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When analyzing microbiome data, one of the main objectives is to effectively compare the
microbial profiles of samples belonging to different groups. Beta diversity measures the
level of similarity among samples, usually in the form of dissimilarity matrices. The use of
suitable statistical tests in conjunction with those matrices typically provides us with all the
necessary information to evaluate the overall similarity of groups of microbial communities.
However, in some cases, this approach can lead us to deceptive conclusions, mainly due
to the uneven dispersions of the groups and the existence of unique or unexpected
substructures in the dataset. To address these issues, we developed divide and compare
(DivCom), an automated tool for advanced beta diversity analysis. DivCom reveals the
inner structure of groups by dividing their samples into the appropriate number of clusters
and then compares the distances of every profile to the centers of these clusters. This
information can be used for determining the existing interrelation of the groups. The
proposed methodology and the developed tool were assessed by comparing the
response of anemic patients with or without inflammatory bowel disease to different
iron replacement therapies. DivCom generated results that revealed the inner structure of
the dataset, evaluated the relationship among the clusters, and assessed the effect of the
treatments. The DivCom tool is freely available at: https://github.com/Lagkouvardos/
DivCom.
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1 INTRODUCTION

Over the last 20 years, the field of microbiome research has been experiencing exponential growth,
mainly powered by advances in sequencing technology. A significant amount of this body of research
has been focused on how dysbiotic microbial communities are linked with pathological conditions
(Coker et al., 2018; Harbison et al., 2019; Harbison et al., 2019; Hufnagl et al., 2020). In addition, the
importance of microbes has been recognized in other fields spanning from agricultural and
biotechnological applications to ecological and environmental interventions (Lian et al., 2018;
Qiu et al., 2019).
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Nowadays, several pipelines, tools, and platforms are
dedicated to analyzing microbiome datasets. Specialized tools
include R-based packages such as vegan (Oksanen et al., 2015),
phyloseq (McMurdie and Holmes, 2013), and SIAMCAT (Wirbel
et al., 2021). Pipelines, like QIIME2 (Bolyen et al., 2019), mothur
(Schloss et al., 2009), and Rhea (Lagkouvardos et al., 2017),
usually offer streamlined analytical functionalities with
minimal programming requirements. However, more tools and
methodologies are under development to reflect the growth in our
understanding of the topic and accommodate our needs for more
specialized analytics.

Beta diversity, themeasure of diversity between two samples, is
one of the most widely used concepts in microbiome data analysis
(Lin et al., 2015;Wagner et al., 2018). Beta diversity does not focus
on the abundance of specific bacterial taxa but takes into account
the overall microbial community structure. The usage of an
appropriate metric function results in a single measurement
(distance) of similarity or dissimilarity that can be used to
examine the relations among the samples in a study. Metrics
like Bray-Curtis (Bray and Curtis, 1957), weighted or unweighted
Unifrac (Lozupone et al., 2011), and Jaccard distance (Jaccard,
1912) are commonly used for exploratory and ordination
analyses. In a limited number of studies, the quantification of
beta diversity measures has been utilized to gain better insights
into the community dynamics (Halfvarson et al., 2017; Suzuki
et al., 2020).

Clustering a group without using labels or prior knowledge of
the data is defined as unsupervised clustering. Unsupervised
clustering does not use any external information and relies
only on the pairwise distances of the samples. Since this type
of clustering shares similar principles with the de novo OTU
picking (Navas-Molina et al., 2013), here in this study, we will
borrow this term, and we will call the process of the unsupervised
clustering as “de novo clustering” of the microbial profiles. This
procedure can be extremely helpful for revealing substructures of
a dataset that are unknown or have not been predicted during the
study design (Ramette, 2007). The proposed concept of the
enterotypes (Arumugam et al., 2011) is one of the most
known cases where de novo clustering revealed intrinsic
substructures in the human gut microbiota. Also, de novo
clustering contributed significantly to drawing conclusions in
the studies of Paetzold et al. (2019) and later García-Mantrana
et al. (2020), which investigated skin and maternal microbiomes,
respectively. Although both beta diversity and de novo clustering
techniques are commonly used by individual researchers, no
standardized procedure, pipeline, or tool integrates and
automates their combined use for group comparisons.

Comparing the microbial profile of two or more groups
against each other or exploring the relationship between
control and intervention groups is part of a typical workflow
for many studies (Morris et al., 2013; Prast-Nielsen et al., 2019;
Ventura et al. 2019). Through this process, the dissimilarity
between the members of each group can be used to determine
the level of differentiation among the examined groups.

The problem that arises is that the approaches used to analyze
the microbial datasets can lead us, in some cases, to wrong
assumptions or incomplete conclusions. Among others, there

are three main obstacles in the currently applied methodologies:
the first is derived by the dimensionality reduction process (Calle,
2019), the second by the statistical tests (Xia and Sun, 2017), and
the third by not taking into consideration the unique substructure
of the data (Gupta et al., 2017; He et al., 2018). Because of the
dimensionality reduction process and the selected distance
metric, there is a high chance of producing a distorted image
of the data (Calle, 2019; Hawinkel et al., 2019). Relying only on
the visual representation of the ordination plots can lead us to
misleading conclusions about the existing relationship among the
profiles of the different groups. The suggested practice for
evaluating groups’ dissimilarities is through the application of
a multivariable statistical test (Knight et al., 2018) like
PERMANOVA (permutational multivariate analysis of
variance) (Anderson, 2001), PERMDISP (permutational
analysis of multivariate dispersions) (Anderson, 2006), or
ANOSIM (analysis of similarities) (Clarke, 1993). However,
even this practice can also produce inaccurate or deceptive
outcomes mainly due to the lack of homogeneity between the
groups, the different levels of their dispersion (Anderson et al.,
2008; Warton et al., 2012), and the wrong use and interpretation
of the results of the statistical tests.

To illustrate these issues, we present two hypothetical cases in
which wrong conclusions can easily be drawn if we follow the
widely applied microbiome data analysis practices. In the first
case, we simulated two groups that have the same center and a
similar number of samples but significantly different dispersions
(Figure 1A). The visual inspection of the plot suggests structural
differences among these two groups; however, the
PERMANOVA (p = 0.838) and ANOSIM (p = 0.556) tests
affected by the same centers and the different dispersions
(PERMDISP: p < 0.001) returned a high probability that both
groups originate from the same distribution. Although
PERMANOVA and ANOSIM tests are fairly robust methods,
they have their own limitations and are sensitive to different
dispersions. Relying only on these results can obscure the
information about the substantially different structures of the
dataset.

In the next case, according to PERMDISP, the two groups have
similar dispersions (p = 0.35) but appear to have different centers
(Figure 1C); this observation is also supported by the results of
the PERMANOVA (p < 0.001) and ANOSIM tests (p < 0.001).
These facts could lead the researcher to conclude that samples
originating from group “Test” have significantly different profiles
than those of group “Reference.” The PERMANOVA test
assumes that there is only one distribution from which every
group is sampling. However, de novo clustering of both groups
reveals that each of them consists of two well-defined subgroups
(Figure 1D). The use of statistical tests like PERMANOVA on
groups composed of multiple subgroups can lead to misleading
conclusions. In our instance, the two pairs of subclusters have
similar centers and dispersions but different sampling sizes and
also uneven number of samples belonging to each subgroup. This
unequal representation of the two otherwise related
compositions, from which both groups were composed, was
the reason for the distorted and misinformative initial image.
Thus, revealing the internal structure of the groups could provide
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us with additional information about the dataset and assist us in
preventing errors like those mentioned earlier.

In these two cases, we summarized some of the existing
problems in the microbiome beta diversity analysis that
sometimes are difficult to be detected and overpassed. The
problem presented in the first case is the improper use of the
statistical tests or the wrong interpretation of their results. In the
first instance, the PERMDISP test provided a clear view that the
groups have significantly different dispersions; this should have

been a hindrance to applying multivariate tests like PERANOVA
or ANOSIM as their results could have been inaccurate. However,
in many cases, the power of these tests is overestimated by the
researchers, leading them to wrong conclusions. In the second
instance, even though we did not have any misuse of the statistical
tests, the inner structure of the groups was a key factor in having
incorrect results. Unfortunately, in these cases, there is not an
easy and reliable alternative for the user to follow: either the
researcher will have to rely on the results of the statistical tests

FIGURE 1 | Simulated data demonstrating how different dispersion among groups influences the results of the statistical tests and how the substructures within the
groups and the uneven sampling of these subclusters can lead to a misleading interpretation of the data. (A)MDS plot presenting two groups with the same center but
according to the PERMDISP test significantly different variances (p < 0.001). The p-value of the PERMANOVA and ANOSIM tests for these groups is 0.838 and 0.556,
respectively, leading to not rejecting the null hypothesis that the two groups are drawn from the same distribution. (B) Boxplots presenting the distances of the test
points from the center of the reference group. The p-value of the Wilcoxon rank sum test is less than 0.001, implying correctly that these two groups are significantly
different. (C) MDS plot that presents two groups with similar dispersions (p = 0.35) but seemingly different centers. The results of the PERMANOVA (p < 0.001) and
ANOSIM (p < 0.001) tests indicate that these two groups are well-separated. (D)MDS plot illustrating the subgroups derived by the de novo clustering of the two groups.
The dataset now consists of two pairs of highly related clusters with different representations in the two subgroups. (E) Boxplots presenting the distribution of the
distances of every test sample from their closest reference center. According to the p-value of the Wilcoxon rank sum test (p = 0.2753), the points of the two groups do
not differ significantly in their values. The perceived difference comes from the unequal representation of the two subgroups in the final dataset.
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with the fear of drawing the wrong conclusions or should alter the
exploratory approach of the study.

Herein, we introduce DivCom, a new approach that can be
used as an answer to the challenges mentioned earlier. This
approach aims to compare different groups in a more efficient
and detailed way, and reveal their relations. The central notion
behind DivCom is that groups of microbial profiles should not be
treated as entireties because valuable information about their
unique structural characteristics could be lost. DivCom employs
the idea of dividing the groups using de novo clustering and then
comparing these clusters using beta diversity measures as metrics.
According to the methodology of DivCom, the samples of the
control group are clustered, and then, the most representative
point (centroid/medoid) for each of these clusters is selected.
Consequently, all the distances of the remaining test samples
from these preselected points are calculated and then assessed.

Applying the DivCom methodology to the previously
mentioned simulated cases of Figure 1, we can infer that in
the first instance, the distinct structure of the dataset was revealed
by comparing the distances of the samples of the two groups from
the center (p < 0.001) (Figure 1B). Also, in the second case, the
distance of the samples from their closest reference center showed
that there is no significant difference between the two pairs of
groups (Figure 1E). Therefore, even though the commonly used
techniques failed to uncover the true relationship of the data,
DivCom achieved this by using a distance- and structure-based
approach. Also, the use of the centroids reduced the required
calculations and comparisons, and produced results that are
analogous with those we would have obtained if we had
compared all test samples with all the samples of the closest
reference cluster (Supplementary Figure S1).

The effectiveness of the method was also evaluated using
publicly available gut microbiome data from the study of Lee
et al. (2017). The selected research aimed to compare the effect of
iron replacement in anemic patients who suffered from
inflammatory bowel disease against a group of non-inflamed
anemic individuals. All the subjects were randomly separated into
two groups, and they followed two different treatments of iron
replacement for 3 months. Simply by applying the DivCom
approach, we were able to reproduce some of the main
findings of the original analysis and also reveal some
additional aspects of the data that were unnoticed in the
original work. DivCom provides us with a better insight into
the data and can be used complementary to the currently applied
data analysis pipelines. The proposed methodology is
implemented as an automated, open-source, user-friendly, and
easily-editable R-based program. The DivCom tool has minimal
input requirements, produces several detailed outputs, and is
available at: https://github.com/Lagkouvardos/DivCom.

2 MATERIALS AND METHODS

2.1 Overview
DivCom has been implemented in R programming language
under version 4.1.2. The tool relies on the functions provided
by R packages: ade4, ape, caTools, cluster, cowplot, data.table,

dplyr, factoextra, fpc, ggplot2, ggpubr, ggtree, graphics, grid,
gridExtra, gtable, GUniFrac, mclust, phangorn, RColorBrewer,
stats, tidyr, tools, and vegan. Many of these packages have their
own dependencies. In the detailed description of the scripts, some
of the key functions are provided, along with the package to which
they belong. Also, selected sections of the Rhea pipeline
(Lagkouvardos et al., 2017) were modified accordingly and
incorporated in the DivCom scripts. The tool consists of two
scripts, named “Beta-Diversity.R” and “DivCom.R.” The former
is an ancillary script, while the latter is the main script of the tool
(Figure 2A).

DivCom is a purely distance-based tool that compares
different groups by taking into consideration the phylogenetic
distances between observed organisms, and using statistical
measures to evaluate the results. Therefore, the Partitioning
Around Medoids (PAM) algorithm (Kaufman and Rousseeuw,
2009) is applied to cluster the samples (cluster::pam), and
Generalized Unifrac (Chen et al., 2012) is the default distance
metric used by the program (GUniFrac::GUniFrac). The
statistical hypothesis testing relies on the Wilcoxon rank sum
test (Mann and Whitney, 1947; Wilcoxon, 1992) for the
continuous variables (stats::wilcox.test), the chi-square test for
the categorical variables (stats::chisq.test), permutational analysis
of multivariate dispersions (PERMDISP) (Anderson, 2006) for
the dispersion similarity comparison of the groups (vegan::
betadisper and permutest), and permutational multivariate
analysis of variance (PERMANOVA) (Anderson, 2001) for the
similarity comparison of the groups (vegan::adonis). All the
p-values are adjusted using the Benjamini–Hochberg method
(Benjamini and Hochberg, 1995) (stats::p.adjust). The
multidimensional scaling (MDS) algorithm (Gower, 1966) is
applied for the ordination analysis (stats::cmdscale), and
finally, scatterplots, boxplots, barplots, and phylograms are
used to visualize the findings (ade4::s.class, ggtree, ggtree,
ggplot2).

2.2 Inputs
The input requirements are minimal as the user has to provide
only three mandatory files.

• The first file is an OTU or ASV abundance table which can
be either normalized or not. In this table, the rows should
represent the OTUs or ASVs, and the columns should
represent the samples. In case the table is not
normalized, then the first step will be the normalization
of the table so the sum of the counts will be equal across all
the samples.

• Considering that the generalized Unifrac distance is used
as the default distance metric, the second necessary input
file is a phylogenetic tree that corresponds to the OTUs or
ASVs of the abundance table. If a tree is not available, the
user can instead provide a dissimilarity matrix of the
samples.

• The final requirement is a mapping file that contains the
labels of the samples. The information of the mapping file is
necessary for the labeling and assigning of the reference and
test groups.

Frontiers in Bioinformatics | www.frontiersin.org May 2022 | Volume 2 | Article 8643824

Intze and Lagkouvardos Divide and Compare

https://github.com/Lagkouvardos/DivCom
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


In addition to the files mentioned earlier, the user has to fill out
some additional parameters. The desired number of clusters for each
group, the name of the reference and test groups, and the type of the
produced plots are among these additional requirements. A detailed
description for each of these parameters is provided in the scripts and
the accompanying documents of theDivCom tool on itsGitHub page.

Also, in the initiation phase, the user has to define the names of
the input files and then determine which group or groups will
serve as the reference dataset. The rest of the samples will be
compared with this reference group.

2.3 Beta-Diversity Script
Moving on to the actual scripts of the program, the first is named
“Beta-Diversity.R” (Figure 2B), and it is a slightly revised version

of the “Beta-Diversity” script of the Rhea pipeline. Its purpose is
to calculate Beta-Diversity for microbial communities but mainly
to provide us with all the necessary information about each
group’s optimal number of clusters. The script produces the
plots of the Calinski-Harabasz (Caliński and Harabasz, 1974)
and the silhouette (Rousseeuw, 1987) index. (fpc::cluster.stats),
the Within Sum of Squares (WSS) (factoextra::fviz_nbclust), and
the prediction strength (Tibshirani and Walther, 2005) (fpc::
prediction. strength) plots and also the plot of the BIC values
for six models as they are produced by the model-based clustering
based on finite Gaussian mixtures (mclust::Mclust). The purpose
of the last plot is to inform us if the dataset consists of a
homogenous and uniform distribution so that no
substructures exist. If this is true, then the program will

FIGURE 2 |Workflow of the DivCom tool, and the two scripts of the program. (A) According to the workflow of the DivCom, the user can execute the beta-diversity
to calculate the optimal number of clusters or to directly run the DivCom script. (B) The script “Beta-Diversity.R” calculates and visualizes beta diversity between the
samples and produces the plots of four different clustering evaluation indices (Calinski-Harabasz, silhouette, prediction strength, and Within Sum of Squares). These
outputs provide the user with the necessary information in order to determine the optimal number of clusters for each group. (C) The main script is called
“DivCom.R” and performs de novo clustering to both the reference and test groups, calculates the pairwise distances of the reference and test samples, and finally
conducts an automated statistical analysis and produces the final reports. This information contributes to a better understanding of the interrelation between the different
groups under study.
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propose just one cluster. These measures were selected as they are
among the most widely used techniques for clustering validation
(Baarsch and Celebi, 2012; Bouveyron and Brunet-Saumard,
2014).

2.3.1 Optimal Number of Clusters
The appraisal of these graphs in conjunction with the prior
knowledge of the dataset can help the user decide about the
optimal number of clusters for each group. Although we
recommend that users make this decision based on their
preferences and understandings, among the default outputs of
the script a report is included with a recommendation about the
optimal number of clusters for each group. To make this
suggestion, the script first calculates the optimal number of
clusters for each index and then selects the number with the
highest frequency. In case of a tie, this suggestion is based on the
results of the Calinski-Harabasz index. Even though all indices
have their own strengths and weaknesses, we chose to highlight
the role of the Calinski-Harabasz index because it is a variance-
dependent index that produces higher values when the clusters
are compact and well-separated; these characteristics are
necessary and highly desirable in our approach. Alternatively,
if the user does not wish to evaluate the optimal number of
clusters manually, they can omit the Beta-Diversity script and use
the integrated option in the main script for automatic calculation
of the optimal number of clusters for each group based on the
values of the Calinski-Harabasz index. Depending on their
preferences, the users can manually evaluate the optimal
number of clusters, follow our recommendation, or choose to
be automatically calculated by the program (Figure 2A).

2.4 DivCom Script
After determining the optimal number of clusters for each group,
the user has to run the main script of the tool, which is named
“DivCom.R.” DivCom script consists of two main sections
(Figure 2C): the first is called “Distances-Based analysis” and
the second “De novo clustering analysis.” The main difference
between them is that in the first part of the analysis, de novo
clustering is applied only to the reference dataset, while in the
second and optional stage, all the groups are clustered, and then
compared and analyzed against each other.

2.4.1 Distances-Based Analysis
Proceeding to the actual procedures of the tool, in order to
achieve a better insight into the data and take into
consideration the unique substructure of the groups, the script
performs de novo clustering to the samples of the reference group.
The PAM algorithm performs this task using the desired number
of clusters and the produced distances matrix as inputs. Through
this process, the most representative points of the reference group
are determined and stored for further use. The medoids of the
clusters can be used as the representative points; this is the default
and recommended option. Also, the mean or median counts of
the OTUs or ASVs can be used as an alternative option to the
medoids.

Following the clustering process, the program calculates the
distances of the remaining samples to these representative points.

Then, each sample is assigned to the closest and probably more
relevant to it, in terms of their microbial composition, reference
cluster. This procedure results in an indirect clustering of the test
samples based only on the distances from the most representative
points of the reference group.

Next, a fully automated statistical analysis is conducted.
MDS plots visualize the relationship of the reference clusters
with their closest test samples. Boxplots present the distances
of the samples under study from the nearest reference cluster.
Also, tables containing the p-values and various statistical
measures are printed. Finally, a part of the process is
dedicated to analyzing the distribution of the test samples
across the clusters of the reference group. This part can assist
the user in discovering similar patterns between the reference
and test groups.

2.4.2 De Novo Clustering Analysis
The second part of the analysis is complementary to the previous
section. The main difference is that de novo clustering is applied
not only to the reference but also to each of the test groups. The
user has to specify the desired number of clusters for each test
group in the initiation phase. If this information is not provided
correctly, then this part of the analysis is omitted.

Assuming that the aforementioned information has been
provided, every test group is clustered using the PAM
algorithm. Subsequently, every subcluster is compared with the
representative points of the reference group. This process results
in outputs that compare the structures of the reference and test
groups. Therefore, it is easier for the user to reveal the
substructural similarities and existing relations between the
groups.

Once again, an entirely automated statistical analysis is
performed following this procedure. Various descriptive
statistics measures for the clusters of the reference and test
groups are produced. MDS and boxplots which visualize the
relation between the subclusters, and the tables containing
p-values, distances, and statistical measures are printed.
Similar to the previous stage, the distributions of the test
samples across the clusters are analyzed and assessed.

Considering that these two sections of the program produce
analogous results, the user can compare their outputs and
uncover aspects of the dataset that would be difficult to be
discovered in any other way.

2.5 Outputs
The program produces two detailed reports in the PDF format,
one for each of the two steps described earlier. The first file is
named “Distances-based report,” and its goal is to present the
information about the discrepancy between the reference and the
test groups. This report visualizes and statistically investigates the
relation of the reference clusters to their closest test samples. The
second output is a PDF file called “De novo clustering report,” and
it aims to present the relationship between the reference and test
subclusters. Since de novo clustering has been applied to both the
control and test groups, this file focuses more on the relationship
and the distance-based similarities of the reference clusters with
their closest test subclusters.
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Each of these reports includes MDS plots and phylograms that
illustrate the relationship between the samples. Boxplots present
the distances from the selected representative points and tables
containing various statistical measures derived from the analysis.
In order for the results to be more interpretable by the user, a
detailed description is included for each of these elements.
Additionally, all the outputs are printed in the PNG or tab
format in a separate folder.

2.6 Test Dataset
To demonstrate the performance of DivCom and allow users to
test the functionality of the tool, a previously unpublished raw
sequencing dataset from the iron replacement study of Lee et al.
(2017) was used and is publicly available from now on.

This particular dataset was selected as the objective of the
study was in line with the requirements of DivCom. This
research aimed to assess the effects of Per Oral (PO) and
intravenous (IV) iron replacement therapy (IRT) in patients
with two types of inflammatory bowel disease (IBD) and a
group of non-inflamed (NI) individuals with iron deficiency.
The cohort consisted of Crohn’s disease patients (CD, N = 31),
ulcerative colitis patients (UC, N = 22), and non-inflamed
individuals (NI, N = 19); in total, 62 subjects were involved in
this study. The NI individuals were used as the control/
reference group, while the CD and UC patients were used
as the test groups. All the subjects were randomly separated
into PO or IV groups, and they followed the corresponding
therapy for 3 months. Therefore, the dataset consisted of two
timepoints based on the sampling time; the first timepoint
referred to the samples at the baseline (B) and the second to the
samples after the 3-month treatment (3M).

The raw sequences were processed through the IMNGS
platform (Lagkouvardos et al., 2016), implementing the
UNOISE3 (Edgar, 2016) and UPARSE (Edgar, 2013)
pipelines, using the default parameters. The number of
samples of each category that fulfilled the quality
assessment and eventually took part in the final analysis is
summarized in Table 1.

3 RESULTS

As presented in the introduction, the DivCom approach surpassed
the limitations and pitfalls of the currently applied methodology
and revealed the true relationship between the groups (Figures 1B
and E). Here, using the test dataset of the iron replacement study,
we evaluated the performance of our tool in real and complex data,

its ability to reproduce parts of the initial analysis, and its
contribution to a better understanding of the dataset.

In the first step of the analysis, we evaluated the effect of
the treatment on the non-inflamed (NI) control samples. As
indicated by the Calinski-Harabasz index and verified by the
suggestion of the Beta-Diversity script, the pretreatment
samples of the NI group (NI.B) were partitioned into four
clusters (Supplementary Figure S2A). The distances of all
the after-treatment individuals (NI.3M) from these clusters
were calculated and then evaluated. These distances indicated
that there was no significant difference for the profiles of the
non-inflamed (NI) anemic patients before (B) and after (3M)
iron treatment (p = 0.3908) (Figure 3A). Therefore, since the
IRT did not result in consistent changes in the overall
microbial profile of the samples, all the NI individuals
were merged and used as a unified reference group
consisting of 38 profiles. The Calinski-Harabasz index and
the recommendation of the Beta-Diversity script supported
the existence of two clusters for the entirety of the reference
group (Supplementary Figure S2B). Therefore, for the rest of
the analysis, the control group of the NI was subdivided into
two clusters. The type of treatment (IV, PO) and the sampling
time (B, 3M) did not contribute to the formation of these two
groups as the chi-square p-values were 0.217 for the first case
and 0.602 for the second.

Continuing the analysis, we investigated whether the
intervention shifted the IBD samples (UC and CD) closer to
the NI reference points. The distances of the IBD groups (B and
3M) from the NI reference points were significantly higher than
those of the reference group (p < 0.001), highlighting in this way
the disturbed nature of the IBD profiles. Nevertheless, those
distances were not significantly different among time points
(IBD.B-IBD.3M) (p = 0.96), indicating that the treatment did
not affect the median distances of the IBD sample from the NI
reference samples (Figure 3B).

Next, we repeated the analysis using the sampling time (B or
3M) and the type of disease (CD or UC) as the independent
variables. The boxplots of the distances from the closest
reference medoid and the statistical testing indicated that
the UC and CD groups at the baseline and after the iron
replacement were once again significantly farther from the
control group of the NI compared to the reference samples (p <
0.05) (Figure 4A). Regarding the distances, the CD patients
seemed to have a more substantial level of dissimilarity with
the NI group than the UC patients. Also, DivCom
automatically assigned each IBD profile to its closest NI
reference medoid. The integrated chi-square analysis

TABLE 1 |Number of samples of each category that were used in the DivCom analysis. In total, 19 samples of the NI group, 26 of the CD group, and 17 of the UC group were
selected to participate in the study analysis.

Iron intake NI (non-inflamed reference
group)

CD (Crohn’s disease
test group)

UC (ulcerative colitis
test group)

PO 9 12 10
IV 10 14 7
Total 19 26 17
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revealed that the samples of the UC group before and after the
intervention had similar distribution around the reference
medoids to the samples of the NI group (p = 0.5786 at the

baseline, p = 0.2602 at 3 months). On the other hand, this trend
was not present for the CD patients (p = 0.0070 at the baseline,
p = 0.0003 at 3 months).

FIGURE 3 | Boxplots presenting the distances of the NI and IBD samples from their closest reference medoids before (B) and after (3M) the treatments. (A) The
distances of the NI.3M samples from their closest medoid of the NI.B group implied that the iron replacement therapy (IRT) did not affect the microbial composition of NI
samples considerably. The two groups were not significantly different (p = 0.3908), so for the rest of the DivCom analysis, the samples weremerged and used as a unified
reference group. (B) Boxplots displaying the impact of the iron replacement therapy on the IBD samples. The IRT did not shift the IBD samples closer to the NI
group. The distances of the IBD groups (B and 3M) from the reference group of the NI samples are significantly different compared to those of the NI group (p<0.001).
However, the two groups are highly related to each other (p = 0.97). p-values: *<0.05; ***<0.01.

FIGURE 4 | Boxplots of the distances of the test groups from the closest reference medoid of the NI group. (A) For the UC and CD groups, the type of the disease
and the sampling time did not affect their distances from the NI samples. All the groups were significantly farther from the control group compared to the reference
samples (p < 0.05). The distances of the CD patients from the control group seem to present overall higher values than the distances of the UC patients from the NI group.
(B) All the IBD samples were grouped based on the type of the disease, the treatment, and the sampling time. The boxplots of the distances from the closest
medoid indicate that the CD groups have a higher level of homogeneity but are farther from the control group compared to the UC groups. On the contrary, most of the
UC samples are closer to the NI group, but their distances from the reference group present a higher variance. In particular, the distances of the UC.PO.B group are
related to the NI group (p = 0.34). p-values: *<0.05; ***<0.01.
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When the IBD samples were labeled based on the disease (CD
and UC), the type of the treatment (IV and PO), and the sampling
time (B and 3M), it was more evident that the CD groups appeared
to have greater distances from the control group than the UC
samples (Figure 4B). The IRT seemed to have a more
pronounced effect on the UC groups as their samples exhibited a
higher variance in terms of their distances from the reference group
before and after the treatments. In the UC patients, the type of iron
replacement showed trends of differential effect, with the IV group
demonstrating a slight decrease and the PO group exhibiting a small
increase in the overall distances from the NI. However, in both cases
(UC and CD), the distances from the reference group did not change
considerably, independent of the type of the iron replacement. On a
side note, we revealed that at the baseline, the UC samples chosen to
follow the PO treatment seemed to be considerably closer to the NI
group than the remaining samples of the UC or CD patients.

Subsequently, taking advantage of the outputs of the
DivCom, a secondary analysis was conducted. The intention
was to determine whether the PO or IV treatment had a more
profound impact on the distances of the test samples to the
reference dataset. Thus, the differences between the distances
from the closest medoid after the intervention and those at the
baseline were calculated. The average differences of the
distances for the IV treatment in both the CD and UC
groups were negative (CD = −0.0053, UC = −0.1165). On
the other hand, the corresponding differences for the PO
treatment in the CD and UC patients were positive (CD =
0.0267, UC = 0.1676). Overall, the statistical comparison of
those differences for the two types of treatment showed a trend
(p = 0.08), indicating that PO treatment led to an increase of
distance from the reference samples, while the IV treatment
resulted in a decrease (Figure 5A). This difference was mainly
due to the differential effect of the treatment type on the UC

patients, with the CD patients remaining mostly unaffected
(Figure 5B).

In order to reveal the test group’s unique substructure, de novo
clustering was applied to the IBD profiles. As suggested by the
Calinski-Harabasz index (Supplementary Figure S2C) and the
majority of the other indices as they were produced by the Beta-
Diversity script, the IBD group was partitioned into two clusters
(Figure 6). One cluster was closer to the NI group, and the other was
considerably more distant from the reference samples. This finding
was further evaluated through the statistical testing of the
corresponding distances of each subcluster from the nearest
reference medoid (Supplementary Figure S3). Both the IBD
clusters were significantly farther from the NI groups (p < 0.05),
confirming that the profiles of the patients diverged from those of the
control group. Through the automated statistical testing of the
DivCom, we verified that the iron therapy did not affect the CD
patients. The distribution of the CD samples across the IBD clusters
did not change significantly before and after the intervention (p =
0.2379). On the contrary, the distribution of UC samples was
significantly different after the IRT (p < 0.001).

In total, we executed the program five times using the appropriate
variables and number of clusters each time (Supplementary
Material S1). All the plots and statistical results except Figure 5
were produced directly and automatically by DivCom. The
generated outputs underwent only minor editing for complying
with the formatting requirements.

4 DISCUSSION

4.1 DivCom, Iron Dataset, and Beyond
Comparing microbial profiles of different groups can be a
challenging process mainly due to the multivariate and

FIGURE 5 | Differences of the “before–after” distances of the test samples from the closest reference medoid of the NI group. (A) For the samples of the IV and PO
treatments, the differences of the distances from the closest reference medoid before and after the IRT were calculated. The boxplots illustrate the distribution of these
differences. The IV treatment seems to have slightly but not significantly better results than the PO treatment (p = 0.08). The average differences of the IV samples are
negative (-0.0609), while the average differences of the PO treatment are positive (0.09715). (B) The IBD samples were compared based on the type of the disease
and the treatment. In terms of distance to the reference samples, a differential treatment response is observed on UC patients (p = 0.0702). CD patients do not seem to
be affected by the mode of treatment, with both resulting in a slight convergence to the reference profiles.
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multifactorial nature of the data (Ramette, 2007; Paliy and
Shankar, 2016). DivCom proposes a new approach for
microbial communities’ comparisons that is easily applied
using the developed tool. In order to evaluate whether
DivCom can produce meaningful results, we employed this
methodology to previously produced data that were made
public with this work. Next, the basic conclusions of the
DivCom analysis are presented and compared with the
outcomes of the original publication.

Similar to the results of Lee et al. (2017), we found that the NI
group was more homogenous, and the treatment did not
considerably affect their overall community composition.
Relying on this fact, we treated all the NI samples as a unity
during our analysis. In the original article, it was not emphasized
that the samples of the UC group were more related to the group
of the NI than the group of the CD. In particular, the samples of
the UC group chosen to follow the PO treatment were
consistently closer to the NI samples. This observation was
not mentioned or taken into account in the initial study but
was among the default outputs of the DivCom. Sampling
imbalances like the above can lead to misleading results when
they are not taken into consideration.

In studies exploring the possible differential effect of a
treatment on the microbial profiles of two or more groups, the
labeling of the subjects is commonly based on their demographics
or status characteristics. This process results in dividing the
dataset into test and control groups. Traits like age, gender, or
disease severity should always be considered and be part of a
typical study design in order to avoid biases caused by these
factors (Kim et al., 2017; Bharti and Grimm, 2021). However, in
addition to the demographic and status characteristics, we argue

that the subjects’ baseline microbiome is a significant confounder
we should always bear in mind in such analyses. We recommend
that an initial screening be performed to map the microbial
structure of the cohort, and then subjects be assigned to
groups so that the underlying microbial groups are equally
represented among the test and control groups. DivCom could
assist in this process by revealing the different communities
present in the cohorts and creating more balanced experiments.

Also, we verified that although the two treatments overall did
not shift the IBD samples significantly closer to the reference
group, the IV treatment had slightly better results concerning the
distances from the reference medoids. The CD samples seemed to
have the same response to the IRT independently of the followed
method. In contrast, the UC patients’ microbiomes seemed to be
more sensitive to the type of iron replacement, with IV treatment
resulting in overall decreased distance from the reference groups
and PO negatively affecting the structure of the community
reflected in increased distance from the controls. This
observation was not accentuated in the original article as the
relationship between the treatments and the type of the disease
had not been investigated. DivCom can easily highlight such
observations through its integral utilization of the distances as the
primary method of group comparison.

The de novo clustering of the IBD samples showed that one of
the two subclusters was close to the reference group, and the other
one was farther away. The IRT method did not seem to affect the
structure of the IBD clusters. According to chi-square analysis,
the after-treatment PO and IV samples were similarly dispersed
across the clusters. However, the type of the disease appeared to
influence the way the samples are distributed across the IBD
clusters. Almost all the UC samples were in the cluster closer to

FIGURE 6 | MDS plot presenting the de novo clustering of the NI and IBD groups. Both the NI and IBD samples were clustered into two clusters. The IBD 1
subcluster is closer to the reference groups of the NI, and the IBD 2 is considerably more distant. The table presents the median level of dissimilarity of each IBD cluster
from its nearest reference cluster.
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the NI group, while the CD samples were equally dispersed to the
two subclusters. Many of these details went unnoticed in the
original publication as the structure of the groups had not been
taken into account. However, additional variables like the disease
severity, age, or diet could also contribute to the observed
clustering pattern. In general, de novo clustering can provide
us with a sense of how well our recorded metadata reflect and
explain the grouping of the microbial profiles. The existence of
unexpected structures in the dataset could be an indication that
factors that had not been predicted or taken into consideration
could have a severe impact on the results (Goodrich et al., 2014;
Alashwal et al., 2019). Therefore, it is important to always
perform this type of analysis in any experiment dealing with
microbiome data.

Considering the differences between the original and DivCom
analysis, the former was based mainly on the study of dominant
bacterial taxa, while the DivCom analysis used beta diversity
metrics to summarize the overall community composition.
However, both the initial and the current analyses were
conducted with respect to the reference group of the NI.
Although the samples of the NI group did not have any type
of inflammatory bowel disease, the sampling occurred during
their hospitalization. Therefore, it would not be appropriate to
generalize the results to the wider healthy population.
Considering this fact, a universal baseline reference dataset of
healthy individuals would be useful for quickly and easily
assessing the level of dysbiosis in individual samples (Lloyd-
Price et al., 2016; King et al., 2019). If this becomes a reality, then
the way will open for more personalized-focused treatments
(Zmora et al., 2016; Behrouzi et al., 2019).

4.2 Strengths and Limitations of DivCom
Beta diversity is one of the most important parts of the
microbiome data analysis; it allows us to explore the
relationship between the samples and, by extension, the
relation between the different groups under study. As
presented and described in the introduction, statistical and
structural limitations can produce deceptive outcomes that will
consequently affect the rest of the analysis. Most of the time, it is
not easy to overcome these obstacles, mainly due to the lack of
alternative options. DivCom tries to solve some of these problems
by using a distance-based approach that considers the inner
structure of the data and reducing the dependency on the
results of the statistical tests.

The primary purpose of DivCom is to compare different
groups and reveal their interrelation. Therefore, it should be
used in studies where two or more groups are compared against
each other. The ideal scenario would be when the test groups are
compared with control/reference samples. Since the proposed
approach uses the pairwise distances of every sample from the
reference points, the wrong selection of this dataset may lead to
misleading and uninterpretable results. Thus, selecting the
reference dataset is an essential part of the process.

An advantage ofDivCom is that the sampling size of the dataset and
the distribution of the samples across the groups did not considerably
affect the overall results. DivCom can produce accurate results
independently of the dataset. Although the sampling size does not

directly affect the procedure and the outcomes, it is recommended not
to use extremely small groups (e.g., 2–3 samples), as in this case, it
would be difficult to obtain strong statistical results and draw safe
conclusions about the overall trend of the groups.

The de novo clustering is a fundamental part of the DivCom
methodology. Numerous techniques and algorithms perform
unsupervised clustering; among these approaches, model-based
clustering methods like Dirichlet multinomial mixtures (DMM)
(Holmes et al., 2012) and Dirichlet-tree multinomial mixtures
(DTMM) (Bai et al., 2020), density-based clustering algorithms
like density-based spatial clustering of applications with noise
(DBSCAN) (Ester et al., 1996), or even neural network clustering
algorithms like self-organizing tree algorithm (SOTA) (Dopazo
and Carazo, 1997) are included. However, here in the DivCom
tool, we chose a more conventional approach like the PAM
algorithm. PAM does not make any assumptions about the
distribution of the samples, can work with any dissimilarity
matrix, and forms sphere-like clusters. In particular, the last
characteristic is extremely useful as it allowed us to
successfully use the concept of the central points as
representative points of the clusters. As presented in the
introduction, only the use of the medoids/centroids produced
results analogous with those we would have obtained if we had
performed all the possible calculations and comparisons. All the
previously mentioned qualities lead DivCom to be fast and
produce accurate and detailed outcomes.

Another benefit of using the DivCom approach is that each
sample is studied separately, and the program produces various
statistical measures for each of these points. In this way, the user
can detect outliers and samples with abnormal behavior more
easily, and then further assess them. Identifying and evaluating
outliers is not always a straightforward task, so this is an
important and maybe overlooked feature of the tool.

DivCom does not require any advanced programming
knowledge as the users do not have to edit or modify the code
in the scripts; they just need to fill out the required parameters
and then execute the program. Each of these parameters is
described in the scripts, and clear guidelines are provided so
even inexperienced users to be able to use the tool. The workflow
of DivCom is flexible and can be personalized depending on the
requirements and needs of each user. Also, the results are printed
in the form of reports in which each plot and table is explained so
it will be easier for the user to interpret the results.

The computational and memory requirements of DivCom can
be considered limited. The development and testing of the tool
were performed mainly in spec-wise average personal computers
(processor: Intel core i5, Ram: 8GB, operating system: Windows
10). The requisite time to complete the process ranged from a few
seconds to several minutes, depending on the size of the
abundance table. For the dataset used in this study (62 × 254
abundance table), the execution time for the whole analysis was
approximately 1 min, while for much larger datasets (e.g., 700 ×
5,985 abundance table) the execution time for the whole analysis
was no more than 7 min. The only part of the process that has
increased computational requirements and is time-consuming is
the calculation of the beta diversity (Generalized Unifrac).
Therefore, for even larger datasets, it is recommended that the
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user pre-calculates and provides the matrix of the pairwise
distances between the samples in order to speed up the process.

5 CONCLUSION AND FUTURE WORK

In conclusion, we proposed a novel approach for the analysis of
the microbiome datasets. This approach incorporates beta
diversity measures used as distance metrics and the technique
of de novo clustering. This new methodology offers more detailed
and well-defined comparisons between different groups under
study. An automated tool that applies the suggested method was
developed and introduced.

Also, we assessed the performance of DivCom using existing data
and comparing the findings with those of the original study. The
outcomes showed its effectiveness as we were able to verify some of
the key points of the original publication simply by running our tool
while discovering and highlighting unnoticed details.

In some cases, the proposed approach outperforms the current
methods and techniques that are applied to the beta diversity
analysis. Of course, future improvements and optimizations to
the tool will render it easier for the user, will simplify the process,
and will expand its capability to handle a wider range of possible
cases. The use of DivCom combined with the existing tools for
downstream microbiome data analysis offers clear advantages
and additional information, and therefore should be considered
in every microbiome analysis.
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