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Abstract

Medical imaging data depicts a main information source for assessment of tu-
mor characteristics in clinical oncology. Despite advances in image acquisition
techniques, allowing for delineation of more and more detailed structures, clin-
ical evaluation of imaging features is performed based on simplistic scores, like
largest tumor diameter. Deep learning models have proven their power for im-
age analysis in a variety of settings, and also the medical domain is shifting
towards an application of the technique. However, existing models often rely on
architectures engineered to be used on natural images, not taking into account
the features specific to medical imaging data, or are limited to the area of image
segmentation. Different deep learning based classification models customized to
the medical problem settings at hand were developed in this thesis.

First, a 3D convolutional neural network was trained on computed tomogra-
phy (CT) and clinical data for classification of risk scores in renal mass patients.
Element-wise fusion of features extracted from both kidneys, utilizing a Siamese
network, was established. The model was able to differentiate clinically relevant
groups with an area under the receiver operating characteristics curve (AUC)
of 0.814 on the test set.

Next, CT based detection of oropharynx cancer cases caused by an infec-
tion with a human papilloma virus (HPV) was analyzed. A transfer learning
approach relying on sports video clips, featuring two spatial and one temporal
dimensions, was utilized to be able to handle 3D medical imaging data in the
downstream task. On the external test set, the model was able to discriminate
between HPV positive and HPV negative cases with an AUC of 0.814. For in-
domain pretraining, a masked autoencoder, utilizing modern transformer layers,
was customized, and the dataset was modified to include unlabeled cases. The
self-supervised model achieved an AUC of 0.723, while the transfer learning ap-
proach was able to distinguish cases with an AUC of 0.710 on the modified test
set.

Time dependent endpoints, like overall survival, are of essential importance
in oncology. Therefore, ability of deep learning architectures for modeling of
survival data was studied. However, handling of time dependent data requires
special architectures. For prediction of progression free survival in head and
neck cancer patients, a discrete time survival model in conjunction with the
video clip based transfer learning approach developed before was established.
The model was trained on positron emission tomography (PET)/CT images and
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clinical data and was able to asses patients’ risk for cancer progression with a
concordance index of 0.668.

Enabling reproducible research, all studies were either preformed on open
datasets or developed in the setting of publicly held biomedical imaging chal-
lenges. Further studies on larger patient cohorts are needed. In general, medical
imaging datasets contain a relatively small number of cases. Transfer and self-
supervised models developed in this thesis have the power to be trained as
representation learning approaches on larger datasets, to be then finetuned on
the specific task at hand. Survival models could be used to establish novel
scores, that feature the power to be utilized for decision making in therapy and
spare patients from overdosage.
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Zusammenfassung

Medizinische Bilddaten stellen eine wichtige Informationsquelle in der Onkolo-
gie dar. Essentielle Tumorcharakteristika können durch bildgebende Verfahren,
wie etwa der Computertomographie (CT), erfasst werden um in der Auswahl
des Therapieverfahrens Berücksichtigung zu finden. Während jedoch technische
Weiterentwicklungen in der Bildaufnahme ein Auflösen immer kleinerer Details
ermöglicht erfolgt die Bildauswertung basierend auf primitiven Kenngrößen, wie
etwa des größten Tumordurchmessers. Algorithmen des tiefen Lernens (engl.
deep learning) konnte in einer Vielzahl von Studien ihre Leistungsfähigkeit im
Bereich der Bildauswertung nachweisen. Auch im medizinischen Bereich findet
das Verfahren eine zunehmende Verbreitung. Modelle beruhen jedoch zumeist
auf Techniken entwickelt zur Anwendung auf herkömmlichen Bilddaten, ohne
dabei auf die speziellen Eigenschaften der medizinischen Bilder einzugehen, oder
beschränken sich auf den Bereich der Bildsegmentierung. In der vorliegende Ar-
beit wurden verschiedene Deep Learning Algorithmen zur Analyse von Tumor-
charakteristika entwickelt, wobei speziell auf die Gegebenheiten medizinischer
Bilddaten eingegangen wurde.

In einem ersten Schritt wurde hierzu ein faltendes neuronales Netzwerk (engl.
convolutional neural network) zur Risikoabschätzung in Nierentumoren anhand
von CT Bildern und klinischen Daten entwickelt. Durch ein siamesisches Netz-
werk wurden Muster beider Nieren extrahiert und anschließend elementweise
zusammengefügt. Das Modell konnte klinisch relevante Subgruppen im Test-
datensatz mit eine Fläche unter der Grenzwertoptimierungskurve (AUC) von
0.814 unterscheiden.

Im Anschluss wurde ein CT-basiertes Modell zu Detektion einer Infektion
mit Humanen Papillomviren (HPV) in Oropharynxkarzinompatienten erstellt.
Um der Herausforderung kleiner Datensätze zu begegnen, wurde ein Transfer-
Lernansatz beruhend auf Sportvideos in der Vorlernphase erstellt. Videodaten
besitzen eine dreidimensionale Struktur, mit zwei räumlichen und einer zeit-
lichen Dimension, dies ermöglicht ein Weiterlernen auf den 3D CT Bilddaten.
Das so entwickelte Netzwerk war fähig HPV positive von HPV negativen Tumo-
re mit einer AUC von 0.814 zu unterscheiden. Zur Entwicklung einer selbstler-
nenden Methode, die ein Vortrainieren in der selben Domäne ermöglicht, wur-
de ein Maskierender-Autokodierer an die Daten angepasst, dabei wurden mo-
derne Transformierschichten verwendet. Der Datensatz wurde modifiziert und
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um Fälle für die kein HPV Testergebnis vorlag erweitert. Der Maskierende-
Autokodierer Ansatz erreichte dabei eine AUC von 0.723, der zuvor entwickelte
Transfer-Lernansatz erzielte eine AUC von 0.710 auf dem erweiterten Datensatz.

Zeitabhängige klinische Endpunkte, wie etwa das Gesamtüberleben, spielen
in der Onkologie eine wichtige Rolle. Die Fähigkeit von Deep Learning Netzwer-
ken zur Modellierung von temporären Daten wurde untersucht. Dies erfordert
die Verwendung spezieller Architekturen. Zur Prognose des progressionsfreien
Überlebens in Kopf- und Halskarzinompatienten wurde ein Intervallzeitmodell
mit dem zuvor entwickelten Transfer-Lernansatz kombiniert um anhand von
Positron-Emissions-Tomographie (PET)/CT Bildern und klinischen Daten trai-
niert werden zu können. Dabei konnte auf dem Testdatensatz ein Übereinstim-
mungskoeffizient (engl. concordance index) von 0.668 erreicht werden.

Um eine Reproduzierbarkeit der hier durchgeführten Studien zu erreichen
wurden alle Modelle anhand von öffentlich zugänglichen Daten oder im Rahmen
von öffentlichen Wettbewerben entwickelt. Weiterführende Studien an größeren
Datensätzen werden jedoch benötigt. Das Fehlen eben jener großen Datensätze
stellt eines der Hauptprobleme im Bereicher der Deep Learning basierten Aus-
wertung von medizinischen Bilddaten dar. Der vorgestellte Transfer-Lernansatz
und die entwickelte selbstlernende Methode bilden eine Basis um Modelle an
größeren Datensätzen vorzutrainieren und an spezifischen kleineren Datensät-
zen weiterzuentwickeln. Überlebensmodelle besitzen das Potential zur Entwick-
lung neuartiger Risikoabschätzungen. Diese können zur Auswahl der jeweiligen
Therapie miteinbezogen werden um so etwa eine Überdosierung zu verhindern.
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Chapter 1

Introduction

Cancer remains a major health risk in every country in the world, with 19.3
million new cases and almost 10.0 million deaths determined worldwide for the
year 2020 [1]. Significant advances in therapy have been achieved in the past
decades, leading to improved cure rates and therefore higher survival proba-
bilities. However, early detection and precise diagnosis is crucial for successful
treatment. Solid cancers appear in the form of a tumor, which is the end re-
sult of a whole series of changes, possibly developed over several years [2]. But
what mechanisms are causing such a development? The underlying biological
characteristics were most prominently summarized by Hanahan and Weinberg
[3, 4] as the hallmarks of cancer, including the ten properties depicted in Figure
1.1. The combination of all of those hallmarks leads to an abnormal growth
of cells, ultimately resulting in macroscopic formation of a tumor able to in-
vade surrounding and distant tissue. However, underlying mechanisms of those
characteristics are genomic ones and actual tumor formation features a broad
richness in diversity. Cancers are no uniform entities but depict heterogeneous
diseases with different courses and response to treatment.

For example, tumors collectively summarized under the term head and neck
cancer include different epithelial malignancies that can be separated into five
basic subregions with some of them featuring a even more precise differentiation
[5]. Known risk factors for development of such tumors include: tobacco use,
alcohol consumption, infection with the Epstein-Barr virus or a high-risk human
papilloma virus (HPV) [6]. Head and neck cancers in the oropharynx, a subpart
of the throat, are more likely to be caused by an infection with HPV, but HPV
positive cases are associated with a better radiosensitivity than cases caused by
alcohol or tobacco consumption [7].

Apart from such a heterogeneity in appearance, tumors are also detected at
different stages. In later stages the cancer can have already spread to nearby
lymph nodes or even distant organs, while at an earlier stage the tumor may be of
small local extent. In addition, not only do cancers feature large heterogeneity
but also patients differ fundamentally in various properties like age or vital
status.
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Figure 1.1: Hallmarks of cancer, taken from Hanahan and Weinberg [4]. The six
hallmarks initially formulated in [3] were extended by two emerging hallmarks
and two enabling characteristics leading to a total of 10 features shown here.

All of those characteristics have to be taken into account for the decision
on the right treatment regime. Surgery, chemotherapy and radiation therapy
are the most common cancer treatment options, but also hormone therapy,
immuotherapy, and hyperthermia are available. Most often a combination of
various methods is used. Assessment of the treatment regime does not only
involve selection of the best therapy but also requires detailed determination of
characteristics like dose and follow-up care.

This diversity in cancer development and extent, as well as the richness of
treatment options, demands precise diagnosis such that an optimal therapy can
be selected. Different tools have been developed to facilitate high diagnostic
precision. Lab tests are able to identify biomarkers in body fluid samples, cells
extracted via biopsies can be analyzed pathologically, genetic testing permits
detection of DNA changes, and medical imaging allows for detailed rendering of
tissue.

In general, imaging depicts an essential part of management for every tumor
patient. Development of techniques like computed tomography (CT), magnetic
resonance imaging (MRI) and positron emission tomography (PET) allow for
delineation of macroscopic characteristics, caused by the inherent hallmarks of
cancer, that can be used for evaluation of disease specificity. Technological ad-
vances have had huge impact on cancer detection and management and further
improvements in technologies like phase contrast and dark-field imaging have
the power for even more detailed resolution. However, in contrast to all of those
technical enhancements, evaluation of images still relies on very basic anatomi-
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cal features, like largest tumor diameter, or visual assessment by highly trained
medical experts.

Today, artificial intelligence (AI) is present in our everyday life. Algorithms
suggest music or movies to us, capture which mails are considered spam, and
allow cars to drive on their own. The success of AI was mainly driven by
the development of deep learning, a technique whose superiority in terms of
image classification was proven by Krizhevsky et al. [8] in 2012 when they were
able to win the ImageNet Large Scale Visual Recognition Challenge [9] with
considerable distance by construction of a convolutional neural network (CNN).
Deep learning is now considered state of the art for a large variety of tasks
involving imaging data.

However, utilization of CNNs for examination of medical imaging data still
lacks widespread application. Availability of large, publicly available datasets
like ImageNet, MNIST [10] or CIFAR [11] was one key factor for the success of
deep learning in the natural imaging domain. Medical cohorts differ significantly
from such resources. Curation of medical data is cumbersome, causing cohorts
to be several magnitudes smaller than those usually encountered in conventional
settings. Features like dimensional extend of images, uniformity in perspective,
proportions, and intensity require customized techniques and model building
tailored for an application in the medical domain. Characteristics between dif-
ferent classes are often not as distinct as for tasks on natural imaging data, or
can even be completely unknown. Moreover, endpoints like overall survival or
long-term side effects, require models able to handle time dependent data, a
type of model output not so commonly encountered in deep learning.

Therefore, deep learning techniques engineered for an application on stan-
dardized, well studied natural imaging datasets have to be customized to work
in the medical domain and new approaches and models for problem settings
solely related to medical imaging have to be developed.
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Chapter 2

Aim of this thesis

Medical imaging data in oncology contains rich information about the tumor
as well as surrounding tissue and nearby organs at risk. Imaging patters are
visually assessed by medical experts, i.e. radiologists, for determination of prop-
erties essential for treatment. Three main image based radiological tasks can
be differentiated: detection, characterization, and monitoring, with character-
ization involving the subtasks: segmentation, diagnosis and staging. However,
human based assessment is time consuming and costly and relies on education
and experience of the annotator. [12] Deep learning algorithms have proven
their power for automated, high throughput image analysis in several settings
outside of medicine over the past years, leading multiple studies to investigate
the capability of such networks in the field of medical imaging. Most progress
has been made in the area of image segmentation, mainly due to development
of the U-net model of Ronneberger et al. [13], but also classification tasks can
be solved utilizing deep learning algorithms. For example, Kirienko et al. [14]
trained a PET/CT based convolutional neural network for prediction of tumor
extend in lung cancer patients, and Lee et al. [15] developed a network for
CT based detection of cervical lymph node metastasis in patients with thyroid
cancer. However, not only can algorithms be trained for automation of tasks
usually performed by human readers but also for prediction of novel scores,
currently not assessed with the help of medical imaging. Chaunzwa et al. [16]
build a model for CT based classification of non-small cell lung cancer tumor
histology, usually determined pathologically. Medical imaging based detection
of such clinical parameters has the advantage to be fast, non-invasive and comes
without any extra costs if performed on routinely acquired images. Those char-
acteristics are of particular interest in the field of radiation oncology, where
treatment features a non-invasive character itself and imaging data depicts one
of the main information sources utilized for therapy decisions. However, despite
the advances made in deep learning based medial imaging analysis, there ex-
ist several limitations that the field has to overcome for successful widespread
clinical application.

Medical imaging data differs significantly from natural images, commonly
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encountered in the domain of deep learning. Instead of 2D RGB-color images,
a grayscale 3D delineation of tissue is depicted, with intensity values in CT
reflecting a quantitative measure. Those changes in imaging features have to
be taken into account during model design. Most often, studies performed
in the medical domain simply apply architectures developed on natural images,
without adapting to the changed conditions. This, for example, results in models
expecting input to have a 2D structure featuring three color channels. Allowing
only slices of three-dimensional medical images, like CT or MR, to be input into
the model, but no complete 3D images. Even though models can be trained
successfully using 2D networks, see e.g. [17, 18], disease patterns in patients’
body are three dimensional and algorithms aiming for full exploitation of tissue
information have to incorporate this three-dimensional structure. Starke et al.
[19] compared 2D and 3D convolutional neural networks for outcome modeling
in head and neck squamous cell carcinoma patients and found a superiority of
the 3D approach. Therefore, all the networks developed within this thesis are
customized to the characteristics of medical imaging. Architectures employ a
full three-dimensional structure. Furthermore, respective tumor expansions are
taken into account, which is achieved by identification of the respective regions
of interest and development of architectures able to take only those regions as
an input. The model of Chapter 5, aiming for risk evaluation in kidney masses,
accomplishes this by utilization of a Siamese network. Two patches, one for
each kidney region, are cropped from the complete CT and used as an input,
respective feature vectors are merged taking the element-wise maximum. Later
chapters adapt techniques developed in the natural imaging domain, i.e. transfer
and self-supervised learning methods, for an application on medical imaging.

Development of deep learning architectures is often performed on relatively
well prepared large datasets, like the ImageNet database. As argued above,
imaging data of this format differs from oncological imaging data in several
aspects, requiring special handling. One of the most significant differences is
given by the small size of medical cohorts, making model overfitting a substan-
tial problems of the field. Different techniques have been developed to facilitate
training on sparse data but must also be adapted to the needs specific to medical
imaging data. Transfer learning and self-supervised learning approaches pre-
train architectures on a related task before training of the actual task is started,
such that general prior knowledge is inject into the model. Most often pretrain
is performed on large 2D datasets, which forbids handling of three-dimensional
data in the downstream task. In this thesis transfer and self-supervised learn-
ing techniques allowing full three-dimensional exploitation in the downstream
task are investigated. In Chapter 6, a transfer learning approach pretrained on
sports video clips, featuring two spatial and one temporal dimensions, is stud-
ied. Furthermore, the self-supervised masked autoencoder of He et al. [20] is
remodeled to be able to handle three-dimensional medical imaging data.

Disease characteristics in medicine are often time dependent. Overall sur-
vival depicts the gold standard endpoint of clinical cancer trials [21], but also
other endpoints, like long-term side effects, feature a temporal dependency. Fre-
quently, studies circumvent this problem by prediction of endpoints at a given
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time point, e.g. 2-year survival. However, utilization of such an approach does
not allow for detailed risk assessment. Moreover, no appropriate handling of cen-
sored cases is possible, such that patient lost to follow-up have to be removed
from the dataset. Therefore, for proper handling of temporal dependency mod-
els able to incorporated time-to-event data have to be employed. Ability of
such models is studied within this thesis. Namely, in Chapter 7 the discrete
survival model of Gensheimer and Narasimhan [22] is combined with the trans-
fer learning approach developed in Chapter 6.2.1 for prediction of progression
free survival in head and neck cancer patients.

In 2017, The Economist published an article claiming that “the world’s most
valuable resource is no longer oil, but data” [23], highlighting the rising value of
data owned by big tech companies. Data is not only a valuable resource for tech
giants but also in the scientific domain, especially in the medical field. Cura-
tion costs caused by labor intensive work of experts puts high value on medical
cohorts. Access to such datasets allows research groups to perform studies that
cannot be conducted by others, which increases their scientific impact. Ad-
ditionally, data protection issues limit public distribution. This leads to the
fact that studies are often performed on private datasets, not shared with the
community. However, replication is one of the most essential factors in science,
depicting the ultimate standard by which scientific claims have to be judged
[24] and development of models on hidden, private datasets hinders replication.
Moreover, in the small data domain of medicine, model performance can heavily
depend on the cohorts used during training and evaluation [25]. Therefore, ar-
chitectures developed on different datasets cannot be compared, which impedes
technical advances but also reproducibility. Hence, data sharing and model
development on public datasets should be aspired. This can be achieved by
the utilization of public datasets during model construction, or by competition
in publicly held challenges, which has become the standard for validation of
biomedical image analysis methods [26]. Both approaches are investigated in
this thesis. The studies of Chapter 6 were performed on open access data mined
from The Cancer Imaging Archive (TCIA) [27], a public archive including dif-
ferent oncological cohorts. Model development and evaluation in Chapter 5 was
conducted in the setting of the pubic KNIGHT challenge [28] held at the 2022
IEEE International Symposium on Biomedical Imaging (ISBI) and the studies
in Chapter 7 were performed in conjunction with the 2021 MICCAI HEad and
neCK TumOR (HECKTOR) challenge [29].

Endpoints investigated in this thesis involved histological test results and
novel risk scores commonly not determined on medical imaging data. In Chap-
ter 5 a network is presented that was trained for prediction of pathological risk
scores in renal masses based on preoperative CT imaging data. Advances in
non-invasive therapy options, like radiation therapy, increase the demand for
such non-invasive testing. Approaches capable of detection of head and neck
cancer cases caused by a infection with the human papilloma virus are dis-
cussed in Chapter 6. HPV depicts a essential information source in radiation
oncology that is conventionally tested histopathologically. The network pre-
sented in Chapter 7 was trained on prediction of tumor progression in head and
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neck cancer patients. Development of a risk score predicting tumor progression
allows for identification of high and low risk cases and therefore for adoption of
treatment dose.

Chapter 3 introduces the main background of medical imaging and deep
learning utilized in later sections, while Chapter 4 discusses the problem settings
specially related to an application of deep learning architectures in the medical
imaging domain. A summary and general discussion about the application of
deep learning models in the domain of oncological imaging data is presented in
Chapter 8. Finally, a conclusion in given in Chapter 9.
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Chapter 3

Background

3.1 Radiation oncology and medical imaging
Imaging is essential for treatment of all patients with solid tumors and is in-
volved in nearly every part of cancer management, from initial discovery, to
image guided biopsy and surgery, to cancer staging, and treatment planning in
radiation therapy [30].

Medical imaging techniques most commonly used in oncology, especially
for treatment planning in radiation oncology, are computed tomography (CT)
and magnetic resonance imaging (MRI), but also nuclear imaging techniques,
like positron emission tomography (PET) and single photon emission computed
tomography (SPECT), are utilized.

3.1.1 Radiation therapy
Apart from surgery and chemotherapy, radiation therapy (RT) depicts one of
the main treatment options in oncology. Today, more of half of adult tumor
patients can definitely be cured, with half of them receiving RT [31]. Radiation
therapy utilizes high energy particles of ionizing radiation to destroy cancerous
tissue and stop tumors from further development. Usually, the total radiation
dose is split into multiple fractions, delivered over the course of several weeks.
Reason for this are repair mechanisms setting in between radiation sessions,
that are able to restore healthy tissue but not malignant cells. Hence, damage
to healthy tissue is reduced while tumor control can be maintained. [32] Most
commonly, beams of photons are utilized, but also electrons, protons and other
particles can be used [33]. Curative intended RT can be administered

• on its own, as a primary treatment option,

• as a neoadjuvant therapy option before surgery,

• as an adjuvant therapy option after surgery,
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• in combination with other therapy methods, i.e. chemotherapy.

External beam radiation therapy (EBRT) delivers radiation from a source out-
side of patient’s body to the tumor region, while for brachytherapy a radiation
source is placed inside of patient’s body. In the following, only EBRT will be
considered.

Any cancer therapy faces the challenge to achieve the highest probability
of cure with the least damage to healthy tissue [34]. Treatment planning aims
for determination of parameters considered optimal in management of patients
disease. A fundamental part of treatment planning in RT is given by delineation
of a target volume, including the tumor and its spread to surrounding tissue and
lymphatics, and also identification of nearby organs at risk. Medical imaging,
discussed in Section 3.1.2, depicts the most essential information source for
identification of those volumes. Other parameters to be optimized include: dose
prescription, dose fractionation and dose distribution. [35]

Over the past decades, progress in image acquisition allowed for advances
in tissue delineation, and technical developments in radiation devices and dose
planning improved precision of dose delivery. Leading RT to evolve from a non-
site-specific technique towards specialized planning based on three-dimensional
reconstruction of images and optimization algorithms [34]. Technical advances
in dose delivery include the development of intensity modulated radiotherapy
(IMRT). Multiple beams of varying intensities are utilized to deliver high radia-
tion dose to the target and minimum dose to nearby organs at risk [36]. Today,
IMRT depicts the most commonly used treatment option in RT [37].

Further developments include the introduction of volumetric modulated arc
therapy (VMAT) and stereotactic body radiation therapy (SBRT). VMAT de-
livers radiation in a continuous manner while rotating around the patient. This
allows for superior conformity of the delivered dose with the target volume.
However, treatment planning in VMAT requires higher quality and is also more
time consuming than for IMRT. [32] SBRT, delivers a small number of ultra-high
doses to the target volume with high precision, such that sparring of surround-
ing healthy tissue is improved [38]. But, utilization of high dose rates requires
exact dose delivery, such that not surrounding normal tissue will be exposed.
This can only be secured for small target volumes, limiting the applicability of
the approach. [35]

Finally, adaptive radiation therapy (ART) [39, 40] aims for incorporation
of any changes in patients’ body during treatment. Such changes can be given
by organ movement or anatomical modifications during treatment. Offline-
ART measures changes prior to or during treatment and applies changes in the
next treatment session, while online-ART aims for continuous monitoring and
immediate adaption. [32]
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3.1.2 Imaging techniques
Computed Tomography

Computed tomography (CT) images display a quantitative density measurement
of tissue. X-rays are aimed on the patient using a fan beam. Attenuation
coefficients of those x-rays are measured by a detector. The x-ray source and
detector are rotated around the patient to probe the tissue from numerous
angles. In this way a cross sectional image of the patient, with intensity values
reflecting quantitative characteristics of probed tissue, is constructed.

The measured attenuation coefficients µ are rescaled into Hounsfield units
(HU) using

HU = 1000× µ− µwater

µwater − µair
, (3.1)

assigning a value of 0 HU to water and -1000 HU to air. Imaging is done in
a slice wise fashion and patients, lying on a bench, are moved trough the scan
plane for construction of a three dimensional image. Interpolation is applied
between slices for reconstruction of a artifact-free image.

CT comes with the drawback of radiation exposure for patients, caused by
the x-rays. This pushed the development of scanner hardware and reconstruc-
tion filters, allowing for probing with lower dose. However, even though advances
could be made for such low dose CT (LDCT), the technique still suffers from a
increase of noise in the images.

Another variation of CT is given by cone beam imaging. Cone shaped x-
rays are used and attenuation coefficients are measured with a two dimensional
detector. This results in a decreased examination time but increases artifacts
induced by scatter radiation.

Contrast media, influencing tissue attenuation coefficients by induction of
media containing atoms of higher atomic number, is regularly used for improve-
ment of contrast in soft tissue.

Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) utilizes high external magnetic fields for
image acquisition. Application of the external field yields hydrogen nuclei in
patient’s body to partially align and accumulate a net magnetization by spinning
around the direction of the external field with a frequency proportional to the
field strength. Most scanners directing a field of 1.5 or 3 Tesla on the patient.

This equilibrium state of partially aligned nuclei is then temporarily excited
by a radio frequency (RF) pulse. The time it takes the nuclei to return to
the equilibrium after the RF pulse is switched off is measured in longitudinal
(T1 relaxation) and transversal (T2 relaxation) direction, with reference to the
external field. Both of those times depend on the surrounding tissue and chem-
ical composition of the nuclei and therefore allow for determination of contrast
between different tissues.

Changes in the protocol allow for emphasis on contrast between different
types of tissue. In general, MR has better soft tissue contrast than CT. How-
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ever, intensity values do not display a quantitative measure, limiting the com-
parability between different scanners and protocols. More advanced techniques
involve the injection of contrast agent, like gadolinium.

Positron Emission Tomography

For PET imaging, a radionuclide bound to a drug is injected into the body. The
metabolic activity caused by the drug can then be imaged by particles emitted
from the radioisotope, which allows for detection of biochemical abnormalities
in organs or tissue.

For tumor imaging usually 18F-fluorodeoxyglucose (18F-FDG) is used. FDG
is absorbed by the tumor while the 18F decays and emits a neutrino-positron
pair. The emitted positrons collide with electrons in the body and annihilate
into pairs of two photons that can be measured by detectors. This signaling
allows for reconstruction of physiological structures in the body.

For semi-quantitative comparison, PET intensity values are usually trans-
formed into standardized uptake values (SUV), taking injection dose, time be-
tween injection and imaging and patient weight into account

SUV =
λ(t)

Dinj(t)/w
, (3.2)

with λ(t) the measured radioactivity, Dinj the injected dose and w the body
weight of the patient [32]. SUV is widely used as a functional biomarker able to
stratify patients into subgroups and allowing for prediction of clinical outcomes
like survival [41]. PET imaging can also be combined with CT in one sequential
scanner able to generate a registered combination of both modalities known as
PET/CT.

Other imaging techniques involved in clinical cancer management include: x-
ray radiography, ultrasound and single-photon emission computed tomography
(SPECT).

3.1.3 Utilization of medical imaging for diagnosis and ther-
apy

Medical images incorporate rich information about tissue, which can be utilized
for clinical decision making. In clinical practice, images are mainly visually in-
terpreted by highly trained medical experts, i.e. radiologists, with standardized
guidelines developed to improve decision processes in cancer management.

In terms of diagnosis, imaging reporting and data system (I-RADS) guide-
lines have been established for standardization of visual findings. Such guide-
lines exist for estimation of risk in patients suspicious of prostate (PI-RADS),
breast (BI-RADS) and liver (LI-RADS) cancer [30]. Once presence of cancer-
ous tissue is proven, cancer staging is applied for characterization of extent and
spreading of the tumor. Clinical staging is performed prior to treatment by

19



application of a certain system. TNM [42] is the most widely applied system
for anatomical staging of solid cancers, with tumors being classified by:

• T - primary tumor extent,

• N - involvement of regional lymph nodes,

• M - involvement of distant metastases.

However, medical imaging can also be used to assess response to therapy.
The WHO [43] and RECIST criteria [44] classify patients into four response
groups based on change in tumor diameter over time. But, for irregular shapes
both criteria fail to capture changes adequately [41]. Moreover, do those crite-
ria not provide any guideline on how to use their information for readjustment
of therapy, and even if standardized response guidelines could be formulated,
the methods are only able to catch changes during treatment. While a method
capable of risk stratification and prognostication prior to treatment would al-
low for adaption of treatment dose and therefore possibly spare patients from
overdosage even before therapy is started.

Functional imaging like 18F-FDG PET has the potential for such pretreat-
ment stratification. Markers like maximum standardized uptake values (SUVmax)
and metabolic tumor volume (MTV) of 18F-FDG PET can be associated with
endpoints like overall survival in non-small cell lung cancer (NSCLC) [45, 46]
or head and neck cancer [47].

However, medical imaging data contains rich information about the tumor
and its environment, nodal and metastatic involvement, and general disease
patterns, that can simply not be captured by such simplistic markers.

3.2 Radiomics
Advances in digitization in the 1980s and 1990s, involving the development of
picture archiving and communication systems (PACS) and standards like digital
imaging and communications in medicine (DICOM), resulted in first develop-
ments of computer aided diagnosis (CADx) systems in radiology [48]. Those
early approaches applied a very limited number of filters for image processing
and feature extraction and were developed to facilitate tasks like detection of
breast lesions and microcalcifications on mammograms [49, 50] and lung nodules
on CT images [51]. Over time, further improvements in terms of algorithms and
filters established a research field meanwhile termed radiomics 1 [52, 53].

Radiomics extracts a large number of quantitative features from a given
region of interest (ROI) by application of predefined, handcrafted filters. Typ-
ically, the gross tumor volume (GTV), segmented by a human annotator, will
be used as the ROI, i.e. resulting features provide only information about this

1Terminology of the expression radiomics is not uniquely defined. In this work, the term will
be used in the context of feature extraction from medical imaging data relying on predefined
filters, but not in correlation with deep learning models.
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Figure 3.1: Radiomics publications per year. Data was extracted from https:
//pubmed.ncbi.nlm.nih.gov using the search term ”radiomics”.

specific region. Statistical tests exclude redundant features. The remaining fea-
tures will then be used for training of classical machine learning algorithms, like
logistic regression models, random forests classifiers, support vector machines
and Cox proportional hazards models [54]. The principle workflow of radiomics
is shown in Figure 3.2a.

Since introduction of the terminology of radiomics by Lambin et al. [52]
beginning of 2012, the research field is constantly growing, Figure 3.1.

An example application is given by Aerts et al. [55], who extracted 440 fea-
tures from CT images of head and neck and lung tumor patients to train a
Cox model. They were able to prove significant performance on survival predic-
tion and could associate predictions with gene-expression patterns. Bogowicz
et al. [56] calculated 317 CT radiomics features for head and neck squamous cell
carcinoma (HNSCC) patients. A logistic regression model was trained for de-
tection of infections with the human papillomavirus (HPV). Four features could
be associated with patients HPV status, achieving an area under the receiver
operating characteristics curve (AUC) of 0.78 on the validation set.

However, all this work has not led to clinical application yet. A signifi-
cant proportion of studies lack sufficient quality, rely on gray level patterns in
the ROI, and depend on the scanning devices present in the training set [57].
Leading studies to seek standardization of features and frameworks [58, 59].

But, even though those standards will possibly lead to improvements in
terms of reproducibility and robustness, radiomics still depends on delineation
of the tumor region for feature extraction. Not only is tumor delineation on
medical images labor intensive, requiring expert knowledge, but also known to
suffer from inter- and intra-observer variability [60]. Changes in volume have
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significant influence on radiomics features [61–63]. Hence, radiomics algorithms
trained on volumes defined by one annotator can lead to different output for
annotations performed by a second annotator, or even between different annota-
tions of the same radiologist. Studies have been conducted to search for features
that are stable under such shifts in tumor volume [64–66]. However, even if the
issue could be solved and robust features may be established, limitation to a
certain region of interest introduces another problem.

The TNM system includes nodal and metastatic information for staging,
highlighting the importance of input coming from outside of the main tumor
volume. The possibility to included those regions in the radiomics workflow
exists, but cancer is known to be a lot more complex than just being a solid en-
capsulated mass. In order to sustain progression, tumor builds up a surrounding
called the tumor microenvironment (TME). The TME is a cellular environment
encompassing the surrounding immune cells, blood vessels, extracellular matrix
(ECM), fibroblasts, lymphocytes, bone marrow-derived inflammatory cells, and
signaling molecules [67]. Medical imaging is not (yet) able to resolve interac-
tions on a molecular level, but growth of blood vessels, induced by the cancer
hallmark angiogenesis, manifests in macroscopic characteristics. Also, the two
other hallmarks: activating invasion and metastasis and tumor-promoting in-
flammation, lead to physiological changes in the TME. Such structures in the
TME play a fundamental role in tumor progression and metastasis and can be
utilized for evaluation of tumor aggressiveness [68]. Hence, non-invasive imag-
ing of structures in the TME can provide information of cancer aggressiveness,
metastasis, and help to determine early response to treatment [69]. Future in-
novations will most probably allow for even more detailed resolution. Therefore,
focusing on a encapsulated volume, like the GTV, removes valuable information
from imaging data, limiting the capability of approaches relying on it.

Deep learning algorithms may be better suited to be used for extraction of
information from medical imaging data. Deep learning techniques do not rely
on definition of a volume for feature extraction and construction of predefined
handcrafted filters, but work directly on the input images. Workflows of both
techniques, radiomics and deep learning, are shown in Figure 3.2.

3.3 Deep learning
Today, artificial intelligence (AI) is present in your everyday life. Cell phones
automatically detect objects in images, react to spoken words, know which topics
we are (supposedly) interested in and which mails we do consider as spam. But,
which part makes an algorithm intelligent? And which part of this intelligence is
artificial and which human? Moreover, what is the difference between artificial
and human intelligence. When does AI perform human-like? And what even
makes human performance human-like?

A significant part of the answer to those questions is of philosophical nature,
laying outside of the scope of this thesis. However, for better understanding, one
must know how the term artificial intelligence evolved. Starting in the 1940s
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Figure 3.2: Workflow for radiomics and deep learning models, following Hosny
et al. [12]. For the radiomics workflow, shown in a), a volume of interest has
to be defined. Features are extracted from this volume and redundant ones
are neglected. The remaining features are then used to train a more classical
machine learning model, like a decision tree. Deep learning models, shown in
b), work directly on the input images and do not require volume delineation or
feature selection.
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and 1950s, researchers tried to formulate models of the human brain. McCulloch
and Pitts [70] and Rosenblatt [71] introduced the perceptron, a mathematical
model of the smallest processing unit in the human brain, the neuron. In this
time the terminology of artificial intelligence was introduced. The existence
of a formal description of human thinking was assumed, that researchers were
seeking to model. However, over the course of the twentieth century the idea
was abandoned. [72] Today, researchers aim for development of algorithms
that perform well in complex domains by any means and not by human-like
standards [73]. Dick [72] states that “the most powerful and profitable artificial
intelligences we have produced [...] exhibit a rather limited range of intelligent
behavior” and argues that models are only trained for one task, that is to make
accurate predictions.

Therefore, there is little to be said against an suspension of the terminology
of artificial intelligence. This thesis will mainly deal with the research field of
deep learning, commonly considered a sub-field of AI. Therefore, algorithms will
be referred to as deep learning models or architectures. However, in reference
to the very broad research field, taking into account deep learning architectures
but also more classical machine learning models, the common notation of AI
can not be abolished and will be used.

3.3.1 Deep neural networks
The very basic concept behind deep learning based algorithms stems from the
idea to develop artificial neural networks, modeling interactions in the human
brain. This is also reflected in the title of Rosenblatt’s 1958 paper “The per-
ceptron: a probabilistic model for information storage and organization in the
brain” [71]. The underlying signaling unit of the human brain is given by the
neuron. Single neurons build connections with other neurons to form a biologi-
cal network. Connections between neurons are strengthened or weakened based
on how often they are used. All incoming signaling to a neuron is summed in
the cell body, transformed into a output signal, and then propagated to other
connected neurons. [74] However, even though signaling processes in the brain,
conducted by neurons, had huge influence on the initial development of deep
learning, researchers realized over time that sticking to closely onto the concept
of an exact brain model was misleading. For example, only activation functions
found to be similar to the biological processing of neurons were used in the
beginning, even though other mathematical functions are now known to work
better. Therefore, artificial neural networks have become quite different from
their biological counterparts over time [75], but the core concept of connected
neurons remains.

An artificial neuron processes its input x by weighting it with the adjustable
coefficients w for construction of a output signal y. A schematic of this is
shown in Figure 3.3. The input vector x = (x1 x2 x2 ... xn) is multiplied with
the weight vector w = (w1 w2 w2 ... wn) to form a scalar signal, which is usually
accompanied with some bias term b. This logit is then passed to a activation

24



Figure 3.3: Schematic of a artificial neuron. The input to the neuron x =
(x1 x2 x2 ... xn) is weighted by w = (w1 w2 w2 ... wn) to be summed with the
bias term b in the cell body. This logit is then passed through an activation
function to generate the scalar output y.

function f to produce the output [74]

y(x;w, b) = f(x ·w + b). (3.3)

Rosenblatt’s model of such an artificial neuron, termed perceptron, used the
Heaviside step function as an activation function and a negative bias term to
model scalar output, such that the model read

y =

{
1 if

∑
j xj · wj > b

0 if
∑

j xj · wj ≤ b.
(3.4)

Hence, the perceptron is able to combine different inputs in a weighted manner
to form a binary output decision. An example for this could be the decision
whether or not a cancer patient should receive adjuvant radiation therapy, with
the input variables xj being clinical parameters like: age, sex, TNM-stage and
cancer grading.

Complex modeling problems, of course, require a more complex model than
a single perceptron, and as neurons in the human brain form a network, percep-
trons can be combined into a network called multilayer perceptron (MLP). An
example network for this can be seen in Figure 3.4. The architecture persists
of four input neurons xi, directly connected to four neurons in the first layer,
followed by three neurons in the second layer and one output neuron. Layers
not directly connected to the input or output are called hidden layers, models
featuring two or more hidden layers are called deep neural networks [75]. Neu-
rons in the first hidden layer are directly working on input features, while later
layers have access to patterns extracted by earlier layers, which allows for more
complex decision making. The structural organization of multilayer perceptrons
utilizes neurons in such a way that each neuron in a given layer is connected to
all neurons in the prior and in the subsequent layer, Figure 3.4. Such type of
layer is also called dense or fully connected layer.

For the network to learn the right set of weights, an algorithm will be ap-
plied that changes the weights in a stepwise fashion such that model output will
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Figure 3.4: Exemplary multilayer perceptron (MLP). The model features four
input neurons xi and one output neuron y. Two hidden layers are present, with
four neurons in the first hidden layer and three neurons in the second hidden
layer.

be more similar to the desired label, i.e. small changes in the weights should
cause small changes in the output [76]. This is not the case if the Heaviside step
function is used as a activation function. Therefore, dense layers are trained
using differentiable continuous activation functions. Notably, any kind of dif-
ferentiable activation function can be used, but if only linear activations are
employed the whole network reduces to a simple linear model [77]. Therefore,
hidden layers feature non-linear activations. The most frequently used ones are
depicted in Figure 3.5.

For hidden neurons a typical activation function is given by the rectified
linear unit (ReLU)

φ(x) = max(0, x). (3.5)
Selection of the activation function in the output layer depends on the modeling
problem at hand. In case of a single output neuron for binary classification,
typically the sigmoid activation

σ(z) =
1

1 + exp(−z)
(3.6)

will be used. While for classification problems involving K different classes
commonly the softmax function

σ(z)i =
exp(zi)∑K
j=1 exp(zj)

(3.7)

will be applied.

3.3.2 Backpropagation and gradient descent
As for more classical machine learning techniques, deep neural networks are
trained by minimization of a loss function, fitting the model to the data. A very
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Figure 3.5: Most commonly used activation functions, taken from Maier et al.
[78]. The initially used Heaviside step function (sign(x)) is shown in black.
Modern activation functions are given by the hyperbolic tangent (tanh(x),
green), the sigmoid activation (σ(x), red), the rectified linear unit (ReLU(x),
pink) and the leaky rectified linear unit (LReLU(x), blue).

basic loss function is given by mean squared error (MSE)

LMSE =
1

2n

∑
x

‖y(x)− ỹ‖2, (3.8)

with n training examples x with corresponding labels ỹ and y(x) the network
output.

After network construction, weights are randomly initialized, e.g. by using
the method of Glorot and Bengio [79], and then iteratively modified for the
model to fit to the training data. Hence, a way to minimize the loss by tweaking
of trainable network weights has to be found. For a long time, it was unclear to
researches how to optimize the trainable parameters of MLPs, but the problem
was solved by introduction of the backpropagation algorithm [80, 81].

Gradient descent, introduced by Cauchy et al. [82] in 1847, depicts a well
known iterative optimization algorithm for identification of local minima. The
algorithm takes small steps in the opposite direction of objective’s gradient,
with the size of those steps controlled by the learning rate. So, the change in
trainable network parameters θ can be computed by

∆θ ≡ −ε ∇θL(θ), (3.9)

with ε, the learning rate. In each optimization step the network parameters can
then be updated by [75]

θ ← θ − ε∇θL(θ). (3.10)

With the shift in network parameters given by

∆θ = −ε ∇θ

(
1

2n

∑
x

‖y(x)− ỹ‖2
)

(3.11)
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if the MSE loss of eq. 3.8 is used.
Therefore, with the sum in eq. 3.11 running over all training examples,

each input volume has to be passed trough the network for computation of all
network outputs y(x), before the weights can be tweaked using gradient descent.
This is exactly what the backpropagation algorithm is doing: “for each training
instance the backpropagation algorithm first makes a prediction (forward pass),
measures the error, then goes through each layer in reverse to measure the error
contribution from each connection (reverse pass), and finally slightly tweaks the
connection weights to reduce the error (Gradient Descent step)”[75].

This procedure is also known as batch gradient descent. For computation
of the next gradient descent step the whole dataset is used. As stated above,
the algorithm searches for local minima, which in general will be different from
the global minimum for non-trivial problem settings [74]. In order to find the
best fit to the data, one is of course interested in identification of the global
minimum of the loss function. Therefore, a modified version called minibatch
gradient descent is typically used for training of neural networks. Minibatch
gradient descent only uses a subset of the complete training set for computation
of the error function before optimizing the weights. As the examples utilized
for loss calculation change during optimization, the surface of the loss changes,
possibly leading the optimization algorithm to not get stuck in local minima.
The number of examples presented to the algorithms before each optimization
step, called the batch size, influences the optimization performance. However,
not only is the application of minibatches influencing the optimization process,
but it also reduces the computational burden, as only part of the input data
has to be fitted into memory during evaluation.

Modern optimization algorithms also add a momentum term to the gradient
descent step in order to account for previous steps [75]

m← βm− ε∇θL(θ)

θ ← θ +m,
(3.12)

with m being the momentum term and β given between 0 and 1. A frequently
utilized method making use of such a momentum term is given by the Adam
optimizer [83].

3.3.3 Model parametrization
By minimization of the loss function on the training data it is assumed that
general patterns, associated with the underlying problem, will be learned, and
that the model will therefore be able to generalize well on data not used during
optimization. The performance of the model on previously unobserved inputs
is called generalization, a low generalization error is aspired [84].

Neural networks typically feature a large number of trainable weights. For
example, AlexNet [8], one of the first successful neural networks, already con-
sisted of 650,000 neurons and 60 million trainable parameters. On one hand,
networks with too many degrees of freedom will not learn a general representa-
tion but only fit very precisely to the training data by remembering single data
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Figure 3.6: Underfitting and overfitting zones based on model capacity, taken
from Goodfellow et al. [84]. A model not powerful enough will not be able to
learn the task reasonably well. Hence, even the training loss will not reach a
desirable minimum. A model too large will overfit on the data by remember-
ing single data points instead of recognizing general patterns of the underlying
problem. This leads to a large gap between training and generalization error.

points, a process called overfitting. On the other, models need to be powerful
enough to perform well on non-trivial tasks. Image classification for a diverse
set of classes requires a large architecture, like AlexNet. If a model is too small,
it will not be able to reach sufficient performance, a phenomena entitled under-
fitting.

So, choosing a model’s capacity involves a tradeoff between improving per-
formance on the training dataset but also minimizing the generalization error,
as shown in Figure 3.6.

In order to keep track of the generalization error during training, a subset
of the training data will be used as validation set. This independent set, not
involving any training samples, is used to calculate a unbiased loss, and possibly
other metrics, at every optimization step/training epoch, in order to keep track
of the generalization gap. Differences in training and validation performance
can indicate over- or underfitting, Figure 3.7 shows an example of overfitting.
Therefore, validation set performance can be used as a measure for optimization
of hyperparameters like number of layers or size of the learning rate. During
inference a third, independent set is then used for computation of a final un-
biased performance measure. Hence, training of deep learning models involves
three datasets: a training set, used for weight optimization, a validation set,
used to keep track of the generalization error during training, and a completely
independent test set, used for final model evaluation.

3.3.4 Problem formulation and performance measure
Choice of the right loss function to be optimized during training is essential.
A diverse set of loss functions tailored for specific settings exists. The mean
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Figure 3.7: Example learning curve showing training and validation perfor-
mance, taken from Murphy [77]. A declining validation set performance, setting
in at around epoch 25, indicates model overfitting.

squared error loss of eq. (3.8) is mostly used in regression problem settings,
modeling scalar output. While classification models are usually trained using
the categorical cross entropy loss

LCE = −
n∑

i=1

yi log(pi) (3.13)

with yi the true label, pi the softmax probability for class i and n the total
number of classes. The cross entropy loss penalizes false predictions more heavily
than MSE and is therefore better suited for classification tasks.

Categorical cross entropy eq. (3.13) and mean squared error eq. (3.8) in
combination with the Dice loss, that will be introduce in Section 3.3.7, are the
most essential losses used to train deep learning models. However, other loss
functions exist and selection of the right loss is an important step in model
formulation.

For imbalanced datasets with a unequal proportion of cases per class, in-
troduction of a weighting term in the loss can help prevent the optimization
process to solely focus on overrepresented classes. In case of the categorical
cross entropy eq. (3.13), this would be done by multiplication of each summand
with a weighting wi, giving higher emphasis to underrepresented classes.

For evaluation of model performance during validation and testing, selection
of suitable metrics is also essential. A common metric used for classification
is given by accuracy, i.e. the number of correct classified cases divided by the
total number of cases. However, for imbalanced distributions of classes this can
cause serious problems [85].

Clinical tests often involve binary classification tasks, i.e. distinguishing be-
tween patients having a disease and patients without the disease. In this case,
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sensitivity and specificity can be used to measure model performance. Sen-
sitivity represents the ability of a test to identify cases with a positive label,
i.e. having the disease, while specificity measures the ability to identify cases
with a negative label, i.e. without the disease [86]. A graphical illustration of
binary classification performance is given by the receiver operating characteris-
tics (ROC) curve. The area under the receiver operating characteristics curve
(AUC) represents the probability that a randomly chosen case with a positive
ground truth label is ranked with greater suspicion than a randomly chosen
ground truth negative case [87].

3.3.5 Regularization and augmentation techniques
As mentioned above, acquisition of large datasets is not possible for all settings.
However, non-trivial tasks require large enough networks, increasing the risk for
model overfitting. Two approaches designed to prevent networks from overfit-
ting, while at the same time allowing for reasonable model sizes, are given by
regularization and augmentation.

“Regularization techniques are a set of best practices that actively impede
the model’s ability to fit perfectly to the training data, with the goal of making
the model perform better during validation” [88]. One such technique is given
by weight regularization. A term sanctioning large values for trainable model
parameters is added to the loss. In this way, the space of possible weights for
the model to choose from is reduced, limiting the ability of the model to exactly
fit to the training data. The weights are either added proportionally to their
absolute value, called L1 regularization, or by using the squared value, called
L2 regularization or weight decay

Loss→ Loss+ λ
∑
j

|θi| L1 regularization,

Loss→ Loss+ λ
∑
j

θ2i L2 regularization,
(3.14)

with the trainable network parameters θi and λ controlling the impact of the
regularization term.

However, the most essential regularization technique used in neural networks
is given by dropout [89]. The technique set a fraction of randomly chosen neu-
rons for specific layers to zero, such that they are excluded during optimization.
In this way, ability of single neurons to memorize specific data points is reduced,
preventing the model from overfitting.

Data augmentation performs modifications on the training data to artifi-
cially increase dataset size. For imaging data, such augmentation techniques
include: random rotations of the images, flipping/mirroring on a certain axis,
random zooming, random cropping, addition of random noise, scaling of image
brightness and modification of contrast and saturation.

Data augmentation often leads to significant improvements in terms of per-
formance and robustness, since valid augmentation mechanisms algorithmically
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inject prior knowledge into the model [77]. Especially, for image classification
tasks augmentation has been proven to be effective, even simple transforma-
tions like scaling or rotations can lead to significant performance gains [84]. For
problem settings involving only a few training samples, the approach is essential
to teach the network certain invariance and robustness properties [13]. Shorten
and Khoshgoftaar [90] concluded that augmentation modifies limited datasets
in such a way that the characteristics of big data are acquired.

3.3.6 Convolutional neural networks
Images are usually given in the form of 2D arrays, but MLPs, introduced in
Section 3.3.1, require one dimensional input. Therefore, pixel values have to be
rearranged into a 1D vector to fulfill the desired input format of the network.
This results in large input sizes and, as neurons are connected densely, huge
networks with lots of trainable parameters. Moreover, dense networks trained
on imaging data are not translational invariant to shifts in the input images, as
each input neuron will be associated with a given location in the image. If a
dense model is trained on cancer images with the cancer always present in the
lower right corner of the image, it will not be able to perform well on images
with the cancer in the upper left corner.

A type of deep learning architecture able to solve those problems is given
by convolutional neural networks (CNNs). CNNs are again inspired by models
of the brain, especially the visual cortex. Studies performed in the 1950s by
Hubel and Wiesel [91] found that the visual cortex consists of layers with a
hierarchical structure, deeper layers build upon features detected by previous
layers. Initial layers detect lines and edges and deeper layers combine those
patterns to identify contours and shapes and finally entire objects [74], Figure
3.8. Those findings first lead to the application of hand-crafted filters for feature
extraction from imaging data and finally to development of CNNs.

As the name already reveals, the most essential component in a CNN is given
by a convolutional operation. The idea of using filters for feature extraction
remains, but for CNNs the filters, also called kernels, are not predefined but
learned during training. Weights in the kernels are again randomly initialized
and then tweaked for optimization, in the same manner as for dense neural
networks.

A basic example of a convolution operation is shown in Figure 3.9. Values
in the source layer that are in view of the kernel are multiplied with their kernel
counterparts to then be summed up for generation of a value in the destination
layer. In order to filter the complete input, the kernel is slid over the input
array with a given stride. As array elements on the edges of the input will be
involved less frequently in this filtering process, padding can be applied. Most
commonly, array elements with a value of zero are padded to the edges, such
that the spatial dimension of the input volume will be preserved. An example
process can be seen in Figure 3.10, a convolutional kernel of size 3× 3 is used,
stride in horizontal direction is given by 1, and a padding of size one is applied.
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Figure 3.8: Schematic of the hierarchical structure in the visual cortex. Initial
layers recognize low level features like lines and edges. Deeper layers combine
patterns found in lower layers for detection of more complex patterns like con-
tours and shapes, with final layers recognizing complete objects.

Figure 3.9: Convolutional operation, taken from Podareanu et al. [92]. Values
in the source layer are multiplied with their counterparts in the convolutional
kernel, featuring here a size of 3× 3. Those input-kernel pairs are then summed
up for generation of the respective value in the destination layer.
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Figure 3.10: Convolution operation, taken from Dumoulin and Visin [93]. Input
values (blue) are convolved with the kernel of size 3× 3 (shaded) for extraction
of the respective value in the feature map (cyan). In the next step, the kernel is
moved with a stride of 1 in horizontal direction for generation of the next feature
map value. For preservation of spatial dimensionality the input is padded.

In this way, a feature map is generated, that can again be filtered by ker-
nels. At every network depth, different filters are probed for feature extraction,
leading a variety of feature maps.

Additionally to convolutional layers, pooling layers are usually employed in
CNNs. Again, filters are slid over the input of the layer, however, no weighted
combination of input values in view of the kernel is computed but static merging
is performed. For max pooling layers, the maximum of the input values is
selected, Figure 3.11. Other pooling operations are given by taking the mean
or average.

Pooling layers are usually employed for reduction of spatial dimension, while
convolutional layers typically preserve it. Most convolutional networks feature a

Figure 3.11: Max pooling operation with a kernel and stride of size 3× 3. For
each max pooling operation the maximum of the current field of view of the
kernel is taken.
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Figure 3.12: VGG network architecture of Simonyan and Zisserman [94]. The
model was trained for classification of natural images from the ImageNet dataset
[9], featuring 1000 classes. The convolutional part of the model, consisting of
convolutional layers (blue) and max pooling layers (red), is utilized for feature
extraction. Classification is performed by fully connected layers (green) ending
in an output layer with 1000 neurons normalized by the softmax function (yel-
low), reflecting class probabilities.

pyramid-like structure. The number of filters grows with network depth, while
the size of the feature maps shrinks accordingly [88]. A typical CNN structure
is given by the VGG16 model of Simonyan and Zisserman [94], shown in Figure
3.12. The input size is given by colored images of size 224 ×224 ×3, with 3
reflecting the number of red-green-blue (RGB) color channels. The first convo-
lutional layer utilizes a feature map size of 64. Those feature maps are further
filtered for patterns by another convolutional layer of the same size. Next, a
max pooling layer is applied for reduction of spatial dimensionality. In total,
five such combinations of convolutional and max pooling layers are applied for
feature extraction, with the two first blocks utilizing two convolutional layers
followed by max pooling and the remaining blocks using three convolutional
layers before max pooling. The architecture was trained for classification of
the ImageNet dataset [9], featuring 1000 categories. Therefore, after the con-
volutional part, used for feature extraction, fully connected layers are applied
for classification, ending in a output layer with 1000 neurons normalized by
application of the softmax function.

Convolutional and pooling operations can not only be performed in a two
dimensional way. Video data is given in three dimensions, with the third dimen-
sion being depicted by the time axis, for classification of sports video data Tran
et al. [95] used 3D convolutions and max pooling for feature extraction. Medical
imaging data, like CT or MR, is also three dimensional and proper application
of CNN models demands the application of three dimensional feature extraction
layers.
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Figure 3.13: Autoencoder architecture, the basic building blocks are given
by a decoder and a encoder part. The encoder transforms the input into a
smaller dimensional space, the latent space. While the decoder restores the
dimensionality of the input data from the latent space. Here, segmentation of
the gross tumor volume in a lung cancer CT image, is depicted as an example
task.

3.3.7 Segmentation networks
Apart form classification, deep learning models are regularly trained on image
segmentation tasks. Segmentation can be categorized into two types, seman-
tic segmentation and instance segmentation. For semantic segmentation the
learning task is given by a pixel wise classification into different categories, with
different objects of the same class not being differentiated. While instance seg-
mentation learns to differentiate objects of the same class. For segmentation of
kidneys this would for example mean that semantic segmentation only differen-
tiates between kidney and other tissue while for instance segmentation the task
could be given by segmenting the left kidney, the right kidney and other tissue.

The VGG model depicted in Figure 3.12 was trained for image classifica-
tion, featuring a pyramid-like structure. For segmentation tasks, network out-
put usually is of the same dimensionality as the input, requiring another type
of structure. A architecture featuring such kind of structure is given by autoen-
coders, Figure 3.13. Autoencoders consist of a encoder and a decoder part. The
encoder transforms the input into a latent representation, while the decoder
restores the dimensionality of the input from this latent representation. Au-
toencoders trained on imaging data typically feature convolutional layers only.
The encoder can, for example, be given by the convolutional part of the VGG16
model in Figure 3.12, while the encoder takes the same form but will be mir-
rored. For recovery of the input image’s dimensionality, transpose convolutions,
Figure 3.14, are used in the decoder.

Autoencoders can be applied for image denoising, with the noisy image as
an input and the denoised images as output, but also for anomaly detection,
dimensionality reduction and last but not least image segmentation.

However, autoencoders require feature information to flow through every
layer in the architecture, which can cause information extracted in initial layers
to be lost in deeper layers. A solution to this problem is given by the intro-
duction of connections feeding information of earlier layers directly to deeper
layers, by skipping layers in between [96, 97]. Ronneberger et al. [13] devel-
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Figure 3.14: Transpose convolution operation, taken from Dumoulin and Visin
[93]. The input (blue) is padded such that convolution with the kernel (shaded)
results in an increase in spatial dimension for the feature map (cyan).

oped the U-Net, a fully convolutional segmentation model following the basic
encoder-decoder principle of autoencoders, but at the same time making use of
such skip connections.

The network structure can be seen in Figure 3.15. In the encoder path,
convolutional and max pooling layers are used to transform the input image
into the latent space representation, given by the feature map with 32 × 32
pixels on the bottom. In the decoder path, transpose convolutions, here named
up-conv, are used to increase spatial dimensionality. Skip connections, copying
feature maps from the encoder to the decoder, are introduced. In this way,
global information, extracted by initial layers, is available at all stages in the
decoder path.

The U-Net model was able to win the ISBI 2015 cell tracking challenge [13]
and has established as the basic architecture in biomedical image segmentation
since then. Isensee et al. [98] were able to enhanced the model even further by
introduction of predefined preprocessing and training strategies, but the basic
U-Net like structure remains.

As discussed in Section 3.3.4, formulation of the right optimization problem
plays a key role. Even though it is possible to train segmentation models using
the MSE loss eq. (3.8) or the cross entropy loss eq. (3.13), typically the Dice
loss will be utilized. The Dice coefficient

DSC(A,B) =
2|A ∩B|
|A|+ |B|

(3.15)

measures the similarity between a set of points A and B. Values for the Dice
coefficient range between zero, reflecting no agreement between both sets, and
one, reflecting perfect agreement. The Dice loss, to be minimized, is defined as

LDSC = 1−DSC(A,B). (3.16)
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Figure 3.15: U-Net architecture, taken from Ronneberger et al. [13]. The model
follows the basic encoder-decoder structure of autoencoders, but employs skip
connections, called copy and crop here. Downsampling in the encoder path is
done by convolutional and max pooling layers and upsampling by convolutional
and transpose convolutional layers, called up-conv here. Convolutional layers in
the encoder feature no padding and therefore introduce a reduction in spatial
dimensionality. Hence, feature maps in the encoder have to be cropped before
they can be copied to the decoder. By introduction of skip connections, global
information, extracted by initial layers, is available at every stage of the decoder
path and does not have to be passed through the whole architecture.
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The Hausdorff distance measures the extend to which a set of points A is
displaced from another set of points B, using [99]

HD(A,B) = max

{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

}
, (3.17)

with the Euclidean distance d(a, b) between point a and b and sup and inf the
supremum and infimum. The Hausdorff distance is also frequently used as a
performance measure in segmentation problems.

3.3.8 Transfer learning
Transfer learning utilizes knowledge learned in an initial task P1 to improve
performance on a downstream task P2. It is assumed that variations learned in
P1 are relevant for variations that have to be identified in P2 [84]. So, the main
idea is it to use the knowledge gained from solving one problem setting and
transfer it to solve another, related problem. With the initial task P1 and its
related source domain being independent from the downstream target domain
of task P2.

As discussed in Section 3.3.5, gathering of large datasets in order to train a
complex model is not always possible. Pretraining a model on a larger dataset,
that is somehow related to the actual task at hand, induces prior knowledge
before training of the actual task is started. Transfer learning assumes that
induction of this prior knowledge will enable the model to learn on less data,
compared to a training strategy with randomly initialized weights.

An example for this would be the usage of a model pretrained on ImageNet,
with several million images present, and transfer parts of it to train a model
for detection of diseases in lung x-ray images, featuring a dataset with only a
few hundred patients. By pretraining on the natural images of ImageNet the
model will learn to detect very basic patterns in its initial layers like edges, lines
and corners. Such basic knowledge about vision is possibly also essential for the
classification of x-ray images and therefore allows the model to then be trained
on this task with fewer examples present.

For CNN architectures, the knowledge transfer is usually achieved by copying
of weights from the pretrained model to the downstream model, Figure 3.16.
Fully connected layers are (partially) replaced with new layers of customized
size, suitable for the problem setting of the downstream task. The network is
then fine tuned, with parts of the initial weights kept fix. Hence, the transfer of
knowledge is performed by copying pretrained filters learned on the initial task
to the downstream model.

3.3.9 Self-supervised learning
Deep learning algorithms discussed in detail so far were trained to associate
input with a given output value, both present during training. This type of
learning procedures is called supervised learning. In contrast to that, unsu-
pervised learning algorithms are trained on data for which no output label is
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Figure 3.16: Transfer Learning. For convolutional neural networks the model
is first trained on task P1, featuring n classes csi . After finishing training of the
initial task, part of the weights (blue) are copied to the model of the downstream
task, which will then be trained on task P2, with m classes cti. Notably, the
classes in the initial and the downstream task can be completely independent.
Copying of model weights transfers knowledge gained about patterns in task
P1 to the downstream model. The classification head of the downstream model
(green) is then customized to fulfill the structural demands of task P2.
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present. More precisely: “unsupervised learning involves observing several ex-
amples of a random vector x, and attempting to implicitly or explicitly learn
the probability distribution p(x), or some interesting properties of that distribu-
tion, while supervised learning involves observing several examples of a random
vector x and an associated value or vector y, and learning to predict y from x,
usually by estimating p(y|x)” [84]

An example for unsupervised learning is given by the denoising autoencoder,
briefly mentioned in Section 3.3.7. For training of a image based denoising
autoencoder, Gaussian or any other kind of noise can be added to the input
images, while network output is given by the uncorrupted images. Hence, only
a set of input data is required for training but no associated labels. If the noise
added during training will be chosen in the right manner, the approach will
result in a model able to enhance image quality.

However, autoencoders can also be trained to simply restore the input image
without any corruption happening. The latent space is usually chosen such that
it is of lower dimensionality then model input. Therefore, the network has to
learn a transformation into a lower dimensional space. As the decoder is trained
to restore the input images from the latent space, the transformation has to be
meaningful, such that no essential information will be lost.

This application is also an example for representation learning, which in
general studies the process of developing algorithms able to map their input
into a lower dimensional embedding while at the same time sustaining all the
essential information. Pretraining CNNs on larger datasets can also be seen as a
form of representation learning method. The convolutional part maps the input
image into a lower dimensional embedding that has to be meaningful in order
to succeed on the initial task.

However, the application of transfer learning requires the initial and the
downstream domain to be somehow similar in the patterns essential for their
respective tasks. Otherwise, the embedding, learned in the initial task, will be
useless in the downstream task, resulting in a insufficient model. For example,
the usefulness of pretraining on natural imaging data like the ImageNet for
a downstream applications in the medical imaging domain was challenged by
Raghu et al. [100]. Limitations of the approach will be discussed later on.

Most of the time, the limiting factor for generation of large datasets is not
given by a lack of input data but of corresponding labels. Therefore, datasets
frequently involve a subset of unlabeled cases. Self-supervised learning aims for
inclusion of unlabeled data in the training procedure. Models are pretrained
in a unsupervised fashion to then be finetuned on the subset of labeled data
points, or a related dataset from the same domain.

Vincent et al. [101] trained a denoising autoencoder to recover corrupted
images, in a fashion similar to that described above, for classification of images
from the MNIST database, containing images of handwritten digits [10]. The
autoencoder was first trained for image denoising and then finetuned for classi-
fication, using the same dataset for both tasks. Finetuning can be performed in
such a way that weights of the encoder are copied to the downstream network
and a new, randomly initialized classification head is attached, similar to the
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Figure 3.17: Image inpainting as a self-supervised learning approach, taken
from Pathak et al. [102]. A patch of the input image is removed and feed to
a autoencoder-like encoder-decoder network. The encoder learns to map the
input into the lower dimensional latent space, entitled Encoder Features here.
A channel wise fully connected layer is used for generation of features provided
to the decoder, which aims for reconstruction of the removed part. L2 is used
as a loss, measuring the difference between the removed and the reconstructed
patch.

approach discussed in Section 3.3.8 and shown in Figure 3.16.
Another example for a self-supervised approach using a autoencoder for pre-

training was developed by Pathak et al. [102], called image inpainting, Figure
3.17. The autoencoder architecture was slightly modified, with a channel-wise
fully connected layer in the latent space, but the basic encoder-decoder struc-
ture remains. For corruption, a whole patch is removed from the input image.
The model is then trained for reconstruction of this missing patch. Again, the
pretrained encoder can then be utilized as a feature extractor in a downstream
task.

Gidaris et al. [103] rotated images by a multiple of 90◦ to pretrain a network
on prediction of the rotation angle. Doersch et al. [104] cropped two patches
from the input image and let the network predict their relative position in the
pretraining step. While Noroozi and Favaro [105] constructed a jigsaw puzzle,
cropping several patches from the images, to then shuffle them randomly and
let the network reconstruct their initial order.

Another self-supervised approach applicable on imaging data is given by
the masked autoencoder model of He et al. [20], depicted in Figure 3.18. The
architecture utilizes transformer layers, that will be introduced in the next sec-
tion. Images were divided into patches, then a fraction of those patches was
removed/masked from the input images. The autoencoder architecture is pre-
trained for reconstruction of the unmasked image. Again, the trained encoder
can be utilized in a given downstream task. Inspiration for the masking ap-
proach was taken from the BERT architecture of Devlin et al. [106], a natural
language processing (NLP) model.

Recently, NLP networks have seen a huge increase in performance. The
GTP-3 model [107] is able to generate text so true to human produced one that
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Figure 3.18: Masked autoencoder model, taken from He et al. [20]. Images are
divided into patches. A fraction of those patches is removed, i.e. masked, from
model input. The architecture is trained for reconstruction of the unaltered full
image.

the authors felt the need to incorporate a whole section about possible misuse
and dangers in the publication. Training of the model was made possible by
pretraining in a unsupervised way on a huge text dataset crawled from the web
that involved 300 billion tokens.

Another ingredient to the success of NLP architectures was the development
of transformer models, discussed in the next section.

3.3.10 Transformer models
When our brain is inspecting a visual scene it receives more information than it
is able to process, therefore, it has learned to neglect parts of the input and only
pay attention to a fraction of it. If we do not focus on anything in particular,
attention can involuntarily be focused on bright colors or moving objects. While
volitional attention can suppress input from larger objects if we are searching
for something small. [108] Machine learning researches took inspiration from
this mechanism to develop certain type of layers, called attention layers, which
are extensively used in transformer models.

For all the deep learning layers discussed so far, output features h in hidden
layers are obtained by linear combination of input features x ∈ Rv with layers’
trainable parameters W ∈ Rv′×v followed by a activation function f

h = f(Wx), (3.18)

with v the number of input neurons and v′ the number of output neurons, in
case of a dense layer. The idea behind attention layers is the application of a
flexible set of m feature vectors in this case called values V ∈ Rm×v. Based on
input, the model pays different attention and uses a different set of those vectors
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for feature extraction. This is achieved by measuring the similarity between the
input query vector q ∈ Rq and a set of m keys K ∈ Rm×k, if q is most similar
to key i value vi will be used. [77]

Attention can be thought of as a dictionary lookup, but in order to make the
operation differentiable, not a single value is retrieved per query but a weighted
combination of all possible values,

Attention(q, (k1,v1), ..., (km,vm)) = Attention(q, (k1:m,v1:m))

=

m∑
i=1

αi(q,k1:m)vi,
(3.19)

with the attention weights αi(q,k1:m) satisfying 0 ≤ αi(q,k1:m) ≤ 1 ∀ i and∑
i αi(q,k1:m) = 1. A attention score function a(q,ki) ∈ R measuring the sim-

ilarity between q and ki can be used in combination with the softmax function
to compute the attention weights [77],

αi(q,k1:m) =
exp(a(q,ki))∑m
j=1 exp(a(q,kj))

. (3.20)

A certain type of attention score function is given by scaled dot-product attention,

a(q,k) = qTk/
√
d, (3.21)

which requires q and k to have the same length d, Figure 3.19. Finally, for the
case of mini batches, queries, keys and values are given by matrices, leading

Attention(Q,K,V) = softmax
(
QKT

√
dk

)
V. (3.22)

A special kind of attention mechanism is given by self-attention. The input to
layer X is projected using the weights matrices WQ, WK and WV to construct
queries, keys and values,

Q = XWQ, K = XWK , V = XWV . (3.23)

By optimization of those weight matrices self-attention is able to learn relations
between patterns in the input. The mechanism is heavily employed in natural
language processing models, where the relation between different words in the
input sentences plays a major role.

For an application in transformer models, multi-headed self attention, allow-
ing for a multitude of patterns to be recognized, is used

MultiHead(Q,K,V) = Concat(h1, ...,hn)W
O

with hi = Attention(XWi
Q,XWi

K ,XWi
V ).

(3.24)

Multi-headed attention layers are combined with normalization layers and mul-
tilayer perceptrons (MLPs) in order to form transformation blocks, shown on
the right hand side of Figure 3.19.
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Figure 3.19: Scaled dot-product attention and multi-head attention, taken
from Vaswani et al. [109]. For the scaled dot-product, queries Q are multiplied
with keys K, to then be scaled by

√
dk and processed by the softmax function,

to be finally multiplied with the values V . For multi-head attention, h of those
weighted dot-product attentions are generated and concatenated in order to
form the output.

Figure 3.20: Vision transformer model, taken from Dosovitskiy et al. [110].
Input images are cut into patches, which are then transformed into an embed-
ding space, using a linear projection, and merged with positional embeddings,
as no inherent spatial knowledge is present in the model. This embedding is
then processed by transformer blocks, shown on the right hand side, ending in
a MLP head utilized for classification.
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The superiority of transformer models over other architectures for an ap-
plication in NLP tasks has been proven by a variety of architectures in recent
years, see e.g. [106, 107]. In order to be mathematically processible, single words
in the input are transformed into an embedding space. This input embedding
is then merged with a possitional encoding, as no inherent spatial knowledge
about the input is build into the model, like for example in CNNs where spatial
kernels are used.

Transformer models are not limited to be used in NLP tasks only but were
also adopted as vision transformers (ViT) to be applied in computer vision [110].
ViTs are working on image patches that are embedded by a linear projection
layer. This projection is again merged with a positional encoding to be processed
by transformer layers, Figure 3.19.
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Chapter 4

Deep Learning on medical
imaging data

One of the problem settings studied most intensively in the area of deep learning
is given by the classification task of ImageNet [9], a database with more than
14 million images incorporating classes like animals, food and vehicles. Such
images include a large variety in features like perspective, proportions, color
and imaging equipment used for acquisition.

Medical imaging cohorts differ from such data in various ways. The image
acquisition techniques mentioned in Section 3.1.2 all result in three dimensional
grayscale data, that is not just stored as voxel arrays but contains informa-
tion about physical space. Most importantly, information about voxel spacing
and image orientation allows for standardization in terms of proportion and
perspective.

Medical cohorts usually involve a very limited number of institutions, often
even data from one center only, with each center exhibiting only few imaging
scanners. Thus, medical cohorts commonly include data from few image acquisi-
tion devices. Another, very significant, feature of medical datasets is their small
size. Medical cohorts are generally several magnitudes smaller than dataset sizes
of standard deep learning problem settings, involving a few thousand or even
hundred cases. Reasons for this are privacy protection regulations, limiting the
ability to share and distribute medical information, and the fact that annotation
requires labor intensive work of medical experts, which makes the generation of
cohorts expensive and time consuming.

Therefore, medical imaging cohorts involve more standardized images than
natural imaging datasets, but at the same time dataset sizes are smaller, with
images given by three dimensional grayscale arrays. Due to such differences to
standard deep learning problem settings, the techniques used before, during,
and after training also differ from standard approaches.
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4.1 Data augmentation techniques
As mentioned above, collection of large medical datasets is cumbersome. How-
ever, augmentation techniques can be used to artificially increase dataset sizes.

On one hand, modifications have to be applied such that no information in
the images, essential for the classification task, will be destroyed. Characteristics
in medical imaging data, specifying affiliation to a certain class, can be more
subtle than for natural images. Therefore, image corruption methods have to
be chosen such that this information will not be annihilated.

On the other, reasonable augmentation techniques can introduce robustness
and invariance in the model. For example, rotations and flipping/mirroring
during training introduce invariance to those transformations during inference.
Slight zooming of the images still gives a physically meaningful copy and pre-
vents predictions relying solely on the size of the object at hand, i.e. the tumor.

Also, physically motivated augmentation techniques can be applied. Defor-
mation techniques make use of random displacement vectors to shift pixel/voxel
values by a certain range. Idea behind this is the generation of physically plausi-
ble variations, mimicking deformations caused by patient movement. For elastic
deformations, displacement vectors are sampled from a Gaussian distribution
[13, 111]. More advanced techniques make use of deep learning architectures,
like generative adversarial networks (GANs), themselves to generate augmented
samples [112].

4.2 Transfer learning
Even though the domain of natural images differs significantly from that of
medical images, several studies reported improved performances for models that
were pretrained on ImageNet-like data to be then finetuned on a medical task
[17, 18, 113]. However, real benefit of this approach remains controversial, with
different studies leading to different conclusions [113, 114]. Raghu et al. [100]
accounted improvements to the utilization of over-parameterized models and
inferred no actual gain from transferred knowledge.

Apart from the questionable advantage of transfer learning on ImageNet,
utilization of the approach introduces fundamental limitations. Natural images
are two dimensional, and networks pretrained on such data also require input
in the downstream task to be of the same dimensionality. This forbids direct
processing of three dimensional medical imaging data. Workarounds involve
approaches feeding three slices of the 3D grayscale images to the color channels
of the network, calling it a 2.5D approach. With some of them using one slice
for each dimension in the image, see e.g. Saint-Esteven et al. [115]. However,
2D convolutions result in two dimensional feature maps, destroying any higher
dimensional information from the input image [95]. Therefore, in order to in-
vestigate the real benefit of transfer learning in the medical imaging domain, a
3D approach has to be developed.
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Figure 4.1: Self-supervised context restoration approach in medical imaging,
taken from Chen et al. [118]. For image corruption, some patches in the input
image are randomly shuffled. The autoencoder architecture, consisting of the
encoder (called Analysis Part), and the decoder (called Reconstruction Part),
is trained for restoration of the uncorrupted image. Loss is given by L2. De-
pending on the respective downstream task, size of the decoder is varied. For
a segmentation downstream task a larger decoder is used, shown in the upper
part, while for a classification downstream task a smaller decoder will be trained.

4.3 Self-supervised learning
As already mentioned in Section 3.3.9, the limiting factor for generation of huge
datasets is most often given by a lack of labels and not of input data. This is
also the case in the medical domain, where labels often have to be identified
by expensive laboratory tests or highly trained medical experts. In contrast
to that, unlabeled imaging data can be mined relatively easily from local data
storage, like the picture archiving and communication system (PACS).

Inclusion of such unlabeled data by application of self-supervised learning
was proven to be able to outperform supervised approaches in the natural imag-
ing domain [116, 117]. Application of self-supervised learning has also been
studied in the medical domain. Chen et al. [118] formulated a context restora-
tion pretraining task by shuffling a given number of patches in the image and let
the model learn to reconstruct the original image, Figure 4.1. While Azizi et al.
[119] trained a contrastive approach, showing the model two augmented views
of the same image with the objective to maximize agreement for both projec-
tions in a lower dimensional embedding space. However, further studies to test
a variety of approaches and their performance on larger cohorts are needed.

4.4 Survival analysis
Typical problems in deep learning, especially in the area of image classification,
involve tasks that require prediction of a fixed label, like training a model for
classification of ImageNet. Such problem settings are also common in the med-
ical domain. Grading of soft tissue sarcomas based on CT imaging would be an
example. But, network output can also be continuous, e.g. for a model trying
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Figure 4.2: Example for right censored data. Patients 2 and 5 receive the
event, e.g. death, during course of the study, while patients 1 and 4 are lost to
follow up. Patients 3 and 6 did not receive the event before the study ended.

to predict exact tumor volume.
However, another type of modeling problem, encountered not so regularly

in typical deep learning settings, is given by prediction of time dependent data.
If the success of different treatment regimes should be analyzed, time to failure
plays a critical role. It makes a fundamental difference if a cancer patient dies
5 years or 5 month after therapy. Therefore, binary modeling of survival vs.
death would neglect the most essential information.

Real world survival data involves censored cases that cannot be handled
by simple regression models. Censoring describes the involvement of data for
which certain time spans are missing. In the medical domain, one usually has
to deal with right censored data, Figure 4.2. That means that a last time point
exists for which it is known that the event under consideration did not occur
so far. However, after that time point no information about the event status is
available. Example reasons for this are: end of the study or patients that drop
out of the program, but also a lung cancer patient for whom progression free
survival is studied, that dies on a heart stroke. Typical events of interested are,
overall survival or cancer recurrence after therapy.

This type of data requires special models for handling. The two most com-
monly used quantities to describe such time to event problems are given by the
survival and the hazard function. The survival function

S(t) = Pr(T > t), (4.1)

models the probability of an individual surviving beyond time t, with T repre-
senting the time until the event occurs, while the hazard function

h(t) = lim
∆t→0

Pr(t ≤ T < t+∆t|T ≥ t)

∆t
, (4.2)
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describes the momentary rate of occurrence for the event at time t, given that
it has not occurred before [120].

A simple approach for estimation of the underlying survival function was
developed by Kaplan and Meier [121]. The non-parametric approach assumes
the survival function to take the form

SKM (t) =
∏

i:ti≤t

(1− di/ni), (4.3)

with ti the (ordered) observed event times, di the number of failures at ti and
ni the number of subjects known to not have received the event before ti [122].
However, the Kaplan-Meier estimator can only be applied in a descriptive man-
ner, delineating the survival function based on observed data, but has no pre-
dictive power.

A widely applied approach able to be used in a predictive manner is given
by the proportional hazards model of Cox [54]. The model assumes the hazard
function for an individual j with covariates xj to take the form

hj(t|xj) = λ0(t) exp{xjβ}, (4.4)

with λ0(t) the baseline hazard function and exp{xjβ} representing the relative
risk associated with xj . The model does not take any assumption about the
specific baseline hazard function λ0(t), but assumes a proportionality for the
complete hazards hj of all cases involved. It is semiparametric in the way
that it makes parametric assumptions of the effect of covariates on the hazard
function but no assumptions about the hazards function itself. Cox showed that
a partial likelihood for the coefficients β is given by

L(β) =
∏

Ti uncensored

exp{xiβ}∑
Tj≥Ti

exp{xjβ}
, (4.5)

that can be treated as an ordinary log likelihood to derive valid maximum
likelihood estimates of β. [122]

With eq. 4.5 being completely independent of λ0(t), Cox proportional haz-
ards model allows for comparison of survival between different individuals with-
out the need to determine the underlying baseline hazard function.

Several authors adopted this approach to be used in combination with deep
neural networks (e.g. Katzman et al. [123] and Ching et al. [124]). However, the
partial likelihood 4.5 depends on the order of all cases involved in the dataset.
Therefore, the loss for such models can not be computed for single data points
but depends on all instances in the dataset, which impedes usage of batches
during optimization, a favorable procedure as described in Section 3.3.2.

A survival model approach fitting way more naturally to the structure and
essence of deep neural networks was developed by Gensheimer and Narasimhan
[22], Figure 4.3. They developed a discrete time survival model, with every
output neuron of the network corresponding to the conditional probability of
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Figure 4.3: Nnet-survival model. The principle architecture for a CNN model
is shown in a), neurons in the output layer reflect hazard probabilities for cer-
tain time intervals. Number and size of the intervals have to be chosen as a
hyperparameter. In b) example output for a model with six neuron in the out-
put layer is shown.

surviving a discrete time interval. Loss for time interval j of the model is then
given by the negative log likelihood function

dj∑
i=1

ln(hi
j) +

rj∑
i=dj+1

ln(1− hi
j), (4.6)

with hi
j the hazard probability for individual i during j and rj the number of

individuals not having experienced failure or censoring before the interval, with
dj of them suffering failure during the interval. The overall loss is given by
the sum of the losses for all time intervals. Hence, the approach allows for loss
computation on a individual level and therefore for an application of batches
during training.

One of the most commonly used performance measures for survival models
is given by the concordance index (c-index) [122]. Due to the involvement of
censored cases, no order can be established between all cases, Figure 4.4. The
c-index is a generalization of the area under the ROC curve that can be applied
to censored output variables. It can be interpreted as the fraction of all pairs of
subjects whose predicted survival times are correctly ordered among all subjects
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Figure 4.4: Ordering of censored data, following Steck et al. [125]. Empty
circles represent right censored datapoints, and arrows the existence of a order
between two datapoints. For censored datapoints, a order can only be estab-
lished in relation to uncensored cases featuring a shorter survival time.

that can actually be ordered [125].
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Chapter 5

Renal mass risk score
prediction

Publicly held challenges allow for fair comparison between different algorithms
and models and have now become the standard for validation of approaches in
the biomedical image analysis domain [26]. Several biomedical imaging chal-
lenges were held in conjunction with the 2022 IEEE 19th International Sym-
posium on Biomedical Imaging (ISBI) [126]. Aim of the KNIGHT challenge
was renal mass risk score prediction based on CT imaging and other clinical
data [28]. Within this thesis, the performance of CNN models was tested in this
competitive setting. Part of the studies presented in this Section were published
in the challenge proceedings: “Risk Score Classification of Renal Masses on CT
Imaging Data Using a Convolutional Neural Network”, Lang et al. [127].

5.1 Introduction
Advances in medical imaging modalities like CT and MRI have led to an in-
crease in detection of renal masses incidentally found during other workups.
Renal masses depict an abnormal growth in the kidney, and are either solid
or cystic. [128] Occurrences feature a large variety of behavior, ranging from
benign lesions to aggressive carcinomas. Treatment options for management
of clinically localized renal masses are diverse, including active surveillance,
thermal ablation and radical or partial nephrectomy [129], but also radiation
therapy in the form of SBRT is actively investigated in the management of re-
nal masses [130, 131]. This diversity in characteristics and treatment options
requires precise diagnostics, for selection of the right therapy regime.

Percutaneous biopsies can be utilized for determination of renal mass sub-
types [132], but precision of the method remains controversial, especially for
an application in small renal masses [133]. Moreover, advances in non-invasive
methods like thermal ablation and SBRT are increasing the demand for non-
invasive testing. Elderly patients with medical comorbidities are often admin-
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istered to be kept under active surveillance, to be only treated after tumor pro-
gression [134]. Medical imaging based testing, able to detect aggressive cases,
would allow non-invasive determination of patients that cannot be spared from
treatment, without the need to wait for disease progression.

Findings of cystic renal masses on CT imaging can be categorized using
the Bosniak classification system [135]. The risk for involvement of cancerous
tissue in lesions is evaluated and patients are stratified into treatment regimes.
However, the value of this system has been questioned [136, 137]. Leading
Silverman et al. [138] to propose modifications in 2019 that are also expanding
it to include findings on MRI data, but use in clinical practice is not widespread
yet.

For solid renal masses, CT and MRI can be utilized for characterization
based on lesion appearance. However, solid renal masses are often visually
indistinguishable [139]. Roughly 15% of benign renal tumors that are smaller
than 4 cm in size are classified as malignant, based on preoperative CT imaging
[140]. The three nephrectomy scoring systems RENAL [141], PADUA [142]
and centrality index [143] have been developed for standardized pre-operative
assessment based on anatomical characterization, but come with the cost of
labor intensive processing by medical experts.

Misclassification introduced by such testing methods can lead to incorrect
decisions in patient management. Welch and Black [144] concluded that a sub-
stantial proportion of renal tumors identified as cancerous are overdiagnosed,
either because they do not grow at all or because their growth is too slow for
the tumor to cause symptoms before the patient dies of other causes. Therefore,
a standardized well defined classification method, taking into account advances
in non-extirpative treatment methods, like SBRT, is needed for renal mass stag-
ing.

Post-operative pathological classification is performed by the guidelines de-
veloped by the American Urological Association (AUA). The guidelines focus
on the evaluation and management of clinically localized sporadic renal masses
suspicious for renal cell carcinoma (RCC) in adults [130]. Classification in-
volves the five risk groups: benign (B), low risk (LR), intermediate risk (IR),
high risk (HR), and very high risk (VHR). Patients classified with high risk or
very high risk scores should be treated with adjuvant therapy. Therefore, scores
are grouped into the no adjuvant therapy (NoAT) class, involving benign, low
risk and intermediate risk scores, and candidate for adjuvant therapy (CanAT)
class, with high risk and very high risk cases, Figure 5.1.

A model able to predict those post-operative pathologically confirmed risk
scores based on pre-operative imaging data would allow for precise testing that
is non-invasive.

Task of the 2022 IEEE ISBI KNIGHT challenge was development of AI
models able to identify patients’ AUA risk score class based on pre-operative
CT imaging and clinical data [28]. As presented in Section 3.3.6, convolutional
neural networks depict a valuable approach to be used for analysis of imaging
data. Within this thesis, ability of CNNs for AUA risk score classification based
on CT imaging and additional clinical data has been tested and a segmentation
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Figure 5.1: Risk scores for post-operative pathological classification of renal
masses. For the three lowest classes adjuvant therapy is not recommended, while
the two high risk classes mark candidates for adjuvant therapy.

model has been trained for identification of the rough ROI.

5.2 Material and methods
The challenge dataset involved 300 cases available for training and 103 cases
for testing. Each case included an abdominal CT scan and clinical information
about:

• age at nephrectomy,

• gender,

• body mass index,

• smoking history,

• age when quit smoking,

• pack years,

• chewing tobacco use,

• alcohol use,

• comorbidities,

• glomerular filtration rate,

• radiographic size,

• voxel spacing.

Training set cases also involved a respective AUA risk score classification label.
Furthermore, as cases in the training set were already present in the MICCAI
2021 Kidney and Kidney Tumor Segmentation challenge (KiTS21) [145], seg-
mentation maps for cystic, tumor and kidney tissue from different annotators
were available for those instances.

Training set cases were divided into a train and a validation set using
a stratified shuffle split, preserving the ratio of age, tumor size, voxel spac-
ing in longitudinal direction, and AUA risk score in both data sets. The
model_selection.StratifiedShuffleSplit function of the sklearn python
module [146] was used to do so. Number of AUA risk score cases in the train
and validation set are depicted in Table 5.1.

5.2.1 Segmentation of region of interest
Usually, CT images do not only involve information about respective regions
of interest, essential for a specific task, but also depict surrounding tissue and
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number
of cases benign low risk intermediate

risk
high
risk

very high
risk

train set 19 119 40 32 40
validation set 6 23 8 8 5

Table 5.1: Number of AUA risk score cases in the train and validation set

body parts, up to the complete patient for whole body CTs. Removal of imaging
parts not essential for the task of interest yields two advantages for deep learn-
ing models. First, graphics processing units (GPUs), used for training of deep
neural networks, feature a finite amount of memory. This limits the number of
trainable parameters that can be used, and therefore also the size of the net-
work. Input size directly affects the number of parameters in a model. Hence,
models with very large input volumes cannot be trained in a practical setting.
Second, preprocessing of input data can depict a essential step in the training
process. A machine learning model trained on a large input volume, with essen-
tial information only present in a small subvolume, has to learn to recognize the
respective region of interest first, before it can learn the actual task of interest.
So, cropping non-essential parts of the input volume helps to speed up learning
and has the ability to improve models’ performance. Of course, it has to be
secured that no information essential for the learning task will be lost by the
cropping process.

Therefore, abdominal CT images in the training and test set were cropped
to only involve the region of interest, i.e. both kidneys and their surrounding
tissue. However, delineations of the kidneys had to be known to do so. For
the training set, segmentation maps of the KiTS21 challenge provided infor-
mation about tissue of interest, but the test set was missing such labels. For
generation of delineations in the test set, a U-Net model was trained. The
KiTS21 data involved segmentation labels for cystic, tumor and kidney tissue
and also delineations from different annotators. For construction of binary re-
gion of interest maps, segmentations labeling different tissue were merged taking
the union, while segmentations from different annotators were combined using
intersections.

Standardization and normalization of input features is a common practice
in machine learning, facilitating model fitting and inference [77]. Often, image
intensity values are rescaled to range between 0 and 1, such that randomly
initialized weights of network layers and values in the input feature a common
scale. Hounsfield units of kidney tissue are roughly given in a range from 20 HU
to 40 HU, while fatty tissue ranges between -100 HU and -70 HU [32]. Taking
this into account, intensity values of the images were cropped at -250 HU and
250 HU and then linearly rescaled to range from 0 to 1 for standardization.

Furthermore, all CT images were resampled to the same voxel spacing. The
mean value of axial and longitudinal voxel spacing in the training set was given
by 0.79mm and 3.18mm with respective 5-th and 95-th percentile values of
0.65mm and 0.98mm, and 0.5mm and 5.0mm. As voxel spacing is inversely
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proportional to the dimensional extend of the images, a spacing of 1.5mm ×
1.5mm× 3.0mm has been chosen to keep input volumes small.

However, 3D imaging data still depicts a large input volume to be processed
by U-Net like architectures. Intention of training of the segmentation model
was rough orientation of the region of interest, but not detailed segmentation of
different tumor tissues. Therefore, to keep model input small, a lightweight 2D
architecture has been chosen for training of the segmentation model. Further-
more, CT and binary segmentation map slices have been center cropped to a
patch size of 390mm×390mm or respectively 260×260 pixels. During training,
those input patches were then randomly cropped to a size of 256×256 pixels for
data augmentation. Furthermore, from the augmentation techniques presented
in Section 3.3.5, flipping on the coronal and sagittal plane and rotations by a
multiple of 90◦ were performed.

The developed architecture followed the basic U-Net structure of Ronneberger
et al. [13], depicted in Figure 3.15. However, zero padding was applied in all
convolutional layers, to preserve spatial dimensionality. Furthermore, the num-
ber of down and up-sampling blocks and feature maps was reduced to prevent
overfitting. The best performing model consisted of three down and respective
up-sampling blocks of feature map size 32, 64, and 128. Optimization of model
weights was performed using the Adam optimizer introduced in Section 3.3.2
with a learning rate of 1 × 10−4. As a objective function the Dice loss, intro-
duced in Section 3.3.7, was used. A fixed batch size of 12 was applied during
optimization and all models were trained for 100 epochs.

During inference, all 2D slice level predictions were appended for construc-
tion of 3D segmentation maps.

The nature of CT imaging data is a three dimensional one, therefore, a
model aiming for the best segmentation approach should employ 3D convolu-
tional layers. The superiority of such an approach was proven by Isensee and
Maier-Hein [147] in the KiTS19 challenge. They utilized of a residual 3D U-Net
that achieved a Dice score of 0.974 and 0.851 for segmentation of kidney and
tumor tissue. However, aim of the approach presented here was development
of a lightweight segmentation model, able to roughly identify both kidneys. As
construction was limited by the GPU available for training, given by a NVIDIA
M60 card.

5.2.2 AUA risk score classification
Preprocessing of CT data for the AUA risk score classification model was per-
formed by resampling all cases to a uniform voxel spacing of 0.75mm×0.75mm×
2.5mm, while rescaling of intensity values was performed in the same way as
for the segmentation approach. Segmentations were utilized to identify center
points of both kidneys in the CT images. For the train and validation set, the
binary segmentation maps provided were used to do so, while for the test set
segmentations generated with the U-Net model were utilized. Two patches of
both kidneys featuring a size of 120mm × 120mm × 140mm or respectively
160 × 160 × 56 pixels, were cropped from the CT images using those center
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points for orientation.
Desired model output was given by AUA risk scores. Which are not com-

pletely independent from each other, but depicted a increase in severity. A
ground truth very high risk case, classified as benign, represents a bigger prob-
lem than the same case being classified as high risk. Such a relation between
labels is not reflected in the crossentropy loss, which depicts the standard loss
utilized for multi-class classification problems. Therefore, the problem was han-
dled in a regression manner. AUA risk scores were transferred into a stepwise
continuous score ranging from 0 to 1 in steps of 0.25, which in terms of the
vector L can be expressed by

L =


Lbenign
Llow risk

Lintermediate risk
Lhigh risk

Lvery high risk

 =


L0

L1

L2

L3

L4

 =


0.0
0.25
0.50
0.75
1.0

 . (5.1)

Clinical features essential for the task were identified by training of a random
forest model and computation of mean decrease in impurity (MDI) [148]. MDI,
also referred to as Gini index, provides a measure to calculate feature importance
in random forest models [149]. The classifier consisted of 100 trees with a
maximal depth of 4 layers. All variables with a Gini importance larger than 1%
were selected to be included in the deep learning model. That were: radiographic
size, body mass index, age a nephrectomy, metastatic solid tumor and chronic
kidney disease. With metastatic solid tumor and chronic kidney disease given
as binary scores.

The deep learning architecture developed for AUA risk score classification
followed the principle structure of a Siamese neural network, with both kidney
patches as an input. Siamese neural networks are usually employed for similarity
computation between features of two inputs, which are retrieved using the same
extractor [150]. However, for the two kidney patches no similarity was computed
but the Siamese structure was used for construction of a model featuring a
relatively small amount of trainable parameters, preventing the architecture
from overfitting. A delineation of the architecture is depicted in Figure 5.2.

For feature extraction, a 3D convolutional part has been employed, featuring
convolutional and max pooling layers. Kernels of size 3 × 3 × 3 with a stride
of 1 × 1 × 1 were used in convolutional layers, feature maps were zero padded
by one pixel in every dimension. The ReLU function, eq. (3.5), was used as an
activation. For max pooling layers, again kernels of size 3×3×3 were used, and
stride was given by 2 × 2 × 2, reducing spatial dimensionality by a factor of 2.
Following the Siamese structure, two input paths with shared weights were used
to process both kidney patches. Resulting feature vectors were merged using
the element-wise maximum.

The decision for taking the element-wise maximum as a fusion method was
made based on the fact that for classification it only matters if a given pattern is
present, but not in which patch it is contained. Another merging method would
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be given by stacking of feature vectors. However, this would increase the output
size of the convolutional part by a factor of two, resulting in a larger network,
more prone to overfit. After merging of feature vectors, dense layers were used
for classification. Clinical features, identified as essential, were merged with
deep features. The architecture ended in one output neuron modeling the risk
score developed before.

Dropout, introduced in Section 3.3.5, and ReLU activations were applied
after each hidden dense layer. Due to the decision for a regression-like handling,
mean squared error was used as an objective function to be minimized using the
Adam optimizer [83].

Data augmentation has been applied in order to prevent the model from
overfitting. Utilized augmentations were similar to the ones used for training
of the segmentation model, i.e. patches were randomly cropped to a size of
128× 128× 48 voxels, flipped on the coronal and sagittal plane and rotated by
a multiple of 90◦ on the axial axis.

Validation set loss was used as a measure for optimization of hyperparame-
ters, which were tuned manually in a grid-like manner. Hyperparameters mod-
ified during this process included: size of convolutional feature maps, number
and size of fully connected layers, layer at which clinical parameters are added,
dropout rate, learning rate and batch size. All models were trained for 500
epoch. The model found to perform best featured three convolutional layers of
size 16, 32, and 64, and four dense layers with output sizes of 256, 128, 128,
and 1. Clinical features were added after the second dense layer. Dropout rate
for all hidden dense layers was given by 0.25. Batches involved 8 cases and the
learning rate was given by 1× 10−4.

As described above, to account for the increase in severity of AUA classes,
output of the model was chosen to be scalar valued. However, for final clas-
sification the distance zj between model output y and each label Lj has been
computed

zj = ‖Lj − y‖, (5.2)

with ‖·‖ depicting the euclidean norm. The softmax function was then used for
construction of normalized scores

pj = σ(−z)j , (5.3)

reflecting the probability of each case to belong to a certain class.
The AUA risk score classification model received input from CT and clinical

data. Contribution of both inputs to the final output was studied by retraining
the model based on one input modality only, i.e. taking only CT or only clinical
data as an input. In case of the model taking only input from imaging data,
input from the clinical features was simply removed from the model. While
for the model taking only clinical data as an input, the architecture was kept
the same, but CT input patches were randomly shuffled, such that no valuable
information could come from the imaging path. As ground truth class labels
were only available for the train and validation set, influence of input sources
could only be determined for those two datasets, but not for the test set.
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Figure 5.2: Architecture developed for AUA risk score classification in renal
masses, adopted from Lang et al. [127]. Regions of interest for both kidneys
were identified by training of a U-Net like architecture. Two patches, one for
each kidney, were then cropped from the abdominal CT images. Those patches
were then processed by a model featuring a Siamese like structure, i.e. two
input path with shared weights. Resulting feature vectors were merged using
the element-wise maximum and further processed by dense layers. Importance
of clinical features were measured by training of a random forest classifier and
calculation of mean decrease in impurity. Essential clinical features were merge
with imaging features before construction of the output score.
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Figure 5.3: Example segmentations from the validation set. The left image
shows a slice of the worst performing case in the validation set featuring a
Dice score of 0.379, while on the right hand side a slice of the best performing
example, with a Dice score of 0.977, is depicted.

5.3 Results
The segmentation model achieved a mean Dice score of 0.951 and 0.903 on the
train and validation set. Performance on the test set could not be evaluated
due to missing labels. Example predictions for the best and worst performing
validation set cases are shown in Figure 5.3.

Performance on the binary discrimination between NoAT and CanAT cases
was used as a measure to rank participants of the KNIGHT challenge, while
detailed AUA score prediction performance, discriminating between the five
risk classes, was only captured but not utilized. AUC has also been chosen as a
metric for AUA score performance, comparing one risk class with all the others,
e.g. discriminating between low risk and all other risk scores. This resulted in
five AUC scores, one for each class. Those five scores were than merged using
the mean, for generation of a single metric.

For the NoAT vs. CanAT task the model was able to achieve a training,
validation and test set AUC score of 0.896, 0.865 and 0.814. Results for the
detailed AUA risk score prediction can be seen in Table 5.2. Mean AUC scores
on train, validation and test set were given by 0.836, 0.752 and 0.676. The
developed model was placed second in the final challenge ranking. Top 4 results
can be see in Table 5.3.

Performance of the developed model for input coming from different re-
sources can be seen in Table 5.4, while validation set learning curves are shown
in Figure 5.4.
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AUC-scores benign low
risk

intermediate
risk

high
risk

very high
risk mean

training 0.923 0.828 0.703 0.820 0.907 0.836
validation 0.674 0.802 0.640 0.753 0.889 0.752
test 0.606 0.763 0.524 0.656 0.830 0.676

Table 5.2: AUC scores for all risk classes. Scores are computed based on binary
detection of one class in contrary to all other classes.

Rank Team AUC task 1 AUC task 2
1 agentili 0.841 0.529
2 Helmholtz_IRM 0.814 0.676
3 Taiyuan_University_lab_713 [151] 0.813 0.626
4 Medal [152] 0.808 0.646

Table 5.3: Ranking of the KNIGHT challenge. The developed model, submitted
under the team name Helmholtz_IRM, was placed second, based on NoAT vs
CanAT AUC score performance.

AUC NoAT vs. CanAT mean AUC
risk score classification

training validation training validation

full input 0.896 0.865 0.836 0.752
image only 0.739 0.688 0.650 0.607
clinical only 0.864 0.790 0.747 0.698

Table 5.4: AUC scores for NoAT vs. CanAT classification and mean AUC
scores for AUA risk score classification with input coming from different re-
sources.
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Figure 5.4: Smoothed validation set learning curves for input coming from
different resources, taken from Lang et al. [127].

5.4 Discussion
Performance of the segmentation model could not be evaluated on the test
set. However, the generalization gap of segmentation models is generally small.
Isensee and Maier-Hein [147] reported the same validation and test set Dice
score of 0.97 for delineation of kidney tissue in the KiTS19 challenge. Therefore,
assumption of a low generalization error for the developed U-Net architecture is
reasonable. Objective of the segmentation model was identification of the region
of interest, but no exact pixel-wise differentiation between tissue. Accordingly,
validation set performance given by a Dice score of 0.903 was valued sufficient
to be used to crop patches of both kidneys from the CT images.

For binary discrimination between NoAT and CanAT cases the model was
able to achieve a significant test AUC score of 0.814. Performance was relatively
stable with respect to train and validation results. In contrast to that, detailed
AUA risk score classification performance experienced a considerable drop when
probed on the test set. Different mechanisms can lead to such behavior.

In general, the AUC metric is invariant to any global scaling or offset in the
data. However, due to utilization of the AUC metric in the non-binary setting,
comparing each class with all the other classes, output scores have to be associ-
ated with a given class. The developed model does this by computation of the
distance between output scores and the label vector L, eq. (5.2). Dependence
on L breaks the global shift invariance of the AUC score, which is usually only
used for evaluation of pure binary classification tasks. Deep learning models are
known to be sensitive to distribution shifts between two datasets. Differences in
scanners or scan protocols, but also discrepancy in pathologies and anatomies,
can cause such shifts [25], which in turn can lead to global offsets in the output,
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causing a decline in performance.
Another factor limiting the generalization capability of the model is given

by the small dataset size. Only 300 cases were available for training, which had
to be further separated into a train and validation set. This led to involvement
of less than 10 cases for all classes, except for the low risk class, in the valida-
tion set. For such a low number of cases, the validation set only reflects the
underlying data distribution to a limited amount. Hence, generalization error
is not properly reflected by the set, which increases the possibility for selection
of a suboptimal final model, resulting in a drop in performance.

Task of the KNIGHT challenge was prediction of risk classes based on “clin-
ical Computed Tomography (CT) imaging of the kidneys” [28], but next to
imaging data also clinical information was available for training. The influence
of both modalities was tested by training of separate models. Performance of
the model relying solely on imaging was inferior to the model trained with both
inputs. The image only validation curve in Figure 5.4 shows signs of overfitting
after 50 epochs. However, the curve also depicts a increase in AUC performance
after training is started and reaches a score of 0.688. This suggests inclusion
of information essential for the prediction task in imaging data. The model
trained on clinical information only showed similar initial behavior than the
complete model, but superior performance of the full model can be recognized
after a few hundred epochs. This superiority in terms of validation performance
is also present in both AUC measures shown in Table 5.4. Therefore, those
findings suggest main contribution of clinical input data for formation of the
output score, but a non-neglectable input coming from imaging. However, more
studies on larger unbiased datasets are needed for evaluation.

The developed model was placed second based on the NoAT vs CanAT AUC
score ranking of the challenge. For the more detailed task of AUA risk score clas-
sification, better performance than other participants could be achieved. The
winning contribution reported no utilization of imaging data for their model, but
no details of the developed model have been published. The approach ranked
3rd, developed by Chaudhary et al. [151], also reported no advantage from in-
clusion of CT data. They tested the ability of different CNN architectures for
extraction of imaging features, that have been fused with clinical information
for prediction. However, their final model was based on clinical features only,
employing a network specifically designed to handle tabular data, by applica-
tion of attention layers [153]. Notably, they did input whole CT images, without
cropping around the region of interest, for their imaging models. Varsha et al.
[152], placed 4th, trained a nnU-Net model for segmentation of detailed tissue
delineations, provided by the KiTS19 dataset. Latent space features from a
U-Net, included in the model, were utilized to extract information from the CT
images. Those features were reduced using principle component analysis (PCA)
and then fused with clinical features to be processed by an classification head
featuring an attention layer. Influence of clinical and imaging features on the
prediction were not investigated.

With other approaches reporting no influence of imaging data on model
performance the need for further studies to investigate influence of both input
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modalities is reaffirmed. However, Chaudhary et al. [151] used the whole CT
volume as an input, which limits model’s ability, as pointed out above.

Dataset size was very limited containing 300 training cases only. Further
studies should be performed on larger cohort sizes, investigating the influence
of different scanner types and the contribution coming from imaging and clinical
input in more detail. Merging of both input patches was performed by com-
putation of the element-wise maximum, but also other methods like taking the
average or mean instead of the maximum are possible. These methods should
also be further investigated.

5.5 Conclusion
A 3D CNN architecture for classification of AUA risk scores based on CT imag-
ing and clinical data was presented. A Siamese network in combination with
a element-wise fusion layer was developed. The architecture allows for reduc-
tion of trainable parameters and therefore prevents the model from overfitting.
The network was tested in a competitive setting by participation in a public
challenge. Significant model performance for a discrimination between relevant
therapy classes was achieved. Further studies for investigation of influence of
different input modalities are needed.
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Chapter 6

HPV status in oropharynx
cancer patients

6.1 Introduction
Human papilloma viruses (HPVs) are small DNA viruses. Over 120 different
subtypes have been discovered with approximately one-third of them infecting
the squamous epithelia of the genital tract [154]. Distinct high risk subtypes
have been identified that were proven to be causative agents of cancer [155].
This carcinogenic character could first be demonstrated by Harald zur Hausen
[156, 157], who was awarded with the Nobel Price in medicine in 2008 “for
his discovery of human papilloma viruses causing cervical cancer” [158]. The
subtypes HPV-16 and HPV-18 are the two most carcinogenic ones, responsible
for about 70% of cervical cancers [159].

Subsequent studies were able to associate high risk HPVs with many penile,
vulva and anal carcinomas and also oral cancers [155]. Infection with HPV-
16 was identified as a risk factor for head and neck squamous cell carcinoma
(HNSCC) [160]. HNSCCs feature a large variability and can be categorized
into subtypes that differ with respect to risk factors, pathogenesis, and clinical
behavior [161]. Squamous cell carcinomas originating in the oropharynx (Figure
6.1), a part of the pharynx which in turn is part of the throat, depict one such
subtype. Gillison et al. [163] were able to show that HPV positive oropharyngeal
cancers comprise a distinct molecular, clinical, and pathological disease entity
that has a markedly improved prognosis. Incidences of HPV positive oropharynx
cancer cases are on the rise [164], in 2016 about 30% of oropharynx cancer (OPC)
cases were caused by an infection with HPV [165]. However, HPV positive
OPCs feature a better responsiveness to chemotherapy and radiation treatment
[166]. Therefore, testing for an infection with HPV depicts a essential diagnostic
factor in OPC patients. Most frequently, immunohistochemistry staining for p16
is used as a surrogate marker of HPV, featuring a sensitivity of >90% and a
specificity of >80% [167, 168]. Detection of HPV E6 and E7 messenger RNA
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Figure 6.1: Anatomy of the oropharynx, taken form Lewis Jr et al. [162].

by in situ hybridization is often considered as the gold standard, but is difficult
to be utilized in clinical settings. Hence, application of the best testing method
remains controversial. [162]

Different radiomics studies have proven the ability of machine learning algo-
rithms for detection of patients HPV status based on CT imaging data. Huang
et al. [169] trained a logistic regression classifier on 113 HNSCC patients from
The Cancer Genome Atlas, 540 quantitative image features were extracted from
which five were selected for final model construction. When tested on 53 pa-
tients of an external data set, the model achieved an AUC of 0.76. Bogowicz et
al. [170] utilized a logistic regression classifier in a privacy preserving way on 975
patients from 6 different cohorts. Six different models were respectively trained
on data of five centers, while testing was done on the remaining center. In total,
981 radiomics features were extracted. Feature selection was performed in a
centralized manner and in a privacy preserving distributed manner. Final mod-
els relied on input from 26-30 radiomics features, reaching AUC scores ranging
between 0.69 and 0.82. Fujima et al. [171] finetuned a CNN model, pretrained
on ImageNet, for classification of patients HPV status based on PET/CT imag-
ing data, i.e. using a 2D approach. The model was trained on 2160 input slices
and achieved an AUC score of 0.83 on the test set, but no external testing was
performed and slices containing artifacts or tumors with diameters smaller than
1.5 cm in size were excluded from the dataset.

However, Starke et al. [19] have proven the superiority of 3D over 2D CNN
approaches for outcome modeling in HNSCC. Therefore, investigating the po-
tential of deep learning architectures, 3D models for prediction of patients HPV
status based on CT imaging data were developed within this thesis.

First, a transfer learning approach relying on video classification for pre-
training, and therefore allowing for three dimensional input in the downstream
task, was developed. To do so, the convolutional part of the C3D model of

68



Tran et al. [95] was utilized as a feature extractor. C3D was trained for sports
video clip classification on the Sports-1M data set [172]. For comparison, a
2D transfer learning approach using the aforementioned ImageNet pretraining
strategy was tested. Hussein et al. [173] utilized the C3D model for lung nodule
risk stratification based on CT imaging, but their network relied on additional
radiographic information like tumor sphericity and texture while the network
developed in this thesis was trained end-to-end, i.e. only relying on imaging
input.

Next to transfer learning, self-supervised learning can be used to enable
models to be trained on small datasets, cf. Section 3.3.9. Studying the ability
of such self-supervised approaches in the domain of medical imaging data, the
masked autoencoder (MAE) model of He et al. [20] was modified to be able
to process 3D data. The architecture relied on the modern concept of trans-
formers, introduced in Section 3.3.10. Zhou et al. [174] studied the ability of a
MAE based pretraining approach to be applied on X-Ray, CT and MRI data.
However, studies on 3D medical imaging data, i.e. CT and MRI, only involved
segmentation problems, but no classification downstream task has been evalu-
ated.

All investigations were performed on publicly available datasets in order to
allow for reproducible research. Code of the transfer learning approach was
published online 1. Part of the studies performed on transfer learning were
published in: “Deep learning based hpv status prediction for oropharyngeal
cancer patients”, Lang et al. [175].

6.2 Material and methods
6.2.1 Transfer learning
The radiomics and deep learning studies presented above, aiming for HPV pre-
diction based on CT imaging data, relied on datasets not available to the public.
As discussed in Section 2, application of such private datasets hinders repro-
ducible research. Therefore, the publicly accessible 2 “The Cancer Imaging
Archive (TCIA)” [27] was mined for appropriate cohorts containing CT images
of head and neck cancer cases. TCIA is an online repository that comprises
publicly shared cancer imaging data.

Four head and neck cancer cohorts could be identified including ground truth
information about patients’ HPV status, namely the OPC-Radiomics [176, 177],
HNSCC [178, 179], Head-Neck-PET-CT [180, 181] and Head-Neck-Radiomics-
HN1 [55, 182] cohorts. Those cohorts were scanned for appropriate cases apply-
ing the inclusion criteria: oropharyngeal subtype, existence of a pre-treatment

1https://github.com/LangDaniel/hpv_status
2At the point of this writing head and neck cancer cohorts of the TCIA archive were freely

available. In the meantime, due to privacy protection concerns a restricted license agreement
has to be approved by the provider, as head and neck CT data could potentially be used for
reconstruct of the human face.
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training set validation set test set
OPC HNSCC HN PET-CT HN1

Patients 412 263 90 80
HPV: pos/neg 290/122 223/40 71/19 23/57

HPV status
Age

pos 58.81 (52.00-64.75) 57.87 (52.00-64.00) 62.32 (58.00-66.00) 57.52 (52.00-62.50)
neg 64.82 (58.00-72.75) 60.02 (54.50-67.25) 59.11 (49.50-69.50) 60.91 (56.00-66.00)

Sex: Female/Male
pos 47/243 32/191 14/56 5/18
neg 34/88 15/25 4/15 12/45

T-stage: T1/T2/T3/T4
pos 46/93/94/57 60/93/41/29 10/37/15/9 4/8/9/8
neg 9/35/43/35 6/12/12/10 3/4/8/4 9/16/9/23

N-stage: N0/N1/N2/N3
pos 33/22/215/20 19/30/170/4 11/10/47/3 6/2/15/0
neg 36/16/62/8 5/2/31/2 2/1/13/3 14/10/31/2

Tumor size [cm3]
pos 29.35 (10.52-37.78) 11.78 (3.94-14.04) 34.63 (14.91-41.77) 23.00 (10.83-34.29)
neg 36.99 (15.72-45.35) 23.57 (5.80-22.85) 35.09 (17.32-47.82) 40.19 (11.77-54.42)

transversal voxel spacing [mm] 0.97 (0.98-0.98) 0.59 (0.49-0.51) 1.06 (0.98-1.17) 0.98 (0.98-0.98)
longitudinal voxel spacing [mm] 2.00 (2.00-2.00) 1.53 (1.00-2.50) 2.89 (3.00-3.27) 2.99 (3.00-3.00)
manufacturer

GE Med. Sys. 272 238 45 0
Toshiba 138 3 0 0
Philips 2 12 45 0
CMS Inc. 0 0 0 43
Siemens 0 4 0 37
other 0 6 0 0

Table 6.1: Cohorts used for training of the deep learning architectures, taken
from Lang et al. [183]. Error margins depict 25th and 75th percentiles.

CT image, availability of a GTV segmentation, and tested HPV status. This
led to a data set size of 850 individual patients, depicted in Table 6.1.

HPV testing was performed by IHC staining of p16 in the OPC-Radiomics
and Head-Neck-Radiomics-HN1 cohorts, while a combination of IHC and HPV
DNA in situ hybridization was performed in the HNSCC cohort. Testing meth-
ods for the Head-Neck-PET-CT were not reported.

As for the risk score prediction approach in Section 5, CT images were
cropped to patches of smaller size using the center of the ROI, given here by
the GTV. All CT images were resampled to a uniform voxel size of 1.0mm ×
1.0mm × 1.0mm. Intensity values, given in Hounsfield units, were clipped at
-250 HU and 250 HU, extending the typical clinical larynx Hounsfield-window
given by a center of 50 HU and a width of 250 HU [32]. Clipped values were
than linearly rescaled to range from 0 to 255.

The two largest cohorts of the data set, i.e. OPC-Radiomics and HNSCC
were employed for training, while Head-Neck-PET-CT was utilized as validation
set and Head-Neck-Radiomics-HN1 as test set.

Hence, 675 cases were available to train the model. As illustrated in Chap-
ter 3.3, deep learning models commonly require datasets of larger size, but
actions to overcome this need and prevent model overfitting can be applied.
Next to data augmentation and regularization methods, transfer learning can
be applied to enable training on sparse data. Often, architectures pretrained
on ImageNet are finetuned on the desired task, as done by Fujima et al. [171]
for HPV classification on PET/CT imaging data. However, as ImageNet data
is two dimensional the approach only allows for 2D input in the downstream
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Figure 6.2: C3D model, taken from Tran et al. [95]. The architecture utilizes
eight 3D convolutional and five 3D max pooling layers in the feature extraction
part. While two fully connected hidden layers, followed by a softmax output
layer are employed for classification. Convolutional layers feature kernels of size
3× 3× 3 and a stride of 1 in all dimensions. Max pooling layer pool1 employs a
kernel size and stride of 1 × 2 × 2, the two other pooling layers feature kernels
and strides of size 2×2×2. The output layer comprises 487 neurons, number of
feature map sizes and neurons in dense hidden layers are denoted in the Figure.

task, i.e. slices of PET/CT images. In contrast to that, a 3D classification task
utilized in pretraining would allow for full exploitation of 3D information in the
downstream task. One such task is given by classification of video data. Video
data features 2D images from different timepoints, and has therefore two spatial
and one temporal dimensions. Video clip classification depicts a task commonly
encountered in the area of deep learning, with different dataset of appropriate
size available [172]. Hence, classification of video data has been chosen as a
pretraining task in this thesis.

Training architectures on large 3D datasets is time-consuming and requires
appropriate computing resources. Therefore, instead of training the video clas-
sification model from scratch, weights of a already trained model were used.
Next to a reduction of computational workload, this approach also comes with
the advantage of utilization of a reproducible starting point.

A suitable pretrained model was given by C3D [95]. C3D processes its input
data in a 3D convolutional manner, i.e. all dimensions are handled equally, by
application of 3D convolutions and 3D max pooling layers. A schematic of the
architecture can be seen in Figure 6.2. The model was trained for classification
of YouTube sports video clips given in the Sport-1M dataset [172] featuring
1.1 million videos of 487 sports categories. Weights of the trained model are
publicly available [184].

The model was originally pretrained on colored RGB video clips of spatial
size 112 × 112 featuring 16 time frames, i.e. input size was given by 3 × 16 ×
112× 112. To account for the smaller size in the temporal dimension, the first
max pooling layer featured a kernel size and stride of 1×2×2, to not reduce the
temporal dimension too early in the architecture. The two other max pooling
layers had kernels and strides of size 2 × 2 × 2. For all convolutional layers,
kernel size was given by 3 × 3 × 3 and stride by 1 × 1 × 1, with zero padding
of 1 × 1 × 1 applied for preservation of spatiotemporal dimensions. ReLU was
used as an activation function for all convolutional layers.

All dense layers were removed from the model and replaced with randomly
initialized ones of appropriate size. The basic structure of the weight transfer
can be seen in Figure 6.3. Weights of all convolutional layers were kept fix during
training. All hidden dense layers were followed by a dropout layer, ReLU was
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Figure 6.3: Transfer learning approach. Weights of the 3D convolutional
part of the C3D architecture, shown in the upper part, are transferred to the
HPV classification network and kept fix during training. Dense layers in the
classification head are replaced with randomly initialized ones of appropriate
size. Utilization of 3D layers in the pretraining step allows for full exploitation
of 3D information in the downstream task of CT imaging based HPV detection.

again used as an activation function. The output layer consisted of a single
neuron followed by Sigmoid activation for binary classification (c.f. Figure 3.5).

Input size of the downstream architecture was kept the same as for the
pretrained model. Patches of size 112 × 112 × 48 were cropped from the CT
images and then rearranged to a shape of 3×16×112×112, such that the input
requirements of the pretrained model were fulfilled. To do so, three consecutive
CT slices were fed to the color channels.

Augmentation techniques applied during training involved, flipping patches
on the coronal and sagittal plane, rotation by a multiple of 90◦ and shifting of
the orientation point, utilized for cropping, by a value between 0 and 7 pixels
in both directions of the transverse plane.

The weighted binary crossentropy loss was minimized using the Adam op-
timizer. Hyperparameter optimization was performed based on the validation
loss. Manual variations involved adoption of: number and size of dense hidden
layers, dropout rate, batch size and learning rate. The best performing model
featured two hidden dense layers of size 1024 and 64, with a dropout rate of
0.35 and 0.25, respectively. Learning rate was given by 10−4 and batch size by
16. All models were trained for 200 epochs.

For comparison, a 3D CNN architecture was trained from scratch and the
transfer learning approach relying on a ImageNet pretrained model was tested.
Augmentation techniques and optimization strategies stayed the same as for
the C3D pretrained model, only the size and number of trainable layers were
reduced to prevent model overfitting.

The 3D CNN trained from scratch followed the same basic structure as
the C3D model, i.e. 3D convolutional layers and max pooling were utilized
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Figure 6.4: CNN model, adopted form Tran et al. [95]. Convolutional layers
featured kernels of size 3 × 3 × 3 and a stride and zero padding of 1 × 1 × 1.
Pool1 utilized a kernel and stride of 1×2×2, all other pooling layers had kernels
and strides of 2× 2× 2. Dropout rate was given by 0.25 for all layers. Feature
map sizes and number of neurons for dense layers are denoted in the boxes. All
hidden layers used ReLU as an activation function. The architecture ended in
one output neuron with a Sigmoid activation.

for feature extraction and dense layers employed for classification, Figure 6.4.
However, dropout was already applied after the last pooling layer to further
reduce models’ capability for overfitting. The best performing model featured
convolutional layers of size 16, 32, 32, 64, 128, and 128, and two fully connected
layers of size 256 and 128. Dropout rate was given by 0.25 for all layers. Again,
ReLU was used as an activation function for all hidden layers. Also, input
patches were cropped from the CT images in the same way as for the C3D
based model. However, no rearrangement into color channels was performed,
i.e. model input featured a size of 48× 112× 112 voxels.

For the ImageNet pretrained architecture, the VGG16 model of Simonyan
and Zisserman [94], depicted in Figure 3.12, was chosen. All dense layers were
removed from the model and replaced with randomly initialized ones of ap-
propriate size. Weights of convolutional layers were kept fix during training,
as for the C3D based model. Patches were again cropped in the same way
as before. However, ImageNet pretraining requires 2D input from three color
channels. Therefore, patches were split into 16 slices of size 3 × 112 × 112, i.e.
three consecutive slices were input to the color channels of the model. Slices
were individually processed during training and validation. During testing, an
overall prediction score was constructed taking the mean of those 16 slice level
predictions. The best performing model employed two dense layers of size 512
and 64, followed by a dropout layer of rate 0.5 and 0.25 and a ReLU activation
layer. Data augmentation was performed as before.

Due to the limited size of the test and validation set, all three models were
trained ten times with the same hyperparameter settings. In this way, a rough
estimate of performance error could be introduced, enabling better comparabil-
ity.

6.2.2 Self-supervised learning
Transfer learning assumes patterns learned in the pretrain task to be of value
in the downstream task. Even though Fujima et al. [171] have proven the
principle power of natural imaging data based pretraining for a CT based HPV
classification, both domains are not that similar. Therefore, the question if
pretraining on a more similar task leads to improvements in performance arises.
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Self-supervised learning provides an opportunity for in-domain pretraining.
Ability of the masked autoencoder (MAE) architecture of He et al. [20], for a

CT based HPV classification was studied in this thesis. The model was proven
to outperform other self-supervised training approaches in the natural imaging
domain. MAE relies on the transformer models introduced in Section 3.3.10,
namely the vision transformer (ViT) model developed by Dosovitskiy et al. [110].
As depicted in Figure 3.18, a fraction of the input patches 3 is removed/masked.
Self-supervised task is given by restoration of the uncorrupted image, utilizing
mean squared error (MSE) as a loss function in pixel space.

He et al. [20] found that masking of a very high portion of patches works
best for the approach. For their final model they removed 75% of patches in the
input. Transformer architectures feature lots of parameters, as attention layers
compute relations between all tokens in the input. This leads to a large demand
for GPU memory during training. To handle this, ViT models embed whole
patches and not single pixels, but for 3D data even insertion of patches leads
to an extensive memory demand. As MAE removes a large portion of its input
patches and only processes parts of them, the architecture depicts a perfect self-
supervised transformer model candidate to be applied onto 3D medical imaging
data.

The vision transformer approach [110] introduced three different variants of
ViT models, featuring 12, 24, and 32 layers (layer in this context refers to the
gray block depicted on the right hand side of Figure 3.20). Those sizes were also
tested in the encoder of MAE [20]. Due to the memory demand of 3D data, only
the base model comprising 12 layers was studied in this thesis. The developed
approach will be called masked autoencoder for medical imaging (MAEMI) in
the following. Furthermore, the dimension of the latent space was reduced from
512 to 384 and the depth of the decoder from 8 to 4 layers. Code for the publicly
available MAE model [185] was modified to handle medical imaging data of 3D
grayscale format. During construction of the MAEMI model, Feichtenhofer et
al. [186] modified MAE in a similar way to be trained on video recognition
data, like Kinetics-400 [187], but did not publish their code. However, they
observe a even larger masking ratio as high as 90% to work best, associating it
with a higher information redundancy in video data. Following those findings, a
masking ratio of 85% was probed for pretraining of the MAEMI model, assuming
the information redundancy in CT imaging to be less distinct than in video data.

Despite all the measures taken to reduce models’ memory demand, process-
ing of input sizes of 112 × 112 × 48 voxels, used in the C3D transfer learning
approach, was not possible with the NVIDIA M60 GPU available for training.
Therefore, a smaller volume of 112× 112× 16 voxels was studied.

Availability of patients HPV status was essential for inclusion of cases in the
transfer learning dataset. However, goal of self-supervised approaches is inclu-
sion of unlabeled data, this allowed for involvement of additional cases without
a tested HPV status available. Moreover, it is likely that general knowledge

3Notation of patches for the ViT model [110] collides with the notation of patches used
before, revering to the clipping of CT images to smaller size, which will therefore be denoted
as CT-patches in this Section.
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about the head and neck region will improve models’ performance when trained
to distinguish between HPV positive and HPV negative oropharyngeal cases.
Therefore, also the need for cases to be of oropharyngeal subtype and existence
of tumor segmentations were abandoned. This led to inclusion of more cases
from the four cohorts used before, but also two additional TCIA cohorts, namely
QIN-HeadNeck [188, 189] and ACRIN-HNSCC-FDG-PET/CT (ACRIN 6685)
[190, 191], could be employed for pretraining. In total, this resulted in a dataset
of 2067 CT images of head and neck cancer patients, with a tested HPV status
available for 906 of them.

In the transfer learning approach, an external cohort was used for final per-
formance testing, featuring 80 cases. Due to the small dataset size of this cohort,
models were retrained 10 times for rough estimation of error margins. Consid-
ering the computational workload of the MAEMI model, each model was only
trained once in the self-supervised setting. However, size of the test set was
expanded and bootstrap resampling, featuring 10,000 samples, utilized for eval-
uation of error margin, asserted by 5th and 95th percentiles. All cases were
merged and then split into a pretrain, train, validation and test set. The pre-
train set was used for pretraining on the image reconstruction task, while train,
validation and test sets were utilized in the downstream task of HPV classifi-
cation. Therefore, for construction of train, validation and test sets, cases with
available HPV status were split twice using a stratified split, preserving the ra-
tios of HPV cases, gender and medical center, resulting in 509 train cases, 170
validation cases and 227 test cases 4. For construction of the pretrain set, cases
without an available HPV status were added to the train set, resulting in 1670
cases.

All images were again resampled to a uniform voxel size of 1.0mm×1.0mm×
1.0mm and intensity values cropped at -250 HU and 250 HU to then be linearly
rescaled to range from 0 to 1, as for the transfer learning studies.

Pretraining

Again, rough identification of the region of interest was applied to crop images to
smaller CT-patches. However, segmentation of tumor regions was not available
for all cases. Therefore, the dimensional extend of the human head found by
Vasavada et al. [192], depicted in Figure 6.5, has been used for orientation. In
the study, a mean head height of 190.5mm has been found, while the values
for neck length and head depth were given by 107.5mm and 194.5mm. For
identification of the gross head region, threshold based segmentation of CT
intensity values larger than -800 HU was performed. The top CT slice was
assumed to coincide with patients skullcap. While the center of the oropharynx
was assumed to roughly be at the same height as the lower mark utilized for
measurement of head height, c.f. Figure 6.5. In lateral and anterior-posterior
direction the center of the head was assumed to very roughly coincide with the

4Relaxed restrictions in pattern recognition, employed to identify tumor segmentation files
during data mining, resulted in an increased dataset, in comparison to that depicted in Table
6.1.
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Figure 6.5: Dimensional extend of the human head, taken from Vasavada et
al. [192]. A mean head height of 190.5mm, neck length of 107.5mm and head
depth of 194.5mm has been found [192]. Those measures have been used to
roughly identify the desired region of interest, i.e. the oropharynx, and crop CT
images to smaller size.

center of the oropharynx. Therefore, orientation points lying 190mm from the
top slice, 100mm from the anterior segmentation boundary, and in the center
of the lateral dimension were identified. Patches of size 120mm × 120mm ×
52mm were then cropped using this orientation point. Clearly, this procedure
will fail for some of the cases and only contain part of the oropharynx region
or even completely different parts of the head. However, for the majority of
cases valuable information, essential for the downstream task, is assumed to be
involved.

During pretraining, learning rate of the MAEMI model was set to 0.001, a
batch size of 4 has been chosen and a patch size of 8× 8× 4 has been employed.
Notably, selection of batch and patch size were restricted by memory limitations
of the computing resources available. Weights of the encoder were initialized
with the publicly available ImageNet pretrained weights of the MAE approach
[185]. Notably, weight initialization with ImageNet pretrained weights for a 3D
model is possible due to the embedding space utilized in transformer models.
The model was trained for 400 epochs. As for the approach of He et al. [20], no
validation performance was captured during pretraining. Reasoning behind this
is the assumption that for such a high fraction of random masking overfitting
is unlikely to set in. Hence, no estimation of the generalization gap is needed.

CT-patches were randomly cropped to an input size of 16×112×112 for data
augmentation. To reduce the computational workload, only flip and rotation
augmentations were used during training.
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Figure 6.6: Selection of the region used to crop CT images to smaller size.
Larger ROIs were cropped using the smallest bounding box surrounding the area
(left), while ROIs of smaller extension were center cropped using a bounding
box of 120mm× 120mm× 24mm (right). Such that a minimal CT-patch size
could be secured.

HPV classification

As for the transfer learning approach, tumor segmentations have been utilized
to crop CT images to smaller size. However, cropping has not been performed
in a uniform way, but CT-patches, taking the tumor extent into account, were
generated. A size of 120mm × 120mm × 24mm has been chosen for small
tumors, while for larger tumors the smallest bounding box surrounding the ROI
was used for cropping, a schematic can be seen in Figure 6.6.

The decoder part of the pretrained model was replaced with a dense layer,
ending in a binary output score. The encoder was initialized with the weights ob-
tained in the pretraining step. Initial layers were kept fix during training, while
weights of later layers were optimized. Data augmentations were performed in
the same way as for the pretraining task. Weighted binary crossentropy has
been chosen as a loss to be minimized using the Adam optimizer.

Manual hyperparameter optimization was performed based on the validation
loss. Variations involved: changes in the number of initial layers kept fix during
training, learning rate and dropout rate. The best final model featured freezing
of the first ten transformer layers, a learning rate of 0.0001 and a dropout rate
of 0.1 in transformer layers. All other hyperparameters followed that of the base
model of He et al. [20].

Due to the changes in data preparation and input size, the C3D transfer
learning approach was also retrained for comparison. The modified input di-
mension was handled in such a way that the same slice of the 112 × 112 × 16
CT-patches was fed to all the color channels of the model, resulting in the de-
sired 3 × 16 × 112 × 112 input dimension. Also, hyperparameter optimization
was repeated due to the changes in the datasets. However, the best performing
model again featured the same structure as for the dataset utilized before.
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Figure 6.7: Test set results for the C3D based model, 3D CNN architecture
and the VGG16 based network obtained on the HN1 cohort, taken from Lang
et al. [183].

6.3 Results
On the external data split of the transfer learning approach, the C3D based
model achieved an AUC score of 0.949 (0.903 - 0.978) and 0.734 (0.686 - 0.770)
for training and validation. The 3D CNN model trained with randomly ini-
tialized weights accomplished an AUC score of 0.827 (0.664 - 0.918) and 0.713
(0.670 - 0.744), respectively. Performance of the VGG16 based model was given
by 0.776 (0.764 - 0.788) and 0.621 (0.583 - 0.644). Test set results can be seen in
Figure 6.7. AUC scores were given by 0.814 (0.775 - 0.836), 0.638 (0.558 - 0.701)
and 0.726 (0.698 - 0.754) for the C3D based model, 3D CNN architecture and
the VGG16 based network. ROC curves generated from the mean predictions of
all ten training runs were significantly different with a p-value of 0.027 between
the C3D based and the 3D CNN model. P-values between the C3D and VGG16
approaches and between the 3D CNN and VGG16 frameworks were given by
0.110 and 0.435.

Sensitivity, specificity, positive predictive value (PPV), and negative predic-
tive value (NPV), for a threshold based binary classification at a value of 0.5 in
the output layer are shown in Table 6.2. Furthermore, F1 score, given by the
harmonic mean of precision and recall, and balanced accuracy, reflecting the
mean value of sensitivity and specificity, are listed.

Example reconstructions from the validation set, learned by the MAEMI
model, can be seen in Figure 6.8.

On the mixed dataset, the MAEMI approach achieved train and validation
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3D video
pre-trained

3D from
scratch

2D ImageNet
pre-trained

AUC 0.814 0.638 0.726
sensitivity 0.752 0.665 0.843
specificity 0.721 0.491 0.398
PPV 0.533 0.346 0.367
NPV 0.880 0.789 0.868
F1 score 0.618 0.452 0.508
balanced accuracy 0.737 0.578 0.621

Table 6.2: Test results for the three different models probed in the transfer
learning approach. Scores represent the mean of the values obtained by training
each model ten times. Binary classification metrics were calculated using a
threshold based discrimination at a value of 0.5 in the output layer.

Figure 6.8: Example reconstructions learned from the self-supervised MAEMI
approach. The left column shows the unaltered image, while the masked model
input is shown in the middle column. Reconstructions learned from the model
can be seen on the right.
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Figure 6.9: ROC curves for MAEMI and the C3D based model on the mixed
datasets. AUC is given by 0.723 for the MAEMI approach and 0.710 for C3D
based transfer learning. P-value for a difference of both ROC curves is given by
0.720.

AUC scores of 0.856 (0.827 - 0.885) and 0.836 (0.774 - 0.893). The C3D based
model was able to reach a training AUC score of 0.875 (0.845 - 0.902), while
validation performance was given by 0.791 (0.722 - 0.855). On the test set,
MAEMI accomplished an AUC score of 0.723 (0.657 - 0.787) and the C3D based
model of 0.710 (0.644 - 0.773), ROC plots are shown in Figure 6.9. P-value for a
difference of both ROC curves was given by 0.720. Binary classification metrics,
again obtained by a threshold based discrimination at a value of 0.5 in the output
layer, can be seen in Table 6.3.

6.4 Discussion
In the transfer learning studies, the C3D based model performed best with a
improved AUC score in comparison to the 3D CNN trained from scratch and
the ImageNet pretrained VGG16 model. Difference between the ROC curve of
the C3D based model and the 3D CNN was significant. Between both transfer
learning approaches, 3D and 2D, ROC curves were only different with a p-
value of 0.110. However, the C3D based model performed better, reaching a
mean AUC score of 0.81 in comparison to a mean AUC score of 0.73 for the
VGG16 based model. This improved performance is likely to be caused by
the three dimensional structure, allowing for full exploitation of information,
in comparison to the VGG16 based model. Significant difference has to be
investigated in further studies, featuring larger test sets. Moreover, the approach
should be evaluated on other problem settings in the area of 3D medical imaging.
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MAEMI C3D based
accuracy 0.667 0.653
balanced accuracy 0.654 0.650
F1 score 0.746 0.731
NPV 0.440 0.427
PPV 0.821 0.822
sensitivity 0.683 0.658
specificity 0.625 0.641

Table 6.3: Test set results on the mixed datasets. Binary classification metrics
were calculated using a threshold based discrimination at a value of 0.5 in the
output layer.

General benefit of natural imaging based pretraining for a downstream task
in the medical imaging domain has been challenged by Raghu et al. [100]. Who
were able to associate improvements in the downstream task with an application
of overparameterized models. However, the smallest data regime employed in
their study still featured 5000 2D images for training, while the dataset utilized
here contained 675 training cases of 3D images. Involvement of 3D data hin-
ders construction of lightweight CNN models with a low number of trainable
parameters. Therefore, a general overparametrization of models is likely, trans-
fer learning helps counteracting this overparametrization. Moreover, due to the
training set being a magnitude smaller than data utilized by Raghu et al., ben-
efit of real transferred knowledge can be inferred but must be tested in further
studies.

Hendrycks et al. [193] were able to show that utilization of pretrained weights
leads to improvements in terms of robustness. Radiomics features are known
to be affected by application of different scanners [194–196], and convolutional
neural networks are sensitive to such domain shifts [197, 198]. Therefore, appli-
cation of transfer learning improves models’ ability to generalize well on external
medical imaging data. For the dataset in the transfer learning study, external
testing has been applied, featuring different scanner types and imaging proto-
cols. Hence, robustness gained from transfer learning is likely to have caused
the superior performance of the C3D model.

On the mixed dataset, the C3D based model achieved a test set AUC score
of 0.723 (0.657 - 0.787) which was lower than the 0.814 (0.775 - 0.836) reached
for the external data split. In principle one would expect a converse behavior,
i.e. better test performance on the mixed dataset. However, both test sets only
involved 80 and 227 cases. For such low numbers, datasets do only partially
reflect the underlying distribution, which forbids direct comparison between
models. This is not only the case during testing. In general, deep learning mod-
els trained on different datasets simply behave dissimilar. Hence, comparisons
between models trained and/or tested on unequal datasets is not possible, at
least in the small data domain.
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Saint-Esteven et al. [115] utilized a 2D model pretrained on ImageNet and
finetuned it for HPV classification based on CT imaging. They cropped 2D
images from the axial, sagittal and coronal planes, to feed those to the expected
3 color channels, calling it a 2.5D approach. The model was trained on the OPC
dataset and an internal cohort. Testing was performed on HNSCC and HN1.
They reported an AUC score of 0.83 on the HN1 cohort, and compared it with
the 0.814 achieved by the model developed for this thesis. Which is not directly
possible, due to utilization of different datasets employed during training.

Radiomics models trained on CT based HPV classification typically reach
AUC scores ranging between 0.70 and 0.80 [169, 170]. A fundamental limitation
of the approach is introduced by the dependence on predefined volumes utilized
for feature extraction. Typically, features from the gross tumor volume (GTV)
are extracted by hand-crafted filters. However, oropharynx cancer cases caused
by an infection with HPV are known to be associated with areas outside of the
tumor volume, i.e. cystic lymph nodes [199, 200]. Therefore, models considering
features from inside the tumor area only, discard essential information, valuable
for prediction.

MAEMI reached an AUC score of 0.723, but performance was not signifi-
cantly different from that of the C3D based model. However, different aspects
forbid direct comparison between both procedures. First and foremost, both
approaches feature different architectures and dataset sizes. If one would like
to compare self-supervised pretraining and transfer learning both frameworks
should feature the same structure, i.e. both should utilize either convolutional
or transformer layers. Furthermore, both models were pretrained on different
dataset sizes. C3D was trained on 1.1 million sports clips, while the data set
utilized for pretraining of MAEMI included 1670 cases. Influence of dataset size
on the pretraining method has to be investigated in future studies. One could
imagine superiority of the self-supervised approach for equal dataset sizes. How-
ever, video data is available in large numbers, while generation of a head and
neck dataset including 1.1 million CT images not feasible. Therefore, different
dataset sizes have to be probed to foster understanding of which method should
be preferred based on the available data. Last but not least, optimization of
hyperparameters and selection of model architecture for MAEMI was limited by
the computing resources available during training. Larger computing resources
are needed for determination of the right parameters.

However, it was proven that modification to the MAE approach of He et al.,
that allow for three-dimensional medical imaging based classification tasks, are
possible. Modern transformer layers have been utilized to process CT imaging,
which has been done by very few studies in a 3D manner up till now. The
approach is valued promising to be applied in future settings. However, fur-
ther investigations have to compare video data based pretraining of the masked
autoencoder model, following the approach of Feichtenhofer et al. [186], with
the same-domain pretraining strategy developed in this thesis. Also, in-domain
pretraining should be investigated, i.e. pretraining on CT imaging data from
another entity. One example would be given by self-supervised pretraining on
lung CT data, available in larger numbers than head and neck CT, to then be
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finetuned on HPV detection in oropharynx cancer.
A problem generally associated with the processing of head and neck CT

imaging data is given by the vulnerability against artifacts. Leijenaar et al.
[201] analyzed a subset of the OPC cohort and found that 49% of patient’s CT
images were affected by visible artifacts. In a subsequent study, it was proven
that artifacts have significant influence on machine learning models by training
of a radiomics approach that achieved AUC scores ranging between 0.70 and
0.80, depending on the distribution of cases containing artifacts in the train and
validation sets [202]. Assumption of the same influence on deep learning model
is reasonable, but also has to be tested in further studies.

6.5 Conclusion
Pretraining convolutional neural networks on video clip data allows for process-
ing of three-dimensional CT imaging data in the downstream task. For CT
based HPV classification, the approach results in better performance than net-
works trained from scratch or relying on 2D input. Deep learning features a
inherent superiority for CT based detection of HPV infections in oropharynx
cancer patients in comparison to radiomics models. However, for fair compari-
son both approaches have to be trained on the same datasets. Self-supervised
learning allows for in-domain and same-domain pretraining. The masked au-
toencoder approach of He et al. [20], utilizing modern transformer layers, can
be adopted to be used in combination with 3D medical imaging data. Studies
investigating the power of both approaches in more detail have to be performed
on larger datasets. Influence of different scanners and imaging protocols as well
as image quality, has to be investigated for a clinical applicability in the area of
HPV detection.
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Chapter 7

Head and neck cancer
progression free survival

HPV depicts a surrogate marker for the endpoint of overall survival (OS). Deep
learning features the power for direct prediction of survival endpoints. But, as
pointed out in Section 4.4, handling of time dependent data requires special ar-
chitectures. Ability of the approach of Gensheimer and Narasimhan [22] in con-
junction with the C3D based transfer learning approach developed in Chapter 6
was studied. The model was again tested in the competitive setting of a public
challenge, namely the MICCAI 2021 HEad and neCK TumOR (HECKTOR)
segmentation and outcome prediction challenge [29]. Task of the challenge was
prediction of progression free survival in head and neck cancer patients.

Part of the studies presented in this Chapter were published in the proceed-
ings of the challenge: “Deep learning based GTV delineation and progression
free survival risk score prediction for head and neck cancer patients”, Lang et al.
[203]. Code of the survival model was published online 1.

7.1 Introduction
Head and neck tumors feature a large diversity in subtypes and treatment op-
tions, as pointed out in Chapter 6. Therefore, chances for a complete cure are
still relatively low, with 40% of patients experiencing locoregional failure dur-
ing the first two years after therapy [204]. On one hand, this led Troost et al.
[205] to identify tumor subvolumes with high proliferative activity eligible for
dose escalation in order to enhanced tumor control. On the other, head an
neck cancer patients, undergoing radiation therapy, can experience significant
side effects ranging from skin changes to secondary cancers [206], which led dif-
ferent studies to seek for dose de-escalation [207]. Gillison et al. [163] showed
that patients with high risk HPV positive head and neck tumors have a 59%

1https://github.com/LangDaniel/HECKTOR2021
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reduction in risk of death from cancer when compared to HPV negative HN-
SCC patients. Based on that, the ECOG 1308 trial [208] studied radiation dose
reduction for HPV positive head and neck cancer patients. The study found
stable tumor control and survival rates for patients identified to qualify for a
treatment with the de-intensified dose. However, HPV was not utilized solely as
a marker but only patients with a favorable response to induction chemother-
apy were stratified to the low dose regime. Studies were performed on a rela-
tively small cohort and findings of the trial were also discussed controversially
[209]. The De-ESCALaTE and RTOG 1016 trials studied dose de-escalation in
chemo-radiotherapy by replacing cisplatin with cetuximab, two chemotherapeu-
tic agents, for HPV positive head and neck cancer patients. Both trials found
no benefit in terms of toxicity reduction but significant decline in tumor control
[210, 211]. Therefore, a marker, available prior to treatment, that allows for
identification of head and neck cancer patients eligible for dose de-escalation is
still to be found.

In general, patient survival, i.e. overall and progression free survival, depicts
a essential endpoint in clinical oncology [21]. Architectures able to model such
endpoints have the power to identify novel tumor markers. Haider et al. [212]
were able to improve clinical patient stratification in terms of overall and pro-
gression free survival, utilizing a PET/CT based radiomics model. Therefore,
the capability of deep learning architectures for modeling of time dependent
data in head and neck cancer patients was studied here.

Task of the MICCAI 2021 HEad and neCK TumOR (HECKTOR) segmenta-
tion and outcome prediction challenge [29] was PET/CT imaging based predic-
tion of progression free survival (PFS). In this thesis the ability of the transfer
learning approach, relying on the C3D pretrained model as a backbone, in com-
bination with the discrete-time survival loss of Gensheimer and Narasimhan [22]
has been tested.

Following the findings of Section 6, the video clip pretrained convolutional
part of C3D has been utilized as a feature extractor, independently applied
on the CT and the PET image. Resulting feature vectors were stacked and
processed by dense layers, ending in a output layer, reflecting discrete time
intervals. Similar to the approach in Chapter 5, a U-Net like architecture has
been trained for identification of the region of interest, i.e. the gross tumor
volume, in order to crop images to smaller size.

7.2 Material and methods
The training dataset of HECKTOR involved 224 cases coming from five centers.
Data from four of those centers was also involved in the HN PET CT cohort
utilized in Chapter 6. The test dataset involved 101 cases coming from two
centers. Data stemming from one of those centers was only present in the
test cohort, while data from the other center was involved in both, training
and testing, cohorts. All cases involved a PET/CT image, with PET image
intensity values given in units of standardized uptake value (SUV) and CT
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image intensity values in Hounsfield units. For each case, a bounding box of
size 144mm×144mm×144mm, locating the oropharynx region, was provided.
Apart from imaging data, clinical information was also available including:

• center,

• age,

• gender,

• TNM stage,

• TNM edition,

• tobacco consumption,

• alcohol consumption,

• performance status,

• HPV status,

• treatment,

treatment indicated involvement of radiotherapy only or application of chemo-
radiotherapy and TNM edition distinguished between different versions of the
TNM standard. Furthermore, the training set involved ground truth segmen-
tation maps of the GTV and patient survival data, given by time and event
status.

Imaging data and segmentation maps were resampled to a voxel size of
1.0mm × 1.0mm × 1.0mm. CT images were again clipped at −250 and 250
HU and linearly rescaled to range from 0 to 255, as in Chapter 6. PET images
were clipped at 0 and 100 SUV and also linearly rescaled to range from 0 to
255.

7.2.1 GTV segmentation
As for the models presented before, region of interest delineations have been used
to crop images to smaller size. GTV segmentations were only available in the
training cohort. Therefore, a segmentation model was trained for generation of
labels in the test set. In a first step, the very rough bounding boxes, provided in
the dataset, were used to crop PET and CT images to smaller size. Hence, input
to the segmentation model was given by 2× 144× 144× 144 voxels, featuring a
CT and a corresponding PET image, fed to the color channels of the network.

For segmentation of the GTV area, again a U-Net like architecture was
utilized. However, instead of using a 2D model, like in Section 5, a 3D archi-
tecture has been modified for reduction of network parameters. Such that the
framework could be fitted on the NVIDIA M60 GPU available for training. In
contrary to the max pooling layers employed for spatial dimension reduction in
the original U-Net model of Ronneberger et al. [13], depicted in Figure 3.15, a
convolutional layer with a stride larger than 1 has been used. Therefore, main
building blocks of the model were given by a convolutional layer with a stride of
1, followed by a convolutional layer with a stride larger than 1. Instead of two
convolutional layers of stride 1 followed by a max pooling layer. Ronneberger
et al. [13] utilized skip connections to forward the last generated feature maps
in each stage of the encoder to the decoder path. However, for the model de-
veloped in this thesis, the first generated feature maps, obtained before feature
map extension, were forwarded. In this way, size of copied feature maps was
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reduced by a factor of 1/2. Additionally, extent of the final output block has
been reduced and chosen to consist of one convolutional layer only. A sketch of
the network can be seen in Figure 7.1.

All convolutional hidden layers were followed by a dropout and a ReLU
activation layer. In the final output layer sigmoid activation has been used. The
Dice loss of eq. (3.16) has been chosen as a objective function to be minimized
by the Adam optimizer. Optimization of network hyperparameters was again
performed manually, guided by the validation loss. Each model was trained for
150 epochs.

The encoder of the final model consisted of five basic building blocks. The
first two of those blocks featured convolutional layers with kernels of size 5×5×5
and spatial dimensionality reduction layers with kernels of size 3×3×3. For the
three remaining blocks kernel sizes were given by 3× 3× 3 and layers reducing
spatial dimensionality featured a stride of 2 × 2 × 2. In the decoder, the same
basic structure in a mirrored fashion has been used, with transpose convolutions
utilized for recovery of spatial dimensionality. Dropout rate was given by 0.25,
learning rate by 10−4 and batch size by 4.

During training data augmentation was applied to prevent the model from
overfitting. Images were flipped on the coronal and sagittal plane, rotated by a
multiple of 90◦, Gaussian noise with zero mean and a standard deviation of two
was added, and voxel values were randomly shifted by a global offset between
-2 and 2. Furthermore, elastic deformation, featuring a grid sampled from a
normal distribution with standard deviation randomly chosen between zero and
one and a voxel size of 3× 3× 3, has been applied. The elasticdeform python
package [213] has been utilized to do so.

During inference, scalar intensity values in the segmentation maps have been
thresholded for formation of a binary segmentation mask using a value of 0.50.
The largest connected area has been identified using the label filter given in
the ndimages.measurements class of the scipy python package [214]. Only
this area has been kept and further processed by the ndimage.gray_dilation
filter with a kernel size of 2× 2× 1, for smoothing of edges.

7.2.2 Prediction of progression free survival
Preprocessing in the progression free survival model involved cropping of PET
and CT images. As pointed out in Section 5, removal of image parts, that do not
contain any information essential for the task of interest, can facilitate learning,
which is especially valuable in the small data regime of medical imaging. There-
fore, the center point of the GTV has been used to crop patches from PET/CT
images. For the train and validation set, segmentation maps provided were used,
while for the test set predictions obtained from the U-Net model were used.
Cropping of patches was preformed in the same manner as for the approach
depicted in Figure 6.6, sustaining a minimal size of 100mm×100mm×100mm.
Voxel size resampling and intensity value rescaling was performed in the same
way as for the segmentation model.

As pointed out in Section 4.4, proper modeling of survival data requires
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Figure 7.1: Modified U-Net model, adopted from Lang et al. [203]. PET/CT
images were used as an input. For downsampling, convolutional layers with a
stride > 1 were utilized, instead of max pooling layers employed by Ronneberger
et al. [13]. Forward skipping was performed on the layers obtained after spatial
dimension reduction and before expansion of feature map size. This reduced
the size of copied features by a factor of 1/2.
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architectures able to handle time dependent data. The discrete-time survival
model of Gensheimer and Narasimhan [22] provides an approach well suited
to be applied in conjunction with deep neural networks that also allows for
utilization of batches during training. Therefore, the loss depicted in eq. (4.6)
has been utilized for modeling of the progression free survival data.

The convolutional part of the C3D model, already utilized in Chapter 6, was
again used as a feature extractor. Here, next to a CT image a corresponding
PET image was given. Hence, a way to fuse features extracted from both modal-
ities had to be found. In Chapter 5, the element-wise maximum was calculated
to fuse features stemming from both kidney regions of the same CT image.
However, for the case at hand input modalities featured different acquisition
methods, namely CT and PET, that do possibly contain complementary infor-
mation. Taking the element-wise maximum would destroy such complementary
information. Therefore, both feature vectors were stacked to be then further
processed by dense, randomly initialized layers, such that no information was
lost during merging. Clinical features were again fused with dense features be-
fore construction of the final output. The architecture ended in a layer reflecting
a given number of time intervals, c.f. Figure 4.3. Number and size of those time
intervals had to be fixed during hyperparameter optimization. A schematic of
the model can be seen in Figure 7.2.

Patches were cropped to a uniform input size of 96×96×96 voxels. This was
performed randomly during training and by center cropping during validation
and testing. Other data augmentation techniques involved again flipping on the
coronal and sagittal plane, rotations by a multiple of 90◦, and the same elastic
deformations as for the segmentation model. Gaussian noise sampled with a
variance between zero and one and zero mean was added.

The Adam optimizer with a learning rate of 5 × 10−5 was used to mini-
mize the negative log likelihood loss. Batch size was choose to be 16. Manual
hyperparameter tuning was applied for determination of the best performing ar-
chitecture. Model performance was measured based on the c-index score of the
validation set. All models were trained for 75 epochs. Hyperparameters mod-
ified included: size of dense layers, inclusion point of clinical features, dropout
rate, and number and size of time intervals in the output layer.

The best performing model featured dense layers of size 512 and 256 ending
in a output layer reflecting 15 time intervals, with the first 10 intervals depicting
a time span of half a year and the remaining 5 intervals representing a time span
of one year, leading to a maximum survival time of 10 years.

Output of the architecture was given by an array containing survival prob-
abilities for given time intervals. Commonly, the c-index metric, introduced in
Section 4.4, measuring the order of all datapoints, is utilized for performance
evaluation in survival models, However, no inherent order is given for the out-
put of the model. In their paper Gensheimer and Narasimhan [22] fixed this
by computation of the c-index at a certain timepoint, e.g. at one year survival.
However, selection of a single time point for calculation of the c-index disregards
performance at all other timepoints.

Therefore, in this thesis, the expected survival time per patient has been
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Figure 7.2: Progression free survival model, adopted from Lang et al. [203]. The
convolutional part of the pretrained C3D model was used as a feature extractor
on the CT and the PET image. Resulting feature vectors were stacked to be
then further processed by dense layers. Clinical features were merged with dense
features before classification. Hidden dense layers employed ReLU activation
and were followed by a dropout layer. The final output layer featured Sigmoid
activation as the model was trained with the discrete-time loss of Gensheimer
and Narasimhan [22].

90



calculated via

E(T ) =

n∑
k=1

tk pk =

n∑
k=1

tk hk
k−1∏
l=0

(1− hl), (7.1)

with tk the timepoints of the n intervals chosen during model construction, pk
the probability of the patient to receive the event, i.e. tumor progression, in the
time interval from tk−1 to tk but not before, and hl the hazard probability for
the interval ranging form tl−1 to tl, cf. Figure 4.3. Min-max scaling was then
applied for construction of a normalized survival score

t̂ =
T − Tmin

Tmax − Tmin , (7.2)

ranging between 0 and 1, with Tmin and Tmax the minimum and maximum
predicted survival time for the cohort at hand, i.e. the test set. Finally, this
survival score was inverted for construction of a normalized risk score using

r = 1− t̂. (7.3)

In this way, a risk score, taking into account the complete duration of modeled
survival time, was generated. This risk score could then be evaluated using the
c-index metric.

Two input modalities were available for model development, clinical and
imaging data. For evaluation of input from clinical variables, a Cox proportional
hazards model has been trained using the python lifelines library [215].

To foster reproducibility, code of the developed C3D based survival model
has been published online 2.

In total, 44 teams registered for the segmentation task of the HECKTOR2021
challenge, while 30 teams took part in the survival prediction task. Inclusion in
the final ranking required publication of developed methods, 22 teams fulfilled
this requirement for the segmentation task and 17 teams for the survival pre-
diction task. For evaluation of segmentation results, the 95th percentile of the
Hausdorff Distance (HD) has been used, i.e. replacing the maximum operation
in eq. (3.17) with the 95th percentile. For construction of the final score, the
median Hausdorff distance of all test set cases was taken. [29] The c-index was
utilized as a performance measure in the survival task.

7.3 Results
The adopted U-Net architecture achieved a Dice similarity score of 0.733 and
0.762 on the train and validation set. Test set performance was given by a
Dice score of 0.705. From the 22 teams in the final ranking the segmentation
model was placed 16th. Performance of the top 5 models can be seen in Table
7.1, the developed model participated under the team name DMLang. Example
predictions for three training set cases can be seen in Figure 7.3.

2https://github.com/LangDaniel/HECKTOR2021
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Rank Team Dice HD95 [mm]
1 Pengy [216] 0.779 3.088
2 SJTU EIEE 2-426Lab [217] 0.773 3.088
3 HiLab [218] 0.774 3.088
4 BCIOQurit [219] 0.771 3.088
5 Aarhus Oslo [220] 0.779 3.155

...
16 DMLang 0.705 4.027

Table 7.1: Segmentation test set results of the HECKTOR2021 challenge.

Figure 7.3: Slices of predicted and ground truth segmentation maps for exam-
ples from the training set. Dice scores are given in reference to the complete
GTV, i.e. not only in reference to the slices depicted.
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Rank Team c-index
1 BioMedIA [221] 0.720
2 Fuller MDA [222] 0.694
3 Qurit Tecvico [223] 0.683
4 BMIT USYD [224] 0.671
5 DMLang 0.668

...

Table 7.2: Progression free survival prediction results for the HECKTOR2021
challenge.

For the survival model, c-index performance was given by 0.899 (0.865 -
0.931) and 0.833 (0.728 - 0.930) on the train and validation set, error margins
were computed using bootstrap resampling of 10,000 samples and evaluation of
5% and 95% percentiles. On the test set a score of 0.668, has been achieved.
The model was ranked 5th of the 17 participating teams. Top 5 results are
shown in Table 7.2.

The Cox proportional hazards model, relying on clinical variables, achieved
a c-index of 0.725 (0.655 - 0.792) and 0.739 (0.572 - 0.881) for the train and
validation set, respectively. Error margins were again computed using bootstrap
resampling. Performance on the test set could not be evaluated, as ground truth
scores were not publicly available.

7.4 Discussion
The basic U-Net structure of Ronneberger et al. [13] was modified for develop-
ment of a lightweight 3D segmentation model. The model achieved a Dice score
of 0.705 and a Hausdorff distance of 4.027 on the test dataset. Participation in
the HECKTOR2021 challenge revealed an inferiority in terms of segmentation
performance, with the model only being ranked 16th. Notably, a U-Net like ar-
chitecture was used by 21 of the 22 teams that participated in the segmentation
task. All of the top five teams used an ensemble of U-Nets for training, with
four of them applying the nnU-Net of Isensee et al. [98].

However, aim of the segmentation approach presented in this thesis was
development of a lightweight model, that could be fitted on the NVIDIA M60
GPU available for training, but also achieved sufficient performance, that allows
identification of the rough ROI. The Dice score of 0.705 is valued sufficient for
rough identification of the GTV. This claim can also be visually backed by the
example predictions depicted in Figure 7.3. Hence, the segmentation model is
valued as sufficient.

Ground truth segmentation, performed by medical experts, suffers from in-
terobserver variability. Gudi et al. [225] identified a Dice similarity score of 0.69
between three experienced radiation oncologists, for PET/CT based head and
neck cancer GTV segmentation. This variability in ground truth labels limits
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the performance of segmentation algorithms trained on the data, and raises the
question of comparability between models.

The developed survival architecture was able to achieve a c-index perfor-
mance of 0.668 on the test set, and was ranked 5th of the 17 teams that partic-
ipated in the survival prediction task.

The winning architecture of the survival task, constructed by Saeed et al.
[221], was able to achieve a c-index of 0.720. They fused CT and PET images
to be then processed by 3D convolutional and max pooling layers, the resulting
feature vector was merged with clinical variables, similar to the architecture
developed for this thesis. For modeling of survival data a Multi-Task Logistic
Regression (MTLR) model [226] was applied. For final prediction, risk prob-
abilities obtained in this way were joint with probabilities obtained by a Cox
proportional hazards model that was trained on the clinical variables.

The approach placed second, developed by Naser et al. [222], reshaped clin-
ical variables into a matrix form, such that they could be fused with PET/CT
imaging data and processed by convolutional layers. Clinical, PET and CT in-
put was then fed to different channels of a 3D DenseNet121 CNN model [227].
They also utilized the log-likelihood loss of Gensheimer and Narasimhan [22] to
train their model.

However, absence of error margins depicts a major limitation of the challenge.
For the training set, error margins were roughly given by ±0.03 for the CNN
model and by ±0.06 for the Cox model developed within this thesis. Differences
between c-index performance of neighboring approaches in the final ranking are
smaller than those scales. Therefore, no inherent superiority or inferiority can
directly be derived from the ranking. The developed model is considered to
feature the principle ability for prediction of progression free survival in head
and neck cancer patients, but for comparison with other model architectures
larger patient cohorts and inclusion of error margins are needed.

Integration of survival models in clinical decision making does not only re-
quire further improvements in terms of performance but also robustness. Gen-
eralization error, measured on the validation set, suffered a large drop when
probed on the external test set, with c-index performance declining from 0.833
to 0.668. Influence of external testing was already discussed in previous sections.
In the test set, 53 of the 101 cases came from an external center not involved
in training. Hence, performance loss on the test set is likely to be caused by
usage of this external test data. Furthermore, vulnerability of head and neck
CT imaging to artifacts was already discussed in Section 6. Such artifacts are
also likely to impair model performance. Future studies should investigate their
impact on the performance of survival models. Moreover, pathological mecha-
nisms can lead to abnormal uptake of FDG in PET images [228]. Such FDG
irregularities can also cause a loss in performance, but further studies of their
effect on survival models are needed.

The Cox model, trained on clinical variables, achieved a train and validation
c-index performance of 0.725 and 0.739, performance on the test set could not
be evaluated. Successful training of the model proves the validity of informa-
tion contained in the clinical data, for a prediction of progression free survival.
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Influence of imaging data is yet to be determined. The different nature of the
validation set utilization in the Cox model, employing it for unbiased testing,
and in the deep learning model, applying it for generalization error determina-
tion, forbids direct comparison of both measures. However, the fact that the
biased c-index performance of the deep learning model was significantly higher
than the unbiased Cox model performance suggest valuable influence of imaging
data.

7.5 Conclusion
A lightweight segmentation model for identification of the rough region of in-
terest in head and neck cancer patients has been developed. The ability of deep
learning models for prediction of progression free survival based on PET/CT
imaging and clinical data has been proven. The log-likelihood loss of Gen-
sheimer and Narasimhan [22] was combined with the transfer learning model
developed in Chapter 6. A tumor progression risk score was introduced. For
determination of model robustness and influence of imaging and clinical data,
larger patient cohorts are needed. Fair comparison of different architectures,
developed within a competitive setting, demands involvement of error margins
in model ranking.
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Chapter 8

Summary and discussion

Different deep learning architectures, able to process three-dimensional medical
imaging data, have been developed.

In Chapter 5, a convolutional neural network was trained on pre-surgical CT
images and clinical data for classification of a pathological risk score, utilized
for decision making in follow-up treatment of renal masses. Risk score pre-
diction based on pre-surgical imaging data allows for non-invasive assessment
prior to therapy and therefore enables adoption of treatment, such that patients
can be prevented from overdosage. The model was developed on data from the
publicly accessible KNIGHT challenge [28], which allowed for comparison with
other approaches. First, a U-Net like segmentation model was trained for iden-
tification of the region of interest. Then, two patches, one for each kidney, were
cropped from the CTs to be input into a Siamese network. An element-wise
fusion layer, merging resulting features vectors of both patches, was established
for final classification. For the clinically relevant discrimination between cases
requiring adjuvant therapy and cases without the need for adjuvant therapy, the
model achieved an AUC score of 0.814 on the test set.

In Chapter 6, different approaches for identification of an infection with the
human papilloma virus (HPV) in head and neck cancer patients based on CT
imaging data were developed. HPV testing is essential for selection of the right
treatment regime in oropharynx cancer patients. HPV positive tumors are more
radiosensitive, and different dose de-escalation studies seek reduction of therapy
induced side effects [208, 229]. HPV status prediction based on CT imaging
would allow for fast, non-invasive testing and comes with no extra costs when
performed on routinely acquired data. The public TCIA archive was mined for
appropriate cases, creating a dataset that allows other researchers to reproduce
the findings of this thesis. Techniques, well established in the natural imaging
domain, were modified to be used in combination with medical imaging data.

First, a transfer learning approach, that was pretrained on sports video
clips, was introduced. Video data features a 3D structure with two spatial and
one temporal dimensions. This allowed for utilization of a three-dimensional
architecture during pretraining and therefore exploitation of full dimensional
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information in the CT images of the downstream task. For comparison, ability
of a 3D convolutional neural network and a 2D transfer learning approach,
relying on ImageNet for pretraining, were studied. The developed 3D transfer
learning model was able to outperform the two other networks, reaching an
AUC score of 0.814 on the test set.

In a second step, a self-supervised training strategy was developed. The
masked autoencoder approach of He et al. [20] was altered to be able to han-
dle medical imaging data. The architecture utilizes modern transformer layers
instead of convolutional layers. Self-supervised learning allows for in-domain
pretraining. Possible advances of the approach in comparison to the trans-
fer learning architecture studied before were investigated. The head and neck
dataset was modified and augmented by cases without a tested HPV status
available. The network was able to achieve an AUC score of 0.723 on the test
set. The 3D transfer learning approach was retrained on the modified dataset
and reached an AUC score of 0.710. Hence, performance of both architectures
was comparable, but optimization of the self-supervised transformer model was
limited by the computational resources available during training. Model de-
velopment should be reperformed on larger architectures. Future studies have
to investigate the individual influence of transformer layers and utilization of
the self-supervised training strategy. However, the architecture of He et al. [20]
was successfully modified and modern transformer layers were utilized for an
application on three-dimensional medical imaging data. Both, the transfer and
the self-supervised model, have to be tested on larger dataset for evaluation of
robustness.

In Chapter 7, a model was trained for prediction of progression free survival
in head and neck cancer patients. An architecture able to evaluate patient sur-
vival based on medical imaging data may outperform existing risk estimations.
Patients could be divided into high and low risk cases based on their predicted
survival time and possibly administered to different treatment regimens, i.e. pre-
venting low risk cases from overdosage and identifying high risk cases for which
dose escalation is required. However, survival architectures require special han-
dling of time dependent data and training strategies in deep learning impede
adoption of classical approaches like the Cox proportional hazards model. For
development of a convolutional neural network, capable of handling time depen-
dent data, the strategy of Gensheimer and Narasimhan [22] has been adopted
and fused with the 3D transfer learning approach developed in Chapter 6. Abil-
ity of the method for prediction of progression free survival based on PET/CT
imaging and clinical data in head and neck cancer patients has been tested in
the public HECKTOR challenge [29]. A 3D segmentation model was trained for
identification of the gross tumor volume and achieved a Dice similarity score of
0.705 on the test set. Patches were cropped from this region to be input into the
CNN based survival model. The output layer reflected 15 time intervals span-
ning a total survival time of 10 years. A risk score based on patients’ expected
survival times was constructed. On the test set the model was able to achieve
a concordance index of 0.668. The HECKTOR training set included 224 cases,
future studies have to be conducted on larger patient cohorts.
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A limitation of studies caused by a low number of cases was concluded for all
problem settings presented here. Involvement of a limited number of patients
and institutions produces two problems in deep learning based medical imag-
ing studies. First, utilization of different imaging scanners introduces domain
shifts in the data. Intensity values in MRI and PET do not display quantita-
tive values and can vary strongly, but also Hounsfield units in CTs can change
substantially between different scanners and imaging protocols [230, 231]. Deep
learning models are known to be sensitive to such domain shifts [197, 198].
Therefore, architectures trained and tested on a very limited number of exam-
ples result in models that are likely to fail on external cohorts not seen during
training [25]. Accordingly, diverse and large training cohorts, involving a va-
riety of scanners and imaging protocols, are needed to improve the robustness
of models. The second limitation that arises from a low number of examples is
given by the dependence of deep learning models on large datasets for successful
training. Datasets outside of medicine are constantly growing, and while natural
language processing (NLP) models like GTP-3 are trained on billions of dataset
points [107], medical imaging tasks only involve a few hundred or thousands
of cases. Sun et al. [232] found that the power of deep learning based vision
models increases logarithmically with the amount of training data. Therefore,
for general improvement of medical imaging based deep learning models, larger
patient cohorts are needed.

However, curation of large medical cohorts is limited by factors like costs
and privacy protection regulations. Even though, some of those problems could
be handled, for example by construction of architectures able to process sensi-
tive data in a privacy preserving way (see e.g. Kaissis et al. [233]), construction
of large public medical imaging datasets, taking every possible oncological end-
point into account, is not feasible. But, in the same study mentioned above, Sun
et al. [232] also found that performance of many vision tasks can be improved
by training of better baseline representation learning approaches. Transfer and
self-supervised learning models developed within this thesis present such repre-
sentation learning approaches. Self-supervised learning can be performed with-
out the need for any labels, which are possibly affected by privacy preserving
issues or costs for generation. Therefore, a future step for the domain could be
given by construction of larger unlabeled public datasets that can be utilized
for training of representation learning models in a self-supervised way. Those
pretrained models can than be adopted to specific downstream tasks, featuring
a lower amount of data. The MAEMI model developed in Section 6.2.2 depicts
a valuable approach to be tested for such an application.

All studies developed within this thesis were performed on open datasets or
in the setting of public challenges, fostering reproducible research. Comparison
of approaches, by development in the setting of public challenges, has become
the standard validation method in the biomedical imaging domain. However,
Maier-Hein et al. [26] also reported certain problems associated with the ap-
proach. Most notably, an instability of rankings against small changes in evalu-
ation metrics. Missing error bars in final rankings was also criticized in Chapter
7. Therefore, one should not rely too closely on the exact ranking or score
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achieved, especially in the small data domain of medical imaging, but rather
value competitions as a rough estimate of model performance. Also, the plural-
ity of approaches, developed by different researchers, facing the same problem
setting, gives valuable insight.

Right now artificial intelligence based assessment of radiological imaging
data is still in its infancy. Even though first CE and United States Food and
Drug Administration (FDA) approved algorithms are available, widespread ap-
plication is not achieved yet [234, 235]. One can separate applications of algo-
rithms into two categories: human interpretable and non-interpretable. Algo-
rithms trained on tasks usually performed by medical experts, like GTV seg-
mentation or prediction of TNM stage, can be reviewed and tested by humans,
they are human interpretable. Therefore, networks can also be applied in a
supportive manner, which eases applicability and also acceptability in users.
In contrast, models aiming for replacement of biological tests, like HPV status
prediction, or for introduction of completely new clinical scores, like generation
of a survival risk score, cannot be interpreted by human readers. Predictions in
non-interpretable problem settings have to be of very high quality, as no inter-
vention by users is possible and models cannot be applied in a supportive way,
but have to be fully trusted, which could impede acceptability in users. How-
ever, also interpretations of radiologists and biological tests have to be trusted
to a certain degree. Mazurowski [236] argues that there exists a fundamen-
tal gap between expectations placed on the performance of AI algorithms and
human readers. He claims that human cognitive processes are also imperfect,
biased and inconsistent and states that an exact interpretation of how deci-
sions by radiologist are actually made can also not be given. The arguments
formulated by Mazurowski, about the expectations on AI algorithms in terms
of radiological data, also hold in comparison with other testing methods. For
assessment of patients’ HPV status immunohistochemistry (IHC) staining of
p16 is visual interpreted by a pathologist. IHC staining also comes with dif-
ferent limitations like inter-observer [237] or inter-laboratory variability [238].
Therefore, application of deep learning models in the medical domain does not
introduce uncertainties in an area that is otherwise fully interpretable. The
same pitfalls are also encountered by other methods. Deep learning has to be
tested in the same rigorous manner that other methods have to fulfill, i.e. by
testing its value in large clinical trials, but models should not be treated with
overly, arbitrary skepticism just because of a general mistrust against computer
generated predictions. Risk assessment guidelines are developed for all kinds
of medical devices and information systems. Such guidelines also have to be
established for deep learning based algorithms.

However, also techniques that allow for better interpretability of deep learn-
ing models’ decision making have to be developed [239]. Such explainable artifi-
cial intelligence (XAI) is needed to improve trust in model predictions but also
for advancement in traceability of tasks that are currently non-interpretable.
Saliency maps are often used for identification of image regions essential for de-
cision making. However, those techniques are black boxes themselves, that can
result in misleading interpretations [240, 241]. The approach developed by Chen
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et al. [242] is better suited to be applied for an enhancement of interpretability.
The approach called “This looks like that” learns class prototypes that can be
reviewed and analyzed by human readers, which has the ability to foster trust
in decision making of algorithms.

Deep learning models are influenced by the data they are trained on, such
that imbalanced datasets can lead to biased models. The influence of different
image scanners and scan protocols has already been discussed above, but also
differences in population are causing bias. Gender or race imbalanced datasets
influence performance of deep learning models [243, 244]. This problem is not
newly introduced by deep learning itself, but already present in medicine as
a whole [245]. However, guidelines on how to uniformly report demographic
variables for trained models have to be established, such that applicability of
algorithms in new environments can be estimated. Also, studies investigat-
ing possible invariance of models under certain demographic variable shifts are
needed.

Adversarial attacks depict a real risk factor for the application of deep learn-
ing models. Subtle perturbations, not visible to the human eye, are applied to
the input data in order to cause the model to predict incorrect outputs [246,
247]. Such vulnerabilities pose a major risk, especially on models utilized for
decisions on life threatening actions. Therefore, strong defense mechanisms
have to be developed to close those security gaps. First approaches focusing on
the medical domain were developed, e.g. Li and Zhu [248], but further studies
are needed. Moreover, not only algorithms can be misguided but also medical
imaging data can be altered in such a way that disease patterns are artificially
introduced or removed from data. Mirsky et al. [249] have proven that PACSs
can be infiltrated to inject or remove lung cancer from CT images with such
accuracy that expert radiologists are misguided. Approaches able to detect such
manipulated images have to be established.

Aim of this thesis was development of deep learning techniques in the field of
oncology, with a special focus on radiation therapy. Non-invasive imaging based
risk score prediction would be of real value for an application of stereotactic
body radiation therapy in renal mass patients. Head and neck cancer therapy
is an essential part of radiation oncology and testing for an infection with HPV
comprises a important information source for treatment decision, which may be
improved by survival based risk scores. However, there are several other aspects
of deep learning in radiation oncology, that were not studied here. First and
foremost, dose plans are a fundamental part of radiation therapy. Targeting
high doses onto the tumor while at the same time sparing surrounding healthy
tissue represents the major challenge of treatment planning. Overdosage of
surrounding tissue and organs at risk can lead to severe side effects, affecting
patients’ quality of life [250]. Therefore, a model able to predict such side ef-
fects from pre-treatment data would be highly valuable. Calculated dose plans
could be tested for possible implications and possibly adapted for prevention.
Moreover, dose plans include essential information about possible therapy suc-
cess. Hence, inclusion of dose data into algorithms trained on therapy related
endpoints, like the progression free survival model of Chapter 7, would provide
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essential information to the models. At the moment, there are only a few deep
learning studies that involve dose data [251], which is most likely due to the
fact that development of such models is limited by the availability of appropri-
ate datasets. However, current studies like the REQUITE trial [252] are aiming
for incorporation of dose information. Therefore, inclusion of dose data into
deep learning models in radiation therapy depicts one major next step. Apart
from classification problems that could be approached with the help of deep
learning, there are also other tasks given, specifically in the area of adaptive
radiation therapy (ART). ART aims for incorporation of any changes in pa-
tient’s body during treatment, online-ART even attempts immediate adoption.
This requires fast algorithms for image reconstruction and registration. Deep
learning models have proven to be capable of those tasks, see Wang et al. [253]
and De Vos et al. [254], and could be utilized for a speed up during online-ART.
The basic ability of deep learning models for a prediction of RT dose has been
proven by different studies, e.g. [255, 256], but further development for clinical
applicability is needed. However, successfully trained models could be applied
for adjustment of dose in ART, as well as for a speed up of Monte Carlo based
dose calculation algorithms [257].
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Chapter 9

Conclusion

Deep learning has great power to be used for medical imaging based detection
of oncological properties. However, there are several issues that have to be
solved and obstacles that have to be tackled for a successful clinical application.
Models have to be designed under consideration of the features specific to the
data. Absence of large datasets depicts one of the main problems of the research
area, but also tumor expansion has to be taken into account for selection of the
right input volumes, and temporal endpoints require models able to handle
time-to-event data.

Architectures developed within this thesis involve methods that facilitate
training on a small number of datapoints. For the renal mass risk score classi-
fication model this was achieved by utilization of a Siamese model and devel-
opment of a element-wise merging layer. The engineered architecture features
a lower number of trainable parameters as a conventional convolutional neural
network, trained on the complete input volume, and is therefore not as prone to
overfit on the data. Siamese models are usually utilized for similarity computa-
tion between objects [150]. However, in this thesis the approach was modified
to allow for lightweight input from two regions of interest. In Chapter 5 the
architecture was used to process input coming from both kidneys of renal mass
patients’ CT images, but the developed network can also be used to handle
input from the same anatomy but different imaging modalities, e.g. different
MRI sequences.

All other models employed transfer and self-supervised training strategies.
Both methods are well studied in the general research field of deep learning, i.e.
for an application on natural images. For utilization in the medical domain,
networks have been redesigned in this thesis.

Transfer learning is used to facilitate training on sparse data by injection of
prior knowledge into the model. Often, studies pretrain their models on large
2D image dataset, like the ImageNet [115, 258]. However, this approach forbids
input in the downstream task to be three-dimensional. Within this thesis a
transfer learning model pretrained on video data, featuring two spatial and one
temporal dimensions, was developed. The model allows three-dimensional pro-
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cessing of medical imaging data in the downstream task. The studies conducted
in section 6.2.1 were able to verify superior ability of the approach in compar-
ison to 3D convolutional neural networks trained from scratch and 2D transfer
learning approaches pretrained on ImageNet. Large video datasets are publicly
available, which makes pretraining easy. The 3D transfer learning method de-
veloped in this thesis can be utilized to foster training on small datasets for all
problem settings related to three-dimensional medical imaging data.

Self-supervised learning has even greater potential than transfer learning.
The method enables in-domain pretraining and can be applied on larger public
datasets for development of representation learning approaches, which can then
be finetuned on specific problem settings with a lower amount of data avail-
able. Such feature extraction models, able to transform input data into a lower
dimensional space, are of great value in the medical domain, as generation of
large datasets, allowing models to be trained from scratch, is not feasible for all
possible (sub-)diseases. In section 6.2.2 the masked autoencoder (MAE) model
of He et al. [20] has been adopted for an utilization on medical imaging data.
Code of the MAE model was published open access and has been modified to
be able to handle three-dimensional data within this thesis. The architectures
employs transformers, a powerful deep learning model, developed only recently.
Transformer layers are heavily utilized in natural language processing models
but not much used in the medical imaging domain yet. Section 6.2.2 showed that
the approach features the ability to perform better than the transfer learning
approach developed in section 6.2.1, but studies on larger datasets and comput-
ing resources are needed. However, a modern self-supervised learning approach
featuring transformer layers has been developed within this thesis. The model
has the power to be trained as a general feature extractor on input like CT or
MR images, facilitating training on all types of sparse medical datasets.

Time dependent endpoints, like overall survival, are frequently encountered
in oncology. Modeling of such endpoints requires architectures to be able to han-
dle time-to-event data. Most often, studies only predict survival at a given time
point, see e.g. Hosny et al. [259]. In this thesis, temporal dependent data was
handled by utilization of a discrete-time survival model, allowing for incorpora-
tion of censored cases and detailed risk estimation. The model was merged with
the transfer learning approach developed in section 6.2.1. Furthermore, a novel
risk score, allowing for utilization of common survival metrics, was developed
in Chapter 7. Significance of the risk score could be proven for prediction of
tumor progression in head and neck cancer patients. The developed approach
has the power to identify low and high-risk cases, which should receive dose
(de-)escalation, and therefore allows for improvements in therapy outcome and
a reduction of side effects.

All studies performed within this thesis were conducted on open access data
or in the setting of publicly held challenges. The code for the video data based
transfer learning approach and the progression free survival model has been
made publicly available, making the studies reproducible.

Therefore, within this thesis customized three-dimensional approaches able
to be trained on the small datasets encountered in medical imaging were de-
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veloped. Furthermore, the ability of deep learning architectures for modeling
of novel endpoints has been proven. As public datasets have been employed
and code was published online, the models can be used by other researchers to
build upon them. For advances in clinical applicability, studies on larger patient
cohorts are needed.
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AI artificial intelligence

ART adaptive radiation therapy

AUA American Urological Association

AUC area under the receiver operating characteristics curve

CNN convolutional neural network

CT computed tomography

DL deep learning

EBRT external beam radiation therapy

FDA United States Food and Drug Administration

GAN generative adversarial network

GPU graphics processing unit

GTV gross tumor volume

HNSCC head and neck squamous cell carcinoma

HPV human papilloma virus

HU Hounsfield units

IEEE Institute of Electrical and Electronics Engineers

IHC immunohistochemistry

IMRT intensity modulated radiotherapy

ISBI International Symposium on Biomedical Imaging

MDI mean decrease in impurity

MLP multilayer perceptron
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MRI magnetic resonance imaging

MSE mean squared error

NLP natural language processing

NPV negative predictive value

OPC oropharynx cancer

OS overall survival

PACS picture archiving and communication system

PCA principle component analysis

PET positron emission tomography

PFS progression free survival

PPV positive predictive value

RCC renal cell carcinoma

ReLU rectified linear unit

ROC receiver operating characteristics

ROI region of interest

RT radiation therapy

SBRT stereotactic body radiation therapy

SPECT single photon emission computed tomography

TCIA The Cancer Imaging Archive

TME tumor microenvironment

VMAT volumetric modulated arc therapy

XAI explainable artificial intelligence
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