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Microbial time-series analysis, typically, examines the abundances of individual taxa over
time and attempts to assign etiology to observed patterns. This approach assumes
homogeneous groups in terms of profiles and response to external effectors. These
assumptions are not always fulfilled, especially in complex natural systems, like the
microbiome of the human gut. It is actually established that humans with otherwise the
same demographic or dietary backgrounds can have distinct microbial profiles. We
suggest an alternative approach to the analysis of microbial time-series, based on the
following premises: 1) microbial communities are organized in distinct clusters of similar
composition at any time point, 2) these intrinsic subsets of communities could have
different responses to the same external effects, and 3) the fate of the communities is
largely deterministic given the same external conditions. Therefore, tracking the transition
of communities, rather than individual taxa, across these states, can enhance our
understanding of the ecological processes and allow the prediction of future states, by
incorporating applied effects. We implement these ideas into Cronos, an analytical pipeline
written in R. Cronos’ inputs are a microbial composition table (e.g., OTU table), their
phylogenetic relations as a tree, and the associated metadata. Cronos detects the intrinsic
microbial profile clusters on all time points, describes them in terms of composition, and
records the transitions between them. Cluster assignments, combined with the provided
metadata, are used to model the transitions and predict samples’ fate under various
effects. We applied Cronos to available data from growing infants’ gut microbiomes, and
we observe two distinct trajectories corresponding to breastfed and formula-fed infants
that eventually converge to profiles resembling those of mature individuals. Cronos is freely
available at https://github.com/Lagkouvardos/Cronos.
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1 INTRODUCTION

Advances in sequencing technologies allowed the investigation of
diverse environments in terms of bacterial community structure
as standardized practice (Mukherjee et al., 2021). Studies of
microbial communities over time are steadily gaining in
popularity compared with the majority of studies, in which a
single time point is investigated, allowing for a further
understanding of community dynamics.

Microbial communities consist of multiple species entangled
in complex interactions that affect their individual behavior,
overall system dynamics, and environmental niche properties
(Stubbendieck et al., 2016). Internal phenomena include direct
interactions, such as mutualism (Morris et al., 2013) or
competition (Stubbendieck et al., 2016) and indirect
interactions, such as quorum sensing (Miller and Bassler,
2001). Internal interactions in combination with external
factors, such as antibiotics (Iizumi et al., 2017), infants’ birth
mode, or diet (Kim et al., 2019), affect the individual bacteria
behavior and shape the environment landscape (Tan et al., 2021).
Therefore, a complete understanding of microbial systems can
only be achieved by studying the overall microbial communities
rather than each microbial organism in isolation.

Time-series analysis of abundance and co-occurrence of
microbes have been investigated mainly via traditional
statistical methods (Chaffron et al., 2010; Steele et al., 2011).
Several bioinformatic tools for bacterial time-series analysis have
been developed, exploiting the increasing data availability. These
tools, along with other studies, focus mainly on single or specific
taxa and their relative abundance over time (Vergin et al., 2013;
Sharon et al., 2013; Xia et al., 2011; Ki et al., 2018; Zhang et al.,
2019). However, those approaches inherit the limitations and
assumptions of the statistical methods used. Relying on
experimental design labels may mask distinct patterns or
structures in each group and therefore misinterpret the
microbial community trajectories. Often, abundance values for
a given group of samples at a time point can exhibit multiple
modes implying the existence of more than one underlying
distribution. Comparing values among time points with
statistical methods relying on means or ranks is not
appropriate for multimodal datasets.

In the first 2 years of life, the gut microbiome is subjected to
many compositional changes (Bäckhed et al., 2015; Stewart et al.,
2018). The procedure toward the adult microbiome is often called
maturation (Mesa et al., 2020). Evidence suggests an association
between infant gut bacteria and diet (Pannaraj et al., 2017; Jiang
et al., 2018; Camacho-Morales et al., 2021), the way the infant was
delivered (Jakobsson et al., 2014), antibiotic usage (Korpela et al.,
2020; Lemas et al., 2016), maternal body mass index (Soderborg
et al., 2018), or even environmental factors (Sugino et al., 2021).
Alterations of the human gut microbiome during the maturation
procedure motivate the analysis of microbiome profiles using
time-series approaches.

In this study, we propose a novel framework for microbial
community time-series data analysis. Embedded in an R-based
tool, Cronos, is based on the following premises and concepts.
Intrinsic microbial community structures within a time point are

shaped due to specific attractor states (Estrela et al., 2022;
Goldford et al., 2018). These states can be identified by
unsupervised machine learning techniques. Microbial
communities’ evolution can be explored by capturing
transitions among attractor states over time. We developed an
implementation of this concept in Cronos software. Cronos
applies machine learning techniques to analyze complete
microbial profiles over time and describe the attractor states
(Costea et al., 2018). Our software explores the microbial
community profile evolution by capturing transitions among
clusters over time. As a consequence, it is able to predict
future community structure states. Cronos is freely available,
as an open-source code at https://github.com/Lagkouvardos/
Cronos.

2 MATERIALS AND METHODS

Cronos is an R script that performs the tasks of 1) dividing and
labeling the samples based on the time points, 2) calculating the
pairwise UniFrac distances among the samples at every time point,
3) performing de novo clustering of the samples profiles, 4)
calculating and visualizing the taxonomic representation of
clusters, 5) applying Markovian property test, 6) transition
modeling based on given metadata, and 7) predicting future states.

Cronos functions rely on R packages ade4, dplyr, GUniFrac,
phangorn, cluster, fpc, markovchain, spgs, caret, nnet, gtools,
mclust, igraph, and network, which Cronos installs automatically
if required, along with all of their dependencies. Cronos requires
three files as inputs. A table of microbial profiles (e.g., OTU or
ASV abundance tables), a mapping file containing information
about the time points and the corresponding metadata of the
samples, and a phylogenetic tree of all taxa in the profiles table.

2.1 De novo Clustering, Evaluation, and
Validation
Cronos calculates the GUniFrac, a beta-diversity distance metric
variant (Chen et al., 2012) of the UniFrac distance methods
(Lozupone and Knight, 2005), for each pair of samples at
every time point, using the phylogenetic tree input, to create a
dissimilarity matrix. Then, de novo clustering is performed via the
partitioning around medoid (PAM) method (Schubert and
Rousseeuw, 2021; Costea et al., 2018). Cronos assesses the
optimal number of clusters via the Calinski–Harabasz index.

Cronos applies a brute force method to select the optimal
number of clusters at every time point. Clustering via PAM is
performed using as the number of clusters (k) all the numbers
between two and nine. Due to computational constraints, the
maximum number of clusters was set to nine. The optimal
number of clusters is assessed using the Calinski–Harabasz
index (Calinski and Harabasz, 1974) also known as the
variance ratio criterion, from the fpc R package. The
Calinski–Harabasz index is translated into the ratio of the sum
of between clusters dispersion to intercluster dispersion. Higher
Calinski–Harabasz index values indicate better clustering
performance.

Frontiers in Bioinformatics | www.frontiersin.org August 2022 | Volume 2 | Article 8669022

Litos et al. Cronos Microbiome Analysis Over Time

https://github.com/Lagkouvardos/Cronos
https://github.com/Lagkouvardos/Cronos
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


Calinski–Harabasz (s) index is calculated as

s � tr Bk( )
tr Wk( ) p

n − k

k − 1
( ) (1)

where n is the sample size divided into k clusters, tr (Bk) is the
trace of the between cluster dispersion matrix, and tr (Wk) is the
trace of the within-cluster dispersion matrix defined by

Wk � ∑k
p�1

∑
x∈Cp

x − Cp( ) x − Cp( )T (2)

Bk � ∑k
p�1

np Cp − CE( ) Cp − CE( )T (3)

where Cp is the set of points in cluster p, CE the center of cluster E,
and np the number of points in cluster p.

In order to achieve high clustering resolution but avoid
overclustering, we determined the optimal number of clusters
based on two rules: The maximum consecutive

Calinski–Harabasz score difference and the difference between
the absolute maximum of Calinski–Harabasz scores and the one
with the highest difference. Such an approach, empirically,
demonstrated both high clustering resolution and avoided
meaningless overclustering.

First, we calculate the Calinski–Harabasz indexes for two to nine
clusters. Second, we calculate the difference between
Calinski–Harabasz indexes for every two consecutive numbers of
clusters and select the highest. Third, we calculate the difference in
Calinski–Harabasz scores between the preselected and the absolute
maximum of CH scores.

k � argmax Sk( ) ifmaxSk −maxSargmax Sk−Sk+1( ) ≥ max Sk − Sk+1( )| |
argmax Sk − Sk+1( ) ifmaxSk −maxSargmax Sk−Sk+1( ) < max Sk − Sk+1( )| |{

(4)
The optimal number of clusters is selected as

the absolute maximum of Calinski–Harabasz scores

FIGURE 1 | Clustering performed on a manually created dataset demonstrating the added insight on the structure achieved by selecting the number of clusters based
on clustering quality drop rather than simply using the clustering with the maximum score. (A) Calinski–Harabasz indexes calculated for PAM clustering with k ranging from
2 to 6. Although k = 2 shows the highest score suggesting the existence of two primary groupings in the dataset, k = 3 also fits well into the dataset, revealing the composite
nature of the second cluster. Further subclustering results in a large drop in the clustering quality suggesting that the dataset does not fit well to the number of clusters (B)
MDS plots of the dataset at different de novo clustering levels (i) MDS plot of the unclustered dataset, (ii–v) PAM clustering of the dataset for k = 2–5.
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if maxSk −maxSargmax(Sk−Sk+1)≥ |max(Sk − Sk+1)| or the
preselected k maxSk −maxSargmax(Sk−Sk+1)< |max(Sk − Sk+1)|.

The motivation behind this approach is that if we rely only
on the maximum CH score, we will detect just a crude clustering
of the data, overlooking, thus, any fine data clustering
(Figure 1). By assessing the value of k by the Eq (4), we will
obtain the highest possible resolution on a given time point (any
further refinement will diminish the clustering quality) while
keeping the CH score of clustering close to the absolute
maximum score. To highlight this approach we created a
hypothetical dataset manually derived from three Gaussian
distributions with standard deviations of 0.1, 0.4, and 0.6 and
means (6.5,6.5), (3,3), and (4,4), respectively. The absolute
maximum Calinski–Harabasz value indicates that the optimal
number of clusters for this dataset is 2, even though we
manufactured the dataset from three different Gaussian
distributions (Figure 1).

Since PAM clustering will divide the dataset into at least two
groups even when data contain no clusters, Cronos also performs a
validity check of clustering. To address this issue, we apply a
Bayesian information criterion (BIC)-based methodology to
evaluate whether k clusters (k > 1) are better than a scenario
with no clusters for each time point. We apply Gaussian mixture
model (GMM) clustering with 1 and the optimal number k of
clusters as components, using the mclust R package. To compare
the two clustering outcomes from GMM, the BIC score was
calculated using the same R package.

2.2 Transition Analysis
Clustering at each timepoint results in the characterization of
samples over time. To further understand the evolution of the
microbiome profiles, Cronos primarily checks for the Markovian
property of the transitions of clusters from each time point to the
next. A transition acquires the Markovian property when it
depends only on the current state and not on any previous one.
A custom test was created to verify the first-order Markovian
assumption (i.e., future state does not depend on the exact previous
one but only the current) among the transitions of all samples
based on the verifyMarkovProperty test ofmarkovchain R package.
The test examines all successive triplets of time points, in terms of
states–cluster assignments. Let x1, x2, . . ., xN be a set of
observations with N the optimal number of clusters selected
and nijk is the number of times t (1 ≤ t ≤ N − 2) such that xt =
i, xt+1 = j, xt+2 = k; then, if the Markov property holds, nijk follows a
Binomial distribution with parameters nij and pjk.

A classical chi-square test can check this distributional
assumption, since

∑
i

∑
j

∑
k

nijk − nijpjk( )2
nijpjk

~ χ2 d( ) (5)

where d is the number of degrees of freedom. The number of
degrees of freedom d of the chi-square distribution is given by d =
r − q + s − 1, where s denotes the number of states i in the state
space such that ni > 0, q denotes the number of pairs (i, j) for
which nij > 0, and r denotes the number of triplets (i, j, k) for
which nijk > 0.

2.3 Transition Modeling
Cronos models the states at each time point (response variable)
as a function of the metadata at this time point and the state at
a previous time point (explanatory variables) by applying
multinomial logistic regression via the multinom function
of the nnet R package. For each time point, we create a
matrix of explanatory variables using the cluster label on a
given time point and the metadata as columns and the samples
as rows.

To evaluate the predictions, Cronos divides the dataset into
training and test sets using two different methods. First, we apply
a leave one out (LOO) procedure, where all the dataset is used to
train the model except one sample, which is used as the test set.
The second method refers to stratified splits, which is performed
via the createDataPartition function of the caret R package and
splits the dataset into train and test sets with the same ratio of
samples per label.

Cronos evaluates the accuracy of classification as the
percentage of correct predictions that the model made:

A � correctPredictions

N
(6)

where N is the number of samples on the set and returns the mean
accuracy over a prespecified number of iterations for both the
training and the test sets, all the divisionmethods, and all the time
points used to create the models. Mean accuracy of a model is
calculated as follows:

Acc � 1
T
∑T
i�1

correctPredictions

N
(7)

where N is the number of samples on the set and T is the number
of iterations. Partitions with the LOOmethod are iterated over all
samples, whereas the stratified splits method assigns samples on
the test set ensuring that the train and test sets have
approximately the same percentage of samples of each target
class as the complete set.

Cronos performs classification to predict the cluster on all
time points but the first, with both partitioning methods for all
the possible combinations of metadata provided, combined
with cluster assignment, including models without metadata,
both for the training and test sets. The classification
performance of Cronos is compared to the random
classifier, which labels all the possible outcomes of the
predicted variable with the same frequency. Cronos’
complete pipeline is shown in Figure 2.

2.4 Cluster Representation
Every cluster of microbial profiles is represented via its
medoid. Cronos describes every medoid composition at all
taxonomic levels above the genus to provide further insight
into its community structure via binning (cumulative
abundance of all OTUs/ASVs belonging to the same taxon).
Furthermore, the profiles are illustrated as barplots. To
enhance the visualizations, there is an option to
agglomerate low abundance taxa into the category called
“Others” using a selected by the user threshold (default 5%).
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2.5 Case Study
Cronos was tested on the fecal microbiome data from a study
investigating the effects of formula milk and breastfeeding on
infants’ gut microbiome over the span of 2 years (Bazanella et al.,
2017). The dataset consists of 106 infants from theMunich region
with samples taken over 1, 3, 5, 7, 9, 12, and 24 months of age.
Information on the mode of delivery (vaginal or Cesarean) was
available and taken into account in our analysis. In addition to the
infant data, we used as a reference for matured gut microbiome

the sequence data from the stool samples from 216 healthy lean
students of the Technical University of Munich. None of the
students had been taking antibiotics in the last 3 months, had any
known diseases, or were on long-term medication. The
preprocessing of the raw data was performed with the IMNGS
platform (Lagkouvardos et al., 2016) implementing the UNOISE
version 3 (Edgar, 2016) and UPARSE (Edgar, 2013) pipelines,
using the default parameters. The primary analysis outputs were
used as inputs in Cronos. The raw data of the two studies are

FIGURE 2 |Cronos’ pipeline. The first section illustrates the procedures on Cronos from obtaining the data to forming complete clustering assignments.The middle
section demonstrates the modeling of transitions from clusters on a time point to any later. The third section displays the prediction procedure and classification metrics.

Frontiers in Bioinformatics | www.frontiersin.org August 2022 | Volume 2 | Article 8669025

Litos et al. Cronos Microbiome Analysis Over Time

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


publically available at European Nucleotide Archive under
accessions PRJEB21196 and PRJEB47555.

3 RESULTS

We applied Cronos to the data retrieved from the infant study
of Bazanella et al. (2017) combined with the healthy students
reference dataset. The samples were characterized in terms of
OTU abundance via the IMNGS platform; the outputs were
used as direct input for the Cronos tool.

3.1 De novo Profile Clustering
The Calinski–Harabasz indexes calculated for each clustering
procedure are graphically demonstrated and stored
automatically using Cronos (Supplementary Figure S1).
Cronos’ automated method for selection of the optimal
number of the de novo clusters suggested that partitioning
the data into two or three groups reflects the intrinsic

organization of the microbial profiles of the infants at each
time point and of the students used as an external reference
(Table 1).

3.2 Maturation Process
Maturation, as a time-dependent process, is illustrated in
Cronos via an MDS plot of all cluster medoids, to compare
the relative distances between clusters within the dataset and
any external reference time point given. Every microbiome
profile cluster is represented by its medoid. The evolution
trajectory of the microbiome over time is demonstrated by
connecting the medoids as shown in Figure 3.

Microbiome profiles of 24 months of age children are
relatively close to the adult external references, whereas
early life clusters occur closer to each other, highlighting
the maturation process. Three main areas of microbiome
profile similarity are shown in the graph. The first, on the
bottom left side, contains almost half of the early life clusters,
dominated by breastfed infants. The top center one contains
almost the other half of early life clusters and the bottom right
one holds the external reference and 2-year-old clusters. The
average distance of infant clusters on all time points compared
to the external reference clusters of students decreases as the
infants age (Supplementary Figure S5), emphasizing the
maturation process, as older infants have microbial profiles
relatively closer to the adult students.

3.3 Sample Transitions Through Time
Sample transitions between clusters over time are visualized
in Cronos via Alluvial graphs (Figure 4). For the first months

TABLE 1 |Optimal number of clusters selected automatically in Cronos for all time
points. The first row represents the time point in months of age, whereas the
second shows the different number of similar microbiome profiles.

Time
point
(Months
of age)

1 3 5 7 9 12 24 References

Optimal Number of Clusters 2 3 2 2 3 3 2 3

FIGURE 3 |MDS graph of cluster medoids of all clusters on all time points and the external reference as produced by Cronos. TP represents the time point and CL
the cluster. MM abbreviation stands for mature microbiome and refers to the external reference samples. Circle size is relative to the percentage of the samples found to
belong in the cluster, whereas the connecting arrows are directed from the earliest to the latest time point and their width is relative to the percentage of the samples
following the transition.
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and until the seventh month of age, infants’ profiles show
common transition patterns switching largely in unison
among the time point clusters. At later time points, the
infants’ microbiome endures many changes in terms of
composition, illustrated by cluster alterations (samples
entangled between clusters) on consecutive time points. As
the infants age, their microbiome profiles tend to
converge toward the adult reference. Longer periods
between sampling and the introduction of a third cluster
on 9 and 12-month-old children might explain the increase in
sample transitions between clusters during these stages.

3.4 Cluster Representation
Every cluster is represented by its medoid. Cronos’ automated
pipeline describes and illustrates the microbial composition
of all cluster medoids on all taxonomic levels above genus
(Supplementary Tables S1, S2, S3). The representation of
all clusters on a family level is shown in
Figure 3 (Supplementary Figures S3, S4 on Order and
Class levels).

The relative distances of cluster profiles can be shown even
at a family level, highlighting the importance of a beta-
diversity distance metric and the final number of cluster
decisions. Clusters of 1-month-old infants are highly
associated with the two types of diet. TP1-CL1 contains
significantly more breastfed infants than expected (one-
sided x2 test p = 0.00035), whereas TP1-CL2 contains more
than expected formula-fed infants (one-sided x2 test p =
0.03069). TP1-CL1 is dominated by the Bifidobacteriaceae
family, whereas TP1-CL2 has a more diverse profile, with
lower Bifidobacteriaceae and higher Streptococcaceae and
Enterobacteriaceae abundances (Figure 5). Clusters of 3, 5,
and 7 months of age have similar compositions (Figure 5),
reflected as close relative distances in the multidimensional
scaling projection (MDS plot, Figure 3). The majority of 9-
and 12-month-old infants’ profiles start diverging. TP9-CL1
and TP12-CL1 represent late immature profiles, where the
Bifidobacteriaceae family dominates. TP9-CL2 and TP12-CL2
show an increase in Bacteroidaceae family abundance,
whereas TP9-CL3 and TP12-CL3 have a higher abundance
of the Lachnospiraceae family (Figure 5). Microbial profiles
of 2-year-old infants separate into two clusters, where the
feeding groups co-occur. Thus, there is no association
between the two types of diet and microbial profile
clustering for any of the two clusters (one-sided x2 test p =
0.65 and 0.45, respectively). TP24-CL1 and TP24-CL2 are

FIGURE 4 | Alluvial graph of sample transitions between clusters over
time. NAs represent nonavailable data for the corresponding time point,
whereas 1, 2, and 3 represent the cluster on the corresponding time point.

FIGURE 5 | Every cluster composition at a family level. TP stands for time point and Cl for the cluster. Families with an abundance lower than 5% across all medoids
are cumulatively shown as Others.
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characterized by higher Bacteroidaceae and Lachnospiraceae
abundances, respectively, whereas both contain a sizable
proportion of Ruminococcaceae (20%). Clusters of 2-year-
old infants are relatively closer to the reference profiles of
mature individuals. The reference group is partitioned into
three clusters that resemble the described enterotypes with
MM-CL1 being the “Bacteroides” group, MM-CL2 the
“Prevotella” and MM-CL3 the “Ruminococcus” group
(Arumugam et al., 2011).

3.5 Transition Modeling
The dataset was split into train and test sets with the
aforementioned methods (LOO and stratified splits).
Microbiome profile transitions between clusters on
different time points of all possible train sets were modeled
by Cronos via multinomial logistic regression.
Furthermore, using the model created by the training sets,
Cronos predicted the clusters on all time points of the samples
based on the provided matrix with metadata.
Prediction performance was evaluated via the accuracy
metric. The achieved accuracies are visualized in Cronos
with multiple barplots according to the predicting and
explanatory time point. Moreover, Cronos’ automated
pipeline creates heatmaps for both splitting methods
(Figure 6).

All the predictions made by Cronos are compared to a
trivial classifier, the random one, where the probability of all
clusters is equal (i.e., 1/N where N is the number of clusters
Supplementary Tables S4, S5 show the comparison of the
highest accuracies achieved from models with LOO and

stratified splits methods to the trivial random classifiers into
the test sets).

4 DISCUSSION

4.1 De novo Clustering and Cluster
Validation
We apply a “Zoom out” methodology by assessing every sample
as its whole microbial profile, rather than individual taxa. Cronos’
automated pipeline incorporates the beta-diversity distance
between samples by exploiting the advantages of the GUniFrac
distance metric. Dirichlet multinomial mixtures (Holmes et al.,
2012) widely used on microbiome data (Hosoda et al., 2020;
Subedi et al., 2020) assume a prior distribution and are based on
the abundances. Here, de novo clusters reflect the profile distance
between samples adding another layer of information. For the
clustering of the samples, we apply the partitioning around
medoids algorithm, which allows us to represent every cluster
by its medoid. This method has been successfully applied in
studies spanning from the gut (Stokholm et al., 2018; Khine et al.,
2019; Lee et al., 2020) to saliva (Acharya et al., 2017) microbiome.

De novo clustering is applied to all time points separately to
specify the exact stages and future transitions of the microbial
profiles. The maturation process through clustering has been
well established (Stewart et al., 2018; de Muinck and Trosvik,
2018), whereas the divergence in specific time points remains
unexplored. Here, by dividing the dataset into time points and
applying clustering procedures to all, we provide a deeper
understanding of microbial profile divergence.

FIGURE 6 | Heatmaps presenting the prediction accuracies achieved from leave one out (A) and stratified splits methods (B) respectively. Time points from which
predictions are made are shown on the x axis while predicting time points are represented on the y axis.
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Anovel approach is incorporated to effectively divide the samples
at a time point into clusters of a similar microbial profile, based on
the GMM clustering algorithm (Pasarkar et al., 2021; Zhang et al.,
2017). We compare clustering results for the optimal number of
clusters to 1 as GMM components, in order to examine whether the
data effectively separate.

4.2 Transitions Through Time and Modeling
Exploring the sample transitions between clusters at different
time points enables the understanding of the effectors that shape
a microbial profile’s fate. Manymachine learning techniques have
been applied to microbiome data (Marcos-Zambrano et al.,
2021). Cronos operates under the assumption that minor
compositional differences among the members of a certain
cluster of profiles are less important when the fate of the
community as a whole is examined. When this assumption is
not fulfilled and the presence or absence of taxa with little
contribution to the overall cluster assignment determines the
future of the community structure, the accuracy of the method
might be low. The selection of cluster assignment rather than taxa
abundances, and the introduction of metadata results in a small
number of explanatory features. Due to the low number of
features and interpretability losses that come with high
complexity classification algorithms (Marcos-Zambrano et al.,
2021), we select multinomial logistic regression, a method widely
used on microbiome data (Kaszubinski et al., 2020; Lundgren
et al., 2018; Xia et al., 2013) to model the transitions between
clusters on different time points.

The importance of features on microbial profile fate is
translated as predictability. Features or combinations of
features that can better interpret cluster assignment on
predicting time points are deemed to be the most important
in the development of the microbiome profile in the time between
examining and predicting time points. Cronos models for every
possible transition and possible mixture of features to fully reflect
the predictability of features on all combinations of timepoints
and overall, aiming to detect the best time for interventions to
steer a microbial profile’s fate. Every model designed in Cronos is
compared to the trivial random classifier that predicts all classes
with equal probability.

4.3 Maturation
Our findings are in accordance with the well-documented
microbiome patterns of early life. Breastfed infant profiles
consist, mainly, of Bifidobacteriaceae family members,
whereas formula-fed infants show higher diversity,
colonized earlier by Enterobacteriaceae, Bacteroidaceae, and
Lachnospiraceae members (Milani et al., 2017; Fallani et al.,
2011; Koenig et al., 2011). Furthermore, our analysis, captures
the decrease in Bifidobacteriaceae and the gradual increase of
Ruminococcaceae, Lachnospiraceae, and Bacteroidaceae

relative abundances, after the introduction of solid food,
until the second year of life as established before (Laursen
et al., 2016; Fallani et al., 2011). Cronos provides comparisons
of taxonomic composition for the cluster medoids as a proxy of
the corresponding cluster. The statistical comparisons of
similar profiles fall outside of the scope of the tool.
Therefore, using the outputs of Cronos, external tools like
Rhea (Lagkouvardos et al., 2017) or QIIME (Caporaso et al.,
2010) can easily perform these statistical comparisons of
taxa among clusters, considering all their constituting
members.

5 APPLICATIONS AND FUTURE WORK

Cronos is a bioinformatic tool that could also be used for other
types of environments where bacterial communities dominate,
such as soil or marine over the course of the year or several
years, aiming to understand the microbiome progression or
the suitable response to direct the microbial composition of the
environment. Uses of Cronos extend from natural
environments to man-made environments, such as open
pond bioreactors. Possible uses might also include human
gut microbiome over the progression of diseases, sampling
over different stages of the disease, aiming to discover the
proper antibiotic response or microbiome role in disease
progression and phenotype.

For further understanding of infant gut microbiome profiles,
more data are required, since the dataset used here as a case study
was obtained from a limited geographical region and thus may
not include all the possible states. Greater sample size could
furthermore benefit the prediction of future states by training a
model with more samples.

In future versions of Cronos, we want to include more
classification techniques, such as random forest and support
vector machines to acquire models that could enhance our
transition description. In addition, we would like to introduce
further classification performance metrics, such as precision,
recall, and F1-score in order to represent model prediction
performance extensively. Moreover, we would like to add
further clustering performance metrics, such as the Akaike
information criterion and silhouette coefficient to further
describe cluster divergence.
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