0 0
0 𝑤0,y 𝑤0,x 0 0

𝑧2𝜃x,x 0 𝑧2𝜃x,y 𝑧𝜃x 0
0 𝑧2𝜃x,y 0 0 𝑧𝜃x

𝑧2𝜃y,x 0 𝑧2𝜃y,y 𝑧𝜃y 0
0 𝑧2𝜃y,y 0 0 𝑧𝜃y
0 0 0 −𝑣0,x −𝑣0,y
0 0 0 𝑢0,x 𝑢0,y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A.3)
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[𝑆r] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑁 i
x 𝑁 i

xy 0 0 0 0 0 0 𝑀 i
x 𝑀 i

xy 0 𝑄i
x

𝑁 i
xy 𝑁 i

y 0 0 0 0 0 0 𝑀 i
xy 𝑀 i

y 0 𝑄i
y

0 0 𝑁 i
x 𝑁 i

xy 0 0 −𝑀 i
x −𝑀 i

xy 0 0 −𝑄i
x 0

0 0 𝑁 i
xy 𝑁 i

y 0 0 −𝑀 i
xy −𝑀 i

y 0 0 −𝑄i
y 0

0 0 0 0 𝑁 i
x 𝑁 i

xy 0 0 0 0 0 0

0 0 0 0 𝑁 i
xy 𝑁 i

y 0 0 0 0 0 0

0 0 −𝑀 i
x −𝑀 i

xy 0 0 𝑁 i
xℎ

2

12
𝑁 i

xyℎ
2

12 0 0 0 0

0 0 −𝑀 i
xy −𝑀 i

y 0 0
𝑁 i

xyℎ
2

12
𝑁 i

𝑦ℎ
2

12 0 0 0 0

𝑀 i
x 𝑀 i

xy 0 0 0 0 0 0 𝑁 i
xℎ

2

12
𝑁 i

xyℎ
2

12 0 0

𝑀 i
xy 𝑀 i

y 0 0 0 0 0 0
𝑁 i

xyℎ
2

12
𝑁 i

yℎ
2

12 0 0

0 0 −𝑄i
x −𝑄i

y 0 0 0 0 0 0 0 0

𝑄i
x 𝑄i

y 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.5)

Box II.

Shape function matrix corresponding to {𝑑∗}:

[𝐺] =
8∑
𝑖=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑁i,x 0 0 0 0
𝑁i,y 0 0 0 0
0 𝑁i,x 0 0 0
0 𝑁i,y 0 0 0
0 0 𝑁i,x 0 0
0 0 𝑁i,y 0 0
0 0 0 𝑁i,x 0
0 0 0 𝑁i,y 0
0 0 0 0 𝑁i,x
0 0 0 0 𝑁i,y
0 0 0 𝑁i 0
0 0 0 0 𝑁i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.4)

Here, shape function for the 8-node isoparametric element is denoted
by 𝑁i with 𝑖 = 1 to 8.

Initial stress-stiffness matrix: [𝑆r], see Box II.
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A B S T R A C T

High-strength and lightweight composites used in high-speed vehicles and aircraft experience increased
temperature owing to aerodynamic friction. Because of the rise in temperature, the elastic moduli of the
composites are degraded and inherent viscous damping is increased to the glass transition temperature.
In this work, the damping performance of unstiffened and stiffened polyetheretherketone (PEEK) based
intermediate modulus (IM7) carbon fiber laminated composite plates is evaluated at various temperatures using
displacement- and energy-based approaches. In the displacement-based approach, the logarithmic decrement
of the damped vibration is determined to investigate the effect of lamina sequences, stiffener orientation, and
stiffener depth at different temperatures. A first-order shear deformation theory considering the viscoelastic
property of the composite lamina is implemented to simulate the damped dynamic response of the laminated
composite plates in a thermal environment. The best suitable damping model, among Rayleigh damping and
modal expansion damping, has been identified to evaluate the damping matrix. Furthermore, the energy-based
damping analysis appeared to be a robust approach to evaluate the damping performance as compared to the
displacement-based analysis. It is concluded that stiffened plates effectively suppress the dynamic response
at elevated temperature, whereas the unstiffened plates show relatively better damping performance at lower
temperature.

1. Introduction

Excessive vibration in lightweight composite structures subjected to
various kinds of dynamic loading needs to be controlled or prevented.
Nowadays, lightweight composite plates are used to manufacture dif-
ferent important components of aircraft, sportscars, high-speed trains,
etc. During high-speed maneuvering, the temperature of structural
components increases owing to the aerodynamic friction and the rise
in the surrounding temperature due to the heat exchange from drive
units. This affects the material properties of the composite materi-
als as well as damping characteristics. To withstand harsh and haz-
ardous environmental conditions, high-strength composite materials
such as graphite-epoxy, carbon-epoxy, and intermediate modulus (IM7)
carbon-polyetheretherketone (PEEK) are used as a principal material. In
addition, these composite materials possess sufficient structural stabil-
ity in thermal environment. However, the elastic properties degrade
with the increment in temperature whereas damping increases with
the rise in temperature to the glass transition temperature [1]. Beyond
this temperature, damping is reduced with further increase in tem-
perature. The thin high-strength laminated composite plates subjected

∗ Corresponding author.
E-mail address: sourav.chandra@tum.de (S. Chandra).

to dynamic loading in a thermal environment show large magnitudes
of vibration. This may reduce the fatigue life of plates and often
cause fracture. These issues lead to a significant loss of the structural
integrity of the high-strength composite plates during operating con-
dition. Therefore, controlling the dynamic response is essential in a
thermal environment and can be achieved by considering the damping
under the thermal influence.

Damping can be added through various strategies, such as active,
passive, and active–passive hybrid vibration controls that are imple-
mented to suppress the vibration amplitude of laminated composite
plates. A substantial advancement in the research on the active vi-
bration control using piezoelectric materials [2,3] and shape memory
alloys [4,5] has been observed in the past few decades. The active
vibration control using such materials has been widely studied and is
implemented to suppress the dynamic response of laminated composite
plates [6,7]. In contrast, passive vibration control using inherent damp-
ing capacity and interleaved viscoelastic damping layers is relatively
simple to implement and perhaps inexpensive relatively. Generally,
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active vibration control offers better vibration abatement than passive
control by requiring additional power supply to the dynamic system
along with the proper implementation of the control algorithm. How-
ever, in the case of a simple and cost-effective implementation of
vibration control, passive vibration control can be used conveniently to
achieve a sufficient suppression of the vibration amplitude. Therefore,
this study intends to investigate the damping performance of laminated
composite plates due to the inherent damping capacity in various
thermal environments.

The need to investigate on temperature-dependent damping in lam-
inated composite plates emerges evidently upon reviewing the state-of-
the-art in detail. A free vibration analysis of the laminated composite
plates in thermal environment using the first-order shear deformation
theory (FSDT) has been studied by Whitney and Ashton [8] and Sai
Ram and Sinha [9]. Similarly, the free vibration analysis based on
higher-order shear deformation theory (HSDT) in a hygrothermal en-
vironment was presented by Patel et al. [10]. Furthermore, free and
forced vibration analyses of composite shells using the HSDT has been
studied by various researchers including Mangala et al. [11,12], Huang
et al. [13], Naidu and Sinha [14,15], and Nanda and Pradyumna [16].
Parhi et al. [17] has studied the transient response of the delaminated
composite plates and shells in hygrothermal environment using the
FSDT. Chandra et al. [18] has presented a stochastic dynamic analysis
of graphite-epoxy laminated composite plate in thermal environment
using the FSDT in an uncertain thermal environment, however did not
account for the variation in temperature-dependent damping.

To reduce the amplitude of the dynamic response without much
addition of structural mass, stiffener(s) can be added to the laminated
composite plates. Nowadays, stiffened laminated composite plates are
efficiently used in various structural components such as wings of air-
craft to increase structural stiffness and thereby contribute to stability
of the structural systems [19,20]. For numerical simulation, various
finite element (FE) formulations using beam and plate elements have
been developed. Chattopadhyay et al. [21], Kumar and Mukhopad-
hyay [22], Pal and Niyogi [23], and Yu et al. [24] have investigated
the dynamic response of the stiffened laminated composite plates by
utilizing plate elements in modeling the stiffener. In contrast, Lee and
Lee [25] and Qing et al. [26] have analyzed stiffened plates by using
beam elements. Ray and Satsangi [27] have modeled the stiffener in-
dependently, wherein the corresponding stiffness matrix was included
with the unstiffened plate element during the analysis.

The energy dissipation in the laminated composite plates is de-
termined to calculate the inherent damping capacity which is due to
the viscoelastic behavior of the matrix part of the composite material.
The damping capacity of the laminated composite plates is evaluated
by a complex modulus approach [28–30]. Bouadi and Sun [31] have
adopted the complex modulus approach to investigate the effect of
temperature and moisture on the storage moduli and the damping
loss factors of composite plates, numerically and experimentally. Some
experimental studies [32–34] have been reported with an aim to max-
imize the damping loss factors in various thermal environments. The
dissipation of energy from composite plates is represented by specific
damping capacities (SDCs). It is expressed as a ratio between the
dissipated energy and the total strain energy per stress cycle [35–
39]. Further, Saravanos and Chemis [40] have studied the effect of
temperature and moisture on the damping capacity of a graphite-
epoxy laminated composite plate using the micromechanical damping
theory. Some researchers [41–44] have shown interest in examining
the variation in the SDCs due to the influence of temperature and
frequency for different types of composite plates, both numerically and
experimentally. Uncertainty in frequency response functions (FRFs) due
to random modal damping has been studied by Sepahvand [45,46].
Stochastic modal damping analysis for stiffened laminated composite
plates has been presented by Chandra et al. [47] using the com-
plex modulus approach. Some research contributions on damping in
composite plates have been summarized in [48,49].

To study the efficacy in suppressing the dynamic response due
to inherent damping, the corresponding damped dynamic response in
the time domain and/or frequency domain was evaluated. Zabaras
and Pervez [50,51] have evaluated the modal SDCs of the laminated
composite plates due to inherent damping, where the damping ma-
trix was incorporated into the FE modeling with the definition of
Rayleigh damping to calculate the damped dynamic response in the
time domain. The implementation of Rayleigh damping to calculate
the damping matrix assuming well-separated eigenfrequencies has been
reported in [52]. Zabaras and Pervez [50,51] have illustrated the
damped dynamic response of laminated composite plates due to inher-
ent damping based on the viscoelastic theory. Further, Yi et al. [53]
have studied the influence of temperature on the damped dynamic re-
sponse of cross-ply and angle-ply cylindrical shells without considering
temperature-dependent elastic and damping properties. Kiral [54] has
investigated the damped dynamic response of composite beam due to
harmonic excitation using Rayleigh damping formulation. Şahan [55]
determined the damped dynamic response of a shallow spherical shell
using Laplace transformation subjected to a impulsive loading where
the damping matrix has been estimated in accordance with the Kelvin
viscoelastic model. In addition to the time domain analysis, Jeyaraj
et al. [56] have presented frequency domain analysis of the laminated
composite plates in different thermal environments using the complex
modulus method. Many researchers [50,51,53] have determined the
damping matrix based on the concept of Rayleigh (mass and/or stiffness
proportional) damping considering the modal damping values of the
first two modes without considering the thermal effect. However, the
application of the Rayleigh damping model considering the first two
modes may not be suitable for engineering structures with complex
geometry as they are subjected to non-proportional damping [57].
Moreover, energy analysis is primarily conducted to assess the seismic
performance of ductile structures [58] which includes energy dissipa-
tion due to hysteretic behavior [59] and damping [60,61]. Moreover,
various response control strategies have been developed based on
energy assessment criteria [62–64].

However, the authors have yet not found any study evaluating the
damping performance of unstiffened and stiffened laminated composite
plates considering temperature-dependent elastic and damping prop-
erties at different temperatures. In this context, research to date is
limited and does not account for the effect of temperature-dependent
damping in FE formulation. Even though Zabaras and Pervez [50,51]
have studied the damped response of laminated composite plates, it
was without considering any thermal effects. Therefore, it is essential to
study the effect of the temperature-dependent damping of unstiffened
and stiffened laminated composite plates and their performance at
different temperatures when subjected to thermo-mechanical loading.
This paper intends to investigate the inherent damping performance of
such composite plates using displacement-based and energy-based ap-
proaches. The decay in the damped dynamic deflection is determined,
denoted as displacement-based approach, to evaluate the damping per-
formance of the unstiffened and stiffened laminated composite plates.
Furthermore, energy-based assessment of the damping performance for
these plates in thermal environment is presented. Particularly, this
study investigates the inherent damping performance of high-strength
IM7-PEEK unstiffened and stiffened laminated composite plates based
on the displacement-based and energy-based approaches in thermal
environment considering temperature-dependent elastic and damping
properties. The FE formulation for the unstiffened and stiffened lami-
nated composite plates is developed by employing the FSDT using an
8-node isoparametric plate element with six degrees of freedom (DOFs)
per node, which includes conventional five DOFs (three translational
DOFs and two rotational DOFs) and one additional drilling DOF. The
modal damping values for unstiffened and stiffened laminated com-
posite plates are evaluated based on the complex modulus approach
by implementing the viscoelastic damping principle. The damping per-
formance of the unstiffened and stiffened laminated composite plates
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in various thermal environments is evaluated based on the decay in
the damped dynamic response and assessment of the inherent damping
energy.

The main objectives of the current study are: (a) to evaluate the
modal damping values of the unstiffened and stiffened laminated com-
posite plates in thermal environment; (b) to identify the best suitable
approach to calculate the damping matrix for the purpose of eval-
uating the damped dynamic response in thermal environment; (c)
to investigate the influence of various parameters of the unstiffened
and stiffened laminated composite plates such as lamina sequences,
stiffener orientations, depths of the stiffener, and operating harmonic
frequency for efficient vibration control in thermal environment using
the logarithmic decrement; and (d) to assess damping energy while
evaluating the damping performance of such plates in thermal environ-
ment. Thus, the novelty of this work is in developing the FE formulation
taking modal damping into account to evaluate the damped dynamic
response of the unstiffened and stiffened laminated composite plates
at various thermal environment realistically. Furthermore, this paper
has furnished a detailed comparative study to identify the best possible
methodology for evaluating the damping performance.

In what follows, a mathematical framework is introduced in Sec-
tion 2, which includes a generalized FE formulation to analyze the un-
stiffened and stiffened laminated composite plates, while determining
the damping matrix based on Rayleigh damping and modal expansion
damping, respectively. The algorithm of the FE formulation to deter-
mine the damped dynamic response is illustrated in Section 3. Next
in Section 4, the best suitable damping approach between Rayleigh
damping and modal expansion damping is identified, and results from
various parametric studies are reported using the selected damping
model to understand damping performance of the unstiffened and
stiffened laminated composite plates at different temperatures using
displacement-based and energy-based approaches. Finally, conclusions
as derived from the present study are written in Section 5.

2. Mathematical formulations

An FE formulation has been developed to calculate the damped
dynamic response of the unstiffened and stiffened laminated composite
plates subjected to dynamic loading in thermal environment. It is
assumed that the stiffeners are in perfect connection with the plate.
The geometry of the laminated composite plate consisting of length, 𝐿;
width, 𝑊 ; and uniform thickness, ℎ, is shown in Fig. 1. Primarily, the
FE formulation of a thin unstiffened laminate has been developed using
an 8-node isoparametric plate element with five DOFs per node, based
on the FSDT for 𝑛 number of unidirectional lamina of equal thickness.
Furthermore, the FE formulation for stiffened laminated composite
plates is developed by using folded plate theory [23] by considering
five conventional DOFs and a drilling DOF per node of a plate element.

2.1. Constitutive relationship

A generalized displacement field, 𝒅 = {𝑢 𝑣 𝑤 𝜃x 𝜃y}T, (cf. Fig. 1)
of the composite laminate is considered for developing a constitutive
relationship based on the FSDT. According to the FSDT, the displace-
ment field, 𝒅, is calculated with the assumption that the normal of
the mid-plane of the composite laminate remains orthogonal during
deformation. Here, the mid-plane is assumed as a reference plane for
evaluating the components of 𝒅 of the laminate at a distance 𝑧 from
the mid-plane, and the components of 𝒅 are expressed as

𝑢 = 𝑢0 + 𝑧𝜃y,
𝑣 = 𝑣0 − 𝑧𝜃x,
𝑤 = 𝑤0,

(1)

where 𝑢 and 𝑣 are in-plane translations along the 𝑥 and 𝑦 axes, respec-
tively, 𝑤 is out-of-plane deformation along the 𝑧 axis, and rotations of
the transverse normal about the 𝑥 and 𝑦 axes are defined by 𝜃x and

Fig. 1. Laminated composite plate, showing the positive direction of laminate axes in
the laminate coordinate (𝑥, 𝑦, 𝑧) system, the corresponding displacement components,
and fiber orientation, 𝜃, for a particular lamina in the lamina coordinate (1, 2, 3)
system.

𝜃y, respectively. The mid-plane displacements along the 𝑥, 𝑦, and 𝑧
directions are represented by 𝑢0, 𝑣0, and 𝑤0. The shear rotations, 𝜑x
and 𝜑y, in the 𝑥 − 𝑧 and 𝑦 − 𝑧 planes are presented as

𝜑x = 𝑤,x +𝜃y,
𝜑y = 𝑤,y −𝜃x.

(2)

In Eq. (2), first derivatives of 𝑤 with respect to the 𝑥 and 𝑦 axes
are denoted by 𝑤,x and 𝑤,y. The mid-plane displacement vector is
shown by 𝒅 = {𝑢0 𝑣0 𝑤0 𝜃x 𝜃y}T. The linear strain vector, 𝜺 =
{𝜀x 𝜀y 𝛾xy 𝛾xz 𝛾yz}T, at a distance 𝑧 from the mid-plane contains

𝜀x = 𝑢0,x + 𝑧𝜃y,x,
𝜀y = 𝑣0,y − 𝑧𝜃x,y,
𝛾xy = 𝑢0,y + 𝑣0,x + 𝑧(𝜃y,y − 𝜃x,x),
𝛾xz = 𝜑x,
𝛾yz = 𝜑y,

(3)

as its individual components. The mid-plane strain terms in Eq. (1)
are compactly presented as 𝜀0x = 𝑢0,x, 𝜀0y = 𝑣0,y, 𝛾0xy = (𝑢0,y + 𝑣0,x),
𝜅x = 𝜃y,x, 𝜅y = −𝜃x,y, and 𝜅xy = (𝜃y,y − 𝜃x,x). For the uniform increment
in the temperature, 𝛥𝑇 , the stress–strain relationship for the 𝑘th lamina
is presented with reference to the laminate axes (𝑥, 𝑦, 𝑧) system, which
is expressed as

𝝈k = 𝑸k
{
𝜺k − 𝜶k𝛥𝑇

}
, (4)

where the stress vector, 𝝈k = {𝜎x 𝜎y 𝜏xy 𝜏xz 𝜏yz}T
k , of the 𝑘th lamina

is derived from the linear strain vector, 𝜺k, and the thermal strain
vector, 𝜶k𝛥𝑇 . The coefficient of thermal expansion (CTE) of the 𝑘th

lamina is expressed in the laminate coordinate system (𝑥, 𝑦, 𝑧) as

𝜶k = {𝛼x 𝛼y 𝛼xy 0 0}T
k . (5)

The transformed reduced stiffness matrix, 𝑸k, [65] for the 𝑘th lamina
in Eq. (4) is derived from the stress–strain relationship matrix, 𝑪k, of
the 𝑘th lamina in the laminate coordinate system (𝑥, 𝑦, 𝑧) after proper
transformation due to fiber angle orientation, 𝜃. For the plane stress
problem, the elements of the 𝑪k matrix, i.e., (𝐶ij)k are evaluated from
the elastic moduli of the lamina [9]. In the lamina coordinate (1, 2, 3)
system, the elastic moduli of a lamina are denoted by 𝐸11 and 𝐸22; the
shear moduli are shown by 𝐺12, 𝐺13, and 𝐺23; and the Poisson’s ratios
are denoted by 𝜈12 and 𝜈21.

The stress–strain relationship of the lamina (cf. Eq. (4)) is integrated
over the thickness of the laminate to establish the stress–strain rela-
tionship of the laminate. Due to integration, the stress vector for a
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particular lamina (𝝈k) is transformed into the stress-resultant vector,
𝑭r = {𝑁x 𝑁y 𝑁xy 𝑀x 𝑀y 𝑀xy 𝑄x 𝑄y}T, of the laminate and the
corresponding strain vector (𝜺k) leads to the mid-plane strain vector,
𝜺∗. The stress-resultant and mid-plane strain vector relationship of the
composite laminate consisting of 𝑛 number of the composite lamina is
presented as

𝑭r = 𝑫𝜺∗ − 𝑭N. (6)

Here, the mid-plane strain vector, 𝜺∗, is presented as

𝜺∗ = {𝜀0x 𝜀0y 𝛾0xy 𝜅x 𝜅y 𝜅xy 𝛾xz 𝛾yz}T, (7)

and the thermal stress-resultant vector, 𝑭N = 𝑫𝒆∗, is given by

𝑭N = {𝑁Nx 𝑁Ny 𝑁Nxy 𝑀Nx 𝑀Ny 𝑀Nxy 0 0}T, (8)

in which the thermal strain vector, 𝒆∗, is written as

𝒆∗ = {𝑒x 𝑒y 𝑒xy 0 0 0 0 0}T. (9)

The stress-resultant and mid-plane strain vectors relationship matrix,
𝑫, in Eq. (6) is written as

𝑫 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐴11 𝐴12 𝐴16 𝐵11 𝐵12 𝐵16 0 0

𝐴21 𝐴22 𝐴26 𝐵21 𝐵22 𝐵26 0 0

𝐴61 𝐴62 𝐴66 𝐵61 𝐵62 𝐵66 0 0

𝐵11 𝐵12 𝐵16 𝐷11 𝐷12 𝐷16 0 0

𝐵21 𝐵22 𝐵26 𝐷21 𝐷22 𝐷26 0 0

𝐵61 𝐵62 𝐵66 𝐷61 𝐷62 𝐷66 0 0

0 0 0 0 0 0 𝐴̄44 𝐴̄45

0 0 0 0 0 0 𝐴̄54 𝐴̄55

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10)

where 𝑫 is a symmetric matrix with 𝐴ij = 𝐴ji, 𝐵ij = 𝐵ji, 𝐷ij = 𝐷ji, and
𝐴̄ij = 𝐴̄ji. The elements of 𝑫 matrix are stated in compact form, as

𝐴ij, 𝐵ij, 𝐷ij =
𝑛∑

𝑘=1
∫

𝑧k

𝑧k-1

𝑸k(1, 𝑧, 𝑧2)d𝑧, 𝑖, 𝑗 = 1, 2, 6, (11)

and

𝐴̄ij =
𝑛∑

𝑘=1
∫

𝑧k

𝑧k-1

𝜘𝑸kd𝑧, 𝑖, 𝑗 = 4, 5 and 𝜘 = 5∕6. (12)

In Eq. (12), 𝜘 = 5∕6 is the shear correction factor [9] to consider
nonlinear distribution of the transverse shear strain along the thickness
of the laminate.

The initial strain vector, 𝜺nt = {𝜀𝑥nt 𝜀𝑦nt 𝛾𝑥𝑦nt 𝛾𝑥𝑧nt 𝛾𝑦𝑧nt}
T, due to

the uniform variation of temperature in the entire laminate is presented
by the nonlinear portion of the overall strain. The components of the
nonlinear thermal strain vector, 𝜺nt, are expressed as

𝜀𝑥nt =
1
2
(𝑢2

,x + 𝑣2
,x +𝑤2

,x),

𝜀𝑦nt =
1
2
(𝑢2

,y + 𝑣2
,y +𝑤2

,y),

𝛾𝑥𝑦nt = (𝑢,x𝑢,y + 𝑣,x𝑣,y +𝑤,x𝑤,y),
𝛾𝑥𝑧nt = (𝑢,x𝑢,z + 𝑣,x𝑣,z),
𝛾𝑦𝑧nt = (𝑢,y𝑢,z + 𝑣,y𝑣,z).

(13)

The displacement terms i.e, 𝑢, 𝑣, and (𝑤), in Eq. (13) are further
expressed in terms of mid-plane displacement (cf. Eq. (1)). Henceforth,
the nonlinear thermal strain vector, 𝜺nt, is written in terms of the vector
of partial derivative of displacement, 𝒅∗, as

{𝜀nt} = 1
2
𝑹𝒅∗. (14)

Here, 𝑹 is a relationship matrix between 𝜺nt and 𝒅∗ [65], and the
corresponding displacement vector, 𝒅∗, is described by

𝒅∗={𝑢0,x 𝑢0,y 𝑣0,x 𝑣0,y 𝑤,x 𝑤,y 𝜃x,x 𝜃x,y 𝜃y,x 𝜃y,y 𝜃x 𝜃y}T. (15)

2.2. Equations of motion

The Hamilton variational principle is used to develop the equa-
tion of motion of the laminated composite plates subjected to the
dynamic loading in thermal environment. The equation of motion can
be expressed within an arbitrary time interval (𝑡1, 𝑡2) as [52,66,67]

∫
𝑡2

𝑡1
𝛿(E −K +Q)d𝑡 = 0, (16)

where total potential and kinetic energies are denoted by E and K,
respectively. The damping energy due to the dissipative force vector,
𝒇diss, is expressed by Q. The total potential energy, E, is the summation
of strain energy, U, and work done, W, by conservative forces. Thus,
the total potential energy, E = U −W, is expressed as

E=
(
1
2∫A 𝜺∗T𝑫𝜺∗d𝐴+ 1

2 ∫A 𝒅∗T𝑺r𝒅∗d𝐴
)

−
(
∫A 𝒅T𝒒(𝑡)d𝐴

)
,

(17)

where 𝑺r is the initial stress-stiffness matrix, cf. Eq. (A.2), and 𝒒(𝒕)
is the externally applied dynamic (transverse) load vector. The initial
stress-stiffness matrix, 𝑺r, is considered in Eq. (17) to incorporate
the effect of initial-stress resultant vector, 𝑭 i = {𝑁 i

x 𝑁 i
y 𝑁 i

xy 𝑀 i
x

𝑀 i
y 𝑀 i

xy 𝑄i
x 𝑄i

y}
T, which is induced into the composite laminate

due to the uniform variation in temperature.
The kinetic energy, K, of the composite laminate is given by

K = 1
2 ∫A 𝒅̇T𝑴̄𝒅̇d𝐴, (18)

where 𝑴̄ is the inertia matrix of the laminate and is written as

𝑴̄ =

⎡⎢⎢⎢⎢⎢⎣

𝑝̄ 0 0 0 0
0 𝑝̄ 0 0 0
0 0 𝑝̄ 0 0
0 0 0 𝑞 0
0 0 0 0 𝑞

⎤⎥⎥⎥⎥⎥⎦

. (19)

In Eq. (19), the elements 𝑝̄ and 𝑞 are compactly written as (𝑝̄, 𝑞) =
∫ ℎ∕2
−ℎ∕2 𝜌(1, 𝑧

2)d𝑧, and 𝜌 is the density of the composite material. Further-
more, the damping energy, Q, is presented by

Q = ∫A 𝒅T𝒇dissd𝐴. (20)

In the case of viscoelastic damping dissipative force, 𝒇diss, is pro-
portional to the structural velocity, 𝒅̇, and can be represented as

𝒇diss = 𝑪̄𝒅̇, (21)

in which 𝑪̄ is a proportional matrix which represents the energy dis-
sipation mechanism due to the viscoelastic behavior of the composite
material.

Finally, the expression of the Hamiltonian variational principle
of the composite laminate in thermal environment subjected to the
dynamic loading is developed by considering the expression of the total
potential, kinetic, and damping energies, and is presented as

𝛿 ∫
𝑡2

𝑡1

[
1
2 ∫A 𝜺∗T𝑫𝜺∗d𝐴 + 1

2 ∫A 𝒅∗T𝑺r𝒅∗d𝐴

− ∫A 𝒅T𝒒(𝑡)d𝐴 + ∫A 𝒅T𝑪̄𝒅̇d𝐴 − 1
2 ∫A 𝒅̇T𝑴̄𝒅̇d𝐴

]
d𝑡 = 0.

(22)

The expression of the Hamilton variational statement as derived in
Eq. (22) is further used to develop the governing equations of damped
dynamic motion for the stiffened laminated composite plates in thermal
environment using FE modeling in the next section.
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2.3. Finite element formulation

An 8-node 𝐶0 isoparametric plate element with five DOFs (i.e., 𝑢,
𝑣, (𝑤), 𝜃x, and 𝜃y) at each node is implemented for FE analysis of
the laminate. The mid-plane displacement vector, 𝒅, at any location
within the element ‘e’ can be described in terms of the nodal mid-plane
displacement vector, 𝒅e, of the element by

𝒅 = 𝑵𝒅e, (23)

where 𝑵 is the matrix of shape functions for the 8-node isoparametric
element. Accordingly, the mid-plane strain vector, 𝜺∗, is expressed in
terms of the nodal mid-plane displacement vector, 𝒅e, in relation to
the strain–displacement matrix, 𝑩, [68] as

𝜺∗ = 𝑩𝒅e. (24)

Similarly, the vector of partial derivatives of displacement, 𝒅∗, in
Eq. (14) is expressed in terms of the nodal displacement vector, 𝒅e,
as

𝒅∗ = 𝑮𝒅e, (25)

where 𝑮 (cf. Eq. (A.1)) is the corresponding shape function matrix.
Now, using the Hamilton variational principle for the composite

laminate in thermal environment, the inherent viscoelastic damping
property is expressed for an element ‘e’ in the form of

∫
𝑡2

𝑡1

[
∫Ae

𝛿𝒅e(𝑡)T𝑩T𝑫𝑩𝒅e(𝑡)d𝐴e

+ ∫Ae

𝛿𝒅e(𝑡)T𝑮T𝑺r𝑮𝒅e(𝑡)d𝐴e − ∫Ae

𝛿𝒅e(𝑡)T𝑵T𝒒(𝑡)d𝐴e

+ ∫Ae

𝛿𝒅e(𝑡)T𝑵T𝑪̄𝑵𝒅̇(𝑡)d𝐴e − ∫Ae

𝛿𝒅e(𝑡)T𝑵T𝑴̄𝑵𝒅e(𝑡)d𝐴e

]
d𝑡 = 0.

(26)

Since, the virtual displacement 𝛿𝒅e(𝑡) in Eq. (26) is arbitrary in nature,
the governing equation of the element ‘e’ for the composite laminate is

[
𝑲e+𝑲Ge

]
𝒅(𝑡)+𝑪e𝒅̇(𝑡)+𝑴e𝒅(𝑡)=𝑷e(𝑡). (27)

Here, the elemental stiffness matrix, 𝑲e, of the composite laminate
takes the form of

𝑲e = ∫Ae

𝑩T𝑫𝑩d𝐴e, (28)

the elemental geometric stiffness matrix, 𝑲Ge, due to the initial thermal
stress is expressed as

𝑲Ge = ∫Ae

𝑮T𝑺r𝑮d𝐴e, (29)

the elemental mass matrix, 𝑴e, is expressed as

𝑴e = ∫Ae

𝑵T𝑴̄𝑵d𝐴e, (30)

the elemental damping matrix, 𝑪e, is given by

𝑪e = ∫Ae

𝑵T𝑪̄𝑵d𝐴e, (31)

and the elemental external load vector, 𝑷e(𝑡), is expressed as

𝑷e(𝑡) = ∫Ae

𝑵T𝒒(𝑡)d𝐴e. (32)

Furthermore, the elemental thermal force vector, 𝑷Ne, is evaluated as

𝑷Ne = ∫Ae

𝑩T𝑭Nd𝐴e. (33)

A 3-point Gauss quadrature rule is adopted for calculating the elemen-
tal bending stiffness matrix; whereas a 2-point Gauss quadrature rule is
implemented to derive the shear stiffness, the mass matrices, and the
elemental force vector.

Fig. 2. Local coordinate (𝑥, 𝑦, 𝑧) system for a laminate and global coordinate (𝑥′, 𝑦′,
𝑧′) system for a typical stiffened plate, where the least angle between the positive 𝑥
and 𝑥′ axes is represented by (𝑥′, 𝑥), typically.

2.3.1. Transformation matrix due to stiffener
The stiffener(s) is (are) modeled as a plate element along with

proper transformation due to their orientation. The transformation
matrix is developed to relate the local displacements vector, 𝒅, of the
unstiffened plate and stiffener, and the global displacement vector, 𝒅′,
for the stiffened plate with reference to Fig. 2. The displacement
vectors, 𝒅, and 𝒅′, are expanded by including 𝜃z drilling DOF. The local
and global mid-plane displacement vectors with six DOFs are presented
as

𝒅 = {𝑢0 𝑣0 𝑤0 𝜃x 𝜃y 𝜃z}T, (34)

𝒅′ = {𝑢′0 𝑣′0 𝑤′
0 𝜃′x 𝜃′y 𝜃′z}

T. (35)

In Fig. 2, the depth of the stiffener is denoted by 𝑑s. An orthogonal
transformation matrix,  , (see, [65]) for an element with six DOFs per
node is developed with reference to Fig. 2, and is given by

𝒅e =  𝒅′
e. (36)

The elemental matrices and vectors in Eqs. (28)–(33) are taken to
develop the transformed elemental stiffness, geometric stiffness, mass
and damping matrices; and the transformed elemental external load,
and thermal force vectors, as

𝑲 ′
e =  T𝑲e ,

𝑲 ′
Ge =  T𝑲Ge ,

𝑴 ′
e =  T𝑴e ,

𝑪 ′
e =  T𝑪e ,

𝑷 ′
e (𝑡) =  T𝑷e(𝑡),

𝑷 ′
Ne =  T𝑷Ne.

(37)

Prior to the transformation in Eq. (37), 𝜃z drilling DOF is inserted into
each node of the element by expanding 40 × 40 elemental matrices
to 48 × 48. The off-diagonal terms of the expanded elemental matrices
corresponding to 𝜃z drilling DOF are considered as zero, however a very
small positive value is inserted into the corresponding leading diagonal
terms of the elemental stiffness and mass matrices to avoid numerical
instability [69]. The inserted positive value of the leading diagonal is
assumed as 105 times smaller than the smallest leading diagonal terms.
Furthermore, the 40 × 1 elemental load vector is also enlarged to 48 × 1
by inserting zeros in the corresponding 𝜃z positions.

Elemental matrices of the plate and stiffeners are assembled after
implementing proper transformation to develop the global stiffness
matrix, 𝑲 ′; the global geometric stiffness matrix, 𝑮e′ ; the global damp-
ing matrix, 𝑪 ′; the global mass matrix, 𝑴 ′; the global external load
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vector, 𝑷 ′(𝒕); and the global thermal force vector, 𝑷 ′
N, for the stiffened

laminated composite plates. Therefore, the governing equation of the
unstiffened and stiffened laminated composite plates in a thermal
environment is expressed by
[
𝑲 ′+𝑲 ′

G

]
𝒅′(𝑡)+𝑪 ′𝒅̇′(𝑡)+𝑴 ′𝒅′(𝑡)=𝑷 ′(𝑡). (38)

The development of the global damping matrix (𝑪 ′) is illustrated in the
subsequent sections.

2.4. Viscoelastic damping formulation of composite materials

The viscoelastic damping (VED) model is adopted to formulate the
mechanism for energy dissipation from the laminate during vibration.
The basic idea of the VED model is to approximate the energy dissipa-
tion from the composite laminate by knowing the elastic and damping
properties of the unidirectional lamina. The temperature-dependent
elastic moduli and damping parameters of the unidirectional lamina are
evaluated experimentally. According to the VED model, stress, 𝜎, and
strain, 𝜀, are harmonically time dependent at a frequency, 𝜔 (rad/s), as

𝜎(𝑡) = 𝜎0ei𝜔t,

𝜀(𝑡) = 𝜀0ei𝜔t.
(39)

A linear viscoelastic constitutive relationship is developed with con-
sideration that the stress state at a time, 𝑡, is a superposition of stress
steps from all the strain changes at all times, 𝜏, before 𝑡, and is
mathematically presented as [70,71]

𝜎(𝑡) = ∫
𝑡

−∞
ℎ(𝑡 − 𝜏)d𝜀(𝜏), (40)

where ℎ(𝑡) is the relaxation modulus. The constitutive relationship of
the isotropic linear viscoelastic material is written as

𝜎(𝜔) = 𝐸∗(𝜔)𝜀(𝜔). (41)

Here, 𝐸∗(𝜔) is the complex elastic modulus which accounted for the
energy dissipation under hermonic vibration and is written as

𝐸∗(𝜔) = 𝐸(𝜔) + i𝐸′(𝜔), (42)

in which the real part, 𝐸(𝜔), is termed as the storage modulus, and the
imaginary part, 𝐸′(𝜔), is termed as the loss modulus. The ratio between
the loss and storage moduli is defined as the loss factor, 𝜂. Accordingly,
the complex elastic modulus, 𝐸∗(𝜔), is shown as

𝐸∗(𝜔) = 𝐸(𝜔)
(
1 + i𝜂(𝜔)

)
. (43)

Now, the frequency-independent complex elastic moduli of the com-
posite lamina are represented in lamina coordinate (1, 2, 3) system as

𝐸∗
11 = 𝐸11(1 + i𝜂11), 𝐸∗

22 = 𝐸22(1 + i𝜂22), 𝐺∗
12 = 𝐺12(1 + i𝜂12), (44)

where 𝜂11, 𝜂22, and 𝜂12 are the damping loss factors along the longitu-
dinal, transverse, and shear directions of the composite lamina, respec-
tively. These loss factors of the composite lamina can be determined
experimentally using the dynamic mechanical analysis (DMA) [43] and
inverse methods [44,72,73].

2.5. Modal damping in composite plates

In this section, the modal damping values of the laminated com-
posite plates are evaluated from the free vibration analysis without
considering the damping matrix, 𝑪 ′. As, the laminated composite plates
are lightly damped structures, ignoring the damping matrix (𝑪 ′) does
not have significant influence on the calculated modal damping values.
The global complex stiffness matrix, 𝑲 ′∗, and the global complex
geometric stiffness matrix, 𝑲 ′∗

G , of the laminated composite plates are
determined by considering complex elastic moduli (cf. Eq. (44)) of the

composite lamina. Hence, the equation of the free vibration of the
laminated composite plates, by considering viscoelastic properties of
the composite lamina, in thermal environment is written as[
𝑲 ′∗+𝑲 ′∗

G

]
𝒅′(𝑡)+𝑴 ′𝒅′(𝑡)= 0. (45)

The general solution of Eq. (45) is assumed as 𝒅′(𝒕) = 𝝓∗
mei𝜔

∗
dmt, in which

𝝓∗
m and 𝜔∗

dm (i.e., 2𝜋𝑓 ∗
dm) are the 𝑚th complex eigenmode and complex

damped eigenfrequency in rad/s, respectively, and are obtained by the
complex eigenvalue solution. The complex damped eigenfrequencies,
𝑓 ∗

dm, is expressed as [30,74]

𝑓 ∗
dm = 𝑓dm

√
(1 + i𝜂m), (46)

where 𝑓dm is the damped eigenfrequencies in Hz, and 𝜂m is the modal
loss factors of laminated composite plates. The modal loss factors (𝜂m)
are represented as

𝜂m =
Im(𝑓 ∗2

dm)

Re(𝑓 ∗2
dm)

. (47)

The modal SDCs, 𝛹m, for the unstiffened and stiffened laminated com-
posite plates are calculated from the modal loss factors, 𝜂m, using the
relation 𝛹m = 2𝜋𝜂m. Further, the modal damping ratios, 𝜉m, relate with
the modal loss factors (𝜂m) as 𝜉m = 𝜂m

2 .

2.6. Damping matrix for composite plates

For the lightly damped structure with well-spaced eigenfrequencies,
the damping matrix (𝑪 ′) can be developed using the definition of
Rayleigh damping, i.e., stiffness and mass proportional damping. The
Rayleigh damping matrix (𝑪 ′

Rayleigh) is expressed as a linear combina-
tion of the stiffness and mass matrices with coefficients 𝑎 and 𝑏, as

𝑪 ′
Rayleigh = 𝑎

[
𝑲 ′+𝑲 ′

G

]
+ 𝑏𝑴 ′. (48)

The coefficients, 𝑎 and 𝑏, are evaluated by fitting two sets of modal
data, as
𝑎 + 𝑏𝜔2

d1 = 2𝜉1𝜔d1,
𝑎 + 𝑏𝜔2

d2 = 2𝜉2𝜔d2.
(49)

A set of modal data includes modal damped eigenfrequencies and
modal damping ratios. Generally, the data from the first two modes
is considered to calculate the coefficients, 𝑎 and 𝑏, and subsequently
the Rayleigh damping matrix, 𝑪 ′

Rayleigh is developed using Eq. (48).
However, for structures with complex geometry, the first two modes
are not enough to correctly estimate the damping matrix [57]. In these
cases, the damping matrix can be determined by considering data from
sufficient numbers of modes. A modal expansion approach, as suggested
in [52], is implemented to develop the damping matrix (𝑪 ′

ModalExp) by
considering the initial 𝑁c numbers of modes in the form of

𝑪 ′
ModalExp =

𝑁c∑
𝑚=1

𝑴 ′𝝓m
2𝜉m𝜔dm

𝜇m
𝝓T

m𝑴 ′, (50)

where 𝜇m is 𝑚th modal mass of the vibrating plate. Hence, the global
damping matrix (𝑪 ′) of the unstiffened and stiffened laminated com-
posite plates is estimated either using the Rayleigh damping matrix
(𝑪 ′

Rayleigh) or the modal expansion damping matrix, 𝑪 ′
ModalExp.

2.7. Governing equation of motion

The governing equations of motion of the unstiffened and stiff-
ened laminated composite plates subjected to the dynamic loading in
thermal environment with inherent viscoelastic damping properties are
expressed as[
𝑲 ′+𝑲 ′

G

]
𝒅′(𝑡)+𝑪 ′𝒅̇′(𝑡)+𝑴 ′𝒅′(𝑡)=𝑷 ′(𝑡). (51)

The equations of motion in Eq. (51) are solved numerically in the
time domain using the Newmark’s integration method using average
acceleration approach.
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3. Solution algorithm

A two-stage solution algorithm is used to analyze the damped
dynamic response of the unstiffened and stiffened laminated com-
posite plates in a thermal environment considering the temperature-
dependent elastic and damping properties. In the first stage, the initial
stress-resultant vector, 𝑭 i, is evaluated due to the uniform variation
in temperature in the entire laminate. The initial static displacement
vector, 𝒅′i, is derived by solving the equation of static deflection, as

𝑲 ′𝒅′i = 𝑷 ′
N. (52)

By using Eq. (24), the initial strain vector (𝜺∗i) is calculated from
the nodal initial elemental displacement vector, 𝒅′i

e. The initial stress-
resultant vector (𝑭 i) is calculated from

𝑭 i = 𝑫𝜺∗i − 𝑭N, (53)

and is used to develop the initial-stress stiffness matrix, 𝑺r, which is
subsequently used to develop the global geometric stiffness matrix, 𝑲 ′

G.
The damped dynamic response for the unstiffened and stiffened

laminated composite plates in terms of deflection is evaluated in sec-
ond stage of the solution procedure. The global complex stiffness
matrix (𝑲 ′∗) and the global complex geometric stiffness matrix (𝑲 ′∗

G )
are calculated by considering elastic moduli and loss factors of the
composite lamina. The modal loss factors (𝜂m) are determined from
complex eigenvalue solution, and these modal loss factors (𝜂m) are
used to determine the global damping matrix, 𝑪 ′. A comparative study
of the dynamic deflection using the two kinds of damping matrices,
i.e., 𝑪 ′

Rayleigh and 𝑪 ′
ModalExp, was conducted further to identify the best

suitable damping matrix. The underlying step-by-step procedure in
obtaining the solution is described here.
Algorithm 1: The damped dynamic response for the un-
stiffened and stiffened laminated composite plates in thermal
environment.
1 Develop the global complex stiffness matrix, 𝑲 ′∗; the global complex

geometric stiffness matrix, 𝑲 ′∗
G ; the global mass matrix, 𝑴 ′; and the

global load vector, 𝑷 ′(𝒕), of the unstiffened and stiffened laminated
composite plate at a predefined temperature, cf. Eq. (37);

2 Determine the complex eigenfrequencies, 𝑓 ∗
m, and the complex mode

shapes, 𝜙∗
m, of the unstiffened and stiffened laminated composite

plates in thermal environment via complex eigenvalue solution of
Eq. (45);

3 Determine the modal loss factors, 𝜂m, cf. Eq. (47);
4 Develop the global damping matrix (𝑪 ′) based on either by the

Rayleigh damping (𝑪 ′
Rayleigh) (cf. Eq. (48)); or by the modal

expansion damping matrix (𝑪 ′
ModalExp) (cf. Eq. (50));

5 Evaluate the damped dynamic response of the unstiffened and
stiffened laminated composite plates due to the dynamic loading with
inherent damping in thermal environment, via Newmark’s integration
technique of average acceleration cf. Eq. (51).

Additionally, a detailed flowchart of the algorithm is presented in
Fig. 3.

4. Numerical studies

The damped dynamic response for the unstiffened and stiffened
laminated composite plates subjected to the pulse loading is evaluated
using the temperature-dependent elastic and damping properties of
IM7-PEEK composite, and presented in this section. A 2-mm thick
unstiffened Plate 1 and stiffened Plates 2 and 3 with a centrally placed
stiffener in the longer and shorter directions, respectively are taken for
the analysis with the simply-supported boundary condition at all four
edges. The geometry of the unstiffened Plate 1 and the stiffened Plates 2
and 3 is shown in Fig. 4, and the points for maximum deflection of the
plates are 𝑈𝑃1 , 𝑈𝑃2 , and 𝑈𝑃3 , respectively as shown in the figures. The
transient response of Plates 1, 2, and 3 is calculated at these nodes.

Table 1
Elastic moduli and damping properties of IM7-PEEK lamina at various temperatures,
cf. [43,75].

Elastic moduli Temperature

0 ◦C 25 ◦C 50 ◦C 75 ◦C 100 ◦C 125 ◦C

𝐸11 (GPa) 159.4 160.9 160.3 159.7 159.1 158.6
𝐸22 (GPa) 9.7 9.7 9.3 8.9 8.6 8.2
𝐺12 (GPa) 7.7 7.7 7.1 6.6 6.0 5.4
𝜈12 (-) 0.290 0.289 0.286 0.282 0.279 0.275
𝜂11 (%) 0.45 0.51 0.55 0.65 0.72 0.70
𝜂22 (%) 0.75 0.73 0.81 0.91 1.01 1.26
𝜂22 (%) 1.05 1.01 1.09 1.43 1.48 1.49

𝐺13 = 𝐺12, 𝐺23 = 0.5𝐺12, 𝜈21 = 𝜈12
𝐸22
𝐸11

.

Table 2
dNDFs, 𝜆dm, and modal SDCs, 𝛹m, of 2-mm thick unstiffened IM7-PEEK composite
Plate 1 with the simply-supported boundary condition at all four edges in thermal
environment.

Lamina
sequence

Mode, 0 ◦C 25 ◦C 75 ◦C 125 ◦C

𝑚 𝜆dm 𝛹m 𝜆dm 𝛹m 𝜆dm 𝛹m 𝜆dm 𝛹m

0◦∕90◦∕
90◦∕0◦

1 19.84 3.91 17.57 3.97 12.22 4.75 – –
2 49.20 3.39 47.66 3.60 43.65 4.81 – –
3 50.86 3.77 48.30 3.88 45.58 4.52 – –
4 72.26 3.85 70.02 4.00 66.34 5.13 – –

45◦∕− 45◦∕
−45◦∕45◦

1 25.90 3.33 22.07 3.67 18.30 4.61 13.59 2.11
2 46.22 3.38 40.10 3.81 36.74 4.84 33.02 4.21
3 71.76 3.42 72.36 3.54 70.74 4.51 69.09 4.66
4 74.54 3.50 77.09 3.66 75.33 4.64 73.47 4.67

𝜆dm = 2𝜋𝑓dm𝐿2(𝜌∕𝐸22ℎ2)1/2.

The dimension of the plan area for all plates is (150 × 100 × 2)mm3,
and a uniformly distributed pulse loading, 𝑞(𝑡) = 0.001 N/mm2 is
applied over the plate surface for a duration of 𝑡d, along the normal
to the plate surface. The depth of the stiffener is represented by 𝑑s.
The temperature-dependent elastic properties of IM7-PEEK compos-
ite plate were experimentally evaluated and reported by Rawal and
Misra [75], and are taken to determine the elastic properties at 25 ◦C
interval by linear interpolation, and are presented in Table 1. The
temperature-dependent damping properties of the IM7-PEEK lamina
are also illustrated in Table 1, and adopted from [43] by linear in-
terpolation at 25 ◦C interval. The density of the IM7-PEEK composite
is 1.578 × 10-6 kg/mm3. The CTE of the IM7-PEEK lamina are 𝛼1 =
−0.126 × 10-6 ∕◦C and 𝛼2 = 31.3 × 10-6 ∕◦C [75].

4.1. Modal damping values for the unstiffened and stiffened plates

The modal damping values of the IM7-PEEK laminated composite
Plates 1, 2, and 3 in the thermal environment are calculated in this
section in terms of modal SDCs, 𝛹m. The depth of the stiffener (𝑑s)
for the stiffened plate is taken as 12 mm. The temperature-dependent
elastic and damping properties of the IM7-PEEK composite laminate, as
shown in Table 1, are considered for the analysis. In this analysis, the
simply-supported boundary condition (cf. Fig. 5) at all four edges is
implemented. The first four modal data sets in terms of damped NDFs
(dNDFs), 𝜆dm, and modal SDCs, 𝛹m, are calculated for the unstiffened
Plate 1 and stiffened Plates 2 and 3 with the lamina sequences of
0◦∕90◦∕90◦∕0◦ and 45◦∕ − 45◦∕ − 45◦∕45◦. The modal data sets are
calculated at different temperatures such as 0 ◦C, 25 ◦C, 75 ◦C, and
125 ◦C, and presented in Tables 2, 3, and 4 for the Plates 1, 2,
and 3, respectively. It is observed from Tables 2, 3, and 4 that the
dNDFs (𝜆m) decrease as expected with the increment in the temper-
ature due to degradation in the elastic properties with the rise in the
temperature. The modal SDCs (𝛹m) for the unstiffened and stiffened
laminated composite plates for a particular mode are varied nonlinearly
with the increment in temperature. It is difficult to distinguish the
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Fig. 3. Flowchart of the Algorithm 1 to evaluate the damped dynamic response of the unstiffened and stiffened laminated composite plates in thermal environment.

Fig. 4. Geometry of the unstiffened Plate 1 and stiffened Plates 2 and 3, by showing the nodes, 𝑈𝑃1
, 𝑈𝑃2

, and 𝑈𝑃3
, respectively where dynamic response is evaluated.

damping efficiency for the unstiffened Plate 1, and stiffened Plates 2
and 3 by observing the modal SDCs (𝛹m) at different temperatures.
Further, the modal SDCs (𝛹m) are varied nonlinearly with the incre-
ment in the mode number. To evaluate the damping performance,
one needs to study the damped dynamic response for the unstiffened
and stiffened laminated composite plates at different temperatures.
The corresponding damped dynamic analysis is presented in the next
sections.

4.2. Selection of damping model

The damped dynamic deflection (𝑤) of the Plates 1, 2, and 3 made-
up of IM7-PEEK 45◦∕−45◦∕−45◦∕45◦ laminate is shown in Figs. 6, 7, and
8, respectively at 25 ◦C and 75 ◦C temperatures. The damped dynamic
deflection (𝑤) of the plates subjected to the uniformly distributed pulse
loading, 𝑞(𝑡) = 0.001 N/mm2, for a duration of 𝑡d = 0.003 s is evaluated.
The damping matrix is calculated using the Rayleigh damping approach
considering the first two modal data sets and the modal expansion

damping considering the initial 20 and 200 modal data sets. The modal
data set includes damped eigenfrequencies and modal damping values.

The damped dynamic deflection (𝑤) for the unstiffened Plate 1 at
25 ◦C and 75 ◦C temperatures, as calculated by the Rayleigh damping
matrix, and the modal expansion damping using the modal data sets of
initial 𝑁c = 20 and 𝑁c = 200 modes, is shown in Fig. 6. These damped
response for the unstiffened Plate 1 at the specified temperatures are
in good agreement, which indicates that the global damping matri-
ces calculated using 𝑪 ′

Rayleigh and 𝑪 ′
ModalExp can predict the damped

dynamic response for the unstiffened plate in thermal environment
with sufficient accuracy. A similar response is evaluated and shown in
Fig. 7 for the stiffened Plate 2 with stiffener oriented parallel to the
longer edge, and held at 25 ◦C and 75 ◦C temperatures. It is observed
from Fig. 7 that the damped dynamic deflections (𝑤) are quite well
in agreement at room temperature, i.e., 25 ◦C; however, the damped
dynamic deflection (𝑤) calculated by using the Rayleigh damping at
75 ◦C temperature become unbounded in the delayed time domain. The
damped dynamic response for the stiffened Plate 2, as calculated by the
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Fig. 5. Top view of a typical stiffened plate showing the simply-supported boundary
condition at 𝑥′ = 0 and 𝐿, and 𝑦′ = 0 and 𝑊 .

Table 3
dNDFs, 𝜆dm, and modal SDCs, 𝛹m, of 2-mm thick stiffened IM7-PEEK composite Plate 2
with the simply-supported boundary condition at all four edges in thermal environment.

Lamina
sequence

Mode, 0 ◦C 25 ◦C 75 ◦C 125 ◦C

𝑚 𝜆dm 𝛹m 𝜆dm 𝛹m 𝜆dm 𝛹m 𝜆dm 𝛹m

0◦∕90◦∕
90◦∕0◦

1 51.26 3.83 48.27 3.93 42.45 4.90 35.55 4.02
2 53.74 4.35 52.70 4.42 50.79 5.94 48.29 6.27
3 73.94 3.92 71.52 4.07 67.37 5.26 62.64 5.07
4 85.53 3.94 83.89 4.07 81.57 5.27 78.85 5.48

45◦∕− 45◦∕
−45◦∕45◦

1 56.67 4.51 55.91 4.60 54.44 6.30 52.24 6.60
2 71.50 3.48 69.50 3.68 66.83 4.66 63.90 4.51
3 97.94 3.46 96.22 3.68 94.72 4.71 92.94 4.92
4 104.14 3.86 103.03 4.03 102.15 5.30 100.66 5.62

𝜆dm = 2𝜋𝑓dm𝐿2(𝜌∕𝐸22ℎ2)1/2.

modal expansion damping considering modal contribution of 𝑁c = 20
and 𝑁c = 200 numbers of modes, do remain stable and match with
sufficient accuracy. The unbounded damped dynamic response which
is calculated by the Rayleigh damping matrix (𝑪 ′

Rayleigh) considering the
first two modal data sets arises due to the existence of the negative term
in the leading diagonal of the Rayleigh damping matrix, 𝑪 ′

Rayleigh. The
selection of the modes is important while calculating the coefficients 𝑎
and 𝑏 for the Rayleigh damping matrix (𝑪 ′

Rayleigh) so that coefficients
𝑎 and 𝑏 remain positive and the corresponding Rayleigh damping
matrix become positive semi-definite. The modal data sets of the first
fundamental mode and a dominant mode can be used for evaluating
coefficients 𝑎 and 𝑏 which would fulfill the criteria of the non-negativity
of the coefficients 𝑎 and 𝑏, and development of positive semi-definite
Rayleigh damping matrix, 𝑪 ′

Rayleigh. For structures with complex geom-
etry such as stiffened plates, in thermal environment, first and second
modes are always not suitable to evaluate the positive semi-definite
Rayleigh damping matrix, 𝑪 ′

Rayleigh. In Fig. 9, the damped dynamic
deflection (𝑤) for the stiffened Plate 2 at 75 ◦C temperature is evaluated
by using the Rayleigh damping matrix (𝑪 ′

Rayleigh) by considering the
first and third modal data sets, and found in a good agreement with
that of the damped response obtained by the modal expansion damping
matrix, 𝑪 ′

ModalExp. In this case, the third mode is the second dominant
mode. Therefore, it is important to identify the dominant modes of the
dynamic system for proper implementation of the Rayleigh damping
for the structures with complex geometry in thermal environment.

Further, the damped dynamic deflection (𝑤) for the stiffened Plate
3 with a stiffener oriented parallel to the shorter edge is presented in
Fig. 8. In this figure, the three responses are seen to be matching well
at room temperature (i.e., 25 ◦C) and higher temperature (i.e., 75 ◦C)
regimes. Therefore, it can be summarized that the damped dynamic
deflection (𝑤) for the stiffened laminated composite plates in ther-
mal environment can be evaluated with sufficient accuracy by using
the Rayleigh damping matrix (𝑪 ′

Rayleigh) considering judicial selection

Table 4
dNDFs, 𝜆dm, and modal SDCs, 𝛹m, of 2-mm thick stiffened IM7-PEEK composite Plate 3
with the simply-supported boundary condition at all four edges in thermal environment.

Lamina
sequence

Mode, 0 ◦C 25 ◦C 75 ◦C 125 ◦C

𝑚 𝜆dm 𝛹m 𝜆dm 𝛹m 𝜆dm 𝛹m 𝜆dm 𝛹m

0◦∕90◦∕
90◦∕0◦

1 49.87 3.43 48.21 3.64 45.86 4.59 43.32 4.13
2 61.79 3.90 60.84 4.07 59.83 5.46 58.26 5.70
3 74.00 3.87 71.74 4.02 68.14 5.18 64.10 5.07
4 87.01 3.78 85.23 3.96 82.94 5.14 80.22 5.23

45◦∕− 45◦∕
−45◦∕45◦

1 50.97 3.27 49.36 3.49 47.30 4.34 45.14 4.16
2 55.27 3.53 53.96 3.72 52.35 4.74 50.58 4.76
3 94.54 3.57 92.74 3.76 90.81 4.79 88.64 5.02
4 94.79 3.60 93.19 3.80 91.68 4.92 89.81 5.21

𝜆dm = 2𝜋𝑓dm𝐿2(𝜌∕𝐸22ℎ2)1/2.

of the modal data sets and the modal expansion damping matrix
(𝑪 ′

ModalExp) considering sufficient numbers of modal data sets.
It is also observed that the prediction of the damped dynamic

deflections (𝑤) for the unstiffened and stiffened IM7-PEEK laminated
composite plates in thermal environment using the modal expansion
damping matrix (𝑪 ′

ModalExp) considering the first 20 modal data sets and
the first 200 modal data sets show a good correlation. Therefore, by
considering the accuracy and numerical efficiency, the modal expan-
sion damping matrix (𝑪 ′

ModalExp) with modal contribution 𝑁c = 20 is
adopted to develop the global damping matrix (𝑪 ′) and implemented
in the later part of this paper to evaluate the damped dynamic response
for the unstiffened and stiffened laminated composite plates in thermal
environment.

4.3. Calculation of the logarithmic decrement

The damped dynamic response for the unstiffened Plate 1 and
stiffened Plates 2 and 3 is evaluated at nodes 𝑈𝑃1 , 𝑈𝑃2 , and 𝑈𝑃3 ,
respectively to evaluate the inherent damping performance of the IM7-
PEEK laminated composite plates at various thermal environments. The
displacement-based approach based on calculation of the logarithmic
decrement, 𝛿, is implemented to evaluate the damping performance.
The rate of oscillation decay of the damped dynamic deflection under
the free vibration condition is measured using logarithmic decrement,
𝛿, as

𝛿 = 1
𝑗
ln

(
𝑤ini
𝑤ini+j

)
. (54)

Here, decay in the amplitude for 𝑗 oscillations apart from 𝑤ini to
𝑤ini+j is represented by the logarithmic decrement, 𝛿. The logarithmic
decrement for the pulse loading is expressed as

𝛿p = 1
𝑗
ln

(
𝑤ini −𝑤s
𝑤ini+j −𝑤s

)
, (55)

where 𝑤s denotes the static deflection subjected to the pulse loading.
The upper and lower envelope curves, 𝑤up and 𝑤lp, represent the dy-
namic decay of the maximum and minimum amplitudes of the damped
dynamic deflection (𝑤) subjected to the pulse loading, and the equa-
tions of the corresponding curves are obtained by fitting the maximum
and minimum amplitudes of the damped dynamic deflection (𝑤) by
linear regression. For the damped dynamic deflection of the laminated
composite plate at a specific temperature, 𝑤up = 𝑤s +𝑤0u exp (−𝜉up𝜔1𝑡)
where parameters 𝑤0u and the damping ratio (𝜉up) of the maximum
amplitude of the damped dynamic deflection are evaluated by the
linear regression. The logarithmic decrement (𝛿up) of the maximum
amplitude of the damped dynamic deflection is evaluated from the
identified damping ratio (𝜉up) using the relationship

𝛿up =
2𝜋𝜉up√
(1 − 𝜉2

up)
. (56)
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Fig. 6. Damped dynamic response (𝑤) of 45◦∕ − 45◦∕ − 45◦∕45◦ IM7-PEEK unstiffened laminated composite Plate 1 at 25 ◦C and 75 ◦C temperatures.

Fig. 7. Damped dynamic response (𝑤) of 45◦∕ − 45◦∕ − 45◦∕45◦ IM7-PEEK stiffened laminated composite Plate 2 at 25 ◦C and 75 ◦C temperatures.

Fig. 8. Damped dynamic response (𝑤) of 45◦∕ − 45◦∕ − 45◦∕45◦ IM7-PEEK stiffened laminated composite Plate 3 at 25 ◦C and 75 ◦C temperatures.

Fig. 9. Damped dynamic response (𝑤) of 45◦∕ − 45◦∕ − 45◦∕45◦ IM7-PEEK stiffened
laminated composite Plate 2 at 75 ◦C temperature, where Rayleigh damping is
calculated based on 1st and 3rd modal data.

Similarly, the equation of the lower envelope curve, 𝑤lp = 𝑤s +
𝑤0l exp (−𝜉lp𝜔1𝑡), representing the dynamic decay of the minimum am-
plitude of the damped dynamic deflection (𝑤) and the corresponding

logarithmic decrement, 𝛿lp, is determined. The logarithmic decrements,
𝛿up and 𝛿lp, are considered to measure the equivalent decay of the
maximum and minimum amplitudes of the damped dynamic deflection
(𝑤), respectively of the laminated composite plate subjected to the
pulse loading due to the inherent damping.

The best fitted upper and lower envelope curves of the dynamic de-
cay of the maximum and minimum amplitudes of the damped dynamic
deflection (𝑤) for the unstiffened Plate 1 and stiffened Plates 2 and 3 are
evaluated at the specified nodes (cf. Fig. 4) at 75 ◦C temperature and
shown in Fig. 10. The IM7-PEEK laminated composite plate with 45◦∕−
45◦∕ − 45◦∕45◦ lamina sequence is used for the analysis. The damped
dynamic deflection (𝑤) for the unstiffened and stiffened laminated
composite plates subjected to the uniformly distributed pulse loading,
𝑞(𝑡) = 0.001 N/mm2, is determined for a duration of 𝑡d = 0.05 s. It is
observed from Fig. 10 that the upper and lower envelop curves, 𝑤up and
𝑤lp, are fitted with sufficient accuracy to represent the equivalent decay
in the maximum and minimum amplitudes of the damped dynamic
deflection (𝑤) and the equations of the developed envelop curves are
also shown therein. Due to the activation of the higher order modes,
a nominal variation in the maximum and minimum amplitudes of
the damped dynamic deflection (𝑤) and the fitted upper and lower
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Fig. 10. Upper and lower envelops of the logarithmic decrements, 𝛿up and 𝛿lp, of 45◦∕ − 45◦∕ − 45◦∕45◦ IM7-PEEK unstiffened Plate 1 and stiffened Plates 2 and 3 with the
simply-supported boundary condition at all four edges at 75 ◦C temperature subjected to the pulse loading.

envelope curves of the dynamic decay is observed initially in time
domain.

The logarithmic decrements, 𝛿up and 𝛿lp, of the maximum and
minimum amplitudes of the damped dynamic deflection (𝑤) are also
calculated from the evaluated damping ratios, 𝜉up and 𝜉lp, respectively.
The corresponding logarithmic decrements, 𝛿up and 𝛿lp, for the unstiff-
ened Plate 1 are 0.107 and 0.108. Furthermore, 𝛿up for the stiffened
Plates 2 and 3 are 0.198 and 0.152, respectively, and 𝛿lp for these
plates are 0.199 and 0.152, respectively. Because of presenting the
higher values of 𝛿up and 𝛿lp, the stiffened Plates 2 exhibits better
damping performance than the unstiffened Plate 1 and stiffened Plate 3
at 75 ◦C temperature using 45◦∕−45◦∕−45◦∕45◦ laminate as is evident
from the figure. Therefore, the calculated logarithmic decrements, 𝛿up
and 𝛿lp, can be used to determine the damping performance of the
unstiffened and stiffened laminated composite plates in various thermal
environments.

4.4. Damped dynamic response of the unstiffened and stiffened composite
plates in thermal environment

The damped dynamic response of the unstiffened and stiffened
IM7-PEEK laminated composite plates is evaluated at different temper-
atures. The modal expansion damping matrix (𝑪 ′

ModalExp) considering
𝑁c = 20 modal contribution is used to calculate the global damping
matrix, 𝑪 ′. The damped dynamic deflection (𝑤) for the unstiffened and
stiffened laminated composite plates is calculated in the time domain
between 0 s to 0.05 s, and the corresponding dynamic response is
evaluated for the time step 𝛥𝑡 = 0.00001 s. The entire plan (surface)
area of the plate is subjected to the uniformly distributed pulse loading,

𝑞(𝑡) = 0.001 N/mm2, for a duration of 𝑡d = 0.05 s. The damped
dynamic deflection (𝑤) for the unstiffened Plate 1 using 0◦∕90◦∕90◦∕0◦,
0◦∕90◦∕0◦∕90◦, 45◦∕ − 45◦∕ − 45◦∕45◦, and 45◦∕ − 45◦∕45◦∕ − 45◦ IM7-
PEEK laminates at 0 ◦C, 25 ◦C, 75 ◦C, 100 ◦C, and 125 ◦C temperatures
is shown in Fig. 11. Similarly, the damped dynamic deflection (𝑤) for
the stiffened Plates 2 and 3 at the specified temperatures is illustrated in
Figs. 12 and 13, respectively. In this study, the logarithmic decrements,
𝛿up and 𝛿lp, as determined in Section 4.3 are used to evaluate the
damping performance of the IM7-PEEK laminated composite plates to
mitigate the dynamic deflection in thermal environment. The loga-
rithmic decrements, 𝛿up and 𝛿lp, quantify the decay of the maximum
and minimum amplitudes of the damped dynamic deflections (𝑤) for
the IM7-PEEK unstiffened and stiffened laminated composite plates
subjected to the pulse loading. However, for the better visibility, upper
and lower envelop curves of the dynamic decay are not shown in
Figs. 11, 12, and 13. It is to be noted that for better suppression of
the dynamic response, the logarithmic decrements, 𝛿up and 𝛿lp, should
be higher.

The logarithmic decrements, 𝛿up and 𝛿lp, for the Plates 1, 2, and
3 with symmetric and antisymmetric cross-ply and angle-ply laminates
are calculated for a temperature range varies from 0 ◦C to 125 ◦C with a
interval of 25 ◦C. The logarithmic decrements, 𝛿up and 𝛿lp, for the Plates
1, 2, and 3 are shown in Tables 5, 6, and 7, respectively. In these tables,
the higher values of 𝛿up and 𝛿lp for a specific laminate are denoted in
bold. Further, the highest values of 𝛿up and 𝛿lp among all the considered
laminates for a particular plate type are identified by the underline ‘ ’.

It is observed from the figures that the amplitude of the dynamic
deflection (𝑤) of the unstiffened and stiffened laminated composite
plates increases with the increment in temperature; however, the am-
plitude of the dynamic deflection (𝑤) decays in the time domain due
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Fig. 11. Damped dynamic response for the unstiffened IM7-PEEK laminated composite Plate 1 at node ‘𝑈𝑃1
’ with the simply-supported boundary condition at all four edges in

thermal environment.

Fig. 12. Damped dynamic response for the IM7-PEEK stiffened laminated composite Plate 2 at node ‘𝑈𝑃2
’ with the simply-supported boundary condition at all four edges in thermal

environment.

to the inherent damping capacity of the IM7-PEEK lamina. It is also
evident that the addition of the stiffener reduces the amplitude of the
dynamic deflection (𝑤) and the corresponding damping performance
is also increased by showing higher rate of decay of the damped
dynamic deflection (𝑤) in the time domain. The damping performance

of the unstiffened and stiffened laminated composite plates at different
temperatures is studied in detailed with reference to the logarithmic
decrements, 𝛿up and 𝛿lp.

It is observed from Fig. 11 that the amplitude of the dynamic
deflection (𝑤) for the unstiffened Plate 1 with 45◦∕ − 45◦∕45◦∕ − 45◦
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Fig. 13. Damped dynamic response for the IM7-PEEK stiffened laminated composite Plate 3 at node ‘𝑈𝑃3
’ with the simply-supported boundary condition at all four edges in thermal

environment.

Table 5
Logarithmic decrements, 𝛿up and 𝛿lp, for the unstiffened Plate 1 using IM7-PEEK cross-
ply and angle-ply laminates with the simply-supported boundary conditions at all four
edges at various temperatures.

Lamina sequences Temperature 𝛿up 𝛿lp

Plate 1

0◦∕90◦∕90◦∕0◦

0 ◦C 𝟎.𝟏𝟑𝟗 𝟎.𝟏𝟒𝟎
25 ◦C 0.125 0.125
50 ◦C 0.101 0.102
75 ◦C 0.102 0.102
100 ◦C 0.050 0.050
125 ◦C – –

0◦∕90◦∕0◦∕90◦

0 ◦C 𝟎.𝟏𝟐𝟎 𝟎.𝟏𝟐𝟎
25 ◦C 0.116 0.116
50 ◦C 0.105 0.106
75 ◦C 0.117 0.117
100 ◦C 0.105 0.104
125 ◦C 0.039 0.039

45◦∕− 45◦∕ − 45◦∕45◦

0 ◦C 𝟎.𝟏𝟏𝟐 𝟎.𝟏𝟏𝟑
25 ◦C 0.103 0.103
50 ◦C 0.103 0.103
75 ◦C 0.107 0.108
100 ◦C 0.098 0.098
125 ◦C 0.048 0.048

45◦∕− 45◦∕45◦∕− 45◦

0 ◦C 0.108 0.108
25 ◦C 0.107 0.107
50 ◦C 0.102 0.102
75 ◦C 𝟎.𝟏𝟎𝟗 𝟎.𝟏𝟎𝟗
100 ◦C 0.103 0.103
125 ◦C 0.061 0.060

laminate shows the least amplitude of the damped dynamic deflection
(𝑤) at all respective temperatures in comparison to the other laminates.
The stiffness of 45◦∕ − 45◦∕45◦∕ − 45◦ laminate is higher than that of
the remaining laminates due to the antisymmetric lamina sequence
and higher shear strength for the angle-ply lamina orientation. The
variation of the logarithmic decrements, 𝛿up and 𝛿lp, for the unstiffened
Plate 1 with various laminates at different temperatures is presented

in Table 5. It is seen from Table 5 that for the unstiffened laminated
composite Plate 1 with 0◦∕90◦∕90◦∕0◦ lamina sequence, the highest
values of logarithmic decrements, 𝛿up and 𝛿lp, are observed at 0 ◦C
temperature among all the considered laminates. However, the unstiff-
ened Plate 1 with 45◦∕ − 45◦∕45◦∕ − 45◦ laminate presents the higher
values of the logarithmic decrements, 𝛿up and 𝛿lp, at a temperature of
75 ◦C. It is revealed from the table that best damping performance of
the unstiffened plate is obtained at the lower temperature, i.e., 0 ◦C.
However, unstiffened Plate 1 with 45◦∕−45◦∕45◦∕−45◦ laminate, having
the highest stiffness, has shown better damping performance at 75 ◦C
temperature. Further, the variation in the dynamic decays of the upper
and lower envelopes is negligible by exhibiting negligible variation
between 𝛿up and 𝛿lp. From these observations, it can be stated that, to
obtain the better damping performance for the unstiffened laminated
composite plates at higher temperature, the stiffness of the plate has to
be increased by adopting a suitable lamina sequence which minimize
the effect of the stiffness loss at the higher temperature due to the
degradation of the material properties of the IM7-PEEK composite.

The addition of the stiffener reduces the magnitude of the dynamic
response for the stiffened Plates 2 and 3, as shown in Figs. 12 and
13, respectively in comparison to the unstiffened Plate 1 at different
temperatures. The results presented in Fig. 12 depict that the stiffened
Plate 2 with 0◦∕90◦∕0◦∕90◦ laminate showed the least amplitude of the
damped dynamic deflection (𝑤) in thermal environment in comparison
to the other laminates. This implies that 0◦∕90◦∕0◦∕90◦ stiffened lam-
inated composite Plate 2 with stiffener oriented parallel to the longer
edge imparts the highest structural stiffness due to antisymmetric lam-
ina sequence. By reviewing Table 6, it is observed that the stiffened
Plate 2 with 45◦∕ − 45◦∕ − 45◦∕45◦ laminate shown the highest value
of the logarithmic decrements, 𝛿up and 𝛿lp, at 100 ◦C temperatures,
thus exhibiting the best damping performance among all the laminates
studied herein, adopting displacement-based approach. Furthermore,
the higher values of the logarithmic decrement, 𝛿up and 𝛿lp, for the
stiffened Plate 2 is observed at 100 ◦C for each laminate, and the
variation of the corresponding values is very nominal.
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Table 6
Logarithmic decrements, 𝛿up and 𝛿lp, for the stiffened Plate 2 using IM7-PEEK cross-
ply and angle-ply laminates with the simply-supported boundary conditions at all four
edges at various temperatures.

Lamina sequences Temperature 𝛿up 𝛿lp

Plate 2

0◦∕90◦∕90◦∕0◦

0 ◦C 0.152 0.152
25 ◦C 0.151 0.151
50 ◦C 0.146 0.146
75 ◦C 0.189 0.188
100 ◦C 𝟎.𝟏𝟗𝟔 𝟎.𝟏𝟗𝟔
125 ◦C 0.186 0.187

0◦∕90◦∕0◦∕90◦

0 ◦C 0.142 0.142
25 ◦C 0.142 0.142
50 ◦C 0.137 0.137
75 ◦C 0.188 0.188
100 ◦C 𝟎.𝟏𝟗𝟕 𝟎.𝟏𝟗𝟖
125 ◦C 0.193 0.193

45◦∕− 45◦∕− 45◦∕45◦

0 ◦C 0.143 0.142
25 ◦C 0.143 0.143
50 ◦C 0.137 0.137
75 ◦C 0.189 0.189
100 ◦C 𝟎.𝟏𝟗𝟖 𝟎.𝟏𝟗𝟗
125 ◦C 0.192 0.192

45◦∕− 45◦∕45◦∕− 45◦

0 ◦C 0.140 0.140
25 ◦C 0.141 0.141
50 ◦C 0.134 0.134
75 ◦C 0.185 0.185
100 ◦C 𝟎.𝟏𝟗𝟒 𝟎.𝟏𝟗𝟒
125 ◦C 0.189 0.186

Table 7
Logarithmic decrements, 𝛿up and 𝛿lp, for the stiffened Plate 3 using the IM7-PEEK cross-
ply and angle-ply laminates with the simply-supported boundary conditions at all four
edges at various temperatures.

Lamina sequences Temperature 𝛿up 𝛿lp

Plate 3

0◦∕90◦∕90◦∕0◦

0 ◦C 0.156 0.156
25 ◦C 0.160 0.160
50 ◦C 0.157 0.156
75 ◦C 0.207 0.204
100 ◦C 𝟎.𝟐𝟏𝟓 𝟎.𝟐𝟏𝟓
125 ◦C 0.200 0.200

0◦∕90◦∕0◦∕90◦

0 ◦C 0.152 0.152
25 ◦C 0.155 0.154
50 ◦C 0.152 0.152
75 ◦C 𝟎.𝟏𝟗𝟎 𝟎.𝟏𝟖𝟗
100 ◦C 0.197 0.197
125 ◦C 0.179 0.178

45◦∕− 45◦∕− 45◦∕45◦

0 ◦C 0.124 0.124
25 ◦C 0.127 0.127
50 ◦C 0.126 0.127
75 ◦C 0.152 0.152
100 ◦C 𝟎.𝟏𝟓𝟖 𝟎.𝟏𝟓𝟖
125 ◦C 0.143 0.143

45◦∕− 45◦∕45◦∕− 45◦

0 ◦C 0.123 0.123
25 ◦C 0.127 0.127
50 ◦C 0.127 0.127
75 ◦C 0.153 0.152
100 ◦C 𝟎.𝟏𝟔𝟎 𝟎.𝟏𝟔𝟎
125 ◦C 0.146 0.146

A comparison of the damped dynamic deflection (𝑤) for the stiff-
ened Plate 3, as shown in Fig. 13, reveals that the stiffened Plate 3 with
0◦∕90◦∕90◦∕0◦ laminate presents the lowest amplitude of the dynamic
deflection (𝑤) at all temperatures, which indicates that the stiffened
Plate 3 with 0◦∕90◦∕90◦∕0◦ laminate presents the highest stiffness. Fur-
thermore, the stiffened Plate 3 with 0◦∕90◦∕90◦∕0◦ laminate represents
the best damping performance at 100 ◦C temperature by showing the
highest values of the logarithmic decrements, 𝛿up and 𝛿lp, among all the
considered laminates.

Evaluating the damping performance based on the displacement-
based approach shows that the stiffened Plate 3 with 0◦∕90◦∕90◦∕0◦

laminate has the highest value of 𝛿up and 𝛿lp at 100 ◦C temperature
which indicates that this plate offers the best damping performance by
suppressing the maximum and minimum damped dynamic deflections
(𝑤) at 100 ◦C. However, the stiffened Plate 2 with stiffener oriented par-
allel to the longer edge offers overall better damping performance for
all the considered laminates at the higher temperature varies between
75 ◦C and 125 ◦C.

It is observed that stiffened plates showed better response reduction
near 100 ◦C temperature, and the corresponding damping performance
of a laminate depends on the orientation of the stiffener for the stiffened
plate. As the addition of the stiffener increases the stiffness of the
composite plates, the stiffened plates offer better damping performance
at 100 ◦C by utilizing the higher damping capacity of the IM7-PEEK
lamina at the higher temperature, whereas the unstiffened plate offers
better damping performance at lower temperature. The logarithmic
decrements, 𝛿up and 𝛿lp, for the stiffened Plates 2 and 3 for a particular
laminate are higher than the corresponding unstiffened Plate 1 at a
specific temperature, which indicates the better damping performance
for the stiffened plates than the corresponding unstiffened plate.

Therefore, it can be stated that a combination of the lamina se-
quences and stiffener orientation which offers the higher stiffness for
the unstiffened and stiffened laminated composite plates at a specific
thermal environment would present the better damping performance
at that temperature. The stiffened plates offer better damping perfor-
mance at the higher temperature than does the unstiffened plates. The
study also indicates that the stiffened plates maximize the damping
performance compared to the unstiffened plates by addition of the
small amount of structural mass at higher temperature.

4.5. Effect of the depth of the stiffener on the dynamic response for stiffened
plates in thermal environment

To investigate the influence of the depth of stiffeners, the damped
dynamic deflection (𝑤) for the stiffened laminated composite Plates 2
and 3 with stiffener depths 8 mm, 12 mm, and 16 mm is evaluated for
the symmetric and antisymmetric cross-ply and angle-ply laminates at
25 ◦C and 100 ◦C temperatures. The damped dynamic deflection (𝑤) for
the stiffened Plates 2 and 3 is illustrated in Figs. 14 and 15, respectively
at 25 ◦C and 100 ◦C temperatures. The rate of decay of the damped
dynamic response for the stiffened laminated composite plates with
the given depths of stiffener is evaluated in terms of the logarithmic
decrements, 𝛿up and 𝛿lp, and presented in Tables 8 and 9. The higher
values of 𝛿up and 𝛿lp for a lamina sequence are shown in bold, and the
corresponding highest values of 𝛿up and 𝛿lp at a specific temperature is
identified by the underline ‘ ’.

Figs. 14 and 15 show that with the increment of the stiffener depth
from 8 mm to 16 mm, the amplitude of the damped dynamic deflec-
tion (𝑤) of the corresponding stiffened plate decreases at a specific
temperature; however, for a given stiffener depth, the corresponding
amplitude increases while temperature is raised from 25 ◦C to 100 ◦C.
The higher values of the logarithmic decrements, 𝛿up and 𝛿lp, are
observed for the stiffened Plate 2 with symmetric and antisymmetric
angle-ply laminates with the 12-mm deep stiffener oriented parallel
to the longer edge at both temperatures. The stiffened Plate 2 with
symmetric and antisymmetric cross-ply laminates showed higher values
of the logarithmic decrements, 𝛿up and 𝛿lp, for the 16-mm deep stiffener
at 100 ◦C temperature. Further, it is observed that stiffened Plate 2
with 0◦∕90◦∕90◦∕0◦ laminate showed the highest values of logarithmic
decrements, 𝛿up and 𝛿lp, at 25 ◦C and 100 ◦C temperatures separately for
the 16-mm deep stiffener, and thus offers the best damping performance
at the stated temperatures.

It is observed from Table 9 that for the stiffened Plate 3 with
antisymmetric cross-ply and angle-ply laminates, the stiffener depth
which shows the higher logarithmic decrements, 𝛿up and 𝛿lp, is var-
ied at 25 ◦C and 100 ◦C temperatures. The stiffened Plate 3 with
45◦∕ − 45◦∕ − 45◦∕45◦ laminate showed better dynamic decrement for
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Fig. 14. Damped dynamic deflection (𝑤) of the IM7-PEEK stiffened laminated composite Plate 2 with the simply-supported boundary condition at all four edges for various depths
of stiffener at 25 ◦C and 100 ◦C temperatures.

8-mm deep stiffener at 25 ◦C and 100 ◦C temperatures by showing
higher values of the logarithmic decrements, 𝛿up and 𝛿lp. The stiffened
Plate 3 with the 16-mm deep stiffener showed the highest values of
the logarithmic decrements, 𝛿up and 𝛿lp, for 0◦∕90◦∕90◦∕0◦ laminate
at both temperatures. The variation of the magnitude of the 𝛿up and
𝛿lp is inconsequential with the variation of the stiffener depth from
12 mm to 16 mm for the stiffened Plate 3 in thermal environment. It
is concluded that increment in the stiffener depths shows a nonlinear
variation of the logarithmic decrement for various lamina sequences in
thermal environment.

Therefore, the displacement-based study indicates that the symmet-
ric cross-ply, i.e., 0◦∕90◦∕90◦∕0◦ laminate showed the best damping
performance to mitigate the dynamic deflection for stiffened plates
with the 16-mm deep stiffener oriented parallel to the longer and
shorter edges at 100 ◦C. The 12-mm deep stiffener with stiffened Plate
2 for symmetric and antisymmetric angle-ply laminates and the 12-
mm deep stiffener with stiffened Plate 3 for antisymmetric angle-ply
laminate showed better dynamic decays in damped dynamic deflection
at 100 ◦C temperature. Thus, selection of optimum depth of the stiffener
to maximize the dynamic decay at a particular temperature is made
based on the lamina sequence and the stiffener orientation.
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Fig. 15. Damped dynamic deflection (𝑤) of IM7-PEEK stiffened laminated composite Plate 3 with the simply-supported boundary condition at all four edges for various depths of
stiffener at 25 ◦C and 100 ◦C temperatures.

4.6. Energy-based damping assessment in thermal environment

An energy-based assessment of the damping performance for the
unstiffened and stiffened laminated composite plates at different tem-
peratures is presented in this section. The damping performance of
the laminated composite plates is evaluated using the energy criteria
considering the global behavior of the laminated composite plates by
accounting the exact amplitude of the dynamic response for each nodes
and contribution of the higher frequency content.

During the damped vibration of the laminated composite plates,

damping energy, 𝐸d, is dissipated at every time instant due to the

viscoelastic behavior of the composite materials, and remaining me-

chanical energy is stored in the structure in the form of interchangeable

strain energy, 𝐸s, and kinetic energy, 𝐸k. The strain energy, 𝐸s, ki-

netic energy, 𝐸k, and damping energy, 𝐸d, are expressed in terms of

structural properties and the time-dependent nodal response of the
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Table 8
Logarithmic decrements, 𝛿up and 𝛿lp, for IM7-PEEK stiffened laminated composite Plate
2 with the simply-supported boundary condition at all four edges for various depths
of stiffener at 25 ◦C and 100 ◦C temperatures.

Lamina sequence Depth of stiffener
𝑑s

𝛿up 𝛿lp

Plate 2,
25 ◦C

0◦∕90◦∕90◦∕0◦
8 mm 0.135 0.134
12 mm 0.151 0.151
16 mm 𝟎.𝟏𝟔𝟕 𝟎.𝟏𝟔𝟖

0◦∕90◦∕0◦∕90◦
8 mm 0.133 0.133
12 mm 𝟎.𝟏𝟒𝟐 𝟎.𝟏𝟒𝟐
16 mm 0.142 0.141

45◦∕− 45◦∕− 45◦∕45◦
8 mm 0.140 0.141
12 mm 𝟎.𝟏𝟒𝟑 𝟎.𝟏𝟒𝟑
16 mm 0.142 0.140

45◦∕− 45◦∕45◦∕− 45◦
8 mm 0.137 0.137
12 mm 𝟎.𝟏𝟒𝟏 𝟎.𝟏𝟒𝟏
16 mm 0.140 0.141

Plate 2,
100 ◦C

0◦∕90◦∕90◦∕0◦
8 mm 0.179 0.179
12 mm 0.196 0.196
16 mm 𝟎.𝟐𝟏𝟖 𝟎.𝟐𝟏𝟓

0◦∕90◦∕0◦∕90◦
8 mm 0.178 0.178
12 mm 0.197 0.198
16 mm 𝟎.𝟐𝟎𝟎 𝟎.𝟏𝟗𝟗

45◦∕− 45◦∕ − 45◦∕45◦
8 mm 0.185 0.185
12 mm 𝟎.𝟏𝟗𝟖 𝟎.𝟏𝟗𝟖
16 mm 0.189 0.187

45◦∕− 45◦∕45◦∕− 45◦
8 mm 0.179 0.179
12 mm 𝟎.𝟏𝟗𝟒 𝟎.𝟏𝟗𝟒
16 mm 0.186 0.186

Table 9
Logarithmic decrements, 𝛿up and 𝛿lp, for IM7-PEEK stiffened laminated composite Plate
3 with the simply-supported boundary condition at all four edges for various depths
of stiffener at 25 ◦C and 100 ◦C temperatures.

Lamina sequence Depth of stiffener
𝑑s

𝛿up 𝛿lp

Plate 3,
25 ◦C

0◦∕90◦∕90◦∕0◦
8 mm 0.147 0.147
12 mm 0.160 0.160
16 mm 𝟎.𝟏𝟔𝟐 𝟎.𝟏𝟔𝟐

0◦∕90◦∕0◦∕90◦
8 mm 0.149 0.150
12 mm 0.155 0.154
16 mm 𝟎.𝟏𝟓𝟓 𝟎.𝟏𝟓𝟒

45◦∕−45◦∕ −45◦∕45◦
8 mm 𝟎.𝟏𝟑𝟓 𝟎.𝟏𝟑𝟓
12 mm 0.127 0.127
16 mm 0.128 0.128

45◦∕− 45◦∕45◦∕− 45◦
8 mm 0.123 0.123
12 mm 0.127 0.127
16 mm 𝟎.𝟏𝟐𝟕 𝟎.𝟏𝟐𝟕

Plate 3,
100 ◦C

0◦∕90◦∕90◦∕0◦
8 mm 0.197 0.198
12 mm 0.215 0.215
16 mm 𝟎.𝟐𝟏𝟔 𝟎.𝟐𝟏𝟔

0◦∕90◦∕0◦∕90◦
8 mm 0.192 0.192
12 mm 𝟎.𝟏𝟗𝟕 𝟎.𝟏𝟗𝟕
16 mm 0.197 0.196

45◦∕−45◦∕ −45◦∕45◦
8 mm 𝟎.𝟏𝟓𝟗 𝟎.𝟏𝟓𝟗
12 mm 0.158 0.158
16 mm 0.157 0.157

45◦∕−45◦∕45◦∕−45◦
8 mm 0.157 0.158
12 mm 𝟎.𝟏𝟔𝟎 𝟎.𝟏𝟔𝟎
16 mm 0.160 0.160

laminated composite plates as

𝐸s(𝑡) = 𝒅′(𝒕)T
[
𝑲 ′+𝑲 ′

G

]
𝒅′(𝒕),

𝐸k(𝑡) = 𝒅̇′(𝒕)T𝑴 ′𝒅̇′(𝑡),

𝐸d(𝑡) =
𝑛𝑡step∑
𝑖=1

d𝒅′(𝒕)T𝑪 ′𝒅̇′(𝒕),

(57)

Fig. 16. Time histories of the energy components for the stiffened laminated composite
Plate 2 with stiffener oriented parallel to the longer edge with 45◦∕ − 45◦∕ − 45◦∕45◦
laminate, subjected to the impulse loading for a duration of 0.00004 s at 25 ◦C
temperature.

where 𝑛𝑡step is the total number of time steps in the dynamic response,
and d𝒅′(𝒕) denotes vector of the change of nodal displacement of
various DOFs at each time step. The total energy, 𝐸T, at each time
instant is presented as the summation of the all energy components

𝐸T(𝑡) = 𝐸s(𝑡) + 𝐸k(𝑡) + 𝐸d(𝑡). (58)

The time history of the energy components for the stiffened laminated
composite Plate 2 with 45◦∕ − 45◦∕ − 45◦∕45◦ laminate is shown in
Fig. 16, at 25 ◦C temperature. A simply-supported boundary condition
at all four edges is considered for the analysis. An impulse loading,
𝑞(𝑡) = 0.001 N/mm2, for a duration of 𝑡d = 0.00004 s is applied,
and the time history of the energy components is shown for 0.05 s in
Fig. 16. The figure shows that the total energy, 𝐸T, remains constant
after removal of the impulse loading, and the damping energy, 𝐸d,
increases with the increment of time. Further, the total mechanical
energy, (𝐸s + 𝐸k), diminishes in the delayed time domain. This figure
validates the energy balance equation.

The time history of the damping energy (𝐸d) for the unstiffened
Plate 1 and the stiffened Plates 2 and 3 subjected to the pulse loading
is shown for 0◦∕90◦∕90◦∕0◦, 0◦∕90◦∕0◦∕90◦, 45◦∕ − 45◦∕ − 45◦∕45◦, and
45◦∕ − 45◦∕45◦∕ − 45◦ laminates at various temperatures in Figs. 17,
18, and 19, respectively. It is observed from Fig. 17 that the damping
energy (𝐸d) for the unstiffened Plate 1 for all considered laminates is
higher at 100 ◦C temperature in the time domain. The time history of
the damping energy (𝐸d) at 125 ◦C temperature for 0◦∕90◦∕0◦∕90◦ and
45◦∕ − 45◦∕ − 45◦∕45◦ laminates is lower than the time history of 𝐸d
at 75 ◦C temperature. The time history of the damping energy (𝐸d) for
the unstiffened Plate 1 with 45◦∕ − 45◦∕45◦∕ − 45◦ laminate at 125 ◦C
is lower in the initial time domain than that of the time history of the
damping energy (𝐸d) at 75 ◦C temperature, and subsequently increases
in the later time domain. The unstiffened Plate 1 with 0◦∕90◦∕90◦∕0◦
laminate shows the higher dissipation of damping energy (𝐸d) at all
respective temperatures.

The time history of the damping energy (𝐸d) for the stiffened
Plates 2 and 3 at 125 ◦C temperature is the higher for all respec-
tive laminates. Further, 0◦∕90◦∕90◦∕0◦ and 0◦∕90◦∕0◦∕90◦ laminates
showed a higher amplitude of damping energy (𝐸d) for the stiffened
Plates 2 and 3, respectively. This indicates that energy dissipation char-
acteristic for the unstiffened and stiffened laminated composite plates
depends on the stiffness of the structural system. However, higher
energy dissipation alone does not indicate better damping performance.
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Fig. 17. Time history of the damping energy, 𝐸d, of IM7-PEEK unstiffened laminated composite Plate 1 subjected to the pulse loading with the simply-supported boundary condition
at all four edges in thermal environment.

Fig. 18. Time history of the damping energy, 𝐸d, of IM7-PEEK stiffened laminated composite Plate 2 subjected to the pulse loading with the simply-supported boundary condition
at all four edges in thermal environment.

The damping performance for the unstiffened and stiffened lami-

nated composite plates at different temperatures is evaluated by deter-

mining damping efficiency, 𝐽 , as

𝐽 =
𝐸td

𝐸ts + 𝐸tk + 𝐸td
, (59)

where 𝐸ts, 𝐸tk, and 𝐸td are the total strain energy, total kinetic energy,
and total damping energy, respectively, which are obtained by integrat-
ing the corresponding time-dependent energy within the limits of the
considered time domain. The damping efficiency (𝐽 ) for the unstiffened
Plate 1 and the stiffened Plates 2 and 3 at various temperatures is
presented in Table 10.
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Fig. 19. Time history of the damping energy, 𝐸d, of IM7-PEEK stiffened laminated composite Plate 3 subjected to the pulse loading with the simply-supported boundary condition
at all four edges in thermal environment.

Table 10
Damping efficiency, 𝐽 , for the IM7-PEEK unstiffened laminated composite Plate 1 and
stiffened laminated composite Plates 2 and 3 with the simply-supported boundary
condition at all four edges at different temperatures.

𝐽 (%)

Temperature → 0 ◦C 25 ◦C 50 ◦C 75 ◦C 100 ◦C 125 ◦C

Lamina sequence ↓

Plate 1

0◦∕90◦∕0◦∕90◦ 𝟐𝟐.𝟖 21.2 18.2 18.1 10.1 –
0◦∕90◦∕90◦∕0◦ 𝟏𝟔.𝟎 15.6 14.6 15.6 14.5 6.7
45◦∕− 45◦∕ − 45◦∕45◦ 𝟐𝟒.𝟔 24.2 23.1 23.7 22.3 13.2
45◦∕− 45◦∕45◦∕− 45◦ 𝟐𝟒.𝟕 24.5 23.8 24.6 23.8 16.5

Plate 2

0◦∕90◦∕90◦∕0◦ 38.1 38.1 37.5 40.2 𝟒𝟎.𝟒 39.8
0◦∕90◦∕0◦∕90◦ 39.7 39.8 39.2 42.0 𝟒𝟐.𝟐 41.8
45◦∕− 45◦∕ − 45◦∕45◦ 39.2 39.3 38.7 41.5 𝟒𝟏.𝟕 41.3
45◦∕− 45◦∕45◦∕− 45◦ 39.1 39.2 38.5 41.4 𝟒𝟏.𝟔 41.1

Plate 3

0◦∕90◦∕90◦∕0◦ 38.4 38.7 38.4 41.0 𝟒𝟏.𝟑 40.7
0◦∕90◦∕0◦∕90◦ 36.0 36.3 36.0 38.4 𝟑𝟖.𝟕 37.5
45◦∕− 45◦∕ − 45◦∕45◦ 36.0 36.4 36.3 38.3 𝟑𝟖.𝟕 37.5
45◦∕− 45◦∕45◦∕− 45◦ 36.1 36.5 36.5 38.5 𝟑𝟗.𝟎 37.9

It is observed from Table 10 that for the unstiffened Plate 1, the
higher value of the damping efficiency (𝐽 ) is obtained at 0 ◦C temper-
ature for all considered laminates. The highest value of the damping
efficiency (𝐽 ) is observed for the unstiffened Plate 1 with 45◦∕ −
45◦∕45◦∕ − 45◦ laminate at 0 ◦C temperature which indicates that the
unstiffened Plate 1 with 45◦∕ − 45◦∕45◦∕ − 45◦ offers best damping
performance at 0 ◦C. However, the best damping performance for the
unstiffened Plate 1 is identified for 0◦∕90◦∕90◦∕0◦ laminate at 0 ◦C
temperature during evaluation of the damping performance using the
displacement-based approach (cf. Table 5) in Section 4.4.

The higher damping efficiency (𝐽 ) for the stiffened Plates 2 and
3 is observed at 100 ◦C temperature which implies the better damp-
ing performance for the stiffened plates at 100 ◦C temperature for
all considered laminates. This observation is also supported by the
displacement-based damping analysis (cf. Tables 6 and 7) in Sec-
tion 4.4. Notably, energy dissipation in unstiffened plates is higher than

that in case of the stiffened plates (cf. Figs. 17, 18, and 19), because the
dissipated energy (cf. Eq. (57)) depends on the displacement. However,
damping performance (𝐽 ), which is a non-dimensional quantity, is
better for the stiffened plates as compared to the unstiffened plates.
The damping matrix is stiffness proportional (cf. Eq. (48) and (50)),
and thus explains the underlying cause of better damping performance
in the stiffened plates. According to the energy-based damping analysis
0◦∕90◦∕0◦∕90◦ laminate exhibits the best damping performance for the
stiffened Plate 2 at 100 ◦C temperature which is in contrast to the best
damping performance of 45◦∕ − 45◦∕ − 45◦∕45◦ laminate, as identified
based on studying the values of the logarithmic decrements, 𝛿up and 𝛿lp.
Furthermore, symmetric cross-ply laminate, i.e., 0◦∕90◦∕90◦∕0◦ showed
the best damping performance at 100 ◦C for the stiffened Plate 3 accord-
ing to both the energy-based and displacement-based damping analysis
approaches. Moreover, the stiffened laminated composite Plate 2 with
0◦∕90◦∕0◦∕90◦ laminate presents the best damping performance among
all considered unstiffened and stiffened plates at 100 ◦C temperature.

The lamina sequence identified for the considered unstiffened and
stiffened plates in terms of the best damping performance in the
displacement-based approach is different from the one identified in
the energy-based approach. It is to be noted that the determination
of the logarithmic decrements is based on the optimally fitted upper
and lower envelope curves of the dynamic decays of the maximum
and minimum amplitudes of the damped dynamic deflection, which
accounted for a nominal approximation error. On the other hand, the
calculation of the damping efficiency is based on the exact displacement
components of all nodes of the laminated composite plates, and no
error due to the approximation existed. Therefore, the energy-based
damping assessment technique emerge as a more robust approach to
quantify the inherent damping performance of the laminated composite
plates, considering the global behavior, in a thermal environment
over the displacement-based approach using logarithmic decrement.
Moreover, the lamina sequence which offers the highest stiffness for
the unstiffened and stiffened laminated composite plates is identified
as offering the best damping performance at a specific temperature
using the energy-based damping assessment criteria appeared as a most
convincing outcome.
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Fig. 20. Influence of the excitation frequency ratio, 𝑓R, on the undamped and damped response for the unstiffened Plate 1 and stiffened Plates 2 and 3 at different temperatures.

4.7. Effect of the excitation frequency ratio

The damping performance of the laminated composite plates is in-
fluenced by the temperature and excitation frequency ratio, 𝑓R. For the
unstiffened Plate 1 and the stiffened Plate 2, the first mode shapes are in
phase and the frequency ratio is considered as 𝑓R = 𝑓ext∕𝑓d1. However,
for the case of the stiffened Plate 3 the first mode shape is out phase and
the second mode shape is in phase, hence the frequency ratio for such
case is considered as 𝑓R = 𝑓ext∕𝑓d2. In this investigation, a sinusoidal
loading of various excitation frequencies, 𝑓ext, having an amplitude of
0.001 N/mm2 is applied. The sinusoidal loading at time instant 𝑡 is
stated as 𝑞(𝑡) = 0.001 sin

(
(2𝜋𝑓ext)𝑡

)
, where 𝑓ext is given in Hz and 𝑡

is given in s. The range of the excitation frequency ratio (𝑓R) used in
this study varies between 0.8–1.2. The laminates which have identified
as exhibiting the best damping performance for the unstiffened and
stiffened plates using the energy-based damping analysis in Section 4.6
are considered in this study.

The effect of the excitation frequency ratio (𝑓R) on the peak dy-
namic deflection (𝑤) for the unstiffened Plate 1 with 45◦∕− 45◦∕45◦∕−
45◦ laminate, the stiffened Plate 2 with 0◦∕90◦∕0◦∕90◦ laminate, and the

stiffened Plate 3 with 0◦∕90◦∕90◦∕0◦ laminate is shown in Fig. 20. The
depth of the stiffener for the stiffened plate is considered as 12 mm. It
is observed from Fig. 20 that the peak dynamic deflection obtained for
the unstiffened Plate 1 is more than that of the stiffened Plates 2 and 3
in thermal environment. For the unstiffened Plate 1, the peak dynamic
deflection (𝑤) at 100 ◦C temperature is sufficiently large near 𝑓R = 1.
On the other hand, a temperature range from 75 ◦C to 100 ◦C gives
better reduction in the peak dynamic deflection near 𝑓R = 1 for the
stiffened Plates 2 and 3. Further, the damped dynamic response mini-
mizes the peak developed in case of the undamped dynamic response
at 0 ◦C and 25 ◦C temperatures near the second eigenfrequency for the
stiffened Plate 2.

5. Conclusions

The damped dynamic response for the unstiffened and stiffened
laminated composite plates has been studied in various thermal envi-
ronments using finite element technique. The first-order shear defor-
mation theory has been implemented in the finite element formulation
to model such plates by incorporating the drilling degree of freedom
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to account six degrees of freedom per node of the plate element. The
uniform variation of temperature in the entire composite plate has
been incorporated into the finite element formulation by developing
the geometric stiffness matrix. The complex modulus approach has
been implemented to calculate the modal damping values based on the
viscoelastic damping principle at various temperatures. The numerical
efficiency of the two damping models, i.e., the Rayleigh damping model
and the modal expansion damping model, has been studied to identify
the best damping formulation for analysis of the stiffened laminated
composite plates in thermal environment. Comparison of the dynamic
decay for the unstiffened and stiffened laminated composite plates at
different temperatures has been carried out for symmetric and antisym-
metric cross-ply and angle-ply laminates by calculating the logarithmic
decrement. Further, the damping performance of the unstiffened and
stiffened laminated composite plates has been evaluated based on the
damping efficiency using energy assessment of the laminated composite
plates. Based on the present study, the following conclusions are drawn:

1. Damped non-dimensional frequencies for the unstiffened and
stiffened IM7-PEEK laminated composite plates decrease with
the increment in temperature. However, the addition of stiffener
increases the damped non-dimensional frequencies of stiffened
plates in comparison to unstiffened plates.

2. The modal damping values of the IM7-PEEK unstiffened and
stiffened laminated composite plates vary nonlinearly with the
increment in temperature and mode.

3. The comparative study of the damped dynamic response, cal-
culated by considering the damping matrix as developed by
using either the Rayleigh damping model or the modal expan-
sion damping, for the stiffened laminated composite plates in
thermal environment shows that the modal expansion damping
can be efficiently used to develop the damping matrix. The
implementation of the modal expansion damping avoids nu-
merical instability in the damped dynamic response over the
implementation of the Rayleigh damping model using the first
two modes.

4. The successful implementation of the Rayleigh damping model
to calculate the damping matrix relies on the identification of
the suitable modes for calculating the Rayleigh damping coef-
ficients 𝑎 and 𝑏, so that the damping matrix remains positive
semi-definite.

5. Predicting the damped dynamic response for the unstiffened and
stiffened laminated composite plates in thermal environment by
implementing modal expansion damping considering the first
twenty modes imparts sufficient accuracy in comparison with
the consideration of the first two hundred modes.

6. The unstiffened laminated composite plate exhibits better damp-
ing performance at the lower temperature, i.e., 0 ◦C, because
with increasing temperature degradation of the plate stiffness
diminishes the damping performance at the higher temperature.
The unstiffened plate with antisymmetric angle-ply laminate
exhibits best damping performance.

7. The damping performance of the laminated composite plates
improves with the addition of the stiffener. The damping perfor-
mance of the stiffened plates is better at a higher temperature,
i.e., 100 ◦C, owing to the lower rate of degradation of the
plate stiffness than that of the unstiffened plates with increasing
temperature, therefore the stiffened plates utilize the higher
damping properties of composites at the elevated temperature
for vibration control.

8. Based on the energy assessment criteria, the stiffened plates
with stiffener oriented parallel to the longer and shorter edges
exhibit the best damping performance by adopting antisymmet-
ric and symmetric cross-ply laminates, respectively at 100 ◦C
temperature.

9. The energy-based assessment of the damping performance ap-
pears as most robust technique, and better than the displacement-
based damping assessment technique.

10. There is a specific temperature range where the performance
of the temperature-dependent inherent damping is better near
𝑓R = 1 for unstiffened and stiffened plates. For the unstiffened
plate studied in this paper, this temperature range is 0–75 ◦C,
whereas for the stiffened plates with stiffener oriented parallel
to the longer and shorter edges, 75–100 ◦C temperature range
is suitable for reduced dynamic deflection near the resonance
frequency.

11. For obtaining increased response reduction for the unstiffened
and stiffened laminated composite plates at a specific temper-
ature, due to the inherent damping capacity of the composite
lamina, stiffener orientation, depth of the stiffener, and lamina
sequence must to be optimized.

This study has primarily implemented numerical procedures for damp-
ing analysis of unstiffened and stiffened laminated plates in thermal
environment. However, experimental verification remains an open task
and will be considered in future work by the authors.
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Appendix

Shape function matrix corresponding to {𝑑∗}:

[𝐺] =
8∑
𝑖=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑁i,x 0 0 0 0
𝑁i,y 0 0 0 0
0 𝑁i,x 0 0 0
0 𝑁i,y 0 0 0
0 0 𝑁i,x 0 0
0 0 𝑁i,y 0 0
0 0 0 𝑁i,x 0
0 0 0 𝑁i,y 0
0 0 0 0 𝑁i,x
0 0 0 0 𝑁i,y
0 0 0 𝑁i 0
0 0 0 0 𝑁i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.1)
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Here, shape function for the 8-node isoparametric element is denoted
by 𝑁i with 𝑖 = 1 to 8.

Initial stress-stiffness matrix:

[𝑆r] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑁 i
x 𝑁 i

xy 0 0 0 0 0 0 𝑀 i
x 𝑀 i

xy 0 𝑄i
x

𝑁 i
xy 𝑁 i

y 0 0 0 0 0 0 𝑀 i
xy 𝑀 i

y 0 𝑄i
y

0 0 𝑁 i
x 𝑁 i

xy 0 0 −𝑀 i
x −𝑀 i

xy 0 0 −𝑄i
x 0

0 0 𝑁 i
xy 𝑁 i

y 0 0 −𝑀 i
xy −𝑀 i

y 0 0 −𝑄i
y 0

0 0 0 0 𝑁 i
x 𝑁 i

xy 0 0 0 0 0 0

0 0 0 0 𝑁 i
xy 𝑁 i

y 0 0 0 0 0 0

0 0 −𝑀 i
x −𝑀 i

xy 0 0 𝑁i
xℎ

2

12

𝑁i
xyℎ

2

12 0 0 0 0

0 0 −𝑀 i
xy −𝑀 i

y 0 0
𝑁i

xyℎ
2

12
𝑁i
𝑦ℎ

2

12 0 0 0 0

𝑀 i
x 𝑀 i

xy 0 0 0 0 0 0 𝑁i
xℎ

2

12

𝑁i
xyℎ

2

12 0 0

𝑀 i
xy 𝑀 i

y 0 0 0 0 0 0
𝑁i

xyℎ
2

12

𝑁i
yℎ

2

12 0 0

0 0 −𝑄i
x −𝑄i

y 0 0 0 0 0 0 0 0

𝑄i
x 𝑄i

y 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A.2)
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A B S T R A C T

High-strength composite materials are receiving increased attention within the aerospace and
transportation industries. These materials, although light in weight, still impart high stiffness
when compared to conventional structural materials, e.g., aluminum and steel. Fibers and
matrix are the basic constituents of composite materials. During high-speed maneuvering of
aircraft and high-speed trains, the composite materials are subjected to dynamic loads in
changing temperatures. The dynamic behavior of composites strongly depends on the ambient
thermal environment. Furthermore, during the in-situ operation, the quantification of real-time
dynamic loads is a challenging task. Therefore, the experimental investigation of the dynamic
behavior of several carbon-fiber epoxy laminated composite plates at different temperatures,
namely 0 ◦C, 25 ◦C, 50 ◦C, 75 ◦C, 100 ◦C, and 125 ◦C, is carried out using operational
modal analysis, to identify the modal characteristics of the structure, and the temperature-
dependent modal data of the tested composite plates is given in the supplementary data.
The temperature-dependent elastic and damping parameters of the carbon–epoxy laminate
are estimated using a genetic algorithm-based parameter identification scheme for different
sets of modal contribution. A combined experimental and numerical simulation procedure is
implemented to estimate deterministic material parameters at different temperatures. To obtain
the in-situ material parameters for a given operating frequency range, the modal contribution
is selected such that the operating frequency of interest lies within the considered resonance
modes. As an example of matrix-dominated elastic parameter, the shear modulus, has been
found to degrade significantly with increasing temperature, and shown a strong correlation
with temperature.

1. Introduction

Over recent decades, the application of fiber reinforced composite materials as an alternative to conventional structural materials
has attracted a lot of interest in a number of manufacturing sectors. These composite materials possess various excellent properties,
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such as high structural stiffness, high strength-to-weight ratio, and high structural stability in a high temperature environment.
With the rapid development of the aerospace and high-speed transportation sectors, a requirement for high-strength and light-
weight structural materials has evolved. In high-speed vehicles, composite structures can effectively withstand prolonged structural
vibration together with harsh aerodynamic heating. Overall, high-strength composite materials such as graphite–epoxy, carbon–
epoxy, intermediate modulus (IM7) carbon fiber–polyetheretherketone (PEEK), and carbon–carbon are extensively used in different
components of aircraft, satellite launch vehicles, and high-speed trains. For example, carbon–epoxy and carbon–PEEK composite
shell panels are used in the front and rear fuselages, and stiffened carbon–epoxy composite panels are implemented in the wing box
of commercial aircraft [1]. However, temperature variations modify the elastic and damping properties of these composite panels,
which also modify the natural frequencies, mode shapes, and the transient response of the structure. Ultimately, the variation in the
response influences the flutter characteristics, controllability, and failure characteristics of these structures. Based on the loading
characteristics and structural requirements, different composite plates such as laminated composite plates, sandwich plates, and
functionally graded plates are used in different components of aircraft and high-speed vehicles. Therefore, for reliable design of
these composite structures, sufficient knowledge of the temperature-dependent elastic and damping properties is required within
the operating frequency range.

To identify the appropriate material parameters of composites, various identification strategies have been investigated based
on different static and dynamic experimental procedures. Material parameters of a laminated composite lamina can be identified
from the standardized direct static tests which include the tension test [2], the three/ four points bending test [3], the compression
test [4], and the shear tests [5,6]. Recently, Kodur et al. [7] presented a detailed review on direct static test protocols of polymer
reinforced composites for evaluating their properties at elevated temperatures. Noted that a composite laminate consists of a finite
number of laminae staked together in different directions, which are attached together by resin-type materials such as epoxy, PEEK,
etc. Furthermore, various experimental procedures [8–10] have been developed to evaluate the elastic and damping properties of
unidirectional composite laminates based on combined bending and torsion tests of beam-type samples. The accuracy of these types
of measurement relies on the boundary conditions and geometry of these laminates. In addition, micromechanical theories [11]
of a composite lamina have been implemented to predict the corresponding elastic and damping properties. Typically, the finite
element (FE) method is used in such cases, where properties of the constituent materials, i.e., fiber and matrix, must be known a
priori. Researchers, such as Saravanos et al. [12] and Hwang et al. [13], used a strain energy-based micromechanical formulation
to determine the modal damping values of composite plates. Furthermore, Saravanos and Chemis [14] proposed a micromechanical
formulation of composite lamina by considering the hygrothermal effect. This formulation along with macromechanical formulation
can be used to calculate the elastic and damping properties of the laminate by knowing the properties of the fibers, matrix, and
fiber volume fraction in a lamina. However, accuracy of the micromechanical formulation depends on the prior knowledge of the
properties and percentage of the constituent materials as well as the application of a suitable numerical model. The incorporation
of the effect of temperature and moisture in micromechanics-based modeling [14] is a challenging task when implemented by
considering proper assumptions. Hence, the direct approaches [3–6] have some limitations in their methodology, when aiming at
extracting the in-situ material properties of laminated composite plates while subjected to dynamic loads with specific attention
towards the environmental conditions and operating frequencies. Additionally, static methods are time consuming procedures
because evaluating all relevant material properties in a single test is hardly possible so far. Moreover, the micromechanical theory
ignores the interaction between fibers and matrix [15,16], which plays a crucial role when predicting the mechanical behavior of
the composite plate when subjected to a complex stress envelope.

The realistic identification of the elastic and damping properties can be achieved by implementing inverse methods [17,18] using
data from static and dynamic tests in which the actual stresses domain and environmental conditions have been considered. The
inverse methods, which adopt a mixed experimental and numerical strategy, have received significant attention from researchers in
recent years. Employing inverse analogy, Lecompte et al. [19], Wang et al. [20], and Mi et al. [21] identified the elastic properties
of composite laminates based on different static test procedures. However, these static test procedures are often time consuming and
fail to impose realistic conditions during material properties identification specially when the composite structures are subjected to
dynamic loads.

The material properties of a laminated composite plate can be identified by implementing a suitable inverse technique [22–
24], which involves combined application of the in-situ dynamic measurement and the FE modeling of the laminated composite
plate. The dynamic behavior of a structure is described by its modal characteristics, therefore the experimental and numerical
modal data in terms of eigenfrequencies and modal damping values are used to identify the elastic and damping properties of
composite lamina. Soares et al. [25], Bledzki et al. [26], and Rikards et al. [27] proposed an inverse method to evaluate the elastic
parameters by using the FE method and a response surface-based meta-model. Frederiksen [28–30] presented a detailed investigation
on the application of a first-order shear deformation theory (FSDT) and various higher-order shear deformation theories to estimate
the elastic properties of thick laminated composite plates by use of inverse schemes. In inverse methods, the parameters were
estimated by minimizing an error function, which includes measured and simulated modal values. It is also noted that various
higher-order shear deformation theories [31–35] were developed for the accurate prediction of modal responses for thick laminated
composite plates. Chandra et al. [36,37] have presented a generalized FE formulation to analyze undamped and damped dynamic
response of laminated composite plates in thermal environment using the FSDT. In addition, the modal damping values of laminated
composite plates were evaluated numerically using the strain energy principle [38–41] and the viscoelastic damping model [38,42].
Furthermore, Täger et al. [43] analytically studied the damping-dominated sound radiation pattern of laminated composites.

To identify the damping properties, Sol et al. [44,45] and Visscher et al. [46,47] conducted an experimental modal analysis
with free–free boundary conditions. The plates are excited by an impact hammer or acoustic excitation. Klaerner et al. [48,49]
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evaluated the amplitude-dependent non-linear damping of metal–plastic composites experimentally and this non-linearity is retraced
by the developed FE-based numerical procedure. The determination of the damping loss factors for the carbon–epoxy composite
lamina is presented by Li et al. [50] by minimizing the error function, which is developed using the experimental and simulated
modal damping values of certain numbers of modes. They used the strain energy principle for the numerical analysis. Due to
manufacturing-related uncertainty in composite plates, extracted modal responses [51] and subsequently identified elastic and
damping parameters [52–54] exhibit substantial uncertainty. Furthermore, a randomness in temperature also leads to uncertainty in
eigenfrequency values and the transient response [55]. It is observed from the literature that experimental and numerical modal data
are efficiently exploited instead of other dynamic response, e.g., time history of displacement, to estimate the elastic and damping
properties of composite lamina using an inverse approach.

Inverse methods for evaluating the elastic and damping parameters of laminated composite plates appear to possess great
potential. Since a thermal environment has a great influence on the elastic and damping properties, identification of the temperature-
dependent properties is essential. Often, a dynamic mechanical analysis (DMA) is used to measure the elastic and damping properties
of composite lamina within a limited frequency range, i.e., 0−100 Hz. Furthermore, this quasi-static experimental procedure allows
direct evaluation of the five elastic parameters and the three damping parameters of the underlying material model, see Melo
et al. [56]. In a subsequent study, Melo et al. [57] have evaluated the temperature and frequency dependent elastic and damping
properties of IM7–PEEK lamina using the DMA. Generally, a DMA is conducted using a small composite beam sample. It therefore
remains questionable whether the determined properties reflect realistic values for real structures under operating conditions.

While concerned with the applicability of the DMA, the experiment can be conducted within a thermal chamber, and the
temperature-dependent material properties are identified by implementing a suitable inverse method. Inspired by this idea,
Frederiksen [58] and Pedersen and Frederiksen [59] identified the temperature-dependent elastic properties of glass-epoxy and
carbon–epoxy plates. Sefrani and Berthelot [40] determined the temperature-dependent damping parameters of a unidirectional
glass-fiber composite plate by conducting a flexural vibration test within a thermal chamber (0 ◦C–90 ◦C). Here, an impulse
hammer technique, where a suitable modification to the technique had been implemented, was used to excite the clamped composite
plate. Li et al. [60] proposed an experimental methodology to identify the temperature-dependent elastic and damping properties
taking into consideration the effect of material non-linearity, where the fixed laminated composite plate has been excited by
aerodynamic loading. Adopting a similar experimental strategy, Li et al. [61] identified the temperature and amplitude dependent
elastic and damping properties of composite lamina at varying temperatures. These studies [60,61] used the classical laminated plate
theory, which ignores the effect of shear deformation, for the numerical analysis. An computationally extensive exhaustive search
optimization technique is used by Maeder et al. [62] to estimate temperature-dependent elastic properties of composite lamina.

Conducting an experimental modal analysis on laminated composite plates inside a thermal chamber subjected to multiple chal-
lenges, e.g., influence of boundary conditions, excitation methodology, and input and output data acquisition during measurement.
The composite plates are lightly damped structures. Therefore, fixing the composite plate [40,60,61] at one-edge (i.e., fixed-
free boundary conditions) or all-edges (i.e., fixed–fixed boundary conditions) can modify the energy dissipation characteristics of
the plate. In contrast, with free–free boundary conditions [46,47] chance of energy dissipation through the boundary is mostly
avoided. Geweth et al. [63] discussed the influence of the boundary conditions on experimentally obtained damping values for
solid plates. The excitation of laminated composite plates using the impulse hammer technique [40,58] is challenging if the impulse
hammer is not temperature-resistant. Moreover, sensor-based excitation requires judicial positioning of the sensor together with
consideration of the extra mass within the corresponding FE analysis and is preferably to be avoided in such situations. Note that, Li
et al. [60,61] excited the plate, which was clamped inside the thermal enclosure, by use of a steel ball actuated using the aerodynamic
pressure. The experimental data acquisition was performed by a laser Doppler vibrometer (LDV) instead of attaching sensors to the
plate [58,60,61].

In-depth study of the literature suggests that the temperature-dependent elastic and damping parameters can be evaluated
by employing a suitable inverse method using experimental modal data extracted at different temperatures. However, the stated
experimental challenges need to be addressed. The present study endeavors to develop a simple experimental procedure for modal
analysis of laminated composite plates inside a thermal chamber. Herein, free–free boundary conditions are adopted to limit
experimental and numerical complexity, thus ensuring a maximum comparability between experimental tests and simulations.
Furthermore, free–free boundary conditions avoid the introduction of any thermal-stress induced stiffness matrix, e.g., the geometric
stiffness matrix. Note that the geometric stiffness matrix has no influence on the identified material properties. In order to simulate
free–free boundary conditions, the suspension system is selected in such a way that it has only a minor influence on the rigid-body
modes of each sample. Difficulties associated with impulse hammer excitation are avoided by utilizing a white noise sound source.
In this way, the output-only operational modal analysis (OMA) is applied. Furthermore, the OMA not only yields the model of the
structure but also includes the effects of the operational environment and boundary conditions [64] which are consequently part
of the identified system. To the best of the authors’ knowledge, the application of the OMA to identify the modal parameters for
laminated composite plates has yet to be reported in literature. Therefore, this study presents a simple experimental strategy for
conducting an OMA applied to laminated composite plates in identifying the material properties are studied. A genetic algorithm-
based optimization technique is implemented to estimate the temperature-dependent material parameters. The FE formulation as
suggested in [37] is implemented within the optimization framework as the forward model. Therefore, the novel objectives of the
present study are: (1) provide a simple and output-only experimental procedure to extract the modal responses of a laminated
composite plate inside a thermal chamber; (2) study the behavior of the experimentally obtained temperature-dependent modal
responses; (3) present a deterministic identification of the temperature-dependent elastic and damping properties of the laminate
composite plate by considering the FSDT in the FE formulation.
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Fig. 1. Sequence of lamina, showing fiber orientation for a lamina in the lamina coordinate (1, 2, 3) system, to develop a (symmetric) laminate, and showing
the positive direction of the mid-plane displacement components, 𝑢0, 𝑣0, 𝑤0, 𝜃x, and 𝜃y, of the laminate in the global coordinate (𝑥, 𝑦, 𝑧) system.

This paper is organized as follows: Section 2 describes the FE-based numerical procedure for computing the dynamic responses
of laminated composite plates, the theoretical background of OMA, and the optimization procedure for evaluating the temperature-
dependent elastic and damping parameters. The proposed experimental protocol is illustrated in Section 3, while in Section 4, the
experimentally obtained modal responses and the evaluated temperature-dependent elastic and damping parameters are reported.
Finally, the outcomes are summarized in Section 5.

2. Theory

Temperature-dependent elastic and damping properties of a composite lamina are identified by developing an inverse method;
this is a combined experimental–numerical modeling technique. First, a FE model for conducting a numerical modal analysis of a
laminated composite plate in a thermal environment is developed. Second, the identification of the elastic and damping properties
at different temperatures is carried out by minimizing the error between numerically and experimentally estimated eigenfrequencies
and modal damping values.

2.1. FE model in thermal environment

A laminated composite plate consists of a number of 𝑛 thin unidirectional laminae of equal thickness (Fig. 1). Here, the FSDT is
used to model the plate of length, 𝐿, width, 𝑊 , and uniform thickness, ℎ. A Cartesian coordinate (𝑥, 𝑦, 𝑧) system at the mid-plane
of the laminated composite plate is assumed (Fig. 1).

According to the FSDT, the generalized displacement field is described by a vector with five components, 𝒅̄ = {𝑢 𝑣 𝑤 𝜃x
𝜃y}T. The displacement components at a distance 𝑧 from the mid-plane are expressed within the laminate coordinate (𝑥, 𝑦, 𝑧)
system as

𝑢 = 𝑢0 + 𝑧𝜃y, 𝑣 = 𝑣0 − 𝑧𝜃x, 𝑤 = 𝑤0,
𝜃x = 𝑤,y −𝜑y, 𝜃y = −𝑤,x +𝜑x,

(1)

where 𝑢0, 𝑣0, and 𝑤0 are the mid-plane displacements along 𝑥, 𝑦, and 𝑧 axes, respectively, 𝜃x and 𝜃y are rotations about 𝑥 and 𝑦
axes, respectively, and 𝜑x and 𝜑y are the shear rotations in 𝑥 − 𝑧 and 𝑦 − 𝑧 planes. The mid-plane displacement vector is given by
𝒅 = {𝑢0 𝑣0 𝑤0 𝜃x 𝜃y}T. To account for the non-linear distribution of the shear strain, a shear correction factor, i.e., 𝜘 = 5∕6,
is considered. Furthermore, the total strain is considered as a combination of linear strain, 𝜺, and non-linear thermal strain, 𝜺𝐧𝐭 ,
where the linear part, 𝜺 = {𝜀x 𝜀y 𝛾xy 𝛾xz 𝛾yz}T, reads as

𝜀x = 𝑢0,x + 𝑧𝜃y,x, 𝜀y = 𝑣0,y − 𝑧𝜃x,y,
𝛾xy = 𝑢0,y + 𝑣0,x + 𝑧(𝜃y,y − 𝜃x,x),
𝛾xz = 𝜑x, 𝛾yz = 𝜑y.

(2)

The elements of the mid-plain strain vector, 𝜺∗, are defined as: 𝜀0x = 𝑢0,x, 𝜀0y = 𝑣0,y, 𝛾0xy = (𝑢0,y + 𝑣0,x), 𝜅x = 𝜃y,x, 𝜅y = −𝜃x,y, and
𝜅xy = (𝜃y,y − 𝜃x,x), and presented in the vector form, as

𝜺∗ = {𝜀0x 𝜀0y 𝛾0xy 𝜅x 𝜅y 𝜅xy 𝛾xz 𝛾yz}T. (3)
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For a uniform increment in the temperature, 𝛥𝑇 , the thermal-strain vector, 𝜺𝑇k , is shown as

𝜺𝑇k = 𝜶𝐤𝛥𝑇 , (4)

in which, the vector of coefficients of thermal expansion for the 𝑘th lamina is expressed in the laminate coordinate (𝑥, 𝑦, 𝑧) system
as 𝜶𝐤 = {𝛼x 𝛼y 𝛼xy 0 0}T

k . Due to the uniform increment of the temperature (𝛥𝑇 ), the stress vector, 𝝈k, for the 𝑘th lamina of the
laminated composite plate is evaluated as

𝝈k = 𝑸k
{
𝜺k − 𝜺𝑇k

}
. (5)

Here, 𝑸k (cf., Eq. (A.1)) is the transformed reduced stiffness matrix for the 𝑘th lamina in the laminate coordinate (𝑥, 𝑦, 𝑧) system and
is obtained from the stress–strain relationship matrix, 𝑪k, following the proper transformation from the 𝑘th lamina coordinate (1,
2, 3) system. Consequently, the elements of the stress–strain relationship matrix (𝑪k) for the 𝑘th lamina are evaluated by knowing
the elastic moduli, 𝐸11, 𝐸22, 𝐺12, 𝐺13, and 𝐺23, and Poisson’s ratios, 𝜈12 and 𝜈21 (cf. Eq. (A.2)).

To evaluate the stress-resultant, the stress–strain relationship (cf., Eq. (5)) of 𝑛 laminae is integrated over the thickness (ℎ).
Following the integration, the stress vector (𝝈𝐤) of a lamina leads to develop the stress-resultant vector, 𝑭 𝐫 = {𝑁x 𝑁y 𝑁xy 𝑀x
𝑀y 𝑀xy 𝑄x 𝑄y}T, of the laminate and the corresponding strain vector (𝜺𝐤) is transformed into the mid-plane strain vector,
𝜺∗ = {𝜀0x 𝜀0y 𝛾0xy 𝜅x 𝜅y 𝜅xy 𝛾xz 𝛾yz}T. Similarly, 𝜺𝐓 leads to the mid-plane thermal strain vector, 𝒆∗, and is presented as

𝒆∗ = {𝑒x 𝑒y 𝑒xy 0 0 0 0 0}T. (6)

Now, the stress-resultant and mid-plane strain relationship of the laminate is given by

𝑭 𝐫 = 𝑫𝜺∗ − 𝑭𝐍, (7)

where, 𝑭𝐍 = {𝑁Nx 𝑁Ny 𝑁Nxy 𝑀Nx 𝑀Ny 𝑀Nxy}T is the thermal stress-resultant vector which is evaluated as

𝑭𝐍 = 𝑫𝒆∗. (8)

Here, 𝑫 denotes the stress-resultant and mid-plane strain relationship matrix [36,65].
The developed initial strain, due to the uniform temperature variation, is described by the non-linear portion of the overall strain,

𝜺𝐧𝐭 = {𝜀𝑥nt 𝜀𝑦nt 𝛾𝑥𝑦nt 𝛾𝑥𝑧nt 𝛾𝑦𝑧nt}
T, and defined by

𝜀xnt =
1
2
(𝑢2

,x + 𝑣2
,x +𝑤2

,x), 𝜀ynt
= 1

2
(𝑢2

,y + 𝑣2
,y +𝑤2

,y),

𝛾xynt
= (𝑢,x𝑢,y + 𝑣,x𝑣,y +𝑤,x𝑤,y),

𝛾xznt = (𝑢,x𝑢,z + 𝑣,x𝑣,z), 𝛾yznt
= (𝑢,y𝑢,z + 𝑣,y𝑣,z).

(9)

This equation is expressed in terms of the partial derivative of the mid-plane displacement vector, 𝒅∗, and is illustrated in the
compact form as [66]

𝜺𝐧𝐭 =
1
2
𝑹𝒅∗, (10)

where 𝑹 is the non-linear strain–displacement relationship matrix, and the corresponding partial derivative of the mid-plane
displacement vector reads as 𝒅∗={𝑢0,x 𝑢0,y 𝑣0,x 𝑣0,y 𝑤,x 𝑤,y 𝜃x,x 𝜃x,y 𝜃y,x 𝜃y,y 𝜃x 𝜃y}T.

2.1.1. Governing equation
The equations of motion of laminated composite plates are developed by minimization of the total energy. The FE method is

implemented to develop the governing equation of the undamped free vibration in the thermal environment. The 2-dimensional
plate domain is discretized using 8-node isoparametric elements and the governing equation [36,65] is presented as

[
𝑲+𝑲𝐆

]
𝒅(𝒕)+𝑴𝒅̈(𝒕)= 0. (11)

Here, 𝑲 and 𝑲𝐆 are the global stiffness and geometric stiffness matrices, respectively, and 𝑴 is the global mass matrix. The
global stiffness matrix, the geometric stiffness matrix, and the global mass matrix, (𝑲 , 𝑲𝐆, and 𝑴) are obtained by assembling the
corresponding elemental matrices, i.e., 𝑲𝐞, 𝑲𝐆𝐞, and 𝑴𝐞, respectively. The elemental stiffness matrix (𝑲𝐞), the elemental geometric
stiffness matrix (𝑲𝐆𝐞), and the elemental mass matrix (𝑴𝐞) are illustrated in Eqs. (A.3), (A.4), and (A.6), respectively.

2.1.2. Modeling of damping
A viscoelastic damping model is implemented to develop the governing equation for damped free vibration of the laminated

composite plate in a thermal environment. The viscoelastic principle assumed stress, 𝜎, and strain, 𝜖, are harmonically time
dependent at a frequency, 𝜔, and reads as

𝜎(𝑡) = 𝜎0ei𝜔t, 𝜀(𝑡) = 𝜀0ei𝜔t. (12)

The energy dissipation from the vibrating plate can be represented by the complex modulus approach. According to the viscoelastic
damping model, the complex value expressions of the elastic moduli are given by

𝐸∗
11 = 𝐸11(1 + i𝜂11), 𝐸∗

22 = 𝐸22(1 + i𝜂22), 𝐺∗
12 = 𝐺12(1 + i𝜂12), (13)
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where 𝜂11, 𝜂22, and 𝜂12 are the damping loss factors of the lamina in the lamina coordinate (1, 2, 3) system. The complex elastic
moduli of the composite lamina are inserted into Eq. (5) and subsequently the global complex stiffness matrix, 𝑲∗, and the global
complex geometric stiffness matrix, 𝑲∗

𝐆, are obtained. For free vibration, the equation for the complex eigenvalue problem of the
laminated composite plate in a thermal environment is stated as [37,55]

([
𝑲∗+𝑲∗

𝐆
]
−𝜔∗2

dm𝑴
){

𝜙∗
}
= 0. (14)

The complex eigenvalue solution of Eq. (14) results in complex angular eigenfrequencies, 𝜔∗
dm, and complex eigenmodes, 𝜙∗. The

real part of the complex frequency in Hz related to the angular frequency as: 𝜔dm = 2𝜋𝑓dm. The 𝑚th damped complex eigenfrequency
is expressed as

𝑓 ∗
dm = 𝑓dm

√
(1 + i𝜂m), (15)

where 𝑓dm is the damped eigenfrequency, and 𝜂m is the modal loss factor of the associated mode. Here, the modal loss factor is
calculated as

𝜂m =
Im(𝑓 ∗2

dm)

Re(𝑓 ∗2
dm)

. (16)

The modal damping can be defined in terms of modal specific damping capacity, 𝛹m, and modal damping ratio, 𝜉m. They can be
determined in terms of modal loss factors, 𝜂m, as

𝛹m = 2𝜋𝜂m, 𝜉m =
𝜂m
2
. (17)

Thus, the real part of the complex eigenfrequency (𝑓 ∗
dm) is described as the damped eigenfrequency, 𝑓dm = Re(𝑓 ∗

dm), of the plate,
and the corresponding modal loss factor (𝜂m) is evaluated from Eq. (16). In the remaining part of the paper, these numerically
calculated damped eigenfrequency and modal loss factor are designated as 𝑓num

dm and 𝜂num
m , respectively.

2.2. Operational modal analysis

Modal analysis is a well established method for the parameter identification of linear systems. As the test object in this paper is
described as a linear mechanical system, the aim is to identify modal parameters and then relate them to the material properties.
The assumption is a linear time-invariant system with symmetric matrices for mass, damping, and stiffness. In this case, the modal
parameters are the

• natural frequency,
• modal damping,
• mode shapes with scaling.

They represent each mode, and the number of modes is equal to the number of degrees of freedom (DOFs).
The symmetry of the matrices leads to right-hand side eigenvectors only. They are equal to the solution of the classical eigenvalue

problem. The extension to non-symmetric problems, e.g., caused by gyroscopic effects, and time-variant modal analysis is not
necessary in this case. Another question relates to the complex representation of the mode shapes. Complex mode shapes allow
the description of natural vibrations including a phase difference between the degrees of freedom. It can be shown that for systems
that have equally distributed damping, the mode shapes do not show relative phases. This is expected in this study as the damping
distribution will be proportional to the mass and/or stiffness matrix. Nevertheless, the used algorithm includes complex mode shapes,
but the phase between the DOFs will be expected as negligible.

The modal analysis community distinguishes between the classical modal analysis (i.e., experimental modal analysis) and the
OMA [67]. The classical experimental modal analysis is based on frequency response functions in the frequency domain. The full
system information is included in the relationship between output and input. All modal parameters in the measured frequency range
can be extracted. The input must be known in the experimental modal analysis test which means that the excitation force must be
measured. For lightweight structures a sensitive measurement setup is required because the attachment of an exciter or the use of
an impact hammer has an influence on the structure. Non-contact based excitation by sound pressure excitation of a loudspeaker
improves the situation, but the approximation of the input force by a microphone is not satisfactory. Therefore, the OMA without
system input measurements is preferred in this study. Using a laser vibrometer, the system response can also be measured in a
non-contact manner. In general the OMA has some significant advantages:

• the excitation is applied in a distribution similar to that of the real operation,
• the level of the excitation is somehow as in reality; this helps if the structure has slight non-linearities, as we work at the

linearization point,
• conditions that cannot be controlled are in the right setup, e.g., boundary conditions under operation or temperature-dependent

variations.

These advantages are most relevant for powered machines or civil engineering structures under environmental changes.
On the other side, the lack of information with respect to the excitation has an influence to the result. As the input force is

not known, the scaling of the mode shapes, as it is necessary to synthesize the frequency response functions, is not possible. This
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disadvantage is not relevant in this study because the results for the material properties are derived from the experimentally obtained
eigenfrequencies, 𝑓 exp

m , and the modal damping, 𝜂exp
m . Each measurement from the scanning laser vibrometer delivers the vibration

response of each DOF sequentially. A second single point laser was used as a reference channel to construct the mode shape vector.
This allows to develop the correct amplitude and phase relation between each DOF.

Different options for the analysis algorithms are available for the OMA analysis based on the acquired data. Comparable with
the classical experimental modal analysis the OMA can be distinguished between

• time domain methods,
• frequency domain methods.

In the class of time domain methods, the Stochastic Subspace Iteration (SSI) is one of the most elaborate procedures, which has
been utilized in this study together with an Enhanced Frequency Domain Decomposition (EFDD) to ensure the reliability of the
estimated modal parameters. For deeper insight, the reader can refer to the literature on the SSI method [68–70] and the EFDD
method [71–74].

2.3. Identification of temperature-dependent elastic and damping parameters

The identification of the elastic moduli and damping loss factors of the composite lamina is posed as an optimization problem,
where the discrepancy between the eigenfrequencies of the OMA and the numerically obtained eigenfrequencies is minimized. The
FE formulation for numerical determination of the damped eigenfrequencies (𝑓num

dm ) and modal loss factors (𝜂num
m ) of the laminated

composite plate at different temperatures has been discussed in Section 2.1. For a given dimension and density, the eigenfrequencies
and modal loss factors of the plate are predicted as a function of identifiable variables. A two-stage identification strategy is
implemented to identify the elastic moduli and the damping loss factors at different temperatures. Initially, the elastic moduli are
identified by minimizing the discrepancy between the experimentally and numerically predicted damped eigenfrequencies, i.e., 𝑓 exp

m
and 𝑓num

dm , respectively. In a second stage, the damping loss factors are identified by minimizing the experimental and numerically
predicted modal loss factors, i.e., 𝜂exp

m , and 𝜂num
m , respectively.

In the first stage of the optimization, 𝒓̄𝟏 = {𝐸11 𝐸11∕𝐸22 𝐸11∕𝐺12}T is considered as evaluated vector. Since the sensitivity of
the Poisson’s ratio, 𝜈12, is very small, this parameter is not identified in the present study. The remaining elastic moduli are related
as 𝐺13 = 𝐺12 and 𝐺23 = 0.5𝐺12 [28,75–77], and can be determined once 𝒓̄𝟏 is identified. The average density of the composite plate
is determined by knowing the geometry and mass of the individual plate among all the plates considered for the measurement. The
optimization problem for the inverse method is stated as

𝑟̄∗1 = argmin
𝒓̄𝟏

(𝒓̄𝟏),
subject to 𝒓̄𝟏𝐦𝐢𝐧

< 𝒓̄𝟏 < 𝒓̄𝟏𝐦𝐚𝐱
,

(18)

where

(𝒓̄𝟏) =
𝑁fin∑

𝑚=𝑁ini

(
𝑓 exp

m − 𝑓num
m

𝑓 exp
m

)2

, (19)

in which 𝑁ini and 𝑁fin are initial and final mode numbers that are considered to develop the objective function ((𝒓̄𝟏)) for
minimization. The gradient-less genetic algorithm available in Matlab is used in this context.

In the second stage of optimization, the damping loss factors are evaluated by incorporating the identified elastic parameters,
i.e., 𝐸11, 𝐸22, and 𝐺12. The design variables in this stage of optimization are stated as 𝒓̄𝟐 = {𝜂11 𝜂22 𝜂12}T, and the associated
optimization problem is defined as

𝒓̄∗𝟐 = argmin
𝒓̄𝟐

(𝒓̄𝟐),
subject to 𝒓̄𝟐𝐦𝐢𝐧

< 𝒓̄𝟐 < 𝒓̄𝟐𝐦𝐚𝐱
,

(20)

where

(𝒓̄𝟐) =
𝑁fin∑

𝑚=𝑁ini

(
𝜂exp

m − 𝜂num
m

𝜂exp
m

)2

. (21)

This two-stage optimization procedure was conducted at each temperature state to evaluate temperature-dependent material
properties using an in-housely developed Matlab code. For better understanding of the analysis framework, a flowchart is provided
(cf., Fig. 2).

In these two deterministic inverse problems, a genetic algorithm is applied to achieve the global minimum of the given objective
functions. For successful implementation of the genetic algorithm various strategies are applied. These strategies are: (1) starting
values of the identified parameters are given based on the known data by supplier and the experiences gathered during trial runs;
(2) the interdependency ratios between the elastic constants are considered as the identified parameters instead of identifying
the parameters directly [27]; (3) provide realistic limits of the identified parameters; and (4) various parameters of the genetic
algorithm, e.g., ‘ConstraintTolerance’, ‘MaxGenerations’, ‘PopulationSize’ [78] are given by keeping a balance between accuracy
and computational time.
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Fig. 2. Framework of the inverse method to evaluate the temperature-dependent elastic parameters (𝐸11, 𝐸22, and 𝐺12) and damping parameters (𝜂11, 𝜂22, and
𝜂12) of the T700 carbon–epoxy composite lamina.

3. Experimental setup

In the present experimental study, the eigenfrequencies of the damped system and the modal loss factors of a 14-layered T700
carbon–epoxy laminated composite plate, manufactured by Connova1, were determined experimentally at varying temperatures. To
ensure the reliability of the measurement and resulting lamina properties, two symmetric cross-ply and two symmetric angle-ply
laminated composite plates have been tested and further analyzed using modal analysis. Inside the environmental chamber, the
plate excitation and corresponding measurements were carried out by a non-contact based method using a loudspeaker and two
LDVs.

3.1. Experimental procedure

The experimental setup consists of a thermal chamber in which the carbon–epoxy laminated plate is suspended using elastic
strings. An environmental chamber, which accurately controls temperature and moisture, is used for this investigation. The chamber
has an inner volume of 1.09×1.01×1.10 m3. The chamber has two circular openings in two opposite faces which are covered by glass
windows. The plate inside the chamber is excited by a white noise signal generated using a loudspeaker and the sound pressure
level is measured using a microphone (cf., Fig. 3). The non-contact based measurement on the vibrating plate is done through two
openings using LDVs. Prior to initiate each measurement, the humidity and temperature inside the environmental chamber were
controlled through an automatic controller and a 10 min. delay was set to achieve equilibrium condition.

To achieve free–free boundary conditions for the plate during measurement, the plate is suspended vertically using Kevlar wires
(cf., Fig. 3). The influence of the suspension is minimized by mounting the plate in the nodal lines [63] of the first elastic deformation
mode (cf., Figs. 3 and 4). This method of suspension ensured that the frequencies of the rigid body motions remained at a very low
value compared to the fundamental eigenfrequency of the plate.

A graphical representation of the experimental setup is provided in Fig. 4. As shown, the loudspeaker is placed in the corner of
the thermal chamber (cf., Figs. 3 and 4). The full experimental setup is designed in such way that the acoustic excitation produces
a diffuse acoustic field which is a necessary condition for subsequently applying the OMA. The main advantages of the presented
approach rely on the thermal resilience of the loudspeaker as well as the continuous excitation signal for sequential measurements.
Despite the lower energy input compared to standard impulse excitation, the sensitivity of LDV is sufficient to still achieve accurate
measurement. Furthermore, use of electrodynamic contact excitation was not possible because of the need to avoid additional
mass coupling. Similarly, magnetic excitation involves additional mass coupling because the composite is not magnetic and the
exact excitation force is unknown. All limitations are avoided by presenting a non-contact based excitation strategy. Moreover, the
microphone placed inside the chamber tracks the sound pressure level inside the thermal chamber, thus, tracking the coherence.

1 Connova Deutschland GmbH, Schücostrasse 8, 01900 Grossröhrsdorf, Germany.
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Fig. 3. Suspension system with free–free boundary conditions to the composite plate (left), loudspeaker (middle), and microphone (right) inside the thermal
chamber.

Fig. 4. Flowchart of the experimental setup for evaluating experimental eigenfrequencies, (𝑓 exp
m ) and modal loss factors, (𝜂exp

m ) of the T700 carbon–epoxy laminated
composite plate inside the environmental chamber.

Table 1
Apparatus used in the experiments conducted to identify modal parameters of composite plates at different temperatures.
Apparatus Manufacturer Product model

Thermal Chamber Clima temperature system (CTS) –
Reference LDV Polytec GmbH, Waldbronn, Germany PDV100
Scanning LDV Polytec GmbH, Waldbronn, Germany PSV500
Loudspeaker Visaton GmbH & Co., Haan, Germany FRS 10 WP
Microphone Brüel & Kjær, Virum, Denmark 1/2’ Diffuse-field Microphone, 6.3 Hz to 16 kHz
Mobile DAQ Polytec GmbH, Waldbronn, Germany –

The photograph (cf., Fig. 5) of the experimental setup in the laboratory illustrates how the measurement is performed. Two LDVs
are used to collect response data: one LDV measures the plate vibration through scanning sequentially all DOFs (scanning LDV), and
the other LDV remains at a fixed position and serves as a reference channel (reference LDV). The measurement is conducted at each
DOF of the plate for a duration of 50 s. This time block corresponds to approximately 30,000 times the period of the fundamental
mode, and is sufficiently long to enable the extraction of low damping modes [64,79]. During the experiment, controlling the input,
i.e., white noise, and collecting measured data are performed by the data acquisition (DAQ) system. Details of the apparatus used
during measurements are presented in Table 1.
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Fig. 5. Pictorial illustration of the experimental setup available at the Material Research and Testing Institute, Bauhaus University, Weimar, Germany.

3.2. Test samples

Two 14-layered symmetric angle-ply, (45◦∕ − 45◦)7s, laminates, namely SA2 and SA10; and two 14-layered symmetric cross-ply,
(0◦∕90◦)7s, laminates, namely SC5 and SC6, of carbon–epoxy are used as samples for the experiment. The unidirectional lamina is
fabricated from T700 carbon fibers which were cured at 135 ◦C within the epoxy resin. Note that the glass transition temperature of
the applied epoxy resin is approximately 170 ◦C. The thickness of each lamina is 0.287 mm. These laminates are cut from a large-size
plate. The volume of the carbon–epoxy laminated composite plates is 150×110×4.018 mm3. Moreover, the dimensions of the plate are
selected such that the first fundamental frequency remains in high-frequency regime as compared to the resonance frequency of the
acoustic cavity. The experiment was conducted at varying temperatures, namely 0 ◦C, 25 ◦C, 50 ◦C, 75 ◦C, 100 ◦C, and 125 ◦C. A 0%
humidity level is maintained inside the thermal chamber. The average density, 𝜌, of the laminate is 1603.7 kg/m3. The temperature
independent Poisson’s ratio, 𝜈12, is assumed as 0.32.

3.3. Post-processing of experimental data

The measured time data was analyzed using the Brüel & Kjær OMA software2, where the data was transferred by using an
uff-file format to ensure compatibility between the DAQ and the OMA software. Before analyzing the measured data to obtain the
corresponding modal parameters, the time signals were filtered using an 8th order Butterworth low-pass filter with a cut-off frequency
of 5000 Hz after removing outliers and any mean values. In this way, no drift of the time data could violate the subsequent modal
parameter estimation. The quality of the time data was checked by evaluating the coherence between each DOF and the reference
LDV channel signal which was above 0.8 within the frequency range around the corresponding resonances of interest.

After applying the SSI as well as the EFDD method, the results were compared to ensure a reliable result quality. Furthermore,
the quality of the corresponding mode shapes were checked by evaluating the MAC-matrix. It is noted that the off-diagonal values
of the MAC-matrix remained below a value of 0.05.

4. Results

4.1. Experimental modal responses

The modal parameters, i.e., the eigenfrequencies and loss factors of the tested carbon–epoxy laminated composite plates are
evaluated from the experimentally obtained time domain data at different temperatures for the plates SA2, SA10, SC5, and SC6.
The extracted six eigenfrequencies and the associated mode shapes for these plates are illustrated with reference to the variation
in temperature in Fig. 6. For plates SA2 and SA10, the first six experimental eigenfrequencies (cf., Figs. 6(a), 6(b), and 6(c))
are presented. Prior to the experiment, mode shapes and associated eigenfrequencies were calculated using initial guess values
for the elastic parameters. However, for plates SC5 and SC6, 2nd to 7th experimental eigenfrequencies (cf., Figs. 6(d), 6(e), and
6(f)) are extracted. The first eigenfrequency of the symmetric cross-ply laminates could not be identified experimentally. The first

2 PULSE Operational Modal Analysis, 5.2.0.2 - x64, Built Date: 11.06.2018.
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Fig. 6. Variation in the experimentally obtained eigenfrequencies (𝑓 exp
m ) plotted with temperatures for associated mode shapes, plotted for plates SA2, SA10,

SC5, and SC6.

eigenfrequency of this laminate is lowest in magnitude, and radiation efficiency of the corresponding mode is also lowest. To excite
this low frequency mode a larger sound source is necessary, however within the present experimental setup, size of the loudspeaker
is too small in diameter. Therefore, possible explanations regarding unidentification of the first mode for the symmetric cross-ply
laminates could be: firstly, low radiation efficiency of the first mode and secondly, too small diameter of power output of the
loudspeaker.

For the symmetric angle-ply laminates (cf., SA2 and SA10) it is observed that the 1st, 3rd, 4th, and 6th experimentally determined
eigenfrequencies decrease as the temperature increases, whereas, the 2nd and 5th experimental eigenfrequencies are not very
sensitive to the temperature variation. On the other hand, the 3rd, 5th, and 6th experimental eigenfrequencies decrease with
increasing temperature for the symmetric cross-ply laminates (cf., SC5 and SC6). The variation in the experimentally determined
eigenfrequencies with respect to temperature can be explained by observing mode shapes of a plate and the associated fiber
orientations (cf., Fig. 6). The mode shapes of the plates SA2 and SC5 at 25 ◦C are given in Appendix C (cf., Figs. 13 and 14)
to understand the nodal line representation of the mode shapes for two types of plate configurations. It is observed that for the case
of the symmetric angle-ply laminates, which have diagonal fibers orientation, the modes in which the eigenfrequencies remained
unaffected by an increase in temperature are not bending modes. In these modes, major extension occurs along the directions of the
fibers. Since the fibers are unaffected by the temperature variation, the associated eigenfrequencies did not decrease with increasing
temperature. Moreover, for the cross-ply laminates, modes corresponding to the unaffected eigenfrequencies are the bending modes.
In these bending modes, the longitudinally and transversely oriented fibers are not influenced by the increasing temperature, thus,
the corresponding eigenfrequencies remained constant across the temperature range. It is apparent from Fig. 6 that the experimental
eigenfrequencies for the symmetric angle-ply laminates, and symmetric cross-ply laminates are in good agreement with each other
which proves the reliability of the extracted eigenfrequencies.

The associated experimental modal loss factors of these plates are plotted against temperature in Fig. 7. It is observed that
the first six experimental modal loss factors (cf., Figs. 7(a), 7(b), and 7(c)) for the plates SA2 and SA10 vary non-linearly with
increasing temperature. Furthermore, the experimental modal loss factors for the plates SA2 and SA10 do not agree well at a specific
temperature. The non-agreement and non-linear behavior of experimentally evaluated modal damping values are primarily due to
the manufacturing-related uncertainty, and the measurement precision. Furthermore, the curve-fitting algorithm within the SSI may
influence the accuracy of the estimated modal loss factors. The uncertainty involved in identifying modal damping values for lightly
damped structures is extensively discussed in the literature [74,80].

The 1st experimental modal loss factors for the plates SA2 and SA10 show an increasing trend and this trend is depicted by the best
fitted line in Fig. 7(a). The variation in the 3rd and 4th experimental modal loss factors remain within a shallow envelope. Relatively
good agreement is observed for mode 5, where the experimental modal loss factors for both plates remain constant with increasing
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Fig. 7. Variation in the experimentally obtained modal loss factors (𝜂exp
m ) plotted with temperatures for the plates SA2, SA10, SC5, and SC6.

temperature. Further, this behavior matches intuitively with the temperature-independent behavior of the 5th experimental modal
frequency in Fig. 6(c). For the plates SC5 and SC6 (cf., Figs. 7(d), 7(e), and 7(f)), it is very difficult to identify any pattern in the
variation of the experimental modal loss factors with respect to increasing temperature. Moreover, some experimental data, e.g., for
modes 2, 3, 5, 6, and 7 for plate SC6, at 75 ◦C are omitted in the figures due to unrealistically high values being obtained. The
experimentally obtained eigenfrequencies and modal loss factors of these plates are given in the supplementary document.

To assess the overall damping behavior of these composite plates at varying temperatures, a concept of pressure-normalized
velocity is introduced. In this way, the output amplitude of the vibration velocity is scaled to the input amplitude of the sound
pressure, which represents the overall reciprocal damping. It was stated earlier that each plate was excited by a white noise signal
and the associated experimental time data in terms of velocity has been collected for 50 s (𝑡tot). During digitization of the velocity
response data, a window of 0.5 s (𝑡w) is considered. The characteristic of the experimental velocity at every nodal point is evaluated
using the root mean square value, 𝑉rms, of the velocity data for each window. In a similar way, the root mean square values of sound
pressure, 𝑝rms, obtained from the microphone, for each time window are also calculated. Only 97 percentile (𝑉rms) data, and the
corresponding 𝑝rms are selected to evaluate the pressure-normalized velocity, 𝑉norm, at each node. The pressure-normalized velocity
𝑉norm,i,j for the 𝑖th window of the 𝑗th nodal data is given as

𝑉norm,i,j =
𝑉rms,i,j

𝑝rms,i
, 𝑖 = 1, 2,… , 𝑛w,sel, 𝑗 = 1, 2,… , 𝑛node, (22)

where 𝑛w,sel
(
< 𝑡tot

𝑡w

)
is the number of windows selected considering the 97 percentile criterion and 𝑛node denotes the total number

of nodes on the composite plate for which measurements were performed. Based on this, an average pressure-normalized velocity,
𝑉norm,avg, is calculated, as

𝑉norm,avg = 1
𝑛node

{𝑛node∑
𝑗=1

(
1

𝑛w,sel

𝑛w,sel∑
𝑖=1

𝑉norm,i,j

)}
. (23)

The calculated average pressure-normalized velocity of the plate is shown plotted against temperature in Fig. 8. For the plates
SA2 and SA10, the minimum value of the average pressure-normalized velocity (𝑉norm,avg) is obtained at 100 ◦C (cf., Fig. 8(a)),
which signifies that the maximum response control occurs at 100 ◦C. Furthermore, in the case of the considered cross-ply laminates,
i.e., SC5 and SC6 (cf., Fig. 8(b)), overall damping is varies non-linearly with varying temperature.
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Fig. 8. Experimentally obtained average normalized-velocity (𝑉norm,avg) plotted against temperatures for the plates SA2, SA10, SC5, and SC6.

4.2. Identified temperature-dependent elastic properties

The temperature-dependent elastic parameters of the carbon–epoxy lamina are evaluated from the eigenfrequencies of the
symmetric angle-ply (i.e., SA2 and SA10) and symmetric cross-ply (i.e., SC5 and SC6) laminates. The identification procedure was
explained in Section 2.3. The identified temperature-dependent elastic properties, i.e., 𝐸11, 𝐸22, and 𝐺12, of the carbon–epoxy
lamina are illustrated in Fig. 9. Furthermore, values of these identified parameters are given in Appendix B (cf., Table 2). During the
identification, three different sets of modes are considered to study the influence of modal contribution on the identified properties.
For the symmetric angle-ply laminates modes considered are: 1–3, 4–6, and 1–6, and for the symmetric cross-ply laminates modes
considered are: 2–4, 5–7, and 2–7. A minimum of three modes is considered to avoid a non-unique solution of the optimization
algorithm. Additionally, three sets of modal contributions are provided, intended to explain the frequency dependency of the elastic
parameters. A 2nd order fitted curve for each elastic parameter is plotted separately for each laminate, and the corresponding
equation is presented below each sub-figure. The 2nd order fitted curve can represent a non-linear variation in the elastic properties
with respect to temperature, although avoiding the over-fitting phenomenon.

The temperature dependency of the identified 𝐸11 for the symmetric angle-ply and symmetric cross-ply laminates is depicted
in Figs. 9(a), 9(d), and 9(g), and fitted curves are plotted for each type of laminate. Although, two fitted curves for the identified
𝐸11 show a modest increasing trend with increasing temperature, individual values of the identified 𝐸11 are vary non-linearly
with temperature. Moreover, these fitted curves have very low gradient. Hence, it can be stated that the fiber-dominated 𝐸11 is
a temperature independent parameter. For the identified 𝐸22, a downward slope is apparent for the associated fitted curves (cf.,
Figs. 9(b), 9(e), and 9(h)). The negative slope of these fitted curves indicates that the identified 𝐸22 are temperature-dependent
and the magnitudes of these identified 𝐸22 decrease with increasing temperature. 𝐸22 is not a fiber-dominated parameter, thus is
influenced by the temperature-dependent behavior of the matrix. A steep negative slope of the fitted curves for the identified 𝐺12
of the symmetric angle-ply and symmetric cross-ply laminates is observed in Figs. 9(c), 9(f), and 9(i), which indicates significant
degradation of the shear modulus with an increase in temperature. The coefficient of determination, 𝑅2, for the identified 𝐺12 fitted
curves is calculated. It is observed that 𝑅2 is greater than 0.95 in the cases where an initial three (cf., Figs. 9(c)) and an initial six
(cf., Fig. 9(i)) experimental modes are considered during the identification procedure, which indicates a strong correlation between
the identified 𝐺12 and temperature. Whereas, in the remaining case, 𝑅2 is greater than 0.85 (cf., Fig. 9(f)) that also denotes a
sufficiently good correlation between the identified 𝐺12 and temperature. It is noted that 𝐺12 is a matrix-dominated property, and
stiffness of the matrix degrades with increasing temperature, which proves the underlying cause of strong correlation between 𝐺12
and temperature. Due to the dissimilarity in inter-laminar stress for angle-ply and cross-ply laminates, the pattern of the temperature
dependency for the identified elastic parameters is not exactly the same, although, the extent of this variability remains within the
acceptable limit. The variability of the identified parameters indicates that adaptation of a stochastic identification technique could
explore these variabilities in a more rational way.

Until now, the temperature dependency of elastic moduli for carbon–epoxy lamina have been discussed in the lamina coordinate
system (1, 2, 3). In addition to this, temperature-dependency pattern of homogenized elastic properties, i.e., 𝐸xx, 𝐸yy, and 𝐺xy, for
symmetric angle-ply and symmetric cross-ply laminates is worthy of study. The homogenized elastic properties are expressed in
the laminate coordinate (𝑥, 𝑦, 𝑧) system of the plate, see Fig. 1 for an explanation of the coordinate systems. To understand the
temperature dependency of the homogenized elastic parameters of two types of laminates, the corresponding 𝐸xx, 𝐸yy, and 𝐺xy
at each temperature state are evaluated based on the modal contribution of 1–3, and shown in Fig. 10. The fitted curves for the
identified parameters are plotted separately for the symmetric angle-ply and symmetric cross-ply laminates. Based on the fitted
curves for the identified 𝐸xx (cf., Fig. 10(a)), it is found that the identified 𝐸xx is a temperature independent parameter for the
symmetric cross-ply laminates, whereas the identified value of 𝐸xx decreases with the increasing temperature for symmetric angle-ply
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Fig. 9. Variation in the identified elastic parameters (𝐸11, 𝐸22, and 𝐺12) for the plates SA2 ( ), SA10 ( ), SC5 ( ), and SC6 ( ) at different temperatures.

laminates. In the case of the symmetric cross-ply laminate, fibers are oriented along the 𝑥- and 𝑦-axes depending upon the lamina
sequences, moreover, elastic properties of fibers are not influenced by the temperature. Hence, the identified 𝐸xx for symmetric
cross-ply laminates does not vary with the change in temperature. On the other hand, for the symmetric angle-ply laminate, fibers
are not oriented along the 𝑥- or 𝑦-axis. Thus, the identified 𝐸xx degrades with increasing temperature and is influenced by the
temperature-dependent matrix behavior. The flat fitted curves for the identified 𝐸yy, as shown in Fig. 10(b), indicate the temperature
independency of the identified 𝐸yy for both laminates. Fig. 10(c) shows that the identified 𝐺xy decreases with increasing temperature
for both types of laminates. Moreover, the identified 𝐺xy exhibits a strong correlation with temperature because 𝑅2 values for the
fitted curves are greater than 0.98. It is worthy to mention here that a strong temperature dependency is also observed for the shear
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Fig. 10. Variation in the identified homogenized elastic parameters (𝐸xx, 𝐸yy, and 𝐺xy) for the plates SA2 ( ), SA10 ( ), SC5 ( ), and SC6 ( ) at
different temperatures.

modulus (𝐺12) of the carbon–epoxy lamina. Similarly to 𝐺12, 𝐺xy is a matrix-dominated property of a laminate, thus it degrades
with increasing temperature.

In this study, three sets of modal contribution have been considered for the identification of the elastic parameters. The damped
eigenfrequencies of these plates are calculated using the identified elastic parameters at each temperature. The corresponding
numerical error, 𝜖m,nT, for the 𝑚th frequency at the temperature 𝑇 is determined as

𝜖m,nT =
|||||
𝑓 exp

m,nT − 𝑓num
dm,nT

𝑓 exp
m,nT

|||||
, (24)

where 𝑛𝑇 = 1 for a specific temperature 𝑇 . Average numerical error, 𝜖m,avg, for the 𝑚th frequency for the six temperature states is
calculated as

𝜖m,avg =
6∑

𝑛𝑇=1
𝜖m,nT, 𝑛𝑇 = 1, 2,… , 6 (25)

and shown in Fig. 11 for the plates SA2, SA10, SC5, and SC6. A general observation is derived from Figs. 11(a) and 11(b). It is
that 𝜖m,avg is less for the modes 1, 2, and 3 than for the modes 4, 5, and 6, when modes 1–3 are adopted during identification for
the plates SA2 and SA10. Similarly, the 𝜖m,avg for the modes 4, 5, and 6 is lower than for the modes 1, 2, and 3, when the modes
considered for the identification are 4–6. It is correspondingly observed for the plate SC5 that the modes which are considered for the
identification impart the low magnitude of 𝜖m,avg. However, this behavior has not been followed for the plate SC6 (cf., Fig. 11(d)),
which appears to have arisen due to existing manufacturing-related uncertainty in the plate. Moreover, when all the six modes are
used for material properties identification, the corresponding 𝜖m,avg are distributed over all these modes in an average sense.

This outcome is important for a number of reasons, which are highlighted here in a more detailed fashion. When conducting
numerical simulations, knowledge of the correct material properties is crucial. In most cases, these parameters are measured quasi-
statically by a suitable DMA for different temperatures. However, it could be argued that such a parameter set is only valid for low
frequency analysis because the corresponding material property measurements have been conducted in a low frequency regime.
This behavior would be in accordance with the widely known phenomena that when conducting a numerical modal analysis and a
corresponding experimental modal analysis, the errors between the modal frequencies are for instance small for low mode numbers
and increase for higher modes. From the presented results it can be concluded that when using a mode set of higher mode numbers
for the material parameter estimation, the errors between experiment and simulation for the used set of higher modes is smaller and
for other modes, i.e., lower modes and even higher modes, the errors increase again. Ultimately, the simulation engineers must be
provided with a set of material parameters that are determined from measurements that are similar to the final operating conditions
in which the final product will operate. A direct consequence is that in order to improve the simulation quality within the framework
of numerical modal analysis, we need measurements of similar prototypes acquired under similar operating conditions in order to
determine material properties that capture the dynamic behavior correctly. Here, the choice of a suitable material model is crucial.

4.3. Identified temperature-dependent damping properties

Based on the experimental modal loss factors of all the considered plates the damping loss factors (𝜂11, 𝜂22, and 𝜂12) of the
carbon–epoxy lamina are determined, and plotted in Fig. 12. Three different sets of modal contribution, stated in Section 4.2, are used
during identification. For further reference, the numerical values of the identified damping parameters are furnished in Appendix B
(cf., Table 3). As the experimentally extracted modal loss factors of the composite plates vary non-linearly, the identified damping
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Fig. 11. Average numerical error (𝜖m,avg) between experimental and simulated eigenfrequencies for the plates SA2, SA10, SC5, and SC6 considering different
modal contributions.

parameters also vary non-linearly in temperature scale. The counter-intuitive variation in the identified loss factors with temperature
is most likely due to the existence of an inherent uncertainty in the extracted modal damping values. To restrict error related to
uncertainty within the identified damping parameters, a two-stage identification algorithm is introduced in this deterministic inverse
method. Several trials with different optimization techniques were carried out before selecting the two-stage optimization strategy.
Instead of considering a deterministic identification methodology, adaptation of stochastic identification procedure for evaluating
underlying uncertainty in the damping parameters is suggested. The stochastic identification of the temperature-dependent elastic
and damping parameters is subject of future scope of research.

5. Conclusion

The present investigation addresses the experimental estimation of the temperature-dependent modal response and material
properties of laminated composite plates and comprehends two main contributions: firstly, implementing a test program by
proposing an experimental protocol and then extracting the modal responses, and secondly, deterministic identification of the
temperature-dependent material properties of the composite lamina based on the experimental modal data.

The dynamic behavior of the carbon–epoxy symmetric cross-ply and angle-ply laminates has been investigated, experimentally
and numerically in varying thermal environments. An efficient experimental strategy was proposed to conduct the modal analysis
of composite plates inside the thermal chamber. The experiments had adopted the non-contact based excitation and measurement
strategies, which are most worthwhile to implement inside the enclosed environmental chamber. The temperature-dependent
eigenfrequencies and modal loss factors of these laminates are estimated by conducting the operational modal analysis (OMA), which
is an output-only modal identification technique. The eigenfrequencies estimated from the OMA at different temperatures correlate
well, thus, indicating the adopted time-domain modal identification technique is both user-friendly and robust for eigenfrequency
identification. The reduction of the identified eigenfrequencies for some specific modes reveals degradation in the matrix-based
stiffness properties with increasing temperature. However, due to the existence of an inherent uncertainty in the test samples, it is
difficult to propose a distinctive temperature-dependent damping behavior from the experimental modal loss factors. Furthermore,
the low-valued modal loss factors are more sensitive than the eigenfrequencies, and require higher precision within the identification
algorithm.

The temperature-dependent elastic and damping properties of the composite lamina are identified by implementing an inverse
method. The experimental program has been carried out on symmetric cross-ply and symmetric angle-ply laminates to ensure
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Fig. 12. Variation in the identified damping parameters (𝜂11, 𝜂22, and 𝜂12) for the plates SA2 ( ), SA10 ( ), SC5 ( ), and SC6 ( ) at different
temperatures.

reliability in the extracted modal parameters and the identified material parameters. The identified shear modulus of the lamina
exhibits a strong temperature dependency which decreases with increasing temperature. The identified damping parameters did not
indicate a temperature-dependent pattern due to existence of an inherent uncertainty in the material properties. Furthermore, during
identification of the material properties, consideration of the modal combination under which the structure’s operating frequency
exists is recommended. The implementation of the stochastic identification technique will represent the uncertainty in the evaluated
temperature-dependent elastic and damping parameters, and has been identified as future scope of the study.
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Appendix A

Transformed reduced stiffness matrix of the 𝑘th lamina in laminate coordinate (𝑥, 𝑦, 𝑧) system:

𝑸k =

⎡
⎢⎢⎢⎢⎢⎣

𝑄11 𝑄12 𝑄16 0 0
𝑄21 = 𝑄12 𝑄22 𝑄26 0 0
𝑄61 = 𝑄16 𝑄62 = 𝑄26 𝑄66 0 0

0 0 0 𝑄44 𝑄45
0 0 0 𝑄54 = 𝑄45 𝑄55

⎤
⎥⎥⎥⎥⎥⎦k

. (A.1)

Stress–strain relationship matrix of the 𝑘th lamina in lamina coordinate (1, 2, 3) system:

𝑪k =

⎡⎢⎢⎢⎢⎢⎢⎣

𝐶11 = 𝐸11
1−𝜈12𝜈21

𝐶12 = 𝜈12𝐸11
1−𝜈12𝜈21

0 0 0

𝐶21 = 𝜈12𝐸11
1−𝜈12𝜈21

𝐶22 = 𝐸22
1−𝜈12𝜈21

0 0 0
0 0 𝐶66 = 𝐺12 0 0
0 0 0 𝐶44 = 𝐺13 0
0 0 0 0 𝐶55 = 𝐺23

⎤⎥⎥⎥⎥⎥⎥⎦k

. (A.2)

Elemental stiffness matrix:

𝑲𝐞 = ∫Ae

𝑩T𝑫𝑩d𝐴e, (A.3)

where 𝑩 is the strain–displacement matrix [36].
Elemental geometric stiffness matrix:

𝑲𝐆𝐞 = ∫Ae

𝑮T𝑺𝐫𝑮d𝐴e, (A.4)

where 𝑮 is the shape function matrix corresponding to the partial derivative of the displacement vector, 𝒅∗, as

𝑮 =
8∑
𝑖=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑁i,x 0 0 0 0
𝑁i,y 0 0 0 0
0 𝑁i,x 0 0 0
0 𝑁i,y 0 0 0
0 0 𝑁i,x 0 0
0 0 𝑁i,y 0 0
0 0 0 𝑁i,x 0
0 0 0 𝑁i,y 0
0 0 0 0 𝑁i,x
0 0 0 0 𝑁i,y
0 0 0 𝑁i 0
0 0 0 0 𝑁i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A.5)
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Table 2
Identified temperature-dependent elastic moduli (𝐸11, 𝐸22, 𝐸12) of a T700 carbon–epoxy lamina considering three different sets of modal
contribution for the symmetric angle-ply, samples: SA2 and SA10, (45◦∕ − 45◦)7s laminates and symmetric cross-ply, samples: SC5 and
SC6, (0◦∕90◦)7s laminates.
Considered modes Temperature in ◦C SA2 SA10

𝐸11 in GPa 𝐸22 in GPa 𝐺12 in GPa 𝐸11 in GPa 𝐸22 in GPa 𝐺12 in GPa

1 to 3

0 128.97 9.47 5.83 132.29 8.84 5.66
25 130.07 8.60 5.54 133.22 8.45 5.44
50 130.50 8.25 5.32 132.90 9.29 5.15
75 130.53 8.13 5.08 132.42 9.74 4.93
100 131.34 8.02 4.86 132.62 9.14 4.77
125 131.07 7.90 4.56 133.63 8.65 4.5

4 to 6

0 129.27 8.92 5.70 132.29 8.84 5.66
25 128.42 9.83 5.40 132.06 8.35 5.37
50 128.67 9.28 5.10 128.95 9.55 5.34
75 130.63 9.10 4.80 128.88 9.06 5.2
100 131.66 8.20 4.54 130.51 8.23 4.8
125 131.96 7.98 4.32 128.46 9.35 4.75

1 to 6

0 128.77 9.30 5.81 129.78 10.49 5.65
25 127.67 10.26 5.52 131.99 8.54 5.44
50 129.32 8.22 5.30 130.76 9.65 5.18
75 130.30 7.76 5.07 132.61 8.52 4.95
100 128.85 8.85 4.86 131.48 8.85 4.77
125 130.31 8.16 4.54 132.62 8.31 4.51

SC5 SC6

2 to 4

0 126.34 10.53 5.60 129.08 8.98 5.78
25 127.12 10.56 5.42 127.75 9.95 5.48
50 130.29 8.37 5.10 129.81 8.1 5.27
75 128.37 9.36 4.80 127.21 8.8 4.92
100 129.68 9.27 4.64 130.16 7.96 4.71
125 131.39 7.85 4.24 131.18 7.36 4.39

5 to 7

0 128.70 9.17 5.90 128.59 8.69 5.83
25 127.34 10.02 5.66 126.32 8.87 5.92
50 128.48 8.58 5.76 127.88 8.72 5.45
75 128.86 8.59 5.37 129.42 7.94 5.07
100 128.61 8.04 5.21 133.43 7.42 4.46
125 128.76 9.40 4.70 132.46 7.61 4.17

2 to 7

0 127.98 9.38 5.79 128.73 8.96 5.78
25 126.95 10.54 5.56 128.23 8.93 5.66
50 128.67 9.52 5.43 129.00 8.42 5.36
75 128.36 9.27 5.13 128.31 8.08 5.05
100 128.95 9.40 4.87 131.43 7.80 4.58
125 130.85 8.49 4.50 131.76 7.32 4.31

in which shape function for the 8-node isoparametric element is shown by 𝑁i with 𝑖 = 1 to 8, and 𝑺𝐫 is the resultant matrix obtained
by integrating thermal residual stress [37] of individual lamina.

Elemental mass matrix:

𝑴𝐞 = ∫Ae

𝑵T𝑴̄𝑵d𝐴e. (A.6)

where, 𝑵 =
∑8

𝑖=1 𝑁i𝑰𝟓, 𝑰𝟓 is a 5 × 5 identity matrix, and 𝑴̄ is the inertia matrix of the laminated composite plate which is shown
as

𝑴̄ =

⎡⎢⎢⎢⎢⎢⎣

𝑝̄ 0 0 0 0
0 𝑝̄ 0 0 0
0 0 𝑝̄ 0 0
0 0 0 𝑞 0
0 0 0 0 𝑞

⎤⎥⎥⎥⎥⎥⎦

, (A.7)

in which (𝑝̄, 𝑞) = ∫ ℎ∕2
−ℎ∕2 𝜌(1, 𝑧

2)d𝑧, and density of the plate is denoted by 𝜌.

Appendix B

See Tables 2 and 3.
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Table 3
Identified temperature-dependent damping parameters (𝜂11, 𝜂22, 𝜂12) of a T700 carbon–epoxy lamina considering three different sets of
modal contribution for the symmetric angle-ply, samples: SA2 and SA10, (45◦∕ − 45◦)7s laminates and symmetric cross-ply, samples: SC5
and SC6, (0◦∕90◦)7s laminates.
Considered modes Temperature in ◦C SA2 SA10

𝜂11 𝜂22 𝜂12 𝜂11 𝜂22 𝜂12

1 to 3

0 0.005736 0.012813 0.012955 0.005551 0.016573 0.0166
25 0.005379 0.007276 0.007281 0.005248 0.011951 0.01573
50 0.006814 0.01361 0.013949 0.003878 0.014583 0.015339
75 0.002596 0.010118 0.017496 0.005063 0.005141 0.007163
100 0.003613 0.004752 0.014058 0.003979 0.007613 0.01725
125 0.00364 0.014302 0.015384 0.003293 0.003499 0.013675

4 to 6

0 0.001505 0.002506 0.012766 0.00575 0.00767 0.007958
25 0.003561 0.003797 0.00638 0.003846 0.003909 0.005007
50 0.004061 0.004131 0.005647 0.003534 0.003654 0.005037
75 0.004401 0.004427 0.007906 0.00262 0.002776 0.014343
100 0.003396 0.003462 0.005043 0.003415 0.003437 0.017486
125 0.003417 0.003682 0.005007 0.002607 0.003959 0.012974

1 to 6

0 0.001749 0.002506 0.013443 0.005944 0.0094 0.009656
25 0.004617 0.004673 0.005104 0.004274 0.004317 0.006868
50 0.004329 0.004417 0.008688 0.004261 0.004286 0.005021
75 0.003457 0.00348 0.012862 0.004229 0.004263 0.007845
100 0.003667 0.003729 0.006521 0.003696 0.004808 0.017209
125 0.003899 0.004032 0.005811 0.002933 0.003658 0.013249

SC5 SC6

2 to 4

0 0.005282 0.005689 0.01079 0.002419 0.004996 0.005037
25 0.008011 0.005586 0.005017 0.006765 0.007934 0.007943
50 0.004514 0.004531 0.013893 0.002862 0.018428 0.01845
75 0.003382 0.003588 0.005033 0.00159 0.002506 0.005277
100 0.004088 0.008199 0.008207 0.003315 0.00336 0.006134
125 0.003815 0.00403 0.010572 0.00315 0.00341 0.005037

5 to 7

0 0.004819 0.004998 0.010023 0.005522 0.007781 0.007847
25 0.002361 0.002802 0.017365 0.005745 0.009879 0.009987
50 0.00614 0.008473 0.008825 0.00184 0.002527 0.016202
75 0.006833 0.005987 0.005674 0.014998 0.029461 0.03
100 0.00491 0.005247 0.005281 0.004693 0.01051 0.010511
125 0.006806 0.010347 0.010475 0.004295 0.004339 0.011853

2 to 7

0 0.005141 0.005151 0.009609 0.003427 0.005144 0.005159
25 0.00345 0.010604 0.010996 0.006579 0.007708 0.007718
50 0.004925 0.004973 0.012306 0.002668 0.009228 0.013747
75 0.004193 0.004195 0.005326 0.00159 0.002506 0.005277
100 0.004848 0.005129 0.005159 0.003622 0.003641 0.008939
125 0.004131 0.007119 0.012069 0.003351 0.006095 0.006136

Appendix C

Fig. 13 shows the mode shapes of the sample plate SA2, derived using identified elastic parameters at 25 ◦C temperature,
considering the modal contribution 1–3. In the symmetric angle-ply laminates, the bending modes, i.e., 1st, 3rd, 4th, and 6th
experimental eigenfrequencies decrease with the increment of temperature. In this laminate, fibers are oriented diagonally, therefore
the bending modes are influenced by the degradation in the matrix-dominated elastic properties.

Fig. 14 shows the mode shapes of the sample plate SC5, derived by using identified elastic parameters at 25 ◦C temperature,
considering the modal contribution 2–4. In symmetric cross-ply laminates, the non-bending modes, i.e., 3rd, 5th, and 6th experi-
mental eigenfrequencies decrease with the increment of temperature. In this laminates, fibers are oriented along the longitudinal
and transverse directions, therefore the non-bending modes are influenced by the degradation in the matrix-dominated elastic
properties.

Appendix D. Supplementary data

It is suggested to read this paper along with the supplementary document.
Supplementary material related to this article can be found online at https://doi.org/10.1016/j.ymssp.2022.109945.
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Fig. 13. Mode shapes of the sample plate SA2 using identified elastic parameters at 25 ◦C considering the modal contribution 1–3.

Fig. 14. Mode shapes of the sample plate SC5 using identified elastic parameters at 25 ◦C considering the modal contribution 2–4.
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A B S T R A C T

During the service life, laminated composites may be subject to some random thermal environment.
Quantification of the uncertainty in static and dynamic response of the composites under such condition is still a
challenging issue. This work presents a stochastic dynamic response analysis of a graphite-epoxy composite plate
using generalized polynomial chaos (gPC) expansion due to random mean temperature increment. A stochastic
finite element method (SFEM) based on the first-order shear deformation theory (FSDT) is used to describe the
free and forced vibration response of the graphite-epoxy composite plate under a uniform distribution of the
temperature throughout the plate. Newmark’s time integration scheme is used to predict the time-dependent
displacement response under dynamic loading. The collocation-based non-intrusive gPC expansion method is
used for stochastic dynamic analysis of the graphite-epoxy composite plate. The increment in the temperature is
considered as an uncertain parameter and presented by the truncated gPC expansion. The stochastic system
response of the plate is projected to the deterministic solver by using the stochastic Galerkin method. The
statistical response of eigen frequencies and dynamic displacements of the composite plate at incremental
random mean temperature are investigated, and are compared with the results of the Monte Carlo simulation.
The numerical studies show a reduction in amplitude of the dynamic mean displacements with the increment in
the time and it increases with the increment in the random mean temperature. The characteristics of loading
have also significantly influenced the uncertainty in the time-dependent displacement response.

1. Introduction

Applicability of laminated composites in manufacturing important
and critical components of the aircraft, rocket, space station, high-speed
train, and racing car has widely increased nowadays for exploiting
various inherent advantages from their material properties such as high
strength-to-weight and high stiffness-to-weight ratios, long fatigue life,
and dimensional stability during temperature change. The specific parts
of the structures such as the nose and wings of the aircraft experience a
wide range of temperature variation during the service life due to the
movement at supersonic speeds. Similarly, due to the high speeds, the
body of the racing car does also experience elevated temperatures. The
increase in temperature is very random in nature depending upon
various unpredictable influences. Due to high dimensional stability, low
coefficient of thermal expansion (CTE), high strength, and high glass
transition temperature graphite-epoxy composite is used to manu-
facture some of the critical components in the structures. Therefore, the
variations in the temperature increment exhibit a significant range of

uncertainties in the response of the graphite-epoxy composite structure.
Moreover, adequate information on variability of the structural re-
sponse is essential to design a thermally sensitive part of the structure
using graphite-epoxy composite. On the other hand, structural strength
of the composite plate is also random in nature. Stochastic studies of the
graphite-epoxy plate under dynamic loading is essential to estimate the
probability of failure in uncertain thermal environment. Thus, for the
safe and reliable design of the structural components subjected to the
uncertain temperature and different types of loading conditions in-
stigate to study the stochastic dynamic response of the graphite-epoxy
composite plate in the random thermal environment.

The analysis of fiber reinforced composite (FRC) plate in the
thermal environment was initiated by Halpin [1], and was followed by
Whitney and Ashton [2]. They had presented deterministic elastic re-
sponse of the symmetric and anti-symmetric composite plates using
generalized Duhamel-Neumann form of Hooke’s law including the ef-
fect of moisture and thermal strain. Ram and Sinha [3] had presented a
finite element (FE) method using first-order shear deformation theory
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(FSDT) to determine eigen frequency of the laminated composite plate
with increasing uniform temperature and moisture concentration. They
had shown that the eigen frequency of the composite plate decreases
with increasing temperature and moisture concentration for symmetric
and anti-symmetric angle-ply laminates with simply-supported and
fixed boundary conditions. Rao and Sinha [4] had developed a three-
dimensional FE model to represent the eigen frequency and transient
response of the multidimensional composite plate using 20-node iso-
parametric quadratic elements at elevated temperature and moisture
concentration. Mallikarjuna and Kant [5] and Kant and Mallikarjuna
[6] had presented large deflection response of the composite plate using
higher-order shear deformation theory (HSDT) with the application of
C0 isoparametric element. Rather extensive deterministic studies of the
laminated plates and shells had appeared in the literature on the non-
linear transient response albeit without considering thermal and
moisture effects [7–10]. Huang and Tauchert [11] had investigated
temperature-induced large deflection behavior of the laminated com-
posite plates and spherical panels. Patel et al. [12] had studied hygro-
thermal effects on thick laminated composite plate using higher-order
theory. They had shown that eigen frequencies obtained from the ap-
plication of the higher-order theory for thin laminated composite plate
are comparable to those obtained from the FSDT in hygrothermal en-
vironment. Ganapathi et al. [13] had studied nonlinear dynamic re-
sponse of the thick composite and sandwich plates subjected to thermal
and mechanical loading using higher-order theory. Huang et al. [14]
had studied the effects of deterministic nonlinear vibration and dy-
namic response of the FRC plate using the HSDT in the hygrothermal
environment. They had obtained nonlinear frequencies and dynamic
response of the composite plate by an improved perturbation technique.
The nonlinear free vibration analysis and evaluation of transient re-
sponse of a doubly-curved shell structure, by incorporating Green-La-
grange type nonlinear strain into the FSDT, using FE formulation was
presented by Naidu and Sinha [15,16]. They had used Newmark’s
average acceleration method for the transient analysis conducted from
the nonlinear governing equations of motion. Ribeiro and Jansen [17]
had presented nonlinear transient response of the composite laminated
shallow shells subjected to the simultaneous application of the thermal
field and mechanical excitation. The FE model was based on the FSDT
with hierarchical basis function. Mahapatra et al. [18,19] had in-
vestigated nonlinear frequency response of the singly- or doubly-curved
laminated composite shell panels considering the HSDT and Green-La-
grange type nonlinearity. Nanda and Pradyumna [20] had presented
nonlinear free vibration analysis and evaluation of transient response of
the imperfect laminated composite shell in hygrothermal environment.
The formulation was based on the FSDT and von Kármán-type non-
linear kinematics. Biswal et al. [21] had reported a numerical study of
free vibration of woven fiber glass-epoxy laminated composite shallow
shell under hygrothermal environment using the FSDT; wherein, the
numerically simulated results were well supported by the experimental
measurements. In all these studies, the elastic parameters had been
considered as deterministic, and deterministic dynamic response of the
structures was presented at various deterministic temperatures. How-
ever, in practical situations the temperature increment is not always
deterministic necessarily, rather it is quite random in nature. Therefore,
the probabilistic study of the dynamic response of the graphite-epoxy
composite plate at elevated random temperature is deemed essential.

Uncertainty quantification in the system response of the FRC plate
using the FE method has been investigated in the recent decade con-
sidering the aleatory uncertainties due to the randomness in the ma-
terial properties of the composite. Stochastic static and dynamic ana-
lyses of the FRC plate using perturbation method were presented in
details by Engelstad and Reddy [22], Park et al. [23], Salim et al. [24],
Chen et al. [25], Singh et al. [26], Onkar and Yadav [27], and Lal et al.
[28]. In perturbation method, the uncertain parameters are expanded
by Taylor’s series expansion about the mean value. However, the lim-
itation of this method is, the deviation of the randomness cannot be too

large with respect to the mean value of the parameters. The brute-force,
Monte Carlo simulation (MCS) method is relatively simple and ex-
tensively applied to quantify the uncertainty in the static and dynamic
response evaluation of the composite plates. Nevertheless, a large
numbers of Monte Carlo (MC) realizations are required for achieving
good accuracy in the simulation, which is time consuming and com-
putationally inefficient. Application of the MC-based simulation for
studying reliability of the laminated composite plate was shown by
Zhang et al. [29]. To address the issue of computational efficiency, the
spectrum-based generalized polynomial chaos (gPC) expansion method
[30–35] has received a significant attention due to its computational
efficiency with reasonable accuracy in the simulation over the sam-
pling-based MCS. Sepahvand et al. [36–38] presented the application of
the gPC expansion method to represent the uncertainty in the eigen
frequencies and eigen modes of the FRC plates due to the uncertainty in
the elastic moduli and fiber orientations. More details on the applica-
tions of the method can be found in [39,40].

In the recent past, some studies have been reported which address
the uncertainty in the eigen frequency response of the composite plate
in the thermal environment. Lal and Singh [41] had investigated the
uncertainty in the first eigen frequency arising due to a small level of
uncertainty in the individual system parameters of the composite plate
at different temperatures. The system parameters included elastic
moduli, Poisson’s ratio, and thickness of the composite plate. They had
used first-order perturbation technique (FOPT) in conjunction with the
HSDT in the FE method for the composite plate. Singh and Verma [42]
had studied the uncertainty in predicting the buckling load due to the
uncertainty in the geometric and material properties of the composite
plate at different moisture and temperature conditions using the HSDT
and FOPT. They [41,42] had adopted simply-supported and fixed
boundary conditions for the plates in the analysis. Kumar et al. [43] had
studied stochastic free vibration response of the laminated composite
plate resting on elastic foundation under hygrothermal environment
using the HSDT. Dey et al. [44] had applied surrogate modeling ap-
proach to investigate the stochasticity in the first three natural fre-
quencies of the laminated composite plate due to the uncertainty in the
temperature, elastic moduli, and fiber angle/ orientations. They had
considered cantilever laminated composite plate for the analysis.
Kumar [45,46] had studied the mean and coefficient of variation (COV)
of the first mode of linear and nonlinear eigen frequencies, respectively
with the increment in the temperature and moisture content con-
sidering randomness in the elastic moduli, coefficient of thermal ex-
pansion, and moisture content using the FOPT. Nevertheless, the sto-
chastic static and free vibration response of the composite plate due to
the randomness in the material properties at various temperatures using
the FOPT has been investigated in [45,46], considering limitation in the
applicability of the COV equal to 0.1.

The perusal of the earlier works reveals that research is conducted
on probabilistic study of the static response and eigen frequency re-
sponse at higher temperatures due to the uncertainty in the system
parameters using the FOPT. However, probabilistic dynamic analysis of
the composite plate due to the random temperature increment is
completely missing, though it is such an important consideration.
Therefore, the present study intends to report the effect of random
mean temperature increment on the eigen frequency and dynamic re-
sponse of the composite plate with various stacking sequences using the
gPC expansion method. Moreover, the application of the gPC expansion
technique may be able to address the issue regarding consideration of
the large uncertainty over the perturbation technique. The collocation-
based non-intrusive gPC expansion method is applied to model the
stochastic response of the eigen frequencies and the time-dependent
displacement field. The stochastic response at each time step has been
determined to describe the effect of the temperature uncertainty on the
dynamic response of the composite plate. A deterministic FE model has
been developed to realize the dynamic response considering the tem-
perature-dependent elastic properties of the graphite-epoxy composite
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plate. This FE model is developed to analyze the laminated composite
plate in the thermal environment to evaluate the structural response
from the non-intrusive stochastic model. The major contribution from
this paper is, to study the effect of thermal stochasticity by using sto-
chastic finite element method (SFEM) with the application of the gPC to
evaluate the uncertainty in the eigen frequency and dynamic central
displacement. Numerical dynamic analysis has been carried out with
suddenly applied pulse and impulse loading to investigate the variation
of uncertainty in the time domain for the cross-ply and angle-ply la-
minates.

The paper is organized as follows: development of the stochastic
formulation of the graphite-epoxy composite laminated plate for the
uncertainty in the temperature increment is presented in the next sec-
tion. A step-by-step procedure for the numerical study is demonstrated
in Section 3. Validation of the stochastic model and numerical results
are given in Section 4, followed by conclusions in the last section of this
paper.

2. Stochastic formulation for the random temperature increment

In the present study, a laminated composite plate of length L, width
W, and uniform thickness h is considered consisting of n numbers of
unidirectional lamina. It is assumed that each lamina of the composite
plate is orthotropic, and bonded together with infinitely thin bonds to
act as an integral part of the composite plate. The thickness of the
composite plate is considered to be very small as compared to the in-
plane dimensions, and shear deformation of the composite plate is
constant throughout the thickness. Consequently, the FSDT is employed
in the present study considering the desirable accuracy with improved
computational efficiency [47]. A shear correction factor is applied here
to account for the non-uniform distribution of the transverse shear
strain along the thickness of the laminate.

2.1. Constitutive relationship of the composite plate

Mid-plane of the composite plate is considered as a reference plane
to evaluate the displacement fields. According to the FSDT, normal to
the mid-plane remains straight before and after deformation. The po-
sitive sign convention for the in-plane translations u and v, out-of-plane
translation w, the rotations of the transverse normal x and y of the
composite plate about y and x axes, respectively, and fiber orientations
of the lamina are shown in Fig. 1. The generalized displacement vector

=d u v w{ } { }x y
T of the composite plate at a distance z from

the mid-plane is expressed as

= + = =u u z v v z w w, , .0 y 0 x 0 (1)

Here, u v,0 0, and w0 are the mid-plane displacements along x y, , and z
directions, respectively. Shear rotations x and y in x z and y z

planes, respectively, are expressed as

= + =w w, , , .x x y y y x (2)

Components of linear strain vector { } of the laminate at distance z from
the mid-plane are derived from Eq. (1) as

= +

=

= + +

=

=

u z

v z

u v z

,

,

( ),

,

.

x x y x

y y x y

xy y x y y x x

xz x

yz y
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0, ,

0, 0, , ,

(3)

Linear strain terms are redefined as
= = = + = =u v u v, , ( ), ,x x y y xy y x x y x y x y0 0, 0 0, 0 0, 0, , , , and
= ( )xy y y x x, , . When composite plate is subjected to the uniform

distribution of the temperature, the stress-strain relationship for the kth

lamina with reference to the laminate axes (x y z, , ) is written as

= Q T{ } [ ] [{ } { } ],k k k k (4)

in which ={ } { }x y xy xz yz
T is stress vector, thermal ex-

pansion coefficient vector is written as ={ } { 0 0}x y xy
T and

T is the increment in temperature over reference temperature. Here,
Q[ ]k is the stress-strain relationship matrix for the kth lamina with re-
ference to the laminate axes, cf. [47,48] for further details. The force
and moment resultant of the laminate are obtained by integrating Eq.
(4) over the thickness and written as

=F D e{ } [ ][{ } { }].r (5)

In this equation, the resultant force and moment vector is

=F N N N M M M Q Q{ } { } ,r x y xy x y xy x y
T (6)

generalized mid-plain strain vector is

={ } { } ,x y xy x y xy xz yz0 0 0
T (7)

generalized thermal strain vector is

=e e e e{ } { 0 0 0 0 0} ,x y xy
T (8)

and D[ ] is the load-strain relationship matrix of the laminated composite
plate. Accordingly, Eq. (5) can be rewritten in a compact form as

=F D F{ } [ ]{ } { },r N (9)

in which the thermal resultant force and moment vector are given by

=F N N N M M M{ } { 0 0} .N x
N

y
N

xy
N

x
N

y
N

xy
N T

(10)

Initial strain { }nt due to thermal load is represented by the nonlinear
portion [3,49] of the overall strain as

= + +

= + +

= + +

= +
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2
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The Eq. (11) can be rewritten in a compact form with reference to the
Eq. (1) as

= R d{ } 1
2

[ ]{ },nt (12)

where =d u u v v w w{ } { }x y x y x y x x x y y x y y x y0, 0, 0, 0, , , , , , ,
T,

and [R] is the strain-displacement relationship matrix of the nonlinear
strain.

Fig. 1. Laminate geometry, and fiber angle orientations with respect to the
global axes.

S. Chandra, et al. Composite Structures 226 (2019) 111159

3



2.2. Equations of motion

The equations of motion of the laminated composite plate are pre-
sented here using the Hamilton variational principle [48], stated as

=td 0,
t

t

1

2

(13)

where and are total potential and kinetic energies, respectively,
during the time interval (t t,1 2). The total potential energy can be
written as = , where represents the strain energy of the
plate, and is the work done by the externally applied forces. The
total potential energy of the composite plate in the thermal en-
vironment is expressed as

= + +( )D A d S d A d F A F A1
2

{ } [ ]{ }d 1
2

{ } [ ]{ }d { } { }d { } { }d ,r NA
T

A
T

A
T

A
T

(14)

in which S[ ]r is residual stress resultant matrix, see Appendix A.1; and
F{ } is externally applied transverse load vector per unit area in the di-
rection of the generalized displacement vector d{ }. The kinetic energy
of the composite plate is presented as

= d M d A1
2

{ } [ ]{ }d .
A

T
(15)

Here, d{ } is a generalized velocity vector corresponding to d{ }, and M[ ]
is the distributed inertia matrix of the laminated composite plate. Ac-
cordingly, mathematical expression for the dynamic motions is formed
by combining Eqs. (14) and (15) into the Hamilton variational prin-
ciple, see Eq. (13), as

+
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(16)

2.3. Stochastic modeling of uncertain parameters

Stochastic response of the dynamical system due to independent and
identically distributed (iid) random parameters can be represented by
generalized polynomial chaos (gPC) theory. The concept of application
of the chaos theory to represent the stochastic response was first coined
by Wiener [50]. A set of orthogonal polynomials is used to project the
random variables onto the stochastic space. Consider a probability
space represented by ( P, , ), in which is the random sample space,

is a -algebra on , and P is a probability measure on the sample
space. Any uncertain parameter : with finite variance can be
expressed as [32]

=
=

a ( ).
i

i i
01

1 1
(17)

This is the gPC expansion of the uncertain parameter in a compact
form. The random orthogonal polynomial i1 is a multidimensional
function of random variables, = = …i n{ }, 1, 2, ,i in the particular
sample space. Selection of the orthogonal polynomial is dependent on
the type of sample space of the random variables. It is convenient to use
the truncated series for the expansion considering the accuracy and the
sample space of the random variables. The unknown coefficients a{ }i1
are determined by the Galerkin projection technique.

In the present study, uniform temperature increment of the com-
posite plate is considered as a random variable. It is reported earlier
that the elastic moduli of the graphite-epoxy composite plate varies
with the variation in the temperature [51–53]. The elastic moduli of the
graphite-epoxy composite is varied according to the random tempera-
ture increment, and consequently the dynamic response of the com-
posite becomes stochastic in nature. Hence, uncertainty in the tem-
perature increment can be represented by the truncated gPC expansion

as

= =
=

aT a( ) ( ) ,
i

N

i i
0

T

1

1

1 1
(18)

in which =a a{ }i1 is the vector of deterministic unknown coefficients
and N1 is the finite number of terms of the gPC expansion of the random
temperature. The orthogonality relation of the multidimensional poly-
nomial functions, = { ( )}i1 is written as

= = = …p i j N[ , ] [ ] , , 0, 1, 2, , ,i j i i j i i j
2 2

1 1 11 1 1 1 1 1 1 1 (19)

in which i j1 1 and pi1 represent Kronecker delta and the norm of the
polynomials, respectively. The unknown coefficients a{ }i1 are de-
termined using Galerkin projection technique as

f=a T{ } 1 ( ) ( ) ( )d ,i
i

i21
1

1
(20)

where i
2
1 denotes the inner products in the Hilbert space, and f is the

probability density function (PDF) of random variable . Once a{ }i1 are
known, any statistical property of the random parameter can be cal-
culated. For instance, the expected value µT and the variance T

2 take
the following forms

= =
=

µ a a p, .T T
i

N

i i0
2

1

2 2

1

1

1 1 (21)

Due to the increment in the random mean temperature, elastic prop-
erties of the composite are varied. The structural response of the
composite also becomes uncertain. Accordingly, the random eigen
frequency f ( ) and time-dependent random displacement d t( , ) are
approximated by truncated finite number of terms N2 using the gPC
expansions as

= =
=

bf b( ) ( ) ,
i

N

i i
0

T

2

2

2 2
(22)

= =
=

cd t c t, ( ) ( ) .
i

N

i i
0

T

2

2

2 2
(23)

Here, =b b{ }i2 and =c c t{ ( )}i2 are the deterministic unknown coeffi-
cients for the random eigen frequency and random dynamic displace-
ment at each time step, respectively, and = { ( )}i2 is the orthogonal
polynomial function.

2.4. Stochastic finite element modeling

Orthotropic composite plate is mathematically modeled by fol-
lowing finite element method (FEM), and the entire plate domain is
discretized by eight-node C0 isoparametric element with five degrees of
freedom (DOF) per node. The stochastic element displacement vector
d t{ ( , )} is expressed in terms of the stochastic nodal displacement
vector d t{ ( , )}e using elemental interpolation functions N[ ], and is
given by

=d t N d t{ ( , )} [ ]{ ( , )}.e (24)

Accordingly, the random mid-plain strain vector t{ ( , )} can be cal-
culated from the stochastic nodal displacement vector d t{ ( , )}e em-
ploying strain-nodal displacement matrix B[ ], with reference to Eqs. (7)
and (24) as

=t B d t{ ( , )} [ ]{ ( , )}.e (25)

The stochastic elemental strain energy for an element e is derived with
reference to Eq. (16)
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(26)

where G[ ] is the matrix of shape functions given in Appendix A.2. Since,
virtual displacement d t{ ( , )}e is arbitrary in nature, stochastic finite
element model of the element e of the laminated composite plate can be
presented as

+ +
= +

K T K T d t M d t
P t P T

{[ ( ( ))] [ ( ( ))]}{ ( , )} [ ]{ ¨ ( , )}
{ ( )} { ( ( ))}.

e Ge e e e

e N e (27)

The stochastic elemental stiffness matrix K T[ ( ( ))]e , stochastic ele-
mental geometric stiffness matrix K T[ ( ( ))]Ge , and stochastic elemental
thermal load vector P T{ ( ( ))}N e are obtained as

=K T B D T B A( ) [ ] ( ) [ ]d ,e eA
T

e (28)

=K T G S T G A( ) [ ] ( ) [ ]d ,Ge r eA
T

e (29)

=P T B F T A( ) [ ] ( ) d .N e N eA
T

e (30)

The elemental mass matrix M[ ]e and elemental dynamic force vector
P t{ ( )}e are given respectively by

=M N M N A[ ] [ ] [ ][ ]d ,e eA
T

e (31)

=P t N F t A( ) [ ] ( ) d .e eA
T

e (32)

Elemental static load vector can be developed with reference to the Eq.
(32) as

=P N F A{ } [ ] { }d ,Se eA
T

e (33)

and corresponding global static load vector P{ }S is developed after
proper assembling. The global stochastic FE model for the forced vi-
bration can be obtained after assembling the element matrices in the
following form

+ + = +K T K T d t M d t P t P T{[ ( ( ))] [ ( ( ))]}{ ( , )} [ ]{ ¨ ( , )} { ( )} { ( ( ))}.G N

(34)

It is stated earlier that elastic properties of the constituent materials of
the composite are varied with the variation in the temperature
[51–53,3]. Therefore, stiffness matrix, geometric stiffness matrix, and
thermal force vector of the composite are expressed as functions of
random matrices due to randomness in the temperature. The solution of
the stochastic forced vibration problem is sought by Newmark’s in-
tegration technique, and the randomness in the displacement at each
time step is described. The homogeneous solution of Eq. (34) yields the
stochasticity in the eigen frequency f ( ) of the composite plate for the
specified boundary conditions. The stochastic representations, as dis-
cretized in Eqs. (18) and (23), using truncated gPC expansion method
are substituted in Eq. (34), i.e.

+ + = +a a c c aK K M P t P{[ ( )] [ ( )]}( ) [ ](¨ ) { ( )} { ( )}.G N
T T T T T

(35)

The unknown deterministic coefficients for the eigen frequencies bT are
estimated by minimization of the stochastic error t{ ( , )}1 from the
homogeneous solution of Eq. (35) as

= + +a a c ct K K M{ ( , )} {[ ( )] [ ( )]}( ) [ ](¨ ).G1
T T T T (36)

Similarly, the solution of the unknown deterministic coefficients for
time-dependent displacement field cT are derived by minimization of
the stochastic error t{ ( , )}2 from

= + +a a c c at K K M P t P{ ( , )} {[ ( )] [ ( )]}( ) [ ](¨ ) { ( )} { ( )}.G N2 T T T T T

(37)

The minimization of the stochastic error is carried out by calculating
the deterministic response of the system at some specific collocation
points, i.e. at the roots of the higher-order orthogonal polynomials, and
minimizing the error between these response. The response is calcu-
lated by the gPC expansion using least-squares method [32]. The col-
location-based non-intrusive method is implemented here to derive the
unknown coefficient vectors. In this method, deterministic governing
equations of motion are employed as a deterministic solver, and solu-
tions are obtained at the specific collocation points. Selection of the
collocation points depends on the choice of the order of the gPC ex-
pansion representing the randomness in the dynamical system, cf. [32]
for more details.

3. Solution procedure

The solution of the non-intrusive gPC-based stochastic FE model is
evaluated in two parts, i.e. the solution of the deterministic finite ele-
ment model, and the solution of the stochastic model by determining
the unknown coefficients while setting the random errors equal to zero
at some predefined collocation points. The FE model developed for the
laminated composite plate in the thermal environment is used as a
deterministic solver, and runs of the deterministic FE model are re-
peated at the specified realizations of the selected random vector
points. The detailed procedure of the numerical simulation, considering
temperature uncertainty is summarized here in Algorithm 1 and
Algorithm 2.

Algorithm 1: Deterministic analysis using FE model of the composite plate in thermal
environment

1 Develop global matrices K[ ] and M[ ] as well as force vectors P P t{ }, { ( )}S , and P{ }N of
the composite plate at the predefined temperature;

2 Calculate initial displacement { }i from bending equation, = +K P P[ ]{ } { } { }i S N ;
3 Substitute initial displacement { }i in Eqs. (25) and (9) to yield the residual stress

resultants F{ }r ;
4 Develop geometric stiffness matrix K[ ]G ;
5 Determine eigen frequencies and mode shapes of the laminated composite plate in

the thermal environment from the homogeneous solution of Eq. (34);
6 Solve Eq. (34) for time-dependent forcing function P t{ ( )} using Newmark’s direct

time integration method at each incremental time step to obtain the dynamic
response.

Gauss quadrature rule is adopted here for integration over the ele-
mental area for calculation of the element matrices. The 3-point Gauss
quadrature rule is adopted to compute the bending stiffness matrix;
whereas, 2-point Gauss quadrature rule is adopted to calculate the
shear stiffness, mass matrix, and force vectors to avoid the shear locking
phenomenon in the thin plate. The constant-average acceleration
scheme is adopted to solve Newmark’s direct time integration method
for obtaining stable solution of the linear problem [54]. A deterministic
MATLab® code has been developed to evaluate the eigen frequencies
and transient response of the laminated composite plate in thermal
environment, as stated in Algorithm 1.
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Algorithm 2: Collocation-based SFEM for analysis of the composite plate due to t-
hermal uncertainty

1 Define deterministic geometry of the model, elastic parameters, lamina sequence of
the composite plate, as well as mean, standard deviation (sd), and probability
space of the random temperature;

2 Represent the uncertainty in the temperature increment using the gPC expansion as
T ( ), see Eq. (18);

3 Estimate the unknown coefficients ai1 for the random temperature increment using
Galerkin projection technique, see Eq. (20);

4 Select the type of orthogonal polynomial ( )i2 based on the random space of the
input random variable, and the order of the polynomial function as N2;

5 Construct the uncertainty in the structural response f ( ) and d t( , ) using the tr-
uncated gPC expansion, see Eqs. (22) and (23);

6 Generate the collocation points from the roots of the higher-order polynomial fu-
nction ( )i2 . Number of collocation points should be at least equal to the nu-
mber of unknown deterministic coefficients bi2 and c t( )i2 ;

7 Generate the random temperature increment at the predefined collocation points;
8 Realize the structural response using the deterministic FE solver at the pre-gener-

ated random incremental temperature. Develop a set of equations from Eqs. (36)
and (37) at the predefined collocation points;

9 Calculate the unknown coefficients bi2 and c t( )i2 for the eigen frequency, and the
time-dependent displacement, respectively from the above set of equations em-
ploying least-squares minimization technique;

10 Estimate the statistical parameters of the structural response, e.g. mean, sd, and
corresponding PDF.

The selection of the orthogonal polynomial basis function depends
on the type of variability in the random input parameters. For instance,
Hermite polynomial is used for normally distributed input parameter,
whereas Jacobi polynomial is used if the input random parameter is in
Gamma distribution. Following Algorithm 2, a collocation-based SFEM
code is developed in MATLab® environment to evaluate the unknown

coefficients of the structural response in the gPC expansion method.
Predefined deterministic FE solver is used to generate structural re-
sponse at the collocation points.

4. Numerical study

Numerical study is conducted to evaluate uncertainty in the eigen
frequency and dynamic response of the graphite-epoxy laminated
composite plate due to random temperature increment using the gPC
expansion method. The stochastic studies are conducted at the mean
temperatures of 325 K, 350 K, 375 K, and 400 K. However, 300 K is
considered as a reference temperature. The temperature-dependent
elastic properties of the graphite-epoxy composite lamina are illustrated
in Table 1. The mean µT and sd T of the random temperature incre-
ment as input parameters are shown in Table 2. In the present study,
elastic moduli, coefficient of thermal expansion, and Poisson’s ratio of
the composite plate are considered as deterministic. The geometric
dimension, elastic properties, density, and stacking sequences of the
composite plate considered here are shown in Table 3. The composite
plates are subjected to the uniformly distributed transverse loads as
given in Table 4.

The polynomial basis function is represented by Hermite poly-
nomial for random input variable, which is normally distributed. The
number of unknown coefficients are increased rapidly if the order of the
polynomial is increased. Herein, one-dimensional 3rd order Hermite
polynomial is used to approximate the stochastic response. Therefore,
Hermite polynomial can be presented in term of the random variable
as = = =1, , ( 1)0 1 2

2 , and = ( 3 )3
3 . The eigen fre-

quency f and the transverse central ( ,L W
2 2 ) displacement d t( ) of the

composite plate are considered here to investigate the uncertainty in
the dynamic response due to random mean temperature increment.

4.1. Validation of the FE model

The FE model of the laminated composite plate in thermal en-
vironment has been developed, and the frequencies extracted are
compared with that reported in the literature. An ANSYS® parametric
design language (APDL) code is employed to calculate the eigen fre-
quencies of the composite plate considering the effect of thermal
prestress during modal analysis. The eigen frequencies of the simply-
supported graphite-epoxy laminated composite plate at the temperature
of 300 K and 325 K are evaluated using the present formulation, and are
compared with the frequencies reported by Ram and Sinha [3] and
ANSYS® simulation to establish validity of the present deterministic
formulation, cf. Table 5.

The parameters of Plate 1 (Table 3) are used for the validation
analysis. The finite element mesh considered here is discretized as

×4 4, based on mesh convergence procedure suggested in [55]. First
four natural frequencies of the composite plate at temperatures of 300 K
and 325 K represent a good agreement with the results reported by Ram
and Sinha [3] and ANSYS® simulation (Table 5), which confirms va-
lidity of the in-house MATLab® code developed and used for further
analysis. Furthermore, the dynamic response of the composite plate at a
temperature of 300 K is compared with that reported by Kant et al. [48]
and Niyogi et al. [56], and a good agreement is observed in the pre-
diction of the results.

The convergence of the dynamic response, i.e. central displacement
at different time steps of the ( ° ° ° °0 /90 /90 /0 ) graphite-epoxy laminated

Table 1
Elastic moduli of graphite-epoxy lamina at different temperatures, cf. [3].

= =G G G G, 0.513 12 23 12.

Temperature, T (K)

Elastic moduli (GPa) 300 325 350 375 400 425

E11 130 130 130 130 130 130
E22 9.5 8.5 8.0 7.5 7.0 6.75
G12 6.0 6.0 5.5 5.0 4.75 4.5

Table 2
Mean µT and sd T of the input random parameter.

Random parameter Type of distribution µT (K) T (K)

Temp. increment Normal 25, 50, 75, 100 5, 10, 15, 20

Table 3
Geometric dimension, elastic parameters, density, coefficient of thermal ex-
pansion, lamina sequences of the graphite-epoxy laminated composite plate.

Plate 1 Plate 2

Dimensions (mm) = = =L W h100, 1 = = =L W h100, 2
Elastic moduli = =E E130, 9.511 22 , See Table 1

(GPa) = =G G G6.0,12 13 12,
=G G0.523 12

Poisson’s ratio = 0.312 , = 0.312 ,

= E
E21 12

22
11

= E
E21 12

22
11

Density (kg/mm3) = ×1.6 10 6 = ×1.6 10 6

Coefficient of = ×0.3 101
6, = ×0.3 101

6,
thermal expansion ( K) = ×28.1 102

6 = ×28.1 102
6

Lamina sequence For cross-ply laminate For cross-ply laminate
( ° ° ° °0 /90 /90 /0 ) ( ° ° ° °0 /90 /90 /0 ),

For angle-ply laminate
( ° ° ° °45 / 45 / 45 /45 )

Table 4
Suddenly applied transverse load.

Pulse loading Impulse loading

Loading (N/mm2) =q 0.0010 =q 0.0010
Time of excitation (s) =t 0.25p =t 0.001ip

S. Chandra, et al. Composite Structures 226 (2019) 111159

6



composite plate, at a temperature of 325 K is shown in Fig. 2 for Plate 2.
Newmark’s time integration scheme is used for conducting transient
analysis of the composite Plate 2. The converged value for time step

=t 0.001 s is adopted in the present analysis. This FE model is sub-
sequently used as a deterministic FE solver to evaluate the uncertainty
in the eigen frequencies and the dynamic displacement of the graphite-
epoxy laminated composite plate due to the random mean temperature
increment.

4.2. Validation of the stochastic model

The gPC expansion method is a robust technique, which precisely
predict randomness in the system response due to randomness in the

input parameters. Effectiveness of the gPC expansion method is in-
vestigated here by comparing with the realizations generated from
10, 000 Monte Carlo simulations (MCS). Table 6 shows the mean µf and
sd f of the first three eigen frequencies derived using 3rd and 4th order
gPC expansion method at a random mean temperature of 325 K, and are
compared with the MC simulations of 10, 000 sample realizations.

A comparison of the PDFs for the first three eigen frequencies at the
mean random temperature of 325 K for the composite Plate 2 is illu-
strated in Fig. 3. It is evident that, 3rd order gPC expansion is enough to
represent the uncertain response of the composite plate due to random
mean temperature increment.

The deterministic FE model of the laminated composite plate under
uniform temperature is used to determine the unknown coefficients of
3rd order gPC expansion in Eqs. (22) and (23), at 25 sets of random
temperatures using least-squares method. Deterministic dynamic re-
sponse for each predefined temperature is calculated at every incre-
mental time step using Newmark’s step-by-step integration technique.
The total time of study is kept as 0.25 s, and the time step considered is
0.001 s. Uncertainty in the time-dependent central displacement using
3rd order gPC expansion method, incorporating the Hermite poly-
nomials, in Eq. (23) as represented in [57]

= + + +d t c t c t c t c t( , ) ( ) ( )( ) ( )( 1) ( )( 3 ).0 1 2
2

3
3 (38)

The unknown coefficients c t( )i are derived by solving the stochastic Eq.
(38) for a set of 25 collocation points generated from the roots of the 4th

order Hermite polynomial at each incremental time step. Time history
plots of the unknown coefficients for a simply-supported
( ° ° ° °0 /90 /90 /0 ) graphite-epoxy laminate due to suddenly applied pulse
and impulse loading are shown in Figs. 4 and 5, respectively at the
mean temperatures of 325 K, 350 K, 375 K, and 400 K. The first coeffi-
cient c0 indicates the mean response of the central displacement, and
has dominating influence on both the types of loading conditions. On
the other hand, the amplitude of the second coefficient c1, which in-
fluences the sd of the response, is in increasing order with the increase
in the random mean temperature. Moreover, the amplitude of c1 is
comparable with the mean response for the impulse loading at the
random mean temperature of 400 K. It can be stated that, at the same
level of uncertainty in temperature increment, the sensitivity of the
dynamic response increases with the random mean temperature in-
crement. Note that, the amplitude of c0 is decreasing with the increment
in time and is increasing with the increment of the random mean

Fig. 2. Convergence studies of Newmark’s integration method for a simply-
supported ( ° ° ° °0 /90 /90 /0 ) graphite-epoxy Plate 2 subjected to suddenly applied
pulse loading, q0 at =T 325 K.

Table 6
Comparison of the statistical results of first three eigen frequencies of the ( ° ° ° °0 /90 /90 /0 ) laminate graphite-epoxy Plate 2 at a mean temperature, T=325 K.

Method 1st eigen freq. (Hz) 2nd eigen freq. (Hz) 3rd eigen freq. (Hz)

µf f µf f µf f

MCS (10,000) 27.430 0.392 54.365 0.608 99.289 0.308
3rd order gPC 27.440 0.397 54.378 0.615 99.298 0.311

4th order gPC 27.435 0.397 54.375 0.616 99.291 0.313

Table 5
Results of the free vibration analysis of the graphite-epoxy composite Plate 1 at
T=300 K and 325 K.

Mode Temperature Present ANSYS® Ram and Sinha [3]

Nos. T (K) Eigen freq. NDF1 Eigen freq. NDF1

f (Hz) f (Hz)

1 300 14.818 12.083 14.807 –
325 9.929 8.097 9.917 8.088

2 300 29.434 24.001 29.330 –
325 23.665 19.196 23.551 19.297

3 300 51.493 41.988 51.343 –
325 48.428 39.324 48.276 39.324

4 300 62.050 50.600 61.780 –
325 56.615 46.165 56.336 45.431

1 Non-dimensional frequency, = fL E h2 ( / )2
22

2 1/2

Fig. 3. PDFs of first three eigen frequencies (Hz) obtained using 3rd and 4th order gPC expansions compared with the MCS at mean random temperature of 325 K for
Plate 2.
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temperature. The effectiveness of the gPC expansion method is estab-
lished by the convergence of coefficients, c c,1 2, and c3.

4.3. PDF of the eigen frequencies

For safe design of the composite plate, and to estimate the factor of
safety at elevated temperature the probabilistic analysis is necessary
over the deterministic analysis. The mean and sd of the first three eigen
frequencies of the symmetric cross-ply laminate at different random
mean temperatures is presented in Table 7. Fig. 6 represents the PDF of
the first three eigen frequencies at various random mean temperatures
in increasing order and corresponding deterministic eigen frequencies
at the mean temperature. It is observed from Table 7 and Fig. 6 that,
deterministic values of the eigen frequencies lie near the maximum
probability density. The sd, which represents the dispersion of the
probability plot, is increased with the increase in the random mean
temperature. The sd of the eigen frequencies at a temperature of 325 K
is less in comparison with the higher random mean temperature. This
indicates the fact that, the random mean temperature increment in-
fluences the variation in the elastic properties of the composite, and
thereby increment in the level of uncertainty in the frequency response
at the higher random temperature.

4.4. Stochastic dynamic response of laminated composite plates

The effect of uncertainty in the temperature increment on the time-
dependent transverse central displacement for the symmetric cross-ply
and angle-ply laminated composite plates for the suddenly applied
pulse and impulse loading are investigated. The time-dependent de-
terministic and mean values of the central displacement for simply-
supported cross-ply laminate under the suddenly applied pulse and

impulse loading are plotted in Figs. 7 and 9, respectively. The ratio of
the sd and mean values of transverse displacement at each time step is
derived to measure the variation in the level of uncertainties in the
dynamic response due to the random mean temperature increment for
the symmetric cross-ply laminate in time domain, which are reported in
Figs. 8 and 10 for the suddenly applied pulse and impulse loading,
respectively. It is observed from Figs. 7 and 9 that deterministic and
mean central displacements are in increasing order due to corre-
sponding degradation in the material properties due to the increment in
the random mean temperature under both types of loading. However,
the mean central displacements are decaying with the time as compared
to the deterministic values, and the decay is faster with the increment in
the random mean temperature under both types of loading. This decay
in the mean amplitude in time domain is due to the increasing ran-
domness with the temperature increment [58]. The ratio of the sd and
mean for the symmetric cross-ply laminate in Fig. 8 represents sudden
peak at troughs of the corresponding time-dependent displacement plot
for the pulse loading. The peak value is decreased with an increment in
the random mean temperature. However, for the impulse loading in

Fig. 4. ime history of the gPC expansion coefficients of central displacement for a
simply-supported ( ° ° ° °0 /90 /90 /0 ) laminate subjected to the pulse loading due to the
randomness in temperature at 325K, 350K, 375K, and 400K, respectively for Plate
2.

Fig. 5. Time history of the gPC expansion coefficients of central displacement
for a simply-supported ( ° ° ° °0 /90 /90 /0 ) laminate subjected to the impulse
loading due to the randomness in temperature at 325 K, 350 K, 375 K, and
400 K, respectively for Plate 2.

Table 7
Statistics of the first three eigen frequencies (Hz) for a simply-supported
( ° ° ° °0 /90 /90 /0 ) laminate due to the mean random temperature increment for
Plate 2.

Temperature 1st mode 2nd mode 3rd mode

µf f µf f µf f

325 K 27.444 0.397 54.378 0.615 99.298 0.311
350 K 25.431 0.788 51.332 1.193 97.664 0.641
375 K 23.565 1.070 48.517 1.602 96.186 0.821
400 K 21.865 1.374 46.034 1.958 94.958 0.969
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Fig. 10 sudden peak for sd/mean plot is observed in-between crests and
troughs of the time-dependent displacement plot. The value of sd/mean
is increased with the random mean temperature increment. It can be
stated that characteristics of loading does influence the level of un-
certainty in the dynamic displacement for uncertain temperature in-
crement.

Figs. 11 and 13 present a comparison of the deterministic and the
mean response of the central displacements for symmetric angle-ply
laminate under pulse and impulse loading, respectively, and corre-
sponding plots of sd/mean are shown in Figs. 12 and 14. When un-
certainty in the response of the symmetric cross-ply and angle-ply la-
minates is compared, the rate of decay in the mean displacement with
respect to time shows a comparable performance. The value of the
sudden peak of sd/mean of corresponding time-dependent displace-
ment for symmetric angle-ply laminate is more as compared to the
symmetric cross-ply laminate.

Due to the suddenly applied impulse loading, the level of un-
certainty in displacement is increased at delayed time domain response
with an increment in the random mean temperature; whereas, the level
of uncertainty is decreased at delayed time domain response of the
central displacement under suddenly applied pulse loading with an
increment in the random mean temperature. Thus, level of uncertainty
in the dynamic displacement is significantly varied in time domain with
the increment in the random mean temperature. Hence, prior to the
engineering application, uncertainty quantification in the dynamic re-
sponse of the composite plate with various anticipated loading condi-
tions and lamina sequences subject to random temperature field is es-
sential to ensure safety in its design.

It can be concluded from the earlier discussion in this section that,
in case of the pulse loading the mean value and sd of the dynamic
central displacement is decreasing at the delayed time domain due to
the random mean temperature increment. However, in case of the im-
pulse loading the amplitude of the mean central dynamic displacement
is diminishing in time domain though the dispersion is increasing in
time domain near the mean position of the amplitude along with the
random mean temperature increment. Therefore, statistical parameters
of the stochastic dynamic response due to the uncertain thermal para-
meters are also influenced by the characteristics of the applied loading.
Application of four-layered symmetric cross-ply and angle-ply lami-
nates does not have significant influence on the stochastic dynamic
response characteristics.

4.5. PDF of peak displacement

The effect of temperature uncertainty on the peak dynamic dis-
placement of the composite plate for the symmetric cross-ply and angle-
ply laminates is demonstrated in Figs. 15 and 16, respectively with the
applied pulse and impulse loading. The distribution of the peak central
displacement due to 0.001 N/mm2 pulse and impulse loading are
plotted at various random mean temperatures in incremental order
with the same level of uncertainty using the gPC expansion method. It is
observed that the dispersion of the PDF increases with the increment in
the random mean temperature, specifically under the pulse loading.
Under the pulse loading, at a random mean temperature of 325 K the
distributions are more symmetric, however at the higher random mean
temperature the distribution became non-Gaussian and unsymmetric.

Fig. 6. PDF of first three natural frequencies (Hz) of a simply-supported ( ° ° ° °0 /90 /90 /0 ) laminate due to the randomness in temperature at 325 K, 350 K, 375 K, and
400 K, respectively, and corresponding deterministic value (red dashed line) for Plate 2.
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Fig. 7. Comparison of time history of the deterministic central displacement
and mean of the central displacement for a simply-supported ( ° ° ° °0 /90 /90 /0 )
laminate subjected to pulse loading due to the randomness in temperature at
325 K, 350 K, 375 K, and 400 K, respectively for Plate 2.

Fig. 8. Time history of sd/mean of the central displacement for a simply-supported
( ° ° ° °0 /90 /90 /0 ) laminate subjected to pulse loading due to the randomness in
temperature at 325K, 350K, 375K, and 400K, respectively for Plate 2.

Fig. 9. Comparison of time history of the deterministic central displacement
and mean of the central displacement for a simply-supported ( ° ° ° °0 /90 /90 /0 )
laminate subjected to impulse loading due to the randomness in temperature at
325 K, 350 K, 375 K, and 400 K, respectively for Plate 2.

Fig. 10. Time history of sd/mean of the central displacement for a simply-supported
( ° ° ° °0 /90 /90 /0 ) laminate subjected to impulse loading due to the randomness in
temperature at 325K, 350K, 375K, and 400K, respectively for Plate 2.
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Fig. 11. Comparison of time history of the deterministic central displacement
and mean of the central displacement for a simply-supported
( ° ° ° °45 / 45 / 45 /45 ) laminate subjected to pulse loading due to the randomness
in temperature at 325 K, 350 K, 375 K, and 400 K, respectively for Plate 2.

Fig. 12. Time history of sd/mean of the central displacement for a simply-supported
( ° ° ° °45 / 45 / 45 /45 ) laminate subjected to pulse loading due to the randomness in
temperature at 325K, 350K, 375K, and 400K, respectively for Plate 2.

Fig. 13. Comparison of time history of the deterministic central displacement and
mean of the central displacement for a simply-supported ( ° ° ° °45 / 45 / 45 /45 ) la-
minate subjected to impulse loading due to the randomness in temperature at 325K,
350K, 375K, and 400K, respectively for Plate 2.

Fig. 14. Time history of sd/mean of the central displacement for a simply-supported
( ° ° ° °45 / 45 / 45 /45 ) laminate subjected to impulse loading due to the randomness
in temperature at 325K, 350K, 375K, and 400K, respectively for Plate 2.
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Under the impulse loading, the distributions are non-Gaussian, and
larger part of the distributions overlap with each other at different
random mean temperatures. Moreover, due to the impulse loading on
the symmetric angle-ply laminate distributions of the peak central
displacement are non-Gaussian, and noticeably unsymmetrical. Hence,
appropriate evaluation of distribution of the peak displacement re-
sponse is recommended for various lamina sequences with different
loading conditions due to uncertainty in the temperature increment
prior to real-field applications. Likewise, the peak failure stress induced
in the composite plate is varied due to random mean temperature in-
crement. A reliability analysis due to random thermal increment is
necessary prior to application in the thermally sensitive part of the
structure. This study has revealed the necessity of conducting further
studies on the graphite-epoxy composite plates due to the random
thermal environment.

5. Conclusions

The stochastic dynamic response of the graphite-epoxy composite
plate under the applied pulse and impulse excitations, considering
randomness in the incremental temperature is presented. The non-in-
trusive generalized polynomial chaos (gPC) expansion method is im-
plemented for the stochastic simulations. The first-order shear de-
formation theory (FSDT) is adopted to analyze the thin composite plate
under uniform temperature increment, and this deterministic finite
element (FE) solver is used to generate the response at prescribed col-
location points. The major advantage of the applicability of the gPC
expansion method is to represent the mean and sd of the time-depen-
dent dynamic response at each time step with reduced computational

efforts. The convergence of the polynomial form of the dynamic re-
sponse indicates the reduction in the error while representing the sto-
chasticity in the temperature by using orthogonal polynomial. The
computational accuracy of the gPC expansion method is well compared
with the Monte Carlo simulations (MCS). Stochastic dynamic response
of the composite plate due to thermal uncertainty is efficiently de-
scribed here with the application of the gPC expansion method. The key
findings from this study are summarized below.

1. The mean eigen frequency of the composite plate decreases with the
increment in the random mean temperature, as elastic moduli of the
composite plate decrease with the temperature.

2. The standard deviation (sd) of the eigen frequencies of the compo-
site plate increases with the increment in the random mean tem-
perature which imply an increment in the variation of the degraded
elastic properties of the composite.

3. The stiffness of the composite plate decreases with the increment in
the temperature, and subsequently amplitude of the dynamic dis-
placement is increasing with the increment in the temperature.
Moreover, the mean amplitude of the dynamic displacement of the
composite plate decays gradually in the time domain with the
random mean temperature increment.

4. The level of uncertainty in the dynamic response under impulse
loading is higher due to higher rate of decay in corresponding mean
transient response in time domain in comparison with the pulse
loading.

5. The level of uncertainty in the dynamic displacement response in
the delayed time domain is more under the suddenly applied im-
pulse loading. Under the applied pulse loading, the level of

Fig. 15. PDF of peak central displacement for simply-supported ( ° ° ° °0 /90 /90 /0 ) laminate subjected to pulse and impulse loading, respectively due to the randomness
in temperature for Plate 2.

Fig. 16. PDF of peak central displacement for simply-supported ( ° ° ° °45 / 45 / 45 /45 ) laminate subjected to pulse and impulse loading, respectively due to the
randomness in temperature for Plate 2.
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uncertainty in the dynamic displacement is decreasing in the de-
layed time domain. The PDF of the stochastic dynamic response in
the random thermal environment should be studied for the various
types of loading at several time steps before practical application.

6. The mean dynamic response is increasing with the increment in the
random mean temperature due to the degradation in the material
properties of the graphite-epoxy composite plate. Moreover, level of
uncertainties are significantly varied in time and temperature do-
mains. Thus, the stochastic studies of graphite-epoxy composite
plate due to random thermal increment exhibited necessity over the
deterministic analysis.

7. The distribution of the peak displacement at the lower random
temperature is symmetrical, more evidently for the pulse loading.
For the higher random temperature, the distribution became un-
symmetric and non-Gaussian.

8. Statistical properties of the dynamic response are not much influ-
enced by providing four layers of symmetric cross-ply and angle-ply
laminates.

The presented methodology for quantifying uncertainty can be

efficiently applied to complex structures. A deterministic FE model with
complex geometry and advanced engineered materials can be devel-
oped in ANSYS® and corresponding modal analysis in thermal en-
vironment then can estimate the dynamic response efficiently. Non-
intrusive gPC expansion can be efficiently used to estimate the sto-
chastic parameters of the eigen frequencies and time-dependent dy-
namic response by limited numbers of realization of the deterministic
FE model at predefined collocation points.
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Appendix B. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.compstruct.2019.111159.
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