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Abstract: Accumulation of calcium in energized mitochondria of pancreatic β-cells is emerging as a
crucial process for pancreatic β-cell function. β-cell mitochondria sense and shape calcium signals,
linking the metabolism of glucose and other secretagogues to the generation of signals that promote
insulin secretion during nutrient stimulation. Here, we describe the role of mitochondrial calcium
signaling in pancreatic β-cell function. We report the latest pharmacological and genetic findings,
including the first mitochondrial calcium-targeted intervention strategies developed to modulate
pancreatic β-cell function and their potential relevance in the context of diabetes.
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1. Introduction

Pancreatic β-cells constitute a small endocrine tissue organized, together with other
endocrine cells, in the islets of Langerhans, scattered throughout the exocrine tissue of the
pancreas [1]. β-cells sense glucose and secrete insulin in order to lower blood glucose levels
after a meal. Defective insulin secretion underlies diabetes mellitus, which is a metabolic
disorder characterized by elevated blood glucose levels [2,3]. The WHO’s first global report
on diabetes indicates that the number of adults living with diabetes has almost quadrupled
since 1980 to 422 million adults. This dramatic increase is largely due to the rise in Type
2 diabetes, whose driving factors include overweight and obesity. This disease develops
when the β-cells of the endocrine pancreas fail to secrete sufficient hormones to compensate
for the insulin resistance in the peripheral target tissues, liver, muscle and fat [4]. Diabetes
is a non-communicable disease for which new approaches to prevention and treatment
urgently need to be found. Targeting pancreatic β-cells is a promising strategy for the
treatment of diabetes, due to the crucial role of the pancreatic β-cell in the pathogenesis
of both Type 1 and Type 2 diabetes [5]. Therefore, preservation, expansion or improved
function of β-cells are current approaches for targeting this cell type in the management of
diabetes. Modulation of the biological pathways that regulate β-cell function represents
the next stage of discovery in this field [5].

In this context, targeting mitochondrial Ca2+ represents an innovative approach to
modulate β-cell function and to potentially promote beneficial effects for diabetic patients.
Thus, dysregulation of Ca2+ signaling has been reported to have profound effects on β-cell
performance and to increase the risk of developing diabetes [6,7]. Furthermore, modulation
of dynamic cellular Ca2+ homeostasis has been proposed to prevent cytokine-mediated
β-cell loss in diabetes [8]. In the pancreatic β-cell, Ca2+ homeostasis and β-cell function are
substantially linked to mitochondrial function [9]. Therefore, mitochondria play a key role
in β-cells during nutrient stimulation by linking the metabolism of glucose and other secre-
tagogues to the generation of signals that promote insulin secretion [9]. Diabetes causes
marked inhibition of mitochondrial metabolism in pancreatic β-cells [10]. Mitochondria
are versatile intracellular organelles that are able to take up and release calcium [11,12].
Mitochondrial matrix Ca2+ is an activating signal for insulin secretion, and its requirements
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for signal-dependent hormone secretion have been highlighted [13]. Recently, the molec-
ular identity of the mitochondrial Ca2+ uniporter (MCU), the transporter that mediates
mitochondrial calcium uptake, has been revealed [14]. Genetic and pharmacological evi-
dence has demonstrated the crucial role of mitochondrial Ca2+ in modulating pancreatic
β-cell signal transduction, opening new perspectives for intervention [15–17].

Excellent reviews on the bioenergetic role of mitochondria and mitochondrial Ca2+ in
metabolism–secretion coupling in the pancreatic β-cell are available [9,18,19], including the
control of mitochondrial structure and function by calcium [20]. The role of mitochondrial
ion channels in the pathophysiology of the pancreatic β-cell has also been described
recently [21]. In this paper, we focus on the role of mitochondrial Ca2+ in pancreatic β-cell
signal transduction. We report the latest pharmacological and genetic evidence, including
the first intervention strategy targeting mitochondrial Ca2+ in the β-cell.

2. Pancreatic β-Cell Signal Transduction and Ca2+ Homeostasis

In the pancreatic β-cell, metabolism–secretion coupling describes the molecular mech-
anism linking nutrient sensing and signaling to insulin secretion. This process relates
to the consensus model and additional coupling factors (including both triggering and
amplifying pathways) of glucose-stimulated insulin secretion [22,23]. Glucose-stimulated
insulin secretion is relatively well characterized and requires the sequential activation of
several biological processes (Figure 1).

Figure 1. Consensus model of the signal transduction pathway of pancreatic β-cells. Metabolism–
secretion coupling of β-cells requires the sequential activation of glycolysis, mitochondrial oxidative
metabolism and Ca2+ entry through the plasma membrane. Glucose stimulates glycolysis and
pyruvate production. Pyruvate triggers mitochondrial metabolism and the formation of the reduced
form of nicotinamide adenine dinucleotide NADH (by the TCA cycle), which is the fuel for the
respiratory complexes (1,2,3,4), enabling ATP production by ATP-synthase (5). ATP inhibits the
KATP channel, inducing membrane depolarization (∆Ψ↓) and Ca2+ entry through voltage-gated
Ca2+ channels, promoting insulin secretion. Ca2+ is taken up in parallel by mitochondria via the
mitochondrial Ca2+ uniporter (MCU) and facilitates sustained insulin secretion. The amplifying
pathway of metabolism–secretion coupling is co-generated by additive coupling factors. Additional
players contributing to Ca2+ homeostasis are mentioned in the main text.
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Glucose enters the β-cell by glucose-mediated transporters (GLUT). In the cytosol, it
is metabolized by glycolysis to generate pyruvate, which is taken up by mitochondria. Mi-
tochondrial pyruvate is metabolized by the tricarboxylic acid (TCA) cycle, which generates
reducing equivalents NADH (reduced nicotinamide adenine dinucleotide) and FADH2
(reduced flavin adenine dinucleotide), which are substrates of the mitochondrial respira-
tory chain. Activation of mitochondrial respiration leads to mitochondrial ATP synthesis
and thus to an increased cytosolic ATP-to-ADP ratio, which induces the closure of plasma
membrane KATP channels and promotes plasma membrane depolarization. This opens
voltage-gated plasma membrane Ca2+ channels, leading to an increase in cytosolic Ca2+

concentration, which finally triggers insulin exocytosis by activating Ca2+-sensitive granule-
resident proteins (e.g., synaptotagmin-7 [24]). The amplifying pathways of metabolism–
secretion coupling are contributed by additive coupling factors, and mitochondria have
been characterized as a source of coupling factors [9,22].

The coupling between nutrient stimulation and hormone secretion is closely linked to
Ca2+ homeostasis in the pancreatic β-cell [7,25–27]. Therefore, insulin secretion is driven
by electrical activity and oscillations of intracellular Ca2+ concentrations. However, in addi-
tion to KATP channels and voltage-dependent Ca2+ channels [28], other plasma membrane
channels and intracellular stores have been shown to be involved in insulin secretion in
pancreatic β-cells [26,29]. In particular, store-operated Ca2+ channels, which are voltage-
independent Ca2+ channels activated upon depletion of the endoplasmic reticulum Ca2+

stores, and transient receptor potential channel 1 (TRPC1), have been indicated to be
involved in insulin secretion [30,31]. For store-operated Ca2+ channels, Orai1 has been
identified as the main protein that conducts the previously described Ca2+ release-activated
current (ICRAC). The activity of Orai1 channels is tightly controlled by the endoplasmic
reticulum membrane protein stromal interacting molecule 1 (STIM1), which acts as an en-
doplasmic reticulum Ca2+ sensor and translocates, upon endoplasmic reticulum depletion,
to endoplasmic reticulum/plasma membrane regions, where Orai1 is clustered [31]. In
addition, mobilization of intracellular Ca2+ from the endoplasmic reticulum has been sug-
gested to potentiate glucose-stimulated hormone secretion [32], and the Type 2 ryanodine
receptor (RyR2) has been proposed to play a crucial role in regulating insulin secretion and
glucose homeostasis [33]. Moreover, an atypical Ca2+ leak has been observed in the endo-
plasmic reticulum, specifically in pancreatic islets and β-cells. This continuous Ca2+ efflux
from the endoplasmic reticulum was modulated by GSK3β-dependent phosphorylation of
presenilin-1 and promoted mitochondrial activation [34,35]. Additional intracellular acidic
compartments may contribute to the local modulation of β-cell Ca2+ homeostasis and thus
β-cell function, including insulin granules and other acidic stores (e.g., lysosomes) [26].

The last player in pancreatic β-cell Ca2+ homeostasis and signal transduction is repre-
sented by the mitochondrial network. Therefore, mitochondria are intracellular organelles
that take up and release Ca2+, promoting the sensing and shaping of cytosolic Ca2+ sig-
nals [36]. The role of mitochondrial Ca2+ signaling in energized mitochondria of the
pancreatic β-cell is emerging as a biological process of critical importance to pancreatic
β-cell function and is highlighted in the next section.

3. The Mitochondrial Calcium Uniporter and Its Existence in Pancreatic β-Cells

Despite the undisputed role of cytosolic Ca2+ elevation in triggering insulin secretion
in the pancreatic β-cell, it is also accepted that such a rise in itself does not sustain insulin se-
cretion [18,37,38]. Therefore, mitochondria have been demonstrated to contribute to robust
insulin secretion by triggering additional regulatory factors, and it has been proposed that
mitochondrial Ca2+ plays a crucial role as a receiver and generator of the signals essential
for metabolism–secretion coupling [9,39]. The discovery and molecular definition of the
MCU [14,40], the transporter which mediates the transport of Ca2+ in the mitochondrial
matrix under physiological conditions, is shedding light on the role of mitochondrial Ca2+

elevation in different tissues, including the pancreatic β-cell (see Section 4).
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The MCU complex is a low-affinity, high-capacity Ca2+ uniporter embedded in the in-
ner mitochondrial membrane with an approximate in vitro Ca2+ binding affinity estimated
to be between 10 and 70 µM [41–44] in different tissues. The transport of Ca2+ ions into the
mitochondrial matrix is electrochemically driven by a strong electrical gradient (~180 mV)
through the ion-impermeable inner mitochondrial membrane [45]. As reported for many
other tissues, in the pancreatic β-cell, resting-state mitochondrial Ca2+ levels are also very
close to cytosolic Ca2+ levels, indicating tight regulation of the MCU [18]. Permeabilized
INS-1 cells (a cell-line model of pancreatic insulin-secreting cells) display significant mi-
tochondrial Ca2+ uptake when perfused with buffers containing a Ca2+ concentration of
only 150 nM [46], which is below the general threshold of MCU activation [47]. This study
suggests a slightly higher affinity configuration of the β-cell MCU, compared with the MCU
of other tissues. However, in permeabilized β-cells perfused with a range of different Ca2+

buffers, mitochondrial Ca2+ uptake was more efficient above 2 µM [48]. These data indicate
that although some studies demonstrated a lower Ca2+ activation threshold, the MCU of
β-cells also behaves as a low affinity, high capacity Ca2+ transport system, with similar
properties to those reported in other tissues. In any case, the mitochondrial Ca2+ concen-
tration in glucose-stimulated β-cells was reported to reach only 600–800 nM [13,18,49],
mirroring cytosolic Ca2+ events. Purinergic activation and potassium-induced depolariza-
tion generate cytosolic Ca2+ transients around one micromolar, with the corresponding
mitochondrial Ca2+ rises reaching nearly 5 µM [39]. These results indicate that, on average,
β-cell mitochondria barely reach micromolar Ca2+ concentrations in the matrix during
physiological activation.

The MCU complex consists of at least six subunits, each of which plays an individual
role in orchestrating mitochondrial Ca2+ uptake [41]. The MCU subunit is a 40 kDa protein
that, together with its paralog, MCUb [50], has been proposed to form a tetramerizing
pore which penetrates the inner mitochondrial membrane [51]. In order to channel Ca2+

ions into the mitochondrial matrix, it requires a third subunit known as the essential MCU
regulator (EMRE), a 10 kDa protein [50,52]. EMRE is a single-transmembrane protein
whose transmembrane helix connects it to the MCU subunit [53]. The MCU and MCUb
share 50% sequence similarity and have opposite effects on mitochondrial Ca2+ uptake [50].
While the MCU has a promoting effect on mitochondrial Ca2+ uptake, MCUb exerts a
negative effect on mitochondrial Ca2+ uptake [54]. The ratio of MCU and MCUb varies
among tissues and is potentially influenced by metabolic impairments, leading to the
hypothesis that an altered MCU/MCUb ratio may affect β-cell function [55–57]. When
Ca2+ in the intermembrane space exceeds ~0.6 µM, it initiates activation of the MCU
complex via the MCU gatekeeper protein paralogs mitochondrial calcium uptake 1 and
2 (MICU1 and MICU2) [44,58]. MICU2 is a 50 kDa protein and shares approximately
25% sequence identity with the 54 kDa protein MICU1 [42]. Neither MICU1 nor MICU2
contain transmembrane domains that would link them to the MCU subunit, so it has been
proposed that MICU1 is linked to the MCU via EMRE through electrostatic interaction [58].
However, a more recent study revealed an additional direct binding of MICU1 to the
highly conserved DIME motif of the MCU [59,60]. In addition, another study showed
an interaction between MICU1/MICU2 and cardiolipin [58]. Through cysteine residues,
MICU2 forms an intermembrane space-facing heterodimer with MICU1 via disulfide
bonds [51]. Both gatekeeper proteins contain EF-hand motifs (consisting of a helix E, a
loop and another helix F), with a Ca2+ binding affinity of ~0.3 µM for MICU1 and a Ca2+

binding affinity of ~0.6 µM for the MICU1–MICU2 dimer [58].
Genetic ablation of MICU2 lowers the required Ca2+ concentration in the intermem-

brane space for MICU1-regulated MCU activation, resulting in increased mitochondrial
Ca2+ uptake [52]. On the other hand, ablation of MICU1 prevents indirect binding of MICU2
to the MCU, resulting in unregulated Ca2+ entry into the mitochondria [61,62]. Studies with
MICU1 knockout as well as with MICU1 knockdown have described an inverse relationship
between extra-mitochondrial Ca2+ concentrations and mitochondrial Ca2+ uptake [62,63].
This suggests that the absence of MICU1 at low/resting extra-mitochondrial Ca2+ concen-
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trations leads to increased mitochondrial Ca2+ uptake, while high extra-mitochondrial Ca2+

concentrations are associated with decreased mitochondrial Ca2+ uptake. The final subunit,
which has been proposed to contribute to the structure of the MCU complex is a scaffolding
factor called mitochondrial calcium uniporter regulator 1 (MCUR1), which can interact
with the MCU but not with MICU1 [64]. However, there are two possible interpretations of
the direct or indirect role of MCUR1 in modulating mitochondrial Ca2+ uptake. Several
studies have demonstrated a regulatory effect of MCUR1 on MCU complex activity, noting
reduced mitochondrial Ca2+ uptake in the absence of MCUR1 and a decrease in reducing
equivalents as well as ATP generation [65–67]. Alternatively, MCUR1 has been suggested
to have a potential role as a Complex IV assembly factor in the mitochondrial respiratory
chain [68]. Interestingly, the relative abundance of distinct MCU components has been
reported to be different in distinct cell types or tissues [35], and it has been proposed that
the specific stoichiometry of the MCU subunits may define the functional characteristics of
the channel, including Ca2+ permeation across the pore, the activation threshold and the
cooperativity. Consistent with this hypothesis, it has been reported that in parallel with
the distinct relative abundance of MCU components [35], MCU activity also varies greatly
among cell types [69]. Although the stoichiometry of the different MCU subunits and
their relative abundance in different tissues, including in the pancreatic β-cell, are largely
unknown, we tentatively speculate that these cells may have a specific configuration of the
MCU that reduces the Ca2+ activation threshold.

Pancreatic β-cells have been demonstrated to express a functional MCU, and some
studies have investigated the role of MCU subunits on insulin secretion [15–17] (Figure 2).

Figure 2. The mitochondrial calcium uniporter (MCU) comprises distinct pore-forming
(MCU/MCUb) and associated proteins (essential MCU regulator (EMRE), mitochondrial calcium
uptake (MICU) 1, MICU2, MICU3 and mitochondrial calcium uniporter regulator 1 (MCUR1)).
The subunits that have already been studied in models of the pancreatic β-cell are rendered in
green. (A) Model of the closed conformation of MCU. (B) Following glucose stimulation, the entry
of Ca2+ into the matrix space is mediated by MCU. IMM, inner mitochondrial membrane; IMS,
intermembrane space.

Not surprisingly, the existence of MCU and MICU1 subunits in pancreatic β-cell
models has been reported and functionally validated (see Section 4) [15–17,55]. In addition,
a study recently published as a preprint in bioRxiv but not yet peer-reviewed proposes
the existence of MICU2 subunits in rat and human insulin-secreting cell lines as well as
in mouse islets (Mitochondrial Clearance of Ca2+ Controls Insulin Secretion; https://doi.

https://doi.org/10.1101/830323
https://doi.org/10.1101/830323
https://doi.org/10.1101/830323
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org/10.1101/830323 (accessed on 1 February 2021); Vishnu, Hamilton, Bagge, Wernersson,
Cowan, Barnard, Sancak, Kamer, Spégel, Fex, Tengholm, Mootha, Nicholls and Mulder).
Further studies are expected to consolidate the specific role of the other subunits of the
MCU in the pancreatic β-cell (Figure 2) and fully define the structure of this transporter.
However, the crucial role of the MCU complex in the mitochondrial Ca2+ transport of the
pancreatic β-cell and in the pancreatic β-cell metabolism–secretion coupling is already well
established and will be discussed in the next section.

4. Role of Mitochondrial Ca2+ Uptake in the Pancreatic β-Cell

The importance of mitochondrial Ca2+ in pancreatic β-cell function was efficiently
highlighted by modulating mitochondrial Ca2+ via increased matrix Ca2+ buffering ca-
pacity, achieved by targeting exogenous Ca2+-binding proteins into the matrix [13] or
by loading the cells with the Ca2+ chelator BAPTA (1, 2-bis(2-aminophenoxy) ethane-N,
N, N′, N′-tetraacetic acid) [70]. The impaired bioenergetic response to elevated glucose
recorded in these two studies revealed the physiological importance of mitochondrial
Ca2+ in energy metabolism required for signal-dependent hormone secretion. The dis-
covery of the molecular nature of the mitochondrial Ca2+ uniporter [14,40] then enabled
clarification of the role of mitochondrial Ca2+ in pancreatic β-cell function and opened
new perspectives for pharmacological and nutritional interventions. In murine pancreatic
β-cells, knockdown of MCU showed a strong reduction in mitochondrial Ca2+ uptake, ac-
companied by impaired ATP production [17], consistent with a role of mitochondrial Ca2+

in metabolism–secretion coupling. Similar results were obtained in pancreatic β-cell lines
(INS-1 and INS-1E cells). Genetic depletion of two subunits of the MCU complex (MCU
and MICU1) was characterized by reduced hyperpolarization of the inner mitochondrial
membrane, diminished mitochondrial Ca2+ transients, impaired respiration rate and ATP
levels, and reduced insulin secretion during glucose stimulation [15,16]. Taken together,
these results demonstrate the importance of mitochondrial Ca2+ for signal transduction in
β-cells and the impact of the MCU on signal-dependent hormone secretion.

The crucial role of mitochondrial Ca2+ in glucose-induced insulin secretion was fi-
nally validated by Georgiadou and collaborators in a mouse model, in which MCU was
highly selectively deleted in pancreatic β-cells [55]. In this paper, the authors showed that
mitochondrial Ca2+ uptake, glucose-induced ATP production and insulin secretion were
substantially impaired in their animal model in vitro. In the living β-cell-specific MCU-null
mice, the first phase of insulin release was also impaired, despite paradoxical improve-
ments in systemic glucose tolerance. Despite the apparent compensatory mechanisms
proposed to explain the maintained glucose tolerance in β-cell-specific MCU-null mice
(which remain to be established), this study indicated that agents affecting mitochondrial
Ca2+ uptake in the pancreatic β-cell may alter insulin secretion and diabetes risk.

The molecular characterization of the MCU is shedding light on the role of this trans-
porter in pancreatic β-cell function; however, the precise mechanism and contribution of
mitochondrial Ca2+ to the regulation of insulin secretion is not fully understood. Consistent
with the universal role of mitochondrial Ca2+ in the regulation of cellular energetics [12,71],
an essential role of mitochondrial Ca2+ for effective ATP generation in pancreatic β-cells
is well established [18]. Mitochondrial Ca2+ is required for the activation of matrix dehy-
drogenases involved in pyruvate metabolism and the TCA cycle [18,72]. Mitochondrial
Ca2+-activated dehydrogenases form reducing equivalents in the mitochondrial matrix,
promoting the reduction of mitochondrial redox pairs. Most notably, studies in Bristol in
the 1960s and 1970s led to the recognition that mitochondrial Ca2+ promotes the supply
of reducing equivalents in the form of NADH or FADH2 [73–75]. Four Ca2+-activated
mitochondrial dehydrogenases were specifically described: FAD-glycerol phosphate de-
hydrogenase (located on the outer surface of the inner mitochondrial membrane and
influenced by changes in cytoplasmic Ca2+ concentration), pyruvate dehydrogenase, NAD-
isocitrate dehydrogenase and oxoglutarate dehydrogenase (the latter three are localized
within the mitochondria and are regulated by changes in mitochondrial matrix Ca2+ concen-

https://doi.org/10.1101/830323
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tration). Following early studies with isolated mitochondria, the effects on Ca2+ regulation
of mitochondrial metabolism were confirmed in situ [71]. In the pancreatic β-cell, the mito-
chondrial Ca2+ level reached during glucose-induced cell activation (see Section 3) was
sufficient to stimulate matrix dehydrogenases. Therefore, the K0.5 of pyruvate dehydroge-
nase for Ca2+ activation is about 1 µM and the K0.5 of oxoglutarate dehydrogenase is in the
range of 0.2 to 2 µM, depending on the ATP/ADP levels [76]. In this context, we proposed
to extend this bioenergetics and dehydrogenase-dependent role of mitochondrial Ca2+ by
discovering the significant contribution of the ATP-synthase-dependent mitochondrial
respiration [77]. According to our model, in the pancreatic β-cell, the cytosolic Ca2+ rise
during glucose stimulation affects mitochondrial activity. Mitochondria take up and release
Ca2+ ions, leading to a transient increase in matrix Ca2+. These mitochondrial Ca2+ signals
accelerate oxidative metabolism and simultaneously stimulate ATP-synthase-dependent
respiration. Coordinated activation of these two processes allows the respiratory rate to
change several-fold with only small alterations in the NAD(P)H:NAD(P)+ ratio (the ratio
between the reduced and oxidized form of the nicotinamide adenine dinucleotide, or of
the nicotinamide adenine dinucleotide phosphate), promoting robust insulin secretion [77].
Consistent with the proposition that mitochondrial Ca2+ uptake is a critical event in cel-
lular bioenergetics and thus in the metabolic coupling of insulin, specific buffering or
suppression of the mitochondrial Ca2+ increase lowers glucose-induced respiration and
ATP synthesis, and impairs second-phase insulin secretion [13,17].

An additional mechanism linking mitochondrial Ca2+ to signal transduction in β-
cells is related to the ability of mitochondria to take up and buffer intracellular Ca2+ and
to affect the tone and frequency of cytosolic Ca2+ oscillations [18]. This regulation may
contribute to control the pulsatility of insulin release [78]. The ability of mitochondria
to buffer cytosolic Ca2+ has also recently been linked to the regulation of the insulin
secretion through local Ca2+ buffering at the sub-plasma membrane level [79]. In this
study, linking mitochondrial localization with mitochondrial Ca2+ and β-cell function, the
authors proposed that changes in mitochondrial distribution may be important for the
generation of the Ca2+ microdomains required for efficient insulin granule release. The
precise contribution of mitochondrial Ca2+ rise to the shaping of cytosolic Ca2+ signaling is
not completely established in β-cells. However, the aforementioned preprint in bioRxiv,
which has not yet been peer-reviewed, (Mitochondrial Clearance of Ca2+ Controls Insulin
Secretion; https://doi.org/10.1101/830323; Vishnu, Hamilton, Bagge, Wernersson, Cowan,
Barnard, Sancak, Kamer, Spégel, Fex, Tengholm, Mootha, Nicholls and Mulder), seems
to shed some light on this function. Thus, by ablating MICU2 subunits of the MCU
complex in insulin-secreting rat and human cell lines as well as in mouse islets, the
authors reported reduced glucose-induced mitochondrial Ca2+ elevation and impaired
bioenergetics and insulin secretion. In MICU2-deficient cells, although KCl-evoked sub-
plasmalemmal Ca2+ increases were more pronounced, the global cytosolic Ca2+ response
was surprisingly reduced. The authors concluded that MCU plays a role in stimulated
β-cells by regulating net Ca2+ entry across the plasma membrane. They proposed that this
was linked to the clearing of sub-plasmalemmal Ca2+ levels by mitochondria located near
the plasma membrane.

In addition to the regulation of bioenergetics and the modulation of cytosolic Ca2+,
mitochondrial Ca2+ has also been proposed to modulate β-cell function, linked to the
activation of the mitochondrial permeability transition pore (PTP) [80]. The PTP is a
large mitochondrial inner membrane channel responsible for the so-called mitochondrial
permeability transition, which is a mitochondrial Ca2+-dependent, redox-dependent and
cyclosporine-A-inhibited permeabilization of the inner mitochondrial membrane [81,82].
The opening of the PTP plays an important role in the physiopathology of several tissues,
including pancreatic β-cells [83–87]. Given the crucial role of the PTP in cellular phys-
iopathology and its mitochondrial Ca2+-dependence [88], the modulation of this channel
provides an additional link between mitochondrial Ca2+ signaling and the function and
fate of pancreatic β-cells.

https://doi.org/10.1101/830323
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The molecular identity of the PTP is still a matter of debate [81,89–91]; however, the
protein cyclophilin D has been demonstrated to be a regulator of the PTP [92,93]. Therefore,
the PTP inhibitor cyclosporine-A prevented PTP activation in wild-type mice but not in
cyclophilin D knockout animals, demonstrating that cyclophilin D is a regulatory subunit
of the PTP and represents the target for PTP inhibition by cyclosporine A. Although the
specificity of cyclosporine A has been criticized, several pharmacological cyclosporine A-
based studies in pancreatic β-cells proposed the existence of the mitochondrial permeability
transition in this cell type [85,87,94]. These manuscripts emphasized the importance of the
PTP for the secretory function of β-cells [83,85], and as a common effector of both apoptosis
and necrosis [94,95].

In two semi-permeabilized pancreatic β-cell lines (MIN6 and INS-1), the existence of
both a mitochondrial Ca2+-induced and thiol cross-linking-dependent, and a mitochondrial
Ca2+-independent mitochondrial permeability transition has been reported [85]. Inhibition
of PTP opening with cyclosporine A suppressed glucose-induced insulin secretion [83,85].
In another study, cyclosporine A decreased Pdx1 deficiency-induced cell death in mouse
insulinoma MIN6 cells by preventing PTP opening [84]. These results were confirmed in a
genetic mouse model after ablation of Ppif, the gene encoding cyclophilin D. Disruption of
this gene restored β-cell mass, reduced β-cell death, and normalized fasting blood glucose
and glucose and insulin responses to an acute glucose challenge in adult mice previously
kept on a high-fat diet [84]. The authors concluded that the PTP is a critical regulator of
pancreatic β-cell death. Another study showed that cyclosporine A prevented PTP opening
and protected against both high-dose glucose- and fructose-induced cell death [96]. In
addition, it has been suggested that pharmacological inhibition of the PTP during islet
transplantation may improve islet cell survival and graft success [86].

In summary, the mitochondrial Ca2+-induced PTP may play two distinct roles in
the physiology and pathology of the pancreatic β-cell. While activation of the PTP is
required to promote insulin secretion upon glucose stimulation [83,85], PTP inhibition
protects against glucotoxicity as well as hypoxia and substrate deficiency during islet
transplantation [86,96]. Given the dependence of the PTP on mitochondrial Ca2+ levels,
MCU activators are expected to promote insulin secretion; conversely, MCU inhibitors are
potential agents to protect β-cells during islet transplantation or nutrient stress in vivo [97].
Importantly, a large number of inhibitors of mitochondrial Ca2+ transport have been
synthesized recently [97–100]. However, MCU inhibitors can non-specifically affect not only
different cellular transport systems of Ca2+ but also various systems in the mitochondria.
For instance, the new penetrating inhibitor of the Ca2+ uniporter, DS16570511, has multiple
effects on the mitochondria of cerebral cortex cells, while stimulating cellular survival
during glutamate overload [101]. Thus, a comprehensive analysis of the mechanisms of
action of mitochondrial Ca2+ transport modulators is crucial to conclusively establish the
potential effects of these compounds on pancreatic β-cell function.

5. Mitochondrial Ca2+ Extrusion in the Pancreatic β-Cell

During cell stimulation, the amplitude and duration of mitochondrial Ca2+ elevation
reflect the balance between uptake and release mechanisms [11,102,103]. Many studies have
focused on MCU-mediated mitochondrial Ca2+ uptake in different systems, including the
pancreatic β-cell. However, mitochondrial Ca2+ extrusion has also been demonstrated to
play a key role in cellular physiopathology and signaling [64,102,104]. Therefore, prolonged
(pathological) accumulation of Ca2+ in the matrix space can lead to mitochondrial Ca2+

overload, followed by opening of the mitochondrial permeability transition pore [88,89],
resulting in the activation of cell death signals. To avoid this transition from the stim-
ulatory to detrimental effects of Ca2+, mitochondria possess two membrane systems to
extrude Ca2+: the mitochondrial Na+/Ca2+ exchanger and the mitochondrial H+/Ca2+

exchanger [64,102,104,105].
The molecular identity of the mitochondrial Na+/Ca2+ exchanger was revealed in

2010 and attributed to the protein NCLX [104]; subsequently, the impact of NCLX on



Int. J. Mol. Sci. 2021, 22, 2515 9 of 16

pancreatic β-cell function was investigated [106]. The existence and role of a mitochondrial
Ca2+/H+ exchanger in the pancreatic β-cell is a more complicated topic. Therefore, the
protein LETM1 was proposed as a high-affinity mitochondrial Ca2+/H+ exchanger, capable
of driving both the extrusion and uptake of Ca2+ into energized mitochondria at sub-
micromolar Ca2+ concentrations [107,108]. Interestingly, LETM1 is expressed in the β-cell
line INS-1 and it has been proposed to contribute to mitochondrial Ca2+ sequestration
(but not extrusion), depending on the source and mode of mobilized Ca2+ [15]. Therefore,
mitochondrial Ca2+ sequestration of Ca2+ that entered the INS-1 cells via depolarization-
activated L-type Ca2+ channels of the plasma membrane was blunted by diminution of
LETM1 expression [15]. However, silencing LETM1 in INS-1 cells did not attenuate mito-
chondrial sequestration of intracellularly released Ca2+. The authors concluded that these
data point to LETM1 as a high-affinity Ca2+ carrier [15]. However, LETM1 was previously
indicated to mediate K+/H+ exchange in the mitochondrial inner membrane [109,110]. In
addition, exogenous LETM1 expression led to a direct increase in K+-induced proton extru-
sion, whereas mitochondrial Ca2+ efflux was not altered [64]. Other studies support a role
of LETM1 as a K+/H+ exchanger [111,112]. Moreover, they indicate a key role of LETM1 in
monovalent cation homeostasis and suggest an indirect effect of LETM1 on the modulation
of mitochondrial transmembrane Ca2+ fluxes, which can reflect the effects on Na+/H+

exchange activity [111]. In summary, the existence and role of a mitochondrial Ca2+/H+

exchanger in the pancreatic β-cell remains to be elucidated, and additional studies are
needed to reach a conclusion.

Conversely, convincing data on the molecular identity and function of the mitochon-
drial Na+/Ca2+ exchanger in the pancreatic β-cell have been reported (Figure 3).

Figure 3. Contribution of mitochondrial Ca2+ uptake and mitochondrial Ca2+ extrusion to mito-
chondrial Ca2+ signaling in the pancreatic β-cell. (A) Ca2+ transport proteins of pancreatic β-cell
mitochondria. In the outer mitochondrial membrane, the voltage-dependent anion channel VDAC
facilitates the diffusion of Ca2+, ions and other small solutes. However, mitochondrial Ca2+ uptake is
mainly regulated at the level of the inner membrane. Therefore, in β-cell mitochondria, the influx of
Ca2+ into the matrix is mediated by the Ca2+-selective channel MCU complex; Ca2+ is then extruded
by the Na+/Ca2+ exchanger NCLX. The existence and the molecular identity of a pancreatic β-cell
mitochondrial Ca2+/H+ exchanger has not yet been proven and is here highlighted with a question
mark (?) (see text for details). (B) Example of a calibrated trace of mitochondrial Ca2+ elevation in
the pancreatic β-cell line INS-1E stimulated with glucose, as indicated (gray). The uptake and release
phases of the mitochondrial Ca2+ are highlighted. The transporters which have been demonstrated to
substantially contribute to the uptake and the release are MCU and NCLX, respectively. To calibrate
mitochondrial Ca2+, INS-1E cells were transfected with the genetically encoded mitochondrial lumi-
nescence Ca2+ sensor aequorin, which is reported to overestimate the average Ca2+ rise in cellular
compartments [113].

Prior to the discovery of the molecular identity of the mitochondrial Na+/Ca2+ ex-
changer NCLX, previous studies used the mitochondrial Ca2+ exchanger inhibitor CGP-
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37157 to inhibit this transporter [114]. This treatment resulted in enhanced mitochondrial
oxidative metabolism, ATP production and insulin secretion in rat pancreatic islets [114].
In contrast, other observations suggested that the use of the inhibitor CGP-37157 did not
lead to enhanced glucose-dependent ATP production [115]. The major complication is
that the CGP-37157 inhibitor is not specific and may interact with other Ca2+ transport
pathways in the β-cell, including cytosolic Ca2+ signaling (by blocking the L-type Ca2+

channels, LTCC) [116], sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA pumps)
and ryanodine receptors (RyR) [117].

The molecular discovery of NCLX allowed us to highlight the importance of mitochon-
drial extrusion in different tissues [64,104,105], including the pancreatic β-cell [106,118].
NCLX is expressed in the mitochondria of pancreatic β-cells, where it mediates mitochon-
drial Ca2+ extrusion [106,118]. By silencing NCLX using small interfering RNA, Nita and
collaborators demonstrated that NCLX promotes mitochondrial Ca2+ extrusion from β-cells
in MIN6 and in primary β-cells after glucose stimulation, and modulates both basal mito-
chondrial membrane potential and resting calcium levels. In addition, NCLX activity plays
a major role in controlling both the rate and amplitude of cytosolic Ca2+ responses [106].
Surprisingly, NCLX had a small effect on high glucose-dependent ATP production but
primarily regulated the rate of glucose-dependent insulin secretion, particularly during the
first phase of insulin secretion [106]. Thus, the authors argued against a major energetic
role for the exchanger in Ca2+ signaling linked to insulin secretion. They proposed that
the Ca2+ transport activity mediated by NCLX and its strong effect on increasing cytosolic
Ca2+ responses are the primary roles of NCLX in the context of insulin secretion. They
suggested a model of mitochondrial Ca2+ efflux that modulates pancreatic β-cell function
via NCLX-dependent shaping of the cytosolic glucose-dependent Ca2+ response, which
may regulate the rate of insulin secretion. However, further in vivo studies with transgenic
NCLX knockout mice are required to determine the precise contribution of mitochondrial
Ca2+ extrusion to β-cell bioenergetics, Ca2+ homeostasis and islet physiology.

6. Mitochondrial Ca2+-Targeted Intervention Strategies to Modulate Pancreatic
β-Cell Function

Given the importance of mitochondrial Ca2+ for pancreatic β-cell signal transduction
and the possibility of modulating mitochondrial Ca2+ with natural bioactives [119], we
recently investigated the effects of a mitochondrial Ca2+-targeted nutritional intervention
strategy on metabolism–secretion coupling in a model of pancreatic insulin-secreting cells
(INS-1E) [45]. We discovered that acute treatment of pancreatic INS-1E cells with the
natural plant flavonoid and MCU activator kaempferol [119] increased glucose-stimulated
mitochondrial Ca2+ elevation, which potentiated insulin secretion. Conversely, the MCU
inhibitor mitoxantrone inhibited mitochondrial Ca2+ uptake and prevented both glucose-
induced insulin secretion and kaempferol-potentiated effects. Kaempferol-dependent
potentiation of insulin secretion was also validated in a model of standardized human
pancreatic islets. We concluded that a mitochondrial Ca2+-targeted nutritional interven-
tion activated metabolism–secretion coupling in insulin-secreting cells by modulating
mitochondrial Ca2+ uptake.

Although pharmacological inhibition of the kaempferol-induced effect obtained by
the mitochondrial Ca2+ inhibitor mitoxantrone [97] indicates a certain level of causality
between mitochondrial Ca2+ modulation and β-cell function, it has not yet been definitively
proven whether the modulation of mitochondrial Ca2+ by kaempferol is a direct or indirect
effect of this polyphenol on the MCU complex.

In another intervention study, we demonstrated that the natural bioactive quinic acid
increases glucose-stimulated mitochondrial Ca2+ rise, which enhanced insulin secretion
in both INS-1E cells and mouse islets, and improved glucose tolerance in mice [120]. In
this study, the naturally occurring polyol quinic acid was not a direct activator of MCU,
but it enhanced the release of Ca2+ from the endoplasmic reticulum, thereby improv-
ing Ca2+ transfer between the endoplasmic reticulum and mitochondria. This transient
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mitochondrial Ca2+ increase was accompanied by the activation of two mitochondrial Ca2+-
dependent processes (oxidative metabolism and ATP synthase-dependent respiration),
which coordinately promoted sustained insulin secretion in the pancreatic β-cell [77].

Although preclinical and clinical evidence, including interventions in genetic MCU-
ablated models, is still needed to validate the efficacy and safety of these phytochemical-
based interventions, these studies suggest that bioactive agents that increase mitochondrial
Ca2+ in pancreatic β-cells could be used to treat diabetes.

7. Conclusions

β-cell mitochondria contain a variety of ion channels in both the inner and the outer
mitochondrial membrane, with important roles in stimulus–secretion coupling and cell
viability [21]. The role of mitochondrial ion channels, including the MCU, in the β-cell has
only partly been elucidated and is nowadays underestimated. The molecular definition
of the MCU and its role in pancreatic β-cell signal transduction opens the possibility
of developing a mitochondrial Ca2+-targeted intervention strategy for β-cell health and,
prospectively, for diabetes treatment. Stimulation of the MCU has been demonstrated
to improve β-cell energy metabolism during nutrient stimulation. Such a mechanism
could explain how MCU activators might have a beneficial effect on stimulus–secretion
coupling in β-cells, leading to improved glucose homeostasis. Encouraging results with
the natural bioactive MCU activator kaempferol indicate the potential beneficial effects
of the MCU-targeted strategy on pancreatic β-cell function. However, kaempferol is a
non-specific activator of mitochondrial Ca2+ rise in pancreatic β-cells. A more specific
MCU-targeted pharmacology is expected to improve MCU activation of the pancreatic
β-cell, promoting beneficial effects in the context of diabetes treatment.

New studies targeting the proteins that control mitochondrial Ca2+ uptake should
reveal whether altered insulin secretion is causally related to diabetes progression and
could potentially expand the repertoire of therapeutic tools to treat this disease.
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