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Interactions among different modes or vehicle classes in urban road networks affect the

network performance in different and complex ways. Thus, an answer to the question of

“howmany cars are toomany for a city?” is not trivial. However, multi-modal macroscopic

fundamental diagrams (MFD) offer a novel opportunity to answer this question. So far, no

methodology exists to estimate multi-modal MFDs resulting from arbitrary multi-modal

interactions. In this paper, we propose a methodology to capture additional delays in

the shape of the MFD and derive an approach for estimating multi-modal MFDs thereof.

The influence on the MFD shape is established using the two-fluid theory of urban traffic

by defining pairwise copula functions between travel times of each mode. In contrast

to many existing approaches, the presented approach retains individual mode’s speed

information. We show the applicability of the approach with a tri-modal case of bicycles,

buses, and cars with empirical data from Amsterdam (The Netherlands) and London

(United Kingdom). Although the approach is not limited to this specific tri-modal case,

we use the example to discuss the initial policy question by deriving optimal modal splits

for a given accumulation of travelers. Last, we compare the new approach to existing

estimation methods for bi-modal MFDs describing car and bus traffic.

Keywords: macroscopic fundamental diagram, two-fluid theory, multi-modal, bicycle, bus

1. INTRODUCTION

On urban roads many different users and vehicles like bicycles, buses, cars, taxis, and pedestrians
are present. Their interactions are complex and influence the network performance (measured
in either passenger or vehicle throughput) in various different ways, e.g., while driving beyond
a slow garbage truck. The macroscopic fundamental diagram (MFD) offers a novel approach
for understanding and modeling these interactions physically consistent at the network level as
it is generally mode-abstract (Daganzo, 2007), where some MFD parameters are mode-specific,
leading to mode-specific MFD shapes Daganzo and Geroliminis (2008). The MFD describes a
network as a relationship between vehicle accumulation and average network speed, production of
vehicle-kilometer, and average vehicle flow. So far, literature has been primarily focused on a single
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mode: cars (Daganzo and Geroliminis, 2008; Geroliminis and
Daganzo, 2008; Mahmassani et al., 2013; Loder et al., 2019a).1

Some studies are already investigating interactions between
cars and buses (Geroliminis et al., 2014; Loder et al., 2017;
Castrillon and Laval, 2018; Dakic et al., 2020; Tilg et al., 2020),
and cars and pedestrians (Daganzo and Knoop, 2016), but no
approach exists to derive multi-modal MFDs for a vector of
vehicle accumulations with more than two modes (in most
cases buses and cars). In this paper, we contribute with such a
vector-based approach that is based on the idea of quantifying
pairwise the interaction delays of interacting modes and link
them to the MFD shape like a copula function. The proposed
methodology uses a recently formulated functional form for
the MFD (Ambühl et al., 2020) in conjunction with the two-
fluid theory of urban traffic by Herman and Prigogine (1979).
The latter theory sees traffic analogous to the Bose-Einstein
condensation at low temperatures (Ardekani and Herman, 1982;
Dixit, 2013). In contrast to existing three-dimensional (3D)-
MFD estimation approaches (e.g., Geroliminis et al., 2014; Loder
et al., 2017, 2019b), the proposed vector-based approach to
estimate multi-modal MFDs retains the individual mode’s speed
information, it can be flexibly applied to any reasonable multi-
modal situation with two or more modes, and it can incorporate
any delay causing disturbances in urban traffic. The contributions
of this paper are 4-fold. First, we propose a methodology to
capture additional delays, other than the own mode’s delays, in
the shape of the MFD. Second, we extend this methodology
to a vector-based approach to estimate multi-modal MFDs
based on delays caused from interactions in multi-modal traffic,
allowing to derive complex multi-modal MFD surfaces. Third,
we show the applicability of this vector-based approach to a
simplifiedmulti-modal case of bicycles, buses, and cars, where we
reveal with empirical data from Amsterdam (The Netherlands)
and London (United Kingdom) the primary interaction effects.
That being said, the proposed vector-based approach is not
limited to the discussed specific example of bicycle-bus-car
traffic. We then show how this vector-based approach can be
used for policy making. Fourth, we contribute with a discussion
and comparison of multi-modal MFD estimation methods.
We organize this paper as follows. Section 2 introduces the
methodology to account for additional external delays in the
shape of the MFD. Based on this methodology, we propose
in section 3, a vector-based approach to estimate multi-modal
MFDs. Thereafter, we illustrate the applicability of this vector-
based approach to the tri-modal case of bicycles, buses, and
cars in section 4. We further show a possible policy application
of the tri-modal MFD and thus of the proposed vector-based
approach by discussing the question of optimal modal split in
section 5. Then, we compare in section 6 the proposed and
existing methods to estimate multi-modal MFDs. We finish
this paper with an overall discussion and concluding remarks
in section 7.

1In this paper, we use transport mode and vehicle class as synonymous. Moreover,

we subsume under the term “vehicle” all modes although some modes might not

be motorized or using a vehicle.

2. ACCOUNTING FOR ADDITIONAL
DELAYS IN MFDS

The MFD is a mode-abstract concept in urban transportation
networks. It represents the upper envelope to all possible states in
the relationship between network’s average flow, q, and density,
k of a particular mode (Daganzo, 2007). Although originally
defined for car traffic only (Daganzo and Geroliminis, 2008), it
has already been shown that the MFD concept is also applicable
to other modes that only differ from cars in propulsion and some
operational characteristics (e.g., speeds, passenger occupancy,
and vehicle size), but behave similarly in terms of the physics
required for network level modeling (e.g., Geroliminis et al.,
2014; Castrillon and Laval, 2018; Hoogendoorn et al., 2018; Yuan
et al., 2019; Wierbos et al., 2020). In this section, we show how
additional delays from any external origins, i.e., other than the
own mode’s delays, can be accounted for in the MFD using
the two-fluid theory of urban traffic by Herman and Prigogine
(1979). In contrast to the MFD, the latter theory was only
proposed for cars and has not been yet extended to other modes
in an urban road network. However, following the arguments
for the MFD’s applicability to other modes, we assume here
that the two-fluid theory also applies to all modes that behave
similarly to cars in an urban transportation network, e.g., buses,
taxis, bicycles, motorbikes, trucks, urban delivery vehicles, etc. In
this vector-based approach, we distinguish between the a-priori
known upper MFD (uMFD) (Daganzo et al., 2018; Ambühl et al.,
2020) that is the upper envelope to all physically possible traffic
states, and the observed MFD that is always located below the
uMFD due to traffic heterogeneity (e.g., Mazloumian et al., 2010;
Daganzo et al., 2011; Gayah and Daganzo, 2011; Geroliminis
and Sun, 2011; Muhlich et al., 2015), network dynamics (e.g.,
Mariotte et al., 2017), and as already mentioned interactions
between different modes. Here, we use the functional form for
the MFD proposed by Ambühl et al. (2020) that captures the
gap between the a priori known uMFD and the observed MFD
with just a single parameter, λ. In a perfectly homogeneously
loaded and undisturbed network, it takes on its smallest value,
λ0. Any increase from λ0 can then be attributed to network
heterogeneity and between-vehicle interactions. Equation (1)
shows this functional form for a trapezoidal uMFD. Note the
analyst should be aware that when λ becomes too large, especially
at very low or high densities, this functional form produces
negative flows as emphasized by Ambühl et al. (2020).

q
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k
)
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(
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(
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vf k

λ0

)

+ exp

(

−
Q

λ0

)

+ exp

(

−

(

κ − k
)

w

λ0

))

(1)

Here, vf is the free flow speed in the network, Q is the network’s
capacity as defined by the most constraining intersection
(Daganzo and Geroliminis, 2008), κ is the jam density in the
network, and w is the wave speed. In Figure 1A, we illustrate
the behavior of this MFD function for different values of λ0

in comparison with the uMFD as defined by the minimum
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operator with the trapezoidal shape (Equation 1). Here, each of
the trapezoidal shape’s three segments enters as an argument to
the minimum operator. With λ0 approaching zero, the resulting
curve approaches the uMFD, in this case the trapezoidal shape.
When λ0 increases, the curve moves further down but still
describes the familiar MFD shape.

We also define the pace (travel or trip time per unit length) T.
It consists of two parts as given by Equation (2). The first term,
T0
(

k
)

, denotes the undisturbed pace given its current density
levels, k, i.e., without any additional delays that can be derived
using Equation (1) as it is the reciprocal of the space-mean speed
from the MFD. The second term, Ŵ, captures additional delays,
e.g., caused by interactions across modes.

T
(

k
)

= T0
(

k
)

+ Ŵ

=
k

−λ0 ln
(

exp
(

− vf k
λ0

)

+ exp
(

− Q
λ0

)

+ exp
(

−
(κ−k)w

λ0

))

+Ŵ (2)

The additional delaysŴ will decrease the flow of vehicles as delays
and interactions have always a negative effect. This means, that
an increase in Ŵ will increase λ in Equation (1). The vector-based
approach proposed in this paper calculates the change from λ to
λ̆ resulting from delays Ŵ. This ultimately allows the estimation
of the MFD shape that includes interaction delays.

The link between the additional delays Ŵ and λ is established
using the two-fluid theory of urban traffic (Herman and
Prigogine, 1979; Ardekani and Herman, 1982; Dixit, 2013). The
theory differentiates between running vehicles (subscript r) and
stopped vehicles (subscript s) and predicts that the running speed
of vehicles depends on the fraction of running vehicles and a
network-wide constant n. The parameter n is assumed to result
from driving behavior, network topology, and signal settings,
which is usually econometrically estimated using measurements
of Tr and T (Herman and Prigogine, 1979; Ardekani and
Herman, 1985; Ardekani et al., 1992). Figure 1B shows how n
influences the characteristic relationship between the stop time
Ts and trip time T. Consequently, it is reasonable to assume that
delays from multi-modal interactions influence n. We refer for
further details on this theory to the seminal work by Herman and
Prigogine (1979). Following this theory, we distinguish between
additional running delays Ŵr and additional stopping delays Ŵs.
Both add together to the total delay Ŵ ≡ Ŵr + Ŵs. They influence
separately the running time T0

r

(

k
)

and stopping time T0
s

(

k
)

to
Equations (3) and (4), respectively. Note that the superscript
0 indicates the travel time without additional delays as defined
in Equation (2).
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We can combine Equations (3) and (4) to express the total pace
or trip time T that covers stopping and running as shown in

Equation (5). Recall that T is the reciprocal of the space-mean
speed in the MFD.

T
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r

(

k
)

+ Ŵr + T0
s

(

k
)

+ Ŵs (5)

With Equations (3)–(5), we can then calculate the network-wide
constant n̆ that includes the additional delays Ŵs and Ŵr following
to Equation (6). Note that Equation (6) without additional
delays equals Equation (13) from Ardekani and Herman (1985)
solved for n.

n̆ =
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Last, we calculate λ̆, which denotes the effects of the additional
delays Ŵr and Ŵs on the MFD shape. λ̆ is calculated by equalizing
the two-fluid speed equation with n̆ and the MFD speed equation
with λ̆ as shown in Equation (7). Note that the two-fluid speed
equations, the right-most term in Equation (7), results from
Equations (3) and (16) from Herman and Prigogine (1979),
where h is a network- and mode-specific constant.
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(7)

3. A VECTOR-BASED APPROACH FOR
MULTI-MODAL MFDS

The vector-based multi-modal approach for the MFD considers
that the additional delays Ŵ for stopping and running are
resulting from interactions with other vehicle classes. There are
two possibilities to quantify these delays as a function of the
presence of interactions between vehicle classes. First, (analytical)
traffic models or similar that are based on theory and are
calibrated to data. Second, regression-based models or similar
that are learnt from data, e.g., a linear regression model.

Multi-modal urban transportation networks usually have a set
of modes M, e.g., with elements m ∈ {bus; car; bike; bicycle}.
The considered m modes then lead to the m dimensional multi-
modal MFD. In this vector-based approach, we assume that each
mode’s MFD from Equation (1) describes the delays within each
mode and that Ŵ captures all additional delays encountered by
the interaction with other modes. Let us then consider that k is
the vector of vehicle densities of all considered modes and that
the additional stopping delays Ŵm

s for mode m and additional
running delays Ŵm

r for mode m are functions of k, i.e., scalar
functions with R

m → R. As aforementioned, these functions
fs (k) for the stopping delays and fr (k) for the running delays
can be either result from analytical traffic models or can be learnt
from data.

To reduce the complexity of derivingm dimensional functions
fs (k) and fr (k), one possibility is to assume additivity of pairwise
delays as shown for stopping delays in Equation (8) and running
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FIGURE 1 | Fundamental relationships of urban-scale traffic. (A) Illustrates the λ-MFD function with a trapezoidal uMFD from Equation (1). The uMFD is shown by the

min() operator. The larger λ0 becomes, the larger the distance between the observed or realized MFD and the uMFD, indicating a reduction in network performance;

(B) the fundamental relationship of the two-fluid theory of urban traffic. The parameter n can be seen as a quality of service indicator of the road network and Tm is the

minimum travel time in the network per unit distance.

delays in Equation (9). Here, the notation Ŵm′→m describes the
additional delays caused by mode m′ on mode m, where the →
operator indicates the direction of effects.

Ŵm
s = fs (k) =

∑

m′∈M\{m}

Ŵm′→m
s (k) (8)

Ŵm
r = fr (k) =

∑

m′∈M\{m}

Ŵm′→m
r (k) (9)

Importantly, the formulations so far assume that the own
mode’s MFD as well as the additional delays resulting from
between vehicle interactions are homogeneously distributed in
the network. Arguably, this is rarely the case in real large
urban networks. Therefore, functions gs and gr are required that
quantify for a given k the average expected additional delays
in a real network as shown in Equations (10) and (11) for
stopping and running delays, respectively. These functions must
not only consider k, but also k’s spatial distribution and the entire
network topology.

Ŵm
s = gs

(

k, fs (k)
)

(10)

Ŵm
r = gr

(

k, fr (k)
)

(11)

With Ŵm
r and Ŵm

s defined, we can now calculate for each mode
m the traffic performance measure n̆ from Equation (6) and then
subsequently resulting λ̆ for each mode using 7 that then gives
the new resulting MFD shape. Then, all resulting MFDs for all
considered modes capture the interaction effects and thus the
resulting multi-modal MFD is estimated, where the total flow of
the multi-modal MFD equals the sum of vehicle flows from each
individual mode’s MFD.

The problem formulated in Equation (7) must be solved for
eachmodem separately as the delay effects cannot be generalized.

Due to the high non-linearity of the model, we propose to solve
Equation (7) for each demand situation separately, i.e., for all
possible values of k, instead of assuming constant n or λ values
over all densities.

4. AN ILLUSTRATIVE APPLICATION: THE
TRI-MODAL MFD

The vector-based approach to estimate multi-modal MFDs
from section 3 is now illustrated for the case of bicycles,
buses, and cars. There are many options to explicitly formulate
the delay functions that quantify the interactions between
modes. The vector-based approach presented in this paper is
consequently one of many options. In this illustrative application,
we use (analytical) traffic models and regression-based models
to quantify the delays in order to show how these can be
incorporated into our vector-based approach. In Appendix 1 we
summarize the delay models used. There are clear limitations
to these delay functions, but these do not interfere with the
illustration of the vector-based approach’s applicability.

The tri-modal MFD developed for illustration purposes in this
section refers to a specific network topology, but as mentioned,
the vector-based approach can be applied to various different
delay causing settings and is not limited to this topology.
In particular, the questions of bicycle network design and
dedicated bicycle lanes could be discussed as it already has been
done for buses (e.g., Dantsuji et al., 2017). Thus, all insights
and implications derived from this particular tri-modal MFD
may be altered when applied to a different network topology.
Consequently, future research can use this vector-based approach
to discuss recurring urban design questions like dedicated bus
and bicycles lanes and their effect on the MFD.

We structure this section as follows: first, we introduce the
delay functions in section 4.1. Second, we discuss the data used
for the tri-modal MFD and its calibration in section 4.2. Third,
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we show in section 4.3 the resulting MFD shapes. As this section
serves only as an illustrative application of the vector-based
approach from section 3, we discuss here in the main part the
key elements, but provide the modeling details in the appendix of
this paper for the interested reader.

4.1. Delay Functions
We use four different delay models for the tri-modal MFD: A
continuous multiclass fundamental diagram (FD) taken from
Bliemer (2001), a discrete multiclass FD adopted from Wierbos
et al. (2020), a bus dwelling behavior model based on Daganzo
(2010), and a data-based regression model for the behavior of
bicycles at intersections. For additional stopping delays caused
by cars on buses and bicycles, we are not aware of an explicit
(physical) mechanism and thus define Ŵs = f (Ŵr) that must
be learnt from data or assumed. Appendix 1 provides more
details on the models used, where in particular Appendix 1.5

summarizes the pairwise delay functions. Appendix 2 discusses
how to account for the heterogeneity in the spatial distribution of
additional delays, i.e., the function g from Equations (10)–(11).
We do not use a continuous multiclass model for the interactions
that involve bicycles as we assume that in the congested case of
cars and buses, bicycle speeds do not converge to that of the
other modes, i.e., bicycles can sneak through the vehicle queues.
Therefore, we provide a separate discrete multiclass FD.

For the additional running delays, the general modeling idea is
to express the additional delay as the difference in pace between
the pace from the multi-modal FDs and the unimodal FDs, i.e.,
the difference between the case where both modes are interacting
and the case without interaction. For the interaction stopping
delays, the general modeling idea is to quantify the sources of
additional stopping delays caused by the interactions. In this case,
we do not need to subtract anything from these delays as they are
fully additional, i.e., in the uninterrupted case, no such delays are
to be expected.

4.2. Data and Calibration
The calibration of the tri-modal MFD as previously introduced
to a specific context requires data. In previous vector-based
approaches, multi-modal MFDs have been fitted to multi-
modal observations (e.g., Geroliminis et al., 2014; Loder et al.,
2017; Dakic and Menendez, 2018) that provide measurements
of car and bus traffic from the same network at the same
time. These kinds of observations at large urban scale are
available for cars and buses, both from simulation and
empirical data (e.g., Loder et al., 2017, 2019b). Unfortunately,
no such data for bicycle interactions with buses and cars
at large urban scale was available to us. Consequently, a
global calibration by curve fitting to tri-modal observations
like in Geroliminis et al. (2014) is not possible, and all
delay models must be separately calibrated. For the bicycle
interaction calibration, we collected data from Amsterdam
(NL) and London (UK). Figure 2 shows the experimental
sites. Although this separate calibration is a clear limitation of
this empirical section, it does not restrict the methodological
contributions of sections 2 and 3, as the empirical section

is only an illustrative application of the proposed vector-
based approach.

For the calibration of the (bi-modal) discrete fundamental
diagram, we measured travel times along Sarphatistraat in
Amsterdam (see Figure 2A) and Stamford Street in London
(see Figure 2C). We had to rely on two different experimental
sites because the Amsterdam site did not have enough cars to
identify an interaction effect of bicycles on cars, while the London
site did not have enough bicycles. We further tested whether
the Amsterdam data has enough variance to explain car and
bicycle density effects on car pace and whether the London data
has enough variance to explain car and bicycle density effects
on bicycle pace. In neither of the cases, we were able to find
statistically significant effects of the mode less present in that
particular network. While the variance in Amsterdam allowed
at least an estimation of a robust effect of car density on car
pace, in London we did not find a robust relationship between
bicycle density and bicycle pace. Thus, we consider that using
both data sets for this illustrative application is appropriate as
no more coherent data is available to infer the interaction delays.
The Sarphatistraat is designed such that cyclists have priority but
cars can ride along. Travel time data for cars and bicycles were
collected in the westbound direction betweenAlexanderplein and
Weesperplein as shown in Figure 2B. To account for vehicle
entries and exits between both intersections, we use only the
flows and travel times between locations II and III as shown
in Figure 2B. Data have been collected in the morning peak
between 8 and 9 a.m. on the June 5, 2018. While the total
flows at each location were recorded, travel times were only
obtained for some vehicles. Along Stamford Street in London,
bicycles, buses, and cars share the same lane. Flow and travel
time data were collected in both directions in the first week of
June 2019. Again, we account for vehicle entries and exits. At
all locations in London, as defined by Figure 2C, we measured
the additional delay for cars as the difference between the
bicycles started moving and motorized vehicles started moving
once the space ahead of them was cleared. Figures 2D,E show
the bicycle stop boxes at the five locations for measuring the
additional delays.

Figure 2 shows that the monitored segments are around 200
m and 450 ms in length. These are typical distances between
traffic signals found in European cities. We expect that the
segment length used for measurements should be at least in the
order of magnitude of a typical road segment of the modeled
network, but not substantially shorter as many of the expected
interactions between bicycles and cars might not be observed,
especially in the oversaturated regime. Contrary, for substantially
longer segments, the expected interactions will take place, and
thus these observations can still be used.

In Appendix 3, we summarize the measurement results
and report how they are used to calibrate all tri-modal
MFD parameters. In Appendix Table 2, we then list all the
parameters used.

4.3. Resulting MFDs
In Figure 3, we then show the resulting car MFDs where we
illustrate the bi-modal interaction effects with buses [see panels
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FIGURE 2 | Experimental sites for the measurements of bicycle interactions. (A) Travel time corridor along Sarphatistraat in Amsterdam. Background map courtesy of

https://www.openstreetmap.org/. (B) Locations between which travel times of cars and bicycles were recorded. There are several locations to account for in and

outflow from site streets. The measurements used for the calibration are between locations II and III. (C) Measurement locations for the calibration of the bicycle

interaction models along Stamford Street in London. Background map courtesy of https://osmaps.ordnancesurvey.co.uk/. (D,E) Show original footage from the

installed cameras of the two sites in London to illustrate the layout of the bicycle stopping boxes. Box number 1 is shown in (D) and boxes 2–5 are shown in (E). All

cameras are covered for blurring images to protect travelers’ privacy.
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FIGURE 3 | Car MFDs with interaction effects. (A,B) Show the bi-modal interaction effects between buses and cars on car flow; (C,D) show the bi-modal interaction

effects between bicycles and cars on car flow. Each bi-modal pair of figures is numerically identical, but the perspective differs. All MFDs are based on the parameters

listed in Appendix Table 2.

(A) and (B)] and with bicycles [see panels (C) and (D)]. Note
that each presented pair of figures is based on the parameters
given in Appendix Table 2 and thus only the viewpoint differs.
In all four panels of Figure 3, we clearly find the intuitive and
expected effect that more interactions decrease the performance
of car travel. The MFD for a single mode is considered to be
a concave relationship Daganzo and Geroliminis (2008), which
does not hold for high densities as seen in Figure 3 for the
proposed functional form. This behavior was also observed for
the exponential function for the MFD (Geroliminis et al., 2014;
Ambühl et al., 2020). For both functional approaches, however, a
concave relationship exists in the typical traffic regimes, implying
their applicability for modeling purposes.

5. POLICY APPLICATION: OPTIMAL
MODAL SPLIT

How many cars are too many for a city? This is a question with
the intuitive answer “it depends.” In particular, it depends on

the total demand or the passenger accumulation in the network.
Consequently, it is important for decision makers to understand
which proportional usage of modes (mode split) should be
favored for a given demand. We use the previously calibrated
tri-modal MFD to address this question at the network level.

We perform the analysis as follows. We define an urban
network based on the parameters listed in Appendix Table 2,

where we assume a two-way grid layout with a total diameter
of 2 km and an intersection spacing of 250m. We set the bus

service headway to 7.5 min, which corresponds to a bus density

of kb = 0.001 (bus/m). For simplicity, we assume that a single
car and a single bicycle transport one passenger, while buses
have no occupancy limit, i.e., if demand increases the agency
would provide larger vehicles. We identify that for this size of
network, a reasonable range of passenger accumulation levels is
from 1,000 to 24,000 (in passenger bins of 1,000). For each bin, we
iterate through all possible mode share combinations (from 0.05
to 0.90) and calculate the total travel time for a 3 km trip for each
mode. We added half of the bus headway to the bus travel time
to account for waiting (assuming uniform passenger arrivals).
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FIGURE 4 | Optimal mode shares and average journey speed given the

current vehicle accumulation based on the calibrated tri-modal MFD from

Appendix Table 2.

The optimal mode share is then obtained for each accumulation
bin as the minimum total travel time. This analysis follows a
social optimum perspective (minimum total travel time) and not
Wardrop’s user equilibrium (equal travel time on all routes),
where the latter would lead to different results.

Figure 4 presents the results of the policy scenario. Note
that the results are specific to the network topology listed in
Appendix Table 2 and insights and implications may change
for other network topologies. Figure 4 shows shares not totals.
For example, for passenger accumulations between 5,000 and
10,000, the total number of cyclists increases, although its
share. Intuitively, with larger passenger accumulation levels in
the network, we see that the share of cars declines steadily.
Up to an accumulation of 5,000 passengers the bicycle share
is substantially increasing, while it declines beyond 5,000
passengers in exchange for an increase in the share of bus
transport. Arguably, the observed tipping point results from
the free-flow speed parameters of each mode. If buses were to
be much faster compared to bicycles, the increase in bicycle
share would not be that strong. The average journey speed,
calculated as the mean journey speed weighted by passengers
not vehicles, decreases with the number of passengers. The
decrease is substantial until 10,000 passengers, arguably due to
the congestion caused by cars. From 10,000 passengers onward,
the numbers of cars and bicycles remain almost constant and
congestion does not get worse, while the further decline in
journey speeds can be attributed to boarding and alighting delays
caused by bus passengers. We conclude that in the regime of
around 5,000 to 10,000 passengers, bicycles become as good
as cars in terms of achievable journey speeds in mixed traffic,
but then public transport is needed to achieve satisfactory
journey speeds.

The discussed policy scenario of the tri-modal MFD clearly
emphasizes how the vector-based approach for multi-modal
MFDs can be used. Nevertheless, other researchers and planners
have to calibrate their multi-modal MFD to their real-site to
derive meaningful insights. Here, as emphasized in sections 2

and 3, they can either derive analytical traffic models or use
regression-based functions to describe the relationship between
the presence of interactions and additional delays. With data
becoming more widely available, the latter approach seems
more favorable, but then any modeling is only valid within the
observed variation.

6. COMPARISON OF 3D-MFD ESTIMATION
METHODS

The proposed vector-based approach to estimate multi-modal
MFDs clearly differs from existing methods to estimate MFDs
that capture bus–car interactions: the 3D-MFD. Importantly,
we consider, in this study, the term MFD estimation as the
means to model and quantify the behavior of the observed
multi-modal traffic states. As usual, these traffic states can be
either obtained via a traffic simulator (e.g., Geroliminis et al.,
2014), from empirical observations (e.g., Loder et al., 2017) or
using analytical methods (e.g., Castrillon and Laval, 2018; Loder
et al., 2019b; Dakic et al., 2020). So far, three approaches have
been suggested: (1) an exponential fit to simulation data by
Geroliminis et al. (2014), (2) a linear speed model of empirical
measurements by Loder et al. (2017), (3) a lower envelope
approach suitable for simulation and empirical data by Loder
et al. (2019b). Consequently, the proposed vector-based approach
from section 3 is the fourth approach. In Table 1, we summarize
the four estimation methods, and in Figure 5, we compare the
four different approaches for empirical data from Zurich (CH)
first used by Ambühl et al. (2017) and Loder et al. (2017).

We compare the four approaches across five dimensions
qualitatively and their fit to observations. First, the four
approaches differ in their simplicity of data fitting. Here,
the simple linear and exponential model clearly outrank the
more complex vector-based approach and the lower envelope.
The latter models do not only have more parameters but
are also characterized by more non-linear elements that make
data fitting more difficult. Second, all approaches can be used
with simulation data, but the exponential function has clear
limitations when fitted to empirical data as emphasized by
Loder et al. (2019b), while all three other approaches can be
applied to empirical data. Third, the lower envelope approach
by Loder et al. (2019b) showed that even without traffic
state observations, the 3D-MFD shape—to be precise its lower
envelope—can be reasonably well-approximated using network
topology and fundamental traffic operation characteristics. This
feature is not available for the linear and exponential function.
Nevertheless, depending on the chosen delay functions, this
vector-based approach can also estimate the MFD without traffic
state observations. Fourth, none of the previous approaches are
able to retain each individual mode’s speed, but the vector-based
approach does. Last, the linear function and the lower envelope
have the clear advantage that all of their parameters have a
clear physical interpretation, while this is less the case for the
exponential function. For the proposed vector-based approach,
it depends on the chosen delay models whether or not all of their
parameters have a clear physical interpretation.
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TABLE 1 | Comparison of 3D-MFD estimation methods.

Requirements

Approach Proposed by Simple fitting to

data

Fit to empirical

data

Estimation w/o

data

Retains

individual mode

speed

Physical

meaningful

parameters

Vector-based approach This paper � � � �

Exponential function
Geroliminis et al.

(2014)

�

Linear function
Loder et al. (2017)

� � �

Lower envelope
Loder et al.

(2019b)

� � �

� applies completely, � applies partially.

FIGURE 5 | Comparison of 3D-MFD estimation methods. (A) Shows the vector-based approach 3D-MFD, (B) the exponential function 3D-MFD, (C) the linear model

3D-MFD, and (D) the lower envelope 3D-MFD.

The visual comparison of the four approaches is
given in Figure 5. Each 3D-MFD is estimated for the
same road network in Zurich Wiedikon (CH) and is
compared to the empirical observations used by Loder
et al. (2017) and the network parameters used by Loder

et al. (2019b). Figure 5A proposed vector-based approach
3D-MFD, Figure 5B the exponential function 3D-MFD,
Figure 5C the linear model 3D-MFD, and Figure 5D the
lower envelope 3D-MFD. Importantly, the 3D-MFDs in
Figures 5B–D are fitted to the data, while the 3D-MFD
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from the proposed vector-based approach is calibrated to
the data.

It can be clearly seen that all approaches lead to different MFD
shapes, while all seem to describe the empirical observations quite
well and obtain the expected 3D-MFD shape for the observed
regimes. In particular, we can highlight four insights from
these results. First, the lower envelope 3D-MFD in Figure 5D

is the “highest” 3D-MFD. This is intuitive as it describes the
best-case situation and all other approaches consider more
between-vehicle interactions that are reducing total travel
production. Thus, with little or no data available, this vector-
based approach models well the observed speeds (Loder et al.,
2019b), but overestimates network performance. Second, the
linear and exponential model are robust for data fitting, but lack
validity for predictions outside of the box of observed densities
(Figures 5B,C). In both cases, the 3D-MFD shape follows the
functional definition, but it is not clear whether this coincides
with the physics of traffic or not. Third, the 3D-MFD based on
the proposed vector-based approach in Figure 5A seems to fall
in between the two previous extremes. Arguably, this 3D-MFD
functional form could be better suited to describe the dynamics of
traffic outside the box of empirically observed densities. However,
without delay models that capture interaction effects at high
densities, it is not surprising that the 3D-MFD in Figure 5A

diverges from the lower envelope 3D-MFD, which is most likely
referring to the ground truthMFD. Last, regarding the estimation
error (RMSE) of the functional form compared to the empirical
data, we find that the vector-based approach 3D-MFD has an
RMSE = 0.396, the exponential function has an RMSE = 0.111,
the linear model has an RMSE = 0.545, and the lower envelope
of 0.184. These differences do not surprise and underline the
previous findings. The exponential function is themost flexible in
terms of curve fitting, while the linear model is the least flexible.
Interestingly, although the vector-based approach 3D-MFD is
not fitted to the 3D-MFD observations, but is only calibrated
to the simplifying interaction models, it describes the observed
variance better than the linear model.

7. CONCLUSIONS

In this paper, we proposed the first methodology to account for
additional (external) delays in the shape of the MFD and derived
a vector-based approach to estimate multi-modal MFDs. This is
achieved by linking the two-fluid theory of urban traffic (Herman
and Prigogine, 1979) to the travel times derived from a recently
formulated functional form for theMFD (Ambühl et al., 2020). In
contrast to previous approaches to estimate multi-modal MFDs,
this vector-based approach retains the speed information of each
individual mode, it is generic and applies to 2, 3, or more
modes, and depending on the formulation of the delay function,
it could be less data intensive. We illustrated the applicability
of the proposed vector-based approach to the tri-modal case
of bicycles, buses, and cars using basic empirical measurements
fromAmsterdam and London. Even with that basic data, we were
able to estimate the primary interaction effects that we required
to approximate the tri-modal MFD. We then showed how the
policy relevant question of What is the optimal modal split for
a given demand can be discussed with this calibrated tri-modal

MFD. Last, we compared the proposed vector-based approach
with existing approaches to estimate 3D-MFDs, i.e., the multi-
modal MFD for the case of buses and cars. Unfortunately, no
tri-modal data at the network level exist to derive appropriate
delay functions and validate the proposed vector-based approach.
This clearly limits the methodological contribution of this paper.
However, the bi-modal validation with empirical data proves
the general applicability of the proposed approach compared to
other existing approaches in the bi-modal case of buses and cars.
Nevertheless, new data sources like the pNEUMA drone data by
Barmpounakis and Geroliminis (2020), which does not observe
bicycles, are promising sources for estimating high dimensional
multi-modal MFDs with cars, taxis, buses, and lorries with the
proposed vector-based approach.

Next to the proposed vector-based approach’s limitations
discussed in section 6 and in the previous paragraph, it is
worth highlighting some other avenues for future research. First,
to apply the proposed vector-based approach at large scale,
suitable and reasonable sets of delay functions are required
and an assessment is necessary on which delay functions are
best applicable. Consequently, future research should develop
different delay functions and assess their performance and
suitability for modeling traffic at large urban scale, e.g., by using
large-scale drone data (e.g., Barmpounakis and Geroliminis,
2020; Bock et al., 2020). Second, the proposed tri-modal MFD is
clearly context specific and implications thereof may be altered
when applied to a different context and network topology.
Therefore, future research could investigate the influence of
different network typologies, e.g., bicycle and bus network
design and dedicated infrastructure. In other words, addressing
the important question of space allocation (e.g., Zheng and
Geroliminis, 2013) and urban space consumption of cars and
buses (e.g., Roca-Riu et al., 2020) in our cities. Third, the
MFD underlies a strong assumption of traffic homogeneity
in the network (see Ji and Geroliminis, 2012; Saeedmanesh
and Geroliminis, 2016, 2017 for discussion) that we have not
addressed so far as it would add unnecessary complexity to the
proposed vector-based approach. Thus, future research can also
explore how the issue of traffic homogeneity in the network can
be described with the presented vector-based approach.

In closing, the proposed vector-based approach is general and
flexible and can model a variety of multi-modal networks from
the developing to the developed world. Especially for the complex
and chaotic traffic in developing countries, the interaction
delays captured in Ŵ, e.g., between tuk-tuks, jaywalking persons,
and bicycles, can be learned from data and must not be
formulated based on traffic flow models. Consequently, the
proposed vector-based approach can still be applied in strategic
planning and operations and help those cities to improve their
transportation system.
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