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Abstract
Second harmonic generation efficiency (SHGE) strongly depends on the length of the interaction
material along the beam propagation axis. Since a nanoscale interaction length is considered too
short even in the optical wavelength scale, the attained SHGE through nanomaterials is usually too
low to be of practical use. In this study, it will be shown that by properly adjusting the
conduction-band electron density in a semiconductor nanomaterial under a certain optical
pumping rate (active tuning), the SHGE can be effectively tuned from being super-low to being
ultra-high. Such sharp tunability is only valid for small-scale materials as their density of
conduction-band electrons can be rapidly switched between high and low under moderate optical
pumping. Using an experimentally verified computational model, we have observed that at a given
frequency, for a certain range of conduction-band electron densities, the SHGE can reach up to
1080% for Ga-As and 230% for silicon nanomaterials under active tuning, with respect to the
intensity of the first harmonic of the input signal. Such SHGEs are unprecedented, which is very
promising for generating higher harmonics via cascaded second harmonic generation performed
via adaptive tuning of the conduction band electron density at each stage.

1. Introduction

Second harmonic generation (SHG) is one of the most fundamental phenomena in nonlinear optics. It is
commonly used to generate visible light from a near-infrared light source, ultraviolet light from a visible
light source, and to generate higher harmonics via cascaded operation. It is also important for its influence
in other nonlinear optical processes such as sum-frequency generation and optical parametric
amplification. Often, the achieved conversion efficiency is low (less than 10%) due several reasons including
the limited intensity of the optical beam, limited interaction medium length, or because of the weak
electrical nonlinearity of the interaction material [1–17]. The second harmonic generation efficiency
(SHGE) heavily depends on the nonlinearity coefficient of the material. Some materials exhibit a strong
nonlinear response (with a nonlinearity coefficient that is greater than 10−21 C V−2) under optical
excitation, but most materials display weak nonlinear behaviour (with a nonlinearity coefficient that is less
than 10−22 C V−2). Hence, attaining a high SHGE is often difficult unless the electric field intensity is
super-strong (greater than 1013 W m−2) and/or the interaction medium length is sufficiently high (at least a
few millimeters long). To tackle this problem, designing highly nonlinear (with a nonlinearity coefficient
that is greater than 10−20 C V−2) artificial materials has been a major subject of focus [14–28], which can
enable the attainment of a high SHGE at relatively low optical intensities in the small-scale (micro and
nanoscale). Huge improvements in SHGE have been attained via structural and intrinsic modification of
certain materials (such as silicon, GaAs, and lithium-niobate) [3–8, 11–18, 20–22, 33–35]. Although in the
nanoscale, SHGE remains quite weak (less than 1%), and its improvement has recently been a subject of
great interest [1, 3–21]. Overwhelming majority of the existing research on small-scale SHGE improvement
is based on passive improvement, which is without the involvement of any additional optical excitation
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Figure 1. SHG via a nonlinear crystal.

Figure 2. SHGE versus electric field amplitude under low (left) and high (right) crystal nonlinearities for an interaction medium
length of 1 mm.

(pumping) but rather based on material alteration and/or using artificial materials. In comparison, SHGE
improvement via active tuning has been rarely investigated, and to our knowledge, has not been investigated
for nano-semiconductors which could have offered unprecedented tunability. We believe active
improvement of SHGE via optical pumping has two important advantages over passive improvement. The
first is the elimination of the production and process requirement. The second and the most important
advantage is the adaptability of active SHGE tuning. Passive tuning is achieved by sweeping the excitation
frequency based on the spectral locations of the resonance frequencies, therefore its efficiency is restricted
by the dispersion properties of the interaction material. On the other hand, active tuning allows for much
more control on SHGE as it depends on the optical pumping rate which can be configured by the
investigator. In this study, we are going to show that active tuning via optical pumping can have a much
stronger effect on SHGE compared to passive tuning for semiconductor nanomaterials when the
conduction band electron density takes on certain values. Therefore, rather than tuning the excitation
frequency, we will focus on tuning the conduction band electron density in a nano-semiconductor for
boosting the SHGE (figure 1).

The SHGE strongly depends on the length of the interaction material. Therefore, in materials where the
thickness along the wave propagation axis is in the nanoscale, the SHGE is extremely low, even when the
incident electric field is strong or the nonlinearity of the crystal is extraordinarily high [1–35]. Hence, SHG
via a material with a nanoscale longitudinal thickness is not so feasible, and high SHGE only starts to be
observed in the millimeter scale under high optical intensities (figures 2 and 3). Equation (1) states the
empirical SHGE in terms of the wave and material parameters [29]

ηexp = (tanh
√
ρ2η3ω2cnε0A2L2)2 (1)

ρ = nonlinearity coefficient of the medium (C V−2), η = material impedance, n= refractive index,
A = wave amplitude (V m−1), L = material length, ω = angular frequency, c : speed of light in vacuum.

As evident from equation (1), the SHGE depends on the nonlinearity of the interaction material, the
frequency and amplitude of the optical wave, and the length of the interaction material. To compensate for
the ultra-short interaction length, we will focus on tuning the SHGE by tuning the nonlinearity coefficient
of the interaction material (ρ) via sweeping the free (conduction-band) electron density. The
conduction-band electron density of a semiconductor can be swept via sweeping the optical pumping rate,
through which we will investigate the variation of the SHGE within a wide range of conduction-band
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Figure 3. SHGE versus electric field amplitude under low (left) and high (right) crystal nonlinearities for an interaction medium
length of 300 nm.

electron densities. This will be carried out via a numerical solution of the wave equation and the associated
Lorentz dispersion equation for each resonance frequency of a material. We will then use Fourier
transformation to observe the SHGE via computing the spectral intensities of the first and second
harmonics.

2. Methods

2.1. Computational wave dynamics
We will initially investigate the problem for the most general case which deals with an interaction material
with multiple resonance frequencies. The first part of the problem involves the modeling of the wave
dynamics. Consider a high-amplitude electric field that is propagating through a material with M resonance
frequencies ω = {ω1,ω2, . . . ,ωM}, and M corresponding polarization decay rates γ = {γ1, γ2, . . . , γM}.
The total polarization density that is induced by the electric field can be expressed as the sum of the
individual polarization densities that are induced via each resonance, through the wave equation and the
Lorentz dispersion equations

∇2E − μ0ε∞
∂2E

∂t2
= μ0σ

∂E

∂t
+ μ0

d2P

dt2
(electric field wave equation) (2)

d2Pm

dt2
+ γm

dPm

dt
+ ωm

2Pm − ωm
2Pm

2

Nmed
+

ωm
2Pm

3

Nm
2e2d2

=
Nme2E

me
(Lorentz dispersion equation) (3)

P =
M∑

m=1

Pm, N =
M∑

m=1

Nm =
M∑

m=1

Nξm,
M∑

m=1

ξm = 1 (4)

E: electric field, μ0: free space permeability, ε∞: background permittivity, t: time, σ: conductivity, P:
polarization density, γ: polarization damping rate, ΔT: simulation duration, ω: angular resonance
frequency, N: electron density, e: elementary charge, d: atom diameter, me: electron mass, ξm: oscillation
strength for the mth resonance.

After solving for the electric field through equations (2)–(4), the SHGE can be evaluated from the
intensity ratio of the second and the first harmonic

ηnumerical =
intensity of the second harmonic at x = xoutput

intensity of the first harmonic at x = xinput
=

∣∣∣
∫ ΔT

0 {E(x = xoutput, t)e−i(2ω)t}dt
∣∣∣

2

∣∣∣
∫ ΔT

0 {E(x = xinput, t)e−iωt}dt
∣∣∣

2 . (5)

The value that is obtained by solving equation (5), can be compared with the empirical finding in
equation (1) for verifying the accuracy of the computation.

Equations (2)–(4) can be solved through the use of the finite difference time domain method, based on
which the discretization is given as follows
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(Nm(j))2e2d2

(
Pm
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=
Nm(j)e2

me

(
E
(

i, j
))
. (7)

P = P1 + P2 + · · ·+ PM , N = N1 + N2 + · · ·+ NM. (8)

Here one should pay attention when choosing the spatial and temporal sampling rates (Δx−1,Δt−1), as
they should be chosen according to the Courant stability condition to prevent numerical instabilities [31].

2.2. Computational electron dynamics
Since we are interested in the active tuning of the SHGE, the electron density for each transition
(resonance) should be adjusted for SHGE maximization. The electron density for each transition can be set
or swept to investigate the SHGE directly using equations (2)–(5). But in order to find the required optical
pumping rate for each transition, the corresponding injection-rate equations must be solved. Considering an
interaction medium with M resonances, and assuming that the electronic transition rates are much lower
than the non-radiative decay rates, the mathematical description for the electron dynamics can be stated by
the following coupled differential equations

dN0

dt
= −[Γ1 + Γ2 + · · ·+ ΓM]N0 +

M∑

i=1

Ni

τi
(9)

dN1

dt
= Γ1N0 +

M∑

i=2

Ni

τi
− N1

τ1
(10)

dNM−1

dt
= ΓM−1N0 +

NM

τM
− NM−1

τM−1
(11)

dNM

dt
= ΓMN0 −

NM

τM
(12)

N0: density of electrons at the ground level, NM : electron density for the Mth resonance, Γ: optical
pumping rate for the Mth resonance, τM : electron lifetime for the Mth resonance.

Equation (9) describes the rate of change in the electron density of the ground state under optical
pumping for M different transitions (each with a rate of Γi), and the corresponding electron lifetimes τ i for
each transition which indicate the rate that the excited electrons are recombined to the ground state. In
equations (9)–(12), electrons are pumped from the ground level to the upper levels at different rates (the
first term in each equation indicates the pumping), from where they fall/recombine to lower
levels/transitions, increasing the electron population in lower levels. As an example, the first term in
equation (10) represents the rate of injection for the first transition, the second term indicates the rate of
electron flow (recombination) to the first electronic-transition from all the upper transitions, and the last
term signifies the rate of recombination from the first electronic-transition to the ground-level (hence the
minus sign, which indicates the decrease of electron population in level 1). In this study, it is assumed
that the electron excitation/recombination follows the same pattern for all the other transitions
(i = 2, 3, . . . , M − 2). It should be noted that the SHGE is computed at the steady state, that is when the
electron density associated with each transition (resonance) stabilizes around a certain value in time.

2.3. Evaluating the SHGE for materials with a single resonance frequency and the active tuning process
For materials that have only a single resonance frequency, the previously described set of equations
(equations (2)–(4) and (9)–(12)) simplify to the following set of coupled equations

∇2E − μ0ε∞
∂2E

∂t2
= μ0σ

∂E

∂t
+ μ0

d2P

dt2
(13)

d2P

dt2
+ γ

dP

dt
+ ω0

2P − ω0
2P2

Ned
+

ω0
2P3

N2e2d2
=

Ne2E

me
(14)

dN

dt
= ΓN − N

τe
, τe =

1

A + BN + CN2
(15)

4



New J. Phys. 24 (2022) 083046 Ö E Aşı̇rı̇m and M Kuzuoglu

Figure 4. Mechanism for tuning the transition electron density through the adjustment of the pump-intensity.

τ e: electron lifetime, Γ: optical pumping rate, A: non-radiative recombination constant, B: radiative
recombination constant, C: Auger recombination constant.

In this case, the following discretized equations are implemented to solve for the required optical
pumping rate that corresponds to the optimum transition electron density N, which maximizes the SHGE
via equations (5) and (13)–(15)
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Once the optimal transition electron density N that maximizes the magnitude of the electric field E is
found, the corresponding optical pumping rate can be evaluated based on the discretization of
equation (15) as

Γ
(
j
)
=

N
(

j + 1
)
− N

(
j − 1

)

2Δt
+ A

(
N
(
j
))

+ B(N(j))2 + C(N(j))3
(
required optical pumping rate

)
(18)

x: spatial coordinate, t: time, E(x, t) = E
(
iΔx, jΔt

)
→ E

(
i, j
)
, i = 1, 2, . . .N, j = 1, 2, . . . , M.

The single-resonance modeling is a valid approximation in many cases, as many well-investigated
materials have a single dominant resonance. In this case, it is much easier to control the sweeping of the
associated electron density through the tuning of the pumping rate Γ. Such active tuning of the transition
electron density leads to a huge variation in the ratio of the intensities of the first and the second
harmonics. This variation will be investigated in the next section.

Figure 4 illustrates the practical mechanism for sweeping the transition electron density through the
tuning of the optical pumping rate for the investigation of the variation of SHGE. The basic setup involves
an optical pump source, which provides the pump beam that is used for tuning the transition electron
density, a beam-splitter for combining the input beam with the pump beam, a lens for focusing the
combined-beam onto the semiconductor surface, and an isolator for directing the combined-beam pathway
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Figure 5. SHGE versus total transition electron density for the given multi-resonant medium with three resonances.

towards the semiconductor surface with the help of a mirror. In this study, it is assumed that all the
pump-light is absorbed by the semiconductor. Although the suggested setup is simple, one complicacy that
might arise in practice is the overheating of the semiconductor due to the high pump intensity
(∼1013 W m−2), which can lead to the generation of thermal-noise in the output signal, and also the
modification of the electrical properties of the semiconductor that may lead to deviations from the expected
SHGE. Such a high-intensity can also lead to thermal damage for relatively long optical pulses. However,
since the pulse lengths are chosen to be on the order of a few picoseconds in our computations, and since
most semiconductors incur thermal damage for optical intensities above ∼1015 W m−2, we believe that
thermal damage is unlikely for the given parameters in this study.

3. Results

3.1. Tuning the SHGE through an arbitrary multi-resonant media
Using numerical simulations, we have initially investigated the variation of the SHGE via tuning the
electron density for a multi-resonant media of three resonances, with spectral locations f = {400 THz,
700 THz, 1200 THz}. The corresponding polarization damping rates for each resonance are given as
γ = {109 Hz, 4 × 109 Hz, 1.2 × 1010 Hz}. In this section, we will only deal with the sweeping of the total
transition electron density N, and not the optical pumping rate. The wave and the material parameters of
the simulation are set as follows

E(x = 3 μm, t) = 108 × sin
(
2π

(
1.5 × 1014

)
t
)

V m−1 (an infrared wave)

Spatial and temporal discretization range for the simulation : 0 � x � 10 μm, 0 � t � 5 ps

Relative permittivity: (εr) = 13 (μr = 1), atom diameter: d = 0.3 nm

Interaction medium: 5 μm < x < 5.3 μm, resonance strengths: ξm = {0.3, 0.4, 0.3} (arbitrary values)

5 × 1026 m−3 < N < 1 × 1029 m−3, N1 = Nξ1, N2 = Nξ2, N3 = Nξ3.

Based on the solution of Equations (2)–(4), the corresponding induced electric energy density is
computed as

We =
1

2
ε∞E2 +

1

2
EP. (19)

Using equations (2)–(4), the electron density is tuned from 5 × 1026 m−3 to 1029 m−3 in increments of
5 × 1026 m−3. The resulting variation of the SHGE is shown in figure 5. The SHGE reaches to a maximum
value of 0.27 for an electron density of 4.2 × 1028 m−3, which is 107 times higher than for mediums
with low nonlinearity, and 105 times higher than for mediums with high nonlinearity, considering a
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Figure 6. (a) Energy density versus total transition electron density for the given multi-resonant medium. (b) Polarization
density versus total transition electron density for the given multi-resonant medium.

Figure 7. Fourier transform magnitude plots for the input and output electric fields under the given parameters.

300 nm-long interaction medium based on figures 2 and 3. This finding emphasizes the importance of
active tuning for increasing the SHGE. At the optimal electron density where peak SHGE occurs, the
material exhibits an ultra-nonlinear electrical response, such that the generated second harmonic intensity
is comparable with that of the first harmonic. At the nanoscale, such a high SHGE cannot be attained using
any well-known nonlinear optical crystal with passive tuning as illustrated by figures 2 and 3.

The reason behind the attainment of such high nanoscale SHGE can be uncovered by investigating the
intra-material electric energy density and the polarization density. Figure 6 shows that, around an electron
density of 4.2 × 1028 m−3, both the electric energy density and the polarization density reaches to a
maximum value. This means that for this electron density, the material allows the generation and coupling
of maximum energy density to the incident wave, such that even the second and the third order
polarization terms become significantly high. Figure 7 shows the spectrum of the output signal with the
newly generated harmonics. Notice that not only the second harmonic, but also the third harmonic is
generated via the induced ultra-nonlinear response (though at a lower efficiency).

Interestingly, such high SHGE peak is not observed when the frequency of the first harmonic is set as
200 THz instead of 150 THz. Figure 8 shows the SHGE versus electron density for f = 200 THz. This time,
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Figure 8. SHGE versus total transition electron density for the given multi-resonant medium, for f = 200 THz.

the highest observed SHGE is on the order of 10−4, which still indicates a strong nonlinear response, but
much less than the case for f = 150 THz. From this observation we understand that there is a complex
mathematical relationship among the frequency of the first harmonic, the electron density, and the SHGE,
which necessitates the use of elaborate fitting algorithms after making thousands of simulations. In this
study we will not go into uncovering the exact relationship between these parameters but instead we will
focus on how to tune the electron density for well-known semiconductors such as silicon or
gallium-arsenide under commonly used frequencies of optical excitation for maximizing the SHGE.

3.2. Tuning the SHGE using silicon and gallium-arsenide
Silicon and gallium-arsenide are well-known semiconductors with relatively high nonlinearity. In the
nanoscale, their SHGE is on the order of 10−4 in the near-infrared frequency range. Using
equations (13)–(15), initially, the SHGE is actively tuned for silicon under excitation by an arbitrary
near-IR laser source (220 THz). The corresponding wave and material parameters are given as [30–32]

E(x = 3 μm, t) = 6 × 107 × sin
(
2π

(
2.2 × 1014

)
t
)

V m−1

Spatial and temporal discretization range for the simulation : 0 � x � 10 μm, 0 � t � 5 ps

Relative permittivity: (εr) = 12 (μr = 1), atom diameter: d = 0.3 nm

Polarization decay rate := 1010 Hz, transition (bandgap) frequency = 272 THz

Interaction medium range: 5 μm < x < 5.3 μm, conductivity = 10−3 S m−1

A = 1.35 × 109 s−1, B = 5.6 × 10−16 m3 s−1, C = 1.5 × 10−40 m6 s−1.

The variation of the SHGE is shown in figure 9. For a transition electron density of N = 1.9 × 1028 m−3,
the SHGE reaches 10.8, which is an extremely high value compared to the values observed in the nanoscale
without active tuning. This means that the intensity of the generated second harmonic is 10.8 times greater
than the intensity of the first harmonic of the input wave. Figure 10 shows the corresponding amplitude
spectrum of the input and output waves. Notice that there is also a simultaneous generation of a strong
third harmonic whose spectral amplitude is comparable to that of the first harmonic of the input wave.

To attain a transition electron density of N = 1.9 × 1028 m−3, one should first find the corresponding
optical pumping rate Γ using equation (15). Doing so, a steady state optical pumping rate of
2.5 × 1038 m−3 s−1 is found using the given parameters. Such an optical pumping rate requires a beam
intensity of 1013 W m−2, which corresponds to an electric field amplitude of 108 V m−1 (equation (20)). In
the small-scale, this intensity level can be easily attained by a precise focusing of the pump beam through a
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Figure 9. SHGE versus transition electron density for silicon computed at the frequency of f = 220 THz.

Figure 10. Fourier transform magnitude plots for the input and output electric fields.

lens, onto the interaction material cross-section. If we assume a typical small-scale material cross section of
100 μm2, this requires a pumping power of 1000 W.

Γ =
I

hfΔ
=

0.5c
√
ε∞ε0Ep

2

4 × 10−26 =
1013 W m−2

(6.62 × 10−34 J × s) × (2.2 × 1014 Hz) × (3 × 10−7 m)
(20)

h: Planck’s constant, f : pump frequency, Δ: propogation distance, I: intensity, c: speed of light, Ep: pump
wave electric field amplitude.

Using equations (13)–(15), the computations are repeated for gallium arsenide under an arbitrary
near-IR laser excitation at 290 THz. This time the wave and the material parameters are taken as [30–32]

E(x = 3 μm, t) = 1 × 108 × sin
(
2π

(
2.9 × 1014

)
t
)

V m−1, A = 1.35 × 109 s−1, B = 5.6 × 10−16 m3 s−1

Spatial and temporal discretization range for the simulation : 0 � x � 10 μm, 0 � t � 5 ps

Relative permittivity: (εr) = 13 (μr = 1), atom diameter: d = 0.3 nm
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Figure 11. SHGE versus transition electron density for GaAs computed at f = 290 THz.

Polarization decay rate := 4 × 109 Hz,

transition (bandgap) frequency = 345 THz, C = 1.5 × 10−40 m6 s−1

Interaction medium range: 5 μm < x < 5.3 μm, conductivity = 10−4 S m−1.

Although not as high as in the case for silicon, once again, a very high peak SHGE is observed for a
transition electron density of N = 3.7 × 1028 m−3 (figure 11). Based on equation (15), this corresponds to
the steady state optical pumping rate of 4.6 × 1038 m−3 s−1. The resulting spectrum for the input and
output electric fields is shown in figure 12. Here the investigation is done in a single dimension, therefore
this observation indicates the sensitivity of the SHGE in silicon (compared to GaAs) without regarding its
crystal-structure. Hence, the investigation that is carried out in this section emphasizes the drastic
enhancement/improvement of the SHGE via active tuning, regardless of the crystal-structure of a material.
We believe this finding is of particular importance in the sense that weak SHGE in centrosymmetric media
can be greatly enhanced via active tuning.

3.3. Relationship between SHGE and the spectral location of the resonance
In this section we will investigate the variation of the SHGE with respect to the spectral distance between
the excitation frequency and the resonance frequency. To examine this relation, we have investigated four
different cases, in which the resonance frequency is gradually brought closer to the excitation frequency.
The excitation and resonance frequency values for each case is provided below. Figures 13–16 illustrate the
variation of the SHGE for each case. In the first case, the SHGE is quite weak and does not peak around a
certain value of the transition electron density. For the second case, the SHGE is increased for all transition
electron densities within the investigated range, although the SHGE still remains relatively weak compared
to the values that are observed without any active tuning.

Case 1: f = 100 THz, f0 = 1500 THz, case 2: f = 200 THz, f0 = 1000 THz

Case 3: f = 300 THz, f0 = 700 THz, case 4: f = 300 THz, f0 = 400 THz

f : excitation frequency, f0: resonance frequency.
For the third case, in which the resonance frequency is now only 400 THz beyond the excitation

frequency, the SHGE peak attains a very high value for an electron density of N = 2 × 1028 m−3, which
cannot be practically observed without the involvement of active tuning in the nanoscale. In the final case,
the resonance frequency is just 100 THz away from the excitation frequency and the SHGE peak reaches to a
super-high value of 3.7 for an electron density of N = 3.3 × 1028 m−3. From these four investigations we
can see that the proximity of the resonance and the excitation frequencies has a very strong effect on the
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Figure 12. Fourier transform magnitude plots for the input and output electric fields.

Figure 13. SHGE versus transition electron density, computed at f = 100 THz and f0 = 1500 THz.

SHGE. However, regardless of their spectral distance, proper tuning of the transition electron density
almost always leads to a sharp increase in the SHGE.

Based on our investigation, the SHGE does not change significantly with respect to the spectral-range of
investigation, compared to the dramatic change that occurs when the excitation frequency is near the
transition frequency, or the change that occurs when the transition electron density is optimally tuned.
Hence, to attain a high SHGE at a particular range of the optical spectrum, one should choose an
interaction material such that the resonance frequency of the material is in the close-proximity of the
excitation frequency (or the first harmonic) and should make sure that the transition electron density is
optimally tuned for SHGE maximization.

4. Comparison with experimental results

Our numerical results have been verified using the empirical formulation of SHGE that is derived from the
experimental results [29, 30]. For an efficient verification, the equivalent nonlinearity coefficient ρ must be
extracted from the numerical results for an arbitrary excitation amplitude, to be plugged into the
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Figure 14. SHGE versus transition electron density computed at f = 200 THz and f0 = 1000 THz.

Figure 15. SHGE versus transition electron density computed at f = 300 THz and f0 = 700 THz.

experimental formulation. If the numerical results are precise, then they should match with the
experimental ones for every excitation amplitude within the investigated range. Doing so we have chosen
the sample amplitude as 109 V m−1 for the extraction of the equivalent nonlinearity coefficient, which is
high enough to induce a strong nonlinear response in practice. Then, using equations (1), (13) and (14), we
have compared the numerical and the experimental results for the following cases

case 1: f = 100 THz, f0 = 1500 THz, case 2: f = 200 THz, f0 = 800 THz

case 3: f = 300 THz, f0 = 1000 THz, case 4: f = 440 THz, f0 = 600 THz.

For a sample amplitude of 109 V m−1, the nonlinearity coefficient for each case is evaluated respectively
as ρ = {2.18 × 10−24 C V−1, 3.3 × 10−23 C V−1, 6.35 × 10−22 C V−1, 2.9 × 10−21 C V−1}.

The resulting comparisons are shown in figures 17–18. Our results perfectly match with the
experimental ones, unless the nonlinearity is extremely small as in case 1. This is expected, as the
experimental formula is derived via measurements that are performed under significant nonlinearity. The
matching of the computational and experimental results has been observed to improve with increasing
nonlinearity.
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Figure 16. SHGE versus transition electron density computed at f = 300 THz and f0 = 400 THz.

Figure 17. Comparison of the computational and experimental SHGE results for case 1 (left) and case 2 (right).

5. Practical impact of the study: high-harmonic generation via cascaded second
harmonic generation

As explained previously, the active tuning of the SHGE is particularly important for high-harmonic
generation (HHG). HHG has been a challenging problem in the field of integrated photonics, mainly due to
the limitation of the SHGE in the small scale. As SHGE is usually quite weak in the nanoscale, HHG is
accomplished through the generation of attosecond pulses, which is also quite challenging. Based on the
results of this study, by adaptively tuning the transition electron density at each stage and thereby
maximizing the SHGE, cascaded SHG can be employed for efficient HHG. At each stage, since the incoming
wave frequency is doubled with respect to the previous stage, the optical pumping rate must be adaptively
tuned such that the corresponding electron density is re-adjusted to yield the peak SHGE. Hence, high
intensity is maintained at each stage, which results in efficient frequency-doubling. After continuous
doubling of the frequency through the employment of many stages, spectral components of high practical
use, such as extreme-UV and soft x-ray frequencies can be generated (see figure 19).

Figure 20 illustrates the proposed optical setup for HHG via cascaded SHG. A cavity is formed via
mirrors and beamsplitters, and the input wave is circulated within this cavity. At each roundtrip,
frequency-doubling occurs via propagation of the input ray through the semiconductor material. The
corresponding optical pump intensity is adaptively synchronized for attaining the optimal transition
electron density that maximizes the SHGE per roundtrip. The distance between each mirror and/or
beamsplitter is adjusted so that the total cavity length matches with the tuning period of the pump-intensity
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Figure 18. Comparison of the computational and experimental SHGE results for case 3 (left) and case 4 (right).

Figure 19. Tuning the optical pumping rate at each stage of the cascaded SHG process. The aim is to maximize the SHGE at each
stage, such that effective HHG can be attained.

Figure 20. Proposed optical setup for HHG via cascaded SHG (left) and the generation of an extreme-UV harmonic from an
initial harmonic of 300 THz (right).

controller. If the tuning period of the controller is high, then the cavity length must be high, which would
increase the size of the device.

6. Conclusion

For semiconductor nanomaterials, at certain electron densities in the conduction band, the SHGE can
increase by a factor of 106 and sometimes even higher. For silicon and GaAs, the SHGE can become higher
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than 1 under active tuning, should the free electron density is carefully adjusted based on the excitation
frequency. This is because for such electron densities, the energy density within the nanomaterial is
concurrently maximized along with the polarization density. Aside from the electron density, the spectral
distance between the excitation frequency and the resonance frequency is also a critical determinant of the
nonlinear electrical response exhibited by semiconductors. If the spectral distance between the resonance
and excitation frequencies is high, nonlinearity is diminished. However, by controlling the free electron
density within a semiconductor nanomaterial, high level electrical nonlinearity can still be induced. The
tuning of the free electron density for super-nonlinearity induction is especially critical for media with
multiple resonance frequencies, as the polarization density can vary drastically within such media
depending on the spectral position of the excitation frequency. Usually, selecting the excitation frequency to
be within a 100 THz spectral proximity of at least one of the resonance frequencies results in a significantly
higher nonlinearity to arise. Hence, the best strategy for the nanoscale induction of ultra-nonlinear
electrical response is to firstly choose the excitation frequency to be around one of the resonance
frequencies in accordance with the desired spectral range of the intended second harmonic, and then tune
the free electron density via appropriate pumping such that the resulting polarization density gives rise to a
sharply enhanced SHGE. This technique can also enhance the efficiency of other nonlinear processes such
as optical parametric amplification and sum/difference harmonic generation, as the efficiency of these
processes depends on the efficiency of the SHG process.
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[19] Aşı̇rı̇m Ö 2021 Far-IR to deep-UV adaptive supercontinuum generation using semiconductor nano-antennas via carrier injection
rate modulation Appl. Nanosci. 12 1–16

[20] Huang Z et al 2019 Fano resonance on nanostructured lithium niobate for highly efficient and tunable second harmonic
generation Nanomaterials 9 69

[21] Yuan Q, Fang L, Fang H, Li J, Wang T, Jie W, Zhao J and Gan X 2019 Second harmonic and sum-frequency generations from a
silicon metasurface integrated with a two-dimensional material ACS Photon. 6 2252–9

[22] Isakov D, de Matos Gomes E, Belsley M S, Almeida B and Cerca N 2012 Strong enhancement of second harmonic generation in
2-methyl-4-nitroaniline nanofibers Nanoscale 4 4978

[23] Zhu H, Wang T, Zheng W, Yuan P, Qian L and Fan D 2004 Efficient second harmonic generation of femtosecond laser at 1 μm
Opt. Express 12 2150
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