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Abstract: Assessing data analysis routines (DARs) for microplastics (MP) identification in Fourier-
transform infrared (FTIR) images left the question ‘Do we overlook any MP particles in our sample?’
widely unanswered. Here, a reference image of microplastics, RefIMP, is presented to answer this
question. RefIMP contains over 1200 MP and non-MP particles that serve as a ground truth that
a DAR’s result can be compared to. Together with our MatLab® script for MP validation, MPVal,
DARs can be evaluated on a particle level instead of isolated spectra. This prevents over-optimistic
performance expectations, as testing of three hypotheses illustrates: (I) excessive background masking
can cause overlooking of particles, (II) random decision forest models benefit from high-diversity
training data, (III) among the model hyperparameters, the classification threshold influences the
performance most. A minimum of 7.99% overlooked particles was achieved, most of which were
polyethylene and varnish-like. Cellulose was the class most susceptible to over-segmentation. Most
false assignments were attributed to confusion of polylactic acid for polymethyl methacrylate and of
polypropylene for polyethylene. Moreover, a set of over 9000 transmission FTIR spectra is provided
with this work, that can be used to set up DARs or as standard test set.

Keywords: microplastics; Fourier transform infrared spectroscopy; machine learning; database
search; µFTIR; FTIR imaging; harmonization; standardization

1. Introduction

Among the methods available for the analysis of microplastics (MP), Fourier-transform
infrared (FTIR) spectroscopy is currently the most frequently used method that allows
chemical identification of the particles, or, in other words, determination of the particle
type, here called class (e.g., polyethylene, cellulose). When combining FTIR spectroscopy
with microscopy (µFTIR), spatial information of particles, such as their size and shape, is
obtained additionally. Further, combination with focal plane array (FPA) detectors allows
gathering of both spatial and spectral information simultaneously over a large sample
area. This is called FTIR imaging and allows the swift collection of large numbers of IR
spectra over a defined sample area [1]. A sample area of 1 cm2, for instance, can be imaged
within three to four hours, resulting in hundreds of thousands or even millions of spectra
to be analyzed, depending on the instrumental parameters. This is where boon and bane
of the technique lies: all spectra gathered need to be analyzed. Different data analysis
routines (DARs) have been proposed, ranging from traditional database matching [2–5]
to unsupervised [6–8] and supervised machine learning models [9,10]; an overview can
be found in Weisser et al. [11]. Commonly, DARs are evaluated on a single-spectrum
level, meaning that a set of test spectra is assigned to their respective types by the DAR
and that these assignments are checked for correctness by the user. If the test spectra are
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labeled, i.e., manually assigned a type beforehand, the DAR evaluation can be carried
out automatically via cross validation. While this evaluation on a single-spectrum level is
unarguably essential, we will demonstrate that, in addition, the evaluation on a particle
level is necessary. This is because (1) the capability of a DAR to recognize particles is in
many cases based on the grouping of neighboring same-class spectra. Thus, it relies on the
correlation of neighboring pixels, a parameter that single-spectrum analysis does not cover.
(2) FTIR images comprise background or matrix signals that may hamper the analysis.
Filtering out background signals is thus highly relevant in image classification but does not
necessarily play a role in single-spectrum evaluation. (3) Even though some works have
shown that their DAR correctly assigned found particles to a substance class, the DARs’
tendency to overlook particles remains unevaluated and, therefore, unknown. We thus see
the following hurdles in developing and optimizing DARs for MP recognition in IR images:

(a) Assessment of single-spectrum class assignment: lack of a standard set of test spectra.
(b) Assessment of particle recognition: lack of a standard IR image.
(c) Lack of objective and concise performance metrics for evaluation on the level of

particles.
(d) Comparison of DARs: lack of standard test sets and IR images.

We thus aim to contribute to solving these challenges by:

(a) Providing a set of 9537 labeled transmission µFTIR spectra that can be used for a
database, or as training/test sets for machine learning models.

(b) Providing a manually evaluated transmission µFTIR image of 1289 MP and natural
particles that can be used as a ground truth for evaluating and optimizing a DAR on a
particle level: RefIMP.

(c) Introducing performance metrics for particle-level evaluation.
(d) Providing an easy-to-use object-oriented MatLab® script that automatically compares

results gained using any DAR desired with RefIMP (see Figure 1).
(e) Example hypothesis tests presented here will show how the influence of selected

factors on DAR performance can be quantified using RefIMP and MPVal.
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Figure 1. Schematic illustration of the genesis of RefIMP and application together with MPVal.

The results from the application examples are described and discussed in Section 5.
Readers may directly proceed to this section. For background knowledge on the design
of RefIMP, typical error types and performance metrics used here, as well as a short
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introduction to random decision forest models for MP recognition, readers should start
with Sections 2–4.

This article focuses on FTIR images; however, the principles described here can be
applied to other hyperspectral imaging techniques such as Raman and near-IR imaging,
as well. Further, the general idea of establishing a known ground truth and comparing
different methods using the proposed performance metrics can be applied to other MP
analysis techniques such as thermoanalytical methods, too. This article does not deal
with spectral manipulation techniques such as smoothing. However, these techniques can
substantially influence data analysis and, therefore, we suggest to use our reference dataset
to evaluate the influence of spectral manipulation techniques on data evaluation, as well.
For details on spectral pre-processing, the reader is referred to Renner et al. [12].

2. An FTIR MP Reference Image: Design, Objectives and Limitations

A single reference image of course cannot represent the complexity of all imagin-
able MP sample types such as water, environmental or food samples together. Therefore,
we started with the simplest case which is a selection of reference particles (11–666 µm)
made from the most commonly found MP types: polystyrene (PS), polyethylene (PE),
polyvinylchloride (PVC) (Ineos, London, UK), polypropylene (PP) (Borealis, Vienna, Aus-
tria), polyethylene terephthalate (PET) (TPL, Zurich, Switzerland), polyamide (PA) (Lanxess,
Cologne, Germany), polyurethane (PUR) (from a kitchen sponge), polycarbonate (PC) (from
a CD), polymethyl methacrylate (PMMA) (from a piece of Plexiglas®, Röhm GmbH, Darm-
stadt, Germany) and the biopolymer polylactic acid (PLA) (Nature Works, Minnetonka,
MN, USA). All MP reference particles were generated through cryo-milling (Simone Kefer,
Technical University of Munich, Chair of Brewing and Beverage Technology) and sieved
using a 50 µm mesh stainless steel sieve. A few varnish-like particles were present un-
intentionally, which we decided to include in the dataset because varnish can be found
in environmental MP samples, as well [13]. To represent typical natural matrix residues
(non-plastic particles and fibers), we added quartz sand, protein particles (bovine serum
albumin) and cellulose fibers from a paper tissue.

As was found in a broad literature screening by Primpke et al. [14], FTIR imaging for
MP analysis is conducted most frequently in transmission mode with particles collected
on aluminum oxide filters. Therefore, we decided to deposit the reference particles on this
type of filter (Anodisc, Whatman, Buckinghamshire, UK).

The reference image contains solely reference materials deposited directly on the filter
using a single-haired paintbrush under a stereomicroscope (SMZ-171-TLED, MoticEurope
S.L.U., Barcelona, Spain). In pre-tests, it was attempted to prepare a suspension containing
all chosen types of MP particles in equal concentrations. However, in practice, this resulted
in an unbalanced distribution (types and location) of particles on the filter.

There are several manufacturers offering FTIR microscopes on the market, but accord-
ing to the results of Primpke et al. [4], the instrument itself has limited influence on the data
analysis. Therefore, it can be assumed that the reference image provided can be applied by
others regardless of the FTIR microscope used. We conducted the FTIR measurement on
an Agilent Cary 670 FTIR spectrometer coupled to an Agilent Cary 620 FTIR microscope
equipped with a 128 × 128 pixel FPA detector using a 15× objective. All parameters of the
measurement are given in Table 1.
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Table 1. Properties of the reference image RefIMP.

Property Reference Image Provided in This Work

Plastic types 10 most frequent types,
including 1 bioplastic

Matrix residues Cellulose, proteinaceous material and sand

MP sizes 11–666 µm

MP shapes Fragments for all types, plus cellulose fibers

Substrate

Aluminum oxide filter, 25 mm diameter, pore size
0.2 µm with PP support ring (Whatman Anodisc) placed

on a BaF2 window in a customized filter holder to
enhance filter flatness; for fiber samples, a second BaF2

window was placed onto the filter

Measurement mode Transmission

Spectral range 3700–1250 cm−1

Spectral resolution 8 cm−1

Objective and projected
pixel size 15×, 5.5 µm

Background scans 120 (on a blank spot of the filter)

Sample scans 30

Ground truth establishment
Pre-filtering using spectral descriptors and manual

evaluation of ROIs by an expert; correction for particles
found by a random decision forest model

Image size 1280 × 896 pixels, 2.72 GB (.dmd and .spe formats)

The images recorded were inspected carefully to identify the tiles (fields of view of the
FPA detector, each ~700× 700 µm2) most suitable for the reference images. The tiles were re-
stitched (see Figure S1 in the Supplementary Information) and the resulting artificial FTIR
image was named ‘RefIMP’. To enhance the accessibility of RefIMP, it is provided in the
native data format *.dmd, and in addition as *.spe (converted using siMPle, www.simple-
plastics.eu accessed on 10 May 2022). To keep the sample handleable by standard computers,
it was designed to be in total smaller than 3 GB [4]. RefIMP was not subjected to any spectral
manipulation (e.g., smoothing) and manually evaluated to create a particle ground truth
as is shown in Figure 2. After having created the first DAR, its classification results were
investigated to find MP particles that were overlooked during manual evaluation, but
found by the model. The ground truth was corrected for these particles. The full ground
truth list including the particle size distribution can be found in Figure S2 of the SI and a
summary is given in Table 2. Note that even though only the particle fraction <50 µm was
used to prepare the reference image, particles >50 µm were present. This may be because
sieving does not guarantee perfectly accurate size exclusion and, further, aggregation
of particles could not be fully avoided, leading to lumps of small particles, which as a
consequence appear as one big particle in the image.

www.simple-plastics.eu
www.simple-plastics.eu
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Figure 2. Left: µFTIR image RefIMP, intensity filtered at 2920 cm; right: color-coded particles.

Table 2. Results from manual evaluation of RefIMP, the ground truth; size range refers to the larger
Feret diameter.

Class Quantity in RefIMP Size Range [µm]

PE 97 11–170

PP 71 21–382

PVC 92 13–445

PA 94 18–320

PS 98 11–204

PLA 83 17–388

PMMA 124 13–320

PUR 103 17–227

PC 89 17–666

Varnish-like 10 41–100

Total MP 948 11–666

Cellulose 133 17–1890

Protein 166 11–330

Sand 42 17–292

Total non-MP 341 11–1890

Total 1289 11–1890

3. Evaluating Data Evaluation Routines: Error Types and Metrics

Typically, results gained with any of the DARs proposed in the literature were evalu-
ated by manual checking of the class assignments. For instance, Primpke et al. [4] stated the
correct assignment rates for the particles identified by their database matching the program
siMPle. However, one question remains unanswered, which is ‘How many particles were
overlooked?’. This question can only be answered using a ground truth image. Therefore,
a definition of typical errors that can occur during particle recognition in hyperspectral
images is given in the following.

Any evaluation should comprise true positive results (TP), reflecting the samples
that were correctly assigned to a type, as well as false positive results (FP), representing
the wrong assignments. Moreover, correct non-assignments should be evaluated as a
true negative result (TN) and incorrect non-assignments as false negative results (FN).
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Assessing TP/FP/TN/FN can be carried out on the level of isolated spectra by means of
cross validation, where a portion of the data is repeatedly split to generate separate training
and test datasets. We decided to employ Monte Carlo cross validation (MCCV), where
the training–test split starts from the whole, original dataset each time [15]. Results can
then be summarized in a confusion matrix and performance measures calculated. They
can be categorized according to the level on which they operate. As such, class or type
measures focus on only one type, while global classification measures aim to quantify the
overall performance. Sensitivity and precision are well-known examples of single class
measurements, representing a classifier’s ability to classify a sample correctly or to avoid
false classifications for a class, respectively [15].

When assessing a DAR’s performance in an image or on the level of particles, however,
performance evaluation becomes more complicated because more types of error than only
FN and FP can occur, as is illustrated in Figure 3. The easiest error type is a particle falsely
assigned to a class. This type of FP has a counterpart, FN, referring to the undetected
class. FNs, however, also cover particles that are overlooked completely. FPs further
comprise the recognition of ‘particles’ in cases where there actually is no particle, called
‘ghost particles’ here.
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mentary TN results.

Another frequently observed error type is over-segmentation of particles, meaning
that one particle is split into two or more ‘particles’. This can happen, for example, because
of overlaying or very thick particles. The splits of over-segmented particles can all be
assigned the true class, the wrong class or a mix of both.

When evaluating on a single-spectrum level, the number of predictions equals the
number of samples, so the number of samples stays constant and the confusion matrix
that summarizes the results is symmetric. On the level of particles, as outlined before,
however, it happens frequently that more or fewer particles are found than actually present,
meaning that the number of samples fluctuates. Therefore, the confusion matrix is not
symmetric, complicating the calculation of the classic evaluation metrics. To solve this,
we have decided to adjust the metrics to suit MP classification in hyperspectral images:
sensitivities are calculated for each class, based on the number of particles of each class that
are actually present in RefIMP. The arithmetic mean sensitivity, also called non-error rate
(NER), thus is related to the total number of particles in RefIMP. Similarly, class precisions
are based on the number of particles predicted per class and the arithmetic mean precision
(Pr) refers to the total number of particles predicted. Further, we use accuracy here as the
fraction of correct predictions over all reference particles.

To allow a quick and effortless evaluation of a DAR including all error types discussed
above, a script was developed in MatLab® (The Mathworks, Inc., Torrance, CA, USA),
called ‘MPVal’. The script allows importing a table of reference particles (*.csv), originating
either from RefIMP or an in-house reference image. The reference particles’ locations
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are given through their bounding boxes as shown in Figure S3. The program compares
the reference particles with another table containing the center coordinates and types of
the particles identified by the DAR of choice. If a found particle’s center lies within the
bounding box of a reference particle and their types match, the particle is counted as a TP
for this class and TN for all other classes. Figure 3 demonstrates how the different error
types are dealt with. In the case of over-segmented particles, with all splits belonging to
the true class, only one of the splits is counted as FP.

MPVal creates a variety of outputs in order to illuminate the evaluation results from all
sides. This includes accuracy, NER and Pr, but stretches further to the sums of overlooked
particles, ghost particles and over-segmentations, distinguishing ‘all true’, ‘all wrong’
and ‘true and wrong’ splits. In addition, MPVal summarizes TP/TN/FP/FN and over-
segmentation factors for each class and calculates their sensitivity, precision and specificity
(ability to reject samples belonging to other classes). To grant full transparency, lists are
created that show which reference particle was assigned to which found particle(s) and
vice versa, as well as the resulting TP/FP/TN/FN and over-segmentation factors.

When preparing RefIMP, it could not be fully avoided that, occasionally, particles
were located within the bounding box of another particle. Therefore, a benchmark was
established by using the list of manually labeled particles for both reference and found
particle input for MPVal. This benchmark represents the best possibly achievable DAR
result. Accordingly, 1185 of the total 1289 particles in MPVal are counted as TPs without
over-segmentation. The remaining 104 particles are counted as ‘over-segmented with true
and false types’. No other type of error was experienced in the benchmark results.

4. Random Decision Forest Classifier for MP Detection

For the automated detection of microparticles in RefIMP, we have chosen to work
with random decision forest (RDF) classifiers [16]. Their application for MP classification
is described in detail in Hufnagl et al. [9], so only a short introduction is given here. RDF
classifiers belong to the family of supervised machine learning, meaning that to set up an
RDF model, a set of labeled training data including all classes to be modeled (polymer
types, natural substances and background) is necessary. Importantly, the number of labeled
training spectra should be balanced across all classes [17] and the training spectra should
be diverse, i.e., reflect real samples as much as possible. More precisely, this means that in
the case of MP classification, the training spectra should reflect that MP spectra often suffer
from a low signal-to-noise ratio, scattering effects, baseline distortion, total absorption or
sample matrix residues [4,17–20]. In addition to the training data, RDF classifiers need to
be provided with a set of spectral features that they can use to learn how to differentiate the
classes. Examples of spectral features are the height of a band at a certain position or the
ratio of the heights of two bands, see Hufnagl et al. [9]. The training data are subsampled
through ‘bagging’ (bootstrap aggregating) during decision tree ‘growing’ and the features
are subsampled randomly, so that each decision tree is based on a unique combination of
both [16,21].

RDF classifiers were shown to yield high performance in identifying MP in FTIR and
Raman spectra [10,22–24]. However, the performance evaluation to date has been restricted
to MCCV using isolated test spectra. Any assessment on the level of particles remained
rather superficial by visually checking the resulting particle image for ‘looking OK’. To the
best of our knowledge, no estimation of overlooked particles has been undertaken. We aim
to fill this gap with this work using RefIMP, MPVal and RDF classifiers set up in EPINA Im-
ageLab (Epina Softwareentwicklungs- und Vertriebs-GmbH, Retz, Austria) as an example
DAR. The number of trees was set to 60 and the resampling factor (training–test data split)
was set to 0.60 after pre-tests (not shown). The training and test datasets are provided at
https://mediatum.ub.tum.de/1656656 10 May 2022.

https://mediatum.ub.tum.de/1656656
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5. Thorough DAR Evaluation Using RefIMP and MPVal

Several aspects are known to severely influence DAR performance, such as the quality
of training data for machine learning models and classification thresholds. Quantifying
their influence in the context of MP recognition, however, has to date been carried out only
scarcely. In order to do so, three hypotheses are tested using RefIMP and MPVal:

(1) Masking of background pixels increases the risk of overlooking particles.
(2) RDF models benefit from high training data diversity.
(3) Model hyperparameters have substantial influence on the classification results.

Of course, other DARs, such as database matching, could be assessed similarly. Where
applicable, the performance determined using RefIMP will be compared with the perfor-
mance determined through MCCV, i.e., the meaningfulness of measuring performance on
a single spectrum is critically discussed.

5.1. First Hypothesis: Masking of Background Pixels Increases the Risk of Overlooking Particles

As described in Weisser et al. [11], unsupervised machine learning techniques such as
principal component analysis (PCA) seem promising to extract potential MP particles from
a hyperspectral image. In brief, PCA and other techniques, such as intensity filtering, allow
detection of patterns in a dataset, such as background and potential MP spectra. Only the
potential MP spectra need to be analyzed further, reducing the amount of data considerably
(up to 94% [6]) and thus speeding up the analysis. This includes a reduced necessity
of manually correcting a result for ‘ghost particles’. However, masks arguably bear the
risk of covering MP spectra unwantedly, especially when the spectra are weak or noisy.
Therefore, an ideal mask covers as many pixels as possible without causing overlooking of
MP particles. To the best of our knowledge, the usage of masks for real-world MP samples
in the literature has never been evaluated by assessing accidentally covered MP particles
but rather superficially by checking if the result ‘looks OK’ [6]. Here, we want to show how
our reference image and MPVal can be used to quantify overlooking of particles as well as
the occurrence of ghost particles.

Background masks were created in EPINA ImageLab using the tool Mask Creator
which allows masking pixels based on the image intensity histogram. Nine masks (Mask1–
Mask9) were created that cover 33% to 95% of pixels with the lowest signal intensity in
the image. Another mask was created by means of PCA: based on the score plot (see
Figure S4), the first and fifth PCs were found to best filter out the background spectra.
However, as can be seen in Figure 4, this approach covered only a small portion of the
image. Moreover, as the pixels to be masked need to be labeled manually in the PCA score
plot, reproducibility of this approach can be doubted. After filtering the image with one of
the masks, the unmasked pixels were subject to classification by an RDF model (trained on
a dataset with 50% diversity, see Section 5.2, and default hyperparameters, see Section 5.3).
The results were evaluated with MPVal. To find the best-suited mask, Figure 5 shows
the percentage of overlooked and the number of ghost particles detected when using the
intensity-based masks, the PCA-based mask and without any mask.

It is evident that none of the approaches reaches the benchmark of 0% overlooked
particles and 0 ghost particles, meaning that the RDF classifier should be improved; yet,
the results illustrate the strong influence of masks on the result: on one side, the number
of ghost particles decreases with increasing size of the masked areas, as was anticipated.
Without a mask, 447 ghost particles were found, decreasing slightly with the PCA-based
mask and Mask1 (429 and 404, respectively). From there, the number of ghost particles
drops and decreases continuously, reaching 16 with Mask9.
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Figure 5. Left side: relation of overlooked and ghost particles depending on background masks; right
side: % area of RefIMP covered by the masks.

On the other side, the risk for overlooking particles increases with increased masked
areas, as expected. While without a mask, 9.85% of particles were overlooked, Mask9,
covering 95% of the image, causes 39.88% of particles to be missed. If one aims to minimize
overlooking particles, either no mask or a rather small mask, such as Mask1 or the PCA-
based mask in our example, should be used. It should be noted, however, that masking
pixels speeds up subsequent analyses, making them attractive for high-throughput tasks.
The ghost particles that are detected this way, however, will cost time during manual
post-processing of the results. Aiming for a compromise that minimizes both overlooking
of particles and post-processing efforts, we have chosen to use Mask2 (33% of the image
covered, 10.86% overlooked and 217 ghost particles using the RDF model employed in this
experiment) for all subsequent experiments.

5.2. Second Hypothesis: RDF Models Benefit from High Training Data Diversity

When training supervised machine learning models for MP classification, it has been
emphasized in the literature [9] that the training data should consist not only of high-quality
spectra, but contain ‘bad’ spectra, as well. We call this the ‘diversity’ of spectra here. A high
diversity is expected to yield high performance for all classes and, consequently, a high
global performance. Choosing the training data in the past, however, remained a somewhat
subjective task as no objective metrics have been used to assess their diversity. In this
section, we will show how training data diversity can be assessed and how it influences the
classification result. A set of transmission µFTIR spectra of the particle types summarized
in Table 2 and the Anodisc filter was sampled. Importantly, the spectra were sampled from
other samples than those used to create RefIMP. Each class contains about 700 spectra with
the exception of protein (475) and varnish-like (55). For model training, 80% of spectra per
class were split off randomly, but stratified, while the rest served as test data. To investigate
the effect of training data diversity on the classification performance, four more sets were
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created, in which 25, 50, 75 and 100% of spectra were replaced by copies of one spectrum
for each class (see Table 3).

Table 3. Training sets with varying levels of data diversity.

Diversity Level 0 25 50 75 100

% copies 100 75 50 25 0

Figure 6 illustrates the increase in diversity with decreasing number of copies, based
on the normalized Pearson correlations (r, [0, 1]) between the spectra and corresponding
references. The reference spectra were created by averaging 10 spectra of each class (see
Figure S5). The closer r is to 1, the more similar are the query and reference spectrum, thus
the query spectrum is considered to be of high quality, while r close to 0 stands for high
dissimilarity and therefore low quality.
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(x axes) with their respective references.

Note that if the 75% diversity and 100% diversity spectra underlying Figure 6 were to
undergo database matching, a hard threshold, e.g., 0.70, would leave a considerable portion
of spectra unassigned; while for some classes, such as PP, sand and PC, the median values
are above this threshold, medians of other classes such as PE and PMMA are below. This
underlines the necessity of applying class-wise thresholds rather than global thresholds in
database matching, already mentioned elsewhere [2].

It was anticipated that the diversity level of the training data severely influences the
RDF’s performance. However, another important model input is to be taken into account,
the spectral features or descriptors (see Section 4). Thirty sets of spectral descriptors
were designed, subjected to MCCV and refined until an optimized set of 161 descriptors
was determined reaching the following global performances: accuracy 0.986, NER 0.958,
Pr 0.987. All following RDF models were trained using this set of descriptors.

In a first step, one RDF model was trained for each training data diversity level and
their performance assessed by means of MCCV. As test data, a set with 100% diversity was
chosen to represent realistic conditions and avoid bias. MCCVs were performed 5-fold to
account for the range of variation caused by bagged training data and feature subsampling
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during RDF growth [16]. The dataset 0% diversity was expected to deliver very poor
results, but surprisingly, it reached mean accuracy, NER and Pr values of 0.774 ± 0.004,
0.749 ± 0.004 and 0.773 ± 0.004, respectively. With 25% diversity, the metrics jumped
up to 0.974 ± 0.000, 0.946 ± 0.000 and 0.975 ± 0.001, respectively; higher diversity levels
only led to very slight improvements, with maximum values at 75% diversity (accuracy
0.991± 0.000, NER 0.967± 0.000, Pr 0.992± 0.000). It seemed, accordingly, that RDF models
can benefit from 25% duplicates in their training dataset, as opposed to our hypothesis;
however, compared with the 100% diversity performance, the difference is very small and
this conclusion would be premature, as shown below.

To find out how well the results from MCCV reflected the performance of the RDFs on
RefIMP, the RDF results underwent evaluation with MPVal. Similar to the 5-fold MCCV,
5 RDFs were trained for each level of diversity to account for variations due to bagging of
training data and subsampling of spectral descriptors during decision tree growth.

Figure 7 shows accuracy, NER and Pr determined through both MCCV and MPVal
in comparison with the benchmark. Generally, MCCV underestimates the performance,
showing that the manually labeled training and test data did not fully reflect the data in
RefIMP. This hints towards human bias during data labeling, even though care was taken
to sample a broad variety of spectral qualities. The results indicate that starting from 25%
diversity, the level of training data diversity does not significantly influence accuracy and
NER on RefIMP, and only for Pr was an increase observed; the 100% diversity set was
the most successful with 0.681 ± 0.000, meaning that the model’s ability to avoid wrong
predictions was enhanced. Still, this value could be closer to the benchmark of 1.000.
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Figure 7. Accuracy, NER and Pr determined through MCCV and MPVal for the benchmark and
training sets with 0–100% diversity.

Regarding the other results from MPVal, the models with diversity levels 25–100% per-
formed equally well: regarding the numbers of falsely assigned particles, the 100% diversity
model made only 46± 3 false predictions, about as many as the models with 25, 50 and 75%
diversity, while the 0% diversity model made 73 ± 22 false predictions. The 0% diversity
model further performed the weakest in the categories ‘TP without over-segmentation,
‘FN (overlooked)’, ‘FP (ghost particles)’, and ‘Correct incl. over-segmentation’, as Figure 8
shows. Further, the standard deviations for 0% training data diversity were the highest,
indicating that the robustness of an RDF model suffers when learning from low-diversity
training data.
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Figure 8. Influence of training set diversity on correctly predicted particles that are not over-
segmented, overlooked particles, ghost particles, correctly predicted but over-segmented particles
and incorrect predictions.

While with raising diversity, only slight performance increases were observed, the
100% diversity model stands out in the category ‘ghost particles’ that had the lowest with
204 ± 7. Compared with the other models, the 100% diversity model thus will require the
least manual post-processing of the results. None of the models, however, reached more
than 770 correct and non-over-segmented predictions out of the 1289 particles present in
RefIMP. When including the over-segmented particles that include true predictions, i.e.,
that could be corrected manually afterwards, still none of the models reached more than
1105 correctly identified particles. Further, at least 124 particles were overlooked.

After assessing the RDF models, it seemed that the benchmark could not be reached.
However, so far, only the global performance, i.e., the performance across all classes, has
been reviewed. To draw a final conclusion, the performance should be assessed class-wise,
as well. Therefore, MPVal provides an easily interpretable heat map, the diagonal of which
represents the fraction of correct classifications per class, while values above and below
represent false classifications. The last row (‘not found’) shows overlooked particles, and
the last two columns show over-segmentation and occurrence of ghost particles per class.

For the best-performing model based on 0% diversity training data, the lowest row of
the corresponding heat map (see Figure 9) shows that the most overlooked classes were PE,
varnish-like, PUR and protein. Varnish-like was the class with the fewest training spectra
(55) and protein was the class with the second-fewest training spectra (475), which explains
the low performance [25,26]. This explanation, however, is not valid for PE and PUR with
700 training spectra each. Overlooking of these therefore most likely was caused by the lack
of training data diversity or, in other words, the replicated training spectra of PE and PUR
did not adequately represent the PE and PUR spectra in RefIMP. Cellulose is the class that
suffered from confusion with other classes the most: 53% of cellulose fibers were mistaken
for PVC by the model. PUR, apparently, was the type that caused the most false predictions,
as it was predicted instead of sand, protein or as a ghost particle. Further, about a third of
PMMA particles identified were ghost particles.

The best-performing model based on 100% diverse training data (Figure 10) performed
better in all classes, as the values on the heat map’s diagonal show. Note that in comparison
to the 0% diversity model, the share of overlooked particles decreased in all classes. Most
significantly, overlooking of PE particles dropped from 61% to 12%, highlighting the
importance of training data diversity. The danger of confusion is the highest for PP, about
half of which was predicted as PE; similarly, PLA was taken for PMMA in every third case.
Varnish-like is the class with the fewest correct predictions, which reinforces the hypothesis
that with 55 training data points, the RDF model had not gathered enough information
to generalize its knowledge on this class properly. With protein being the second-worst
class and fewer training data points than the other classes (475 vs. 700), this conclusion
is strengthened [26]. It seems that next to the potential confusion between protein and
PA [25], PA may be even more likely to be mistaken for PUR.
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Figure 10. Heat map of the results from an RDF model with 100% training data diversity compared
with the ground truth of RefIMP.

Remarkably, cellulose was the class that suffered from over-segmentation the most,
even though a BaF2 window was placed on the fibers to hold them flat as suggested by
Primpke et al. [27]. For the analysis of MP, however, it is much more important to know
that no MP particles are mistaken for cellulose than to know how many cellulose particles
or fibers are present exactly. As the heat map shows, cellulose was recognized correctly
in 88% of the cases and seldom mistaken for other classes. PUR was responsible for most
ghost particles, followed by sand and cellulose.

When we consider only the MP classes, the 100% diversity model identified most
classes at a high accuracy, except for PP, PLA and varnish-like. While for the latter, the small
number of training data points apparently caused the weak performance, PP and PLA
training spectra were neither under-represented nor seemingly high or low quality as
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their normalized r values suggest (Figure 6). Taking a look at the false-color image of
the particles identified in RefIMP, with examples shown in Figure 11, it can be seen that
the falsely identified PE particles were located at the margins of PP particles, where the
spectra were extremely distorted. Similarly, some pixels at the margin of PLA particles
were mistaken for PMMA. In one case, an overlying cellulose fiber seems to have caused
additional confusion. This type of error, however, can be corrected relatively easy in the
Particle Editor tool.
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Right side: example for FP PMMA particles (purple) at the margins of a PLA particle (yellow) and
partly covered by a cellulose fiber (green, only partly recognized).

To conclude, a highest-possible training data diversity is desirable as hypothesized,
especially for maximizing the number of correctly identified, not over-segmented particles
and to minimize the occurrence of ghost particles. Importantly, this conclusion could not be
drawn based on MCCV, but required the assessment of both global and class-wise results
from MPVal. Further, looking at the false-color map of the particles detected helped to
estimate the effort necessary for manual post-processing.

5.3. Third Hypothesis: Model Hyperparameters Have Substantial Influence on the
Classification Results

RDF models and other machine learning models require hyperparameters to be set
by the user. They can have large influence on model performance and thus require opti-
mization [10]. The relevant hyperparameters for RDF models as implemented in EPINA
ImageLab are (1) the classification threshold detune [−0.50, 0.50], which is linked to the
majority of decision tree votes that is necessary for a spectrum to be assigned to a class.
Here, we have rescaled this parameter to values between 0 and 1 and call it threshold for
a more intuitive understanding. Raising the threshold is expected to enhance model per-
formance significantly in terms of correctness of the class assignments and ghost particles.
If set too high, it may in turn increase overlooking of particles. (2) The minimum distance
[0, 1] between the highest and second-highest vote of the decision trees. It is expected to
influence the number of overlooked particles. (3) The minimum purity [0, 1], which reflects
how many classes were voted for by the decision trees, thus potentially influencing the
number of overlooked particles, as well. (4) The minimum neighboring correlation [0, 1],
which influences the grouping of neighboring pixels to form a particle. Thus, it presumably
influences over-segmentation of particles.

In a grid-search style [10], the best combination of these four parameters was searched
by assessing the results from MPVal. At this point, the results gained through MCCV
become irrelevant because MCCV does not take into account the hyperparameters. The ex-
periments were conducted with the best-performing 100% diversity RDF model identified
in the previous section. Table 4 summarizes the qualitative influence of each hyperpa-
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rameter on the global performance metrics, the occurrence of over-segmentation with
true and false type splits, ghost particles, overlooked particles and the total TPs including
over-segmentation. Details are given in Figures S6–S9.

Table 4. Qualitative influence of raising hyperparameters on the most important metrics derived
from MPVal (↑, rise; ↓, fall;→, no influence).

Metric Threshold ↑ Min.
Distance ↑

Min.
Purity ↑

Min.
Neighboring
Correlation ↑

Accuracy ↓ ↓ ↓ →
NER ↓ ↓ ↓ →

Pr ↑ ↑ ↑ →
Over-segmentation with
true and false type splits ↓ ↑ ↓ →

Ghost particles ↓ ↓ ↓ →
Overlooked particles ↑ ↑ ↑ →

Total TPs incl.
over-segmentation ↓ ↓ ↓ ↑

As expected, the threshold influenced the results the most, especially Pr: raising the
threshold leads to strongly increased values for Pr, which can be traced back to a decrease
in FP results, reflected in the reduction in ghost particles. When the threshold was set to
1.00, however, Pr became incalculable because no particle of the class varnish-like was
identified. Over-segmentation was reduced, as fewer false type predictions were made.
On the other hand, all other metrics deteriorated as the number of overlooked particles
increased, as expected.

Minimum distance and minimum purity influenced accuracy, NER and Pr in similar
ways: increasing them deteriorated accuracy and NER, which can be explained by the
increase in FN results in the form of overlooked particles. Pr increased with decreasing FPs
in the form of ghost particles. The same led to a reduction in over-segmentation including
false type splits when raising minimum purity. Raising minimum distance, however,
oppositely increased over-segmentation, reflecting that spectral quality within one particle
can fluctuate.

The latter is reflected in the increased over-segmentation due to increasing the mini-
mum neighboring correlation, as well. Apart from that, however, minimum neighboring
correlation hardly influenced the results. When set to the maximum (1.00), it positively
influenced the total number of TP findings. Accordingly, it was decided to set it to 1.00.

Even though minimum distance and minimum purity positively influenced Pr, their
negative influence on other metrics was considerable and, consequently, it was decided to
set them to their minima (0.00).

For setting the threshold, a compromise was to be found between maximum TP results
and a minimum of overlooked particles, again. Testing increasing threshold values, the best
compromise was a value of 0.40 with a total of 1121 out of 1289 particles correctly assigned,
48 false type assignments, 103 overlooked particles and 311 ghost particles.

6. Conclusions

RefIMP represents a state-of-the-art instrumental MP analysis technique and covers
the most important substance classes. Together with MPVal, it can be used to evaluate
DARs on a particle level, including intra- and inter-method comparisons. MPVal delivers
concise results that illumine a DAR’s performance from all sides, reaching from its global
performance to the performance for each class. Testing three hypotheses, the usability of
RefIMP and MPVal was demonstrated:
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(1) background masks can strongly reduce ghost particles but, according to our results,
they should not cover too much of the image to avoid overlooking of particles;

(2) RDF models benefit from highly diverse training spectra. In particular, the share of
overlooked particles was drastically reduced;

(3) among the model hyperparameters, the classification threshold was shown to be the
most important one, influencing NER, accuracy and especially Pr strongly.

Further, we have shown that when evaluating a model through MCCV, which is based
on manually labeled isolated spectra, the performance on a hyperspectral image can be
overestimated considerably. For example, MCCV cannot reflect the number of overlooked
and ghost particles that were revealed through MPVal. Our experiments with RDF models
have shown that, often, a high rate of TP results goes hand in hand with a high rate of
‘ghost particles’, i.e., particles found in places where there actually is none and that need to
be deleted manually. Consequently, it is necessary to aim for a balance between high TP
results and high effort for manual checking of the results. MPVal facilitates this decision by
reporting on these error types in detail.

While MPVal could be used in connection with other, self-established reference images,
we would also like to point out the limitations of RefIMP here. First, it cannot be guaranteed
that a DAR that has shown high performance on RefIMP performs equally well on any
other sample. Especially when a sample contains strongly aged MP or high amounts of
matrix constituents, the DAR performance can be substantially lower. However, this does
not per se lower the significance of RefIMP, as it represents the very first standard dataset,
that allows comparison of DARs on a particle level. Second, using RefIMP of course only
allows a statement on the polymer classes included, which cover the most important classes
for MP research. However, it can easily be augmented with new sample tiles or sample tiles
can be exchanged (see S1), allowing inclusion of new classes. Further, RefIMP can serve as
a training object for new staff who need to get to know the varying spectra of MP classes.

To finally answer the question that has inspired us to carry out the work presented here,
which is ‘How many particles were overlooked?’, we can conclude that our best RDF model
overlooked 7.99% of the particles present in RefIMP. Most overlooked particles belonged to
the classes varnish-like, PE and protein (12%, 12% and 18% of actually present particles
of the respective class), the first and last of which were the classes with the least training
data, emphasizing the necessity to provide the model with a balanced set of training data.
Clearly, this leaves room for improvement; yet, this has become clear only through RefIMP
and MPVal that showed how much MCCV alone overestimated the model’s performance.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microplastics1030027/s1, Figure S1: Assembly of RefIMP; Figure S2:
Ground truth for RefIMP; Figure S3: Assignment of found particles to reference particles; Figure S4:
PCA-based background masking; Figure S5: Reference spectra; Figure S6: Influence of minimum
neighboring correlation on predictions; Figure S7: Influence of minimum purity on predictions;
Figure S8: Influence of minimum distance on predictions; Figure S9: Influence of classification
threshold on predictions
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