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This paper studies the joint reconstruction of traffic speeds and travel times by fusing
sparse sensor data. Raw speed data from inductive loop detectors and floating cars as
well as travel time measurements are combined using different fusion techniques. A novel
fusion approach is developed, which extends existing speed reconstruction methods to
integrate low-resolution travel time data. Several state-of-the-art methods and the novel
approach are evaluated on their performance in reconstructing traffic speeds and travel
times using various combinations of sensor data. Algorithms and sensor setups are
evaluated with real loop detector, floating car and Bluetooth data collected during severe
congestion on German freeway A9. Two main aspects are examined: 1) which algorithm
provides the most accurate result depending on the used data and 2) which type of sensor
and which combination of sensors yields highest estimation accuracy. Results show that,
overall, the novel approach applied to a combination of floating-car data and loop data
provides the best speed and travel time accuracy. Furthermore, a fusion of sources
improves the reconstruction quality in many, but not all cases. In particular, Bluetooth data
only provide a benefit for reconstruction purposes if integrated subtly.
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1 INTRODUCTION

For various applications in traffic engineering, it is fundamental to know about the traffic conditions
on a road stretch with high certainty and sufficient spatio-temporal accuracy. A complete
representation of traffic conditions is especially crucial for understanding traffic flow, for the
effectivity analysis of control measures and for training data-driven prediction models. In contrast to
real-time or predictive state estimation, these applications are usually applied retrospectively.

The retrospective analysis often focuses on average vehicle speeds per time and space interval on a
road since this provides benefits such as enabling the deduction of travel times for road users,
providing jam tail warnings (Rempe et al., 2017b) aiming at the reduction of rear-end collisions at
jam tails, etc. However, using current sensor technology, average vehicle speeds are not measured for
all times and places on a road stretch. Rather, various types of sensors are available that provide
traffic-related data at different times for different places. Raw sensor data must therefore be processed
in order to determine an accurate reconstruction of traffic conditions.

Nowadays, several sensor technologies are in place that gather data, each coming with advantages
and limitations when applied. Induction loops, that are buried in the road surface, provide very exact
and reliable speed information but are mainly limited to few road stretches since the installation and
maintenance costs are high. Floating-Car Data (FCD), also called probe data, are gathered from
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vehicles or smartphones that determine their position via Global
Navigation Satellite Systems (GNSS) and report this position on a
regular basis to a central server. Time and space differences allow
for reconstructing the probe’s speed profile on a road. FCD are
available wherever traffic is flowing, but represent only a sub-
sample of the whole fleet. With WiFi/Bluetooth (BT) sensor
technology, the unique hardware address of a device that
passes two neighboring stations is registered, allowing the
derivation of the travel time and therefore the average speed
of devices that pass two neighboring stations (Haghani et al.,
2010; Barcelo et al., 2010; Martchouk et al., 2011; Lesani et al.,
2016; Margreiter, 2018). BT installation is not expensive but – like
FCD – the receivers do not collect information from all vehicles
and additionally, since they are conceivably placed several
kilometers apart from each other, the average speed can be
less granular.

Measuring traffic conditions with various sensors offers a great
opportunity to increase the accuracy of traffic state estimates.
However, the mentioned differences and characteristics of each
technology challenge the fusion of the sources. The aim of an
advanced fusion method is to make use of all information hidden
in the data and compute a combined result that outperforms
estimates based on a single source. Additionally, a combination of
satisfactorily precise sensor combinations, which are available at
lower costs, might be a reasonable compromise for decision
makers, so knowing these combinations would be beneficial
to them.

Given various sensor technologies, and various algorithms to
process collected data, it is difficult to decide, which technology
one should adopt and which algorithm one should deploy. This
paper seeks to support decision makers, practitioners and
researchers in selecting the combination of sensor data and a
reconstruction approach that provides the greatest benefit for
their specific problem. Since a real-world application requires
algorithms to cope with sparse and missing data, this paper
studies approaches with high robustness that can be applied
directly. Based on real data collected on a German freeway,
various algorithms and combinations of sensor technologies
are evaluated. Results comprise the accuracy of reconstructed
space-time speeds as well as the accuracy of deduced travel times.

The paper is structured as follows. Section 2 gives a literature
review on the comparison of different traffic data detection systems
and on information fusion approaches. Section 3 describes the
study site and data that are used to evaluate subsequent
approaches. In section 4, existing applicable fusion methods are
briefly summarized. Sub section 4.3 describes the adaption of the
Phase-Based Smoothing Method (PSM) to consider BT data in a
dynamic way. Section 5 presents the applied quality metrics and
the obtained results applying themethods to varying sensor setups.
The conclusion in section 6 wraps up the results and provides
potential further research directions.

2 STATE OF THE ART

Comparisons of different traffic detection technologies have been
widely performed in the past. In Klein (2020), a comprehensive

summary of available sensors and fusion techniques is given. The
authors of Bachmann et al. (2013b) compared Bluetooth
measurements and loop detector data in the Greater Toronto
Area on a stretch of several kilometers. In Kessler et al. (2018a),
the authors describe an offline comparison between loop
detectors and floating cars, determining which is able to detect
a traffic incident earlier. In Cohen and Christoforou (2015), the
authors statistically analyze the differences between loop
detectors and floating car data in the area of Lille, France.

Additionally, different fusion techniques have been
investigated. Faouzi and Klein (2016) give a survey of current
data fusion techniques for intelligent transportation systems. In
Klein (2019), they present three widely applied data fusion
techniques and describe their relevance to Intelligent
Transportation Systems (ITS): Bayesian inference,
Dempster–Shafer evidential reasoning, and Kalman filtering.
In Zeng et al. (2008), an evidence-theory-based data fusion
approach for traffic incident detection is described. Data from
inductive detectors, camera observation and floating car data are
fused on a rather short stretch of a few hundred meters on an
urban highway. Corsi and Capitanelli (2011) applied data fusion
techniques for traffic planning and control in a setting with
satellite images, acoustic and GPS data. In Zhou and
Mirchandani (2015), the authors describe a real-time capable
framework for the fusion of loop detector and GPS data. This
framework is able to distinguish lane-based traffic states. The
authors of Faouzi et al. (2009) study the fusion of loop data and
toll collection data using a Dempster-Shafer approach in order to
get an improved travel time estimate. In Yuan et al. (2014), an
approach to network-wide traffic state estimation combining loop
detector and floating car data is presented. Rempe et al. (2017b)
developed a model to fuse FCD and loop detector data to forecast
congestion fronts on a freeway.

A comparison of two model-based approaches on filtering
methods is conducted in Trinh et al. (2019). The results are
confirmed using synthetic data from a simulation. Liu et al.
(2018) describe an extended Kalman filter method for freeway
traffic state estimation fusing two data sources: wireless
communication records and microwave sensor detections.
Another Kalman filter based approach is given in Fulari et al.
(2015). In He et al. (2016), the authors discuss a data fusion
approach for cellphone probes and fixed sensors, and give a
sensitivity analysis on impact factors. The article (Chang et al.,
2016) describes a data fusion for travel time estimation from toll
collection stations and stationary vehicle detectors in Taiwan.
Rostami-Shahrbabaki et al. (2018) propose a fusion of loop data
and FCD at intersections to estimate queue lengths and outflows.
In Ambühl and Menendez (2016) and Dakic and Menendez
(2018), also a fusion of loop data and FCD is described with the
goal to approximate the Macroscopic Fundamental Diagram of
urban networks. Bachmann (2011) and Bachmann et al. (2013a)
compared seven fusion methods for traffic speeds and travel time
estimations. One key finding is that a simple convex combination
of loop detectors and BT measurements is one of the best fusion
strategies. However, data stems from micro-simulations which
tend to idealize real data. The authors of Hegyi et al. (2013) fuse
various sensors, loops, FCD and camera data using the Adaptive
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Smoothing Method (ASM) to improve the speed of jam detection
and respective control measures. An evaluation is performed
using simulated data.

The mentioned studies are mostly limited to the usage of two
different data sources, which limits the applicability in many
scenarios. Furthermore, they mostly consider only one quality
metric that is investigated, e.g., the spatio-temporal speed
distribution or travel time. Some of the mentioned studies
focus on the estimation of traffic conditions in dense
networks, which is a different challenge than the one
emphasized in this paper. Furthermore, data are often derived
from micro-simulations, which allow for extensive studies but
result in data that are usually more homogeneous and less noisy
than real data. If studies utilize empirical data, they often focus on
a rather short road stretch which gives an insight into only that
specific freeway section.

The approach described in this paper is based on empirical data
collected via three common sensor technologies: loop detectors,
FCD and low-frequency travel time data fromBT devices on a long
stretch of a German freeway. The number of data points is large,
which allows a detailed study of all combinations of data as well as
several algorithms processing the data. Furthermore, this work
applies two metrics which provides insights into the accuracy of
both reconstructed traffic speeds and reconstructed travel times.
The algorithms compared in this study are state-of-the-art
methods such as the ASM, the PSM, simple averaging methods
and an extension of the PSM. This extension is a minor, but
effective change to the PSM, which allows for the integration of
low-frequency travel time data in order to achieve higher
reconstruction accuracies.

3 NOTATION AND DATA

Speed measurements for all sensors are considered on a road
stretch with length X and a time period T. The data of all
detection technologies are represented as spatio-temporally
discrete speed values in a uniform grid with step size ΔX �
100m and ΔT � 60s. Thus, the domain can be represented as a
matrix with nX rows and nT columns, where an entry (also called
cell in the following) is referred to as (i, j), where i � 1, . . ., nX and
j � 1, . . ., nT. In each cell, the speed value is constant per data
source and is denoted as vi,j. Given a set S of sensor technologies
on the considered road stretch, Vs, s ∈ S with S � {LOOP, FCD,
BT} denote the speed matrices of loop detectors, FCD and BT
sensors, respectively.

Speeds measured by loop detectors are given at discrete
positions along the road stretch, and with a temporal
resolution of one minute. For each loop detector, the
measured speeds are assigned to corresponding cells in the
grid. The given name is VLOOP ∈ RnX×nT .

FCD comprise trajectories of vehicles. A trajectory of one
vehicle contains all information that a vehicle, equipped with a
GNSS, collects about its space-time speed. An equipped vehicle
samples its current position x at time t with a certain frequency,
and thus generates tuples of (t, x), t ∈ [0, T], x ∈ [0, X] along the
road stretch. Since no further speed information is given, for

simplicity, the vehicle’s speed between two sampled positions is
assumed to be constant. With sampling frequencies, that are in
the same order of magnitude as the time discretization of the
domain, this basic assumption is sufficient. In order to turn the
piece-wise linearly interpolated vehicle position into grid speeds,
for each grid cell, which is passed by the vehicle, i.e., the vehicle
traveled Δxi,j: Δxi,j ≥ 0 m and Δti,j > 0 s in that cell, a cell-wise
speed is computed as vi,j � Δxi,j/Δti,j. All cell-wise speeds of all
traces are computed, and subsequently, the speeds of all traces are
aggregated. If there are multiple speeds for the same cell, the
harmonic mean of all assigned speed values is considered. The
respective output matrix comprising all speed data from all
equipped vehicles is denominated as VFCD ∈ RnX×nT .

Travel times collected via vehicle re-identification and
provided by BT sensors are interpolated based on the Low-
Resolution Travel Time Smoothing Method (LTSM) (Kessler
et al., 2019). This method considers travel times through
predefined cells and weights all crossing paths through any
cell according to the share of the path inside the cell in order
to obtain an averaged speed distribution VBT ∈ RnX×nT .

The studies presented in the subsequent sections are applied to
data collected on May 29, 2019 on the German autobahn A9

FIGURE 1 | Sketch of considered road stretch: interchanges (cyan),
ramps (magenta), induction loops (dashed green), Bluetooth (dotted blue);
FCD available all throughout the stretch.
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(Figure 1) in the northbound direction during severe traffic
congestion. The markers depict the positions of the loop
detectors and Bluetooth receivers, respectively. FCD are

collected from a fleet of cars, which are equipped with a
GNSS device. With sampling times between 5 and 20 s,
depending on the software version, the vehicle collects
positions and timestamps. Packets of positions and
timestamps are reported to a central server. In order to
ensure privacy, the transmission ID is shuffled from time to
time, and some packets are retained such that tracing a vehicle
over its entire journey is not possible.

All in all, time-discrete data of 27 loop detectors, 1,578 FCD
traces and 11,722 BT samples are available. Figure 2 displays the
raw data.

4 FUSION METHODS

This section presents the fusion methods that are studied in this
paper. Three considered state-of-the-art fusion methods are
summarized and an extension to the PSM is presented.

All methods investigated in the subsequent evaluation require
to take as input only gridded speed data. That is necessary, as
FCD and BT contain little information about flow or density.
Furthermore, there must not exist requirements regarding
minimum data coverage, e.g., a penetration rate of FCD or a
maximum distance between neighboring detectors. That is
necessary to ensure real-world applicability, where a sensor
may fail, or where no equipped vehicles may pass a road
segment for a longer period of time. Finally, the output of the
algorithm must be a continuous speed estimate VE ∈ RnX×nT
containing a valid speed vmin ≤ VE ≤ vmax ∀(i, j).

4.1 ASM Approach
TheASM is a well-known approach used for traffic state reconstruction
(Treiber and Helbing, 2002; Treiber et al., 2011; Schreiter et al., 2010;
Kessler et al., 2018b) and also for on-line traffic speed estimation
(Rempe et al., 2016). Briefly summarized, raw data of a sparse input
source are smoothed in two traffic-characteristic directions: vcong
denominating the wave speed in congested traffic conditions, and
vfree denominating the wave speed in free-flow conditions. In a discrete
time-space domain, the resulting complete speed matrices Vcong(t, x)
and Vfree(t, x) are combined cell-wise:

VASM(t, x) � w(t, x)Vcong(t, x) + (1 − w(t, x))Vfree(t, x). (1)

The weight w(t, x) is adaptive and favors low speeds:

w(t, x) � 1
2

1 + tanh
Vthr −min Vcong(t, x), Vfree(t, x)( )

ΔV
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

(2)

with Vthr a threshold where weight w(t, x) equals to 0.5 and ΔV a
parameter to control the steepness of the weight function. In a
theoretical analysis as well as evaluation with real data, van Lint
et al. pointed out that smoothing speeds yields a significant error
considering travel time accuracy (van Lint, 2010). Instead, they
propose smoothing the inverted cell-wise speeds in order to
reduce the error. Since travel time accuracy is one of the two
key quality metrics in this evaluation, this procedure is adopted in
this study, replacing the original formulation of the ASM.

FIGURE 2 | Raw speed data measurements provided by (A) loop
detectors, (B) equipped vehicles and (C) Bluetooth receivers.
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Accordingly, for each data source s ∈ S, the discrete space-time
matrices VASM

s ∈ RnX×nT are computed. For a fusion, raw data are
combined cell-wise and the combined raw data are processed
with the ASM. In case of at least two data sources providing a
speed for the same cell, the harmonic mean is taken.

4.2 PSM Approach
The PSM is an approach that is based on concepts of the ASM. It
was developed to reconstruct space-time traffic speeds with higher
accuracy given only FCD (Rempe et al., 2017a). It utilizes findings
summarized by the Three-Phase traffic theory (Kerner, 1999;
Kerner, 2008) in order to distinguish between localized and
moving congestion. The method outperformed the ASM in a
recent study (Rempe et al., 2017a) and is therefore included in
the comparison as a state-of-the-art method. We refer to the
original paper for a detailed method derivation and evaluation.

Briefly summarized, in the first step of the PSM, raw data are
smoothed in the direction of typical speed propagation of each
traffic phase. vcong is assumed to be the propagation speed of
moving congestion with low vehicle speeds (also called Wide
Moving Jams (WMJs) in the Three-Phase traffic theory).
Congestion that is caused by a bottleneck, e.g., a construction
site or an on-ramp, is often localized and its downstream front is
attached to the bottleneck location. In order to account for the
locality, data are smoothed only in temporal direction for the so-
called synchronized traffic flow phase. Based on the speeds and
the amount of available data, each cell (t, x) is classified into one of
the three phases: Free flow, synchronized flow or WMJ using
probability theory.

In the second step, phase-specific speed estimates are
computed. Raw speed data that are assigned to a specific
phase are smoothed using either a free-flow kernel
parameterized with vfree or a congested kernel parameterized
with vcong. The phase-specific speed estimates are aggregated
into a final speed estimate using a weighted average.

The input of the PSM are gridded speeds. Additionally, for
each cell, a weight matrix wPSM ∈ RnX×nT can be given as input to
the method. Applying the PSM to the raw data of the input
sources as well as their cell-wise combinations (see section 4.1),
the respective output matrices VPSM

S are computed. The weight
wPSM is set to one for cells with valid data, and zero for cells
without data.

4.3 Extended PSM Approach Considering
Low-Frequency Probe Data
In order to apply the mentioned approaches, BT data are turned
into cell-wise speeds by computing their mean speeds and
assigning passed grid cells (Kessler et al., 2019) (see Figure 2).
However, since the BT detectors are usually places several
kilometers apart, taking the mean speed of a vehicle is a
significant simplification of its real speed. For instance, if there
was a mixture of congested and free traffic between two detector
locations, a mean speed will smooth all details. For travel time
estimations, this approach gives accurate results. In the case, that
the space-time speed data are desired, the grid-wise cell speeds
lack accuracy. Combining such smoothed speeds with other data

sources, which deliver more accurate information, will even
worsen the resulting output, despite of using more data.

Therefore, the idea, presented in this extension, is to introduce
a dynamic weight that is assigned to gridded BT speed data, which
express the trustworthiness of the computed grid speeds. The
trustworthiness is influenced by the detector spacing and the
measured travel time:

Assume a vehicle needs time Δt to travel distance Δx (see
Figure 3). It has a maximum speed of vmax and a minimum speed
of vmin. Further assume that the vehicle is not standing, such that
vmin > 0. Then, for an observer who only measured Δt and Δx, it is
not known where the vehicle was positioned, and at what speed it
was driving, while passing the measured distance in measured
time. From the observer’s perspective, however, given the
assumed minimum and maximum speed, the vehicle’s position
can be restricted to a certain space-time area. This area is depicted
as a parallelogram in Figure 3, along with three examples of
potential vehicle trajectories. Each potential trajectory can be
described as a function of the vehicle’s position x(t), and its
corresponding velocity vc(t). As illustrated, a medium travel time
allows for strong deviations of vc(t) over time, whereas low travel
times restrict vc(t) to higher speeds. Long travel times can only be
realized with vehicle speeds close to vmin.

A reconstruction method such as the PSM is sensitive to
wrongly assigned speeds in cells. Therefore, given the chance
that the vehicle had a completely different speed profile than the
speed profile computed using a simple linear interpolation, the
accuracy of the reconstruction suffers. In order to consider the
probability of deviation in the reconstruction method, the
following approach is implemented:

The variety of potential trajectories is modeled as the space-
time area ABT of the parallelogram formed by the time and space
difference, and the assumed minimum and maximum vehicle
speeds vmin and vmax. The magnitude of the area is supposed to
affect the weight of a trace: If the area is large, indicating a great
variety of potential trajectories, the weight shall be low. If the area
is small, the number of potential trajectories is low and the weight
shall be high. An exponential function is utilized to model the
decay of the weight wA with increasing A

w(A) � exp
−A
c

( ) (3)

with c ∈ R a parameter to adjust the sensitivity. The weight w(A)
∈ [0, 1] of all traces passing (t, x) assuming a linear interpolation is
averaged and assigned to wBT.

The novel fusion method is denominated as “PSM-W”
referring to a dedicated input source weighting of BT data.
When combining the raw data of loops, FCD and BT, in this
approach, the weighted average of all speed cells is taken as input.
Raw loop data and FCD are assigned a constant weight of one,
and said wBT as weight for BT data.

4.4 Section Average
The “section-average” approach averages collected data in
predefined sections. Due to its simplicity, it is still applied in
practice and, thus, considered as a relevant approach in this
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comparison. For each data source, time-space sections are defined
and all data that are related to such a section are collected and
averaged. Specifically, for loop detectors, section borders are
located in the center of two adjacent detector positions. A cell
is assigned the speed measurement that is collected by the
spatially closest detector at the same moment in time. If, due
to an outage of a detector, a measurement is missing, the next
closest measurement in time is taken. The resulting speed matrix
is denominated as VSEC

LOOP.
Start and end times of BT samples are collected at the locations

of the BT detectors. For each section and each time step Δt, all BT
traces that cross such a section are identified. The total distance
covered by these traces in this section for Δt divided by the
respective total time of all traces in this section is the resulting
average speed at time t for all cells that belong to the section. The
resulting speed estimate is denominated as VSEC

BT . The same
approach is done for FCD. Compared to stationary detectors,
there are no predefined sections. For simplification, the same
sections as for detector data are used. In order to assign values to
sections without data, a temporal linear interpolation is
performed. The resulting matrix is called VSEC

FCD. Fusions of
mutual pairs and all three matrices are simple cell-wise
averages of the speeds.

5 EVALUATION

5.1 Methodology
The aim of an accurate reconstruction method is to generate a
complete speed estimate in time and space that is suited to various
subsequent applications. Conventionally, the quality of a
reconstruction is assessed using speed data only. The
drawback is that a potential bias in estimated speeds, e.g., a
systematic over-estimation, is not penalized. As a result,
estimated travel times over larger segments are erroneous.
Therefore, we see it necessary to assess both the accuracy of
cell-wise speed estimates and the accuracy of virtual travel times.
In the following, the combination of both aspects is considered as
the reconstruction quality or accuracy. In order to assess the
reconstruction accuracy, the following considerations are taken
into account:

1) As visible in the raw data plots, the measurements of each data
source are sparse in time and space.

2) Loop detectors provide accurate speed measurements but are
limited to certain locations.

3) FCD provide relatively accurate speed estimates for varying
times and spaces but do not represent macroscopic speeds.

4) BT-based travel time measurements are abundant, though the
cell-based speeds are inaccurate due to large distances between
neighboring sensors.

For these reasons, in order to assess the space-time speed,
those data sources with high spatio-temporal accuracy should be
used—for the evaluation of travel time data, a source with
accurate travel time measurements is required. Therefore, a
combination of FCD and loop detector data assesses the cell-
wise speed estimates, and BT data are used to assess the travel
time accuracy.

A commonly used approach in model training and evaluation
is to divide available data into a training and a test data set.
Figure 4 depicts the methodology applied in this evaluation. First,
each data source is randomly divided into a training and test set
with a ratio of 1:1. Specifically, all speed measurements that are
gathered by one detector position are either assigned to training
data or test data. FCD and BT are assigned per trace. Training
data are fused in order to generate an estimate VE, and test data of
loop detectors, FCD and BT are used to assess the reconstruction
quality.

The quality assessment with a combination of FCD and loop
data is done using the InverseMean Average Error (IMAE), Eq. 4.

FIGURE 3 | Different travel time measurements and the space of potentially realized trajectories that result in each travel time.

FIGURE 4 | Flow of information of test and training set of sensor data for
fusion and quality assessment.
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It is a symmetric metric that is sensitive to deviations of lower
speeds:

IMAE � 1
|vtest| ∑

vi,j∈vtest

1
vi,j

− 1

vi,jE
(4)

with vtest representing all tuples v
i,j that correspond to a cell-wise

speed contained in the test set vtest. The set is defined as the union
of all cell-wise speeds in the test sets of FCD and loop data.

Quality assessment of travel times with BT is based on the
comparison of virtual trajectories with the measured traces using
BT detectors. For each measured trace, a virtual trajectory is
computed that starts at the same time and location (tstart, xstart) of
the real trace. The virtual vehicle drives with the continuous
representation of speed VE(t, x(t)) until reaching xend:

tend ∈ [0, T]: xstart + ∫tend

tstart

VE(t, x(t))dt � xend (5)

Its virtual travel time is defined as:

VTT � tend − tstart (6)

Given nBT as the number of BT travel time samples in the test
set, TTi as themeasured andVTTi as the virtual travel times for i �
1, . . ., nBT, the Mean Absolute Percentage Error (MAPE) is
applied as a quality metric. A relative metric reduces the effect
of varying segment distances between neighboring BT receivers.

MAPE � 1
nBT

∑nBT
i�1

VTTi − TTi

TTi
(7)

The parameter set for the ASM is taken in accordance with
Treiber et al. (2011). The PSM is parameterized according to Rempe
et al. (2017a). Based on some experiments, c is set to 500, 000m· s
(Eq. 3). A formal sensitivity analysis and optimization is left for future
work. vmin is set to 5 km/h and vmax is set to 130 km/h. The random
split between test and training set is done at each run. In total, speed
estimations for all scenarios and algorithms as well as quality
assessments are done 50 times and average results are presented.

5.2 Results
This study intends to give insights into several aspects that come
up considering a multi-sensor data fusion. In order to structure
the outcomes, the results are examined with respect to two
questions:

1) Given a certain sensor set-up on a road and several algorithms
that can be applied to process raw data, which algorithm
returns the most accurate results?

2) Given the freedom to choose between the three sources of
sensor data, which data source or which combination yields
best results?

5.2.1 Algorithm Assessment
Figure 5 depicts the mean IMAE and MAPE of all scenarios and
algorithms. Several observations can be made:

1) The available sensor data have a significant impact on the
resulting errors for each algorithm.

2) The IMAE has a higher variance than the MAPE.
3) Some algorithms perform best with respect to the IMAE in a

scenario but are outperformed with respect to the MAPE (e.g.,
with FCD only, “PSM” has a lower IMAE but “ASM” a lower
MAPE). This shows that both quality metrics measure
different properties of an algorithm.

4) The “SEC-AVG” is the algorithm which results in the lowest
accuracy, for IMAE as well as MAPE in most scenarios. Given
only “LOOP + BT”, this algorithm has a slight advantage over
the “ASM” and ‘PSM”. Still, the “PSM-W” performs better.

5) The “PSM-W” performs significantly better in IMAE and
MAPE in all scenarios that involve BT data.

6) On average, the “PSM-W” provides the best quality results. In
a “LOOP”-only scenario, the “ASM” performs better.

In order to better understand which estimation errors
occurred applying each algorithm, the scenario with all data
(“LOOP + FCD + BT”) is examined below.

FIGURE 5 | Mean (A) IMAE and (B) MAPE of all runs with respect to the available sensor technology and the applied algorithm.
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Figure 6 visualizes the estimation results of all algorithms as well
as the IMAEwith respect to all available data. It can be observed that
the estimate computed with the section-average approach 1) results

in large errors downstream of the heavy congestion at kilometer 522.
Furthermore, the approach failed to reconstruct the moving jams
that emerge after 3:30pm. The reconstructions given with ASM 2)

FIGURE 6 | Reconstructed speeds applying each algorithm (A) SEC-AVG, (B) ASM, (C) PSM, (D) PSM-W to the training data (on the left) and resulting IMAEs
comparing the reconstructed speeds to all available data (right).
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and PSM 3) reveal a higher spatio-temporal accuracy. Though, even
these approaches spatially overestimate the heavy congestion and are
not very accurate at reconstructing themoving jams either. Themain
reason is that all BT data, with their low space-time accuracy in mid-
range speeds (compare section 4.3) are smoothed, which blurs the
fine structure of the congestion.

Applying the “PSM-W” 4) with the adapted weighting of BT
according to Eq. 3 (see Figure 7) overcomes this issue. Traces with
medium travel times and those collected on long segments tend to have
a lower weight. Thus, both the speed profile of the heavy congestion
and that of the moving jams are reconstructed more precisely.

Figure 8 depicts the interpolated Probability Density
Functions (PDFs) of relative travel time errors of each
algorithm based on the BT test set and virtual trajectories (see
section 5.1). The PDFs of “SEC-AVG”, “ASM”, and “PSM” are
similar to each other, and exhibit a wider distribution than the
PDF corresponding to “PSM-W”. This explains the lower
resulting MAPE of the “PSM-W”.

5.2.2 Sensor Setup Assessment
Suppose that one wishes to install an array of traffic sensors on a
stretch of road for the purpose of providing accurate traffic speed

FIGURE 7 | Resulting weight applying the speed-adaptive conversion of travel time samples.

FIGURE 8 | Approximated probability density function of relative errors comparing the travel times of virtual trajectories based on each algorithmwith the measured
travel times collected via BT devices.

Frontiers in Future Transportation | www.frontiersin.org October 2021 | Volume 2 | Article 7669519

Kessler et al. Multi-Sensor Data Fusion

https://www.frontiersin.org/journals/future-transportation
www.frontiersin.org
https://www.frontiersin.org/journals/future-transportation#articles


information. In that case, it is relevant to know about the quality
that a single sensor technology or a combination of sensor
technologies may achieve. Figure 9 shows, for each sensor
combination, the lowest achieved IMAE and MAPE across all
algorithms. Several observations can be made:

1) The combination of FCD and loop data provides the best
results for MAPE and IMAE.

2) The usage of more technologies does not necessarily improve
the reconstruction quality. For example, “LOOP + FCD + BT”
is not the most accurate combination.

3) With respect to IMAE, BT provides the lowest accuracy.
4) With respect to MAPE, loops provide the lowest accuracy.
5) Using FCD or combinations with FCD increases both quality

metrics significantly.
6) The integration of BT data improves the quality in some cases

(MAPE: “FCD + BT”, “LOOP + BT”), but worsens it in others
(IMAE: “FCD + BT”)

Apparently, loop and FCD is the best choice. However, if for
instance FCD are not available, a combination of loop and BT
data is able to provide more accurate results. Thus, these findings
support in the decision process of setting up sensors on a road, or
amending stationary data with FCD.

5.3 DISCUSSION

The present study examines two major aspects of a multi-sensor
data fusion: the reconstruction accuracy using different
combinations of sensor data, and the accuracy applying
different state-of-the-art algorithms (as well as a novel
approach) to different sensor combinations. Additionally, the
reconstruction accuracy is measured using two metrics.

A welcome result of such a study would be a clear
recommendation on which algorithm or data to use in general
in order to obtain the most accurate estimates. However, as the

comparison showed, the choice of metric has an influence on the
most accurate approach and sensor combination. For example,
adding BT data barely improved, and sometimes even worsened,
the quality of the space-time speed reconstruction. The data
quality of BT has a great impact here and possible outliers
should be eliminated rigorously beforehand. On the other
hand, the travel time accuracy of virtual trajectories improved
by adding BT. The same is true for the choice of algorithm. If only
loop data are given, the ASM performs best in IMAE and MAPE.
Given other data, specially BT data, the weighted PSM-W
performs best. Compared to the original PSM, its accuracy is
the same or better, thus, it successfully extends this approach
without compromises. Thus, as a result, depending on the desired
speed and travel time accuracy, this study helps to pick the
optimal sensor setup or algorithm, depending on the given
situation.

Some factors which may have an impact on the results are set
as fixed in this study, though they may vary in other applications.
First, the penetration rate and sampling interval of FCD and the
spacing of stationary detectors may vary. Secondly, the situation
used for assessment in this paper is a mixture of two traffic
patterns using the classification of the Three-Phase theory: mega-
jam and General Pattern (Kerner, 1999). These patterns cause
large travel time losses, and thus, are especially important to
reconstruct accurately. For further work, the study may be
extended to further congestion patterns occurring on different
days and roads.

6 CONCLUSION

This paper studies a multi-sensor data fusion for accurate traffic
speed and travel time reconstruction. Two aspects are analyzed:
1) Which is the most accurate algorithm depending on different
combinations of data sources, and 2) which is the best
performance one can achieve with a flexible sensor setup. To
this end, three state-of-the-art methods such as the ASM, the

FIGURE 9 | Lowest IMAE and MAPE using the most accurate reconstruction algorithm with respect to the available data source.
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PSM and a simple averaging method, as well as a novel approach,
are used to jointly reconstruct the traffic speed and travel times
given sparse data.

The novel approach extends the PSM. It introduces a variable
weighting of BT measurements, depending on detector spacing
and measured travel time, which expresses the trustworthiness of
a single measurement. The weighting allows for a dynamic
integration of BT data with other data sources.

The mentioned questions are studied using empirical loop data,
FCD and BT data collected during severe congestion on a German
freeway. Data are divided into a reconstruction and a test set. Various
combinations of algorithms and data are used to reconstruct the
space-time traffic speed and the travel times. The errormetrics IMAE
andMAPE are used to assess the resulting reconstruction accuracies.

Key findings are that the novel approach outperforms the other
algorithms in most of the cases. Furthermore, a combination of
FCD and loop detector data provides the best overall results. The
integration of Bluetooth data does not necessarily improve the
reconstruction quality, depending on the error measure chosen.
However, if no FCD are available, a combination of loop data and
BT data is a better choice than only one source of data.

Next steps comprise a comprehensive pre-processing of travel
time derived data to ensure consistency and to reduce outliers.
Also, future research may include a mathematical optimization of
the applied parameters and further studies on sensor spacings.
Furthermore, the study could be extended to other locations and
congestion patterns.
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