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Predicting high-frequency
nutrient dynamics in the Danube
River with surrogate models
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Chair of Hydrology and River Basin Management, Department of Civil and Environmental

Engineering, Technical University of Munich, Munich, Germany

Nutrient dynamics play an essential role in aquatic ecosystems. Despite

advances in sensor technology, nutrient concentrations are di�cult and

expensive to monitor in-situ and in real-time. Emerging data-driven methods

may provide surrogate measures for nutrient concentrations. In this work,

we use 4-years of water quality data with high-frequency (15-min) intervals

acquired at 2 automatic stations in the German Danube River to train

data-driven algorithms and build surrogate measures for nitrate (NO−
3
-N),

ammonium (NH+
4
-N), and orthophosphate (PO3−

4
-P). Pre-processing of

the data included removing outliers and filling missing values by linear

interpolation. Multiple Linear Regression (MLR) and Random Forest (RF) are

trained, cross-validated, and tested using dissolved oxygen (DO), temperature

(Temp), conductivity (EC), pH, discharge rate (Q), and chlorophyll-a (Chl-a)

as input futures. Additionally, we used time-series data to develop cyclical

features to test improvements in the underlying relationship between data.

This work presents a thorough description of the modeling workflow,

including intermediate steps for feature engineering, feature selection, and

hyperparameter optimization. In total, 12 surrogate models (2 algorithms ∗ 3

constituents ∗ 2 stations) are compared with R
2 and RMSE as error metrics. The

results show that RF outperforms MLR when adding at least three predictors

for all the surrogate models. The MLR models give R
2-values for NO−

3
-N 0.67

and 0.89, NH+
4
-N 0.39 and 0.40, PO3−

4
-P 0.34 and 0.54 of Pfelling station

and Jochenstein station, respectively. RFmodels produce accurate predictions

and low error performances for all the targets NO−
3
-N (R2 = 0.99 and 0.99),

NH+
4
-N (R2 = 0.98 and 0.99), PO3−

4
-P (R2 = 0.96 and 0.96). The percentage

improvement of RMSE for RF compared to MLR in prediction nutrients ranges

from 73 to 92%. This work demonstrates the usefulness of surrogate models

using the RF algorithmwhen reproducing nutrient dynamics and serving as soft

sensors for monitoring nutrient concentrations.
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Introduction

Excessive nutrient loadings have caused worldwide surface
water eutrophication issues, which leads to various negative
consequences, including toxic algal blooms, fish mortality,
regime shift of aquatic ecosystems, and impairment of water
treatment (taste and odor, filtration issues) and public health
concerns. Therefore, reliable and accurate nutrient monitoring
is critical for understanding eutrophication processes and
mitigating eutrophication by taking timely measures.

Traditionally, grab sampling is used for nutrient monitoring.
For rivers, a routine standard approach for water chemistry
monitoring is to take grab samples at regular intervals, e.g.,
bi-weekly, monthly, or bi-monthly. However, this method has
difficulties in detecting the concertation variations occurring
between two sampling points during events (Hensley et al.,
2019). Nutrient concentrations change rapidly with discharge
(Minaudo et al., 2019; Musolff et al., 2021), and grab sampling is
often not sufficient to capture the variability in the concentration
patterns and to accurately estimate nutrient loadings (Hensley
et al., 2019). Another drawback to this sampling method is the
delay in data gathering because the sample must be taken in
the field and then sent into the laboratory for analysis. This
delay limits the application of monitoring data to support real-
time water quality forecasting and early-warning management
of algal bloom.

With the advancement of sensor technology, real-time in-

situ nutrient monitoring is made available. Gathering on-line,
reliable, in-situ data allows for providing instant information,
better characterization of temporal variability, and improve
scientific understanding of contemporary environmental
phenomena (Viviano et al., 2014; Rode et al., 2016; Teresa et al.,
2016). The continuous real-time data can be incorporated into
dynamic models and enhance nutrient and eutrophication
prediction and process understanding (Minaudo et al., 2018;
Pathak et al., 2021; Huang et al., 2022). Currently, ion-selective
electrodes (ISE), wet-chemical analyzers, and optical sensors
are the three types of commercially available nutrient sensor
technologies. While ISE is affordable and straightforward to
use, it has been criticized for being imprecise and susceptible to
interference and drifting. Optical sensors have higher precision
and accuracy but are only widely available for nitrate. For
the other nutrient species, wet analytical chemistry remains
the most viable approach, but are more costly and require
more maintenance (Pellerin et al., 2016; Rode et al., 2016). In
addition, issues related to calibration, supporting infrastructure
and frequency of servicing intervals affect the scalability of
in-situ sensor deployments (Rode et al., 2016). These issues
may limit the long-term and sci application of in-situ real-time
sensors for nutrient monitoring.

An alternative to in-situ sensors is soft sensor technology
(Harrison et al., 2021). Soft sensors of nutrients refer to
surrogate models that can model nutrients dynamics from

other commonly measured variables, such as water quality
constituents and streamflow. For this purpose, the algorithms
based on linear or linear mixed models and multilinear solvers
have been widely applied (Jones et al., 2001, 2004; Hollister
et al., 2016). Linear regression uses linear coefficients to
link one or more explanatory factors to a response variable
(Helsel and Hirsch, 2002). As water quality constituents are
often related to one another, linear regression models can be
used to characterize the relationship in many circumstances.
United States Geological Survey (USGS) has been using
surrogate models for generating real-time water-quality data
in the past two decades. They publish hourly measured and
computed concentrations for sediment, nutrients, bacteria,
and many additional constituents on the National Real-Time
Water Quality (NRTWQ) website (https://nrtwq.usgs.gov/). In
all these cases, linear (or log-linear) regression models have
been used for computing the concentrations. Despite the broad
applications of linear models in computing continuous water-
quality concentrations, these approaches have limitations in
dealing with data independence, distribution assumption, and
outlier sensitivity (Teresa et al., 2016; Harrison et al., 2021).
Furthermore, the interaction between nutrient species and
other water quality indicators is complicated, and a non-linear
connection may arise (Qian et al., 2005), which have led
researchers to explore alternative approaches.

In recent years, artificial intelligence (AI) and, in particular,
machine learning (ML) have expanded significantly in the
context of data analysis and computing (Sarker et al., 2021).
ML refers to computer algorithms that can learn from data
automatically that, compared to linear regression models,
have several advantages. For example, ML models eliminate
the requirement to identify clear correlations between the
target variable and the surrogates. This allows the capture
of phenomena with non-linear behavior, which is typical for
environmental processes. There are a number of studies on the
application of ML in nutrient surrogate models. For example,
Chen and Liu (2015) and García Nieto et al. (2019) applied
neural networks and an adaptive neuro-fuzzy inference system
(ANFIS) approach; Castrillo and García (2020), Ha et al.
(2020), Shen et al. (2020) and Harrison et al. (2021) used
Random Forest (RF) models to retrieve different nitrogen and
phosphorus species; Jung et al. (2020) simulated nitrate (NO−

3 -
N) and Kim et al. (2012) predicted dissolved phosphorus
using Artificial Neural Networks (ANN). These applications
use either discrete measurements of both nutrients and other
water quality parameters (), or discrete nutrient measurement
and high-frequency sensor measurements of other water quality
parameters (Harrison et al., 2021). We are aware of only one
existing study from Castrillo and García (2020), which has used
both high-frequency measurements of nutrients and other water
quality parameters from two rivers in England (one rural and
one urban river receiving large quantities of sewage effluent) for
the surrogate model training and testing. However, surrogate
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models for estimating high-frequency nutrient concentrations
have never been tested for a less polluted river, where the
nutrient concentrations are one magnitude less than the
concentration of in the above-mentioned study and closer to the
instrument detection limit of the nutrient sensor.

Inside the large variety ofML algorithms, the RandomForest
(RF) has been recognized as a powerful algorithm (Hollister
et al., 2016; Yajima and Derot, 2018), and it has been applied
in water quality management (Belgiu and Qăgut, 2016; Sihag
et al., 2019). For example, Francke et al. (2008) reported on
the use of tree-based models to estimate suspended sediment
concentrations, providing the ability to account for multiple
predictor interactions without prior knowledge and the ability
to interpret the results in the case of simple interactions. RF
differs from previous tree structure-based models in that it
uses bootstrap sampling and bagging ensemble decision trees to
maximize the random selection of input data for training and
testing, possibly improving model performance (Breiman, 2001;
Yajima and Derot, 2018). Compared to linear and other ML
models, the RF approach does not need a normal distribution
of the input data, it is less sensitive to outliers and data noise,
and it lowers over-fitting in model prediction (Fawagreh et al.,
2014; Parmar et al., 2019; Tyralis et al., 2019). Furthermore,
RF models are effective in practice in terms of transferability
and interpretability to the end-users (Corominas et al., 2018).
In addition, RF is available in conventional ML libraries, and
the calibration of its hyperparameters is relatively simple in
parallel computing (Pedregosa et al., 2011). These advantages
and the successful applications motivate the application of RF
for building nutrient surrogate models.

A general challenge for surrogate model creation is to select
appropriate features as predictors for high model performance
and accuracy. Traditionally, water quality surrogate models only
use continuous in-stream sensor measurements as predictors.
In the ML field, feature engineering is a valuable process
of extracting features from many choices for explanatory
variables and improvingmodel performance. Time series feature
extraction is a commonly used step of feature engineering
procedures, aiming to obtain a set of properties to characterize
time series data.Many time features commonly found in datasets
are cyclical in nature. For example, months, days, weekdays,
hours, minutes, and seconds occur in specific cycles. Time
components like “hour in a day” and “month in a year”
have been used as features to improve the model prediction
performance and to study the seasonality of data in tourism
(Cankurt and Subasi, 2015), sales (Guha and Ng, 2019),
biology (Costello and Martin, 2018), crop type classification
(Cai et al., 2018), energy consumption (Chou and Tran, 2018).
Experiments by Mahajan et al. (2021) indicated that the time
component could improve the tree-based regression model.
However, the effect of integrating additional cyclical features of
time components on nutrient surrogate model performance has
not yet been investigated.

Another challenge with surrogate water quality models is
identifying and selecting the minimum but most efficient subset
of the predictors which can explain themost variability in targets
with the fewest number of explanatory variables. Selecting an
appropriate subset is beneficial for the cost-efficient design of the
soft sensor with fewer measurements for surrogate water-quality
parameters. Besides, a less complex model with fewer predictors
will consume less time to compute and resources to train the
surrogate models especially using ML approaches. For surrogate
models with linear regression, stepwise procedures have been
often used to add or remove variables in the sequence of their
correlation with the target according to their significance in the
presence of the other variables. However, for surrogate models
with ML approaches, it is likely to obtain the most efficient
subsets of predictors by testing the model in the stepwise fashion
mentioned above because the ranking of the linear correlation
does not necessarily consist with the relative importance of
the predictors in the non-linear ML models. Therefore, an
alternative approach to simplify the water quality surrogates
using ML models is strongly needed for the completeness of the
workflow for water quality soft sensor design. Recursive Feature
Elimination (RFE) is an effective feature selection algorithmwith
the goal of select features by recursively considering smaller
and smaller sets of features. Granitto et al. (2006) highlighted
that RFE combined with RF could provide unbiased and stable
results with improved accuracy. To our knowledge, this method
has not been investigated for selecting water-quality attributes,
motivating the present study to search for the minimum best
subsets of variables for the nutrient surrogate models.

Based on the above, we aim to evaluate the performance
of RF models for computing high-frequency nutrient
concentrations using in-situ high-frequency water-quality
constituents as surrogates and compare the RF model
behaviors against linear regression models. To this end, we
implemented the procedures of feature engineering, feature
relative importance, and feature selection to improve the
performance of nutrient prediction by involving cyclical time
components as predictors, to eliminate the redundant features,
and further develop the cost-effective nutrient surrogate models.
Finally, the procedures of this study will support developing a
workflow to promote and guide more applications in nutrient
surrogate models using machine learning in the future.

Materials and methods

Study sites, monitoring, and datasets

The Danube River drains waters from the territories of 19
European countries, including 16% of the territory of Germany
(ICPDR, 2021). In this study, an open dataset from two real-
time water quality monitoring stations in the German part
of Danube are used (Figure 1). The data are obtained from
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FIGURE 1

Locations of automatic measurement stations on Danube River.

the website of Water science service Bavaria (https://www.gkd.
bayern.de/), belonging to the Bavarian Environment Agency
(LfU), Germany. The two stations are Pfelling (upstream)
and Jochenstein (downstream). Between the two stations, the
Inn River, as the most important tributary in the section,
confluences into the Danube River, which doubles the flow rate

(Schiller et al., 2010) and causes discontinuity in water quality
between the two sites. The high-frequency data availability is
the main reason for choosing these two stations. The Danube
River, especially in the German part, played a vital role in the
settlement and political evolution of central and southeastern
Europe. Its banks, lined with castles and fortresses, formed the
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FIGURE 2

The overview of data preprocessing and framework.

boundary between great empires, and its waters served as a vital
commercial highway between nations. In addition, the authors
are living in Bavaria, which have a strong interest research on
the Danube River.

Eight water quality constituents in each station including
Dissolved Oxygen (DO), Temperature (Temp), Electronic
Conductivity (EC), pH, Chlorophyll-a (Chl-a), Nitrate (NO−

3 -
N), orthophosphate (PO3−

4 -P), and ammonium (NH+
4 -N) are

measured at both Pfelling and Jochenstein stations. Except
for Chl-a concentration, which is measured hourly, the
other physio-chemical parameters are measured at 15-minute
intervals using in-situ automatic monitoring instruments.
DO, Temp, EC, pH, and Chl-a were measured with a YSI
multiparameter probe. Nutrients in two chosen stations are
continuously measured with these three types of sensors. NO−

3 -
N is recorded with an optical sensor because dissolved nitrate in
water absorbs UV light with a wavelength below 250 nm. NH+

4 -
N is measured with a gas ion-selective electrodes sensor. The
available ammonium in the sample is converted into gaseous
ammonia by adding a sodium hydroxide solution. Only the
NH+

3 gas passes the gas-permeable membrane of the electrode
and is detected. A wet-chemical analyzer measures PO3−

4 -P in
water. The color intensity is proportional to the PO3−

4 -P content
of the sample in the specified measuring range. Samples that
contain solids must be homogenized before entering the process
photometer. The discharge data representing both stations are
also available at 15-min intervals. The upstream discharge is

measured at the same location of the Pfelling station, while
the downstream discharges are taken from the closest discharge
station, namely Ilzstadt (Figure 1).

Forty-five months of all data (from 01-03-2017 to 31-12-
2020) for the Pfelling station and 57 months of all data (from 01-
03-2016 to 31-12-2020) for the Jochenstein station are chosen to
build the nutrient surrogate models, respectively. The raw data
of temporal behavior of water quality constituents and nutrients
are presented in Supplementary Figures 2–19.

Data analysis framework

All data analysis and model building use open-source
libraries and frameworks of Python 3.8 useful for data analysis
as Pandas (1.1.3), NumPy (1.19.2), blac (1.5.2), Scikit-learn
(0.23.2). The specific functions are indicated later. The general
overview of the workflow and procedures for building surrogate
nutrient models presented in Figure 2.

Data pre-processing

Before starting data preprocessing, the percentage of
non-detections in the raw data sets are first checked
(Supplementary Table 2). Data cleaning is a crucial step
because gaps or outliers can affect the model performance.

Frontiers inWater 05 frontiersin.org

https://doi.org/10.3389/frwa.2022.894548
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Tran et al. 10.3389/frwa.2022.894548

TABLE 1 Statistics of all water quality parameters in two stations.

Parameter Unit Pfelling Jochenstein

Mean ± std Min Max Mean ± std Min Max

DO mg/L 9.84± 2.11 1.7 16.6 11.10± 1.47 0.4 14.6

Temp ◦C 12.87± 6.74 −0.3 28.1 10.81± 5.62 0.2 23.1

EC µS/cm 449.61± 39.55 149 600 395.29± 65.23 224 560

pH - 8.08± 0.22 7.4 8.8 8.08± 0.14 6 8.5

Chl-a mg/L 7.88± 9.58 1.1 55.1 9.79± 8.71 1.1 58.7

Q m3/s 384.34± 204.51 125 1,630 1275.59± 490.96 447 3,970

NO−
3 -N mg/L 2.50± 0.77 1.1 5 1.62± 0.61 0.5 3.53

NH+
4 -N mg/L 0.02± 0.02 0 0.29 0.02± 0.02 0 0.19

PO3−
4 -P mg/L 0.03± 0.02 0 0.13 0.03± 0.01 0.01 0.07

TABLE 2 Number of records and percentage of total records for di�erent targets after cleaning.

Station NO−
3 -N NH+

4 -N PO3
4
−-P

Number of

records

Percentage of

total records

Number of

records

Percentage of

total records

Number of

records

Percentage of

total records

Pfelling 109,276 81.25% 111,818 83.13% 110,570 82.21%

Jochenstein 148,706 87.71% 146,679 86.51% 147,642 87.08%

To remove outliers, a moving mean filter is applied with a
sliding window of 6 h (24 data points). If a value is more or
less than three local standard deviations away from the local
mean within the window, it will be defined as an outlier and
removed. Maintenance or calibration procedures performed
regularly at the stations can lead to data gaps. The timing
and time spans of these interruptions varies from sensor to
sensor. These gaps affect the implementation of the surrogate
models, which cannot deal with not a number (NaN) values and
therefore, an additional cleaning phase is required. NaN values
in target variables and the corresponding values in predictors
were removed. The rest of NaNs in predictors were filled by
linear interpolation. A table that summarizes the statistics of
water quality parameters and discharges after cleaning is given
in Table 1.

As the multivariate linear regression (MLR) modeling
assumes a normal distribution of variables (Uyanik and Güler,
2013), the normal distribution of both the target variables
and predictors were tested using Probplot of Scipy library.
As a result, Chl-a and Q were log-transformed because they
have positive skews. The log transformation is the most
popular among the different types of transformations used to
transform skewed data to approximately conform to normality
(Feng et al., 2014). After the pre-processing procedures,
the available numbers of records and the percentages of
total records for different nutrient models are shown in
Table 2.

Data partition

After the preprocessing procedures, the data is divided into
working and test datasets using the train_test_split function
in the Scikit-learn (0.23.2) library. The working subset is used
to build the model, and the test subset evaluates the final
model’s performance as unseen data. Specifically, 80% of the
dataset acts as working, and 20% of the dataset acts as testing.
Further, the working subset was split into training and validation
sets in each specific model during the building model process
by applying k-fold cross-validation with k = 5. K-fold cross-
validation generally results in a less biased or less optimistic
estimate of the model skill. With this method, the working
dataset is split into k fractions or folds, with each used iteratively
as a validate set while the remaining k-1 fractions were used as a
training set.

Predictor selection and optimization

Default input features, including DO, Temp, EC, pH, Q,
and Chl-a, are feed to the models as predictors to simulate
the nutrient concentrations (NO−

3 -N, NH
+
4 -N, and PO3−

4 -P)
at each station in the Danube River. Hence, we developed
cyclical features namely the month of a year, day of a month,
and hour of a day as predictors. This technique is one of
techniques in feature engineering. Feature engineering is the
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process of selecting, manipulating, and transforming raw data
into features that can be used in supervised learning. In
simple terms, it is the act of converting raw observations
into desired features using statistical or machine learning
approaches. The cyclical futures are represented as (x, y)
coordinates on a circle, where the lowest value appears right
next to the highest value (Supplementary Figure 1). This is
performed using the inbuilt “sin” and “cos” functions in
“NumPy.” In the end, there are 6 cyclical time features
created as input predictors, namely month_sin, month_cos,
day_sin, day_cos, hour_sin, and hour_cos. More details
about the cyclic time features are described in SI. All the
predictors, including both default features and the newly
created cyclical features, were applied for linear models and
RF models.

Multiple linear regression models

Multiple Linear Regression (MLR) is used in this work as
the linear relationship between the predictors and targets is
expected. The Multiple Linear Regression (MLR) is expressed as
equation below:

ŷ = b0 + b1X1 + b2X2 + . . . + bpXp (1)

where ŷ indicator is the predicted or expected value of the
dependent variable, X1 through Xp are p distinct independent
or predictor variables, b0 is the value of y when all of the
independent variables (X1 through Xp) are equal to zero, and
b1 through bp are the estimated regression coefficients.

The linear relationship between predictors and target
variables is checked by computing the standard correlation
coefficient by the corr() function in Pandas library. By default,
the function calculates Pearson Correlation coefficient, using
the equation:

r =

∑

(xi − x)(yi − y)
√

∑

(xi − x)2
∑

(yi − y)2
(2)

where i represents each observation, x is a predictor and
x is its mean value, and y is a target variable with y being its
mean value.

This approach may be used to determine the relationship
between predictors and targets in a dataset. The order of default
input features added to the linear model depends on the degree
of the correlation between the predictor and target. The linear
model is implemented to fit from one to six predictors, and the
performance is evaluated, respectively. After the six predictors,
cyclical time features are also added to the model to test if it
could improve the performance.

TABLE 3 Values of the hyperparameters contained in the grid search.

Hyperparameter Value

Bootstrap True, False

Depth of the trees 10, 20, 30

Minimum number of samples to split a node 6, 12, 20

Minimum number of samples to be at a leaf node 6, 12, 20

Random forest models

RF is applied to build the nutrient surrogate models in this
work. To have a comparison of linear models, the order of
default input variables added to the RF models is exactly the
same as the order in linear models. In order to find out the ideal
set of hyperparameters, the model is run with a grid of default
hyperparameter values. Function GridSearchCV of Scikit-learn
library is used to perform this process, using the cross-validation
k = 5 and 10 trees. The predefined grid is presented in Table 3.
This setting produces 54 candidates, multiplied by five-folds,
totaling 270 fits. The best-fitting hyperparameters are used in
the models is presented in Supplementary Table 1. Finally, the
model is tested with the unseen data.

Feature selection refers to techniques that select a subset
of the most relevant features for a dataset. Fewer features
can allow machine learning algorithms to run more efficiently
(less space or time complexity) and be more effective. Some
machine learning algorithms can be misled by irrelevant input
features, resulting in worse predictive performance. Recursive
Feature Elimination (RFE) is a wrapper-based feature-ranking
technique that uses optimization algorithms to explore inside
the input space for the best subset. This method was used for
only RF models, to test if it could improve the performance
of the models with the minimum number of predictors. RFE
works by searching for a subset of features by starting with
all features in the training dataset and successfully removing
features until the desired number remains. In each iteration,
one variable is deleted based on the Root Mean Square Error
(RMSE) values, and a new RF model is developed with the
remaining variables. This method is repeated until only one
variable was left as the input feature. Five-fold cross-validation is
used to optimize predictor selection throughout the elimination
phase. The model with the lowest RMSE is chosen as the best
model during the recursion process; if another model with a
different collection of variables is discovered, it is automatically
updated and ranked. Finally, it selects the optimized subset of
the predictors that provide the least RMSE. This is achieved
by fitting the given machine learning algorithm used in the
core of the model, ranking features by importance, discarding
the least important features, and re-fitting the model (Granitto
et al., 2006). RF is a decision-tree model, which can compute the
feature importance score with the built-in attribute.
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TABLE 4 Pearson’s r for each of the target variables concerning the six predictors.

Pfelling Jochenstein

NO−
3 -N NH+

4 -N PO3
4
−-P NO−

3 -N NH+

4 -N PO3
4
−-P

Chl-a 0.34 −0.2 0.014 −0.096 −0.14 −0.52

DO 0.61 0.27 −0.11 0.8 0.43 0.26

EC 0.26 0.17 0.14 0.87 0.38 0.47

pH 0.2 −0.16 −0.14 0.15 −0.091 −0.27

Q 0.44 0.22 0.058 −0.12 0.17 −0.068

Temp −0.72 −0.48 −0.087 −0.84 −0.52 −0.44

The overview of data preprocessing and framework is
demonstrated in Figure 2.

Model evaluation and performance
comparison

The coefficient of determination (R2), the RootMean Square
Error (RMSE) and normalized RMSE (nRMSE) are used to
evaluate the performance of models. The RMSE calculates the
variance of errors regardless of sample size and shows the
difference between actual and predicted values. As a result,
the RMSE of a perfect match between observed and projected
values would be 0 (Barzegar et al., 2018). The RMSE equation is
as below:

RMSE =

√

∑N
i=1 (yi − ŷi)

2

N
(3)

where y is the observed value, ŷ is the predicted value, and N
is the number of observations.

nRMSE is calculated by dividing RMSE by the mean of data.
Using nRMSE for comparing the performances among different
nutrient variables is helpful because they have different scales.

R2 is also computed to evaluate the performance of models.

R2 = 1−
∑ (yi − ŷi)

2

(yi − y)2
(4)

The performances of the final RF models and the MLR
models with the unseen data (test dataset) are computed and
compared using the abovementioned statistics.

Results

Correlation between targets and variable
predictors

A first insight of the relationship between the predictors
and the target variables was conducted by means of the

Pearson’s coefficient. Results are summarized in Table 4. Overall,
the correlation between targets and predictors in Jochenstein
is higher than in Pfelling station and some variables are
reporting significant low correlation, with absolute r-values
lower than 0.01.

For example, in Pfelling station, NO−
3 -N displays a strong

linear relationship with Temp (r = −0.72) and DO (r = 0.61).
Although EC in Pfelling station does not strongly correlate with
NO−

3 -N, EC in Jochenstein station got the highest r = 0.87
in the relationship with NO−

3 -N. Temp and DO also occur
in strong relationship with r = −0.84 and 0.8, respectively.
Considering NH+

4 -N as target, the Pearson’s coefficient reveals
a strong linear relationship with Temp (r = −0.48) and DO
(r = 0.27). Similarly, Temp and DO also strongly correlate
with NH+

4 -N in Jochenstein station, with r = 0.52 and −0.43,
respectively. The seasonal behavior of nutrients explains the
strong relationship between nutrients concentrations and Temp.
The solubility of nutrients increases in summer and autumn,
coinciding with high-temperature periods and decreases with
low-temperature periods. PO3−

4 -P in Pfelling station does
not present a strong relationship with any variables. The
highest correlation coefficients are 0.14 for EC and −0.14 for
pH. Compared with PO3−

4 -P in Pfelling station, PO3−
4 -P in

Jochenstein station has a better correlation with predictors, with
Chl-a (r =−0.52) having the strongest correlation.

Model performance with surrogate
variables and cyclical features

The strength of the correlation was chosen as the
determining criteria to select the order in which the variables
feed the models. Table 5 shows details of the input variables and
the order in which they were selected. Additionally, no further
regularization was used because the models fitted on training
data performed similarly to those fitted on validate data. This is
due to a large number of observations compared to the number
of predictors. Overall, the performance of linear models for
both stations to predict NO−

3 -N is higher than the prediction of
NH+

4 -N and PO3−
4 -P. In linear models of NO−

3 -N, an R2 higher
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TABLE 5 Validation RMSE for each target variable and each subset of variables of size one to six in the MLR model.

Order of variables 1st 2nd 3rd 4th 5th 6th

NO−
3 -N in Pfelling

Linear model +Temp +DO +Q +Chl-a +EC +pH

Validate RMSE 0.517 0.513 0.491 0.484 0.462 0.461

Validate R2 0.51 0.52 0.56 0.57 0.61 0.62

NH+

4 -N in Pfelling

Linear model +Temp +DO +Q +Chl-a +EC +pH

Validate RMSE 0.0208 0.0205 0.0205 0.0197 0.0197 0.0193

Validate R2 0.23 0.25 0.25 0.30 0.31 0.33

PO3
4
−-P in Pfelling

Linear model +EC +pH +DO +Temp +Q +Chl-a

Validate RMSE 0.0186 0.0167 0.0166 0.0165 0.0165 0.0164

Validate R2 0.00 0.18 0.20 0.21 0.22 0.22

NO−
3 -N in Jochenstein

Linear model +EC +Temp +DO +pH +Q +Chl-a

Validate RMSE 0.2944 0.2732 0.2667 0.2535 0.2169 0.2153

Validate R2 0.75 0.78 0.79 0.81 0.86 0.87

NH+

4 -N in Jochenstein

Linear model +Temp +DO +EC +Q +Chl-a +pH

Validate RMSE 0.0184 0.0183 0.0181 0.0168 0.0168 0.0166

Validate R2 0.27 0.28 0.29 0.38 0.39 0.40

PO3
4
−-P in Jochenstein

Linear model +Chl-a +EC +Temp +pH +DO +Q

Validate RMSE 0.014 0.0125 0.0125 0.012 0.012 0.0117

Validate R2 0.26 0.41 0.42 0.46 0.46 0.48

than 0.50 was achieved using just one predictor and continued
improving until six predictors were used, achieving 0.62 and 0.87
for Pfelling and Jochenstein, respectively. In contrast, the linear
model of PO3−

4 -P in Pfelling station got R2 = 0 when adding
only one feature, which means the model cannot retrieve any
information if there is only EC as a predictor. When adding
more predictors, R2-value kept increasing and achieved the
highest value of 0.22. The linear model of PO3−

4 -P in Jochenstein
station got better performance, which is R2 = 0.48 when all
default surrogate variables were added. Regarding linear models
of NH+

4 -N, they achieved R
2 = 0.33 and 0.40 for Pfelling station

and Jochenstein station, respectively. In general, linear models
of nutrients in Jochenstein station have better performance than
linear models in Pfelling station.

The percentage of reduction in RMSE when adding more
variables in the MLR model and RF model is shown in Figure 3.
When all six predictors were added, the reduction of RMSE
compared to using only one predictor in RF varies from 49.60
to 75.95%, while MLR varies from 7.21 to 26.87%. RF models
improved their performances in surrogating nutrients more
significantly, includingmore predictors thanMLR. Significantly,
RF models have higher improvement than MLR models with
only two predictors. When adding three or more variables, RF
outperforms MLR significantly. In contrast to linear models,

which are unable to leverage most of the information that can
be obtained using inexpensive and widely accessible sensors,
RF proves to be very efficient and effective in using the
available information, highlighting their applicability to describe
environmental phenomena. Then, the gradient of the RMSE
reduction decreases shows that adding more variables will not
improve the performance of models considerably. For Pfelling
station, the RF models with more than four variables did not
improve RMSE by more than 5%. For the Jochenstein station,
with more than five predictors, the RF models did not obtain
any RMSE improvements higher than 5%.

Additionally, adding time features as additional predictors
has a significant impact on the model and error metrics’
performances. The percentages of reduction in RMSE in the
MLR and RF models when adding time features are presented
in Table 6. The models with all surrogate variables are chosen
as benchmarked. From the computed results, RF models obtain
a considerable benefit from cyclical features. Although MLR
models also have some improvements, they are not significant as
RF.When adding time features toMLRmodels, the performance
improved from 0.6 to 10.78%, while RF models improved from
7.69 to 20.51%. NO−

3 -N in Pfelling station received the most
influence from cyclical features for both types of models, in
both stations. The performance of RF models for predicting
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NO−
3 -N achieved a RMSE reduction of 20.51% for Pfelling

station and 15.13% for Jochenstein station. The performance
of RF models of NH+

4 -N and PO3−
4 -P also improved, with

18.07 and 13.16% for Pfelling station, and 7.69 and 11.11% for
Jochenstein station, respectively.

Feature importance and optimal
predictors

Feature evaluation based on the Feature Importance
attribute of Random Forest was also applied. Results from this

FIGURE 3

Percentage of reduction of test RMSE as a function of the

number of predictors in MLR and RF models in (A) Pfelling

station and (B) Jochenstein station.

evaluation are shown in Figure 4. Note that the importance
of input predictors is different for each retrieved target. For
retrieving NO−

3 -N and NH+
4 -N, Temp is the most contributing

factor for both stations. Chl-a also plays a vital role in simulating
nutrients in rivers, especially with NH+

4 -N and PO3−
4 -P. In

addition, EC also exhibits relevant importance in predicting
nutrients in those stations. Besides, the created cyclical time
features also contribute significantly to the simulation of
nutrients, especially the month features. For example, the
month_cos feature contributed most significantly to predicting
PO3−

4 -P of Jochenstein station. For retrieving NO−
3 -N in

both stations, month_sin also contributed notably. The feature
selection results show that month data plays a vital role in the
model, which could support the model to study the seasonality
of targets. The relative importance of predictors does not match
with the correlation strength rankings. Chl-a in Pfelling station,
for example, has the weakest linear relationship with PO3−

4 -
P, but it is the most contributing feature in RF model for
predicting PO3−

4 -P. DO has strong correlation with NO−
3 -N in

both stations, but this feature did not contribute significantly
to the performance of RF models. These results show that the
correlation between predictors and targets cannot decide the
relative importance in the non-linear models.

The performance of RF models after optimizing feature
inputs by the RFE method is shown in Table 6. Initially, all
RF models have 12 predictors, including default variables and
time features. After implementing RFE, although the model
performances do not improve significantly, the numbers of
the predictors used in the models are largely reduced. Table 7
presents the list of optimized predictor subsets after applying
RFEwith five-fold cross-validation. Five out of six targets require
all the default surrogate variables combined with newly created
cyclical time features to give out the best performance. The only
exception is NO−

3 -N in Pfelling station, which requires only four
surrogates (DO, Temp, EC, and Chl-a) and 2 cyclical month-
in-a-year features. The RF model of NO−

3 -N in Jochenstein
station need 8 features. For retrieving NH+

4 -N, RF models
require 8 and 12 features for Pfelling station and Jochenstein
station, respectively. The RF models of PO3−

4 -P demand the
highest number of predictors in both stations, with 10 predictors
for Pfelling station and 12 predictors for Jochenstein station.
Generally, at least two cyclical features are needed in the models
to give out the least error results. After applying RFE, all the
month features are left, corresponding to the findings of feature

TABLE 6 Percentage of reduction in validate RMSE in linear models and non-linear models with time features and RFE.

% Reduction in RMSE Pfelling Jochenstein

NO3
−-N (%) NH+

4 -N (%) PO3
4
−-P (%) NO−

3 -N (%) NH+

4 -N (%) PO3
4
−-P (%)

MLR with time features 10.78 3.63 1.98 7.66 0.60 5.98

RF with time features 20.51 18.07 13.16 15.13 7.69 11.11

RF after RFE 22.48 18.07 13.16 15.13 7.69 11.11
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FIGURE 4

Feature importances in RF models of di�erent nutrients in Pfelling and Jochenstein station. (A) NO−

3 -N Pfelling. (B) NH+

4 -N Pfelling. (C) PO3−
4 -P

Pfelling. (D) NO−

3 -N Jochenstein. (E) NH+

4 -N Jochenstein. (F) PO3−
4 -P Jochenstein.
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TABLE 7 List of chosen variables.

Targets List of chosen features

Pfelling NO−
3 -N DO, Temp, EC, Chl-a, month_sin, month_cos

NH+
4 -N DO, Temp, pH, EC, Chl-a, Q, month_sin, month_cos

PO3−
4 -P DO, Temp, pH, EC, Chl-a, Q, month_sin, month_cos, day_sin, day_cos

Jochenstein NO−
3 -N DO, Temp, pH, EC, Chl-a, Q, month_sin, month_cos

NH+
4 -N DO, Temp, pH, EC, Chl-a, Q, month_sin, month_cos, day_sin, day_cos, hour_sin, hour_cos

PO3−
4 -P DO, Temp, pH, EC, Chl-a, Q, month_sin, month_cos, day_sin, day_cos, hour_sin, hour_cos

TABLE 8 Performance on testing dataset.

MLRmodel RF model

RMSE nRMSE (%) R
2 RMSE nRMSE (%) R

2

Pfelling NO−
3 -N 0.4091 17.35 0.67 0.0428 1.81 0.99

NH+
4 -N 0.0184 80.37 0.39 0.0027 12.21 0.98

PO3−
4 -P 0.0152 45.25 0.34 0.0035 10.61 0.96

Jochenstein NO−
3 -N 0.1998 12.63 0.89 0.0161 1.02 0.99

NH+
4 -N 0.0166 60.64 0.40 0.0018 6.71 0.99

PO3−
4 -P 0.0111 38.10 0.54 0.003 10.64 0.96

importance. It can be concluded that implementing RFE can
support in finding the best subsets of predictors with similar
good performance when using all predictors.

Evaluation on unseen data

To finally test the algorithms on unseen data, the best MLR
and RF models with better RMSE, nRMSE, and R2 are chosen
as the final surrogate models. Calibration is done accordingly
with the test dataset that produced best error metrics. Results
are shown in Table 8.

In general, the performance of MLR and RF models on
unseen data is similar to the working datasets. According to
these results, the RF models can reproduce the data trend,
data seasonality and present a reliable estimation of NO−

3 -N,
NH+

4 -N, and PO3−
4 -P concentrations. Performance on unseen

dataset reproduce water quality trends with high-accuracy
prediction capacity for NO−

3 -N (R2 = 0.99), NH+
4 -N (R2

= 0.98 and 0.99), PO3−
4 -P (R2 = 0.96). Based on this, all

RF models, including feature engineering, feature selection,
and hyperparameter tuning, outperformed MLR models. The
decreases in RMSE values of RF models in nutrient simulations
compared with the MLR models range from 73% (PO3−

4 -P in
Jochenstein station) to 92% (NO−

3 -N in Jochenstein station).
In Pfelling station, RF models improved the RMSE compared
to MLR performance of simulating NO−

3 -N from 0.4091 to
0.0428, NH+

4 -N from 0.0184 to 0.0027, PO3−
4 -P from 0.0152

to 0.0035. The improvement in RMSE between RF and MLR

models in Jochenstein station is from 0.1998 to 0.0161 for NO−
3 -

N, from 0.0166 to 0.0018 for NH+
4 -N, and from 0.0111 to 0.003

for PO3−
4 -P.

In general, the RF models can reproduce the water patterns
with higher accuracy than MLR models as seen in Figure 5,
which displays the first 100 simulation results for both models
together with field data, particularly at peak values of targets.
However, this behavior is not stably. For examples, in the
prediction of NH+

4 -N and PO3−
4 -P in Jochenstein station, some

peak observed values cannot be simulated by RF models. On the
other hand, the MLR algorithm even simulates some negative
values (NH+

4 -N and PO3−
4 -P), which is unrealistic.

Discussion

The strong correlations for MLR models of NO−
3 -N

achieved R2 on unseen data of 0.67 for Pfelling station and 0.89
for Jochenstein station. In contrast, NH+

4 -N and PO3−
4 -P have

lower correlations with the predictors, which leads to the low
performances of their MLR models. Linear models are unable
to leverage most of the information that can be obtained using
inexpensive and widely accessible sensors when there is a strong
linear correlation. The performances of NH+

4 -N and PO3−
4 -P

simulations after using RF have improved more significantly
than those of NO−

3 -N. The different performances between
MLR models and RF models proved that the RF models are
more efficient and effective in using the available information,
especially if the correlations between the target nutrient and
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FIGURE 5

Observed and predicted values for the first 100 observations of the testing dataset in Pfelling and Jochenstein station. (A) NO−

3 -N Pfelling. (B)

NH+

4 -N Pfelling. (C) PO3−
4 -P Pfelling. (D) NO−

3 -N Jochenstein. (E) NH+

4 -N Jochenstein. (F) PO3−
4 -P Jochenstein.
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predictors are not strong. The capability of using RF to leverage
the model performance is more pronounced if there is no strong
linear correlation. Our results highlight the applicability and
capability of RF models to describe the relationship between
nutrients and other water quality constituents, which, as many
other environmental phenomena, are often non-linear. In this
study, in addition to the robust capability of RF models in
dealing with non-linear relationships, the outperformance of RF
can also benefit from the large amount of input data, including
the use of different available sensors as predictors, as well as
massive records of observations for model building and training.
Both aspects facilitate RF models in learning and understanding
data behavior.

There are many previous studies applying linear regression
models as a surrogate for water quality constituents of particular
interest. For example, Lessels and Bishop (2013) got R2

ranging from 0.28 to 0.45 in predicting the total phosphorus
concentrations for sub-catchments within the greater Lake
Buragorang catchment in Australia; Olli and Song (2006) got R2

from −16.64 to 0.95 for predicting the Chl-a concentration in
Finnish lakes; Jones et al. (2004) achieved R2 varying from 0.62
to 0.76 in the regressions for total phosphorus and total nitrogen
concentrations of Missouri reservoirs. The MLR models which
are used in this work obtained R2 varies from 0.34 to 0.89.
These results indicated that the MLR models could retrieve
nutrient concentration, but with limited accuracy. Recent
studies have applied various ML algorithms in retrieving water
quality surrogate models, which obtained good performances.
For example, García Nieto et al. (2019) applied the Support
VectorMachinemethod for total phosphorus by using biological
and physio-chemical variables in 2006–2014 and achieved R2

of 0.9; Chen and Liu (2015) applied adaptive neuro-fuzzy
inference system for retrieving total phosphorus in 1993–2003
and obtained R2 of 0.86; Kim et al. (2012) applied ANN for
hydro-meteorological dataset in 1994–2000 and obtained R2 of
0.99; Ha et al. (2020) applied RF for water quality dataset 2009-
2014 and received R2 in the range 0.88–0.90; RF was used in
Castrillo and García (2020) and Shen et al. (2020), but there
was no reported R2. Generally, the R2-values of RF models in
this study are higher than MLR models, which is in line with
previous studies. This indicates that using non-linear regression
methods is more powerful in water quality surrogate models.
Furthermore, the performance of RF models in this work is
higher than in previous studies. This result proves that the
model development methods which are proposed improve the
performance of RF models significantly.

One of the highlights of this study is the framework,
including intermediate steps of creating time series data as
cyclical features and finding the best subset of predictors by
RFE. In this work, the time-series data are encoded to cyclical
features, which support the models to study the seasonality of
targets in water, and the RFE method is applied to find out the
most relevant subsets which give out the least error performance.

According to Table 6, NO−
3 -Nmodels for both stations, obtained

the most significant benefit from including cyclical time features
compared with the models for other nutrients. Weilguni et al.
(2000) has examined 39-year of data (1957–1995) of different
water quality parameters in the Danube River and discovered
that seasonal patterns were most pronounced for nitrate, slightly
less for total phosphorus, soluble reactive phosphorus, and
ammonium. This explains why RF models of NO−

3 -N receive
the most benefits with time series features. Relative importance
results also show that the 2 month-in-a-year features (namely
month_sin and month_cos) contributed significantly to the
performance of all RF models.

Comparing the performance of RF models without and with
RFE method, the performance does not improve significantly.
These findings are similar to the study by Chakraborty and
Elzarka (2019). They have determined that including an external
feature selection algorithm for a tree-based model brings hardly
any difference in model performances. However, the best
performance could be achieved with fewer predictors thanks
to RFE method, which is the purpose of implementing RFE in
this model. The RFE provides a helpful tool for optimizing a
cost-effective soft sensor in water management. In comparison
between Figure 4 and Table 7, it is evident that the predictors
which have low relative importance have been removed after
implementing RFE. Relative importance tell which predictors
are most influential in RF models, and RFE optimizes the
models by giving out the best subset of predictors with the
minor error. Furthermore, the difference between Figure 4 and
Table 4 indicates that the relative importance of predictors does
not match the linear correlation. For example, in the case of
PO3−

4 -P in Pfelling station, Chl-a has the weakest correlation
with the target but contributes the most significantly to the
performance of RF model. This shows that in order to reduce
the sensor numbers and design cost-effective surrogate models
with RF, relative importance should be implemented. It cannot
be replaceable by conducting the linear correlation analysis
because the relationship between the predictors and the targets
is non-linear. In addition, the presence of covariance between
the various variables has practical implications that must be
considered throughout the soft-sensor design process. When a
group of surrogate sensors includes a primary sensor that offers
the most information and multiple non-covariant sensors, a
lot of information may be obtained with only a few sensors.
Our study shows that intermediate steps (feature engineering
+ relative importance + RFE) are essential in designing a
cost-effective soft-sensor system. The relative importance of
predictors would allow the water managers or other stakeholders
to make a cost-benefit analysis in the decision-making of the
installation of sensors.

One of ten problems regarding the practical implementation
of the Water Frame Directive that has been recognized
is inconsistent and inadequate monitoring frequently results
in a lack of knowledge of relevant chemicals and peak
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concentrations, resulting in undiscovered dangers (Brack et al.,
2017). Applying modeling have been recommended as a tool to
fill in gaps in monitoring data and generate incentives to expand
the chemical pollution monitoring base across Europe. Many
chemicals, such as key nutrients [nitrogen (N) and phosphorus
(P)], are nowmostly monitored by analytical discrete campaigns
with low sample frequency. The RF algorithm, which has
been demonstrated in this work, has proved its ability in
studying the underlying relationship between predictors and
targets, resulting in a reliable prediction of high-frequency
nutrient concentrations in the Danube River. The output of
the models, the computed real-time high-frequency nutrient
concentrations, may be used directly or fed into process-based
water quality models to enhance understandings in nutrient
processing (Huang et al., 2022) and eutrophication forecasting
while reducing the cost and time effectiveness of traditional
sampling approaches. Besides, the soft-sensors can increase
the data availability as well as overcome the period when the
data from in-situ sensors is unavailable due to reasons such as
calibration, maintenance, drifting, failure, etc.

Although ML has been successful in the water management
sector, there are still some perceptions thatMLmodels are “black
boxes,” meaning the ML method is thought to take inputs and
provide outputs but not yield interpretable information to the
user. In addition, the discrepancies of the results among the
datasets underlined how this kind of black-box regressor could
have strongly site-specific validity. A regression model between
the response and explanatory factors is usually site-specific, and
it may vary over time if the constituent’s sources change or
if a better sensor becomes available. Turbidity measurements,
for example, are influenced by the size, color, and density of
suspended-sediment particles (Ziegler, 2003; Anderson, 2005).
Therefore, regression analysis is site-specific, and the regression
model must be checked and updated on an annual basis through
continuing data collection. The results of this study also confirm
the site-specific characteristic of regression model. Although
the two chosen stations are on the same river, the relative
importance of predictors is different. Furthermore, this work
could be additionally developed by collecting a larger dataset
with data coming from a higher number of measurement
stations on the river, which could more robustly substantiate
general conclusions on the cause-effect relationship describing
the phenomena.

This study proposes an innovative soft sensor based on RF
regression models for real-time virtual monitoring of nutrient
concentration on the Danube River. Relying on data from two
automatic measurement stations, soft-sensor regressors used
different physical and chemical characteristics as predictors
and gave satisfying performances. Performances of the RF
model were significantly higher and more stable than the
MLR model, highlighting the importance of non-linearities and
interactions in the relationships between water qualities and
nutrient concentration in the river. The findings demonstrate

the presence of useful data that may be utilized to acquire
derived data at a reasonable cost. It is noteworthy to emphasize
the rising relevance of incorporating current open data services
into models, which may be included into the models thanks
to the development of ubiquitous and economical network
connections, offering additional data sources at almost no cost.
This benefits both the academic community and society since
it encourages collaboration, reduces the expense of redundant
studies, and enhances transparency, among other benefits. In
addition, the regression models can be uploaded into underlying
website software, that computes the concentrations of target
variables and generates plots and data tables, which are open-
accessed for assessing the feasibility of the models. Furthermore,
similar studies for the future should be conducted to verify the
applicable of the proposed framework.

Conclusions

In this work, RF algorithm could reproduce the
environmental phenomena, especially nutrient dynamics
in high frequency, present in the water quality dynamics and
contribute to water quality management. Additionally, RF
has the ability to simulate the peak values of concentration in
nutrients, in contrast with MLR model which even predicts
some negative values. By combining with encoding time-series
data and feature selection, the performance of RF models
has been improved. Additionally, because of the complicated
relationships underneath machine learning models, the variable
selection process cannot be considered as an independent
procedure to be carried out without regard to which model to
be used. This work provides a description of the methodology,
including intermediate steps (time series as cyclical features,
RFE, feature importance) used to train and validate the
water quality models and highlights that machine learning
approaches and the RF in particular can represent the complex
environmental phenomena, making them a promising water
quality management technique.
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