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Abstract

The dynamic response of tires directly affects the vibration and dynamics of a vehicle, and in turn,

determines the handling stability and ride comfort of a vehicle, and driver perception. Modeling and

simulation of tire dynamics typically require a reasonable computational cost while ensuring proper

accuracy, which remains a challenging topic in the research field of vehicle dynamics simulation.

Especially, when tire uniformity, i.e., the defects originating in the components of tires during

manufacturing process, need to be considered in the analysis of transient and steady-state responses,

the prediction of the associated dynamic behavior will be affected by these uncertainties. Hence, it

becomes a much more complex problem.

For tire modeling, simplifying a tire to a ring-shaped structure is a promising way to balance

accuracy and computational costs. Moreover, a ring model has the ability to be combined with other

theories, which allows it to be continuously improved and applied to different scenarios. Due to this

fact, it poses a new challenge: how to make the developed ring model as complete as possible in

characterizing the tire dynamics with reasonable computational efficiency? For example, the model

should be able to implement a concise and accurate description of the out-of-plane vibration of the

tire, involve the real geometric defects instead of using an oversimplified assumption, and assess

the distribution of the responses due to uncertain parameters.

This thesis focuses on the modeling of tire dynamics and vibration, as well as its application to

uncertainty quantification of dynamic behavior and uniformity caused by tire defects. Consequently,

based on the theory of the tire ring model, a novel theoretical model is presented to describe the

in-plane and out-of-plane vibrations and the steady-state response. Then, a novel theoretical model,

the coupled rigid-flexible ring model, is presented to analyze the characteristics of the in-plane

dynamic responses of tires on uneven road surfaces by simplifying the proposed three-dimensional

ring model to a two-dimensional flexible ring. The established new method consists of three

primary sub-models: an elastic contact algorithm featured by a flexible ring model, rolling/vibration

dynamics represented by a rigid ring model, and an internal-force transmission algorithm linking

the rigid and flexible ring models. In this way, the new model has the merits of both high accuracy

up to 150Hz and low computing cost. In addition, it is extended to the analysis of the low-speed

uniformity of tires with geometric defects and is validated experimentally.

Moreover, the deterministic model has been applied to evaluate the influence of uncertainties

in structural and geometric parameters on natural frequencies and dynamic responses under an

uncertain excitation. Specifically, the generalized polynomial chaos (gPC) expansion method

is combined with the proposed deterministic models to evaluate the influence of uncertainties.
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To obtain the unknown coefficients of gPC expansions, a non-intrusive probabilistic collocation

method (PCM) is adopted to evaluate the coefficients, and the selection of collocation points is also

illustrated. This framework of stochastic analysis is applied to investigate the impacts of elastic,

geometric, and structural uncertainties on the natural frequencies and low-speed uniformity of tires.

Moreover, the discussions of the distribution of dynamic responses caused by each parameter and

different variance levels are given. At last, the validity of the model is demonstrated by comparing

it with a large number of measurements.

The major contribution of this thesis is to propose effective and novel algorithms to address these

problems from tire dynamics modeling to the stochastic analysis and evaluation of parameter

uncertainty. The main contents were published at international conferences or in journals.
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Kurzfassung

Das dynamische Verhalten der Reifen eines Fahrzeugs beeinflusst unmittelbar das Schwingungsver-

halten sowie die Dynamik eines Fahrzeugs. Dies wirkt sich wiederum auf die Fahrstabilität, den

Fahrkomfort und die Wahrnehmung des Fahrers aus. Die Modellierung und Simulation der Reifen-

dynamik erfordert sowohl einen angemessenen Rechenaufwand als auch die Gewährleistung einer

ausreichenden Genauigkeit, was nach wie vor eine Herausforderung für die Fahrdynamiksimulation

darstellt. Die Vorhersage des dynamischen Verhaltens gestaltet sich wesentlich komplexer, sobald

Unsicherheiten im Auslegungsprozess berücksichtigt werden. Bei der Analyse des transienten und

stationären Verhaltens von Reifen müssen insbesondere Unsicherheiten bzgl. der Reifengleichför-

migkeit berücksichtigt werden. Diese Defekte entstehen v.a. während des Herstellungsprozesses.

Die Analyse der vereinfachten Modellierung eines Reifens als ringförmige Struktur (Ringmodell)

stellt einen vielversprechenden Kompromiss zwischen Genauigkeit und Rechenkosten dar. Ein

solches Ringmodell kann zudem mit anderen Theorien kombiniert werden, wodurch es kontinuier-

lich verbessert und auf verschiedene Szenarien angewendet werden kann. Hieraus folgt jedoch

eine neue Herausforderung: wie kann das verbesserte Ringmodell die Reifendynamik möglichst

vollständig aber mit angemessenem Rechenaufwand beschreiben? Das Modell sollte unter anderem

eine prägnante und genaue Beschreibung der Schwingungen des Reifens aus der Rotationsebene her-

aus zulassen, reale geometrische Defekte anstatt stark vereinfachender Annahmen berücksichtigen

und eine Bewertung der unsicherheitsbehafteten Strukturantwort aufgrund der unsicheren Parameter

ermöglichen.

Diese Arbeit konzentriert sich sowohl auf die Modellierung der Reifendynamik und -schwingung

als auch deren Anwendung zur Unsicherheitsquantifizierung des dynamischen Verhaltens und der

durch Reifendefekte entstandenen Gleichförmigkeit. Basierend auf der Ringmodelltheorie von

Reifen wird ein neuartiges theoretisches Modell zur Beschreibung der Schwingungen innerhalb und

außerhalb der Rotationsebene und des stationären Verhaltens vorgestellt. Durch die Vereinfachung

des vorgeschlagenen dreidimensionalen Ringmodells zu einem zweidimensionalen flexiblen Ring

wird ein neuartiges theoretisches Modell, das gekoppelte starr-flexible Ringmodell, vorgestellt.

Dieses dient der effizienten Analyse des dynamischen Verhaltens von Reifen in der Rotationsebene

für den Lastfall einer unebenen Straßenoberfläche. Die vorgeschlagene neue Methode besteht primär

aus drei Teilmodellen: einem durch ein flexibles Ringmodell modellierten elastischen Kontaktalgo-

rithmus, einer durch ein starres Ringmodell modellierten Roll-/Schwingungsdynamik, und einem

Algorithmus zur internen Kraftübertragung, der das starre und das flexible Ringmodell miteinander

verbindet. Auf diese Weise hat die vorgeschlagene Methode sowohl eine hohe Genauigkeit bis zu
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150 Hz als auch geringe Rechenkosten. Darüber hinaus wird dieses Modell auf die Analyse der

Reifengleichförmigkeit bei niedrigen Geschwindigkeiten mit geometrischen Defekten erweitert und

experimentell validiert.

Darüber hinaus wurde dieses deterministische Modell zur Bewertung des Einflusses von struk-

turellen und geometrischen Parameterunsicherheiten auf die Eigenfrequenzen und das dynamischen

Verhalten bei unsicheren Erregungen erweitert. Insbesondere wird die Methode der verallgemein-

erten polynomialen Chaoserweiterung (gPC) zur Unsicherheitsquantifizierung mit den vorgeschla-

genen deterministischen Modellen kombiniert. Zur Berechnung der unbekannten Koeffizienten der

gPC-Erweiterungen wird eine nicht-intrusive, probabilistische Kollokationsmethode (PCM) ange-

wandt, wobei die Selektion der Kollokationspunkte detailliert geschildert wird. Diese stochastische

Methodik wird zur Untersuchung der Auswirkungen der elastischen, geometrischen und struk-

turellen Unsicherheiten auf die Eigenfrequenzen und die Reifengleichförmigkeit bei niedrigen

Geschwindigkeiten angewandt. Abschließend wird die Gültigkeit des Modells durch den Vergleich

mit einer großen Anzahl von Messungen nachgewiesen.

Der Hauptbeitrag dieser Arbeit liegt in den effektiven und neuartigen Algorithmen zur Problem-

lösung und Modellierung der Reifendynamik, der stochastischen Analyse und der Bewertung der

Parameterunsicherheiten. Die wichtigsten Inhalte wurden auf internationalen Konferenzen oder in

Fachzeitschriften veröffentlicht.
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Chapter 1

Introduction

1.1 Motivation & background

Tires play an essential role in the noise, vibration, and harshness (NVH) analysis of vehicles. With

the emphasis on driving speed, safety, comfort, and handling performance, there is a great need for a

refined analysis of tire dynamics [1]. Tire models not only have an essential influence on the whole

vehicle dynamics analysis but also play an important role in the simulation of automotive electronic

control systems such as anti-lock braking systems (ABS) and electronic stability programs (ESP).

This section illustrates the motivation for this study in terms of tire modeling and the uncertainty

quantification of tire dynamics and uniformity. Specifically, the motivations are explained in two

aspects.

1.1.1 Why tire modeling

Tires are the only component of the vehicle that contact with the road surface. It makes that

the dynamic response and the transmission characteristics of tires are of crucial importance to

the dynamic behavior and the NVH performance of the whole vehicle. Establishing an accurate

and fast algorithm for tire dynamics can not only provide a theoretical basis for the traditional

NVH assessment but also promote the electrification and intelligent control of the tire and chassis

development. In the research field of intelligent tires, which has been widely discussed in recent

years, a dynamic model of the tire can be used to construct relationships between the sensor

measurement signals and the tire structural parameters. An accurate and high-precision tire model

can use to achieve a quantitative description of the relationship between the measurement signals

and tire responses.
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However, due to the complex structure and material composition of a tire, there is still a lack of

analytical explanations for the mechanism of its deformation and transmission characteristics. Since

the 1960s, scholars have been concentrating on the modeling of tire dynamics and the analysis of

tire vibration characteristics. The automotive industry also began to recognize that the vibration

characteristics of tires, such as modal data and natural frequencies, are very closely related to the

handling performance, NVH, and riding comfort of the whole vehicle. Considering the complexity

of the structure and the material distribution, large deformations, high-speed rolling conditions,

etc., it has become a key point in vehicle dynamics research to establish a tire model that ensures

computational efficiency without losing accuracy.

1.1.2 Why uncertainty quantification of tire dynamics and uniformity

From the viewpoint of engineering design, a tire is ideally expected to be a perfect circle, and its

interior stiffness, dimensions, mass distribution, and other characteristics are uniform around the

circumference of the structure. However, the typical tire construction and manufacturing processes

make the mass production of such ideal tires to be unrealistic. The complicated production

process introduces uncertain variables into the structure of tires. Defects in geometry and material

distribution, such as radial geometric deflection, unbalanced mass distribution, non-uniform sidewall

stiffness, and bias in steel belts, inevitably occur during the tire manufacturing process [2]. These

imperfections, i.e., the tire non-uniformities [3], lead to variations in the forces acting on the

spindle even in the case of steady-state rolling at a constant speed. The additional excitation will be

transmitted to the occupants through the different vehicle subsystems and body structures. This part

of the irregular vibration caused by the tire non-uniformities sometimes is the underlying cause of

steering wheel shake, vehicle body vibration, and the generation of interior noise. These abnormal

dynamic responses often affect the riding comfort and driving quality of the vehicle and also cause

disturbance to the occupants [4]. The analysis of characteristics of the dynamic response due to tire

imperfections is referred to as tire uniformity analysis.

However, in the case of tires, the internal defects or non-uniformities are uncertain, i.e., each

parameter or variable has a corresponding distribution instead of a deterministic value. Consequently,

it is necessary to evaluate the uniformity of tires by consideration of the theory of stochastic

analysis. In this context, an accurate assessment of the stochastic dynamic behavior is of practical

importance in manufacturing. The quantitative results can be used for quality optimization of the

mass production of tires. More importantly, the uncertainty quantification of vehicle dynamics has

constantly received attention in the past years [5, 6]. Whereas, the implementation of tire uncertainty

quantification will provide a theoretical basis for the analysis of the whole vehicle system. Hence, it
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is of theoretical significance and extensive application to discuss the effects resulting from the tire

uniformity parameters and their uncertainty quantification.

1.2 Literature review

1.2.1 Modeling of tire vibration and dynamics

Since the 1960s, a large number of researchers discussed the research of tire models, the knowledge

of tire dynamics is thoroughly developed. A variety of tire dynamics models were developed, which

can be divided into the following categories, including simple physical models [7–10], empirical

and semi-empirical models [11, 12], and advanced models based on ring or shell theory [13–19].

The modeling approach of converting a pneumatic radial tire into a ring-shape structure has a long

history and occupies a significant place in the analysis of vehicle dynamics. Several important tire

dynamic models, such as SWIFT [13–15] and FTire [16, 17], which are integrated into vehicle

multi-body dynamics software have been developed based on the ring model theory. A ring model

of a tire can provide a concise approach to realize the analysis of tire vibrations and dynamics.

This simplified method of transforming a pneumatic tire into a ring on an elastic foundation can

date back to the 1960s [20, 21]. The earliest research started with the analysis of the free vibration

of tires. Since the 1960s, Clark [20], Tielking [21], and Böhm [22] have analyzed the dynamic

properties of tires using equivalent rings. There were many studies on the theoretical model based

on a ring on an elastic foundation (REF) which has been already widely used. Böhm [22] simplified

a tire into an equivalent structure with a set of radial springs (sidewall) and a circular ring (belt).

The two-dimensional (2D) deformation and free vibration characteristics were calculated, and then

the standing wave phenomenon due to the angular velocity was studied. On this basis, Pacejka [12]

considered the tangential and radial stiffness of the sidewall for the first time and took into account

the inflation effect of the tire. The results of the free vibration and the standing wave analysis

were compared with the simulation of Böhm [22]. In the 1980s, Kung et al. [23, 24] presented a

simplified method to analyze the free vibration based on an REF model and compared it with a

finite element (FE) model.

Furthermore, academics have paid attention to the forced responses of tire vibration. However,

establishing a proper tire-road contact model is a challenging task for such studies. Potts et al. [25]

first expanded the forces in the contact area by Fourier series under the assumption of a thin-wall

flexible ring. The contact pressure was assumed to be a parabolic distribution which achieved an

approximation of the contact area. Soedel and Prasad [26] subsequently focused on the effect of the
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tire-road contact model on the dynamic responses. They conducted an experimental modal analysis

of a rim-tire assembly without contact with the ground to identify the parameters in the forced

dynamic equations. The natural frequencies and mode shapes of the loaded tire were obtained

afterward. Takayama [27] proposed a 5-degrees-of-freedom (DOF) mass-spring system, in which

the belt and tread were considered as a rigid ring, and the sidewall and the contact effect were treated

as linear springs. The radial and tangential axial forces generated when the tire was rolling over a

cleat were calculated. Huang et al. [28] further developed the model proposed in the literature [26]

by simplifying the road contact kinematically using radial and tangential displacement constraints.

The equations for in-plane vibration were derived using the equivalent ring structure, and the forced

solution was obtained.

Considering the deformation modes of tires, the previous works of the ring model have summarized

the vibrations of tires in the condition of in-plane vibration [21, 28–31] and out-of-plane vibra-

tion [32, 33]. The in-plane vibration includes circumferential and radial bending. The breathing

mode which has a close relationship with noise generation can be evaluated. The out-of-plane

vibration includes transverse bending and out-of-plane torsion. It is closely related to the cornering

performance and transmission characteristics of tires. As the theoretical basis, there has already

been a great deal of research on rings [34–37], however, the literature dealing with the out-of-plane

vibration is still very scanty. The study of the out-of-plane vibration of the ring can be traced back to

the research proposed by Bert and Chen [38]. They first studied the out-of-plane vibration of a rotat-

ing ring at high speed. They adopted an assumption by considering the effect of a centrifugal force

as an algebraic term. In the 1980s, Irie et al.[39, 40] presented a series of studies on the in-plane and

out-of-plane vibrations and steady-state responses of rings. Using the Hamilton principle, Bickford

and Maganty [41] derived the out-of-plane natural frequency of thick circular rings. He has also

given the relative contributions caused by the centrifugal and Coriolis acceleration to the natural

frequency. Eley et al.[42] introduced the effects of anisotropy into the vibration of a circular ring

made from crystalline silicon. The calculation of the out-of-plane flexural modes has been shown.

Recently, Doria et al.[43] studied modal analysis tests of out-of-plane modes of some motorcycle

tires using impulsive analysis. The lateral natural frequencies and damping were identified. For

predicting the lateral vibration of tires, Matsubara et al.[33] set out an approach to analyzing the

vibration of an elastic ring by using the Lagrangian method with the assumption of in-extensional

deformation. Liu et al.[32] derived an analytical solution for both, the in-plane and out-of-plane

natural frequencies based on a ring model. The accuracy has been validated by a practical radial

tire. However, the analysis of the out-of-plane vibration is still incomplete, and many factors such

as rotation, damping, and shear deformation, were not fully considered in the published works.
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In the 1990s, the rigid ring model was developed rapidly and comprehensively. Gong [44] performed

a detailed analysis and calculation of the in-plane vibration using the flexible ring model. The rim

was introduced into the tire model for the consideration of the dynamic response of the coupled

structure. In addition, the transfer characteristics under different vertical loads were discussed.

Zegelaar [14] promoted the application of the rigid ring and flexible ring models, respectively. In

particular, the rigid ring model was employed to calculate the dynamic response of the vehicle

during braking and the flexible ring model was applied for modal analysis. Moreover, the study of

ring models was expanded to the investigation of structural uniformity analysis. Allaei et al. [45]

performed the estimation of natural frequencies and modes of non-axisymmetric tires and those

tires with concentrated mass or non-uniform stiffness. Stutts et al. [46] addressed the issue of the

dynamic responses of the vertical and longitudinal axial forces due to the unbalanced mass based on

the rigid ring model. Later, they [47] went further to analyze the effect of the non-uniform stiffness

distribution of the sidewall.

Research into the ring model, the theory of which is still being improved, has not stopped in recent

years. Wei et al. [48] extended a 2D flexible ring model to the computation of the general forced

response by adopting the theory of Meirovitch modal analysis and first-order matrix perturbation.

The impacts of damping and rolling speed on the responses were discussed. Popov and Geng [49]

studied the damping characteristics of tires. Non-proportional viscous damping and complex

modal analysis techniques were adopted to analyze the measurement, identification, and modeling

of damping of heavy vehicle load tires. Wei et al. [29] derived the general forced solutions for

undamped vibration based on a 2D REF model by adopting the modal expansion technique and

the Meirovitch modal analysis method. The closed-form transient response under the stationary

concentrated load was obtained. Kozhevnikov [50] discussed the free and forced vibration of tires

and then estimated a tire rolling at a constant speed. Graham [51] concluded that the vibration of

the tire sidewall plays an important role in the tire vibration responses, and therefore, the undamped

vibration of the sidewall, which was equivalent to a fiber-reinforced membrane structure in the

shape of a circle connected to a fixed rim. The belt was also studied. The ring models are not only

used for theoretical analysis, but Lee et al. [52] also considered wave propagation in a rotating

tire and applied a flexible ring model to the improvement the complex modal testing technique of

tires. Vu et al. [53] established a nonlinear flexible ring model based on the Timoshenko beam

theory, which also reflected the large deformation due to the rotation effect. But they did not extend

their model to the application of the contact algorithm. Matsubara et al. [33] developed a flexible

ring model to analyze the three-dimensional vibration of tires. However, the bending strain and

stress of the ring were not completely described in their model. It resulted in the problem that

higher-order bending modes cannot be predicted. Later, Liu et al. [32] proposed a three-dimensional
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ring model of the tire without the limitation of the inextensible assumption. The out-of-plane

bending and torsional deformation modes were shown first. The established model was applied to a

truck tire, and compared with the FE model and the experimental results. Yu et al. [31] developed

new displacement function for tire radial and lateral vibrations. They also studied the high-order

bending vibration of tires. Yang et al. [54] introduced the concept of modal assurance criterion

into the tire ring model and predicted the in-plane vibration of the non-rotating and rotating tires.

Liu et al. [55] investigated the planar vibration of large-section-ratio radial tires used for heavy-load

vehicles using theoretical modeling and experimental modal analysis. The deformation of the belt

structure was combined into the flexible ring model by the multi-stiffness function of the sidewall.

Subsequently, they [56] developed a 2D analytical model for the sidewall stiffness of heavy-load

tires based on a flexible ring model coupled with a nonlinear 2D sidewall element. The tire-road

contact model and the static stiffness properties were investigated. In the research field of intelligent

tires, the flexible ring model [57–60] was also applied to represent the tire characteristics and further

estimate the dimensionless numbers of the tire model using intelligent tire sensor signals.

In the literature review, it is obvious that although research on the tire modeling of vibration

and dynamics has been conducted for many years, scholars and engineers are still continuously

exploring the application of tire models in different areas. From the traditional prediction of the

natural frequencies to the application in the field of intelligent tires over the past few years, it is

always essential to carry out the modeling of tire dynamic responses. The theory of tire modeling has

also evolved from its initial application under only a single simulation condition to a well-integrated

algorithm that combines with the whole vehicle dynamics model, and it can meet the challenges of

different complex application scenarios.

1.2.2 Tire uniformity

The production quantities of tires are often enormous. Defects in geometry and material distribution,

such as radial geometric deflection, unbalanced mass distribution, non-uniform sidewall stiffness,

and bias in steel belts, will inevitably occur during the tire manufacturing process [2]. These

imperfections, i.e., the uniformity parameters of tires, can lead to variations in the forces acting

on the spindle even in the case of steady-state rolling at a constant speed. However, few studies

were conducted to implement a stochastic analysis of the distribution of the corresponding response

while considering the uncertainty in the uniformity parameters resulting from tire production. Most

tire companies aspire to be able to foresee the uniformity of each production batch of tires before

they are ready for the market, thereby enabling improvements to the process flow. Traditionally,

the measurement of tire non-uniformity forces and moments has been realized in one of two ways,
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including on low-speed factory machines or on high-speed research machines [3]. The factory-type

machine is operated at 60 or 120rpm. Generally, the radial, tangential, and lateral force variations

(RFV, TFV, and LFV) are measured at the axle of the drum, and sometimes also the geometric

deflection, e.g., radial run-outs (RRo), can be collected. The rolling speed of the drum is very low

so that the resonance of the tire is not aroused during the measurement, and the result obtained is

the force variations occurring at the contact area. This type of low-speed uniformity machine is also

known in the industry as the “LSU machine". During the typical tire manufacturing process, factory

floor measurements of tire uniformity are performed on LSU machines, which are used to monitor

the quality of the tire production process and may guide or incorporate corrective measures such

as grinding to improve the balance and uniformity of a tire [61–63]. Only those tires that qualify

for the uniformity criteria are shipped to customers (or sent to the next step of the tire evaluation

process) [62]. In contrast, another type of test machine is the high-speed uniformity (HSU) machine.

They can operate at realistic driving speeds and undertake experimental measurements including

the effects of tire resonances. Unfortunately, it is difficult and costly to directly measure high-speed

force variations on tires. They are consequently often found in research laboratories rather than

in manufacturing plants [61–63]. Due to the complexity of the measurements, the tested tires are

normally not available for sale due to wear and tear.

It is because tire uniformity is unavoidable in production but crucial in practical applications, how

to improve structural imperfections has always been a core issue for tire manufacturers. Since the

1970s some tire companies have been carrying out relevant research. Dunlop Ltd. [64] initiated a

study on the variation of the first harmonic of tires under different speeds and presented the phase

and amplitude relationship between the longitudinal and radial force variations with speed. In 1989,

Firestone Tire and Rubber Co. [65] described the probabilistic distributions of the first harmonic

and the uniformity parameters by normal probability density functions and later predicted the mean

value and the standard deviation of the offset. After a company merger with Firestone Tire Company,

Bridgestone Inc. [66] further investigated the relationship between the angular velocity deviation

and the longitudinal force on account of the uniformity parameters, which would be a valuable

supplement to the existing measurements of estimating tire non-uniformities. Hyundai Motor

Co. [67] also studied the shimmy phenomena in the steering system induced by the unbalanced mass

distribution and the structural imperfections of tires. Goodyear Tire & Rubber Co. [68] conducted

measurements on a high-speed uniformity machine to obtain the first harmonic of the tangential

force variation (TFV) and the radial force variation (RFV). In turn, the influence of tire uniformity

on the vibration modes and the quality of riding comfort has been discussed. Shanghai Tyre &

Rubber (Group) Co. [69] adopted finite element analysis to estimate the RFV by considering the

geometric and material defects. In 2005, Hankook Tire Co. [70–72] presented a series of studies
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on the transmission mechanism of the steering wheel vibration and the dynamic force variations

resulting from tire imperfections. The influence of tire resonances on the force amplitudes has

been demonstrated and compared with the measured data and the simulation results of the FTire

model. As mentioned above, most of the studies from the tire companies are based on statistical

analysis with a large number of test samples and measurements which is not only costly but also

difficult to achieve from uniformity tests to tire structure optimization, production process control,

and dynamic performance improvement.

Considering the cost of experiments, the necessity of virtual development from component design

to complete vehicle analysis has been felt over the years. As a consequence, for assessing the

effects of tire uniformity, many researchers attempted to develop theoretical physical models to

properly understand the complex deformation and its interaction with the pavement. Based on

substantial experimental data, Gillespie [73] originally simplified a tire as a spring-mass system

to explain the influence of non-uniformities in tire-wheel assemblies on the driving quality of

heavy trucks. However, this physical model cannot provide a good description of the practical

non-uniformities on account of the oversimplified assumptions adopted for the tire structure. Under

the assumption of a rigid ring, Stutts et al. [46, 47] explained the phenomenon that the longitudinal

force grows faster than the vertical force on the spindle as the speed increases. The mechanism

by which the additional concentrated stiffness of the sidewall leads to the generation of RFVs has

been further discussed. Dorfi [72] also used a rigid ring model to investigate the impacts of the

non-uniform mass distribution, the eccentricity of the belt, and the thickness variation of the tread

rubber. The analytical results were subsequently compared with the simulation results estimated

by a widely-used and promising physical tire model, i.e. FTire. On the foundation of the work

by Stutts et al., Dillinger et al. [74] combined a viscoelastic model of the sidewall [75] and a

longitudinal force relaxation model [13] to calculate the tangential and radial forces by involving

mass, stiffness, and geometric defects in the analysis. Pottinger [76] summarized the impact of

the mass imbalance on the transfer properties of a tire-wheel assembly and proposed a method for

improving the response of the spindle forces due to the installed assembly uniformity.

While uniformity is an essential factor in the structural design of tires and the dynamic analysis of

the whole vehicle, most of the published studies concentrated on the rigid ring models on account

of the complexity of the tire structure and materials. Because the limitations of deformation are

assumed by the rigid rings, only over-simplified models can be applied to characterize the uniformity

parameters, such as using an overall eccentricity or a simple function to represent the geometric

offsets. The inherent restrictions of these assumptions make the existing physical models only

capable of a simple qualitative discussion of various types of uniformity parameters or statistical
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analysis from large amounts of experimental data.

1.2.3 Uncertainty quantification of tires

Due to the defects of tires being uncertain parameters or variables, it is unavoidable to evaluate the

uniformity of tires by consideration of the theory of stochastic analysis. Since the 1970s, some tire

companies were carried out relevant research [64, 66, 68, 69]. Most uniformity analysis techniques

rely on deterministic models [70–72, 77], and these models generally assume that the structural

and uniformity parameters of the tire are deterministic. However, the parameters of tires and their

response are uncertain under conditions of mass production.

Some researchers attempted to investigate the probabilistic characteristics of tire uniformity through

statistical methods from a large number of measurements. In 1989, Schuring [65] described the

probabilistic distributions of the first harmonic and the uniformity parameters by normal probability

density functions and later predicted the mean value and the standard deviation of the offset.

Gillespie [73] originally simplified a tire as a spring-mass system to explain the influence of

non-uniformities in tire-wheel assemblies on the driving quality of heavy trucks. Pottinger [76]

summarized the impact of the mass imbalance on the transfer properties of a tire-wheel assembly

and proposed a method for improving the response of the spindle forces due to the installed assembly

uniformity. However, the inherent restrictions of these theories make the existing models only

capable of a simple qualitative discussion of various types of uniformity parameters or statistical

analysis from large amounts of experimental data. Nowadays, little research has explicitly addressed

the challenge of the stochastic modeling of the dynamic responses and meanwhile takes into account

the parametric uncertainties of tire uniformity.

Fortunately, the theory of stochastic structural dynamics analysis has been continuously devel-

oped, which provides a possible approach for the stochastic prediction of tire uniformity. Several

approaches [78, 79], e.g., probabilistic methods, interval mathematics, fuzzy set theory, etc., are

utilized to evaluate the output responses influenced by uncertainties. The study of stochastic

structural dynamics had initiated in the mid-1960s, mostly based on the Monte Carlo simulation

(MCS) [80–82], the perturbation method [83, 84] and the spectral methods [85]. The traditional

method for assessing the probability density function (PDF) of the output responses of a system is

the Monte Carlo method [86, 87], which has the most extensive application in stochastic dynamics.

The method generally requires a large amount of test data to obtain reasonable results, which leads

to high computational costs. Although structured sampling techniques such as Latin hypercube

sampling (LHS) can be deployed to improve computational efficiency [88], the gains for complex
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problems may not be significant [89–91]. Due to the slow convergence and the high computational

costs, MCS is often used to verify the feasibility of other methods for stochastic dynamics analysis.

The spectral methods, in contrast, based on the homogeneous chaos theory [92] are used to overcome

the drawbacks of the MCS. More recently proposed stochastic analysis approaches comprise

generalized polynomial chaos (gPC) methods based on Wiener’s polynomial chaos expansion

(PCE) [85, 93] and stochastic response surface methods [94, 95]. They are considered to have better

performance in terms of computational efficiency. In the field of structural dynamics, Ghanem

and Spanos[85] developed the spectral stochastic finite element method where Hermite polynomial

chaos is used to represent uncertain parameters. On this foundation, the generalized polynomial

chaos expansion method was developed by Xiu and Karniadakis [93, 96]. The basic idea is to

approximately represent uncertain parameters by using the sum of the orthogonal polynomials of

independent random variables. Once the function expansion of the random variable is performed,

the statistical quantities of the random variable are easily obtained. Because this method avoids the

extensive sampling in MCSs and in turn improves computational efficiency, it has been widely used

and improved in recent years.

The gPC expansion method was successfully applied to a variety of dynamics analysis [97–101],

including the vehicle dynamics prediction [102–107]. In the research field of structural vibration and

dynamics, Sinou and Jacquelin [100] presented a procedure to determine the steady-state response

of a rotor system with uncertain stiffness, in which a polynomial chaos expansion is performed

to evaluate the mean and standard deviation of the response. The influences of uncertain material

parameters, random fiber orientation, and damping parameters on the vibration of fiber-reinforced

composite structures were investigated by Sepahvand et al.[108, 109]. Wu et al.[101] assumed

the random geometry and material properties in the structure as random variables and expanded

them with polynomial chaos. Afterward, they solved the dynamic equations of a rigid-flexible

multibody system and achieved the prediction of the uncertain dynamic response. Polynomial chaos

expansions were also implemented in the uncertainty quantification issues of vibration and dynamic

response of civil structures and gained good performance [110]. Wan et al.[98] improved the

existing gPC theory and proposed an arbitrary polynomial chaos expansion (aPCE) -based method

to perform uncertainty quantification of the natural frequencies of a truss structure, and applied it to

a long-span steel arch bridge. Yuan et al.[111] employed the PCE to realize the sensitivity analysis

of turbine blades equipped with dampers and to quantify the impact of contact parameters on the

variation in the nonlinear dynamic response.

In the analysis of vehicle dynamics,Wu et al.[106] analyzed the deformation of the suspension

to realize the roll plan model by combining the Chebyshev inclusion function theory with the

10



1.3 Objectives & scope

gPC theory. Kwon et al.[107] proposed a model of military vehicles to evaluate driving com-

fort and firing stability by combining the polynomial chaos theory with the analysis of variance.

Wang et al.[112] used the polynomial chaos expansion to improve the vertical vibration issues of

a modified electric vehicle. The reliability-based design optimization with uncertain excitation

parameters was conducted on a half-car model with nonlinear suspension parameters. Polynomial

chaos theory has also been utilized for parameter estimation of vehicle models. Ma et al.[113]

predicted the inertia parameters of a vehicle. Shimp [114] developed an adaptive polynomial chaos

approach to estimate sprung mass parameters of a simplified quarter-vehicle model. Price [115]

performed the computation of the lateral and longitudinal center of gravity of a vehicle based on

measurement data as well as assessed the uncertainties by conducting a PCE model.

In addition, the gPC expansion method has also been promoted in acoustics analysis. Sepah-

vand et al.[116] proposed a framework for analyzing the uncertainty in natural frequencies and

radiated sound power of a composite plate. Yin et al.[117] combined the evidence theory and the

arbitrary polynomial chaos expansion to establish a hybrid stochastic analysis method, which was

applied to address the structural acoustics problem with uncertain parameters. A recent study by

Kuhn et al.[118] was carried out to investigate the effects of uncertain parameters on the aeroacoustic

feedback of cavity flows.

Although many researchers applied the gPC expansion method to analyze the stochastic dynamic

response of various structures, it has not been introduced to the prediction of the production quality

of tires. In this thesis, these methods based on the polynomial chaos theory are illustrated and their

applicability to the analysis of low-speed uniformity of tires is investigated.

1.3 Objectives & scope

While several types of tire models were developed to evaluate the vibrations and dynamic responses,

few theoretical models are available for the modeling and the uncertainty quantification of the

three-dimensional (3D) vibration, transmission properties, and uniformity of tires. In addition, these

two aspects of tires, which are the deterministic modeling and the stochastic analysis, are treated as

isolated problems in most of the literature, and their underlying relations have not been discussed

in detail. From the literature review, it is evident that there is a substantial need for modeling

the vibration and the dynamic responses of tires. The new proposed model should be able to be

expanded to as many scenarios as possible with a wide range of applications.

Therefore, the objective of this work is to develop a new theoretical model to evaluate the char-

acteristics of the 3D vibration and the dynamic responses of tires, which is also used to analyze

11



1 Introduction

the transmission mechanism of the radial force at the spindle caused by the structural defects in

tires and road unevenness. Furthermore, this developed model should be suitable to estimate the

stochastic distributions of the vibration and the dynamic responses of tires caused by structural and

geometric uncertainties.

To achieve this objective, a 3D flexible ring model is first developed to describe the in-plane and

out-of-plane vibrations, and the steady-state response of tires. A coupled rigid-flexible ring model

is presented based on the tire ring model. Its emphasis is placed on the description of the dynamic

properties and the practical application to the simulation of tire and vehicle dynamics. The contact

algorithm is established by the simplification of the 2D flexible ring, which provides a more accurate

pressure distribution on the tire-road contact patch and the length of the footprint under different

vertical loads than the traditional rigid ring model. In contrast, the rigid ring model has a better

performance on computational efficiency. Combining the advantages of these two types of ring

models, it is expected that the dynamic responses can be solved efficiently and accurately. Further,

the identification of model parameters and the optimization approach based on the test data are given,

which should be easy to implement and robust. Ultimately, the generalizability of the developed

model in different simulation conditions is verified by the analysis of the low-speed uniformity of

tires with geometric defects and the corresponding measurements.

And then, the gPC theory and the probabilistic collocation method are introduced, in order to

evaluate the influence of uncertainties in the structural parameters on the natural frequencies,

steady-state responses, and uniformity. The uncertain parameters and the desired responses are

approximated by using the truncated gPC expansions having a random orthogonal basis. The

probabilistic collocation method is employed in order to obtain the unknown coefficients of the

expansions. It is applied to investigate the influences of elastic and structural uncertainties on the

natural frequencies of the tire.

The last objective of this research is to implement a stochastic prediction of low-speed uniformity,

which is applied for the optimization of manufacturing processes and quality evaluation before the

mass production and marketing process. The results of the stochastic analysis of the low-speed

uniformity of tires are first given. For the prediction of the production quality for a massive number

of tires, the influences of the uncertainties in different factors on the radial force variations and

their harmonics are thoroughly discussed, such as the radial run-out and vertical test load. However,

the computational cost is often a critical factor in whether this kind of stochastic analysis can be

implemented and in its algorithm performance. Hence, the computational efficiencies of Monte

Carlo simulations (MCSs) and different probabilistic collocation methods are compared. Finally, a

large amount of measured data need to be adopted to demonstrate that the proposed technique can

12



1.4 Outline of the thesis

be employed to achieve an effective prediction for the low-speed uniformity of the mass of tires.

1.4 Outline of the thesis

The topic of this thesis mainly consists of two parts, the modeling of tire dynamics and its extension

in uncertainty quantification. The outline of this study is shown in Fig. 1.1. The problems of tire

dynamics and uniformity analysis are first introduced and the deterministic models based on the

simplification of a tire to a ring structure are derived. The proposed deterministic models include the

3D flexible ring model and the coupled rigid-flexible ring model, which are subsequently applied

to analyze the vibration, steady-state response, dynamics, and uniformity simulation. Afterward,

these tire models are extended to the stochastic analysis by combining them with the theory of

generalized polynomial chaos expansion. The impacts of the uncertain structural, geometric, and

material parameters of tires are discussed to predict the probabilistic distributions of the natural

frequencies, steady-state responses, and the responses in low-speed uniformity analysis. The

accuracy of the models and the algorithms are validated by a number of measurements. The main

research framework of this thesis is shown in Fig. 1.2.

Chapter 1
Introduction

Chapter 2
3D ring model

Chapter 3
Coupled rigid-flexible ring 

model

Chapter 4
Deterministic analysis of low-

speed uniformity of tires

Chapter 5
Theory of uncertainty 

quantification

Chapter 6
Application of uncertainty 

quantification in tire vibration

Chapter 7
Stochastic analysis of low-
speed uniformity of tires

Chapter 8
Conclusion and 

outlooks

1. Natural frequency
2. Steady-state response

1. Dynamic response
2. Parameter identification

Deterministic modeling and application Stochastic theory and application

Theory &  Models

Applications

Figure 1.1: Thesis structure.
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Figure 1.2: The main research framework of this thesis.

This thesis is organized as follows.

• In Chapter 2, a 3D flexible ring model of tires is developed. According to the simplification

of tire ring models, a practical tire is equivalent to a 3D deformable circular ring supported

on an elastic foundation. A novel theoretical ring-based model is established to describe the

in-plane and out-of-plane vibrations and the steady-state response of tires. The Hamilton

principle is adopted to derive the equations of motion. A simplified scale, the equivalent

radiated sound power is utilized to describe the overall steady deformation characteristics of

the tire in this chapter. Afterward, the accuracy of this developed model for the deterministic

prediction of the natural frequencies and the steady-state response of a tire is validated.

• In Chapter 3, the three-dimensional ring model is simplified into a two-dimensional model

to estimate the in-plane dynamics of the tire. Herein, a coupled rigid-flexible ring model

is presented to evaluate the characteristics of the dynamic responses of tires, which is also

used to analyze the transmission mechanism of the radial force at the spindle due to road

unevenness and structural defects in tires. A contact algorithm based on the 2D flexible ring

provides a pressure distribution on the tire-road contact patch and the length of the footprint

under different vertical loads. The dynamic responses are then represented by combining the

rigid ring model with the flexible ring model. Further, the identification of model parameters

based on the test data is given. The accuracy of the contact algorithm and the transient

14



1.4 Outline of the thesis

responses are validated against experimental radial stiffness and over-cleat tests, respectively.

• In Chapter 4, the analysis of the low-speed uniformity of tires with geometric defects is

performed by the established model. Moreover, the optimization approach of the model

parameters by using a genetic algorithm is given. By comparing with measurements, it

indicates that the proposed coupled rigid-flexible ring model yields a reasonable prediction

of the low-speed uniformity analysis and offers many application scenarios and extension

possibilities.

• In Chapter 5, to evaluate the uncertainties in the structure, geometry, and material distribution

of tires, the theory of generalized polynomial chaos expansion is introduced in this work.

The probabilistic collocation method (PCM) is employed in order to obtain the unknown

coefficients of the expansions. Subsequently, three different methods of the selection of the

collocation points are discussed. Based on the concept of linear independence of vectors,

the number of selected collocation points is effectively reduced. This yields an efficient

simulation for the stochastic dynamic analysis of tires.

• In Chapter 6, considering the uncertain parameters induced by the manufacturing process

of tires, the 3D ring model developed in Chapter 2 is combined with the gPC expansion

method to estimate the impacts of parameter uncertainties on the natural frequencies and the

steady-state response. It is first applied to investigate the influences of elastic and structural

uncertainties on the natural frequencies of the tire. Secondly, the rest of this chapter describes

the distributions of the sound power owing to the forced vibrations under the uncertainty in

the external force terms. The numerical results are in good agreement with the MCSs.

• Furthermore, in Chapter 7, this study implemented a stochastic prediction of low-speed

uniformity of tires, which is applied for the optimization of manufacturing processes and

quality evaluation before the mass production and the marketing process. The stochastic

analysis of the tire low-speed uniformity is given. The influence of the uncertainties in

geometric defects on the RFV and its first harmonic (RFV1H) is thoroughly discussed. The

computational efficiencies of the MCS, probabilistic collocation method, and 200 sets of

measurement data are compared. The results are then shown for the individual effects of

each parameter. Finally, the distributions of the responses under different variances of the

uncertain inputs are given. Through the validation by using extensive experimental data, it is

evident that the proposed technique can be employed to achieve an effective prediction for

the low-speed uniformity of the mass of tires.

• Finally, the most essential conclusions of this thesis are given in Chapter 8. The discussion

of the current work and the possible improvements of the model are stated here. In addition,
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some recommendations for further research are listed as well.
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Chapter 2

Three-dimensional Ring Model of Tires

This chapter is to present a novel theoretical three-dimensional (3D) ring model to describe the

in-plane and out-of-plane vibrations, natural frequencies, and the steady-state response of tires.

In order to obtain the analytical solution of the natural frequencies and steady-state response, the

Hamilton principle is adopted to derive the governing equations. The results are compared with

the solution given in the previous literature. In the sound radiation analysis, the three-dimensional

vibration under a set of harmonic unit forces and moments is considered to be the source of noise

generation. Here, a simplified scale, the equivalent radiated sound power, is adopted to describe the

overall steady deformation characteristics of the tire.

2.1 Three-dimensional ring model

Dynamic characteristics of tires affect the whole vehicle’s performance. Considering the complex

structure and excitation, it is essential to establish a proper model for dynamic analysis. Herein, a

three-dimensional ring model is established to describe the dynamic response and properties. The

steel belt is treated as an elastic ring. It is assumed as an Euler-Bernoulli beam that can bend in two

directions, i.e., in-plane and out-of-plane. The sidewall is equivalent to an elastic foundation with

damping, and the rim is rigid. Fig. 2.1 shows the schematic of a three-dimensional ring model, a ring

with a rectangular cross-section on an elastic foundation rotating at a constant speed. The elastic

properties of the foundation are modeled by a set of distributed springs in radial, circumferential,

and axial directions (ku, kv, kw), respectively. Damping existing in the foundation can be described

by introducing the coefficients (cu, cv, cw) into this model.

In-plane vibration and out-of-plane vibration of the elastic ring are considered in this chapter.
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Figure 2.1: Coordinate systems and deformation of a ring on an elastic foundation. (a) Radial,
circumferential and axial displacements and (b) torsional angle of the ring.

The in-plane vibration includes circumferential and radial bending, and the out-of-plane vibration

includes transverse bending and torsion. In this research, the radial, circumferential, and axial

displacements and the torsional angle of the ring are considered to describe the three-dimensional

vibration. In particular, in order to obtain the breathing mode (0th-order radial mode) of the ring, the

in-extensibility assumption, which restricts the circumference of the middle line is constant during

the deformation, is relaxed here.

2.2 Equations of in-plane and out-of-plane motions

Considering the condition of a ring at a constant rotational speed, rotating and non-rotating coordi-

nations are defined. The origins of these two coordinate systems are at the center of the ring. The

location of any point on the ring can be described by cylindrical coordinates in the non-rotating coor-

dinate system (r, φ , Z), or in the rotating coordinate system (r, θ , Z). It can also be expressed in the

Cartesian coordinate system (X , Y , Z). The X-axis is positive in the direction of the forward velocity,

and the Y -axis is positive in the upward direction. The Z-axis forms the right-handed coordinate

with the other two axes. As shown in Fig. 2.1, the angular coordinate originates from the horizontal

direction, i.e., the X-axis, through the ring center, and is taken positive in the counter-clockwise

direction.

In this chapter, it is assumed that the equivalent ring is fixed in space but can rotate at a constant

speed Ω . Meanwhile, the road surface constantly moves backward. The radial, circumferential, and

axial displacements (ua,va,wa), which can be expressed by the mid-plane displacement (u,v,w),
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2.2 Equations of in-plane and out-of-plane motions

and the torsional angle φθ , are applied to describe the motion of the ring. The torsional angle φθ is

the out-of-plane rotational angle around the θ -axis. The displacements of any point on the ring are

given as

ua=u+φθ zop, (2.1)

va=v− (R− r)
v−u′

R
− w′

R
zop, (2.2)

wa=w+φθ (R− r), (2.3)

where R represents the mean radius, and zop is the Z-axis coordinate. Here the prime designates

differentiation with respect to θ . Based on the expressions of the in-plane and out-of-plane

displacements, the flexural strain and stress of the ring are written as

εθ =
v′+u

R
+

1
2

(
v′+u

R

)2

+
1
2

(
v−u′

R

)2

− (R− r)
R2

(
v′−u′′

)
− w′′

R2 zop +
φθ

R
zop, (2.4)

σθ = Eεθ , (2.5)

where E represents the elastic modulus of the ring. According to the geometrical assumption, the

shear strain and shear stress are obtained as

εrθ =

(
φ ′

θ

R
+

w′

R2

)
zop, (2.6)

εθz =

(
φ ′

R
+

w′

R2

)
(R− r), (2.7)

σrθ = Gεrθ , (2.8)

σθz = Gεθz, (2.9)

where G represents the shear modulus of the ring. Considering the initial stress and the non-linear

bending strain [32], the Hamilton principle is used to derive the equations of motion, i.e.,

δ

∫ t2

t1
(U −T −W )dt=0, (2.10)

where U represents the potential energy, T is the kinetic energy, and W shows the external force

energy (including the internal pressure). With the uniform pressure acting on the inner wall of the

ring, the initial stress σ0
θ

is given as

σ
0
θ A =

1
2

∫
π

0

(
ρAΩ

2R+ p0b
)

sinθRdθ = p0bR+ρAR2
Ω

2, (2.11)
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where A is the area of the ring section, ρ denotes the density, Ω means the rotation speed, b

represents the effective width, and p0 is the internal pressure. All energy terms are expressed as

U =
b
2

∫ 2π

0

∫ R+ h
2

R− h
2

(
σθ εθ +σrθ εrθ +σθzεθz +2σ

0
θ εθ

)
rdrdθ

+
1
2

∫ 2π

0

[
kww2 + kvv2 + kuu2 + ku

(
φθ

bop

2

)2
]

Rdθ , (2.12)

T =
∫ 2π

0

∫∫
A

ρ

2

{
(u̇a − vaΩ)2 +[v̇a +(r+ua)Ω ]2 + ẇ2

a

}
rdAdθ , (2.13)

W = bp0R
∫ 2π

0

[
u+

1
2R

(
v2 − vu′+ v′u+u2)]dθ

+
∫ 2π

0

[
quu+qvv+qww+qMxφθ +qβ

v−u′

R
+qMz

(
−w′

R

)]
Rdθ , (2.14)

in which h is the effective thickness of the ring. The definitions of the variables are given in Sections

2.1 and 2.2. As a matter of fact, damping exists in the tread and the sidewall of tires. It is essential

to explain some aspects of tire dynamic properties. Only considering the damping in the sidewall,

the dissipation energy term D is given as

D =
1
2

∫ 2π

0

[
cuu̇2 + cvv̇2 + cwẇ2 + cu

(
φ̇θ

bop

2

)2
]

Rdθ . (2.15)

When the external forces (qu, qv, qw) and moments (qβ , qMx, qMz) act on the middle-line of the ring,

both the internal pressure and the external loads will contribute to the overall displacement. The

equations of in-plane and out-of-plane motions are represented as follows

EA
R2

(
u+ v′

)
+

EIz

R4

(
u(4)− v′′′

)
+

σ0
θ

A
R2

(
u+2v′−u′′

)
+ρA

(
ü−2Ω v̇−Ω

2u
)
− bp0

R

(
u+ v′

)
+ kuu+ cuu̇ = qu +

1
R

q′
β
, (2.16)

−EA
R2

(
u′+ v′′

)
+

EIz

R4

(
u′′′− v′′

)
+

σ0
θ

A
R2

(
v−2u′− v′′

)
+ρA

(
v̈+2Ω u̇−Ω

2v
)
+

bp0

R

(
u′− v

)
+ kvv+ cvv̇ = qv +

1
R

qβ , (2.17)

in which σ0
θ

denotes the initial stress, A represents the area of the ring section, ρ is the density, b

is the effective width, and p0 is the internal pressure on the inner surface. The in-plane bending

and the membrane stiffnesses of the ring are given as EIz and EA, respectively. Similarly, the

20
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out-of-plane equations are given as

EIr

R3

(
w(4)

R
−φ

′′
θ

)
−

GIρ

R3

(
w′′

R
+φ

′′
θ

)
+ρAẅ

−ρIz

R
φ̈θ +Ω

ρIr

R
φ̇
′
θ + kww+ cwẇ = qw+

1
R

q′Mz, (2.18)

EIr

R2

(
φθ −

w′′

R

)
−

GIρ

R2

(
φ
′′
θ +

w′′

R

)
+ρIρ φ̈θ

−ρIz

R
ẅ+Ω

ρIr

R
ẇ′+ ku

b2
op

4
φθ + cu

b2
op

4
φ̇θ = qMx, (2.19)

where bop denotes the nominal width of the ring, EIr represents the out-of-plane bending stiffness,

GIp is the torsional stiffness and ρIp means the torsional inertia. It can be found that the in-plane

and out-of-plane equations are decoupled. Therefore, Eqs. (2.18-2.19) can be solved independently.

When the in-plane governing Eqs. (2.16-2.17) are simplified by the in-extensibility assumption, i.e.,

u=−v′, the same form as given in [44] can be obtained.

2.3 Natural frequencies and modes

With the rotating speed Ω and all external forces being set to zero, one can obtain the analytical

solution for the natural frequencies by assuming the wave function of the free vibration mode in

the sinusoidal series, which has been stated in the author’s previous work [32]. Since the relevant

theory of this part has been illustrated in detail, the author would not repeat the derivation here. For

a better understanding of the overall organization of this thesis, the expressions for the solution of

the natural frequencies are listed here for the readers’ reference only.

By substituting the wave function in the sinusoidal series of the free vibration mode into Eqs. (2.16-

2.17), the following the coefficient determinant of the characteristic equation is obtained,∣∣∣∣∣∣∣∣∣
EA
R2 + EI

R4 n4 + p0b
R n2 + ku −ρAω2 −EA

R2 n− EI
R4 n3 − p0b

R n

−EA
R2 n− EI

R4 n3 − p0b
R n EA

R2 n2 + EI
R4 n2 + p0b

R n2 + kv −ρAω2

∣∣∣∣∣∣∣∣∣= 0, (2.20)

where n is the mode number. Expanding the coefficients in the expression results in the following
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equation,

(
ρAω

2)2 −ρAω
2
[

EIz

R4 n2 (1+n2)+2p0b
n2

R
+

EA
R2

(
1+n2)+ kv + ku

]
+

p0bEIz

R5

(
n6 −n4

)
+

p0bEA
R3

(
n4 −n2)+ EIzEA

R6

(
n6 −2n4 +n2

)
+

kvEIz

R4 n4

+
kuEIz

R4 n2 +
kuEA

R2 n2 +
kv p0b

R
n2 +

ku p0b
R

n2 +
p0

2b2

R2

(
n4 −n2)+ kvEA

R2 + kukv = 0. (2.21)

Solving Eq. (2.21) yields the analytical expression of the natural frequency related to the in-plane

vibration,

ρAω
2 =

B1 ±
√

B1
2 −4C1

2
, (2.22)

in which the coefficients are given as,

B1 =
EIz

R4 n2 (1+n2)+ 2bp0

R
n2 +

EA
R2

(
1+n2)+ kv + ku,

C1 =
bp0EIz

R5

(
n6 −n4

)
+

bp0EA
R3

(
n4 −n2)+ EIzEA

R6

(
n6 −2n4 +n2

)
+

kvEIz

R4 n4 +
kuEIz

R4 n2 +
kuEA

R2 n2 +
kvbp0

R
n2 +

kubp0

R
n2

+
b2 p0

2

R2

(
n4 −n2)+ kvEA

R2 + kukv. (2.23)

Considering a special condition, i.e., n = 0, and substituting it into Eq. (2.22), two eigenvalues

(ω2
in01,ω

2
in02) corresponding to the 0th-order circumferential rotation mode and breathing mode are

obtained, respectively,

ω
2
in01 =

kv

ρA
, ω

2
in02 =

R2ku +EA
R2ρA

. (2.24)

Similarly, the solution of the natural frequency of out-of-plane vibration is derived. The charac-

teristic equation for out-of-plane vibration has a similar form to the one for in-plane vibration,

i.e., ∣∣∣∣∣∣∣∣∣
−EIr

R4 n4 − GIp
R4 n2 − kw +ρAω2

n −EIr
R3 n2 − GIp

R3 n2

−EIr
R3 n2 − GIp

R3 n2 −EIr
R2 − GIp

R2 n2 − ku
b2

op
4 +ρIpω2

n

∣∣∣∣∣∣∣∣∣= 0 (2.25)
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Eq. (2.25) is reformed as,

ρω
4
n +ρω

2
n

[
1

ρIp

(
−EIr

R2 −
GIp

R2 n2 − ku
b2

op

4

)
+

1
ρA

(
−EIr

R4 n4 −
GIp

R4 n2 − kw

)]
+

kwkub2
op

4IpρA

+
kub2

op

4IpρA

(
EIr

R4 n4 +
GIp

R4 n2
)
+

kw

IpρA

(
EIr

R2 +
GIp

R2 n2
)
+

EIrGIp

ρAR6 n2(n2 −1
)2

= 0. (2.26)

The natural frequency of the out-of-plane vibration is expressed as,

ω
2 =

B2 ±
√

B2
2 −4C2

2R2 , (2.27)

where

B2 =
1

ρIp

(
GIpn2 +EIr + ku

b2
op

4
R2

)
+

1
ρA

(
GIp

R2 n2 +
EIr

R2 n4 + kwR2
)
,

C2 =
1

ρIpρA

[
GIpEIr

R2 n2(n2 −1
)2

+
kub2

op

4
(GIpn2 +EIrn4)

]

+
1

ρIpρA

[
kwR2 (GIpn2 +EIr

)
+

kwkub2
opR4

4

]
. (2.28)

Substituting n = 0 into Eq. (2.27) yields two specific solutions (ω2
out01,ω

2
out02), which correspond

to the 0th-order torsional mode and the lateral translational mode,

ω
2
out01 =

1
ρIpR2

(
EIr + ku

b2
op

4
R2

)
, ω

2
out02 =

kw

ρA
. (2.29)

2.4 Steady-state response of rings

In this section, the solutions of the three-dimensional steady-state responses are obtained. The

displacements of the rotating ring subjected to a set of harmonic concentrated loads in both in-plane

and out-of-plane directions are given. To solve for a set of harmonic unit forces (qu, qv, qw) and

moments (qβ , qMx, qMz) which are applied at the point φ0=0 on the mid-plane of the ring, a unified

form of the external forces and moments is defined as

q(θ , t)= Qδ (φ −φ0)cos
(
ω f t
)
, (2.30)

23



2 Three-dimensional Ring Model of Tires

where ω f denotes the applied load frequency, δ (φ −φ0) represents the Dirac delta function, φ0 is

the stationary angular coordinate of the applied load, and Q means the amplitude of external forces

or moments. It is noted that Q has the same unit as the external force q. The in-plane external

loads include the radial force qu and circumferential force qv, and the in-plane moment qβ . The

out-of-plane loads include the lateral force qw and the out-of-plane moments around the X and Z

axes, i.e., qMx and qMz.

Substituting the expressions of the external loads into the equations of motion, Eqs. (2.16-2.19),

a set of fourth-order partial differential equations is obtained. For convenience, the equations of

motion are rewritten in the field of complex numbers. The external loads and the solutions are

expressed in a complex form. It should be noted that the displacements are the real parts of these

complex solutions.

2.4.1 In-plane displacements

First, the in-plane equations are discussed. The displacement u in the radial direction and v in

the tangential direction are assumed to be periodic functions of the angular coordinate θ or φ . In

order to obtain the analytical expressions of the three-dimensional displacements, the solutions are

expanded by means of complex Fourier series as follows

ũ(θ , t)=
+∞

∑
n=−∞

an(t)einθ , (2.31)

ṽ(θ , t)=
+∞

∑
n=−∞

ibn(t)einθ , (2.32)

where the tilde denotes the corresponding complex-valued solution of the equations of motion. The

generalized coordinates can be defined as an(t)=Aneiωnt and bn(t)=Bneiωnt , where ωn means the

natural frequency. It is assumed that An=−A−n,Bn=−B−n. To keep the expressions consistent,

the complex solutions, ũ and ṽ, are written in the same letters as the in-plane displacements, i.e., u

and v. The expressions can be rearranged as

ũ(θ , t)=a0(t)+2
+∞

∑
n=1

an(t)einθ , (2.33)

ṽ(θ , t)=ib0(t)+2
+∞

∑
n=1

ibn(t)einθ . (2.34)

Substituting Eqs. (2.33-2.34) into the equations of motion in the rotating coordination, Eqs. (2.16)
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2.4 Steady-state response of rings

and (2.17), the fourth-order partial differential equations are reduced to a set of linear second-order

ordinary differential equations with the generalized coordinates an(t) and bn(t). With the mode

order n ≥ 1, the equations are then expressed as follows m11 0

0 m11




än

b̈n

+

 cu ig1n

ig1n cv




ȧn

ḃn

+

 k11 k12

k12 k13




an

bn

=


ξn1

ξn2

 , (n ≥ 1),

(2.35)

in which

m11=ρA, g1n=−2ρAΩ ,

k11=
EA
R2 +

EIz

R4 n4 +
σ0

θ
A

R2

(
1+n2)−ρAΩ

2 − bp0

R
+ ku,

k12=−EA
R2 n− EIz

R4 n3 −
2σ0

θ
A

R2 n+
bp0

R
n,

k13=
EA
R2 n2 +

EIz

R4 n2 +
σ0

θ
A

R2

(
1+n2)−ρAΩ

2 − bp0

R
+ kv. (2.36)

It is noted that the elements of these matrices can be represented by physical and geometric

parameters. Additionally, the rotation effect leads to the radial and circumferential deformations

coupling through the gyroscopic term gn. By considering the orthogonality of trigonometric

functions, the generalized forces ξn1 and ξn2 are expressed as

ξn1=
1

2π

∫ 2π

0

(
qu +

1
R

q′
β

)
e−inθ dθ , (2.37)

ξn2=
1

2πi

∫ 2π

0

(
qv +

1
R

qβ

)
e−inθ dθ . (2.38)

The complex form of the in-plane external loads is given as follows

qu(θ , t)=Quδ (φ −φ0)eiω f t =Quδ (θ − (φ0 −Ω t))eiω f t , (2.39)

qv(θ , t)=Qvδ (φ −φ0)eiω f t =Qvδ (θ − (φ0 −Ω t))eiω f t , (2.40)

qβ (θ , t)=Qβ δ (φ −φ0)eiω f t =Qβ δ (θ − (φ0 −Ω t))eiω f t . (2.41)

Here, Qu, Qv, and Qβ are the amplitudes of the radial and circumferential forces and the in-plane

moment, respectively, δ (φ −φ0) represents a concentrated point force acting at a specified point

φ0 in the non-rotating coordinate system or the corresponding point θ0=φ0 −Ω t in the rotating
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2 Three-dimensional Ring Model of Tires

coordinate system. Substituting Eqs. (2.39-2.41) into Eqs. (2.37) and (2.38), the generalized forces

in the rotating coordinate system are obtained, i.e.,

ξn1=
1

2π

(
Qu + i

n
R

Qβ

)
e−in(φ0−Ω t)eiω f t , (2.42)

ξn2=
1

2πi

(
Qv +

1
R

Qβ

)
e−in(φ0−Ω t)eiω f t . (2.43)

The steady-state response can be obtained by using the method of undetermined coefficients. The

complex-valued solutions take the following forms

ũ(φ , t)=
+∞

∑
n=1

AT
unQine−in(φ0−φ+γn1)eiω f t , (2.44)

ṽ(φ , t)=
+∞

∑
n=1

AT
vnQine−in(φ0−φ+γn1)eiω f t , (2.45)

where Qin =
{

Qu Qv Qβ

}Tdenotes the vector of the amplitudes of the radial and circumferential

line forces and the in-plane moment. The vectors of the complex-valued coefficients, Aun and

Avn, are given in the Appendix A. It can be found from Eqs. (2.44) and (2.45) that the in-plane

response is time independent and the total phase lag which affects the response is influenced by two

factors. One impact is from the term nγn1, which is a function of both, Coriolis and damping effects

associated with the rotation of the ring, and another one is from the external forces Qin.

For a special case, where n= 0, the terms can be derived similarly. Eqs. (2.44) and (2.45) are

reduced to

ũ(φ , t)|n=0=
1

2π

√
B2

1 +B2
2

[
(B3 + iB4)Qu + iA12

(
Qv +

Qβ

R

)]
eiω f t , (2.46)

ṽ(φ , t)|n=0=
1

2π

√
B2

1 +B2
2

[
−i(B5 + iB6)

(
Qv +

Qβ

R

)
−A12Qu

]
eiω f t . (2.47)

By considering the expressions of the external loads, it can be found that the displacements are the

real parts of the solutions, Eqs. (2.44-2.47). Therefore, the radial and circumferential displacements

are given as

u(φ , t)=ℜ{ũ(φ , t)} , (2.48)

v(φ , t)=ℜ{ṽ(φ , t)} , (2.49)

where ℜ{} denotes the real part of a complex value.
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2.4 Steady-state response of rings

2.4.2 Out-of-plane displacements

The solutions of the out-of-plane displacements are derived and solved similarly to the in-plane

solutions. With a set of out-of-plane external loads (qw, qMx and qMz), the complex solutions of the

lateral displacement and the torsional angle are expressed as

w̃(θ , t)=c0(t)+2
+∞

∑
n=1

cn(t)einθ , (2.50)

φ̃θ (θ , t)=d0(t)+2
+∞

∑
n=1

dn(t)einθ . (2.51)

Similarly, the second-order ordinary differential equations for the out-of-plane motion in generalized

coordinates cn(t)=Cneiωnt and dn(t)=Dneiωnt are given by m21 m22

m22 m23




c̈n

d̈n

+

 cw ig2n

ig2n cu
b2

op
4




ċn

ḋn

+

 k21 k22

k22 k23




cn

dn

=


ξn3

ξn4

 , (n ≥ 1),

(2.52)

with

m21=ρA, m22=−ρIz

R
, m23=ρIρ , g2n=

ρIr

R
Ωn,

k21=
EIr

R4 n4 +
GIρ

R4 n2 + kw, k22=
EIr

R3 n2 +
GIρ

R3 n2,

k23=
EIr

R2 +
GIρ

R2 n2 +
b2

op

4
ku. (2.53)

Note that these coefficients are not only related to the out-of-plane parameters but also associated

with the in-plane parameters. Here, a new equivalent parameter of the width in terms of nominal

width bop is introduced by considering the mass involved in the out-of-plane vibration. Furthermore,

the complex-valued solutions of the out-of-plane displacements are represented as

w̃(φ , t)=
+∞

∑
n=1

AT
wnQoute

−in(φ0−φ+γn2)eiω f t , (2.54)

φ̃θ (φ , t)=
+∞

∑
n=1

AT
φnQoute

−in(φ0−φ+γn2)eiω f t , (2.55)
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2 Three-dimensional Ring Model of Tires

w̃(φ , t)|n=0=
1

2π

√
D2

1 +D2
2

[(D3 + iD4)Qw −C12QMx]eiω f t , (2.56)

φ̃θ (φ , t)
∣∣∣
n=0

=
1

2π

√
D2

1 +D2
2

[(D5QMx −C12Qw)+ iD6QMx]eiω f t , (2.57)

where Qout = {Qw QMx QMz}T is the vector of the amplitudes of the lateral force and the out-

of-plane moments around the X and Z axes. Accordingly, the lateral displacement and the torsional

angle are given as

w(φ , t)=ℜ{w̃(φ , t)} , (2.58)

φθ (φ , t)=ℜ

{
φ̃θ (φ , t)

}
. (2.59)

The expansions of the in-plane and out-of-plane displacements can be truncated beyond the first n

modes considering the acceptable error bound of percentage to the displacements.

2.5 Numerical examples

2.5.1 Validation of the model

In the author’s [32] previous work, the natural frequency analysis of the tire was presented and the

effectiveness of the three-dimensional ring model in describing the free vibration characteristics of

the tires was verified. A set of experimental results of the natural frequencies has been obtained

by using the hammering excitation method. It has been applied to validate the effectiveness of the

identified parameters of the ring model. Here, the modal superposition method is used to calculate

the steady-state response of the tire. The parameters of the model for this calculation are taken

from [32]. Fig. 2.2 shows the relation between the amplitudes of the in-plane and out-of-plane

displacements Ani and the order number n of the modes. It is observed from Fig. 2.2 that the

amplitudes Ani are greatly decreasing with the increment of the order number n. In this section, the

truncated number of modes n is selected to be 30.

The steady-state response of the tire is calculated by using the present numerical model, and

corresponding results are compared with Gong’s method [44] as shown in Fig. 2.3. As Gong only

gave the solution for the in-plane displacements, the comparisons presented here are only for u and

v.

It is found that the calculated results from the present model are in good agreement with Gong’s
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2.5 Numerical examples

(a) Coefficients corresponding to in-plane displacements. (b) Coefficients corresponding to out-of-plane displace-
ments.

Figure 2.2: Relation between the amplitudes of displacements Ani and the order number n of modes.

(a) Radical displacement u. (b) Circumferential displacement v.

Figure 2.3: Comparison of steady-state displacements with Gong’s method [44].
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2 Three-dimensional Ring Model of Tires

results. Furthermore, the equations for a tire with high circumferential stiffness can be simplified

by using the assumption of in-extensibility without losing much precision. However, some special

modes are not obtained due to the limit of deformation.

2.5.2 Evaluation parameter-equivalent radiated sound power

One characteristic of sound radiation is a proper evaluation index to describe the overall dynamic

response of a structure. It can be determined by the vibrating velocity of the structural surface.

However, the determination of the accurate sound radiation power is generally a fluid-structure

interaction problem, and the convergence speed of the corresponding calculation is rather slow.

Therefore, the equivalent radiated sound power is selected as a simplified evaluation scale to describe

the maximum radiated sound power of a vibrating structure [119]. It is assumed that the vibrating

surface is rigid, and the radiation efficiency is assumed to be 1. Accordingly, the equivalent radiated

sound power is stated as

P(ω)=
1
2

ρc
∫

A
|υ(ω)|2dA, (2.60)

where P represents the sound power, A is the vibrating surface, υ denotes the velocity, ω means the

angular frequency of the vibration, and c represents the speed of sound. When the uncertainty is

introduced into the system, the vibrating velocity υ will become a random parameter and influence

the probability characteristics of the radiated sound power.

2.5.3 Numerical results

In this section, the solutions of the steady-state response and the equivalent radiated sound power

for the tire are presented. When the tire is rolling steadily on a perfectly flat road, the amplitude of

external forces or moments can be considered as a constant. In order to analyze the responses of

the tire under different excitation frequencies, f =ω f /2π , a sweep excitation varying from 1Hz to

200Hz is selected. Fig. 2.4 shows the radial displacement and torsional angle (u f ,φθ f ) at the load

acting point on the middle line of the ring. The effect of rotation is also shown. Regardless of the

damping effect, it is observed from Fig. 2.4 that the positions of the resonance peaks are consistent

with the natural frequencies given in [32]. The accuracy of the present numerical model is proved.

Further, the rotating speed leads to a splitting of natural frequencies. However, this splitting due to

rotation does not apply for the 0th-order natural frequencies.
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2.6 Summary

Figure 2.4: Radial displacement and torsional angle at the load acting point on the middle line of
the ring under different excitation frequencies.

For sound radiation analysis, the velocity of the vibrating surface is calculated by taking the

derivative with respect to displacements. For a more practical consideration, the damping of the

sidewall is taken into account for the calculation of the equivalent radiated sound power. Considering

the situation that the thickness of the equivalent ring is far less than the width, the acoustic power

contributed by the velocity on the side surfaces is not considered. The corresponding results are

given in Fig. 2.5. It is shown that the damping effect reduces the amplitude of the equivalent radiated

sound power and decreases the resonance peaks. In the following section, the random distribution

of the sound power radiation is discussed based on the deterministic dynamic results shown in this

part.

2.6 Summary

In this chapter, a theoretical three-dimensional ring model was established for describing the in-plane

and out-of-plane vibrations as well as the steady-state response of tires. Especially, the out-of-plane

deformation was completely discussed. Additionally, by relaxing the in-extensibility assumption

and considering the out-of-plane deformation, the analytical expression of the steady-state response

was given. By comparing the solutions with the results proposed in [44], it is shown that, for a

tire with high circumferential stiffness, the equations can be simplified by using the assumption of

in-extensibility without losing much precision, but some special modes (breathing mode) cannot

be obtained due to the limitation of the deformation. In the sound radiation analysis, the concept
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2 Three-dimensional Ring Model of Tires

Figure 2.5: Equivalent radiated sound power of the belt ring under different excitation frequencies.

of the equivalent radiated sound power was introduced to evaluate the overall vibrating velocity

of the ring surface, consisting of the in-plane and out-of-plane bending and lateral torsion. From

the foregoing analysis, it is found that the rolling speed results in a mode splitting. However, this

splitting due to rotation does not apply for the 0th-order natural frequencies.
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Chapter 3

Coupled Rigid-flexible Ring Model

Based on the existing 2D flexible ring model and the assumption of the rigid ring, an innovative

coupled rigid-flexible ring model is developed in this section. Moreover, the tire-road contact model

in the literature [120] is extended to the case of uneven road surfaces, so that the proposed algorithm

can be applied to more extensive scenarios. Compared with the classic rigid ring models, the model

presented herein can well reflect the geometric design parameters of the tires, and even uniformity

parameters can be introduced into the expression of the model.

3.1 A brief overview of two kinds of ring models

Throughout the years, trying to concisely and accurately model the physical properties of tires and

their interaction with the road surface has been a key issue in automotive dynamics analysis. To

evaluate the impacts of the tire structural parameters and the uniformity parameters, the analysis

model is required to have the ability to describe the structural and material properties of tires. As

mentioned in the literature review, ring models not only provide a fundamental description of the tire

structure but can also ensure a concise mathematical solution [13, 28, 29]. The previous works have

categorized the tire ring models as rigid ring models [13, 121, 122] and flexible ring models [16, 17].

While the rigid ring model has fewer DOFs and is much faster to compute, the determination of its

tire-road contact has unavoidable drawbacks. The calculation of contact forces is usually achieved

by establishing an equivalent road surface [13, 14]. This simplification limits the model bandwidth

to approx. 80Hz. The description of the physical properties using the flexible ring models is

more consistent with the actual structure of tires than the simplification of the rigid ring models.

Therefore, the model is more complex but can reach an application range up to 200Hz [16, 17].
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3 Coupled Rigid-flexible Ring Model

In this work, a 2D ring model is developed for analyzing the dynamic response in the wheel plane.

Herein, a coupled model combining rigid and flexible rings is proposed, that enables the description

of the elastic deformation of tires while achieving a fast solution process of the transient dynamic

analysis. The coupled rigid-flexible ring model is mainly composed of three components: a flexible

ring, a rigid ring, and a damped spring element simplified by the sidewall of tires. First, the flexible

ring model is used to theoretically analyze the deformation and contact characteristics of the tire to

obtain the steady-state deformation of the tire and the forces on the contact patch. Meanwhile, the

rigid ring model is applied to solve the overall motion and dynamic response of the tire. Eventually,

the coupling relationship between these two ring models is established, and the complete theoretical

expression and the calculation process of the coupled rigid-flexible ring model are given, laying a

theoretical foundation for the analysis of the tire dynamics.

3.2 Modeling for tire dynamics

3.2.1 2D flexible ring model

Firstly, the 2D flexible ring model in the coupled rigid-flexible ring model is introduced. Herein, a

radial tire is simplified and transformed into a ring-shape structure on an elastic foundation. It aims

to obtain the steady-state deformation and contact properties. A 2D flexible ring model is mainly

composed of three parts. The steel belt and part of the carcass are equivalent to a 2D deformable

ring that can be bent in the wheel plane. The sidewall and the inflation effect are assumed to be a

damped elastic foundation. A uniform pressure distribution generated by tire pressure is applied to

the inner surface. A set of radial and circumferential distribution springs (ku, kv) is introduced to

describe the elastic properties of the foundation, respectively. The damping effect of the sidewall

is described by the coefficients (cu, cv). The rim is assumed to be rigid. A schematic plot of a 2D

flexible ring on an elastic foundation is shown in Fig. 3.1.

To solve for the steady-state response, it is supposed that only the pavement moves backward with

a velocity of Vr, while the position of the flexible ring is fixed. At this moment, the ring only

rotates in space with a speed of Ω . Considering the condition of the tire at a particular rotational

speed, it is necessary to establish a set of proper coordinate systems to describe the deformation and

the motion of the tire. In this work, a rotating polar coordinate system (r, θ ) and a non-rotating

polar coordinate system (r, φ ) are employed, whose origins are at the center of the wheel. These

polar coordinates can be used to define the position of any point on the ring. When describing

the overall displacements of tires, a more concise form can be given in a non-rotating Cartesian
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Figure 3.1: Illustration of the conversion of an actual tire structure to a 2D flexible ring model. The
equivalent ring is fixed in space and rotates at a speed Ω . Meanwhile, the road surface
moves backward with a velocity of Vr.

coordinate system (x, z) and a rotating Cartesian coordinate system (x1, z1). The x-axis is positive in

the direction of the forward velocity of the road surface, and the z-axis is positive in the downward

direction. As shown in Fig. 3.2, the angular coordinates φ and θ are assumed to be positive from

the z-axis or z1-axis in the counterclockwise direction.

The motion of the ring is described in terms of the radial and circumferential displacements (ua, va),

which are represented by the mid-plane displacements (u, v). The displacements of any point on the

ring are given as

ua=u, (3.61)

va=v− (R− r)
v−u′

R
, (3.62)

where the prime ( )′ designates differentiation with respect to θ . It is important to note that the

difference between r and R, i.e., r is the r-axis coordinate, but R represents the constant mean

radius of the ring. The in-plane equations of motion listed here have been adequately derived in the

previous studies of the authors and other researchers [32, 44, 123].When the external generalized

forces and moment (qu, qv, qβ ) act on the middle-line of the ring, the equations of in-plane motions

are represented as follows:

EA
R2

(
u+ v′

)
+

EIz

R4

(
u(4)− v′′′

)
+

σ0
θ

A
R2

(
u+2v′−u′′

)
+ρA

(
ü−2Ω v̇−Ω

2u
)
− bp0

R

(
u+ v′

)
+ kuu+ cuu̇ = qu +

1
R

q′
β
, (3.63)
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(a) Diagram of the flexible ring from the simplifi-
cation of the belt and part of the carcass.
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(b) The 2D flexible ring model and the def-
inition of coordinate systems.

Figure 3.2: Schematic diagram of the displacements and coordinate systems of the flexible ring
model. (The defined positive direction of the displacements and the generalized forces
are shown.)

−EA
R2

(
u′+ v′′

)
+

EIz

R4

(
u′′′− v′′

)
+

σ0
θ

A
R2

(
v−2u′− v′′

)
+ρA

(
v̈+2Ω u̇−Ω

2v
)
+

bp0

R

(
u′− v

)
+ kvv+ cvv̇ = qv +

1
R

qβ , (3.64)

in which b means the effective width, A indicates the area of the ring cross-section, ρ is the density,

σ0
θ

denotes the initial stress, and p0 is the internal pressure on the inner surface. The dot ˙( ) denotes

differentiation with respect to time t. Here, EA and EIz respectively mean the membrane stiffness

and the in-plane bending stiffness of the flexible ring.

Furthermore, the inextensibility assumption [44],which is adopted here to simplify the equations for

a tire with high circumferential stiffness, supposes that the midline circumference of the treadband

is invariable during deformation. The number of dynamic equations can be reduced without losing

much accuracy [32, 123]. Under the inextensibility assumption, the circumferential normal strain

εθ at the middle surface is given as

εθ =
1
R

(
u+ v′

)
= 0. (3.65)

Then, the displacements of any point on the ring are represented as

u =−v′. (3.66)

Differentiating Eq. (3.63) with respect to θ and substituting Eq. (3.66) into Eq. (3.63), then adding it
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3.2 Modeling for tire dynamics

to Eq. (3.64), the equation of motion under the inextensibility assumption is obtained, (cf.[44, 123])

−EIz

R4

(
v(6)+2v(4)+ v′′

)
− bp0

R

(
v′′+ v

)
+ρA

[
v̈− v̈′′−4Ω v̇′+Ω

2 (v′′− v
)]

+
σ0

θ
A

R2

(
v(4)+2v′′+ v

)
− kuv′′+ kvv− cuv̇′′+ cvv̇ = qu

′+qv +
1
R

(
qβ

′′+qβ

)
. (3.67)

To obtain the analytic expressions for in-plane displacements, the radial displacement ua and the

tangential displacement va are approximated as a periodic functions of the angular coordinates φ

or θ . The mid-plane tangential displacement v is expanded by employing a modal expansion as

follows,

v(θ , t) =
∞

∑
n=0

[an(t)cos(nθ)+bn(t)sin(nθ)]. (3.68)

The generalized coordinates are defined as a1n(t) = ζn sin(ωnt) and a2n(t) = ζn cos(ωnt), where

ω1n means the nth-order natural frequency and ζn is a constant. By the expression of the generalized

coordinates a1n(t) and a2n(t), the equation of motion, Eq. (3.67), is simplified to a linear second-

order ordinary differential equation,

Mnän +Cnȧn +Gnȧn +Knan = ξξξ n (3.69)

where,

Mn =

 mn 0

0 mn

 , Cn +Gn =

 cn gn

−gn cn

 , Kn =

 kn 0

0 kn

 ,

an =


a1n

a2n

 , ξξξ n =


ξn1

ξn2

 . (3.70)

The coefficients are listed as

mn =
(
1+n2)

ρA, cn = n2cu + cv, gn =−4nρAΩ ,

kn =
(
1−n2)2

(
EIz

R4 n2 +
σ0

θ
A

R2

)
+n2ku + kv −

(
1−n2) p0b

R
−
(
1+n2)

ρAΩ
2, (3.71)
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and the generalized forces ξn1 and ξn2 given by

ξn1 =
1
π

∫ 2π

0
[qu

′+qv +
1
R

(
qβ +qβ

′′)]cos(nθ)dθ , (3.72)

ξn2 =
1
π

∫ 2π

0
[qu

′+qv +
1
R

(
qβ +qβ

′′)]sin(nθ)dθ . (3.73)

When a set of radial and tangential concentrated forces and in-plane moment (qu, qv, qβ ) are applied

to the point θc, the normalized form of the in-plane external forces in the rotating coordinate system

is written as

qu(θ , t) = Quδ (θ −θc) , (3.74)

qv(θ , t) = Qvδ (θ −θc) , (3.75)

qβ (θ , t) = Qβ δ (θ −θc) , (3.76)

in which Qu and Qv represent the amplitudes of the radial and circumferential forces, respectively,

Qβ is the in-plane moment, and δ (θ −θc) indicates the angular coordinate of the generalized force

acting at the position θc in the rotating coordinate system or the corresponding coordinate in the

non-rotating coordinate system φc = θc +Ω t. The expressions of the generalized forces under the

concentrated forces in the rotating coordinate are derived as

ξn1 =
1
π

[(
Qv +

(
1−n2)Qβ

)
cos(nθc)+nQu sin(nθc)

]
, (3.77)

ξn2 =
1
π

[(
Qv +

(
1−n2)Qβ

)
sin(nθc)−nQu cos(nθc)

]
. (3.78)

Especially, when n = 0

ξ01 =
1

2π

(
Qv +Qβ

)
, ξ02 = 0. (3.79)

It should be noted that the equations of motion are established in the rotating coordinate system. In

order to obtain the solution in the non-rotating coordinate system, the tangential displacement v is

given in a similar form to Eq. (3.68) as

v(φ , t) =
∞

∑
n=0

[
ān(t)cos(nφ)+ b̄n(t)sin(nφ)

]
. (3.80)

Substituting the transformation equation θ = φ −Ω t into the expression of v(θ , t) and comparing

the coefficients, the relationship between these expressions in two coordinate systems is given as
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follows, 
a1n = ā1n cos(nΩ t)+ ā2n sin(nΩ t)

a2n =−ā1n sin(nΩ t)+ ā2n cos(nΩ t)

. (3.81)

The expression for the tangential displacement under the concentrated forces acting at the specific

location φc in the non-rotating coordinate system by employing the method of undetermined

coefficients is written as

v(φ , t) =
∞

∑
n=1

{
An1
(
Qv +

(
1−n2)Qβ

)
cosα +An2Qw sinα

}
. (3.82)

with

An1 =

(
π

√
(Mn −Gn)

2 +C2
n

)−1

, An2 = nAn1, α = n(φc −φ + γn) ,

Mn =−(nΩ)2mn + kn, Gn = ngnΩ , Cn = ncnΩ , γn =
1
n

arctan
(

Cn

Mn −Gn

)
. (3.83)

When the flexible ring is discretized, the overall tangential displacement and the corresponding

radial displacement is obtained by superimposing the response under the action of each concentrated

force, i.e.,

u(φ , t) =
Nc

∑
k=1

∞

∑
n=1

[
−nAn1

(
Qvk +

(
1−n2)Qβk

)
sinαk +nAn2Quk cosαk

]
, (3.84)

v(φ , t) =
Nc

∑
k=1

∞

∑
n=1

[
An1
(
Qvk +

(
1−n2)Qβk

)
cosαk +An2Quk sinαk

]
, (3.85)

αk = n(φck −φ + γn) . (3.86)

Here, Nc denotes the total number of nodes in the contact patch. Moreover, Eqs. (3.84-3.85) are

expressed in matrix form as

U = TQ, (3.87)

in which U is the matrix of the displacements of the ring, T denotes the compliance matrix, and

Q represents the matrix of generalized forces. The coefficients of these matrices are given in B.1.

Once the generalized forces (qu, qv, qβ ) acting on the ring are given, the mid-plane displacements
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3 Coupled Rigid-flexible Ring Model

(u, v) on the ring are calculated from Eq. (3.87). Additionally, the displacements at any point on the

flexible ring also can be calculated.

3.2.2 Contact pressure distribution

Since the flexible ring, i.e., the structure equivalent to the tire belt and carcass, is not directly in

contact with the road surface, the actual deformation is unknown beforehand. It means that the

displacements of the ring cannot be straightforwardly calculated by Eq. (3.87). In the contact area

with the ground, the displacements of the ring and the tread rubber should match each other to

satisfy the geometric compatibility condition [120]. The displacements of the ring and the tread

rubber in undeformed and deformed states are shown in Fig. 3.3.
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rn
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Figure 3.3: Geometric compatibility condition between the displacements of the ring and the tread
rubber in undeformed and deformed states.

Under a given vertical deflection d0, the points A0 and B0 on the ring and the tread surface shift to

the corresponding new positions A and B. The rotation angle of the cross-section of the ring β is

expressed as

β =
v−u′

R
. (3.88)

By introducing the change in curvature of the deformed flexible ring described by the deflection

angle of the normal to the ring η (see Fig. 3.3), the deflection and rotation angles of the cross-section

of the ring at any given coordinate φ are related by

η = φ +β . (3.89)
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3.2 Modeling for tire dynamics

Considering small deformations on the tread surface, the angle between the normal to the ring

and the tread surface γ simultaneously affects the normal and tangential deformations of the tread

rubber, i.e., vs = γus, where (us, vs) are the normal and tangential deformations on the tread surface.

Therefore, with a determined overall vertical deflection, the vector from the wheel center O to any

point B on the deformed tread surface is expressed as

rOB = rOA0 + rA0A + rAB =
[
(R+u)nr + vnφ

]
+(usn+ vst) , (3.90)

where η means the declination angle, (nr,nφ ) are unit vectors in the radial (i.e., normal) and

tangential directions at points on the undeformed flexible ring, and (n, t) are unit vectors in the

normal and tangential directions on the deformed flexible ring. Under a given overall vertical

deformation, the change in curvature of the deformed flexible ring is expressed by the declination

of the normal to the ring η which also simultaneously affects the tangential deformation on the

surface of the tread rubber. In this case, the normal and tangential displacements of the tread rubber

(us, vs) and the declination angle η at any coordinate φ are expressed respectively as

xB = (R+ub)sinφ + vb cosφ +us sinη + vs cosη , (3.91)

zB = (R+ub)cosφ − vb sinφ +us cosη − vs sinη , (3.92)

η = φ +β . (3.93)

Meanwhile, the coordinates (xB,zB) of the point B on the deformed tread surface should be con-

strained by the friction and the uneven geometry of the pavement surface. The constraint equations

in the contact area are

xB = ReΩ , (3.94)

zB = Rl − zw, (3.95)

where Rl is the loaded radius, i.e., the height of the location of the wheel center from the road

profile, Re denotes the effective rolling radius, and zw is the relative height of the pavement to the

reference flat road surface. By combining Eqs. (3.89-3.95), the normal and tangential displacements

on the surface of the tread rubber are solved as

us =−(R+u)cosβ − vsinβ +Reφ sinη +(Rl − zw)cosη , (3.96)

vs = (R+u)sinβ − vcosβ +Reφ cosη − (Rl − zw)sinη . (3.97)
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3 Coupled Rigid-flexible Ring Model

Once the displacements of the treadband are calculated, the normal force Fns and the tangential

force Fts acting on the tread surface are given by

Fns = kEs(us −h0), (3.98)

Fts = kGsvs, (3.99)

where h0 represents the undeformed thickness of the tread rubber, kEs and kGs mean the normal

stiffness and shear stiffness of the tread rubber corresponding to each unit length of treadband,

respectively.

The following equations show the coordinate transformations between the normal and tangential

forces of the treadband (Fns, Fts), the generalized forces acting on the ring (qu, qv, qβ ), and the

normal and shear traction pressure in the contact area (pσ , pτ ). The forces under different basis

vectors are determined as

qu(φ)

qv(φ)

qβ (φ)


=



cosβ −sinβ

sinβ cosβ

0 us




Fns(φ)

Fts(φ)

 , (3.100)


pσ (φ)

pτ(φ)

=

 cosη −sinη

sinη cosη




Fns(φ)

Fts(φ)

 . (3.101)

In this chapter, the displacements are assumed to be small compared to the mean radius R, and then

the terms involving the product of the small displacements (u, v) and the small declination angle

η can be neglected. Thus, the nonlinear boundary conditions (3.96-3.97) and the transformation

equations (3.100-3.101) are linearized. By substituting Eqs. (3.96-3.97) into Eq. (3.100) and

rewriting it in matrix form, it results in a linearized force-deflection equation of the ring and the

treadband as

Q = F + HU, (3.102)

where F denotes the generalized force matrix associated with the deformation of the tread rubber,

the parameters of which are independent of the displacement vector U, and H is the coefficient
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3.2 Modeling for tire dynamics

matrix associated with the displacements of the ring, which contains the coupling terms between

the stiffness coefficients of the tread rubber and the displacements of the ring. The coefficients of

these matrices are given in B.2. When the vertical overall deflection is determined, the contact

forces are obtained by successive substitution of the approximate solution for each step into the

exact boundary conditions (3.96-3.97) and the transformation equations (3.100-3.101).

After getting the distributed pressure (pσ (φi), pτ(φi)) at each node in the contact area, the overall

vertical force Fcz equals the sum of the distributed forces of each discrete element, i.e.,

Fcz =
Nc

∑
i=1

pσ (φi). (3.103)

For the longitudinal force Fcx, the concept of relaxation length is introduced in the rigid ring model

to describe the hysteresis effect of longitudinal forces due to tread elasticity. This is because when

the slip condition is changed, the longitudinal deformation will not occur simultaneously. The

definition of the relaxation length is the distance traveled needed to reach 63% of the steady-state

deflection after a step change, which is almost independent of the rolling speed [13, 14]. To calculate

the longitudinal force existing in the contact area, the distributed contact pressure obtained from the

steady-state flexible ring model is set as the nominal longitudinal force Fcxn,

Fcxn =
Nc

∑
i=1

pτ(φi), (3.104)

then, the actual longitudinal force Fcx is obtained by solving a first-order differential equation with

respect to the relaxation length. The transient model in the form of longitudinal force [14, 124, 125]

is given by,

σt Ḟcx + |Vr|Fcx = |Vr|Fcxn. (3.105)

Here, Vr is the velocity of the tire belt on the contact area. The relaxation length σt reads as,

σt =
Cx

Ctx
, (3.106)

with

Cx = ktx ·2a2, (3.107)

Ctx = ktx ·2a , (3.108)
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3 Coupled Rigid-flexible Ring Model

in which Cx denotes the total longitudinal tire stiffness, Ctx is the total tread element stiffness, and

ktx means the longitudinal stiffness of the treadband with each unit length. Since the impacts of the

tire uniformity parameters at low speed are considered in this thesis, the actual longitudinal slip

under the simulation conditions remains within the linear region. Therefore, the relaxation length

of the tread contact model used in Eq. (3.105) at full adhesion equals half of the contact length

a [14, 125].

Because of the hysteresis loss caused by the elasticity of rubber, the contact pressure shows an

asymmetric distribution at the center of the contact area, which leads to the generation of an

additional moment. The expression for the rolling moment is given as follows:

Mby =
Nc

∑
i=1

σ(φi) ·Resinφi. (3.109)

Eventually, the contact forces and the moment will be input into the rigid ring model as an excitation

in the subsequent dynamics solution to calculate the transient response of the tire.

3.2.3 Rigid Ring

A complete dynamics model considering the elastic deformation and rotation effects of tires makes

the partial differential equations of motion too complex for the solution and multi-body simulations.

Therefore, to solve such kind of issues, the proposed model employs the assumption that the 1st-order

mode of tires can be utilized to approximate the in-plane transient response within 100Hz [126].

It means that the carcass and the belt remain as a rigid element during motion. For the primary

application scenarios of the model, this simplification for multi-body dynamics is sufficient to cover

the frequency range of the ride comfort analysis.

A rigid ring consists of the steel belt, part of the carcass, and the sidewall of a tire, which is

connected to the rim by a 3-DOF spring and damper element. These two components, separately

denoted by (kbx, kbz, kbθ ) and (cbx, cbz, cbθ ) in Fig. 3.4, represent the elastic and damping effect of

the sidewall in the longitudinal, vertical, and circumferential directions.

The in-plane displacements of the rigid ring (xb, zb, θb) and the in-plane displacements of the rim

(xa, za, θa) are considered. In particular, the longitudinal DOF of the rim xa will be determined

when the wheel speed is constant. The in-plane equations of motion of the rigid ring and rim are
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Figure 3.4: Rigid ring model with a 3-DOF spring and damping element.

represented as

mbẍb + cbx (ẋb − ẋa)+ kbx (xb − xa)− cbx
(
Ω + θ̇a

)
(zb − za) = Fcx, (3.110)

mbz̈b + cbz (żb − ża)+ kbz (zb − za)− cbz
(
Ω + θ̇a

)
(xb − xa) = Fcz, (3.111)

Ibyθ̈b + cbθ

(
θ̇b − θ̇a

)
+ kbθ (θb −θa) = Mby +FcxRe, (3.112)

maz̈a + cbz (ża − żb)+ kbz (za − zb)− cbz
(
Ω + θ̇a

)
(xa − xb) = Fz0, (3.113)

Iayθ̈a + cbθ

(
θ̇a − θ̇b

)
+ kbθ (θa −θb) = May, (3.114)

in which ma and mb are the mass of the rim and the rigid ring, respectively, Iay and Iby represent

the moment of inertia of the rim and the rigid ring respectively, kbx, kbz, and kbθ indicate the

longitudinal, vertical, and torsional equivalent stiffness of the sidewall, respectively, cbx, cbz, and

cbθ denote the longitudinal, vertical, and torsional damping coefficients of the sidewall, Fcx and

Fcz are the longitudinal and vertical contact forces, Fz0 is the vertical load of the tire, and May and

Mby represent the torques acting on the rim and the rigid ring, respectively. The determination of

the parameters of the 3-DOF spring is the core to achieving a reasonable analysis of the dynamic

response. Elastic characteristics can be identified by the results of the 1st-order modes from modal

tests or over-cleat tests, the determination of which is discussed in the following section.

3.2.4 Coupled rigid-flexible ring model

Because of the theoretical shortcomings of rigid ring models in the representation of the tire-road

contact mechanism, a coupled relationship between the flexible and rigid rings, i.e., using the

coupled rigid-flexible ring model to estimate the dynamic response of tires, is established in this

section. The flexible ring in this model is introduced to estimate the steady-state deformation and
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3 Coupled Rigid-flexible Ring Model

contact forces of the tire. The transient dynamic response can be analyzed by the rigid ring. Fig. 3.5

illustrates the fundamental structure of the coupling model adopted for this study.

3-DOF spring

Rigid ring 

Flexible ring 

Rim 

Road surface 

Figure 3.5: The coupled rigid-flexible ring model.

The equations of the rigid ring and the flexible ring are integrated to establish the complete

computational model. The contact force obtained from the local deformations in the flexible ring

model is considered as the rigid ring excitation. Once the velocity and the coordinates of the rigid

ring are identified by dynamic analysis, the simulation time is frozen and the overall displacements

are updated. And later, the local deformations and the contact forces are statically calculated at the

beginning of the next time step. The calculation procedure is executed until all iterations of the time

step are finished. The complete simulation flow chart is shown in Fig. 3.6.
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Figure 3.6: Flow chart of the simulation based on the coupled rigid-flexible ring model.
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3.3 Model parameters

The parameters of the coupled rigid-flexible ring model consist of geometric and physical parame-

ters. Some geometric parameters can be directly obtained from the design parameters or FE models.

Hence, the identification of the physical parameters will be the decisive part of the accuracy of the

developed simulation method. In this part, the identification method of the physical parameters is

first discussed, and then the genetic algorithm (GA) optimization method is selected to determine

part of the model parameters for different simulation scenarios (see Fig. 3.7). This section shows

an example of a low-speed uniformity test and provides a standard process for optimizing the

parameters of a tire with a non-ideal structure in an attempt to make the simulated radial force varia-

tion (RFV) coincide with those measured on the low-speed uniformity test rig. This optimization

procedure for model parameters is very readily transferable to a more diverse range of measurement

types and application scenarios.

Geometric and material 

parameter

Physical parameter  
(Flexible ring)

Physical parameter 
(Rigid ring)

Model 

parameters

Coupled rigid-flexible 

ring model

Genetic algorithm 
(GA)
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(e.g., RRoc)

Dynamic 

responses

Structure/FEM

Static stiffness test 
(Opt. modal test)

Over-cleat test

Identification Optimization Simulation

Force variations 
(e.g., RFV)

Figure 3.7: Flow chart of the identification and optimization process in the coupled rigid-flexible
ring model.

3.3.1 Identification of physical parameters

The physical parameters can be naturally divided into two parts:

1. the parameters of the flexible ring model, which mainly include the stiffness of the flexible

ring, the equivalent stiffness and damping coefficients of the sidewall, and the contact stiffness

of the tread rubber;

2. the parameters of the rigid ring model, which mainly include the mass and moment of inertia

of the rigid ring and the equivalent dynamic stiffness and damping coefficients of the sidewall.
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3 Coupled Rigid-flexible Ring Model

In the proposed coupled flexible-rigid ring model, the accuracy of the contact algorithm will

determine the precision of the overall simulated results. Considering that the contact model in the

flexible ring model is established on the basis of steady-state deformation of the belt, the radial

stiffness data obtained from the tire static stiffness measurements have been used to estimate the

parameters of the flexible ring model. The nonlinear least-squares method is adopted in this section

to achieve the aim that the simulated results of static stiffness are as close as possible to the test data.

The initial setting of the parameters is referred to as the method of identifying the flexible ring model

using tire modal analysis presented in the literature [32, 123], so as to realize the determination of

the original parameter range.

For those parameters in the rigid ring model, the equivalent stiffness and damping coefficients can

be determined from modal tests or an over-cleat test [126]. However, the diverse identification

methods lead to different identified results. It is found that the 1st-order natural frequencies acquired

from the over-cleat tests are slightly lower than those identified by a modal test [14, 126, 127]. One

of the reasons for the disagreement is that the setups of the boundary conditions are different, i.e.,

the modal test is conducted with unloaded conditions to simulate the free vibration, but the contact

and rolling effect is inevitably introduced into the over-cleat test. Another possible explanation

is that the strain hardening effect occurs when the tread rubber is in contact with the road surface

during rolling, while it does not exist in the modal test. In fact, the two distinct sets of stiffness

parameters for the flexible and rigid rings reflect the difference in the physical meaning of tire

dynamic and static stiffness.

3.3.2 Optimization of physical parameters using GA

Due to the complex manufacturing process, there are inevitable imperfections in the structure and

material distribution of tires, which are generally known as tire uniformity. These defects can

directly affect the test results of the tire and thereby introduce errors into the model parameters. Thus,

a method for the optimization of model parameters for tires with structural or dimensional defects

is proposed in this section. To illustrate the optimization process, an example of the optimization

of model parameters is introduced here, in terms of geometric defects of the tire and low-speed

uniformity analysis. For the measured tire, the radial run-out (RRo) is an additional input to the

model, and the RFV is the corresponding outcome. They can both be readily accessed on the

uniformity test machine.

It is well known that optimization problems require an objective function to be defined. For the

uniformity analysis of tires, one attempt is to optimize the physical parameters so that the simulated
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RFV corresponds with the measured results on the test rig. Considering the good performance of

multi-variable optimization design, GAs become an applicable tool for the effective identification

of physical parameters [74, 128]. In this study, consequently, RFV is chosen as the performance

index of the algorithm, and a GA is used to determine the physical parameters of the specific tire

mentioned above.

In order to run the optimization algorithm based on the proposed tire model, the GA first randomly

generates an initial population within a user-defined range of variables, which is determined by the

initial physical parameters given in the previous section. Each set of variables, i.e., an individual,

is substituted into the equations of motion of the tire, which is also later on used to calculate the

RFV which constitutes the evaluation function prescribed in the GA. Then, the value of the fitness

function for each individual in the current generation is calculated based on how well the numerical

results matched the measurement data. In this work, the deviation between the experimental and

simulated RFV results is adopted to evaluate the fitness value, i.e.,

fd(x) =
∥∥Fz,exp −Fz,sim

∥∥
2 , (3.115)

where x is the vector of the variables to be optimized, fd(x) denotes the objective function in the

GA, Fz,exp and Fz,sim are the measured and simulated RFVs, respectively. ∥ · ∥2 means the 2-norm

of the vector. However, the inherent function of the GA is to maximize the value of the fitness

function, therefore, the actual objective function applied in the algorithm f (x) is

f (x) =
1

fd(x)
=

1∥∥Fz,exp −Fz,sim
∥∥

2
, (3.116)

which suggests that maximizing this fitness function will minimize the error between the test data

and the modeled results. In the iterative process, each individual in a given generation, i.e., a set of

model parameters, is firstly evaluated by the fitness function. When these individuals are assessed

by a probabilistic selection function [128], some of them are chosen to either directly pass to the

next generation or perform crossover and mutation to create new individuals, resulting in a new

generation. In each generation, this procedure is executed repeatedly until the given maximum

number of generations is achieved. Eventually, the physical parameters of the model are determined.
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3.4 Numerical results of the dynamic responses

To validate the presented model, a specific radial tire for passenger cars is simulated and evaluated

in this section. As an application of the model to a practical structure, the dynamic analysis of a

205/55R16 radial tire is conducted. Based on the above-mentioned model and the identification

method of the model parameters, the model parameters are determined and the steady-state contact

forces and the dynamic responses of the objective tire are subsequently calculated. Furthermore, the

accuracy of the contact algorithm and the dynamic analysis is verified by the static radial stiffness

measurements and the over-cleat tests. The investigated tires and their measurements discussed in

this section were provided by the Shandong Linglong Tire Co.,Ltd.

3.4.1 Model parameter identification and experimental system
implementation

In this subsection, according to the parameter identification method proposed above, the identifi-

cation algorithm of the physical parameters in this established model is an implementation of a

two-step process. The physical parameters of the flexible ring model are first estimated using the

radial stiffness measurement. And then those of the rigid ring model are estimated by conducting

the over-cleat tests. For the specific modeled tire, the designed structural and geometric parameters

are listed in Table 3.1. These parameters can be obtained directly from dimensional measurements

or FE models.

Table 3.1: Geometric and material parameters of a 205/55R16 tire.

Parameter type Unit Value

Ring effective width b m 0.172

Ring thickness h m 0.018

Effective density ρ kg/m3 1.60×103

Mean radius R m 0.32

Initial pressure p0 Pa 2.1×105
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Parameters of the flexible ring model

First, the experimental results of the radial tire stiffness are obtained by conducting the static

stiffness measurements, which have been used for identifying the physical parameters in the flexible

ring model. The measurement was performed to obtain the stiffness of the tire using the Stiffness

Test Machine, manufactured by TS TestingService GmbH, in Shandong Linglong Tire Co., Ltd.

The system implementation of the measurement is shown in Fig. 3.8(a). The forces applied to the

tire and its displacements are measured by the force and displacement sensors on the test rig. The

tire pressure needs to be adjusted to the nominal inflation pressure of 0.22MPa and set at room

temperature (22.6◦C) for 24h before assembling on the test rig. The test loads are set to 3077N,

5128N, and 7179N. Thereafter, the radial load was applied to the tire to 80% of its test load at

a radial loading speed of 50mm/min. When the loading was completed, it was held for 5s and

repeated 3 times. Before each loading process, the tire inflation should be adjusted to the nominal

value. The radial force is then loaded to 50% of the test load at a radial loading speed of 50mm/min

and maintained for 1min before being unloaded. Finally, the loading procedure is repeated once

to 80% of the test load of the tire. The radial stiffness is defined from the radial deformation

characteristic by using a computational relationship, which is determined by points corresponding

to 50% and 80% of the test load. The radial stiffness under each test load is calculated by the

following equation,

kr =
Fr,80% −Fr,50%

dr,80% −dr,50%
, (3.117)

where kr means the radial stiffness of the tire, Fr,80% and Fr,50% respectively denote the vertical forces

for 80% and 50% of the test load, and dr,80% and dr,50% respectively represent the displacements

corresponding to 80% and 50% of the test load. The test data are presented in Table 3.2. It is found

that the radial stiffness of the tire grows with the increase of the load.

Utilizing the measured data for the radial stiffness, the parameters of the flexible ring model were

estimated by combining the determination method of the initial input of the parameters based on

the authors’ previous work [32] and the nonlinear least-squares method, which led to the minimum

error between the simulated and the test results of the radial stiffness. The identified parameters

of the flexible ring are listed in Table 3.3 (Identified Value). The radial stiffness calculated from

the identified parameters is shown in Table 3.2, and the comparison between the simulated and

measured force-displacement curves is illustrated in Fig. 3.8(b).
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3 Coupled Rigid-flexible Ring Model

Tested tire

Loading platform

Stiffness Test Machine 
(TestingService (TS) )

(a) System implementation of the
stiffness test machine with a mea-
sured tire.

(b) The comparison of the simulated relationship between
the radial deflection and force using the identified parame-
ters of Table 3.3 with the measurement results.

Figure 3.8: Setup of the radial stiffness measurement.

Parameters of the rigid ring model

For the determination of the parameters of the rigid ring, we have used the data provided by

Shandong Linglong Tire Co., Ltd in this thesis, which was obtained from the HSU5.3 Tire High-

speed Test System produced by ZF Friedrichshafen AG. The experimental equipment is depicted in

Fig. 3.9(a). It mainly consists of a mechanical motion system, a computer control interface, and a

data acquisition system, where the diameter of the drum is 2m. The measured tire is restrained by

the rim. During the measurement, the position of the wheel center is fixed and the tire is driven by

the rotation of the drum. The tire is rolled over a cleat at a predetermined speed, and the dynamic

responses are monitored in real-time by a force sensor mounted at the center of the rim. The cleat

is rectangular with a dimension of 10mm×20mm (height×width), which is mounted on the drum

surface at an angle of 90◦. Three vertical loads were selected for the testing conditions, which were

0.4, 0.8, and 1.2 times the load index (LI), i.e., 2471N, 4942N, and 7414N, and implemented at

velocities of 30km/h, 60km/h, and 90km/h, respectively. Once the tire reaches a stabilized position,

the speed of the drum slowly increases to the test speed. At this moment, the data acquisition system

collects the response of each impact and then stores it.

The nonlinear least-squares method is selected for the identification algorithm of the parameters of

the rigid ring. The fundamental concept is the minimization of the error between the simulation

results and the test data of the dynamic properties under the operating condition. The test setup

is input into the rigid-flexible ring model for simulation, the simulated longitudinal and vertical

forces at the wheel center are obtained and the error is evaluated. The time step of the simulation
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3.4 Numerical results of the dynamic responses

Table 3.2: Measurement results of the radial stiffness of the 205/55R16 tire.

Radial force (N)
3077 5128 7179

Test Simulated Test Simulated Test Simulated

Radial deflection corresponding

to 50% radial force (mm)
9.58 8.50 14.59 13.56 19.41 18.36

Radial deflection corresponding

to 80% radial force (mm)
14.33 13.07 21.67 20.67 28.75 27.73

Radial stiffness (N/mm) 194.33 202.11 217.30 216.36 230.60 229.73

is consistent with the sampling interval of the measurement, which means that the data length of

the simulated result in one period is equal to the data length of the measured result. If the accuracy

requirement is not fulfilled, the parameters in the model are modified until the deviation with the

experimental data is within the tolerance range of the accuracy requirement. Here, the objective

function of the minimization is denoted as

min
[
∑

[
w1(Fzc −Fzm)

2 +w2(Fxc −Fxm)
2
]]

, (3.118)

where Fzm, Fzc respectively denote the measured and calculated vertical forces, Fxm, Fxc respectively

represent the measured and calculated longitudinal forces, and w1, w2 are the weight factors. Herein,

the values of w1 and w2 are both taken as 1. In this section, the performance at 30km/h under

0.4LI vertical load is adopted to recognize the parameters, and those results under other operating

conditions are taken as the verification of the model (cf. Section 3.4.3). The comparison between

the simulation and experimental results for this operating condition is provided in Fig. 3.9(b), and

the corresponding parameters are indicated in Table 3.4 (Identified Value).

3.4.2 Contact forces distribution

In the developed rigid-flexible coupled ring model, contact forces are the primary parameters that

combine the flexible and rigid ring models. Therefore, the accuracy of the algorithm to characterize

the tire-road contact mechanism becomes the key point of the entire theoretical model. In this

subsection, the results of the steady-state contact forces on a flat road surface are discussed first.
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Cleat 

HSU5.3 Tire High-

speed Test System (ZF) 

(a) System implementation of the over-cleat test. (b) Simulated and measured time traces of ver-
tical force and horizontal longitudinal force for
the tire running at a given speed of 30km/h and
an initial vertical load of 0.4LI over the cleat at
constant axle height using the identified param-
eters in Table 3.4.

Figure 3.9: Rolling over a rectangular cleat.

Convergence of contact algorithm

On the basis of the steady-state contact algorithm for the flexible ring, the distribution of contact

forces is calculated by assuming that the road surface is ideally flat and the geometric uniformity of

the tire is not considered. The flexible ring is discretized to provide a fast solution for the steady-state

displacements and the distribution of contact forces. In Fig. 3.8, the comparison of the static radial

stiffness between the experimental data and the simulated results indicates that the flexible ring

model can appropriately represent the physical characteristics of the tire at steady-state contact.

Thus, in this section, the convergence analysis of the contact forces is discussed. The simulation

results of the vertical contact force for the different number of nodes are presented in Fig. 3.10. The

flexible ring model can achieve good convergence under different vertical displacements (10mm,

15mm, 20mm). Considering the computational efficiency of the model, the number of discrete

nodes selected is 360 in this work.

Steady-state contact forces

The results of the normal and shear pressure distributions under different vertical loads in the contact

patch are shown in Fig. 3.11. It is seen that the properties of the contact force under different vertical

54



3.4 Numerical results of the dynamic responses

Table 3.3: Physical parameters of the flexible ring.

Parameter type Unit Identified Value

In-plane bending stiffness EI Nm2 2.10

Radial stiffness of the sidewall ku N/m2 4.54×105

Circumferential stiffness of the sidewall kv N/m2 1.77×105

Radial damping coefficient of the sidewall cu Ns/m2 222.47

Circumferential damping coefficient of the sidewall cv Ns/m2 218.13

Undeformed thickness of tread rubber h0 m 0.0125

Normal stiffness of tread rubber kEs N/m 4.63×105

Tangential stiffness of tread rubber kGs N/m 3.60×105

loads can be well reflected by the contact algorithm based on the flexible ring model. Under the

smaller vertical loads, the contact pressure of the tire shows a convex and parabola-like distribution;

when the vertical load gradually increases, the curve tends to become saddle-shaped, which means

that the central part of the treadband in the contact area tends to buckle. This is an essential property

of the structure of a tire with high circumferential stiffness. A reasonable physical model should

be able to reflect this tendency properly. This phenomenon is in general agreement with the trend

reported in experimental studies [44, 120, 129, 130] Meanwhile, it demonstrates the theoretical

basis and rationality of the flexible ring model as an approximation for the steady-state deformation

and tire-road contact.

An advantage of the proposed model over the classic rigid ring model is that the flexible ring can be

utilized to calculate the steady-state contact forces. Therefore, this established model can be utilized

to simulate the contact behavior of tires on an uneven road surface. Owing to the unevenness of the

pavement, an additional algorithm typically has to be involved in the rigid ring model to evaluate

the tire motion [13]. In contrast, the derivation of the contact forces in the flexible ring model

requires a more complex computational approach for the solution of partial differential equations.

However, reasonable computational costs can be generated by the linearization assumptions adopted

in the contact algorithm developed in the previous section. Moreover, the flexible ring model can be

applied to analyze the tire response caused by cleats or potholes, and even extended to estimate

the handling dynamics on uneven roads. Hence, the simulated results of the contact deformation

when the tire is rolling over a cleat are given here to illustrate the possibility of using the proposed
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Table 3.4: Physical parameters of the rigid ring.

Parameter type Unit Identified Value

Mass of the rim ma kg 7.80

Mass of the rigid ring mb kg 6.90

Moment of inertia of the rim Iay kg·m2 0.455

Moment of inertia of the rim Iby kg·m2 0.643

Longitudinal stiffness of the spring kbx N/m 2.76×105

Vertical stiffness of the spring kbz N/m 1.19×106

Torsional stiffness of the spring kbθ N/rad 8.27×105

Longitudinal damping coefficient cbx Ns/m 4.03×102

Vertical damping coefficient cbz Ns/m 4.38×102

Torsional damping coefficient cbθ Ns/rad 2.18×102

contact algorithm for simulations on uneven road surfaces. Fig. 3.12(a) presents the displacements

and the deformation of the tire as it moves over the profile of the cleat. Fig. 3.12(b) exhibits the

deformation curve of the belt when the tire is just rolling on the cleat.

3.4.3 Simulations and experimental evidence when rolling over a cleat

As stated in Section 3.4.1, Shandong Linglong Tire Co., Ltd provided a large amount of test data

from measurements carried out on a drum test rig (Fig. 3.8(a)). The over-cleat tests were conducted

under vertical loads of 0.4LI, 0.8LI, and 1.2LI at speeds of 30km/h, 60km/h, and 90km/h. The

specific experimental setup and the testing conditions were given in detail in Section 3.4.1. This

section performs the evaluation using the established coupled rigid-flexible ring model.

Fig. 3.13-3.15 demonstrate the application when the tested tire rolled over the same rectangular

cleat with different loads. The computed vertical and longitudinal forces seem to capture the

measured properties accurately for different vertical loads until the frequency is about 120Hz or

higher. It reveals a reasonable level of agreement. As seen in the figures, the impact of the cleat can

be considered to be an impulsive excitation at a light load, when the vertical response of the tire

primarily depends on the vertical vibration mode. But as the vertical load increases, the vertical

forces at the wheel center exhibit two peaks with almost the same magnitude. The reason is that the
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3.4 Numerical results of the dynamic responses

Figure 3.10: Convergence analysis of the vertical contact force and the number of nodes.

Figure 3.11: The distributions of normal pressure (solid line) and shear pressure (dashed line) under
different vertical loads.

vertical force responses are the result of a combination of the enveloping characteristics and the

vertical vibration mode of the tire. (The first natural frequency of a vertical mode of the rigid ring is

about 92Hz).

Fig. 3.13, 3.16, and 3.17 illustrate the results of measurements and the simulations of with different

speeds over the same cleat in both the time and frequency domains, while the position of the axes

is kept constant. The time-domain responses of the vertical and longitudinal forces have been

indicated and the amplitude spectra of these quantities are presented. The simulated results show

good agreement for the vertical force at operating speeds in the measurements. The spectrum shows

that the natural frequency of the first vertical mode corresponding to the tested tire is approximately

92Hz, matching the results from the modal test. At lower speeds, the vertical responses are mainly
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(a) Profile curves of the treadband surface while rolling
over a 10mm*20mm rectangular cleat (each 2 time steps).

(b) Deformation curve of the belt when the tire is just
rolling on the cleat.

Figure 3.12: Tire deformation when rolling over a cleat.

affected by the envelope characteristics, at which time the vertical vibration mode of the tire is not

completely activated. While at higher speeds the vertical force responses of tires rolling over a

rectangular cleat mainly depend on the vertical vibration mode, which can be excited by the cleat.

In the amplitude spectra at different speeds, it is found that the natural frequency of the first vertical

mode is not a constant value, which tends to decrease slightly with an increase in speed. It can be

interpreted as possibly associated with the reduction of the dynamic stiffness at different speeds or

the Doppler effect [127]. In this case, the stiffness parameters in this model are taken as constant

values. It leads to small deviations in the prediction of the responses at different speeds. It is an

inherent limitation of using the rigid ring model for dynamics simulation.

It is observed that the amplitude spectrum of the longitudinal forces has a peak at 29Hz. This

phenomenon arises due to the 0th-order modes in the rotation of the tire and the connected rim. The

1st-order rotational mode (92Hz) appears when the speed reaches 60km/h. In the measurements

of the longitudinal forces at 60km/h and 90km/h (Fig. 3.18(a)), the 1st-order rotational mode is

stimulated, which is the predominant frequency component. But it is not as obvious in the simulated

results as it is in the tested data. The response of the longitudinal force is not effectively excited by

the rotating vibration in the dynamics computation. Considering this in the rigid ring model, the

motion of the belt is estimated by only considering the forces induced by the 0th-order and 1st-order

vibration modes. It means that the belt always keeps a circular shape. This assumption may cause

the identified rotational stiffness to be larger, which is obtained using only the measured responses

at 30km/h, thus failing to stimulate the 1st-order rotational mode. In future implementations, the
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Figure 3.13: Time traces and amplitude spectra of the vertical force and longitudinal force for the
tire operating at a vertical load of 0.4LI (2471N) and a testing speed of 30km/h. The
cleat shape is a 10mm×20mm (height×width) rectangular. (Solid line: measurement
data; dashed line: calculated results of the proposed model).

model parameters can be considered to be identified by different speed ranges according to the

operating conditions to be discussed.

The performance of the model contributed in this chapter is considered to be in between that of

the rigid and flexible ring models. These existing models include different analysis processes for

transient dynamics, contact algorithms, and friction models, so their accuracy is slightly different.

In the previous studies, the simulation results for the condition of a tire rolling over a cleat have been

given by applying SWIFT [13] and FTire [131, 132]. The results of this section can be analyzed

in a similar frequency range and accuracy as SWIFT. However, for the prediction of longitudinal

forces at high speeds, FTire has a broader analytical range and greater precision. This is achieved

by considering the 1st-order radial mode of the tires in FTire.

With regard to the computational cost of this established model, the average CPU time is approxi-

mately 20 to 40 times that of the real-time condition. It relies on the number of discrete elements set

in the flexible ring model and the current scenario of simulation (cf. Fig. 3.19). The total simulation

time is clearly close to FTire, but it takes longer than SWIFT. The simulation part of the transient

dynamics in the developed model is similar to the rigid ring model, which is much more simplified

than directly solving the dynamic problem using a flexible ring, but the contact part is obviously
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Figure 3.14: Same as Fig. 3.13 but at a different initial vertical load, 0.8LI (4942N).

Figure 3.15: Same as Fig. 3.13 but at a different initial vertical load, 1.2LI (7414N).
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Figure 3.16: Same as Fig. 3.13 but at a different speed, 60km/h.

Figure 3.17: Same as Fig. 3.13 but at a different speed, 90km/h.

(a) Single-sided amplitude spectrum. (b) Power spectrum.

Figure 3.18: Amplitude and power spectra of the longitudinal forces at different speeds (30km/h,
60km/h, and 90km/h).
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more complex than the single-point contact algorithm. The efficiency of different tire models can

not be compared straightforwardly, since the current algorithm is only a theoretical prototype and it

has not yet been combined through an interface with the multibody simulation software of whole

vehicles, such as CarSim or ADAMS. Nevertheless, the computational cost can be reduced by a

thorough optimization of the algorithm in the future.

Figure 3.19: The multiplier of CPU time to the real time for different operating conditions

3.5 Summary

In this chapter, a theoretical model has been developed to evaluate the characteristics of the in-plane

dynamic responses of tires and analyze the transient responses at the spindle on the uneven road

surface. A contact algorithm based on the 2D flexible ring provides a pressure distribution on the

tire-road contact patch and the length of the footprint under different vertical loads. The transient

dynamic response is then estimated by combining the rigid ring model with the flexible ring model.

Further, the identification of model parameters based on the static stiffness measurements and

the over-cleat test, and the optimization approach have been given. The accuracy of the contact

algorithm and the transient responses are validated by experimental data.

A novel coupled rigid-flexible ring model has been presented to analyze the characteristics of

the dynamic responses of tires. The contact algorithm based on the 2D flexible ring provides the

analysis of the pressure distribution in the tire-road contact area under different vertical loads.

The comparison of the static radial stiffness between the experimental data and the simulated
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results has been shown. The contact pressure distribution indicates that the contact model can

appropriately represent the physical characteristics of the tire at steady-state contact. It demonstrates

the theoretical basis and rationality of the flexible ring model as an approximation for the steady-

state deformation and tire-road contact. The applicability of the model in the simulation of transient

response has been validated by the experimental data of over-cleat tests at different speeds and

different vertical loads. In this way, the proposed new method has the merits of both high accuracy

up to 150Hz and low computing cost.

For the dynamic analysis of tires, the accuracy of the identification of the physical parameters

directly affects the simulated results. So the nonlinear least-squares method has been adopted to

determine the physical parameters of a specific tire in this work, and a set of measured data of

the static stiffness and the over-cleat responses has been chosen as the performance index of the

identification algorithm. It is clear that this approach yields an effective simulation in terms of

parameter determination.
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Chapter 4

Analysis of Low-speed Uniformity of Tires

Up to this point, the theoretical modeling based on the coupled rigid-flexible ring model and

its experimental validation has been completely described. However, this tire dynamics model

should not be limited to this area, as its application can be introduced to more scenarios. Taking

into account the inevitable dimensional deviations and the material non-uniformity in the tire

manufacturing process, this section analyzes the transfer characteristics of the tire with geometric

defects at low speeds. This analysis corresponds to the testing condition of the low-speed uniformity

measurements in the tire manufacturing process. Since the focus of this work is on the derivation

of an innovative theoretical model, not on uniformity analysis, this section does not analyze the

properties of the high-speed uniformity, which can be further extended in subsequent studies. The

purpose of this section is to illustrate the greater applicability and functional expansion possibilities

of the proposed model in the analysis of tire uniformity simulation.

4.1 System implementation of low-speed uniformity

measurements

Uniformity test machines are one of the most common devices for detecting the level of uniformity

in tires at present. Tire uniformity measurements are performed by assessing the variations of the

tire forces during rotational motion. The tire is mounted on the spindle of the test machine, and

during the measuring process the spindle and the drum are kept stationary by mechanical supports,

and the axes are positioned parallel to each other. The drum is equivalent to the road surface, and it

applies a load to the tire that corresponds to the contact forces exerted by the ground during the

movement. The vibration of the tire is transmitted to the drum and is delivered to a multi-phase
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force sensor fixed on the drum, which can respectively collect the periodic variations of radial,

transitional, and lateral forces, and subsequently calculate the conicity (CON) and ply steer (PLY)

of the objective tire.

This test is based on the High-Speed Uniformity Test Machine from TS TestingService GmbH

(Fig. 4.1). The tire is mounted on the test rim in accordance with the requirements of the equipment

and inflated to an air pressure of 0.21MPa. Then the tire is placed in a test environment at a

constant temperature for 2h and adjusted to eliminate the error in air pressure caused by the ambient

temperature factor. Before the uniformity test begins, the tire is warmed up for 30min under the

test load at a speed of 120km/h to equilibrate the air pressure inside the tire. According to the

given vertical load, speed, and rotational direction, the corresponding RFV and its first harmonic

are then obtained. Simultaneously, the geometric measurement system can capture the data of

the corresponding RRo. For the low-speed uniformity measurement, the standard testing speed is

60rpm. The data sampling period is 1s, which equals one rotating period of the tire. The number of

sampling points in one period is 256.

High-Speed Uniformity 

Test Machine 

( TestingService (TS)) 

Tested tire 

Figure 4.1: Experimental system setup of the tire uniformity measurement.

4.1.1 Modeling radial run-outs

Structural and geometric non-uniformities in tires can directly affect the distribution of contact

forces and consequently influence the dynamic response of the tire [68, 71]. The radial run-out

of the center-point (RRoc), which is the error of the nominal radius, inevitably arises during the

tire manufacturing process. In this study, the RRoc is introduced into the flexible ring model, and

the resulting deviation of the contact forces distribution is analyzed. In the contact model, RRoc
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is considered to be the factor that causes the variation of the tread rubber thickness. Eq. (3.98) is

reformulated as

Fns = kEs [us − (h0 +λR)] , (4.119)

where λR is the RRoc. Therefore, when geometric uniformity is introduced, the additional gener-

alized forces are generated in the dynamic system and this part of the excitation is subsequently

transferred to the rigid ring model, which in turn affects the output of the dynamic response. The

influence of the RRoc on the RFV is discussed in the following section.

4.1.2 Parameter optimization for tires with geometric defects

As clarified in Section 7.4, when the parameters are identified from the experimental data, the

complete coupled rigid-flexible ring model and its parameters are established. This set of parameters

is then available for the dynamics simulation of the tires. Taking into account the differences between

each tire that exist in the production process, this work utilizes a GA to further optimize the physical

parameters of the model. The measured tire is also “non-uniform" to some extent, so it is always

possible to modify and optimize the model parameters somehow by using the test results of the

corresponding low-speed uniformity of this tire. The parameters to be optimized include the stiffness

and damping coefficients in the flexible ring model (see Table 3.3), and the stiffness and damping

coefficients of the 3-DOF element in the rigid ring model (see Table 3.4, except for the mass and

the moment of inertia of the rigid ring and the rim).

For this, the GA for optimization of the model parameters applied here was developed as a MATLAB

toolbox. It is part of the Global Optimization Toolbox consisting of a set of MATLAB functions that

generate an initial population, perform genetic operations, and implement the selection process. For

a given set of RRoc, the GA is performed to optimize part of the model parameters by successive

iterations, which enables these parameters to minimize the deviation between the predicted results

and the test data of the corresponding RFV. All test data were obtained by the test procedure

presented in Section 4.1. To determine 14 parameters using the GA, 126 generations with a size

of 150 populations are selected. In the GA, both the simulated and tested datasets used for the

computation of the fitness function take one rolling period (1s) from the RFV results. The time

step for the simulation in the coupled rigid-flexible ring model is set to the same value as the test

sampling interval, i.e., 1/256s, to ensure that the datasets are of equal length in calculating the error.

Further, this guarantees that the tested and evaluated results at the same time instants are utilized.

The optimized physical parameters of the flexible ring model are presented in Table 3.3 and those
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of the rigid ring model are shown in Table 3.4. Fig. 4.2 shows the RRoc data used for optimization,

as well as the comparison of the RFV simulated results with the test data. To illustrate the influence

of RRoc, whose value is normalized and plotted in the same figure with the RFV results using the

double y-axis. The value of RRoc is shown on the right y-axis in Fig. 4.2(b).

(a) A set of RRoc test data used for identification and
optimization.

(b) The comparison of the RFV simulated results with the
experimental data.

Figure 4.2: A set of RRoc data and corresponding measurement results of RFV for parameter
identification using the GA.

4.2 Deterministic analysis of low-speed uniformity

4.2.1 Contact forces variation with RRoc

Geometric non-uniformities of tires directly lead to the variation of contact forces. It is assumed

that the variation of the thickness of the tread rubber is the cause of RRoc in this study, which

can simplify the modeling process by neglecting the stiffness variation and non-uniform internal

material distribution. To fit the test data with the nodes of the discretized flexible ring, it is necessary

to interpolate the raw RRoc data so that its influence can be introduced in the contact model. The

raw test data and the interpolated curve for a set of RRoc are shown in Fig. 4.3(a). Considering

the test condition of the low-speed uniformity test rig, the height of the spindle is fixed and the

rolling speed is set to 60rpm. The variation of the vertical contact force induced by the RRoc is

shown in Fig. 4.3(b). The “uniform radius" in Fig. 4.3(b) refers to the ideal design parameter, i.e.,

without any dimensional variations. The slight deviation of the value (black solid line) is due to the

discretization of the flexible ring in the contact algorithm.
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Table 4.1: Optimized physical parameters of the flexible ring.

Parameter type Unit Identified Value GA Optimized

In-plane bending stiffness EI Nm2 2.10 2.199

Radial stiffness of the sidewall ku N/m2 4.54×105 4.43×105

Circumferential stiffness of the sidewall kv N/m2 1.77×105 1.86×105

Radial damping coefficient of the sidewall cu Ns/m2 222.47 228.04

Circumferential damping coefficient of the sidewall cv Ns/m2 218.13 258.32

Undeformed thickness of tread rubber h0 m 0.0125 0.0140

Normal stiffness of tread rubber kEs N/m 4.63×105 3.64×105

Tangential stiffness of tread rubber kGs N/m 3.60×105 3.30×105

Comparing the test data of the RRoc with the corresponding variation of the vertical contact force,

it is observed that although the amplitude fluctuation of the RRoc is only 0.316mm, the variation

of the steady-state vertical force reaches 63.93N. This indicates that the uniformity of tires is a

crucial factor to be considered in the comfort and handling simulation. If the curve of the RRoc

is compared with the variation of the static contact force as given in Fig. 4.3(b), it indicates that

the filtering effect of the tire structure on the RRoc is reflected, which means that not all the small

peaks and minor fluctuations of the profile curve are transmitted to the response of the contact force

completely. The reason for this phenomenon includes the influence of the elasticity of the material

and the geometric construction, which is revealed in the length of the contact footprint.

4.2.2 Comparison with experimental results of RFV

In this section, the algorithm established in the previous chapter is used to respectively analyze

the low-speed uniformity characteristics of two tires with geometric defects (Tire-RRoc1 and

Tire-RRoc2), which includes the results in time and frequency domains.

Time-domain analysis

In this case study, using the coupled rigid-flexible ring model established in the preceding part, the

RRoc is selected as the input parameter to calculate the corresponding RFV. The comparison for the
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Table 4.2: Optimized physical parameters of the rigid ring.

Parameter type Unit Identified Value GA Optimized

Mass of the rim ma kg 7.80 -

Mass of the rigid ring mb kg 6.90 -

Moment of inertia of the rim Iay kg·m2 0.455 -

Moment of inertia of the rim Iby kg·m2 0.643 -

Longitudinal stiffness of the spring kbx N/m 2.76×105 6.58×105

Vertical stiffness of the spring kbz N/m 1.19×106 0.840×106

Torsional stiffness of the spring kbθ N/rad 8.27×105 6.26×105

Longitudinal damping coefficient cbx Ns/m 4.03×102 5.32×102

Vertical damping coefficient cbz Ns/m 4.38×102 9.12×102

Torsional damping coefficient cbθ Ns/rad 2.18×102 3.70×102

time-domain simulation of the RFV with the measured data on the low-speed uniformity test rig is

shown in Fig. 4.4.

Comparing the curve shape of the RRoc and its corresponding RFV, it reveals that the RRoc is

the primary factor affecting the RFV at low speed. By contrasting the simulation result with the

experimental data, it states that the coupled rigid-flexible ring model can properly describe the

trend of the amplitude and peak positions of the RFV, but there are still some deviations in the

numerical results. One of the reasons is that only the in-plane dynamic responses are considered

in the proposed model. It consequently cannot reflect the geometric imperfections in the width

direction of the tread, such as the out-of-roundness of the tire shoulder and the taper effect, etc.

Another reason for the error is that the non-uniform stiffness distribution is not introduced into the

model, including the stiffness deviation caused by the lap joints in the interior structure of tires and

the asymmetrical sidewall. However, these factors can still have an impact on RFV.

Frequency-domain analysis

Herein, the spectrum analysis of the simulated results is conducted. The measured data obtained

from the low-speed uniformity measurements were filtered up to the 12th-order as a result of the

limitation of the test rig. For this, an 8th-order Butterworth low-pass filter with a cut-off frequency
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4.3 Summary

(a) The raw test data and the interpolated curve for a set of
RRoc.

(b) The variation of the vertical contact forces.

Figure 4.3: The variation of the vertical contact force of the tire caused by the RRoc.

of 12Hz is implemented for the data processing of the simulated results. The experimental and

simulated results of the one-sided amplitude spectrum of the RFV corresponding to the RRoc given

in Fig. 4.3 are shown in Fig. 4.5(a). The power spectrum is given in Fig. 4.5(b).

Fig. 4.5 confirms that the simulation results can predict the peak positions with sufficient accuracy in

the single-sided amplitude spectrum and the power spectrum of the RFV, and approximately predict

the magnitude of each order frequency component. It suggests that the method for estimating RFV

generated by RRoc based on the proposed coupled rigid-flexible ring model shows reasonably good

accuracy and reliability.

4.3 Summary

In this chapter, the coupled rigid-flexible ring model has been extended to the analysis of low-speed

uniformity of tires with geometric defects and has been validated experimentally. It indicates that

the novel proposed model offers many application scenarios and extension possibilities. For the

uniformity analysis of tires, the GA has been adopted to determine the physical parameters of a

specific tire, and a set of RFV has been chosen as the performance index of the simulated algorithm.

The impacts of the geometric imperfection have been evaluated in the proposed model. It has been

found that a small amplitude fluctuation of the RRoc can lead to a large variation of the steady-state

vertical contact force. Moreover, the filtering effect of the tire structure on the RRoc has been

shown, which includes the influence of the elasticity of the material and the geometric construction.
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4 Analysis of Low-speed Uniformity of Tires

(a) The raw test data and the interpolated curve for a set
of RRoc. (Tire-RRoc1)

(b) The variation of the vertical contact forces. (Tire-
RRoc1)

(c) The raw test data and the interpolated curve for a set
of RRoc. (Tire-RRoc2)

(d) The comparison of the simulated and measured
RFVs. (Tire-RRoc2)

Figure 4.4: Comparison of the measured RFV with the simulation result.

The time-domain analysis shows that the RRoc is the most dominant factor affecting the RFV at

low speed. By comparing the simulation result with the experimental data, it can be stated that the

developed model adequately evaluates the amplitude and peak positions of the RFV. Furthermore,

the one-sided amplitude spectrum and the power spectrum of the RFV simulation results have been

accurately predicted. The accuracy and reliability of the extended method based on the coupled

rigid-flexible ring model have been validated in the low-speed uniformity analysis for the tires with

geometric defects.
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4.3 Summary

(a) The one-sided amplitude spectrum. (Tire-
RRoc1)

(b) The power spectrum. (Tire-RRoc1)

(c) The one-sided amplitude spectrum. (Tire-RRoc2) (d) The power spectrum. (Tire-RRoc2)

Figure 4.5: The spectrum analysis of the experimental data and the simulated result of the RFV.
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Chapter 5

Theory of Polynomial Chaos Expansion in
Uncertainty Quantification

This chapter focuses on the uncertainty quantification method based on the polynomial chaos

expansion theory. From the viewpoint of probabilistic statistics, uncertainty quantification is to

estimate the stochastic uncertainty in the output of a system with a given random input. It means that

when the uncertainties exist in the random input X = {X1,X2, · · · ,Xd}, the probabilistic statistical

information of the output Y = g(X) should be calculated, such as mean value, variance, failure

probability, probability density function (PDF), etc. In this work, a stochastic expansion method

is used to achieve uncertainty quantification of the dynamic behavior and vibration of tires. The

main idea of this type of approach is to represent the random variables as a linear combination

of several polynomials. This technique is more accurate and does not require the computation

of the derivative of the response function. The most important is that once the expansion of

random variables is performed, their probability statistics are conveniently available. Therefore,

this chapter provides a brief introduction to the generalized polynomial chaos (gPC) theory. First,

the orthogonal polynomials and a classical representation technique for stochastic processes are

briefly introduced: the Wiener-Hermite expansion, which is the original Wiener polynomial chaos.

Then the construction of gPC based on the Askey scheme is given. At last, the implementation

of the gPC expansion based on the probabilistic collocation method (PCM) and the technique for

selecting the collocation points are discussed.
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5 Theory of Polynomial Chaos Expansion in Uncertainty Quantification

5.1 Theory of polynomial chaos expansion

5.1.1 Orthogonal polynomials

The basic knowledge of orthogonal polynomials is first reviewed, which plays an important role

in the theory of stochastic expansions and approximation. There are many in-depth discussions

of the properties of orthogonal polynomials listed in [133–136]. The general form of an n-order

polynomial is given as

Qn(x) = anxn +an−1xn−1 + · · ·+a1x+a0, an ̸= 0, (5.120)

where x ∈ D, an is the leading coefficient of the polynomial. Define a weight function w(x)≥ 0,

and
∫

D w(x)dx > 0. If it satisfies the orthogonal relations,∫
D

Qm(x)Qn(x)w(x)dx = γnδmn, (5.121)

where δmn is the Kronecker-delta function, i.e.,

δmn =


1, m = n,

0, m ̸= n,

(5.122)

then Qn(x) is defined as an orthogonal polynomial with a weight function w(x) in the definition

domain D. Here, γn are termed normalization constants, which are

γn =
∫

D
Qn(x)Qn(x)w(x)dx. (5.123)

The orthogonal polynomials follow the three-term recurrence relation,

−xQn(x) = bnQn+1(x)+anQn(x)+ cnQn−1(x), n ≥ 0, (5.124)

where bn ̸= 0, cn ̸= 0, cn
/

bn−1 > 0, Q−1(x) = 0, Q0(x) = 1. According to the recurrence relation,

different types of orthogonal polynomials can be constructed. Another form of the recurrence

relation are expressed as [134, 137]

Qn+1(x) = (Anx+Bn)Qn(x)−CnQn−1(x), n ≥ 0, (5.125)
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5.1 Theory of polynomial chaos expansion

where An ̸= 0, Cn ̸= 0, CnAnAn−1 > 0, Q−1(x) = 0, Q0(x) = 1.

5.1.2 Wiener-Hermite expansion

Briefly, the polynomial chaos (PC) is an approximation of a random expansion by summing a series

of orthogonal polynomials that corresponds to the distribution type of the input parameters. The

PC originated from the Wiener-Hermite chaos proposed by Wiener in 1938 [138], which is also

termed as the homogeneous chaos [139]. Most physical processes can be described by a general

second-order random process y(ω), which is a process with finite variance [139]. Herein, ω means

a random event. It indicates that the quantities involved in it here are random variables, which is

omitted in the subsequent section for simplicity of notation. The random process is represented by

performing the orthogonal projection [137, 140] in the form of the polynomial chaos

y(ω) = α0 Γ0 +
∞

∑
i1=1

αi1Γ1(ηi1 (ω))+
∞

∑
i1=1

i1

∑
i2=1

αi1i2Γ2(ηi1 (ω) ,ηi2 (ω))

+
∞

∑
i1=1

i1

∑
i2=1

i2

∑
i3=1

αi1i2i3Γ3(ηi1 (ω) ,ηi2 (ω) ,ηi3 (ω))+ · · · , (5.126)

where ηηη = {ηi1,ηi2, · · · ,ηin} is a set of independent standard random variables, â0 and âi1,i2,...,ir

are the deterministic coefficients, and Γp denotes the polynomial basis function, which is the

polynomials of order p in terms of the multidimensional independent standard random variables ηηη .

These orthogonal polynomials compose the linear space of polynomials of degree at most p, Γ̂p.

It should be noted that the dimension of ηηη is usually assumed to be the same as the dimension of

the random inputs X in the original random space. In fact, the dimension of ηηη should be able to

represent the number of different random sources in the system. If a certain dimensional random

variable Xi implicitly contains more than one random sources, the dimension of X should also

correspondingly increase.

By adopting the orthogonalization procedure, Γp are constructed by different types of orthogonal

polynomials. When the polynomial basis function is the same as the Hermite polynomials, a specific

polynomial chaos can be generated. The general expression of Hermite polynomials Hn(ξξξ ) is

Hn(ξi1,ξi2, · · · ,ξin) = e
1
2 ξξξ

T
ξξξ (−1)n ∂ n

∂ξi1∂ξi2 · · ·∂ξin
e−

1
2 ξξξ

T
ξξξ , (5.127)

where ξξξ = {ξ1,ξ2, · · · ,ξn} is the multidimensional independent standard Gaussian random variables.
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The orthogonality of Hermite polynomials is expressed as

〈
Hi,H j

〉
=
〈
H2

i
〉

δi j, (5.128)

where δi j is the Kronecker-delta function and ⟨·, ·⟩ denotes the inner product of Hilbert space, which

is represented as

⟨ f1 (ξξξ ) , f2 (ξξξ )⟩=
∫

f1 (ξξξ ) f2 (ξξξ )w(ξξξ )dξξξ , (5.129)

where w(ξξξ ) is the weight function. The weight function of Hermite polynomials is

w(ξξξ ) =
1√
(2π)n e−

1
2 ξξξ

T
ξξξ . (5.130)

Hence, with a set of independent standard Gaussian random inputs, a random process is expanded

by the Hermite polynomials in the following form,

y(ω) =
∞

∑
k=0

âkΓk (ξξξ ), (5.131)

in which the polynomial basis function Γk (ξξξ ) and the Hermite polynomials of order n, i.e., Hn(ξξξ ),

have a one-to-one correspondence, as well as between them and the coefficients âk. This approx-

imation method for random processes was first proposed by Wieners [138] and is therefore also

known as the Wiener-Hermite expansion. In general, Eq. (5.131) is referred to as the polynomial

chaos expansion (PCE) model.

However, in Eq. (5.131), the number of terms in the PCE is infinite, so for the consideration of

computational implementation, the expansion needs to be truncated at the pth order, which means

the highest order of the Hermite polynomials is p. The corresponding p-order PCE model is

expressed as

y(ω)≈ ỹ(ω) =
P

∑
k=0

âkΓk (ξξξ ). (5.132)

The number of coefficients in the truncated p-order PCE model is Q, which is calculated by

Q= P+1 =
(n+ p)!

n!p!
. (5.133)

Although Q increases considerably with the order of the PCE model p and the dimension of
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the random variables n, using Wiener-Hermite polynomial chaos still achieves the exponential

convergence rate when solving a system involving Gaussian distributed random variables. Moreover,

Hermite-chaos can also be employed for other distributed types of random inputs by transforming a

non-Gaussian distributed random variable into a standard normal distribution. But the convergence

rate of the PCE model will inevitably be reduced.

5.2 Generalized polynomial chaos (gPC)

5.2.1 The Askey scheme

As mentioned before, the PCE model can well deal with the problem in the Gaussian-distributed

random field. However, the literature [141] demonstrates that for more general random inputs,

the PCE model can converge but with a severely deteriorated rate. So is there an analogy to

Wiener-Hermite polynomial chaos that makes the solution as effective for systems including general

non-Gaussian random inputs?

Therefore, to overcome this problem, Xiu and Karniadakis [93, 139] generalized the concept of

the original Wiener’s Hermite-chaos and obtained a family of polynomial chaos for the random

variables with different distribution types, i.e., the Askey-chaos. According to the Askey scheme, the

optimal orthogonal polynomials corresponding to each class of distribution are established so that

the weight functions are the same as or differ by only a constant factor from the PDFs of the random

variable. Thus, the basis functions in Eq. (5.126) are not restricted to Hermite polynomials, but any

type of polynomials in the Askey scheme, while achieving an exponential rate of convergence. This

generalized form of the Hermite-chaos is defined as the generalized polynomial chaos (gPC) or the

Askey-chaos [137, 139]. In the literature [139], the correspondence between the type of gPC and

their underlying random variables is shown in Table 5.1.

5.2.2 Generalized polynomial chaos (gPC) expansion

The Askey-chaos provides the optimal basis functions for the approximation of some specific types

of random inputs, and the selection criterion is that the PDF of the random variable coincides with

the weight function of the orthogonal polynomials. In this case, the type of random input is not

limited to the standard Gaussian distribution but is any distribution type in the Askey scheme. This

generalized form of PCE is defined as the generalized polynomial chaos (gPC) expansion [137, 139].
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5 Theory of Polynomial Chaos Expansion in Uncertainty Quantification

Table 5.1: The correspondence between the type of generalized polynomial chaos and their underly-
ing random variables (N ≥ 0 is a finite integer) [139].

Randon variables Wiener-Askey Chaos Support

Continuous

Gaussian Hermite-chaos (−∞,∞)

Gamma Laguerre-chaos [0,∞)

Beta Jacobi-chaos [a,b]

Uniform Legendre-chaos [a,b]

Discrete

Poisson Charlier-chaos {0,1,2, · · ·}

Binomial Krawtchouk-chaos {0,1, · · · ,N}

Negative binomial Meixner-chaos {0,1,2, · · ·}

Hypergeometric Hahn-chaos {0,1, · · · ,N}

Similar to the Hermite-chaos, Eq. (5.131), a general random process χ(ω) of interest is represented

as

χ(ω) = x̂0Φ0 +
∞

∑
i1=1

x̂i1Φ1 (ζi1)+
∞

∑
i1=1

i1

∑
i2=1

x̂i1i2Φ2 (ζi1,ζi2)

+
∞

∑
i1=1

i1

∑
i2=1

i2

∑
i3=1

x̂i1i2i3Φ3 (ζi1 ,ζi2,ζi3)+ · · ·, (5.134)

where x̂0, x̂i1 , and x̂i1i2... are the deterministic coefficients of the gPC expansion, Φi(ζζζ ) is a set of or-

thogonal polynomials concerning the vector consisting of the random variables ζζζ = {ζi1,ζi2, ...,ζin},

which denotes the Askey-chaos of order n. For simplicity of notation, Eq. (5.134) is usually rewritten

by a truncation of the infinite series after (N +1) terms as

χ(ζζζ )=
N

∑
i=0

x̂iΦi(ζζζ ), (5.135)

where x̂i denotes the deterministic coefficients in the gPC expansion.Because each probability

distribution type has a corresponding optimal orthogonal polynomial basis, the distribution types

of the random inputs should be pre-known. In the scenario of practical applications, the Pearson

model [142, 143] is one implementation for the identification of distribution types, and the detailed

theory is stated in Section 7.2. When the type of the orthogonal polynomials has been determined,
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5.3 Probabilistic collocation method (PCM)

the most crucial step is to determine the coefficients of the gPC expansion. There are usually

two methods to solve it: the probabilistic collocation method (PCM) [137, 144] and the Galerkin

projection method [137, 145]. Typically, the distribution types of the input parameters are known or

can be identified. So the Galerkin projection method is used to calculate the gPC coefficients x̂i by

utilizing the orthogonality of polynomials, i.e.,

x̂i =
⟨χ,Φi(ζζζ )⟩

⟨Φ2
i ⟩

, i=0,1,2, ...,N. (5.136)

However, the probabilistic distribution of the output variables is not foreknown. The coefficients

cannot be directly computed by implementing the inner product in the Galerkin projection method.

Therefore, the PCM is adopted here, which is capable of processing complex nonlinear equations

efficiently.

5.3 Probabilistic collocation method (PCM)

5.3.1 Implementation of PCM

The PCM is a surrogate model developed with the gPC expansion, which is an extension of the

stochastic response surface method (SRSM) [94] based on regression methods. The PCM forces

the residual error at each sampling point to be determined as zero. To obtain an accurate result

for the unknown coefficients, the oversampling technique is usually performed. Because the gPC

expansion is a function of the standard random variables, Nc sets of available sampling points

ζζζ
s
=
{

ζζζ
s
1 · · ·ζζζ

s
j · · ·ζζζ

s
Nc

}
, where ζζζ

s
j=
{

ζ s
j1 · · ·ζ s

jk · · ·ζ
s
jn

}
, need to be selected in the standard random

space (ζ -space). When substituting each set of sample points into the deterministic equations

g(X), ζζζ
s should be transformed into the original physical random space (X-space) and then used to

compute the corresponding output responses. In short, the PCM provides a surrogate model, i.e.,

Φ0
(
ζζζ

s
1
)

Φ1
(
ζζζ

s
1
)

· · · ΦN
(
ζζζ

s
1
)

Φ0
(
ζζζ

s
2
)

Φ1
(
ζζζ

s
2
)

· · · ΦN
(
ζζζ

s
2
)

...
... . . . ...

Φ0
(
ζζζ

s
Nc

)
Φ1
(
ζζζ

s
Nc

)
· · · ΦN

(
ζζζ

s
Nc

)





x̂0

x̂1

...

x̂N


=



g
(
Xs

1
)

g
(
Xs

2
)

...

g
(
Xs

Nc

)


. (5.137)
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The matrix form of Eq. (5.137) is expressed as

Ax̂=G, (5.138)

in which x̂ is the vector of the unknown coefficients, A is an Nc×(N +1)-dimensional coefficient

matrix obtained by substituting the standardized collocation points into the orthogonal polynomials,

and G means the vector of the corresponding output responses at the collocation points. By adopting

least-squares regression, the coefficients x̂ are calculated, i.e.,

x̂=(ATA)−1ATG, (5.139)

where (ATA)−1 is an invertible Nc-order matrix. Once the coefficients are obtained, the statistical

property of the output can be simply estimated by performing the MCSs on the gPC extended model.

Thereby, the computational efficiency issue arising from massive calls to the deterministic analysis

model is evaded. It is important to note that the sample points used as the inputs to the MCSs should

be generated in the standard probability space.

5.3.2 Selection of the collocation points

The key point of the construction of the PCM model is the solution of the unknown coefficients.

Hence, it requires some input and output value sample points. For a set of random inputs ζζζ with

n-dimensional independent random variables, the number of the unknown coefficients (N +1) for a

pth-order gPC expansion is calculated by Eq. (5.133), i.e.,

N +1=
(n+ p)!

n!p!
. (5.140)

When the PCM is adopted to solve the coefficients, the number of the collocation points Nc is

generally larger than the number of undetermined coefficients N to obtain a robust result. It

can balance the influence of each collocation point and also overcome the instability brought by

individual collocation points. The method of selecting the collocation points apparently determines

part of the accuracy of PCM. In this work, the following three sampling methods for selecting

the collocation points are discussed to obtain an efficient but accurate sampling method: random

sampling, Latin hypercube sampling (LHS), and the linear-independence-based roots method.

1. Random sampling

After transforming the uncertain variables into their standard probability space, equal probability
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5.3 Probabilistic collocation method (PCM)

sampling (EPS) can be employed in the interval of variables. However, it usually requires a huge

sample size and leads to low computational efficiency.

2. Latin hypercube sampling (LHS)

Traditional random sampling generates sample points that are difficult to effectively cover the

tails of the probability distribution of variables, and most of them are concentrated near the mean

value. Since the tails of the distribution have an important influence on the reliability analysis, the

LHS technique can be applied to generate multivariate samples to improve the global accuracy

of computation. LHS was first proposed by McKay et al. [146] in 1979, which has good one-

dimensional projection and uniform stratified distribution properties and can fully cover the upper

and lower bounds.

• The range of the cumulative distribution function (CDF) of each variable is divided into n

non-overlapping intervals on the basis of equal probabilities.

• Randomly select a value from each interval and repeat this step until the values of all random

variables are generated.

• Pair the n sample points obtained for each variable with those obtained for the other variables

randomly.

This technique provides an optional sample size while ensuring stratified sampling, which means

that each input variable is sampled at n levels. For a more detailed theoretical description of LHS, it

is possible to refer to Ref. [88–90]. LHS has superior advantages over MCS for complex intensive

computational analysis, which can result in a significant reduction in numerical computation in the

current scheme.

3. Linear-independence-based roots method

Generally, when the order of the gPC approximation p is given, the collocation points can be

generated from the combination of the roots of the (p+1)th-order orthogonal polynomial. Especially

for an even-order polynomial, when adding the origin as a root, the total number of available points

Nc is given as

Nc=


(p+1)n, p=odd number

(p+2)n, p=even number

. (5.141)

It is clear that as p increases, the number of collocation points grows exponentially and will rapidly

become much larger than the number of unknown coefficients, i.e., Nc ≫ (N + 1). Considering
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the unique-solution condition for linear non-homogeneous systems, the coefficient matrix A in

Eq. (5.138) should be of full rank (N +1). Therefore, it is adequate to select only (N +1) sets from

Nc collocation points. Also, the selected (N + 1) sets of collocation points should be located as

many as possible in regions with a high probability density. Herein, an improved PCM combined

with the linear-independence-based roots method (PCM-Indep) [123, 147, 148], is introduced, and

it can be performed as follows. The Nc sample points are first sorted according to decreasing order

of the probability density. Then, the coefficients in the matrix A corresponding to the (k+ 1)th

collocation point are calculated in sequence. The (k+1)th row must be linearly independent to the

selected k rows of the matrix A. Or else, the point that has the next highest probability density is

checked until (N +1) sets of collocation points fulfilling the conditions are selected.

Once the distribution types of the input parameters and the corresponding gPC expansions are

defined, the selection of the collocation points can be implemented prior to the overall computational

process, even if it is done by conducting the linear independence test. The selected collocation

points can be directly used for the next calculation. Such a process can bring an improvement in the

performance of the PCM analysis, especially for some time-consuming deterministic models. In the

subsequent numerical analysis, the practicability of this approach is demonstrated by the stochastic

analysis of a series of actual tires.

5.4 Summary

In order to estimate the impacts of the uncertainties resulting from the tire manufacturing process,

the theory of gPC is briefly reviewed in this chapter. Here, the theoretical basis and the solution

process applied to the analysis of uncertainty quantification are explained. This chapter emphasizes

several sampling techniques in the PCM for solving the coefficients of the gPC expansion. In

particular, the PCM-Indep provides an efficient approach to selecting collocation points. It is

employed with other sampling techniques in the subsequent chapters and their computational

efficiency is also compared.
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Chapter 6

Applications of Uncertainty Quantification in
Tire Vibration

On the basis of the proposed deterministic model, probabilistic characteristics of natural frequencies

and sound power radiation are analyzed using the gPC expansion method. Here, the orthogonal

expansion method based on the homogeneous chaos theory is introduced and the MCS is applied

for validation. As mentioned earlier, the key point of the gPC expansion method is determining

the unknown deterministic coefficients of the gPC expansions. For practical applications, the

distribution type should be identified from experimental data [109, 116]. In this work, without

loss of generality, the distributions are arbitrarily chosen. A certain distribution type of these input

uncertain parameters is assumed. The stochastic free vibration due to uncertainties in structural

parameters and internal pressure is first discussed.

6.1 Natural frequencies

In this case study, three parameters of a tire, membrane stiffness EA, in-plane bending stiffness EIz,

and internal pressure p0, are considered as input random parameters which affect the dispersion

property of the in-plane natural frequency. All the model parameters are assumed independent. The

structural parameters, EA, and EIz, are assumed normally distributed and the internal pressure p0

follows a uniform distribution. The distributions of these parameters are listed in Table 6.1. Here,

U(a,b) represents a uniform distribution with the minimum bound a and the maximum bound b.

N(µ,σ2) denotes a normal distribution. The parameter µ is the mean of the distribution and σ2 is

its variance.

85



6 Applications of Uncertainty Quantification in Tire Vibration

Table 6.1: Mean and distribution of the input variables for in-plane vibration analysis.

Parameter Distribution Type Mean

p0 (×105 Pa) U (7.47, 9.13) 8.3

EIz (Nm2) N (7.401, 0.85) 7.401

EA (N) N (4.603×107, 5×105) 4.603×107

(a) 1st-order radial mode. (b) 10th-order radial mode. (c) 0th-order circumferential mode.

Figure 6.1: Distributions of in-plane natural frequencies. (PCM-Indep means the linear-
independence-based PCM.)

Herein, four methods, including the intrusive PCE, MCSs, conventional PCM, and the linear-

independence-based PCM, are adopted to show the influence of the random parameters on the

in-plane free vibration of the tire. Firstly, the random variables expanded according to the Eq. (5.135)

are directly substituted into the analytical expression of the natural frequency given in [32]. Then

the conventional PCM and the linear-independence-based PCM are applied. The output responses

are approximated by using 3rd-order gPC expansion. Fig. 6.1 presents a comparative plot of 10000

MCSs to verify the effectiveness of the gPC expansion method.

A similar analysis method is adopted to analyze the effects of torsional inertia ρIp, torsional rigidity

GIp, and out-of-plane bending stiffness EIr on the stochastic out-of-plane free vibration of the

tire. The structural parameters, GIp, and EIr, are assumed normally distributed and the torsional

inertia ρIp follows a uniform distribution. distributions are shown in Table 6.2. Compared with the

in-plane vibration, some similar conclusions are drawn. It is found that the structural uncertainty

has very little impact on the lower order natural frequencies, however, for the higher order modes

and some special 0th-order modes the influence of the uncertainty becomes greater.

Meanwhile, the effectiveness of the linear-independence-based PCM is illustrated. The errors
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Table 6.2: Mean and distribution of the input variables for out-of-plane vibration analysis.

Parameter Distribution Type Mean

ρIp (kg/m) U (0.23, 0.29) 0.26

GIp (Nm2) N (1.61×103, 1.61×102) 1.61×103

EIr (Nm2) N (1.06×105,1.06×104) 1.06×105

(a) 1st-order lateral mode. (b) 10th-order lateral mode. (c) 0th-order torsional mode.

Figure 6.2: Distributions of out-of-plane natural frequencies. (PCM-Indep means the linear-
independence-based PCM.)

of different collocation point methods are shown in Table 6.34. It can be found that even if 125

collocation points are selected in the conventional PCM, the accuracy of the solution for calculating

the mean value has not been much improved. When 76 collocation points are tested based on the

criteria as discussed previously, the matrix A has a full rank of 20 equaling the number of unknown

coefficients in the gPC expansion. The generation of the collocation points to be tested depends

on the type of random variables, the dimension of the random vector, and the order of the gPC

expansion. The result of the selection does not rely on the deterministic model. Therefore, it is

possible to carry out the linear-independent tests before the computational progress. It can be found

that the linear-independence-based PCM is much more efficient than the conventional PCM.

6.2 Effects of levels of uncertainties on natural frequencies

Furthermore, the levels of uncertainties affected by the natural frequency are investigated. The

variances of all the random input parameters are varied from 5% to 20%. It is observed in Fig. 6.3

that, as the level of uncertainty increases, corresponding frequency responses are more dispersed.
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6 Applications of Uncertainty Quantification in Tire Vibration

Table 6.3: Comparison of the 10th order radial natural frequency between different collocation point
methods and MCS.

Method Sample Number f̄ (Hz) Error (%)

Deterministic - 255.18 -

MCS 10000 255.18 0.001

PCM 125 254.86 0.126

Linear-independence-based PCM 20 255.08 0.039

(a) Radial modes. (b) Lateral modes.

Figure 6.3: Distribution of 1st-, 2nd-, and 10th -order natural frequencies under different variances
of input parameters.

Here, a situation is considered, in which the uncertainty exists only in one parameter, and meanwhile,

the other input variables remain deterministic. It is observed in Figs. 6.4(a) and (b) that the

membrane stiffness EA has a significant influence on the breathing mode of the tire. However, the

dispersion of higher-order radial modes caused by the internal pressure p0 is greater than that of

the other two variables, EA and EIz. The distributions of natural frequencies are predominantly

distributed symmetrically about the deterministic value. Moreover, in the out-of-plane vibration,

when the uncertainty is considered only in ρIp, the distribution of the natural frequency becomes

non-symmetrical about the deterministic peak response, and it affects the distribution of each mode.

This implies that the variation in the material and stiffness parameters of the tire significantly affect

the distributions of the natural frequencies.
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6.2 Effects of levels of uncertainties on natural frequencies

(a) 0th-order circumferential mode (breathing mode). (b) 10th-order radial mode.

(c) 0th-order torsional mode. (d) 10th-order lateral mode.

Figure 6.4: Effect of each individual parameter on natural frequencies. (PCM-Indep means the
linear-independence-based PCM.)
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6 Applications of Uncertainty Quantification in Tire Vibration

6.3 Steady-state response and sound power

The random equivalent radiated sound power of the tire subjected to a harmonic excitation is

investigated in this section. The amplitude A f and the angular frequency ω f of the excitation are

selected as uncertain and assumed normally distributed. These two parameters are approximated

by a 3rd-order gPC expansion. Here the sound power is simulated for two vehicle speeds, 80km/h

and 120km/h. The excitation frequency f is set as ω f /2π , which correspond to 6.67Hz and 10Hz,

respectively. It signifies that the period of the excitation is equal to one rotating period. The

distributions of these two parameters are listed in Table 6.4. Compared with the deterministic results

of the equivalent radiated sound power, the probabilistic distributions under different speeds are

shown in Fig. 6.5. It is shown that the distribution of the equivalent radiated sound power becomes

more dispersed as the rolling speed increases, even if the variances of the input parameters are the

same.

Table 6.4: Mean and distribution of the excitation variables.

Parameter Distribution Type Mean Value

A f (N) N (1, 0.1) 1

f80 (Hz) N (6.67, 0.67) 6.67

f120 (Hz) N (10, 1) 10

Figure 6.5: Distributions of equivalent radiated sound power under different rolling speeds.
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6.4 Summary

6.4 Summary

In this chapter, the proposed method was applied to evaluate the influence of uncertainties in

the structural parameters on the natural frequencies and the sound radiation characteristics under

uncertain excitations. When the deterministic model was established, the gPC expansion method

was used to estimate the influence of uncertainties. The non-intrusive PCM was employed to obtain

the unknown coefficients of the gPC expansion of the natural frequencies and the equivalent radiated

sound power. Considering the concept of linear independence of vectors, the number of selected

collocation points was reduced as much as possible. This yielded an efficient simulation in terms of

computational costs.

Numerical results of the natural frequencies due to uncertain structural parameters were compared

with the MCS, which confirm the effectiveness of the proposed stochastic analysis. It has been

found that the uncertain material and structural parameters affect each natural frequency. The

membrane stiffness EA has a significant influence on the breathing mode of a tire. Furthermore, the

sound power due to the forced vibrations under random concentrated line forces was given. With

the increase of the rolling speed, the uncertainty in excitation makes the dispersion of the equivalent

radiated sound power more significant.
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Chapter 7

Stochastic Analysis of Low-speed Uniformity
of Tires

As previously mentioned, for practical applications, the distribution type of input parameters

should be identified from the experimental data, and then establish the stochastic approximation of

random parameters. In this work, based on the proposed deterministic tire model, the probabilistic

characteristics of the RFV and RFV1H are estimated by the gPC expansion theory. The first step

is to recognize the distribution type of the input uncertain parameters by using Pearson’s model

and to construct the generalized polynomials using the gPC expansion. As stated in Section 5.3.2,

the unknown coefficients of the gPC expansion can be obtained by performing the PCM. Hence,

the second step of the stochastic analysis is to reconstruct the collocation points, which are the

parameter combinations as the input of the deterministic model. Each set of collocation points

includes a vertical displacement and a reconstructed curve of the time-domain RRoc using the

harmonic superposition method. Subsequently, the collocation points are generated from different

sampling methods and the unknown coefficients in the gPC expansion are determined. At the end

of this section, the effects of each factor and the results under different variance levels are discussed

and validated by the comparison with a large amount of test data. The flow chart for the analysis of

the low-speed uniformity using the coupled rigid-flexible ring model is shown in Fig. 7.1

7.1 Low-speed uniformity measurements for stochastic analysis

Tire uniformity measurements are conducted to detect the force variations in the axle during the

rotational motion of tires. Each batch of tires requires comprehensive low-speed uniformity testing
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Figure 7.1: Flowchart of solving the coupled rigid-flexible ring model with uncertain parameters.

of the products before they are sold. The distribution of the low-speed uniformity index can also

provide a reference for structural optimization and production process control of mass-produced

tires. A uniformity testing machine is one of the most common pieces of equipment for examining

the degree of tire non-uniformities nowadays. The tire to be tested is mounted on the spindle of the

testing machine, and during the measurement process, the spindle and the drum are kept stationary

by mechanical support, and their axes are positioned parallel to each other. The action of the ground

is simulated by the rotating drum, which applies a certain load to the tire. This corresponds to

the contact force provided by the road surface to the tires. The vibration from the tire rotation is

transmitted to the drum, and the multi-phase force measurement sensors are fixed to the drum. Once

the distance between the spindle axis and the drum axis is steady, the load sensor and the encoder at

the bottom of the spindle measure the periodic changes in the RFV, TFV, and LFV of the tire.

The measurement implementation of tire uniformity on the high-speed uniformity (HSU) test

machine is given in Section 4.1. Here, for the stochastic analysis, the measured amplitude values of

the RRocs and their corresponding RFVs for the same batch consisting of 200 tires are obtained

from the LSU test machine on the factory floor, which are the indicators for the uniformity testing

program to be performed before sales. This set of data is applied for the identification of the

distribution type of uncertain parameters. In addition, 1130 tires are measured for the validation

of the stochastic analysis. The results are given in the model validation part in Section 7.4.3. The

classification and usage of all uniformity measurement data are listed in Table 7.1.
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7.2 Determination of parameter distribution type from experimental data

Table 7.1: Classification and usage of the uniformity measurement data.

Number of tested tires Type of data Usage Test equipment

1
Time traces of

RRoc and RFV

1. Parameter identification;

2. GA-based optimization.
HSU Test Machine

2
Time traces of

RRoc and RFV
1. Validation of the deterministic model. HSU Test Machine

200
Fz, RRoc, RRoc1H

RFV, RFV1H

1. Identification of distribution types;

2. Validation of stochastic analysis.
LSU Test Machine

1130
Fz, RRoc, RRoc1H

RFV, RFV1H

Validation of the conclusions regarding

1. the effects of individual parameters and

2. different variance levels of uncertainties.

LSU Test Machine

7.2 Determination of parameter distribution type from

experimental data

To carry out stochastic analysis, it is necessary to accurately know the distribution type of the

given parameters from the experimental data. The fit to the samples can be achieved by applying

the following general Pearson model [142, 143]. Pearson system provides a unique PDF for

each uncertain parameter, including many typical PDF types (e.g., normal, beta, and gamma

distributions). The estimation is carried out based on the 3rd and 4th central moments of the samples.

The implementation of the Pearson framework to identify the PDF type of the experimental data

only requires the calculation of the coefficients β1 and β2 related to the central moments. Assume

that f (ζz) is the PDF of the standardized random variable ζz, which corresponds to the measurement

data ζ . In this case, the Pearson model is expressed as

d f (ζz)

dζz
=

a+ζz

b0 +b1ζz +b2ζ 2
z

f (ζz), (7.142)

with

a = b1 =
√

µ2
(β2 +3)

√
β1

10β2 −12β1 −18
, b0 = µ2

4β2 −3β1

10β2 −12β1 −18
, b2 =

2β2 −3β1 −6
10β2 −12β1 −18

,

(7.143)
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7 Stochastic Analysis of Low-speed Uniformity of Tires

where ζz is the standardized random variable, ζz = (ζ −µζ )/σζ ; µζ represents the mean value, and

σζ denotes the standard deviation. The Pearson system is used to illustrate various distribution

types in terms of the skewness β 2
1 = µ2

3
/

µ3
2 and the kurtosis β2 = µ4

/
µ2

2 , in which µk is the kth

statistic central moment. The Pearson family curves and the corresponding distribution types are

shown in Appendix C.2.

For the stochastic analysis of the RFV, the distribution type of three input parameters, including

the vertical load, the RRoc, and the first harmonic of the RRoc (RRoc1H), are identified. The

identified sample consists of 200 measurements. For each parameter, the respective β 2
1 and β 2

2

are calculated and compared with the Pearson family curves to obtain the distribution type. The

estimation of these three parameters is shown in Fig. 7.2. Although the distribution types defined by

a boundary line, such as Type V and Type III, are presented in the figure, the point corresponding to

β 2
1 and β 2

2 calculated from a set of experimental data is hardly located on a line. Therefore, the only

distribution types that can be considered are Types I, VI, and IV, which are defined by regions. It is

found that all uncertain parameters are distributed according to Type I, i.e., beta distribution [149].

The probability density function of the beta distribution is shown as

f (x;α,β ) =
1

B(α,β )
xα−1(1− x)β−1,(α,β )> 0, (7.144)

where B(α,β ) is the beta function, and (α,β ) are the shape parameters. The histograms of the

test data and the fitted PDF are given in Fig. 7.3, and the shape parameters of the identified beta

distribution are shown in Table 7.2. Based on the identified distributions, Jacobi polynomials are

selected as the basis functions for the gPC expansion [139], see in Appendix C.1.

Figure 7.2: The identified distribution type for the measured input data on the Pearson system.
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7.3 Construction of collocation points

(a) Vertical load (Fz). (b) Radial run-out of the center-
point (RRoc).

(c) The first harmonic of the
radial run-outof the center-point
(RRoc1H).

Figure 7.3: The identified PDF of the input parameters, including Fz, RRoc, and RRoc1H.

Table 7.2: Shape parameters of the beta distributions of the random input variables.

Mean value µξ Standard deviation σξ Shape parameters α Shape parameters β

Fz 3921.5 86.856 1.83 1.14

RRoc 0.3207 0.0877 2.99 6.32

RRoc1H 0.1788 0.0870 2.43 3.44

7.3 Construction of collocation points

According to the theory of stochastic analysis illustrated in Section 3, to evaluate the coefficients in

the gPC expansion Eq. (5.135 ) by implementing the PCM, a sufficient number of collocation points

need to be selected. A set of collocation points contains three input parameters, i.e., the vertical

load, RRoc, and RRoc1H. In order to obtain the response of the RFV, each set of collocation points

needs to be converted into a form that can be called in the deterministic model. Therefore, the

vertical load should be converted into the equivalent vertical deflection, and the given amplitudes of

the RRoc and RRoc1H should be utilized to reconstruct a random time trace of the radius deviation

in one period by using the harmonic superposition method.

In the method of gPC expansion, the dimension of the standard random variable ζζζ indicates the

number of different random sources in the system. The two random variables considered in this

paper with correlation are the RRoc and RRoc1H. Therefore, it is considered that these two random

variables have the same random sources in the tire structure, i.e., these two sets of random variables
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7 Stochastic Analysis of Low-speed Uniformity of Tires

correspond to the same random variable ζi in the standard random space. Once the collocation

points are generated in the standard random space, two sets of collocation points in the physical

space are created respectively by using the probability density functions of RRoc and RRoc1H.

Then, the corresponding curves of radial runouts are generated.

Vertical loads

For a specific tire structure and dimension, the proposed contact model can accurately establish

the deflection-force relation in the vertical direction, which was validated by the radial stiffness

measurements (in Section 3.4.1). Because there is a unique deflection associated with each value of

the vertical contact force, the overall vertical displacement under a specified load can be derived by

interpolating the deflection-force curve. It will be used as the input of the coupled rigid-flexible

ring model afterward.

Reconstruction of time-domain RRoc curves

Considering the application conditions of the ring model, it is necessary to construct a time-domain

curve of the RRoc before performing the stochastic analysis. Since the fluctuations of the radius

are continuous, in this section, the harmonic superposition method is adopted to construct the

time-domain curve of RRoc. After specifying the maximum peak-to-peak values of the RRoc and

RRoc1H, a continuous curve of a fluctuating radius in one period is constructed by superimposing

the sinusoidal functions up to the 30th order. The amplitude and phase of each order of the sinusoidal

function are chosen randomly. When the error between the peak-to-peak values of the generated

curve and the specified value, i.e., RRoc, is less than 1× 10−4mm, the reconstructed curve is

assumed to fulfill the requirements. A set of recreated time-domain curves of RRoc is given in

Fig. 7.4.

Once the vertical displacements and the RRoc curves are obtained, they are adopted as the input of

the deterministic model corresponding to the collocation points. In combination with the PCM, the

stochastic analysis of the non-uniformities of tires is carried out.

7.4 Numerical Results of stochastic analysis

Harmonic analysis is a very significant part of the testing process for tire uniformity. In this subsec-

tion, the distributions of RFV and RFV1H under the influence of the uncertain geometric parameters
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7.4 Numerical Results of stochastic analysis

Figure 7.4: A set of reconstructed profile curves of RRoc.

of the tire and the vertical load are analyzed. Firstly, the convergence of different selection methods

for the collocation points, i.e., random sampling, LHS, and the linear-independence-based roots

method, is presented and compared with the MCS results. Furthermore, the numerical results are

compared with the test data obtained on the test rig for 200 tires. The validity of the proposed

stochastic analysis method is demonstrated. Then, based on the framework of the stochastic analysis,

the effect of each input parameter on the RFV is estimated. Finally, the degree of dispersion of

RFV at different variance levels is discussed. For some conclusions obtained from the parametric

analysis, the test data of 1130 other tires are used for contrast and verification.

7.4.1 Prediction of RFV and RFV1H

A decisive step for gPC expansion is to solve the coefficients of the stochastic polynomial expansion.

When a PCM is adopted, the number of collocation points should be larger than the number

of undetermined coefficients. For instance, Isukapalli et al.[94] suggested that the number of

collocation points should be twice the number of unknown coefficients. Then the least-squares

regression can be employed to determine the coefficients. Unfortunately, sometimes even if the

number of collocation points is more than four times the number of gPC coefficients, a satisfactory

result is still not obtained. A sufficient number of collocation points theoretically ensures the

precision of the simulation. However, it results in lower computational efficiency and may even

be more computationally intensive than MCS. It is seen that the selection of collocation points

significantly affects the computational efficiency and accuracy of the results of gPC expansion.

Therefore, three different sampling methods of the PCM (including the random sampling, the LHS,
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7 Stochastic Analysis of Low-speed Uniformity of Tires

and the linear-independence-based roots method) and MCS are applied in this paper to illustrate the

impacts of the uncertain parameters on the RFV and its harmonics. The efficiency and accuracy

differences due to these different sampling methods are analyzed. First, the random variables are

estimated on the basis of the gPC expansion theory. In this case study, a 5th-order gPC expansion is

made to approximate the output response, of which the coefficients are derived by the PCMs. The

traditional MCS is applied as a reference for computational efficiency and accuracy in stochastic

analysis. Fig. 7.5 shows a comparison between the simulation results of the MCS and PCMs and

the test data of RFV and RFV1H, which proves the validity of the gPC-based theoretical framework

established in the previous section.

(a) Radial force variation (RFV). (b) The first harmonic of the radial force variation
(RFV1H).

Figure 7.5: Comparison between the simulated results using the MCS and PCMs and the measure-
ment data of RFV and RFV1H.

7.4.2 Discussion of the selection of collocation points

1. Comparison between random sampling and LHS

The effective selection of the collocation points should be discussed before performing an extensive

stochastic simulation. In this study, the number of coefficients to be determined N is 21. The

computational efficiency of the random sampling, the LHS, and the linear-independence-based roots

method are discussed in terms of integer multiples of N. Figs. 7.6(a) and (b) present a comparative

plot of the results with the different numbers of collocation points obtained by applying random

sampling and LHS. It is observed that to achieve sufficient accuracy, the number of sample points

required for random sampling NR is 126. In comparison, the number required for LHS NLHS is 84.
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7.4 Numerical Results of stochastic analysis

(a) Different numbers of colloca-
tion points obtained by applying ran-
dom sampling.

(b) Different numbers of colloca-
tion points obtained by applying
LHS.

(c) Different selection methods of
collocation points with the same
number of unknown coefficients.

Figure 7.6: Comparative plot of the RFV results with the different combinations of collocation
points.

From this, it is suggested that the computational efficiency of the LHS technique for generating

collocation points for the dynamic response analysis of tires is slightly higher than that of the

random sampling method. However, the number of collocation points required for both is still much

larger than N.

2. Efficiency of the linear-independence-based roots method

According to the linear-independence-based roots method proposed in the previous section, it can

effectively generate a matrix of coefficients with a full row rank, i.e., the rank of the matrix A (in

Eq. (5.138)) is exactly equal to the number of coefficients to be determined N. The prediction

results of different selection methods when the number of collocation points is set to 21 are given in

Fig. 7.6(c). It is clear that the improved collocation method has a significant advantage in terms

of computational efficiency. Especially in the small sample condition, the linear-independence-

based roots method shows good performance with higher precision than the traditional algorithms.

Furthermore, the assignment of the collocation points depends on the type of random variables, the

dimension of the random vector, and the order of the gPC expansion, which does not rely on the

deterministic model. Therefore, a linear-independent examination can be carried out before the

complete computational process.

The comparison of different collocation methods with 21 collocation points summarizing the

simulation results of all the collocation point schemes is presented in Fig. 7.7 by means of box

plots. A box plot easily provides a visual representation of summary statistics for a data sample and

displays the comparison between the distribution of prediction results of a certain algorithm and
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other models. In Fig. 7.7, the red dotted line shows the median of the experimental samples, which

provides a reference line for the other prediction methods. Using this figure, it is possible to clearly

distinguish the differences in the number of collocation points and their selection methods. As an

example of the random sampling technique (all box plots in blue), with an increasing number of

collocation points (from 21 to 126), the median of RFV is closer to the experimental value, and the

distribution results of the data tend to converge. Similarly, cases with the same number of collocation

points can be easily evaluated. When the numbers of collocation points generated by different

selection methods are all 21, i.e., the group PCM21 in Fig. 7.7, it is found that the Indep-PCM

method (yellow box plot) achieves significantly better prediction results than the random sampling

method (blue box plot) and the LHS (orange box plot).

The errors of different PCMs are shown in Table 7.3. The results indicate the effectiveness of the

PCM based on the linear-independence principle. The Indep-PCM does not lose much computational

accuracy while reducing the amount of computational effort. For example, the error in the mean

value of the RFV is only 3.9%, but the number of sample points generated by the linear-independent

collocation technique is less than 1/6 of those generated by the random sampling method. It is

noticed that even if 84 collocation points are selected by conventional LHS, the prediction accuracy

of the mean value has not been significantly improved. The Indep-PCM is more efficient than the

conventional PCM, especially compared with the MCS. As a result, the coefficients of the gPC

expansion are calculated based on the Indep-PCM in the subsequent part.

A brief illustration of computational efficiency is given here. In fact, during the analysis flow of

the PCMs, each set of collocation points is used as an input to the deterministic model. Therefore,

the number of collocation points is the same as the number of calls to the deterministic model, i.e.,

the number of collocation points is proportional to the simulation time of the stochastic analysis.

Moreover, the selection of collocation points is accomplished before the whole stochastic analysis.

Once the distribution of the uncertain parameters and the order of the gPC expansion are determined,

the collocation points are generated independently of the deterministic model. In this paper, the

Indep-PCM method shows the highest accuracy with the same number of collocation points.

7.4.3 Impacts of each uncertain parameter

1. Impacts of Fz and RRoc

A specific situation when the uncertainty exists only in one parameter and the other input variables

remain deterministic is considered. It is observed in Figs. 7.8(a) and (b) that the uncertainty of

RRoc has a significant impact on the RFV and RFV1H of the tire. Obviously, the influence of the
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7.4 Numerical Results of stochastic analysis

Table 7.3: The mean values and variances of the estimated RFV by using different sampling
methods.

Number of

collocation points
Mean value

Error of mean

value (%)

Standard

deviation

Error of standard

deviation (%)

Measurement - 43.77 - 13.46 -

MCS 2100 46.63 6.534 13.80 2.526

Random sampling

21 59.21 35.27 51.81 284.92

42 46.44 6.102 14.44 7.286

84 46.86 7.050 12.65 -5.964

126 44.87 2.513 13.52 -0.413

LHS

21 57.55 31.48 45.38 237.2

42 45.21 3.290 15.82 17.53

84 45.65 4.295 14.76 9.66

PCM-Indep 21 45.49 3.922 15.25 13.30

uncertainty from the RRoc on the dispersion of the RFV is remarkably greater than that from the

vertical load Fz. The results show that the separate uncertainty in Fz leads to a spike in the PDF of

the RFV, where the response is mainly distributed around the deterministic value. This implies that

the deviation of the test equipment does not greatly affect the RFV measurement results when the

tire is assumed to be of an ideal structure. The dispersion of the RFV is mainly caused by the tire

structure.

Moreover, the impact of the RRoc is still predominant in the analysis of RFV1H. However, compared

to the prediction of the RFV, the effect of Fz starts to become more pronounced. There is also a

bias from the peak value of the PDF caused by the RRoc. That suggests that both the geometric

imperfections and the deviation of the vertical load lead to the dispersion of the harmonics of the

RFV. It also indicates that the sources underlying the distribution of the harmonics are complex,

and the major factors that affect each order of harmonics are not exactly the same.

Here, the conclusions drawn from the simulation model need to be verified by measurements.

However, for the 200 sets of test tires applied for the identification of the uncertain parameters, the
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7 Stochastic Analysis of Low-speed Uniformity of Tires

Figure 7.7: Boxplots of different selection methods of the collocation points. The line inside each
box is the sample median, and the red dotted line shows the median of the experimental
samples. (The number after the word “PCM" indicates the number of the collocation
points.)

distributions of the vertical loads and the RRocs are uniquely determined. Thus, the data used for

verification of the influence of each individual factor should have a different distribution of vertical

loads and the RRocs than the test data of the 200 existing sets of tires. In fact, the results of this

paper should be verified by adjusting the production process. This is intuitive. For example, by

modifying the accuracy of the production and testing processes, it is possible to obtain a set of test

loads and tire uniformity parameters that fit new distributions.

For simplicity, a large amount of tire test data is directly selected to examine the findings presented

in this section. The validation is carried out using the test data from 1130 other tires of the same type

and size. It is always possible to generate new distributions of uncertain parameters by selecting

among these 1130 tires so as to simulate the results of production process control. Based on the

results from the simulation, it is expected to screen a sample set from 1130 tires whose distribution

of vertical loads is significantly different from that of the 200 tires, while their RRoc distribution is

as identical as possible. If the predictions are correct, then the effect of the vertical load will be

minor, and the results for the two sets of RFV and RFV1H should be determined by RRoc, i.e., their

distributions should be as close as possible.

Therefore, there are 929 sets of samples selected from the 1130 tires by using the acceptance-

rejection sampling method so that their distribution is as identical as possible to the beta distribution

of the 200 modeling sets. Compared with the 200 modeling data, the distribution of the vertical

load Fz of these samples is more concentrated, which can be used to check the impacts of different

factors on the RFV. As mentioned before, with the same distribution of the RRoc, this data selection
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7.4 Numerical Results of stochastic analysis

(a) Radial force variation (RFV). (b) The first harmonic of the radial force variation
(RFV1H).

Figure 7.8: Individual impact of each parameter (Fz and RRoc) on the RFV.

can verify whether the responses of the RFV and RFV1H for a large number of tires are consistent

with the inferences drawn in this subsection. The distributions of Fz and RRoc for the selected test

samples are given in Fig. 7.9. It is observed that the distribution of Fz is more concentrated for

the selected data (Fig. 7.9(a)), while RRoc keeps the same beta distribution as much as possible

(Fig. 7.9(b)). The corresponding results for the RFV and RFV1H are shown in Fig. 7.9(c) and (d),

where it is seen that even though the variances of the distributions of Fz are significantly different,

the RFV and RFV1H have not produced a large discrepancy. In contrast, RRoc is the factor that

accounts for a more dominant influence. It is in agreement with the conclusions obtained from the

simulation.

2. Discussion of RRoc1H

Since it is necessary to provide the input values of the RRoc and RRoc1H when generating the

outer profile of the tire, an assumption is taken for a particular condition in this section. When

the information about the distribution of the RRoc1H is incomplete, it is supposed that the data

is a set with the same distribution as RRoc. The computational results, in this case, are shown in

Fig. 7.10. With such an assumption, the prediction of the RFV1H presents a large deviation from the

original measurement. It also indirectly points out that RRoc1H is a principal component impacting

RFV1H. Hence, it is essential to take into account the distribution of RRoc1H when reconstructing

the run-out curves.
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7 Stochastic Analysis of Low-speed Uniformity of Tires

(a) Vertical load Fz. (b) RRoc.

(c) Radial force variation (RFV). (d) The first harmonic of the radial force variation
(RFV1H).

Figure 7.9: Comparison between the modeling data (orange) and the 929 sets of test samples, which
are selected from the 1130 sets of tires (gray).

7.4.4 Impacts of the variance level of uncertainties

In this section, the impacts of the level of uncertainties in the model parameters on the RFV are

investigated. The original distribution shape of the uncertain parameters is kept the same, but

their range of values is changed from 90% to 60% of the original range. As shown in Fig. 7.11,

the corresponding dynamic response is more dispersed as the uncertain level of the geometric

defects and the vertical load increase. Observing the response of RFV1H, the dispersion can be

obviously improved by keeping the input parameters at 90% of the original distribution interval.

However, further concentration of the parameters does not yield a corresponding improvement in

the dispersion of the response.
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7.4 Numerical Results of stochastic analysis

(a) Radial force variation (RFV). (b) The first harmonic of the radial force variation
(RFV1H).

Figure 7.10: Simulated results under the assumption that the RRoc1H has the same distribution as
the corresponding RRoc.

The conclusions in this section are also validated by a large amount of test data. For simplicity, this

study simulates the results of the production process control by selecting among these 1130 tires.

For instance, a smaller interval of the RRoc distribution represents an optimization of the production

process, which means that some tires with a larger radial run-out will not be produced. This process

is implemented by selecting among 1130 tires, i.e., reserving the samples with smaller RRoc and

comparing the test results of their corresponding RFVs with the model predictions. The samples of

the RRoc with different distribution intervals are selected from 1130 tires, and the corresponding

statistics for RFV and RFV1H are calculated. The results based on a large amount of test data are

presented in Fig. 7.12. As an example, the distributions of RFV in the original distribution interval

and in 60% of the interval of the original data are shown in Fig. 7.12(a). For other distribution

intervals, the results are similar. Therefore, a comparison of the statistics, i.e., the mean value

and standard deviation, with the predicted results of the proposed method are directly given in

Figs. 7.12(b)-(d).

Apparently, when the mean value of the RRoc is kept constant, the RFV and RFV1H do not vary

with the uncertainty level of the input parameters. This is demonstrated in the predicted results and

the test data. For the standard deviation that is of greater concern, both RFV and RFV1H yield no

significant concentration even when the input distribution interval of RRoc has been reduced to

80% of the original one. Only when the distribution interval of RRoc is further decreased are the

distributions of RFV and RFV1H better controlled. Although there have been some deviations in the

prediction of the values, the trends of the variations are predicted accurately. These errors probably
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7 Stochastic Analysis of Low-speed Uniformity of Tires

(a) Radial force variation (RFV). (b) Boxplots of RFV - all variance levels.

(c) The first harmonic of the radial force variation
(RFV1H).

(d) Boxplots of RFV1H - all variance levels.

(e) Mean values and standard deviations of the RFVs and the
RFV1Hs.

Figure 7.11: Simulation of the impacts under different variance levels of uncertainties in the uncer-
tain parameters on the RFVs and RFV1Hs.
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7.4 Numerical Results of stochastic analysis

(a) The PDF of the corresponding RFVs for the differ-
ent distribution intervals of RRoc (original and 60 vari-
ances%).

(b) Mean value of the RFV and RFV1H.

(c) Standard deviation of the RFVs. (d) Standard deviation of the RFV1Hs.

Figure 7.12: Comparison between the predicted results of RFV and RFV1H at different variance
levels and a large number of test data.
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7 Stochastic Analysis of Low-speed Uniformity of Tires

result from the uncertainties of other structural parameters of the tires, which are not considered in

the model proposed in this paper, for example, the uneven distribution of tread stiffness, the radial

dimensional run-out in the width direction, etc.

7.5 Summary

This chapter discussed the quantification of the uniformity parameters on the dynamic response of the

tire. The prediction of the distribution of the RFV is presented by implementing the gPC expansion,

and the computational efficiency of the PCM with different sampling methods is investigated.

Finally, considering the uncertainty in the vertical load and the geometric imperfection individually,

the effects of different parameters and variance levels on the distribution of the responses are

estimated and compared with a large number of measurements.

In the stochastic analysis, the influences of the uncertainties in the vertical load and the geometric

defects on the radial force variation were estimated by implementing the gPC expansion theory.

The distribution types of the vertical load, the radial run-out of the center-point (RRoc), and the first

harmonic of the radial run-out of the center-point (RRoc1H) were identified as beta distributions

based on the measurement results of 200 tested tires using the Pearson model. Then, the expression

of gPC expansion for the corresponding output response was constructed in terms of the tensor

product. A non-intrusive probabilistic collocation method was adopted to obtain the unknown

coefficients of the gPC expansion of the radial force variation and its first harmonic. Using the

concept of linear independence of vectors, the number of selected collocation points was minimized

by considering different methods of construction of the collocation points. This yielded an effective

simulation in terms of computational cost. To generate collocation points, the reconstruction

methods for the vertical load and the profile curves with geometric defects were developed for the

deterministic model.

The numerical results of the radial force variation and its first harmonic induced by the uncertain

structural parameters were compared with extensive measurement data from 1130 tires and Monte

Carlo simulations, which confirm the validity of the proposed stochastic analysis. For the individual

impact of each parameter, it was found that the deviation from the testing equipment has a minor

effect on the measurements of radial force variations, whereas the dispersion of the force is

predominantly caused by geometric defects. Furthermore, with the increase in the uncertainties of

the geometric defects and the vertical load, more scattered distributions of the dynamic response

are exhibited. Yet a further concentration of the parameters does not produce a corresponding

improvement in the dispersion of the radial force variation.
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Chapter 8

Conclusion and Outlooks

8.1 Summary

From the motivation, based on the theory of the ring model of tire dynamics, a novel theoretical

model is presented to describe the in-plane and out-of-plane vibrations, the steady-state response,

and the dynamic response characteristics of tires. Then, it has been extended to evaluate the influence

of uncertainties in the structural, material, and geometric parameters on the natural frequencies and

tire uniformity.

This study first gives the theoretical derivation of a three-dimensional flexible ring model. It extended

the existing ring models to the out-of-plane vibration and the steady-state response analysis. Herein,

the Hamilton principle is adopted to derive the governing equations. The accuracy of the model

is then evaluated by the deterministic prediction of the natural frequencies and the steady-state

response of a tire. A simplified scale, the equivalent radiated sound power, is adopted to describe

the overall steady deformation characteristics of the tire. The results are in good agreement with the

solution given in the literature [44] and the experimental results in [32].

Considering the practical operating conditions of tires, the proposed tire model should be capable

of analyzing the transient response. In this thesis, a new theoretical model is developed to evaluate

the characteristics of the dynamic responses of tires, which is also used to analyze the transmission

mechanism of the radial force at the spindle due to road unevenness and geometric defects in tires.

Based on the theory of the tire ring models, a coupled rigid-flexible ring model is presented. By

simplifying the three-dimensional ring model into a two-dimensional model, the in-plane dynamic

responses of the tire are analyzed. A contact algorithm based on the flexible ring provides a pressure

distribution on the tire-road contact patch and the length of the footprint under different vertical
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8 Conclusion and Outlooks

loads. The dynamic responses are then represented by combining the rigid ring model with the

flexible ring model. Further, the identification of model parameters and the optimization approach

by utilizing the test data are given. The accuracy of the contact algorithm and the transient responses

are validated against experimental radial stiffness and over-cleat tests, respectively. In addition,

this model is extended to the analysis of the low-speed uniformity of tires with geometric defects

and verified experimentally. It indicates that the novel proposed model offers many application

scenarios and extension possibilities.

How to control tire non-uniformities has always been a core issue for tire manufacturers. Considering

the uncertain structural and geometric parameters induced by the manufacturing process of tires,

the developed deterministic model is combined with the gPC expansion theory to estimate the

impacts of parameter uncertainties on the dynamic response. In order to investigate the impacts

of structural imperfections, the gPC theory and the probabilistic collocation method are briefly

introduced, respectively. Then a practical tire is applied to be modeled. The impacts of the elastic

and structural uncertainties on the natural frequencies of the tire are first investigated in this thesis.

The uncertain parameters and the desired responses are approximated by using the truncated gPC

expansions having a random orthogonal basis. The probabilistic collocation method is employed

to obtain the deterministic coefficients in the gPC expansions. Based on the concept of linear

independence of vectors, the number of selected collocation points is significantly reduced. This

technique is applied to investigate the influences of elastic and structural uncertainties on the natural

frequencies of the tire. It yields an efficient simulation for the stochastic dynamic analysis of the

ring model. The numerical results are in good agreement with the MCSs. Additionally, this thesis

also describes the distributions of the sound power due to the forced vibrations under the uncertainty

in the external force terms.

Furthermore, this study implemented a stochastic prediction of low-speed uniformity of tires, which

is applied for the optimization of manufacturing processes and quality evaluation before the mass

production and the marketing process. the coupled rigid-flexible ring model is extended to the

stochastic analysis of the in-plane dynamic response characteristics owing to the geometric non-

uniformities of the tire. For the prediction of the production quality for a significant number of tires,

the influence of the uncertainty of geometric defects on the RFV and its first harmonic is thoroughly

discussed. The computational efficiencies of MCSs, PCMs, and 200 sets of measurement data are

compared. Also, the results are illustrated for the individual effects of each parameter. Finally, the

distributions of the responses under different variances of the uncertain inputs are given. Through

the validation by using extensive experimental data (1130 sets), it is evident that the proposed

technique achieves an effective prediction for the low-speed uniformity of the mass of tires so as to
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provide guidance for production optimization before the products are shipped.

8.2 Primary contributions of the thesis

This thesis studies the tire modeling problem of the three-dimensional vibration, dynamic responses,

and uniformity analysis. The proposed model is applied to the uncertainty quantification of the

responses caused by the structural and geometric imperfections of tires. The primary contributions

of this thesis mainly include the following two aspects, which are tire modeling and its application

in uncertainty quantification.

1. Tire modeling

a) Three-dimensional flexible ring model

A novel three-dimensional ring model for the free vibration and steady-state response of

a tire (has been proposed. Especially, the out-of-plane deformation had been completely

discussed. Additionally, by relaxing the in-extensibility assumption and considering

the out-of-plane deformation, the analytical expression of the steady-state response has

been given. By comparing the solutions with the results proposed in the literature, it

shows that, for a tire with high circumferential stiffness, the equations are simplified by

using the assumption of in-extensibility without losing much precision, but some special

modes (breathing mode) cannot be obtained due to the limitation of the deformation.

The concept of equivalent radiated sound power has been introduced to evaluate the

overall vibrating velocity of the ring surface, consisting of the in-plane and out-of-plane

bending and lateral torsion. From the foregoing analysis, it is found that the rolling

speed results in a mode splitting. However, this splitting due to rotation does not apply

for the 0th-order natural frequencies.

b) Coupled rigid-flexible ring model

In this study, a theoretical model has been developed to evaluate the characteristics

of the in-plane dynamic responses of tires and analyze the transient responses at the

spindle on the uneven road surface. A contact algorithm based on the 2D flexible ring

provides a pressure distribution on the tire-road contact patch and the length of the

footprint under different vertical loads. The comparison of the static radial stiffness

between the experimental data and the simulated results demonstrates the theoretical

basis and rationality of the flexible ring model as an approximation for the steady-state
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deformation and tire-road contact. The transient dynamic response is then estimated by

combining the rigid ring model with the flexible ring model. The applicability of the

model in the simulation of transient response has been validated by the experimental

data of over-cleat tests at different speeds and different vertical loads. In this way,

the proposed new method has the merits of both high accuracy up to 150Hz and low

computing cost.

Further, the identification of model parameters based on the static stiffness measurements

and the over-cleat test, and the optimization approach have been given. The nonlinear

least-squares method has been adopted to determine the physical parameters of a specific

tire in this work, and a set of measured data of the static stiffness and the over-cleat

responses has been chosen as the performance index of the identification algorithm.

In addition, this model has been extended to the analysis of low-speed uniformity of

tires with geometric defects and has been validated experimentally. For the uniformity

analysis of tires, the GA has been adopted to determine the physical parameters of

a specific tire, and a set of RFV has been chosen as the performance index of the

simulated algorithm. The impacts of the geometric imperfection have been evaluated in

the proposed model. It has been found that a small amplitude fluctuation of the RRoc can

lead to a large variation of the steady-state vertical contact force. Moreover, the filtering

effect of the tire structure on the RRoc has been shown, which includes the influence of

the elasticity of the material and the geometric construction. The time-domain analysis

shows that the RRoc is the most dominant factor affecting the RFV at low speed. By

comparing the simulation result with the experimental data, it can be stated that the

developed model adequately evaluates the amplitude and peak positions of the RFV.

Furthermore, the one-sided amplitude spectrum and the power spectrum of the RFV

simulation results have been accurately predicted. The accuracy and reliability of the

extended method based on the coupled rigid-flexible ring model have been validated in

the low-speed uniformity analysis for the tires with geometric defects. It indicates that

the novel proposed model offers many application scenarios and extension possibilities.

2. Applications in uncertainty quantification

a) Natural frequencies and steady-state response

The gPC expansion method has been applied to estimate the influence of uncertainties.

The non-intrusive PCM has been employed to obtain the unknown coefficients of the

gPC expansion of the natural frequencies and the equivalent radiated sound power.
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Considering the concept of linear independence of vectors, the number of selected

collocation points has been reduced as much as possible. This approach yields an

efficient simulation in terms of computational costs.

The numerical result of the natural frequencies due to uncertain structural parameters

has been compared with the MCSs, which confirms the effectiveness of the proposed

stochastic analysis. It indicates that the uncertain material and structural parameters

affect each natural frequency. The membrane stiffness EA has a significant influence

on the breathing mode of a tire. Furthermore, the sound power due to the forced

vibrations under random concentrated line forces has been estimated. With the increase

of the rolling speed, the uncertainty in excitation makes the dispersion of the equivalent

radiated sound power more significant.

b) Low-speed uniformity

In the stochastic analysis, the influences of the uncertainties in the vertical load and the

geometric defects on the RFV have been estimated by implementing the gPC expansion

theory. The distribution types of the vertical load, the RRoc, and the RRoc1H have

been identified by the Pearson model. Then, the expressions of gPC expansion for the

corresponding output response have been constructed in terms of the tensor product.

A non-intrusive PCM has been adopted to obtain the unknown coefficients of the gPC

expansion of the RFV and RFV1H. Employing the concept of linear independence of

vectors, the number of selected collocation points has been minimized by considering

different methods of construction of the collocation points. It yields an effective simula-

tion in terms of computational cost. To generate collocation points, the reconstruction

methods for the vertical load and the profile curves with geometric defects have been

developed for the deterministic model.

Numerical results of the RFV and RFV1H induced by the uncertain structural parameters

have been compared with extensive measurement data and MCSs, which confirm the

validity of the proposed stochastic analysis. For the individual impact of each parameter,

it is found that the deviation from the testing equipment has a minor effect on the RFV

measurements, whereas the RFV dispersion is predominantly caused by geometric

defects. Furthermore, with the increase in the uncertainties of the geometric defects and

the vertical load, more scattered distributions of the dynamic response are exhibited. Yet,

a further concentration of the parameters does not produce a corresponding improvement

in the dispersion of the RFV.
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8.3 Shortcomings

Although the proposed models and the algorithms for uncertainty quantification achieved the above

contributions, there still exist some shortcomings that should be paid attention to in future work.

First, in Chapter 2, the developed three-dimensional flexible ring model has been only studied by

considering the damping effect existing in the sidewall. However, the viscoelastic effect of the

rubber is always existed, which has not been introduced in this model. In addition, the composite

structure of the belt and tire body, i.e., a rubber-cord structure, has not been considered in this work.

In this case, these material and structural properties should be modeled in the description of tire

dynamics.

Second, in Chapter 3, a new model has been developed to analyze the dynamic responses of tires.

Indeed, it achieves the desired performance in in-plane dynamics and the description of the radial

run-outs, but another significant aspect, i.e., the out-of-plane dynamics such as lateral dynamics,

steering, camber, etc., has not been modeled and discussed. There is no doubt that an overall

simulation for handling stability and riding comfort is complex and challenging.

Third, in Chapter 4, the model proposed in this work can be taken as a theoretical basis for diverse

tire analyses. One possible outlook is to continuously improve the impacts of uniformity parameters,

such as the high-speed uniformity analysis, in which mass imbalance is a critical factor. The

resonance effect of tire rotation can significantly affect the riding comfort of the vehicle, which has

not been considered in this thesis.

At last, in Chapters 6 & 7, the applications in the uncertainty quantification of natural frequencies

and the low-speed uniformity have been proposed. It is meaningful to investigate the impacts of the

structural, material, or geometric uncertainties. However, it is not always suitable to assume that the

random variables are independent. The correlation or dependence between these random variables

should be evaluated and further introduced into the algorithm.

8.4 Outlooks for further research

1. Involve the nonlinear stiffness of tires in the model

Structure, geometry, and material distribution should be simultaneously considered in a tire

dynamics model. The tire model established in this thesis has simplified the sidewall as a

set of linear radial and tangential springs. In practical conditions, the stiffness of the tire

sidewall is nonlinear and exhibits viscoelastic properties because of rubber [53, 130, 150].
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Compared with the geometry of the tire, the deformation is small so that the sidewall stiffness

can be linearized. However, under a heavy vertical load or under an operating condition

with a large slip or camber angle, the loads applied on the tire will change the values of the

static and dynamic stiffness of the sidewall due to non-linearity, although to some extent the

linear model will still be valid in a small deviation range of the deformation. Therefore, in

future work, the non-linearity and viscoelastic properties should be involved in the modeling

process of tire dynamics. We hope that it will have a more accurate performance in the large

deformation problems of tires. Notably, a further-developed model should have an overall

promising balance between precision and computational costs.

2. Derive a new tire-road contact model

Ideally, a tire model should be applicable in different operating conditions. In this thesis, the

tire-road contact algorithm only deals with a free-rolling tire on road surfaces. The method

proposed in Chapter 3 can be further developed to solve the responses of braking or driving

tires. To achieve that objective, two issues need to be discussed in detail. The first one is

that the tire-road contact model should have the ability to capture the relationship between

the longitudinal force and the slipping ratio in the contact area. While the concept of the

relaxation length has been introduced into this model, the assumption that the relaxation

length is set as the half contact length is only suitable for the longitudinal slip within the linear

region [14, 125]. Secondly, the equations of motion of tires should be combined with those of

the rim or motor, so that the torque can be reflected and simulated in the tire-wheel assembly.

As mentioned before, it may lead to large tire deformation, which needs the description of the

non-linear characteristics of the sidewall stiffness.

3. High-speed uniformity (HSU)

In the low-speed uniformity analysis, the rolling speed of a passenger tire is one revolution

per minute, i.e., approximately 7km/h of test speed. However, in the high-speed uniformity

measurement at 70km/h, the frequency of the first harmonic of radial force variation will be

approximately 10Hz. Similarly, the second harmonic is 20Hz, etc. The frequency of each

order harmonic will increase as the increased of rolling speed of the tire. At some specific

speeds, the frequency of a harmonic will be close to the natural frequency of the tire and then

excite resonance, where the amplitude of the force variation will dramatically increase.

Therefore, the harmonics in the high-speed uniformity analysis usually receive greater at-

tention than the overall force variations. To reduce the impacts of the internal tire non-

uniformities, a theoretical model for high-speed uniformity analysis should establish the

underlying correlation of the tire imperfections with one or more of the harmonics. Especially,
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the mass imbalance will become a significant factor in the force variations with an increasing

speed, of which the corresponding response is proportional to the square of the speed. It

requires that the established model should reflect the higher-order natural frequency of tires,

and has the ability to integrate the mass imbalance into the algorithm.

4. Correlation between uncertain variables

At last, in Chapters 6 & 7, the simplified assumption that the uncertain variables are inde-

pendent seems counterintuitive to the real tire structure, although it still generates a good

agreement with the measurements. The uncertainties in the structural and geometric param-

eters of tires as well as the material distribution are usually correlated. There are several

methods for solving the stochastic analysis with correlated variables, including the imple-

mentation of the copula-polynomial chaos expansion (copula-PCE) framework [151–154],

decorrelation using Nataf transformations [155–159], application of the maximum entropy

method [160, 161], etc. However, with the increasing number of uncertain parameters, it may

lead to dimensional catastrophe. Sparse grid [137, 162], arbitrary sparse polynomial chaos

expansion(ASPCE) [117, 163, 164], and principal component analysis (PCA) [165–167] can

effectively solve this problem.

In future work, according to the previous work of the deterministic model and the framework

of uncertainty quantification, we will try to develop a novel stochastic model considering

the correlated uncertain parameters, which can reinforce the description of the internal

characteristics of the tire structure. In particular, when the model involves the mechanics of

the rubber-cord composite structures of tires, the stiffness coefficients are inevitably coupled.

Here, we expect a new algorithm to analyze the uncertainty in the tire dynamics and vibrations,

which can go beyond the previous pure assumption of parametric independence in terms of

algorithmic accuracy and adaptability.
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Appendix A

Coefficients of Steady-state Responses

Here the coefficients in the expressions of the steady-state response, Eqs. (2.44-2.45) and Eqs.

(2.54-2.55), are listed as follows:

1. Coefficients corresponding to the in-plane displacements:

Aun =



Aun1

Aun2

Aun3


=

1

π

√
B2

1 +B2
2



B3 + iB4

iA12

(−nB4 + inB3 + iA12)/R


, (A.145)

Avn =



Avn1

Avn2

Avn3


=

1

π

√
B2

1 +B2
2



−iA12

B5 + iB6

(nA12 +B5 + iB6)/R


, (A.146)

in which the coefficients are

A11 =−
(
nΩ +ω f

)2 m11 + k11 + i
(
nΩ +ω f

)
cu,

A12 =−
(
nΩ +ω f

)
g1n + k12,

A22 =−
(
nΩ +ω f

)2 m11 + k13 + i
(
nΩ +ω f

)
cv, (A.147)
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B1 = B3B5 −B4B6 −A2
12, B2 = B4B5 +B3B6,

B3 =−
(
nΩ +ω f

)2 m11 + k13, B4 =
(
nΩ +ω f

)
cv,

B5 =−
(
nΩ +ω f

)2 m11 + k11, B6 =
(
nΩ +ω f

)
cu, (A.148)

nγn1 = arctan
(

B2

B1

)
. (A.149)

2. Coefficients corresponding to the out-of-plane displacements:

Awn =



Awn1

Awn2

Awn3


=

1

π

√
D2

1 +D2
2



D3 + iD4

−C12

(−nD4 + inD3) /R


, (A.150)

Aφn =



Aφn1

Aφn2

Aφn3


=

1

π

√
D2

1 +D2
2



−C12

D5 + iD6

−inC12/R


, (A.151)

in which the coefficients are

C11 =−
(
nΩ +ω f

)2 m21 + k21 + icw
(
nΩ +ω f

)
,

C12 =−
(
nΩ +ω f

)2 m22 −g2n
(
nΩ +ω f

)
+ k22,

C22 =−
(
nΩ +ω f

)2 m23 + k23 + icu
b2

op

4
(
nΩ +ω f

)
, (A.152)

D1 = D3D5 −D4D6 −C2
12, D2 = D4D5 +D3D6,

D3 =−
(
nΩ +ω f

)2 m23 + k23, D4 =
(
nΩ +ω f

)
cu

b2
op

4
,

D5 =−
(
nΩ +ω f

)2 m21 + k21, D6 =
(
nΩ +ω f

)
cw, (A.153)

nγn2 = arctan
(

D2

D1

)
. (A.154)
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Coefficients in Contact Algorithm

B.1 Steady-state displacements of flexible ring

Here, the coefficients in the expressions of the steady-state response, Eqs. (3.84-3.85) and Eq. (3.87),

are listed as follows:

(i) Matrix of the displacements of the flexible ring U

The deformation of the flexible ring is not limited to the contact patch. As each node on the

flexible ring has 3 DOFs, the displacements of Nr nodes in the contact area can compose a

(3Nr×1)-dimensional vector.

U =

{
u1 v1 β1 . . . . uNr vNr βNr

}T

. (B.155)

If only the displacements of the Nc contacted nodes need to be evaluated, the vector U
is reconstructed by the corresponding Nc elements. Accordingly, the dimension of the

displacement vector becomes (3Nc×1).

(ii) Matrix of the generalized forces Q

Similarly, the vector of generalized forces generated in contact area q is also a (3Nc×1)-

dimensional vector,

q =

{
qu,1 qv,1 qβ ,1 . . . . qu,Nc qv,Nc qβ ,Nc

}T

. (B.156)
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The amplitude of the generalized force under a set of concentrated forces, Q, is expressed as

Q =

{
Qu,1 Qv,1 Qβ ,1 . . . . Qu,Nc Qv,Nc Qβ ,Nc

}T

. (B.157)

(iii) Compliance matrix T

Based on the expressions of the steady-state responses, Eq. (3.84-3.85), the tangential dis-

placement in matrix form is given by

v(φ) = {{A1v1A2v1A3v1} ,{A1v2A2v2A3v2} , . . . ,{A1vNcA2vNcA3vNc}}Q, (B.158)

in which,

A1vk =
N

∑
n=1

An2 sinαk, A2vk =
N

∑
n=1

An1 cosαk, A3vk =
N

∑
n=1

(
1−n2)An1 cosαk,

αk = n(φck −φ + γn) , k = 1, . . . ,Nc. (B.159)

In the Chapter 2, the truncated number of modes N selected is 30. Accordingly, the radial

displacement and the rotation angle of the cross-section of the ring are written in a similar

form. The following equation represents the steady-state response at the φ point under the

action of a set of Nc concentrated forces.

u(φ)

v(φ)

β (φ)


=



A1u1A2u1A3u1 A1u2A2u2A3u2, . . . ,A1uNcA2uNcA3uNc

A1v1A2v1A3v1 A1v2A2v2A3v2, . . . ,A1vNcA2vNcA3vNc

A1β1A2β1A3β1 A1β2A2β2A3β2, . . . ,A1βNcA2βNcA3βNc


Q

= AjQ, j = 1, . . . ,Nr. (B.160)

The coefficients in Aj are listed as follows:

A1uk =
N

∑
n=1

nAn2 cosαk, A2uk =
N

∑
n=1

−nAn1 sinαk, A3uk =
N

∑
n=1

−n
(
1−n2)An1 sinαk,

A1βk =
N

∑
n=1

(
1−n2)An2 sinαk/R, A2βk =

N

∑
n=1

(
1−n2)An1 cosαk/R,
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A3βk =
N

∑
n=1

(
1−n2)2

An1 cosαk/R, αk = n(φck −φ + γn) , k = 1, . . . ,Nc. (B.161)

So far, the compliance matrix T is written as

T =

[
A1 A2 · · · Aj · · · ANr

]T

3Nr×3Nc

. (B.162)

B.2 Linearized boundary equations for the treadband

B.2.1 Generalized force matrix of the tread rubber F

F denotes the generalized force matrix associated with the deformation of the tread rubber, the

parameters of which are independent of the displacement vector U. The dimension of F is (1×3Nc),

and its expression is given as

F = {F1, F2, ..., Fi, ..., FNc}
T, (B.163)

where

Fi =
{

Fi,1 Fi,2 Fi,3
}T

, i = 1, . . . ,Nc. (B.164)

The coefficients of Fi are listed as

Fi,1 = [
(
Rl − zw −h0 +Reφ

2
i
)

cosφi +(Rl − zw −h0)φi sinφi −Rφi sin2φi −Rcos2
φi]kEs

− [(Rl − zw −Re)φi sinφi −Rφi sin2φi +Reφ
2
i cosφi +Rsin2

φi]kGs, (B.165)

Fi,2 = [
(
−Rl + zw +h0 −Reφ

2
i
)

sinφi +(Rl − zw −h0)φi cosφi +Rφi sin2
φi

−Rφi cos2
φi +R/2sin2φi]kEs − [(−Rl + zw +Re)φi cosφi −R/2sin2φi

+Rφi cos2
φi +Reφ

2
i sinφi −Rφi sin2

φi]kGs, (B.166)

Fi,3 = [−(Rl − zw)φi +Reφi −Rsinφi +Rφi cosφi]h0kGs. (B.167)

B.2.2 Coupling terms H

H is the coefficient matrix associated with the displacements of the ring, which contains the

coupling terms of the stiffness coefficients of the tread rubber and the displacements of the ring.
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B Coefficients in Contact Algorithm

The dimension of H is (3Nc×3Nc). The matrix is expressed as

H =



H1

H2

. . .

HNc


, (B.168)

where

Hi =



Hi,11 Hi,12 Hi,13

Hi,21 Hi,22 Hi,23

Hi,31 Hi,32 Hi,33


. (B.169)

The coefficients of Hi are given as

Hi,11 =−cos2
φikEs − sin2

φikGs,

Hi,12 =−(kEs + kGs)

2
sin2φi,

Hi,13 = [(Rl − zw −h0)sinφi +Reφi cosφi −Rsin2φi +Rφisin2
φi]kEs

− (Re sinφi −Rsin2φi +Reφi cosφi)kGs,

Hi,21 = Hi,12,

Hi,22 =−sin2
φikEs − cos2

φikGs,

Hi,23 =
[
(Rl − zw −h0)cosφi −Reφi sinφi +Rsin2

φi −Rcos2
φi
]

kEs

+
(
Re cosφi +Rcos2

φi +Reφi sinφi −Rsin2
φi
)

kGs,

Hi,31 =−h0 sinφikGs,

Hi,32 =−h0 cosφikGs,

Hi,33 = (Rl − zw +Rcosφi)h0kGs,

i = 1, . . . ,Nc (B.170)
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Appendix C

Some Notes on Stochastic Analysis

C.1 Jacobi polynomial and beta distribution

In the gPC expansion, the optimal orthogonal polynomial corresponding to the beta distribution is

the Jacobi polynomial. Let Z be a random variable of beta distribution in (−1,1) with PDF

ρ(x) =
Γ (α +β +2)

2α+β+1Γ (α +1)Γ (β +1)
(1− x)α(1+ x)β , α,β >−1. (C.171)

The Jacobi orthogonal polynomials with the parameters α and β are defined as

J(α,β )
n (x) =

(α +1)n
n! 2F1

(
−n,n+α +β +1;α +1;

1− x
2

)
, (C.172)

in which

rFs (−n, · · · ,ar;b1, · · ·bs;z) =
n

∑
k=0

(−n)k · · ·(ar)k
(b1)k · · ·(bs)k

zk

k!
. (C.173)

The expressions for the first few terms are given as

J(α,β )
0 (x) = 1, J(α,β )

1 (x) =
1
2
[α −β +(α +β +2)x] , · · · . (C.174)

The Legendre polynomial chaos becomes a special case of the Jacobi polynomial chaos with

α = β = 0. The orthogonality is shown as
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∫ 1

−1
J(α,β )

m (x)J(α,β )
n (x)w(x)dx = h2

nδmn, α,β >−1, (C.175)

where

h2
n =

(α +1)n(β +1)n
n!(2n+α +β +1)(α +β +2)n−1

, (C.176)

in which δmn = 0 if m ̸= n and δmn = 1 if m = n, is the Kronecker delta function.

C.2 Pearson family

The Pearson system can be used to construct the PDF of a random variable based on its first four

central moments (mean, standard deviation, skewness, and kurtosis). Basically, the differential

equation is solved based on the different criteria of the three coefficients b0, b1, and b2 in Eq. (7.142-

7.143). The limit for all distributions is line β2 −β 2
1 −1 = 0. In Fig. C.1, the Latin numerals refer

to the traditional classification of Pearson distributions.

Figure C.1: Diagram showing the areas and bounding curves associated with the different solutions
of Pearson’s differential equation.

• Types I and II are the four-parameter beta distributions. Notation I(J,U) refers to J- and

U- shaped distributions, and I(M) to uni-modal. The boundary of I(J,U) is defined by

4
(
4β2 −3β 2

1
)(

5β2 −6β 2
1 −9

)2
= β 2

1 (β2 +3)2 (8β2 −9β 2
1 −12

)
;
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C.2 Pearson family

• Type III (gamma distributions) limit is β2 −3/
2β 2

1 −3 = 0;

• Type IV is obtained when b0 +b1 +b2x2 = 0 has complex roots;

• Type V is defined by β 2
1 (β2 +3)2 = 4

(
4β2 −3β 2

1
)(

2β2 −3β 2
1 −6

)
= 0;

• Type VI denotes the four-parameter beta distributions;

• Type VII includes Student’s t-distribution.
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