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Abstract: Bacterial exopolysaccharide (EPS) formation is crucial for biofilm formation, for protection
against environmental factors, or as storage compounds. EPSs produced by lactic acid bacteria (LAB)
are appropriate for applications in food fermentation or the pharmaceutical industry, yet the dynamics
of formation and degradation thereof are poorly described. This study focuses on carbohydrate active
enzymes, including glycosyl transferases (GT) and glycoside hydrolases (GH), and their roles in the
formation and potential degradation of O2-substituted (1,3)-β-D-glucan of Levilactobacillus (L.) brevis
TMW 1.2112. The fermentation broth of L. brevis TMW 1.2112 was analyzed for changes in viscosity,
β-glucan, and D-glucose concentrations during the exponential, stationary, and early death phases.
While the viscosity reached its maximum during the stationary phase and subsequently decreased,
the β-glucan concentration only increased to a plateau. Results were correlated with secretome and
proteome data to identify involved enzymes and pathways. The suggested pathway for β-glucan
biosynthesis involved a β-1,3 glucan synthase (GT2) and enzymes from maltose phosphorylase
(MP) operons. The decreased viscosity appeared to be associated with cell lysis as the β-glucan
concentration did not decrease, most likely due to missing extracellular carbohydrate active enzymes.
In addition, an operon was discovered containing known moonlighting genes, all of which were
detected in both proteome and secretome samples.

Keywords: Levilactobacillus brevis TMW 1.2112; β-glucan; exopolysaccharide; glycosyltransferase;
glycosyl hydrolase; moonlighting proteins; secretome; proteome

1. Introduction

Exopolysaccharide (EPS) formation of lactic acid bacteria (LAB) has been massively
studied for structural and sensory effects in the food industry and as drug delivery agents,
bio-absorbents, and probiotics in the pharma industry [1–12]. The advantage of EPSs from
LABs is that they are generally recognized as safe (GRAS) and could be used under in vitro
or in vivo conditions [4]. EPSs are high-molecular-weight polymers, either secreted into the
surrounding environment or acting as capsular polysaccharides attached to the cell surfaces
(CPS) [13]. The EPSs produced by LAB are classified into homopolysaccharides (HoPSs)
such as glucans and fructans, formed by repeating units of the same monosaccharide
or heteropolysaccharides (HePS), which are mainly composed of D-glucose, D-galactose,
and L-rhamnose. Most HoPSs (e.g., dextran, mutan, inulin, or levan) are polymerized
extracellularly by glucansucrases or fructansucrases, whereas HePSs and β-glucans (con-
sisting exclusively of D-glucose monomers) are formed intracellularly by transmembrane
glycosyltransferases from nucleotide-activated sugars and released to the extracellular
environment during polymerization [2,14–17]. The purposes of EPS and CPS formation
are often described as protectors against biotic and abiotic stress (e.g., temperature, pH,
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osmotic stress, or antimicrobial compounds) and as important agents in biofilm formation
and cell–cell interaction [18–22].

On the contrary, although a decrease in EPS was observed in many studies by physical
processes of the culture or enzymatic activity, the functions of EPS degradation by LAB
remain unclear [23–29]. In general, the enzymatic hydrolysis of polysaccharides is per-
formed by enzymes of the glycoside hydrolases (GH) families. GHs belong to the numerical
classification EC 3.2.1.- and possess hydrolytic activity to glycosidic bonds of carbohydrates
and non-carbohydrate fractions [30,31]. However, some EPS-producing LABs do not even
possess hydrolytic enzymes enabling EPS degradation [4,32].

Levilactobacillus (L.) brevis TMW 1.2112 is a heterofermentative LAB isolated from
spoiled beer due to capsular O2-substituted (1,3)-β-D-glucan formation [33,34]. L. brevis
TMW 1.2112 was applied to in-situ-enriched EPS sourdough, to investigate the structural
and sensory characteristics of the dough and the subsequent baked goods [35,36]. Further-
more, the physiological effects of isolated β-glucan from L. brevis TMW 1.2112 as well as
plant-based and yeast β-glucans were analyzed in a comparative study [37]. Previous stud-
ies have described the polymerization of β-glucan by transmembrane glycosyltransferase-2
(Gtf-2) family members called β-1,3 glucan synthases (GT2), e.g., in Pediococcus (Pe.) parvu-
lus, Pediococcus (Pe.) claussenii, Paucilactobacillus (Pa.) suebicus, and L. brevis sp. [35,38–43].
The Gtf-2 enzymes belong to the numerical classification EC 2.4.-, which comprises several
glycosyl transferases (GTs). Enzymes of this class catalyze the transfer of sugar moieties
from activated donor molecules to acceptor molecules, resulting in the formation of glyco-
sidic bonds [44,45]. Moreover, Fraunhofer et al. (2018) postulated a putative pathway for
β-glucan biosynthesis by L. brevis TMW 1.2112 through the genome sequence [46].

Homologies to the β-glucan and Gtf-2 of LAB were observed for the β-1,3 β-1,2 glucan
capsule and glycosyltransferase Tts branched from Streptococcus (S.) pneumoniae 37 [47].
An immunoagglutination test using S. pneumoniae serotype 37 antibodies enables the
identification of β-glucan capsules of LAB and was positive for L. brevis TMW 1.2112 [34],
Pe. claussenii TMW 2.340 [35], Oenococcus oeni [42], and Pediococcus damnosus [48]. However,
proteins involved in the attachment of the β-1,3-glucan capsule to the cell surface of LAB are
so far undescribed. It has been discussed that the LytR-Cps2A-Psr (LCP) protein family and
the Wzy pathways could be involved in polysaccharide attachment to the peptidoglycan of
Gram-positive bacteria [49–53]. Still, the knowledge about LCPs in Lactobacilli is limited.
Furthermore, moonlighting proteins are known to overtake multiple functions based
on their cellular position, e.g., moonlighting proteins from commensal lactobacilli were
described as acting in adhesion processes [54–57]. LCP and moonlighting proteins might
interact with the CPS of L. brevis TMW 1.2112 regarding attachment and adhesion processes,
but such phenomena have not yet been described.

Although a decrease in the β-glucan amount and viscosity effects in sourdough and
culture broth fermented by L. brevis TMW 1.2112 was observed, the responsible factors
are unknown [34,36]. To avoid weak solubility and possible structural changes due to the
multistage isolation processes of isolated β-glucan, the in vivo expression of GTs and GHs
during fermentation of L. brevis TMW 1.2112 can be studied by proteomic analysis [58,59].
Consequently, we aimed to identify the enzymes involved in β-glucan formation and the
subsequent presumed degradation by the regulation of differentially expressed proteins
during the exponential, stationary, and early death phases. We hypothesize that the
observed changes in viscosity and β-glucan concentration are reflected in the proteome and
correlate with the presence of relevant enzymes (GTs, GHs, and β-glucan biosynthesis). This
study revealed a pathway for the biosynthesis of (1,3)-β-D-glucan of L. brevis TMW 1.2112
and demonstrated a lack of enzymatic activity for the polymer utilization as energy sources.

2. Results
2.1. Growth Characteristics of L. brevis TMW 1.2112 and β-Glucan Content in Culture Broth

L. brevis TMW 1.2112 was cultivated in a chemically defined medium (CDM) for
10 days. During the fermentation process, growth parameters, e.g., cell count, pH value,
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viscosity, and the amount of β-glucan and D-glucose, were analyzed. After inoculation, the
cell growth entered the exponential phase immediately and reached the stationary phase
within 24 h (Figure 1A). During fermentation, the cell count increased with its maximum
after 3 days with 5.5 × 108 cfu (colony forming units)/mL. After 5 days, the cell count
decreased to 4.8 × 108 cfu/mL. The pH value decreased from the initial pH 6.2 to 5.1 after
24 h and to 3.7 after 7 days. Values of the optical density (OD) increased within 2 days in
fermentation to 1.5 and was 1.7 after 10 days.
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(B) changes in the viscosity, and (C) β-glucan and D-glucose concentration in culture supernatants.
Values are mean values of four-fold biological replicates including standard deviations.
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The changes in viscosity were determined by a rotational viscometer once per day
(Figure 1B). After inoculation of the CDM with L. brevis TMW 1.2112, the viscosity of the cul-
ture broth was 22.8 ± 0.9 mPa·s increasing continuously to 97.2 ± 26.4 mPa·s within 4 days.
An increase in viscosity resulted in an increase in variance because of the heterogeneous
viscoelastic characteristic of the culture broth. With progress in fermentation the viscos-
ity values and the corresponding variances decreased again to finally 39.5 ± 2.5 mPa·s.
Within 10 days the viscosity of the culture broth increased significantly (until 4 days) and
subsequently approached towards the initial value.

In addition, the amount of β-glucan and D-glucose (monomeric units of β-glucan)
was measured by an immunological and an enzymatical method (Figure 1C). The initial
concentrations of both compounds were 0.00 g/L in the supernatant. Within 4 days, the
β-glucan concentration was 2.08± 0.19 g/L and increased further to 2.63± 0.10 g/L within
7 days. A similar trend was observed for the D-glucose with an increase in the concentration
after 4 and 7 days, resulting in 0.88 ± 0.13 g/L and 1.50 ± 0.37 g/L, respectively. After
4 days, the increase in the β-glucan became slower, and the accumulation of D-glucose
slowed down after 3 days. At the end of fermentation (10 days), the concentrations of
both compounds declined marginally to 2.48 ± 0.13 g/L (β-glucan) and 1.31 ± 0.19 g/L
(D-glucose). The chemically defined medium with only maltose as a carbon source was
used as a blank for both assays.

2.2. Glycosyl Transferases (GT) and Glycoside Hydrolases (GH) in L. brevis TMW 1.2112

The genome of L. brevis TMW 1.2112 c (GenBank accession No.: CP016797) [34,60]
was additionally annotated by RAST and eggNOG-Mapper for clusters of orthologous
groups (COG) and functionality, resulting in 2184 annotated proteins [61–63]. The genome
sequence comprised 49 glycosyltransferases (GT; EC 2.4.-) and glycoside hydrolases (GH;
EC 3.2.1.-), which were identified and characterized by several databases (NCBI BLASTx,
UniProt, CAZy (Carbohydrate-Active enZYmes) and eggNOG-Mapper) for their protein
classification and molecular functions (Table 1) [30,61–65]. SignalP-5.0 predicted six of the
49 annotated GHs and GTs as secreted enzymes and mostly were associated with cell wall
biosynthesis [66]. Of note, the endo-β-1,3-glucanase (AZI09_02135), β-1,3-glucosidase BglB
(AZI09_02170), and Gtf-2 proteins (AZI09_03685, AZI09_12985, AZI09_07565, AZI09_06585,
AZI09_04045, AZI09_12875, and AZI09_10605) are enzymes potentially involved in the
formation and degradation of β-glucan [15,41]. The transmembrane Gtf-2 (AZI09_12770),
which is encoded on the plasmid pl12112-4 (GenBank accession No.: CP016801) of L. brevis
TMW 1.2112, was considered particularly relevant [38,40].

2.3. Proteomic Analysis
2.3.1. Secretome: Protein Secretion from Exponential to Early Death Phases

Considering that β-glucan is an extracellular EPS and that its degradation is most
likely initiated in the extracellular environment by GHs, we measured the secretome of
L. brevis TMW 1.2112 in the exponential phase (8 h) and at the end of fermentation (7 days)
to study the functions and roles of proteins associated with EPS degradation. We identified
more proteins by their gene locus IDs at the end of fermentation (307 detected proteins)
compared to the exponential phase (50 proteins detected). The proteins reproducibly
detected in at least three out of four replicates were retained in the downstream analysis.
The in-silico analysis using SignalP-5.0 predicted 199 secreted proteins, including endo-β-
1,3-glucanase (AZI09_02135). Figure 2 shows the cluster of orthologous groups (COG) and
functional characterization of the in-silico secretome and both time points (8 h and 7 days).
Energy production and conversion, carbohydrate metabolism, and coenzyme metabolism
generated larger shares within the analyzed samples compared to the in silico secretome,
and the share of proteins with unknown function was reduced at the same time. Proteins of
the carbohydrate metabolism group made up 13% during the exponential phase and only
7% during the death phase. Approximately 25% of the detected proteins in both samples
were previously assigned as hypothetically secreted proteins.
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Table 1. GTs (EC 2.4.-) and GHs (EC 3.2.1.-) enzymes within the genome sequence of L. brevis TMW
1.2112 (CP016797).

# Description CAZy EC No. Gene Locus Protein
Accession Number

1 polysaccharide biosynthesis protein GT 2.4.1.-. AZI09_03705 A0A1W6N8G4
2 glycosyltransferase family 2 GT2 2.4.1.-. AZI09_03685 A0A0C1PWD9
3 glycosyltransferase family 2 GT2 2.4.1.-. AZI09_12985 a -
4 glycosyltransferase family 2 GT2 2.4.1.-. AZI09_07565 A0A1W6NA30
5 glycosyltransferase family 2 GT2 2.4.1.-. AZI09_06585 A0A1W6N9Q8
6 glycosyltransferase family 2 GT2 2.4.1.-. AZI09_04045 A0A1W6N8N8
7 glycosyltransferase family 2 GT2 2.4.1.-. AZI09_12770 A0A1W6NCZ8
8 glycosyltransferase family 2 GT2 2.4.1.-. AZI09_12875 Q6I7K0
9 glycosyltransferase family 2 (ykoT) GT2 2.4.1.-. AZI09_10605 A0A1W6NC01

10 exosortase G system-associated GT2 2.4.1.-. AZI09_06670 A0A1W6N9Q3
11 glycosyltransferase family 8 GT8 2.4.1.-. AZI09_12575 A0A1W6NCV8

12 nucleotide-diphospho-sugar transferases
superfamily GT8 2.4.1.-. AZI09_12410 A0A1W6NCU7

13 glycosyltransferase family 1 GT1 2.4.1.52 AZI09_12995 A0A1W6NDG0

14 poly(glycerol-phosphate)
α-glucosyltransferase GT1 2.4.1.52 AZI09_04905 A0A1W6N8Q2

15 poly(glycerol-phosphate)
α-glucosyltransferase GT1 2.4.1.52 AZI09_04910 A0A1W6N980

16 poly(glycerol-phosphate)
α-glucosyltransferase GT1 2.4.1.52 AZI09_04920 A0A1W6NCH6

17 poly(glycerol-phosphate)
α-glucosyltransferase GT1 2.4.1.52 AZI09_04940 A0A1W6N8Q6

18 poly(glycerol-phosphate)
α-glucosyltransferase GT1 2.4.1.52 AZI09_04945 A0A1W6N8W8

19 UDP glucose-poly(glycerol-phosphate)
α-glucosyltransferase (tagE_6) GT1 2.4.1.52 AZI09_04950 A0A1W6N952

20 maltose phosphorylase GH65 2.4.1.8 AZI09_04670 A0A1W6N8P0
21 maltose phosphorylase GH65 2.4.1.8 AZI09_01010 A0A1W6N6Y3
22 maltose phosphorylase GH65 2.4.1.8 AZI09_10320 -
23 endo-β-1,3-glucanase GH8 3.2.1.- AZI09_02135 a -
24 glycosyl hydrolase family 18 GH18 3.2.1.14 AZI09_03025 a A0A1W6NI26
25 glycosyl hydrolase family 88 GH88 3.2.1.172 AZI09_11545 A0A1W6NC28
26 glycosyl hydrolase family 31 GH31 3.2.1.177 AZI09_02865 A0A1W6N888
27 α-xylosidase GH31 3.2.1.177 AZI09_09820 A0A1W6NBL2
28 glucohydrolase GH13 3.2.1.10 AZI09_00950 A0A1W6N750
29 glucohydrolase (malL_2) GH13 3.2.1.10 AZI09_10575 A0A1W6NBX6
30 α-glucosidase GH31 3.2.1.20 AZI09_08630 A0A1W6NAK3
31 α-glucosidase GH31 3.2.1.20 AZI09_11465 A0A1W6NBZ8
32 α-glucosidase GH31 3.2.1.20 AZI09_12510 A0A1W6NCT8
33 β-1,3-glucosidase (bglB) GH3 3.2.1.21 AZI09_02170 A0A1W6N7S3
34 xylan 1,4-β-xylosidase GH39 3.2.1.37 AZI09_11985 A0A1W6NC86
35 β-xylosidase (xynB) GH43 3.2.1.37 AZI09_11935 A0A1W6NCN2
36 glucosylceramidase GH30 3.2.1.45 AZI09_00755 A0A1W6N733
37 α-L-arabinofuranosidase 1 GH51 3.2.1.55 AZI09_03165 A0A1W6N7 × 2
38 α-N-arabinofuranosidase (abfA_1) GH51 3.2.1.55 AZI09_00785 A0A1W6N6T5
39 6-phospho-β-glucosidase GH1 3.2.1.86 AZI09_09805 A0A1W6NB21

GHs and GTs Associated with Cell Wall Biosynthesis

40 DD-transpeptidase GT51 3.4.16.4 AZI09_04800 A0A1W6N956
41 penicillin-binding protein GT51 2.4.1.129 AZI09_06425 A0A1W6N9H6

42

N-
acetylglucosaminyldiphosphoundecaprenol

N-acetyl-beta-D-
mannosaminyltransferase

GT26 2.4.1.187 AZI09_09370 A0A1W6NAY4

43 UDP-N-acetyl-D-mannosamine
transferase GT26 2.4.1.187 AZI09_03665 A0A1X0XQ74

44 poly(glycerol-phosphate)
α-glucosyltransferase GT1 2.4.1.208 AZI09_04170 A0A1W6N8F4

45 1,2-diacylglycerol 3-glycosyltransferase
(pimA) GT1 2.4.1.337 AZI09_04165 A0A1W6N8G5

46 N-acetylglucosaminyltransferase (murG) GT28 2.4.1.227 AZI09_05030 A0A1W6N9A0
47 N-acetylmuramide glycanhydrolase GH25 3.2.1.- AZI09_10600 a A0A1W6NBH8
48 N-acetylmuramoyl-L-alanine amidase GH73 3.2.1.96 AZI09_04775 a A0A1W6N923

49 N-acetylmuramoyl-L-alanine amidase
(atl_1) GH73 3.2.1.96 AZI09_02505 a A0A1W6N829

a Putative signal peptide proteins.
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Figure 2. Secretome analysis by COG classification. The in silico analyzed secretome was compared
with samples from the beginning (8 h) and end (7 days) of fermentation of at least three out of four
replicates. On the right, the total numbers of identified gene locus IDs are stated.

A Student t-test was used to identify proteins that were differentially secreted between
8 h and 7 days (Figure 3). In total, 8 GHs and GTs were detected in our experiment, includ-
ing two GH65 family proteins (AZI09_10320 and AZI09_04670) maltose phosphorylases
(hereinafter referred as MP), two GH73 family proteins N-acetylmuramoyl-L-alanine ami-
dase (AZI09_02505 and AZI09_04775), the GT51 family protein penicillin-binding protein
(AZI09_06425), two GT8 family proteins (AZI09_12410 and AZI09_12575), and GH31 family
protein α-glucosidase (AZI09_12510). Enzymes of the GT8 family have been described as
acting as nucleotide-diphospho-sugar glycosyltransferases [67]. The endo-β-1,3-glucanase
(AZI09_02135), which was assumed to be involved in β-glucan degradation, was not
detected. All GHs and GTs were detected after 7 days, except GH73 N-acetylmuramoyl-L-
alanine amidase (AZI09_04775), which was also present after 8 h.
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The secretion of four proteins were higher after 8 h compared to 7 days. Those four
proteins were annotated as phosphoketolase (AZI09_09710), NlpC P60 family (AZI09_02850
and AZI09_01220), and LSU ribosomal protein L3p (L3e) (AZI09_03445) (Figure 3, blue
dots). After 7 days, the number of secreted proteins increased significantly, including the
ABC transporters (AZI09_01955 and AZI09_00135), ribosomal proteins (AZI09_03485 and
AZI09_05315), and uncharacterized proteins (AZI09_10715 and AZI09_11665) (Figure 3,
green dots).

Moreover, several proteins, which were previously described as moonlighting pro-
teins in bacteria were detected, such as enolase (AZI09_08765), triose-phosphat isomerase
(TPI) (AZI09_08770), phosphoglycerate kinase (PGK) (AZI09_08775), glyceraldehyde-
3-phosphate dehydrogenase (GADPH) (AZI09_08780), and elongation factor (EF) Tu
(AZI09_05335). Those proteins were detected within both samples, except TPI, which
was only detected after 7 days (Figure 3, red dots) [68].

Additionally, the secretome was analyzed for proteins involved in β-glucan biosyn-
thesis and proteins associated with polysaccharide capsules and stress response. This
resulted in the detection of β-phosphoglucomutase (β-PGM) (AZI09_04665), MFS maltose
transporter, MalT (AZI09_10325), UTP–glucose-1-phosphate uridylyltransferase (UGP)
(AZI09_08865), and glucokinase (AZI09_07205) after 7 days. The previous named en-
zymes are members of the postulated pathway for β-glucan formation by L. brevis TMW
1.2112 [46]. According to capsular polysaccharide attachment, two proteins of LytR-CpsA-
Psr (AZI09_03640 and AZI09_03715) were detected after 7 days [49–52]. An arginine deimi-
nase (ADI) (AZI09_01860) was present after 8 h and 7 days in the secretome. Several proteins
identified by the secretome analysis are common intracellular proteins. After 7 days, the
number increased, which could be due to cell lysis according to the growth phase.

The number of uncharacterized proteins accounted for 47% of the identified secretome,
by only two proteins of the secretome after 8 h (Figure S1). The top ten proteins of the
8 h secretome-comprised cell wall and the cell-surface-related proteins were expressed.
Further, only AZI09_01220, which codes for N1pC/P60 proteins, a family of cell-wall
peptidases, was present within the 8 h sample, but not after 7 days. The highest expres-
sion (iBAQ intensity [69]) within both secretome samples was an uncharacterized protein
(AZI09_12405) with a molecular weight (MW) of 49.9 kDa. Bioinformatic characterization
(SWISSMODEL and PredictProtein) showed that this protein might be a cell wall or a
surface layer protein [70,71]. Moreover, after 7 days in fermentation, the protein with the
second highest expression was an ABC transporter binding protein (AZI09_01995) with an
MW of 25.1 kDa and a putative signal peptide.

2.3.2. Cell Lysate: Changes in Protein Expression over Fermentation Time

To examine how protein expression changes during fermentation, we measured the
proteome of L. brevis TMW 1.2112 at five time points during fermentation, in the exponential
(8 h), stationary (24 h to 4 d), and early death phases (7 d). L. brevis TMW 1.2112 genome
contains 2537 predicted protein coding genes, and 1641 proteins were identified by pro-
teomic analysis. This corresponds to a proteome coverage of approximately 65%, which
is in the range of other label-free quantitative proteomic analyses of LABs [72,73]. Prin-
cipal component analysis (PCA) revealed a high similarity between biological replicates
(Figure 4A). The samples of 4 days and 7 days in fermentation clustered together, while
the sample of 8 h was the most distinguishable from other time points. To continue the
global comparison of the five time points, a heat map was generated, and the samples were
hierarchically clustered using Pearson correlation distance (Figure 4B). Most differences
were obtained for the 8 h time point. The clusters of 7 days and 4 days were highly similar.
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Figure 4. Proteomics analysis of cellular proteins over fermentation. (A) Principal component analysis
(PCA) of the five fermentation time points. (B) Heat map using Pearson correlation displaying the
protein abundance at five different time points (8 h, 24 h, 2 days, 3 days, and 7 days) after the
hierarchical clustering of 1641 proteins. Three- to four-fold biological replicates were used for the
analysis. The changes in enzyme expression are depicted by color intensity, as indicated below
the figure.

The proteome analyzed in silico counted 2184 annotated proteins, which were used for
COG and functional characterization (Figure 5). COG prediction of the in silico proteome
showed a pattern similar to that of the expressed proteins at the five time points. A total of
30% of the expressed proteins could not be categorized (unknown function). Between the
five time points (8 h, 24 h, 2 days, 3 days, and 7 days), no significant difference was observed
according to the distribution of the groups. The COG analyses of the expressed proteins
accounted for translation and transcription ~20% each: ~7% were related to carbohydrate
metabolism and approximately 5% were clustered for energy production and conversion.
Proteins of the last two groups are considered to be related to polysaccharide formation
and degradation, among others.

Fraunhofer, Jakob, and Vogel (2018) postulated a putative pathway for the β-glucan
biosynthesis based on analyses of the L. brevis TMW 1.2112 genome sequence. The β-glucan
biosynthesis from maltose as a substrate included a transporter for maltose, MP, glucoki-
nase, phosphoglucomutase, UGP, UDP kinase or nucleoside-diphosphate kinase (NDPK),
and Gtf-2 [46]. Several pathway members have been measured in our proteomics data,
e.g., MalT (transporter) (AZI09_10325), MPs (AZI09_04670 and AZI09_10320), glucoki-
nase (AZI09_07205), β-PGM (AZI09_04665 and AZI09_02330), UGP (AZI09_08865), NDPK
(AZI09_05450), and Gtf-2 family proteins (AZI09_04045, AZI09_12875, and AZI09_12770).
According to β-glucan degradation, β-1,3-glucosidase BglB (AZI09_02170) was detected
during the whole fermentation. The endo-β-1,3-glucanase (AZI09_02135) was only ex-
pressed at 4 days (late stationary phase). Genes associated with polysaccharide encapsula-
tion, stress response, and moonlighting proteins as previously described with respect to
the secretome were also present within the cell lysate samples.
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2.3.3. Cell Lysate: Expression of GHs and GTs and Their Correlation with Viscosity,
β-Glucan, and D-Glucose Concentrations

In total, 32 of the previously described 49 GHs and GTs were detected in our proteomic
data. We manually assigned these proteins into three clusters according to their expression
over time (Figure 6A).

The first cluster (orange cluster, Figure 6A) included enzymes that were increased dur-
ing the early growth phase and decreased in the further course of fermentation. The second
cluster (purple cluster, Figure 6A) contained enzymes with higher expressions during the
early growth phase and/or the beginning of the stationary phase. The third cluster (red clus-
ter, Figure 6A) represented enzymes that increased towards the end of fermentation. Addi-
tionally, the correlation between protein expression and viscosity, β-glucan, and D-glucose
concentration were examined (Figure 6B). During exponential and the early stationary
phase, the GT1 family protein 1,2-diacylglycerol 3-glycosyltransferase, pimA (AZI09_04165)
was more abundant compared to the late stationary and death phases, which also resulted
in an inverse correlation with changes in viscosity (Figure 6B), β-glucan, and D-glucose.
Members of this enzyme family catalyze the transfer of sugar moieties from nucleotide-
sugar donors to membrane-associated acceptor substrates and are involved in plasma
membrane synthesis [74]. Gtf-2 family proteins AZI09_12875 and AZI09_04045 were as-
signed to the second cluster, and Gtf-2 AZI09_12770 was grouped into the third cluster. The
expression of the two MPs (GH65) AZI09_04670 and AZI09_10320 increased with progress
in fermentation (8 h to 7 days). However, only the MP AZI09_04670 correlated strongly
(r ≥ 0.8) with changes in viscosity and D-glucose concentration, while MP AZI09_10320
showed no correlations [75]. Furthermore, the β-1,3-glucosidase (AZI09_02170) as a mem-
ber of the GH3 family was expressed on a constant level after 24 h, with medium to low
correlations with the growth characteristics. The GH8 family protein endo-β-1,3-glucanase
(AZI09_02135) was only expressed after 4 days when the viscosity of the fermentation broth
decreased continuously (Figure 1).
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Figure 6. Expression of GHs and GTs in the cell lysate. (A) Heat map of the expressed enzymes over
time. The three clusters of proteins are indicated by the color bar on the right (orange, purple, and
red). Relative fold change of protein expression compared to the mean depicted by color intensity, as
stated below the figure (a range between −1.7-fold and 1.7-fold). Correlation coefficient values with
viscosity, β-glucan, and D-glucose are listed next to the specific GHs and GTs. (B) The correlation
of the expression of α-glucosidase AZI09_04165, β-1,3-glucosidase (bglB) AZI09_02170, and the MP
AZI09_04670 with viscosity, including correlation coefficient values (r) and p-values (p).

2.3.4. Correlation between Protein Expression and Growth Characteristics

In addition to the correlations of GHs and GTs described in the previous section,
the expression patterns of all other proteins were correlated with viscosity, β-glucan, and
D-glucose to reveal potential novel proteins with a function related to β-glucan formation
or degradation. Proteins of the pathway for β-glucan biosynthesis resulted in moderate to
strong correlations (0.6 ≤ r ≤ 0.8), e.g., β-PGM (AZI09_04665) and NDPK (AZI09_05450),
with all growth characteristics. The sequence of MP (AZI09_04670) is encoded down-
stream to β-PGM and showed similar correlation coefficients. Moonlighting-associated
proteins, e.g., enolase (AZI09_08765), TPI (AZI09_08770), PGK (AZI09_08775), and GADPH
(AZI09_08780), showed low to strong correlations (0.4 ≤ r ≤ 0.8) with all three characteris-
tics. Strong inverse correlations (r≤ −0.7) were observed for LytR-CpsA-Psr (AZI09_03640)
and ADI (AZI09_01860) with D-glucose, and only moderate inverse correlations with
β-glucan were observed. The results of the correlation are listed in a Supplementary Excel
file (Table S1).

To obtain a comprehensive understanding of the gene expression during β-glucan
biosynthesis or degradation, we performed an overrepresentation analysis using proteins
significantly correlated with these parameters (r ≥ 0.7 and r ≤ −0.7). In total 118, 433,
and 404 proteins correlated with D-glucose, β-glucan, and viscosity, respectively. The
resulting gene ontology (GO) terms were categorized in three groups: molecular function
(MF), cellular component (CC), and biological process (BP) (Figure 7). The GO term oxi-
doreductase activity (MF) correlated with all three growth characteristics. Among others,
nucleic acid binding (BP), cell division (BP), and other terms associated with cell growth
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correlated inversely with viscosity and β-glucan. Carbohydrate-metabolism-associated
terms, e.g., glycolytic process (BP), carbohydrate process (BP), and carbohydrate binding
(MF), correlated positively with the analyzed characteristics, while the macromolecular
catabolic process (BP) correlated inversely with D-glucose concentration. However, only
three GHs and GTs were identified within the terms: the MP (GH65) AZI09_04670, part
of the gene set of the term carbohydrate binding, the GH8 family protein endo-β-1,3-
glucanase (AZI09_02135) of the macromolecular catabolic process, and the GT8 family
protein (AZI09_12410) of coils coils. Moreover, enolase (AZI09_08765), a putative moon-
lighting protein and an enzyme of glycolysis, was identified in BP terms correlating with
the β-glucan concentration, e.g., the organic acid metabolic process, the cellular amino acid
catabolic process, and the glycolytic process. The results of the overrepresentation analysis
are listed in a Supplementary Excel file (Table S2).
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Figure 7. Gene set overrepresentation analysis of proteins correlating with (A) viscosity, (B) β-glucan
content, and (C) D-glucose content. Top bar charts indicated the positively and bottom bar chart
the negatively correlating proteins with corresponding GO terms (y-axis). The x-axis represents
the gene counts. GO terms comprising proteins of interest are indicated by (a) GHs and GTs; (b)
β-glucan-biosynthesis-associated proteins (other than GHs and GTs), and (c) moonlighting-associated
protein enolase (AZI09_08765).

3. Discussion

In this study, proteomics based on state-of-the-art LC-MS/MS was used to analyze the
biosynthesis and potential degradation of O2-substituted (1,3)-β-D-glucan by L. brevis TMW
1.2112 on a molecular level. The focus of the study was to identify correlations between
the expression of carbohydrate-active enzymes and changes in the EPS state (viscosity,
β-glucan, and D-glucose concentration) by biosynthesis and degradation. Since β-glucan
forms a polysaccharide capsule (CPS) around the cells, proteomic data of both the cell lysate
and secretome were analyzed to actively identify the involved GHs and GTs [35,38,76].

Pathways for the biosynthesis of β-glucan by L. brevis TMW 1.2112 from several mono-
and disaccharides have been postulated [46]. With maltose as a sole energy source, the
proteomic data were analyzed for enzymes related to this putative pathway. In sum-
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mary, all proteins described in the putative pathway were identified within the cell lysate,
and some were identified within the secretome (Figure 8A). Transporters for maltose
uptake in LAB, e.g., the maltose ABC transporter or the MFS maltose transporter, have
been described in Lactiplantibacillus (La.) plantarum or Fructilactobacillus (F.) sanfrancis-
censis, respectively [77,78]. Our analyses resulted in the MFS maltose transporter, MalT
(AZI09_10325), expressed within the cell lysate and secretome (7 days). The ORF of MalT
was next to the ORF of the MP (AZI09_10320) and the ORF of the transcriptional regulator
MalR (AZI09_10330), resulting in one operon. These proteins were detected at all time
points of the cell lysate and after 7 days within the secretome. In addition, the ORFs of the
MP AZI09_04670 and β-PGM (AZI09_04665) could be associated with a second operon, and
a second β-PGM (AZI09_02330) was also identified (Figure 8B). Two maltose operons were
described for F. sanfranciscensis: one contains an MP (mapA) and β-PGM and is induced
by the presence of maltose acting as a major catabolic enzyme, and the second includes,
in addition to an MP (mapB) and β-PGM, a permease and epimerase. The mapB system
is under the control of a constitutive promotor and a microorganism, and only the mapA
system usually has a prolonged lag phase [79]. The cell growth of L. brevis TMW 1.2112
entered the exponential phase immediately without a lag phase, which could also be due
to the faster utilization of the free amino acids of the CDM.
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Figure 8. β-glucan biosynthesis of L. brevis TMW 1.2112. (A) Metabolic pathway of the β-glucan
biosynthesis, as suggested from genomic data and proteomic analysis. (B) Suggested maltose operons:
malR = transcriptional regulator, MP = maltose phosphorylase, malT = MFS maltose transporter and
β-PGM = β-phosphoglucomutase.

The β-glucan biosynthesis began simultaneously with the cell growth. While the
cell count slowed down after one day, the β-glucan concentration continued to increase
significantly, leading to the assumption that β-glucan formation was independent from the
cell count and accumulated over time. This behavior has been observed in other β-glucan-
forming LABs [43,80,81]. Proteome analysis revealed three expressed GT2 family proteins:
two chromosomal encoded GT2 proteins (AZI09_04045 and AZI09_12875), both signifi-
cantly more abundant during the exponential phase, inversely correlated with viscosity
and D-glucose concentration, and a plasmid-encoded GT2 protein (AZI09_12770), which
was most likely constantly expressed. The transmembrane β-1,3 glucan synthase (GT2
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family) is described as the key enzyme in the bacterial β-glucan biosynthesis [15,41,46,48].
The GT2 family comprises thousands of sequences with at least 12 distinct GT functions,
making a functional prediction by homology difficult [82]. However, Llamas-Arriba et al.
(2018) compared the nucleotide sequences of 13 β-1,3 glucan synthases of Pediococcus spp.,
Oenococcus oeni, and Lactobacillus spp., including L. brevis TMW 1.2112 (AZI09_12770). The
study revealed that β-1,3 glucan synthase sequences are highly conserved and mostly
plasmid-encoded [41,83]. Sequence alignments of the two chromosomally encoded GT2s)
from L. brevis TMW 1.2112 resulted in low identities (data not shown). Consequently, only
AZI09_12770 is a β-1,3 glucan synthase and responsible for β-glucan biosynthesis.

The start of β-glucan production during the exponential phase has been observed in
Pe. parvulus spp. and Pe. damnosus IOEB8801 [81,84]. In addition, Pa. suebicus CUPV221
started β-glucan production during the stationary phase [43]. Nevertheless, the strains
have one thing in common with L. brevis TMW 1.2112: the continuous increase in β-
glucan concentration even up to 14 days and the lack of its decrease [43,81,84]. What
differed, however, was the viscosity of L. brevis TMW 1.2112 cultures, as it decreased
significantly after 4 days, unlike the viscosities of Pediococcus strains and Pa. suebicus,
which increased steadily until 7 days or more and remained high [43,85]. The decrease
in the viscosity and heterogeneous viscoelastic characteristics might be associated with
the enzymatical or physical effects degrading high-molecular EPS (≥9.6 × 106 Da) into
smaller fractions (at least 6.6 × 106 Da), which could still be detected by ELISA [86]. A
broad detection range of the immunological assay could also result in an overestimation
of the polymer concentration. The endo-β-1,3-glucanase (AZI09_02135) was, despite the
identification of a signal peptide, only detected within the cell lysate during the stationary
phase (4 days). Sequence analysis revealed two stop-codon mutations within the last
30 amino acids of the 367 amino acid sequence of the endo-β-1,3-glucanase (AZI09_02135),
which might affect enzyme activity or secretion. Furthermore, the overrepresentation
analysis resulted in an inverse correlation for D-glucose and the term macromolecular
catabolic process. This in turn means that changes in the D-glucose concentration were not
a result of endo-β-1,3-glucanase activity. Most of the GHs were identified as intracellular
enzymes, such as β-1,3-glucosidase (BglB) (AZI09_02170), which was also not present in the
secretome, though it was expressed during the fermentation period. Moreover, the arginine
deiminase (ADI), known for its role in the defense against acidic stress, was also expressed
during fermentation [87,88]. This could lead to the assumption that a low pH value might
have interfered with the viscosity, but physical effects due to self-produced organic acids
appeared to be unlikely, as this was so far not observed for other β-glucan-producing
LABs such as pediococci [43,84,85]. Further, capsular EPSs are described as protectors
against environmental stress such as acidity [34,89,90]. Nevertheless, the fermentation
broth underwent structural changes during fermentation, which could not be explained by
the enzymes listed in Table 1. The secretome contained so far uncharacterized enzymes
that may affected the viscosity, since many proteins could not be clearly categorized.
Though changes in the heterogeneous character of the viscosity might be attributed to the
formation of a β-glucan-cell-network, lysed cells reduced the network integrity during
the late stationary and early death phases, and this in turn might have led to the reduced
viscosity [34,35]. Autolysis, which is strain-dependent and preferentially triggered under
stress conditions or in late growth phases, is a well-known phenomenon in lactic acid
bacteria [91,92]. Moreover, the increased number of proteins in the secretome after 7 days
compared to 8 h could also be explained by the autolysis of L. brevis TMW 1.2112 cells.

Potential β-1,3-glucan degradation could be represented by an increase in the D-
glucose concentration as the monomeric unit [15,38,76,80]. An increase in the D-glucose
concentration was detected but with a similar curve progression as the β-glucan concen-
tration, which means that the release of D-glucose started already during the exponential
phase and simultaneously with β-glucan biosynthesis. This in turn means that it is rather a
product of maltose utilization than of β-glucan degradation. Glucose secretion after the
phosphorolytic cleavage of maltose is described in other lactobacilli [93]. The utilization
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of maltose strains and the subsequent glucose release by beer-spoiling L. brevis has been
described [94]. In conclusion, β-glucan is not used as a storage compound by L. brevis TMW
1.2112. The CPS therefore might have mostly a protective function according to the strain’s
origin from beer with present ethanol, low pH, or antimicrobial hop compounds [34,95].

The proteins responsible for the attachment of the β-1,3-glucan capsule to the cell
surface of LAB have not been described. Members of the LytR-Cps2A-Psr (LCP) protein
family are discussed for their role in the attachment of polysaccharides to the peptidoglycan
of Gram-positive bacteria [49–52]. According to sequence analyses, L. brevis TMW 1.2112
possess three LCP family proteins, two of which were constantly expressed according to
the cell lysate data and after 7 days within the secretome. Both proteins (AZI09_03640
and AZI09_03715) were identified as BrpA (Biofilm regulatory protein A) proteins, with
AZI09_03715 containing a putative signal peptide. The knowledge about Lactobacilli LCPs is
currently limited. Nevertheless, it was assumed that the Wzy pathways could be involved
in the coupling of CPS to the cell surface peptidoglycan [52,53,96]. Genes of the Wzy
pathway were not detected within the proteomic data or the genome sequence, but CDSs
for a chain-length determining protein (AZI09_03645) and an EPS biosynthesis protein
(AZI09_03650) are encoded next to BrpA (AZI09_03640). However, neither protein was
detected by MS. Further experiments are necessary to identify specific enzymes involved
in the attachment of the capsules to cell surfaces.

Several proteins that have been described as acting as moonlighting proteins in other
bacteria emerge regularly within the proteomic data of the cell lysate and secretome,
including an enolase (AZI09_08765), triose-phosphate isomerase (TPI) (AZI09_08770), phos-
phoglycerate kinase (PGK) (AZI09_08775), glyceraldehyde-3-phosphate dehydrogenase
(GADPH) (AZI09_08780), and elongation factor Tu (EF-Tu) (AZI09_05335). Most moonlight-
ing proteins are primarily enzymes of the glycolytic and metabolic pathways or molecular
chaperones [54,68] and overtake multiple functions based on their cellular position, for
example, when released into the extracellular milieu [54,68]. For example, the enolase is
grouped in terms associated with metabolic processes, which is not surprising, as enolases
are involved in the glycolysis. Interestingly, all proteins except TPI (AZI09_08770) were
detected after 8 h within the secretome, even though these proteins are usually intracellular
proteins. The moonlighting proteins GADPHs, EF-Tu, and the enolases of commensal
lactobacilli have been described as acting in adhesion processes and might contribute to
probiotic traits [54–57]. Further, four of these so-called moonlighting genes were located
within an operon including a transcriptional regulator (AZI09_08785), which was also
detected within the cell lysate samples (Figure 9). An operon of moonlighting proteins
was previously found in Staphyloccocus aureus [97], and while moonlighting proteins of
pathogens and probiotics are generally described to be highly conserved [54], it could be
assumed that these genes, which are also grouped with an operon, might have moonlight-
ing functions in L. brevis TMW 1.2112. However, the effect of these genes, e.g., on the
β-glucan-cell-network, on the adhesion to surfaces, or even on probiotic actions, requires
further studies to identify their specific roles in the extracellular milieu.
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In the present study, we have shown that, over a period of fermentation lasting
10 days, the glucose concentration and the amount of β-glucan in the supernatant in-
creased, but the viscosity decreased. The biosynthesis of β-glucan is closely linked to the
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maltose metabolism via an MP. Genes encoding enzymes involved in maltose utilization
are organized in three operons. The continuous increase in glucose is probably due to
the phosporolytic cleavage of maltose rather than the degradation of the β-glucan to the
monomer. Thus, we assume that β-glucan is not used as a storage substance or degraded
by the cells for further utilization. In addition, a limitation of ELISA differentiating between
high- and low-molecular-weight β-glucan might cause misinterpretations of the concentra-
tions and cause its actual decrease to evade detection. There are probably several reasons for
the decrease in viscosity. The only carbohydrate active enzyme that strongly correlated with
viscosity, β-glucan, and D-glucose concentrations was an MP, and none of the enzymes with
a β-glycosidic bond preference as the endo-β-1,3-glucanase or β-1,3-glucosidase (BglB).
Aside from an enzymatic cleavage by GHs secreted or released by partial autolysis, de-
struction of the β-glucan cell network due to a detachment of capsular β-glucan bound
to cell surfaces also seems plausible. Moreover, two new study approaches focusing the
extracellular polysaccharide encapsulation and cell–cell adhesion were identified with re-
spect to the LCP protein family and moonlighting proteins, respectively. Furthermore, the
secretome contained proteins with potential degradable functions on β-glucan with respect
to the viscosity that have hitherto been uncharacterized. This study provides important
insight into growth characteristics associated with the β-glucan formation of L. brevis TMW
1.2112 and creates a basis for future investigations of EPS-forming LAB in which the role of
growth characteristics and EPS biosynthesis is studied.

4. Materials and Methods
4.1. Strain, Medium, and Growth Conditions

L. brevis TMW 1.2112 is a LAB isolated from wheat beer. The strain was cultivated in a
modified chemically defined medium (CDM). The CDM (pH 6.2) was mixed from a 970 mL
base medium with a 10 mL vitamin solution, a 10 mL metal solution, and a 10 mL nucleic
acid base solution, as previously described by Otto et al. (1983) and Sánchez et al. (2008)
with further modifications. The base medium contained (quantities per liter of distilled
water) 20 g of maltose, 2.5 g of K2HPO4 · 3 H2O (VWR International, Radnor, PA, USA),
3 g of KH2PO4 (VWR International, Radnor, PA, USA), 0.6 g of di-ammonium hydrogen
citrate (Carl Roth GmbH & Co. KG, Karlsruhe, Germany), 1 g of sodium acetate (Carl
Roth GmbH & Co. KG, Karlsruhe, Germany), 0.25 g of cysteine-HCl (Carl Roth GmbH &
Co. KG, Karlsruhe, Germany), 5 g of casamino acids (MP Biomedicals GmbH, Germany),
and 1 g of Tween 80® (Merck KGaA, Darmstadt, Germany). The vitamin solution (pH
7.0) contained (quantities per liter of distilled water) 100 mg of nicotinic acid, 100 mg
of thiamine-HCl, 100 mg of riboflavin, 100 mg of pantothenic acid, 1 g of aminobenzoic
acid, 1 g of D-biotin, 100 mg of folic acid, 100 mg of vitamin B12, 500 mg of orotic acid,
500 mg of thymidine, 500 mg of inosine, 250 mg of lipoic acid, 500 mg of pyridoxine (all
chemicals were purchased from Sigma-Aldrich, St. Louis, MO, USA, except for folic acid
(Carl Roth GmbH & Co. KG, Karlsruhe, Germany), and 100 mg of vitamin B12 (AppliChem
GmbH, Darmstadt, Germany). The metal solution contained (quantities per liter of distilled
water) 20 g of MgCl2 · 6 H2O (Sigma-Aldrich, St. Louis, MO, USA), 5 g of CaCl2 · 2 H2O
(Carl Roth GmbH & Co. KG, Karlsruhe, Germany), 0.5 g of FeCI2 · 4 H2O (Fluka Chemie
GmbH, Buchs, Switzerland), 0.5 g of ZnCl2 (Merck KGaA, Darmstadt, Germany), and
0.25 g of CoCl2 · 6 H2O (Sigma-Aldrich, St. Louis, MO, USA). The nucleic acid base
solution contained (quantities per 10 mL 0.1 M NaOH) 10 mg of adenine sulfate (SERVA
Electrophoresis GmbH, Germany), 10 mg of uracil (Sigma-Aldrich, St. Louis, MO, USA),
10 mg of xanthine (Sigma-Aldrich, St. Louis, MO, USA), and 10 mg of guanine (Fluka
Chemie GmbH, Buchs, Switzerland) [98,99].

4.2. Fermentation and Monitoring of Cell Growth

To investigate the formation and degradation of β-glucan by L. brevis TMW 1.2112
intra- and extracellularly, two sets, each with four biological replicates, were inoculated
with an initial OD600 nm of 0.05, aliquoted (50 mL) and incubated at 30 ◦C as static cultures
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in 50 mL reaction tubes (Sarstedt AG & Co., Darmstadt, Germany). Aliquots of the first set
were used for proteomic analyses, while the second set was used for viscosity analyses. Cell
growth was monitored for 10 days based on OD measurements, cell count analysis, and
changes in the pH values. The colony forming units (cfu) were analyzed with inoculated
mMRS agar plates incubated at 30 ◦C for 48 h before counting as previously described [35].
All experiments were carried out using four biological replicates.

4.3. Proteomic Analysis
4.3.1. Proteomic Sample Preparation

The L. brevis TMW 1.2112 fermentation broths (50 mL) were centrifuged at 17,000× g
for 30 min at 4 ◦C. For cellular proteome measurements, the cell pellets were processed,
while the supernatants were collected for secretome analyses.

Cellular proteomes: Bacterial cell pellets were washed once with a 50 mL saline solution
(Ringer tablets, Merck KGaA, Darmstadt, Germany). After a second centrifugation step,
the cell pellets were shock-frozen in liquid nitrogen and stored at −80 ◦C. For cell lysis,
between 300 and 1600 µL of lysis buffer (8 M urea (Gerbu Biotechnik GmbH, Heidelberg,
Germany), 100 mM NH4HCO3 (Sigma-Aldrich, St. Louis, MO, USA), 1 mM dithiothreitol
(DTT, Gerbu Biotechnik GmbH, Heidelberg, Germany) in water, pH 8.0), and acid-washed
glass beads (Ø 2.85–3.45 mm, Carl Roth GmbH & Co. KG, Karlsruhe, Germany) were
added, depending on the previous OD of the culture broth. The cell pellet of the 50 mL
culture broth with an OD600 of 1 was resuspended in 1 mL of lysis buffer. The cells were
disrupted with a benchtop homogenizer (FastPrep®-24 MP, MP Biomedical Inc., Eschwege,
Germany) in five cycles of 45 s each at 5 m·s−1. Between the cycles, the samples were
stored on ice to cool (1 min). Cell lysates were collected after centrifugation (17,000× g,
10 min, 4 ◦C), and the total protein concentrations were determined using the Coomassie
(Bradford) protein assay kit (ThermoFisher Scientific, Waltham, MA, USA) according to
the manufacturer’s protocol. For each sample, 15 µg of protein extract was reduced with
10 mM DTT (Carl Roth GmbH & Co. KG, Karlsruhe, Germany) and carbamidomethylated
with 55 mM chloroacetamide (CAA, Merck KGaA, Darmstadt, Germany). Subsequently,
proteins were digested twice with 0.15 µg of trypsin (Roche Deutschland Holding GmbH,
Penzberg, Germany), first for 2 h and then overnight at 37 ◦C. Digested peptide samples
were desalted and resuspended in 2% acetonitrile (VWR International, Radnor, PA, USA),
98% H2O, and 0.1% formic acid (CARLO ERBA Reagents GmbH, Emmendingen, Germany)
for a final concentration of 0.1 µg/µL.

Secretomes: For secretome analyses, 500 µL of the fermentation medium were mixed
at 2:1 with NuPAGE™ LDS Sample Buffer (4×) (ThermoFisher Scientific, Waltham, MA,
USA) and heated for 10 min at 70 ◦C. In-gel trypsin digestion was performed according to
standard procedures [100]. Briefly, the samples were run on a NuPAGE™ 4–12% Bis-Tris
Protein Gel (Thermofisher Scientific, Waltham, MA, USA) for 3 min. Subsequently, the still
not size-separated single protein band per sample was cut out of the gel, reduced (50 mM
DTT), alkylated (55 mm CAA), and digested overnight with trypsin (trypsin-gold, Promega,
Madison, WI, USA). The sample was freshly re-suspended before MS measurement in 25 µL
of 2% acetonitrile and 0.1 formic acid, and 3 µL were injected into the mass spectrometer
per measurement.

4.3.2. LC-MS/MS Measurements

LC-MS/MS measurements were performed on an Ultimate 3000 RSLCnano system
coupled to a Q-Exactive HF-X mass spectrometer (Thermo Fisher Scientific, Waltham,
MA, USA). For proteome analyses, ca. 0.2 µg of peptides were delivered to a trap column
(ReproSil-pur C18-AQ, 5 µm, 20 mm× 75 µm, self-packed, Dr. Maisch GmbH, Ammerbuch-
Entringen, Germany) at a flow rate of 5 µL/min in HPLC grade water with 0.1% formic
acid. After 10 min of loading, peptides were transferred to an analytical column (ReproSil
Gold C18-AQ, 3 µm, 450 mm × 75 µm, self-packed, Dr. Maisch GmbH, Ammerbuch-
Entringen, Germany) and separated using a 50 min gradient from 4% to 32% of Solvent
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B (0.1% formic acid in acetonitrile and 5% (v/v) DMSO (Sigma-Aldrich, St. Louis, MO,
USA)) at a 300 nL/min flow rate. Both nanoLC solvents (solvent A = 0.1% formic acid in
HPLC grade water and 5% (v/v) DMSO) contained 5% DMSO to boost MS intensity. The
Q-Exactive HF-X mass spectrometer was operated in data-dependent acquisition (DDA)
and positive ionization mode. MS1 spectra (360–1300 m/z) were recorded at a resolution of
60,000 using an automatic gain control (AGC) target value of 3e6 and a maximum injection
time (maxIT) of 45 ms. Up to 18 peptide precursors were selected for fragmentation for full
proteome analyses. Only precursors with a charge state from 2 to 6 were selected, and a
dynamic exclusion of 25 s was enabled. Peptide fragmentation was performed using higher
energy collision induced dissociation (HCD) and a normalized collision energy (NCE) of
26%. The precursor isolation window width was set to 1.3 m/z. The MS2 resolution was
15,000 with an automatic gain control (AGC) target value of 1e5 and a maximum injection
time (maxIT) of 25 ms.

4.3.3. LC-MS/MS Data Analysis

Peptide identification and quantification were performed using the software MaxQuant
(version 1.6.3.4) with its built-in search engine Andromeda [101,102]. MS2 spectra were
searched against the proteome database of L. brevis TMW 1.2112 (GenBank accession No.:
CP016797), including 2537 coding sequences supplemented with common contaminants
(built-in option in MaxQuant). Trypsin/P was specified as a proteolytic enzyme. Precursor
tolerance was set to 4.5 ppm, and the fragment ion tolerance was 20 ppm. Results were
adjusted to a 1% false discovery rate (FDR) on a peptide spectrum match (PSM) level
and a protein level employing a target-decoy approach using reversed protein sequences.
The minimal peptide length was defined as 7 amino acids, and the “match-between-run”
function was enabled (matching time window: 0.7 min; alignment window: 20 min). Car-
bamidomethylated cysteine was set as a fixed modification and oxidation of methionine
and N-terminal protein acetylation as variable modifications. To compare relative protein
abundances in the cell lysate time course experiment, label-free quantification (LFQ) was
used. The LFQ assumes that the overall protein abundance across samples is compara-
ble. This assumption is clearly violated in the secretome experiment; therefore, we used
intensity-based absolute quantification (iBAQ) in this analysis [103]. Each sample type was
analyzed in biological triplicates (at minimum).

4.3.4. Statistical Analysis of Proteomics Data

In the downstream analysis, the proteins identified as “only identified by site”, “re-
versed”, and “potential contaminants” were removed first. The iBAQ intensites (for the
secretome experiment) were centered across samples based on the proteins shared between
8 h and 7 days. The LFQ intensity was already well normalized and therefore not further
changed. The intensities were logarithm-transformed on base 10. Proteins identified in less
than 3 replicates out of 4 were excluded from the statistical analysis, and the remaining
missing values were imputed using the lower detection limit method [104]. The missing
values of a protein expression were replaced by the constant, which was half of lowest
detected values. If the imputed value was higher than the 15% quantile of all the detected
values, the missing value was replaced by the 15% quantile. The rationale for this is based
on the fact that the missing values are more likely to result from low abundant proteins.

A Student t-test was used to identify proteins that were significantly differentially
expressed between 8 h and 7 days in the secretome experiment. For the cell lysate time
course experiment, Pearson correlation analysis was used to identify proteins whose
intensity well correlates (positively and negatively) with viscosity, β-glucan, and D-glucose
abundance. Fisher’s exact test was used in the enrichment analysis. PANNZER2 [105] and
InterProScan [106,107] were used to predict the functions associated with proteins. All the
statistical analyses were performed in an R statistical environment (version 3.6.3) [108,109].

The proteome database of L. brevis TMW 1.2112 was additionally analyzed by the
RAST (rapid annotations using subsystems technology, version 2.0) software [61], eggNOG-
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Mapper (version 2), a functional annotation tool using the default settings for clusters of or-
thologous groups (COG), pairwise orthology predictions, and functional annotation [62,63].
Putative signal peptides, which provide an indication of secretory proteins, were identified
using SignalP(version 5.0) [66].

4.4. Viscosity Analysis

Changes in the viscosity were analyzed daily over the 10-day fermentation period
using the rotational viscometer ‘Super 4 Rapid-Visco-Analyser’ (RVA, Perten Instruments,
PerkinElmer Company, Waltham, MA, USA) [110,111]. For each measurement, 40 ± 0.01 g
of the fermentation broth were weighed in a RVA sample can and analyzed at 20 ◦C.
The RVA configuration was set to 160 rpm with an initial 2 min equilibration phase for
a temperature adjustment of the fermentation broth and a subsequent 5 min analysis
period under stable conditions. The recorded viscometric data were exported and further
evaluated with V. 6.01 GraphPad Prism (GraphPad Software Inc., San Diego, CA, USA).
All experiments were carried out using four biological replicates.

4.5. Quantification of the β-Glucan and D-Glucose Concentrations

The β-glucan concentration of the supernatant was analyzed by a competitive enzyme-
linked immuno-sorbent assay (ELISA) based on Streptococcus (S.) pneumoniae serotype
37 antibodies for the quantification of the bacterial β-glucan [86]. The assay was performed
as previously described [36]. The D-glucose concentrations of the supernatant samples
were determined using a glucose oxidase/peroxidase assay (GOPOD, Megazyme Ltd., Bray,
Ireland) according to the manufacturer’s protocol. The assay was adapted to a microtiter
plate volume with a 50 µL sample volume and 150 µL of the GOPOD reagent. A standard
curve was used for D-glucose (Megazyme Ltd., Bray, Ireland) calculations. All experiments
were carried out using four biological replicates.
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