
Citation: Ponniah, J.; Dantsker, O.D.

Strategies for Scaleable

Communication and Coordination in

Multi-Agent (UAV) Systems.

Aerospace 2022, 9, 488. https://

doi.org/10.3390/aerospace9090488

Academic Editor: Javaan Chahl

Received: 28 June 2022

Accepted: 25 August 2022

Published: 31 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Strategies for Scaleable Communication and Coordination in
Multi-Agent (UAV) Systems
Jonathan Ponniah 1,* and Or D. Dantsker 2

1 Department of Electrical Engineering, San Jose State University, San Jose, CA 95192, USA
2 TUM School of Engineering and Design, Technical University of Munich, D-85748 Garching, Germany
* Correspondence: jonathan.ponniah@sjsu.edu

Abstract: A system is considered in which agents (UAVs) must cooperatively discover interest-points
(i.e., burning trees, geographical features) evolving over a grid. The objective is to locate as many
interest-points as possible in the shortest possible time frame. There are two main problems: a control
problem, where agents must collectively determine the optimal action, and a communication problem,
where agents must share their local states and infer a common global state. Both problems become
intractable when the number of agents is large. This survey/concept paper curates a broad selection
of work in the literature pointing to a possible solution; a unified control/communication architecture
within the framework of reinforcement learning. Two components of this architecture are locally
interactive structure in the state-space, and hierarchical multi-level clustering for system-wide
communication. The former mitigates the complexity of the control problem and the latter adapts to
fundamental throughput constraints in wireless networks. The challenges of applying reinforcement
learning to multi-agent systems are discussed. The role of clustering is explored in multi-agent
communication. Research directions are suggested to unify these components.

Keywords: reinforcement learning; multi-agent systems; distributed systems; clustering; mobile
ad-hoc networks; tracking; belief propagation; computational complexity; scaling laws

1. Introduction

Advances in mobile computing, wireless technology, and artificial intelligence have
fundamentally impacted the field of robotics. Applications that require persistent operation
of large numbers of robots in remote areas (without pre-existing wireless infrastructure)
are of special interest. Examples include wildfire surveillance [1], aerial package deliv-
ery [2], environmental surveillance [3], emergency drone-based wireless-provisioning [4],
post-event perishable data-acquisition [5], and planetary exploration [6]. A common theme
in these examples is the idea of spatially distributed “interest-points” (i.e., burning trees,
geological features, delivery destinations) that evolve over time. The robots must col-
lectively visit as many interest-points as possible over some bounded time-horizon as
depicted in Figure 1. Despite the promise of this technology, certain control and communi-
cation problems continue to hinder large-scale deployment. Two problems are presently
intractable: the communication problem, in which robots share their local states and obser-
vations, and the control problem in which robots decide on a collective action to achieve
the system objectives.

An “agent” is a self-contained computational unit acting in some external environment
(i.e., a robot, Unmanned Aerial Vehicle (UAV) or Autonomous Underwater Vehicle (AUV)).
In distributed systems, individual agents do not have direct access to the states of other
agents. Direct communication between all agent pairs is often impossible in a shared
wireless medium, due to channel fading and interference. Instead, agents must discover
their “neighbors” (i.e., agents in the geographic vicinity), their neighbors’ neighbors, and so
on until they obtain a common view of the topology induced by this network. The agents

Aerospace 2022, 9, 488. https://doi.org/10.3390/aerospace9090488 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace9090488
https://doi.org/10.3390/aerospace9090488
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0003-2629-3924
https://orcid.org/0000-0002-2214-1985
https://doi.org/10.3390/aerospace9090488
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace9090488?type=check_update&version=1

Aerospace 2022, 9, 488 2 of 24

communicate by routing messages in multi-hop fashion from one agent to the next. Their
relative positions change as they move, which alters the underlying network topology
and the implied communication routes. They must constantly update their views of the
network topology and refresh their forwarding tables, all while sharing the local states
required for coordination.

Interest-Point

AgentAgent

Interest-Point

+1

+1

+1

+1

+1

+1

+1

(a) (b)

(c) (d)

Figure 3: A Markov Decision Process framework for tracking the spread of forest fires. (a) Burning
trees are interest points and UAVs are agents. (b) The system of agents coordinate to visit as many
interest-points as possible in the shortest possible time frame. (c) The system state specifies the
instantaneous locations of agents and interest points. The reward for a state is determined by the
number of agents that coincide with interest-points. (d) Interest-points evolve over time, so agents
must communicate with each other to coordinate their activity and maximize their reward.

Figure 1. A multi-UAV tracking scenario. (a) Burning trees and UAVs correspond to interest-points
and agents respectively. (b) The system must coordinate to visit as many interest-points as possible
in the shortest possible time. (c) The system state specifies the locations of agents and interest-points.
The reward for a state is determined by the number of agents that coincide with interest-points.
(d) Interest-points evolve over time so the UAVs must track their distribution.

Only after the local states have been shared, are agents able to infer the global state
and coordinate their actions. However, even with universal knowledge of the global state,
the optimal control policy is still ambiguous. Agents could behave selfishly (or “greedily”)
to maximize their “take” of interest-points, or cooperatively, favoring the benefit to the
collective over the individual. They could act strategically, to obtain future returns at the
expense of the present. The dynamics of the interest-points, initially unknown, also factor
into these decisions. Ultimately, the decision space grows exponentially in size (or worse)
with the number of agents, which makes the optimal solution unscaleable.

The control and communication problems are often separate areas of research, but there
have been efforts to integrate them in the field of robotics. This survey/concept paper highlights
important contributions in both areas through the lens of multi-agent tracking. Some original
ideas are also presented to offer perspective on a joint control/communication architecture.

The paper is organized as follows. Section 2 reviews the basics of reinforcement
learning (RL) with an eye towards multi-agent tracking systems. Section 3 explores the
control problem; the complexity of computing control policies in multi-agent RL and the
challenge of verifying whether or not these policies are optimal. Methods that exploit locally
interactive structure are discussed to alleviate these challenges. Section 4 explores aspects
of the communication problem: the fundamental constraints on throughput in wireless
networks and the unreliable nature of wireless communication. Multi-level clustering
strategies are surveyed as a possible antidote. Section 5 discusses whether the selected
works in this survey fit into a unified architecture that encompasses both the control

Aerospace 2022, 9, 488 3 of 24

and communication aspects of multi-agent systems. Section 6 concludes the paper and
highlights new research directions.

2. Reinforcement Learning

The famous Travelling Salesman Problem (TSP) asks for the shortest path that touches
all vertices in a graph. In the worst-case, the answer requires exponentially many operations
in the number of vertices. However, computing the distance of any arbitrary path requires
at most a polynomial (or linear) number of operations. This property is distinctive of
“NP-hard” problems (i.e., non-deterministic polynomial); optimal solutions seemingly have
exponential complexity, but candidate solutions have polynomial complexity. A long-
standing open problem in complexity theory is proving (or disproving) P 6= NP; whether
or not “NP-hard” problems can be solved in polynomial-time.

Multi-agent tracking is a more complicated version of the TSP because there are multi-
ple agents (i.e., salesmen), the graph topology is time-varying, and the agent trajectories
must remain disjoint at each time-instant. The complexity of any solution is thus worse
than exponential in the number of agents. While the TSP remains an important bench-
mark in theoretical computer science, there is also interest in approximately optimal but
low-complexity solutions for engineering applications.

Reinforcement learning (RL) offers these “engineering” solutions to high-complexity
path-planning problems. The challenge is stabilizing the learning process within a reliably
acceptable time-frame. Apart from some narrowly defined scenarios, no such convergence
guarantees exist. The following sections introduce basic concepts in RL and discuss their
relevance to multi-agent tracking.

2.1. Overview

The Markov Decision Process (MDP) consists of three components: states, actions,
and rewards. The system state is a snapshot of all the parameters of interest in a given
time-instant. These parameters are application-specific but usually include data such as
the agents’ positions, velocities, altitudes and/or any other items relevant to the system
operation. Actions cause the system to change from one state to another (i.e., actions such
as “right”, “left”, “up”, and “down” move individual agents in a two-dimensional grid to
adjacent cells). Rewards assign value to desirable states and/or penalize undesirable states.
For instance, states in which agents and interest-points overlap might receive positive
reward as depicted in Figure 1c, whereas states in which two agents occupy the same cell
(i.e., have collided) receive negative reward. This acts as a signal from environment to
agent, encouraging certain behavior. The agent-environment feedback loop is depicted in
Figure 2a. A policy determines the action of an agent in every state. The objective in RL
is to compute the optimal policy; the policy that achieves the maximum reward over the
operating lifetime.

The Markov property limits the way states can evolve over time, namely, that future
states are conditionally independent of past states given the current state; the future
depends only on the past through the present. Another concept related to the Markov
property is “stationarity”. The system is stationary if the “dynamics” (i.e., the probabilities
of transitioning from one state to another) do not change over time. Stationary dynamics
are the default assumption in RL. However, strategies that reduce complexity (i.e., shorten
training times) sometimes induce time-varying dynamics as an unintended side-effect.

Aerospace 2022, 9, 488 4 of 24

1 2

34
5

67

C

1 2

34
5

67

(a) (b)

Figure 5: Locality of interaction in multi-agent systems with time-varying spatially distributed interest-
points. (a) Recursive state space decomposition. The planning problem for subregion 1 is
conditionally independent of subregions 2, 3 and 4 because these regions have approximately the
same density of interest-points and agents. Similarly, the planning problem for their union is
conditionally independent of regions 5-7. (b) Temporal/hierarchical task space decomposition.
Primitive actions move agents within each subregion. Macro-actions move agents between
subregions. Higher level macro-actions move agents between larger “macro” regions.

Agent

Environment

<latexit sha1_base64="5gy3ExIZomQxhWZ5fXAGNaZ6nWU=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSp4KkkR9Vjw4rGCaQttKJvtpl262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4bua3n7g2IlGPOEl5ENOhEpFgFK3k036O036l6tbcOcgq8QpShQLNfuWrN0hYFnOFTFJjup6bYpBTjYJJPi33MsNTysZ0yLuWKhpzE+TzY6fkwioDEiXalkIyV39P5DQ2ZhKHtjOmODLL3kz8z+tmGN0GuVBphlyxxaIokwQTMvucDITmDOXEEsq0sLcSNqKaMrT5lG0I3vLLq6RVr3nXtfrDVbVxXsRRglM4g0vw4AYacA9N8IGBgGd4hTdHOS/Ou/OxaF1zipkT+APn8wcMMI7B</latexit>at

<latexit sha1_base64="2yuv7ZO7C/Y0h1ZHVvAqABtBQkg=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LFZBEEpSRD0WvHisYD+gDWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpv57SeujYjVI04S7kd0qEQoGEUrtU0/w0tv2i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+7pScW2VAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw1s/EypJkSu2WBSmkmBMZr+TgdCcoZxYQpkW9lbCRlRThjahkg3BW355lbRqVe+6Wnu4qtTP8jiKcAKncAEe3EAd7qEBTWAwhmd4hTcncV6cd+dj0Vpw8plj+APn8wcBIo9D</latexit>st+1

<latexit sha1_base64="4WvS35sraA+jWob7WuNFOyTTrDk=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LFZBEEpSRD0WvHisYD+gDWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpv57SeujYjVI04S7kd0qEQoGEUrtXU/w0tv2i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+7pScW2VAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw1s/EypJkSu2WBSmkmBMZr+TgdCcoZxYQpkW9lbCRlRThjahkg3BW355lbRqVe+6Wnu4qtTP8jiKcAKncAEe3EAd7qEBTWAwhmd4hTcncV6cd+dj0Vpw8plj+APn8wf/iY9C</latexit>rt+1

<latexit sha1_base64="CxJEAf5DMfxYjbGo+nQGwerrsdc=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSp4KkkR9Vjw4rGCaQttKJvtpl262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4bua3n7g2IlGPOEl5ENOhEpFgFK3k636O036l6tbcOcgq8QpShQLNfuWrN0hYFnOFTFJjup6bYpBTjYJJPi33MsNTysZ0yLuWKhpzE+TzY6fkwioDEiXalkIyV39P5DQ2ZhKHtjOmODLL3kz8z+tmGN0GuVBphlyxxaIokwQTMvucDITmDOXEEsq0sLcSNqKaMrT5lG0I3vLLq6RVr3nXtfrDVbVxXsRRglM4g0vw4AYacA9N8IGBgGd4hTdHOS/Ou/OxaF1zipkT+APn8wcmOI7S</latexit>rt

<latexit sha1_base64="iIuaEpoJLqF/TD0UgAoX8u9HImU=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSp4KkkR9Vjw4rGCaQttKJvtpl262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4bua3n7g2IlGPOEl5ENOhEpFgFK3km36O036l6tbcOcgq8QpShQLNfuWrN0hYFnOFTFJjup6bYpBTjYJJPi33MsNTysZ0yLuWKhpzE+TzY6fkwioDEiXalkIyV39P5DQ2ZhKHtjOmODLL3kz8z+tmGN0GuVBphlyxxaIokwQTMvucDITmDOXEEsq0sLcSNqKaMrT5lG0I3vLLq6RVr3nXtfrDVbVxXsRRglM4g0vw4AYacA9N8IGBgGd4hTdHOS/Ou/OxaF1zipkT+APn8wcnwI7T</latexit>st

Actor

Environment

<latexit sha1_base64="5gy3ExIZomQxhWZ5fXAGNaZ6nWU=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSp4KkkR9Vjw4rGCaQttKJvtpl262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4bua3n7g2IlGPOEl5ENOhEpFgFK3k036O036l6tbcOcgq8QpShQLNfuWrN0hYFnOFTFJjup6bYpBTjYJJPi33MsNTysZ0yLuWKhpzE+TzY6fkwioDEiXalkIyV39P5DQ2ZhKHtjOmODLL3kz8z+tmGN0GuVBphlyxxaIokwQTMvucDITmDOXEEsq0sLcSNqKaMrT5lG0I3vLLq6RVr3nXtfrDVbVxXsRRglM4g0vw4AYacA9N8IGBgGd4hTdHOS/Ou/OxaF1zipkT+APn8wcMMI7B</latexit>at

<latexit sha1_base64="2yuv7ZO7C/Y0h1ZHVvAqABtBQkg=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LFZBEEpSRD0WvHisYD+gDWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpv57SeujYjVI04S7kd0qEQoGEUrtU0/w0tv2i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+7pScW2VAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw1s/EypJkSu2WBSmkmBMZr+TgdCcoZxYQpkW9lbCRlRThjahkg3BW355lbRqVe+6Wnu4qtTP8jiKcAKncAEe3EAd7qEBTWAwhmd4hTcncV6cd+dj0Vpw8plj+APn8wcBIo9D</latexit>st+1

<latexit sha1_base64="4WvS35sraA+jWob7WuNFOyTTrDk=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LFZBEEpSRD0WvHisYD+gDWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpv57SeujYjVI04S7kd0qEQoGEUrtXU/w0tv2i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+7pScW2VAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw1s/EypJkSu2WBSmkmBMZr+TgdCcoZxYQpkW9lbCRlRThjahkg3BW355lbRqVe+6Wnu4qtTP8jiKcAKncAEe3EAd7qEBTWAwhmd4hTcncV6cd+dj0Vpw8plj+APn8wf/iY9C</latexit>rt+1

<latexit sha1_base64="CxJEAf5DMfxYjbGo+nQGwerrsdc=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSp4KkkR9Vjw4rGCaQttKJvtpl262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4bua3n7g2IlGPOEl5ENOhEpFgFK3k636O036l6tbcOcgq8QpShQLNfuWrN0hYFnOFTFJjup6bYpBTjYJJPi33MsNTysZ0yLuWKhpzE+TzY6fkwioDEiXalkIyV39P5DQ2ZhKHtjOmODLL3kz8z+tmGN0GuVBphlyxxaIokwQTMvucDITmDOXEEsq0sLcSNqKaMrT5lG0I3vLLq6RVr3nXtfrDVbVxXsRRglM4g0vw4AYacA9N8IGBgGd4hTdHOS/Ou/OxaF1zipkT+APn8wcmOI7S</latexit>rt

<latexit sha1_base64="iIuaEpoJLqF/TD0UgAoX8u9HImU=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSp4KkkR9Vjw4rGCaQttKJvtpl262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4bua3n7g2IlGPOEl5ENOhEpFgFK3km36O036l6tbcOcgq8QpShQLNfuWrN0hYFnOFTFJjup6bYpBTjYJJPi33MsNTysZ0yLuWKhpzE+TzY6fkwioDEiXalkIyV39P5DQ2ZhKHtjOmODLL3kz8z+tmGN0GuVBphlyxxaIokwQTMvucDITmDOXEEsq0sLcSNqKaMrT5lG0I3vLLq6RVr3nXtfrDVbVxXsRRglM4g0vw4AYacA9N8IGBgGd4hTdHOS/Ou/OxaF1zipkT+APn8wcnwI7T</latexit>st

Critic

<latexit sha1_base64="iDEgR0h1UX0kYCfRR/w8IVJAxC8=">AAAB83icbVBNS8NAEN34WetX1aOXxSp4KkkR9Vjw4rGC/YAmlMl20y7dbMLuRCihf8OLB0W8+me8+W/ctjlo64OBx3szzMwLUykMuu63s7a+sbm1Xdop7+7tHxxWjo7bJsk04y2WyER3QzBcCsVbKFDybqo5xKHknXB8N/M7T1wbkahHnKQ8iGGoRCQYoJV8X0EowccRR+hXqm7NnYOuEq8gVVKg2a98+YOEZTFXyCQY0/PcFIMcNAom+bTsZ4anwMYw5D1LFcTcBPn85im9sMqARom2pZDO1d8TOcTGTOLQdsaAI7PszcT/vF6G0W2QC5VmyBVbLIoySTGhswDoQGjOUE4sAaaFvZWyEWhgaGMq2xC85ZdXSbte865r9YerauO8iKNETskZuSQeuSENck+apEUYSckzeSVvTua8OO/Ox6J1zSlmTsgfOJ8/H5ORpw==</latexit>r✓
<latexit sha1_base64="Z7iSectvczpyjDdtTfDwfJade74=">AAAB8HicbVDLSgNBEJz1GeMr6tHLYBTiJewGUY8BL+IpgnlIsoTZSW8yZGZ3mekVQshXePGgiFc/x5t/4yTZgyYWNBRV3XR3BYkUBl3321lZXVvf2Mxt5bd3dvf2CweHDROnmkOdxzLWrYAZkCKCOgqU0Eo0MBVIaAbDm6nffAJtRBw94CgBX7F+JELBGVrp8a7UwQEgO+8Wim7ZnYEuEy8jRZKh1i18dXoxTxVEyCUzpu25CfpjplFwCZN8JzWQMD5kfWhbGjEFxh/PDp7QM6v0aBhrWxHSmfp7YsyUMSMV2E7FcGAWvan4n9dOMbz2xyJKUoSIzxeFqaQY0+n3tCc0cJQjSxjXwt5K+YBpxtFmlLcheIsvL5NGpexdliv3F8XqaRZHjhyTE1IiHrkiVXJLaqROOFHkmbySN0c7L8678zFvXXGymSPyB87nD/zgj8o=</latexit>

J(✓)

<latexit sha1_base64="7dXFDGbmJ+jvoLC3k81uYlWChY8=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LFbBU0mKqMeCF48V7Ae0oWy2m3btJht2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqGZVqxptMSaU7ATVcipg3UaDknURzGgWSt4Px7cxvP3FthIofcJJwP6LDWISCUbRSq4cjjrRfrrhVdw6ySrycVCBHo1/+6g0USyMeI5PUmK7nJuhnVKNgkk9LvdTwhLIxHfKupTGNuPGz+bVTcm6VAQmVthUjmau/JzIaGTOJAtsZURyZZW8m/ud1Uwxv/EzESYo8ZotFYSoJKjJ7nQyE5gzlxBLKtLC3EjaimjK0AZVsCN7yy6ukVat6V9Xa/WWlfpbHUYQTOIUL8OAa6nAHDWgCg0d4hld4c5Tz4rw7H4vWgpPPHMMfOJ8/nTuPEQ==</latexit>

✓

(a) (b)

Agent

Environment

<latexit sha1_base64="5gy3ExIZomQxhWZ5fXAGNaZ6nWU=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSp4KkkR9Vjw4rGCaQttKJvtpl262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4bua3n7g2IlGPOEl5ENOhEpFgFK3k036O036l6tbcOcgq8QpShQLNfuWrN0hYFnOFTFJjup6bYpBTjYJJPi33MsNTysZ0yLuWKhpzE+TzY6fkwioDEiXalkIyV39P5DQ2ZhKHtjOmODLL3kz8z+tmGN0GuVBphlyxxaIokwQTMvucDITmDOXEEsq0sLcSNqKaMrT5lG0I3vLLq6RVr3nXtfrDVbVxXsRRglM4g0vw4AYacA9N8IGBgGd4hTdHOS/Ou/OxaF1zipkT+APn8wcMMI7B</latexit>at

<latexit sha1_base64="2yuv7ZO7C/Y0h1ZHVvAqABtBQkg=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LFZBEEpSRD0WvHisYD+gDWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpv57SeujYjVI04S7kd0qEQoGEUrtU0/w0tv2i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+7pScW2VAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw1s/EypJkSu2WBSmkmBMZr+TgdCcoZxYQpkW9lbCRlRThjahkg3BW355lbRqVe+6Wnu4qtTP8jiKcAKncAEe3EAd7qEBTWAwhmd4hTcncV6cd+dj0Vpw8plj+APn8wcBIo9D</latexit>st+1

<latexit sha1_base64="4WvS35sraA+jWob7WuNFOyTTrDk=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LFZBEEpSRD0WvHisYD+gDWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpv57SeujYjVI04S7kd0qEQoGEUrtXU/w0tv2i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+7pScW2VAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw1s/EypJkSu2WBSmkmBMZr+TgdCcoZxYQpkW9lbCRlRThjahkg3BW355lbRqVe+6Wnu4qtTP8jiKcAKncAEe3EAd7qEBTWAwhmd4hTcncV6cd+dj0Vpw8plj+APn8wf/iY9C</latexit>rt+1

<latexit sha1_base64="CxJEAf5DMfxYjbGo+nQGwerrsdc=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSp4KkkR9Vjw4rGCaQttKJvtpl262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4bua3n7g2IlGPOEl5ENOhEpFgFK3k636O036l6tbcOcgq8QpShQLNfuWrN0hYFnOFTFJjup6bYpBTjYJJPi33MsNTysZ0yLuWKhpzE+TzY6fkwioDEiXalkIyV39P5DQ2ZhKHtjOmODLL3kz8z+tmGN0GuVBphlyxxaIokwQTMvucDITmDOXEEsq0sLcSNqKaMrT5lG0I3vLLq6RVr3nXtfrDVbVxXsRRglM4g0vw4AYacA9N8IGBgGd4hTdHOS/Ou/OxaF1zipkT+APn8wcmOI7S</latexit>rt

<latexit sha1_base64="iIuaEpoJLqF/TD0UgAoX8u9HImU=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSp4KkkR9Vjw4rGCaQttKJvtpl262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4bua3n7g2IlGPOEl5ENOhEpFgFK3km36O036l6tbcOcgq8QpShQLNfuWrN0hYFnOFTFJjup6bYpBTjYJJPi33MsNTysZ0yLuWKhpzE+TzY6fkwioDEiXalkIyV39P5DQ2ZhKHtjOmODLL3kz8z+tmGN0GuVBphlyxxaIokwQTMvucDITmDOXEEsq0sLcSNqKaMrT5lG0I3vLLq6RVr3nXtfrDVbVxXsRRglM4g0vw4AYacA9N8IGBgGd4hTdHOS/Ou/OxaF1zipkT+APn8wcnwI7T</latexit>st

Actor

Environment

<latexit sha1_base64="5gy3ExIZomQxhWZ5fXAGNaZ6nWU=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSp4KkkR9Vjw4rGCaQttKJvtpl262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4bua3n7g2IlGPOEl5ENOhEpFgFK3k036O036l6tbcOcgq8QpShQLNfuWrN0hYFnOFTFJjup6bYpBTjYJJPi33MsNTysZ0yLuWKhpzE+TzY6fkwioDEiXalkIyV39P5DQ2ZhKHtjOmODLL3kz8z+tmGN0GuVBphlyxxaIokwQTMvucDITmDOXEEsq0sLcSNqKaMrT5lG0I3vLLq6RVr3nXtfrDVbVxXsRRglM4g0vw4AYacA9N8IGBgGd4hTdHOS/Ou/OxaF1zipkT+APn8wcMMI7B</latexit>at

<latexit sha1_base64="2yuv7ZO7C/Y0h1ZHVvAqABtBQkg=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LFZBEEpSRD0WvHisYD+gDWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpv57SeujYjVI04S7kd0qEQoGEUrtU0/w0tv2i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+7pScW2VAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw1s/EypJkSu2WBSmkmBMZr+TgdCcoZxYQpkW9lbCRlRThjahkg3BW355lbRqVe+6Wnu4qtTP8jiKcAKncAEe3EAd7qEBTWAwhmd4hTcncV6cd+dj0Vpw8plj+APn8wcBIo9D</latexit>st+1

<latexit sha1_base64="4WvS35sraA+jWob7WuNFOyTTrDk=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LFZBEEpSRD0WvHisYD+gDWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpv57SeujYjVI04S7kd0qEQoGEUrtXU/w0tv2i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+7pScW2VAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw1s/EypJkSu2WBSmkmBMZr+TgdCcoZxYQpkW9lbCRlRThjahkg3BW355lbRqVe+6Wnu4qtTP8jiKcAKncAEe3EAd7qEBTWAwhmd4hTcncV6cd+dj0Vpw8plj+APn8wf/iY9C</latexit>rt+1

<latexit sha1_base64="CxJEAf5DMfxYjbGo+nQGwerrsdc=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSp4KkkR9Vjw4rGCaQttKJvtpl262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4bua3n7g2IlGPOEl5ENOhEpFgFK3k636O036l6tbcOcgq8QpShQLNfuWrN0hYFnOFTFJjup6bYpBTjYJJPi33MsNTysZ0yLuWKhpzE+TzY6fkwioDEiXalkIyV39P5DQ2ZhKHtjOmODLL3kz8z+tmGN0GuVBphlyxxaIokwQTMvucDITmDOXEEsq0sLcSNqKaMrT5lG0I3vLLq6RVr3nXtfrDVbVxXsRRglM4g0vw4AYacA9N8IGBgGd4hTdHOS/Ou/OxaF1zipkT+APn8wcmOI7S</latexit>rt

<latexit sha1_base64="iIuaEpoJLqF/TD0UgAoX8u9HImU=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSp4KkkR9Vjw4rGCaQttKJvtpl262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4bua3n7g2IlGPOEl5ENOhEpFgFK3km36O036l6tbcOcgq8QpShQLNfuWrN0hYFnOFTFJjup6bYpBTjYJJPi33MsNTysZ0yLuWKhpzE+TzY6fkwioDEiXalkIyV39P5DQ2ZhKHtjOmODLL3kz8z+tmGN0GuVBphlyxxaIokwQTMvucDITmDOXEEsq0sLcSNqKaMrT5lG0I3vLLq6RVr3nXtfrDVbVxXsRRglM4g0vw4AYacA9N8IGBgGd4hTdHOS/Ou/OxaF1zipkT+APn8wcnwI7T</latexit>st

Critic

<latexit sha1_base64="iDEgR0h1UX0kYCfRR/w8IVJAxC8=">AAAB83icbVBNS8NAEN34WetX1aOXxSp4KkkR9Vjw4rGC/YAmlMl20y7dbMLuRCihf8OLB0W8+me8+W/ctjlo64OBx3szzMwLUykMuu63s7a+sbm1Xdop7+7tHxxWjo7bJsk04y2WyER3QzBcCsVbKFDybqo5xKHknXB8N/M7T1wbkahHnKQ8iGGoRCQYoJV8X0EowccRR+hXqm7NnYOuEq8gVVKg2a98+YOEZTFXyCQY0/PcFIMcNAom+bTsZ4anwMYw5D1LFcTcBPn85im9sMqARom2pZDO1d8TOcTGTOLQdsaAI7PszcT/vF6G0W2QC5VmyBVbLIoySTGhswDoQGjOUE4sAaaFvZWyEWhgaGMq2xC85ZdXSbte865r9YerauO8iKNETskZuSQeuSENck+apEUYSckzeSVvTua8OO/Ox6J1zSlmTsgfOJ8/H5ORpw==</latexit>r✓
<latexit sha1_base64="Z7iSectvczpyjDdtTfDwfJade74=">AAAB8HicbVDLSgNBEJz1GeMr6tHLYBTiJewGUY8BL+IpgnlIsoTZSW8yZGZ3mekVQshXePGgiFc/x5t/4yTZgyYWNBRV3XR3BYkUBl3321lZXVvf2Mxt5bd3dvf2CweHDROnmkOdxzLWrYAZkCKCOgqU0Eo0MBVIaAbDm6nffAJtRBw94CgBX7F+JELBGVrp8a7UwQEgO+8Wim7ZnYEuEy8jRZKh1i18dXoxTxVEyCUzpu25CfpjplFwCZN8JzWQMD5kfWhbGjEFxh/PDp7QM6v0aBhrWxHSmfp7YsyUMSMV2E7FcGAWvan4n9dOMbz2xyJKUoSIzxeFqaQY0+n3tCc0cJQjSxjXwt5K+YBpxtFmlLcheIsvL5NGpexdliv3F8XqaRZHjhyTE1IiHrkiVXJLaqROOFHkmbySN0c7L8678zFvXXGymSPyB87nD/zgj8o=</latexit>

J(✓)

<latexit sha1_base64="7dXFDGbmJ+jvoLC3k81uYlWChY8=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LFbBU0mKqMeCF48V7Ae0oWy2m3btJht2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqGZVqxptMSaU7ATVcipg3UaDknURzGgWSt4Px7cxvP3FthIofcJJwP6LDWISCUbRSq4cjjrRfrrhVdw6ySrycVCBHo1/+6g0USyMeI5PUmK7nJuhnVKNgkk9LvdTwhLIxHfKupTGNuPGz+bVTcm6VAQmVthUjmau/JzIaGTOJAtsZURyZZW8m/ud1Uwxv/EzESYo8ZotFYSoJKjJ7nQyE5gzlxBLKtLC3EjaimjK0AZVsCN7yy6ukVat6V9Xa/WWlfpbHUYQTOIUL8OAa6nAHDWgCg0d4hld4c5Tz4rw7H4vWgpPPHMMfOJ8/nTuPEQ==</latexit>

✓

(a) (b)

Figure 2. Fundamentals of reinforcement learning. (a) The state-action-reward-state-action feedback
loop. The state, reward, and action at time t is given by st, rt, and at respectively, where at = π(st) and
π(·) is the control policy. The agent optimizes its policy by observing and reacting to the environment.
(b) The actor-critic training paradigm. The agent includes the actor and critic. The actor defines the
control policy (the family of policies is parameterized by θ). The critic evaluates the policy (J(θ) is the
value of the policy πθ(·)) based on feedback from the environment, and guides the actor to a better
policy (via the gradient ∇θ).

2.2. The System State Space

In multi-agent systems, the notion of a “state” has a local and a global meaning. Local
states refer to individual agents, whereas global or system states include all the individual
local states and other relevant parameters (such as the positions of the interest-points in
tracking applications).

A key challenge in multi-agent RL is the exponential growth of the state-space in the
number of agents. A single agent system on a 10 × 10 grid has at minimum 100 possible
states (if each state corresponds to a coordinate position). However, an n-agent system on
the same 10 × 10 grid has 100n possible states.

Locally interactive structure will often be referenced in this paper to reduce com-
putational complexity (Section 3) and satisfy fundamental communication constraints
(Section 4). This property implies that activity occurring in remote areas of the grid
relative to any agent, is less relevant to the optimal behavior of that agent than activity
nearby [7,8]. Each agent can then simplify the global state it “sees” while staying responsive
to global/system-level objectives.

Another challenge in multi-agent systems is that agents only observe their local states
(not the global state). “Partially-Observable” MDPs (or POMDPs) allow observations to
stochastically depend on the underlying global state. POMDPs are more complicated than
MDPs and fall outside the scope of this survey. However, other ways of extending the MDP
framework to multi-agent systems are discussed in Section 3.

2.3. Rewards

The reward function assigns a real-valued number to each state. Higher rewards
incentivize desirable states (i.e., states in which interest-points and agents overlap) whereas
negative rewards discourage undesirable states (i.e., states in which positions of two agents
coincide), as depicted in Figure 1c. The objective in RL is to determine behavior that
maximizes the expected reward over the operating lifetime.

2.4. Actions, Policies, and Value Functions

A policy π(s) defines the actions ai ∈ Ai of each agent i ∈ N in the current state
s ∈ S where N is the set of all agents, Ai is the set of all possible actions at agent i and S
is the set of all possible states (in the multi-agent system). That is, for some joint action
a = (a1, a2, . . . , a|N |):

π(s) := a. (1)

Aerospace 2022, 9, 488 5 of 24

Local policies πi(s) define the actions ai of a particular agent i ∈ N , whereas global policies
π(s) = (π1(s), π2(s), . . . , π|N |(s)) define the actions of all |N | agents simultaneously (i.e.,
all the individual local policies). The actions executed by all agents collectively form
the “joint” action a. In distributed systems, each agent only has direct access to its local
state, so any joint-action requires some form of system-wide inter-agent communication to
infer s ∈ S .

In applications where the system has locally interactive structure, agents can prioritize
the local states of other agents in their vicinity over agents further away, to reduce the total
information throughput [9,10]. Each agent then obtains a unique view of the state space,
with decreasing resolution in regions of the grid more remote from its current position.
Even though each agent has different views, the joint-action is still approximately optimal
provided the remote areas have enough resolution to capture “lower-order” trends. This
trade-off between information throughput and overall tracking performance is further
explored in Sections 3 and 4.

Every policy π(s) at state s ∈ S has an associated value Vπ(s), defined as the expected
discounted reward received over the operating lifetime. Vπ(s) is called the value function
for the policy π. Let St, At, and Rt be random variables that denote the system state, action,
and reward respectively at time t. Let γ denote the discount factor which, like an interest
rate, discounts the rewards expected in the future over rewards in the present. Then Vπ(s)
is defined as:

Vπ(s) := Eπ

[
∞

∑
k=0

γkRt+k|St = s

]
. (2)

Let π∗(s) denote the policy with the highest value V∗(s) (i.e., the optimal policy):

V∗(s) := max
π

Vπ(s), (3)

π∗(s) := arg max
π

Vπ(s). (4)

The main objective in RL is to compute the π∗(s) defined in (4). The optimizations
in (3) and (4) satisfy the following fundamental property:

V∗(s) := max
a

Eπ [Rt + γV∗(St+1)|St = s, At = a] (5)

Equation (5) follows from Bellman’s Principle of optimality which says that any
segment in the shortest path between two points is the shortest sub-path between the
segment endpoints. In this case, the “shortest” path is the trajectory of states that achieves
the maximum discounted reward in (2).

For most applications, it is not practical to compute (3) and (4) directly since there are
exponentially many trajectories in the size of the state space |S|. The fixed-point equation
in (5) reduces this complexity, but not to the extent that direct computations are feasible.

Deep RL finds approximate solutions to (3). The value function Vπ(s) is modeled by
a neural network. Instead of directly computing (3), RL samples from the next reachable
subset of states and observes the accrued reward. If the neural network is sufficiently deep
and the subset of sampled states is sufficiently large, there is a decent chance the estimate
V̂π(s) will converge to the actual Vπ(s). There is no formal proof of this statement, only
compelling experimental results and simulations [11,12].

The fixed-point Equation (5) still plays a key role in deep RL, albeit indirectly through
the “update rule”. Each new observation feeds into a running estimate V̂π(s) of Vπ(s):

V̂π(St) + α(Rt+1 + γV̂π(St+1)− V̂π(St))→ V̂π(St). (6)

The parameter α refers to the sensitivity of the estimate to the newly acquired data (the
observed reward Rt+1). The update rule in (6) is called the “Bellman update”. In deep RL,

Aerospace 2022, 9, 488 6 of 24

the difference between the update and the previous estimate (the loss function) drives the
parameters of the neural net in the direction of the update via stochastic gradient descent.

2.5. Value Iteration vs Policy Iteration

An important measure of value called the “Q” function Qπ(s, a) also depends on the
next action a = π(s):

Qπ(s, a) = Eπ

[
∞

∑
k=0

Rt+k|St = s, At = a

]
. (7)

Let Q∗(s, a) denote optimal Q-value at state s from following the optimal action
a = π∗(s):

Q∗(s, a) := max
π

Qπ(s, a), (8)

π∗(s) := arg max
π

Qπ(s, a). (9)

The Q-function also satisfies a fixed-point equation:

Q∗(s, a) = max
a

Eπ [Rt + γQ∗(St+1, At+1)|St = s, At = a]. (10)

Both notions of value Qπ(s, a) and Vπ(s) support two fundamentally different ap-
proaches in RL: value iteration and policy iteration. The actor-critic approach, associated
with policy iteration maintains two parallel estimates: the “actor” is one in a family of
policies {πθ : θ ∈ Θ} parameterized by θ whereas the critic is an estimate of the value of
the current policy J(θ) := Eπθ

[Vπθ
(s)], as depicted in Figure 2. Each sequence of updates

cycles between the actor and critic, waiting for J(θ) to stabilize before altering the current
policy πθ to one better [13,14].

Q-learning by contrast, associated with value iteration, only maintains an estimate of the
Q-function Qπ(s, a) [15]. The policy πg that explores the state-space is the “greedy” policy:

πg(s) := arg max
a

Qπ(s, a). (11)

The unusual feature of (11) is that the greedy policy πg is different from the π of
Qπ(s, a) (which generates πg); Q-learning does not wait for the estimate Qπ(s, a) to stabilize
before altering the policy to πg. Nevertheless, there is mathematical proof that πg converges
to π∗ if it is sufficiently “exploratory” (i.e., samples a large enough subset of the state-space
infinitely often); the “max” operation in (11) is an infinity-norm with a telescoping property
in the policy space [16]. The literature often asserts that Q-learning has shorter convergence
times due to this aggressive update strategy.

2.6. The Deadly Triad

Two fundamental components of deep RL are the neural net approximation of Vπ(s)
(denoted by the estimate V̂π(s)) together with Bellman updates of the estimate based
on (6). Each update of V̂π(s) is formed (or ”bootstrapped”) from previous values of V̂π(s).
These strategies are called “function-approximation” and “bootstrapping” in the literature.
A special name belongs to the type of strategy in Q-Learning, where the policy being
followed (to explore the state-space) differs from the policy being evaluated. This strategy
is called “off-policy learning”.

The “deadly triad” is a problem that emerges when function approximation, boot-
strapping, and off-policy learning are combined [17]. Under certain conditions the learning
process is guaranteed to diverge from the true optimal policy. This implies that universal
convergence guarantees to the optimal policy are impossible.

Aerospace 2022, 9, 488 7 of 24

One partial antidote to the deadly triad is a technique called “experience-replay”.
The idea is to store state-action-reward experiences in a replay buffer. The Bellman up-
date randomly samples from experiences in this buffer to avoid any correlation between
successive samples. Stochastic gradient descent, which trains the neural network ap-
proximation of Vπ(s), requires independent samples to move in the direction of the local
minimum. Many improvements and enhancements of experience-replay have since been
proposed [18,19]. The deadly triad remains an active area of research.

3. Multi-Agent Planning and Control

Multi-agent systems present two distinct challenges. First, there is a “control” problem
caused by the exponential growth of the state space in the number of agents. Second, there
is a communication problem of sharing all the local states so that the agents arrive at a
common view of the global state. The communication problem is addressed in Section 4, so
the default assumption here will be that each agent sees the global state space.

Large state spaces require longer training times because the training process must
sample a sufficiently large subset of the state space S , sufficiently often, to learn both Vπ(s)
and the optimal policy π∗(s) for all s ∈ S . An important strategy to shorten the training
times is state-space compression. The idea is to map the old state space S to a new space
f : S → S ′ where

|S ′| << |S| (12)

but π∗(s) ≈ π∗(f (s)), or equivalently:

V∗π(s) ≈ V∗π(f (s)). (13)

The value on the left side of (13) is obtained from the optimal policy π∗(s) over S
and the value on the right is optimal over S ′. The constraint (13) implies that S ′ retains
all of the important information in S , namely, the information that allows the system of
robots to behave optimally with respect to S . The compression rate in (12) usually implies
polynomial (as opposed to exponential) growth in the number of agents n, so that:

|S ′| = O(p(n)) as n→ ∞, (14)

where p(n) is some polynomial function of n.
If a compression f satisfying (13) exists, then it suffices to sample S ′ instead of S

(which has fewer states and thus shorter convergence times). A key objective is finding
such an f and understanding the conditions for its existence.

Although the communication problem does not appear in (13) and (14), the fact
remains that individual agents do not see the global state S . Let N denote the set of
agents. Each agent i ∈ N makes a unique reconstruction of the global state S ′i from the
local states shared through the communication medium. Ideally, these reconstructions are
identical so that S ′i = S ′ for all i ∈ N . However in light of the communication problem,
it is better to relax this constraint and allow different reconstructions. Each agent i then
effectively applies a unique compression fi : S → S ′i . The local policies πi(fi(s)) act on
S ′i and collectively define the global policy π(s) = (π1(f1(s)), π2(f2(s)), . . . , π|N |(f|N |(s)).
The objective then is to find the full suite of compression functions { fi : i ∈ N} that
achieves (13).

The distributed compression approach (above) simplifies the control problem because
the global state-space S has locally interactive structure. Relative to any given agent, the lo-
cal states in its vicinity are more significant to its optimal operation than local states that are
further away. A “good” compression function fi prioritizes these local states over remote
states, but also includes enough remote information to capture lower-order phenomena.

Aerospace 2022, 9, 488 8 of 24

One enduring ambiguity in deep RL is the absence of any guarantees the recovered
policies are optimal. Neural networks have no known bounds on the accuracy of their ap-
proximations, and the training itself relies on stochastic gradient descent, which converges
only to a local optimum. This ambiguity is further exacerbated in the multi-agent setting,
where distributed compression alters the states seen by each node; there is a trade-off
between the compression rates corresponding to { fi : i ∈ N} and the policy performance
of π(s). The next sections will explore different approaches in RL that exploit locally
interactive structure in the state space.

3.1. Locally Interactive State Spaces

Every state space typically has a restricted set of legitimate transitions between indi-
vidual states. This property is present in the simple gridworld system for example, with one
robot on a 10 × 10 grid. Suppose the robot has four possible actions: “up”, “down”, “left”,
and “right”. There are 100 possible states in the system corresponding to unique squares
on the gird where the robot could be located. However, the robot can only reach (at most)
four adjacent squares on the grid in the next time-step.

By definition, the state s ∈ S and the subset X ⊆ S are locally interactive if ∑x∈X p(x|s) = 1,
where S is the set of all possible states. Locally interactive states are reachable in the next
time-step, and transitions between any pair of states occur exclusively through sequences
of local interactions. It is difficult to find formal methods of identifying and exploiting
locally interactive structure in general state spaces, but there have been attempts in the
literature to do so [20]. Examples include the “factored” MDP (F-MDP) [7,10] and POMDP
(F-POMDP) [8]. Both require an explicit locally interactive structure in the state-space.

3.2. Soft Locally Interactive Structure

Multi-agent tracking exhibits a more subtle “soft” form of locally interactive structure.
Suppose the interest-point locations are actually known beforehand (in practice, the agents
must explore the grid and share their observations to determine these locations). The op-
timal policy (that visits the most interest-points) solves a more difficult version of the
Travelling Salesman Problem. It requires an exhaustive search of all possible paths over the
grid, enumerating the length of each path, and selecting the path of shortest length. There
are exponentially many such paths in the size of the grid and number of agents. The fol-
lowing argument based on “soft” locally interactive structure yields an “approximately”
optimal policy without the exponential complexity of an exhaustive search.

There are two scenarios to consider: one where the normalized distribution of agents
matches the distribution of interest-points, and the other where the two distributions differ.
In the first scenario, agents visit the interest-points in their immediate vicinity to maximize
the total number of visitations. In the second, some (or all) of the agents must first re-
deploy to areas of the grid that are under-served to restore the equilibrium between both
distributions, so they can resume visiting interest-points in their immediate vicinity. Thus,
as long as the system remains in scenario one, the tracking problem is locally interactive;
the interest-points in the immediate vicinity of each agent take precedence over the interest-
points further away. Only when the distributions diverge, does remote activity affect the
optimal behavior of any given agent. The overall effect is a soft locally interactive structure,
where the system is mostly in the equilibrium of scenario one. This situation is depicted
in Figure 3.

The performance of π∗(f (s)) in (13) depends in part on the compression loss (i.e.,
the loss of useful information) which occurs when the compression functions { fi : i ∈ N}
do not perfectly conform to the locally interactive-structure in S . It is difficult to quantify
this loss without solving the multi-robot TSP problem alluded to earlier.

Aerospace 2022, 9, 488 9 of 24

1 2

34
5

67

1 2

34
5

67

(a) (b)

Figure 5: Locality of interaction in multi-agent systems with time-varying spatially distributed interest-
points. (a) Recursive state space decomposition. The planning problem for subregion 1 is
conditionally independent of subregions 2, 3 and 4 because these regions have approximately the
same density of interest-points and agents. Similarly, the planning problem for their union is
conditionally independent of regions 5-7. (b) Temporal/hierarchical task space decomposition.
Primitive actions move agents within each subregion. Macro-actions move agents between
subregions. Higher level macro-actions move agents between larger “macro” regions.

Figure 3. Soft locally interactive structure in the global state space. (a) The normalized distribution of
agents and interest-points are approximately equal at the resolution of regions {1, 2, 3, 4}, {5}, {6}, {7},
so the optimal agent activity in regions {1, 2, 3, 4} is independent of regions 5, 6 and 7. (b) Interest-
points drift into region 6, destabilizing the equilibrium between the normalized distributions. Options
or “macro-actions” move agents across regions to restore this equilibrium and “localize” the opti-
mal activity.

3.3. Performance Metrics

A low-complexity upper-bound on the performance of π∗(s) can be derived by com-
puting in each time-slot, the distribution of agents that matches the distribution of interest-
points. Let P(t) = {(xn, yn) : n ∈ N} denote the robot positions, let I(t) denote the set of
interest-points and let I(t) = {(ui, vi) : i ∈ I(t)} denote the interest-point positions all at
some fixed time-slot t. The optimal distribution P∗(t) minimizes the distance between the
agents and interest-points:

P∗(t) := arg min
P(t)

∑
n∈N

∑
i∈I(t)

||(xn, yn)− (ui, vi)||, (15)

where || · || is the Euclidean distance. Given robot positions P(t), define the distance from
agent n to its closest interest-point:

dP(t)(n) = min
i∈I(t)

||(xn, yn)− (ui, vi)||. (16)

Let d∗ denote the average minimum distance over all robots:

d∗ =
1
|N | ∑

n∈N

1
T

∫ T

0
dP∗(t)(n)dt, (17)

where T is the operating lifetime. The minimum average time elapsing between two
sequentially visited interest-points is d∗

vmax
where vmax is the maximum velocity of the agent.

An upper bound on the maximum number of interest-points visited by π∗(f (s)) is given by:

vmaxT
d∗
|N |. (18)

Equations (15)–(18) give an approximately optimal performance metric, apart from
the multi-agent TSP, that can be evaluated during simulation. They show whether or not
π∗(f (s)) satisfies (13). Alternatives to (15) for measuring the distance between distributions
include the Kullback-Leibler divergence (or mutual information).

The convergence properties of multi-agent RL with state-space compression, is an
ongoing area of research. One sub-topic of interest is mean-field RL, which explores the
asymptotic behavior of the system as the number of agents goes to infinity. Each agent

Aerospace 2022, 9, 488 10 of 24

observes the sum of the local states, which is a form of distributed state-space compression.
It has been shown that a Nash equilibrium in the value function exists [21].

3.4. Hierarchical Reinforcement Learning

The discussion thus far has focused on compressing the state-space, one of two factors
driving complexity. The other factor is the size of the action-space, which also increases
exponentially in the number of robots. If each robot has four possible actions (“up”, “down”,
“left”, and “right”), then the number of possible joint actions is 4|N |.

Hierarchical reinforcement learning (HRL) is a strategy for compressing action spaces [22].
The key idea in HRL is “options” (i.e., macro-actions) which specify sequences of primitive
actions (“up”, “down”, “left”, and “right”) that take effect over single time-steps. Lower policies
specify primitive actions, whereas higher policies specify options. The system policy is an
appropriate fusion of these higher and lower policies. If the policy levels are independent, they
can be trained separately. In reality, policy levels are inter-dependent and must be untangled in
order for separate training to work properly.

In multi-agent tracking, higher policies issue directives such as “move from region A
to region D”, as depicted in Figure 3b. Options that execute this directive rely on sequences
of lower policies such as “move from region A to B”, “move from region B to C”, “move
from region C to D”. Once the robot is in region D, the higher policy may issue new
directives such as “find interest-points within region D”, which correspond to different
option sequences.

There is a natural relationship between HRL and soft locally interactive structure in
the state space; higher-order policies respond to aggregated (i.e., large-scale) phenomena
of the kind that is not lost when the state-space is compressed. This relationship between
action-space and state-space compression, deserves further attention in the literature.

Option-spaces also grow exponentially with respect to the time-horizon window.
For example, given the previous four primitive actions and a horizon of T time-steps,
the number of possible options is 4T . Some of these options are equivalent, in that they share
the same start and end-points and have similar trajectories. To compress the option-space,
each equivalence class can be reduced to an exemplar from the class. The problem is then
choosing equivalence classes that don’t sacrifice too much in the way of performance. This
problem is largely application-specific. In multi-robot tracking, the ideal compressed option-
space corresponds to a dynamic aerial transportation network, as depicted in Figure 4.

Unmanned Aerial Traffic Management (UTM) systems, which allocate airspace to
UAVs on-demand, are a current topic of interest in the aerospace community. There is clear
overlap in scope between option-spaces in RL and airspace assignment which has yet to be
fully explored.

(a) (b)

Figure 4. A self-adjusting options-induced skyway network. (a) The grid divides hierarchically
into regions with the same number of interest-points at cells of the same level. (b) Options-induced
trajectories move UAVs to different regions of each cell. Higher throughput trajectories occur at
higher levels and are represented by thicker lines. Base-stations are denoted in blue.

Aerospace 2022, 9, 488 11 of 24

A major challenge in HRL is applying the ideas in Section 2 to each policy level of
the option-space. Part of the problem is appropriately choosing the reward function for
each sub-task, to achieve the desired net effect over all policy levels [23]. One family of
strategies, based on the actor-critic approach, is the option-critic where each policy-level is
assigned its own actor (estimate of the policy) and critic (value of the policy) [24]. There are
numerous variations of this approach [25–27].

Q-Learning presents a different challenge rooted in the deadly triad of Section 2, where
sampling from an experience-replay buffer makes successive updates look independent
to the stochastic gradient descent algorithm. When this technique is used in HRL, older
“experiences” may include lower-level options that have since changed in training; the
system (viewed from any higher policy level) is no longer stationary. HIRO (Hierarchical
Reinforcement Learning with Off-Policy Correction) deals with this issue by re-labeling
previous experiences with newer options most closely matching the older ones [28,29].
Other strategies also attempt to solve the non-stationary side-effects of HRL [30–32].

3.5. Sequential Decision-Making

In multi-agent tracking, some agents may migrate to new areas in search of interest-
points while others monitor the areas already explored. This requires coordination between
agents, which adds another layer of complexity to the problem; certain outcomes depend
on particular sequences of actions (“UAV1 moves here then UAV2 moves there”). Leaving
aside the communication requirements, there are exponentially many permutations of these
action sequences (with respect to their length).

The complexity of sequential decision-making has been studied in the literature.
One way of reducing complexity is by expanding the local state-space at each agent to
include the actions of relevant (neighboring) agents, so that the system dynamics “seen”
by an individual agent appear stationary [33]. The fixed-point techniques in Section 2 for
optimizing systems with stationary dynamics, then reduce to this expanded local system
(provided the agents are sufficiently homogeneous).

Sequential decision-making has also been studied in the context of game-theory,
where the objective is to choose action sequences that maximize some joint utility function.
The Nash equilibrium of the system depends on the information “profiles” (i.e., observa-
tions of the global state) available to each agent and the timing of their availability [34].
In addition, distributed multi-agent optimization appears in clean-slate approaches to
network security where some of the agents are adversarial [35].

Option-spaces offer a possible solution to the complexity of sequential decision making
in multi-agent tracking. Every agent action is determined by a fusion of policies over
multiple hierarchical levels, where higher levels determine the activity of larger groups
(clusters of clusters of clusters) of agents. The complexity of any action sequence reduces to
the sum (over all levels) of the complexity within each cluster. If cluster sizes stay constant,
the sequence complexity depends on the number of levels in the hierarchy, which grows
logarithmically in the number of agents (instead of exponentially).

4. Multi-Agent Communication and Networking

A fundamental component of any multi-agent system is the communication mecha-
nism between robots. In many applications of interest, the system operates without any
pre-existing wireless infrastructure; the agents themselves must wirelessly share and dis-
seminate information to coordinate their activity, a model of communication known as
Mobile Ad-Hoc Networking. One of the major challenges in Mobile Ad-Hoc Networks
(MANETs) is routing; the “nodes” (i.e., agents) in the network must collectively find
communication paths to relay messages from a “source” agent (the point of origin) to
a destination. Since the agents are mobile, the routes change rapidly with time. This
imposes another computational burden on the system, that of recognizing any changes to
the network topology and updating the routing tables at each robot. Routing instability

Aerospace 2022, 9, 488 12 of 24

also has safety implications if the agents rely on the network to broadcast their positions
and headings. Messages dropped en-route could lead to mid-air collisions.

A second challenge in ad-hoc networking is interference management. In wireless
networks, all users share the same communication medium, which imposes fundamental
limits on the amount of data the network can support. An important result in wireless
network theory is that the data throughput is subject to sub-linear scaling (with respect to
the number of agents) for almost all fading regimes; the data rate per agent goes to zero as
the number of robots in the system grows to infinity [36]. The communication problem is
thus inseparable from the control problem discussed in Section 3; any system of agents that
relies on “raw” uncompressed data to coordinate its activity is fundamentally unscaleable.
The data must be compressed in a way that preserves all of the information needed for
coordination. In other words, the data compression scheme must conform to the locally
interactive structure of the global state space.

The following sections provide an overview of some important routing protocols
for wireless ad-hoc networks. One class of protocols based on the idea of clustering is
especially pertinent to multi-robot networks and will be discussed in some detail.

4.1. Routing Protocols in Ad-Hoc Networks

There are several ways of classifying routing protocols. Link-state (LS) protocols
flood the network with lists of “neighbors” for all nodes, so each node can reconstruct
the network topology [37,38]. Distance-vector (DV) protocols by contrast, have each node
share its shortest-paths-to-all-other nodes (i.e., the distance-vector) with its neighbors [39].
All nodes then infer the shortest path to every other node. As a general rule, LS protocols
require more overhead than DV protocols. However, DV protocols do not provide nodes
any knowledge of the network topology and are thus vulnerable to the so-called “count-to-
infinity” problem [40].

Both LS and DV protocols prioritize shortest paths over all other routes. The metric
for distance is usually the number of hops, but can also include the delay or cost. A more
relevant metric than distance for multi-robot networks (where safety is a concern) is
reliability; the system tolerates lower data rates provided communication is sufficiently
reliable. LS and DV protocols are not well equipped for these “low-bandwidth-delay-
sensitive” applications.

Other protocol classifications exist as well. Pro-active protocols periodically update
their routing tables to ensure the entries are always fresh. They are advantageous in safety-
critical applications that require reliable communication. Reactive protocols on the other
hand, only initiate updates when requested routes are not offered in existing tables. They
tend to be more nimble and efficient by design, and are useful in applications with strict
constraints on power consumption [41–43].

4.2. Clustering Protocols

The concept of clustering is the basis for a class of protocols designed specifically for
multi-agent systems. A “cluster” is a functionally centralized collection of nodes (or agents)
that operates according to a common transmission schedule. The purpose of a cluster is to
ensure reliable communication between all of its members [44].

At start-up, agents are not organized into clusters and instead go through a cluster-
formation phase depicted in Figure 5. During this phase, they broadcast “probe” packets to
discover their neighbors and any potential candidates for cluster membership. After form-
ing their respective clusters, each cluster elects a designated head responsible for organizing
all cluster activity. Over the course of normal operation, the agent trajectories within a
cluster might diverge, so clusters periodically go through maintenance phases to evict some
members and elect new heads.

Each of the phases described above has been studied extensively in the literature.
Ideally, clusters should be stable (as far as possible), so the criteria for cluster-membership
must favor candidates with close trajectories. This raises the problem of measuring “close-

Aerospace 2022, 9, 488 13 of 24

ness” and the associated trade-offs between accuracy and responsiveness [45–47]. Leader
election is a research area in its own right. All distributed agreement is subject to the
Byzantine General’s dilemma which states that perfect consensus is generally impossible.
The literature includes several protocols for electing cluster-heads with varying degrees of
consensus [48].

Figure 9: The consensus problem in cluster formation. (a) Some agents that view themselves as
members of blue clusters appear to other agents as heads of purple clusters. (b) Agents attempting to
form purple clusters become orphans.

(a) (b)

Figure 5. The consensus problem in cluster formation. (a) Some agents that view themselves as
members of blue clusters appear to other agents as heads of purple clusters. (b) Agents attempting to
form purple clusters become orphans (circled in orange).

Every form of communication requires some level of synchronicity between agents.
Clock synchronization protocols have been studied together with impossibility results for
different models of clock behavior [49,50]. There are also communication protocols for
unsynchronized systems with bounded clock skew [51].

4.3. Hierarchical Multi-Level Clustering

Single-level clustering permits agents to only communicate with cluster-members,
preventing inter-cluster communication. To allow this capability, level-1 cluster-heads
can form level-2 clusters and elect level-2 cluster heads, continuing the process for higher
levels until all robots are united under one hierarchical multi-level clustering (MLC) tree,
as depicted in Figure 6.

A completely unique set of challenges emerges in MLC. Strictly speaking, the levels
are not independent; processes that occur in lower-level clusters such as evictions, leader
elections, cluster merges and splits, also change the membership of higher-level clusters.
Regardless of the activity in higher or lower levels, it is generally desirable that all agents
remain responsive to the agents in their vicinity and protected from the overhead of the
full tree. Two principles aid in that endeavor: first, every cluster-head must belong to a
level-1 cluster, and second, every robot must only be the head of one cluster.

(a) (b)

Figure 6: Cluster-based routing. (a) Clusters are groups of agents that share relatively stable
communication channels. The metric for stability usually involves some weighted combination of
distance and velocity. Agents elect a cluster-head to coordinate intra-cluster communication. Cluster-
heads also act as gateways to the rest of the network. (b) Macro-clusters are groups of cluster-heads
that also share stable communication channels. These “higher-level” clusters define stability over
longer time-horizons. The clustering process continues until the system of agents is fully connected
through a single communication tree.

Figure 6. Hierarchical multi-level clustering. (a) 3-level hierarchical tree where blue = level 1,
green = level 2, and orange = level 3. Every level 2 and level 3 cluster-head belongs to a level 1 cluster.
(b) Ideally, higher-level clusters are more stable and tolerate drift over longer trajectories.

Aerospace 2022, 9, 488 14 of 24

To isolate higher-level clusters from the activity in lower-levels, each level-k cluster
is associated with a token that points to the tokens of its level k− 1 cluster-members and
the token of its level k + 1 cluster-head. Any membership changes to a level-k cluster can
then be executed by token transfers and pointer modifications at levels k− 1 and k + 1. It is
useful to see examples of token behavior in some basic cluster operations.

(O1) Cluster-Head Reassignment: Sometimes a designated cluster-head is no longer suit-
able for the role. This occurs when another member is closer to the centroid of the
cluster, or the cluster-head “despawns” (i.e., powers-down or self-disables). Prior
to the trigger-event, the cluster-head transfers the cluster token (and the associated
responsibilities) to the member closest to the centroid.

(O2) Member Transfer: An agent may drift closer to the centroid of another cluster. The “old”
cluster-head then initiates a transfer to the new cluster by alerting the higher-level
head of the sub-tree. Upon approval, the old token deletes its pointers to the departing
agent. The new token adds pointers to the joining agent, which does the same in
reciprocity, as depicted in Figure 7.

(O3) Cluster Split: Level-k clusters with sizes that exceed a certain threshold may split in
two. The level-k + 1 cluster-head creates a new level-k token and designates the new
level-k cluster-head as an “idle” member (an agent in the sub-tree that is not the head
of any cluster) closest to the centroid. The new cluster includes all members of the old
cluster closest to the new cluster-head. The token pointers are adjusted appropriately.

(O4) Cluster Assimilation: Clusters can also shrink when their members leave or de-spawn.
If a level-k cluster-size falls below a threshold, the level-k cluster-head initiates an
assimilation request, in which the head of the subtree moves the members to the
closest level-k clusters. The token of the old level-k cluster is then destroyed.

(O5) Boss Demotion: As the system approaches the end of its operating lifetime, agents
de-spawn faster than they re-spawn. The MLC tree then shrinks until the head of the
tree, (i.e., the boss) has only one member in its cluster. The boss destroys its token to
make this member the new boss and eliminate the superfluous extra level.

(a) (b)

(c)

Figure 10: An event sequence before, during, and after the cluster maintenance phase. (a) Before
cluster maintenance, an agent drifts away from its cluster-head. (b) During cluster-maintenance, the
agent closest to the centroid of the cluster is elected cluster-head. Each agent determines whether it
lies within a predefined distance of its cluster-head. The metric for distance may involve some
weighted combination of position and velocity. Agents outside this radius look for external cluster-
heads that may be in range. (c) After cluster maintenance, agents belong to newly reconstituted stable
clusters.

(a) (b)

Figure 7. Member transfer and cluster-head reassignment. (a) A cluster-member drifts away from its
cluster-head. (b) The cluster elects a new cluster-head closer to the centroid. (c) The new cluster-head
initiates a transfer which allows the remote member to join the more suitable cluster.

A universal implementation of MLC does not exist, but the operations above describe
a general architecture [52]. MLC protocols can also serve as reliable underlays for high-rate
shortest-path protocols with less reliable links. The underlay delivers the low-bandwidth
control packets of the overlay while the overlay delivers the high-bandwidth data packets
of the application layer [53].

4.4. Belief Propagation in Multi-Level Clustering

The previous discussion of MLC focused on the need for reliable communication
in multi-robot networks, where safe collision-free operation is of paramount importance.
However, the wireless medium itself is subject to fundamental scaling laws that bound the
total throughput as the size of the network (i.e., the number of nodes) grows to infinity [36].

Aerospace 2022, 9, 488 15 of 24

Wireless scaling has been studied extensively in the literature [54,55]. For convenience, let
n := |N | denote the number of nodes in the network. The sharpest results so far show the
total throughput T(n) satisfies:

T(n) ≤ K(ε)n1−ε, (19)

where K(ε) is function of ε. Moreover,

lim
ε→0

K(ε)n1−ε = 0. (20)

The implication of (19) and (20) is that the rate per-node goes to zero as the number
of nodes becomes large. Therefore a communication policy in which nodes transmit
uncompressed data is not scaleable in multi-agent networks. MLC is necessary because
it matches the locally interactive structure of the global state to the network capabilities
(bounded by (19)).

Each agent has a “belief”, a probabilistic estimate of interest-point locations in the
grid. Beliefs play a key role in the POMDP framework; the value function depends on the
beliefs over states and not the states themselves. In multi-agent systems, the beliefs of the
agent may differ. Each agent is relatively confident about the interest-point locations in its
vicinity, and perhaps less so of those in the remote regions; those in the vicinity are observed
directly, whereas those further way are relayed through the communication network. Since
the global state-space has soft locally interactive structure (Section 3), the robots need not
have the same beliefs to collectively maximize the interest-points visited over the operating
lifetime. It is this freedom that allows the system to satisfy (19).

The MLC tree defines a mechanism for belief sharing that conforms to the scaling
laws in (19). The level-k cluster-heads aggregate the beliefs of their cluster-members into a
single belief and send this belief to their level-k + 1 cluster-heads. In return they receive
beliefs from outside of the sub-tree, and forward them down to their members. Every level
of the MLC adds another layer of compression to ensure the total throughput does not
exceed (19).

To make this more precise, let b(i) and s(i) denote the belief and local state of agent i
respectively. Assume this agent is a cluster-head and let LEVEL(i) denote the cluster level.
Let M(i) ⊆ N denote the members of the cluster where N is the set of agents. Let c denote
the compression factor. The compression algorithm satisfies the following recursion:

b(i) =

{
1
c ∑j∈M(i) b(j), LEVEL(i) > 0,
s(i), LEVEL(i) = 0,

(21)

where the sum ∑k∈M(j) b(k) denotes the belief aggregation performed by agent j.
Belief propagation in general multi-agent networks has also been studied in the

literature [56,57]. One of the main challenges is preventing old beliefs from contaminating
new beliefs, which occurs when there are cycles in the network that propagate beliefs
indefinitely. Tree-structured networks (like MLC) have no cycles.

The successful propagation of beliefs does not in itself guarantee optimal system
operation. Agents must still collectively “sample” the global state in search of interest-
points by visiting all regions sufficiently often. The process of exploration continues until
the system learns the interest-point dynamics. During this process, some agents may
forgo visiting the areas that previously had many interest-points; agents choose to explore
rather than exploit existing knowledge. The “exploration vs exploitation” trade-off is a
fundamental area of study in RL and still an active area of research.

5. A Proposed Control/Communication Architecture for Multi-Agent Systems

The goal of this paper was to show that a broad selection of work in the literature fits
into a proposed control/communication “architecture”; an organized set of interacting,
independent modules. This architecture is depicted in Figure 8.

Aerospace 2022, 9, 488 16 of 24

A “module” defines an interface with some concrete functionality, while the “interface”
specifies the inputs and outputs of the desired task. The implementation or mechanism
used to execute the task is not specified by an architecture, the expectation being that every
implementation is eventually made obsolete by advances in technology. An architecture,
by contrast, describes something more resilient and rooted in fundamental constraints of
the system itself, constraints that do not change with technology but describe the limits of
what technology can do. In the proposed architecture, these constraints are the complexity
and network capacity of multi-agent systems. The modules in Figure 8 are less formal and
loosely refer to common tasks appearing repeatedly in the literature.

Control

Hierarchical RL

Single-Agent RL

1 2

34
5

67

C

1 2

34
5

67

(a) (b)

Figure 5: Locality of interaction in multi-agent systems with time-varying spatially distributed interest-
points. (a) Recursive state space decomposition. The planning problem for subregion 1 is
conditionally independent of subregions 2, 3 and 4 because these regions have approximately the
same density of interest-points and agents. Similarly, the planning problem for their union is
conditionally independent of regions 5-7. (b) Temporal/hierarchical task space decomposition.
Primitive actions move agents within each subregion. Macro-actions move agents between
subregions. Higher level macro-actions move agents between larger “macro” regions.

Reward
function

Actor-Critic or
Q-Learning

Options/UTM
explore v exploit

Stationary
strategies

Lo
ca

lly
-in

te
ra

ct
iv

e
st

ru
ct

ur
e

Communication

Be
lie

f p
ro

pa
ga

tio
n

/ c
om

pr
es

si
on

Multi-level clustering

Single-level
clustering

Cluster
formation

Cluster
maintenance

Clock sync

Cluster merge/
split/hand-off

Figure 8. A proposed control and communication architecture for multi-agent tracking systems.

Figure 8 highlights a duality between the control and communication components
of the architecture. Both components start with a single-agent module (an RL agent
or a cluster) and build a multi-level hierarchy over that module. On the control side,
the sub-modules of an agent include the reward function and the mechanism for finding
optimal primitive policies (i.e., actor-critic or Q-learning). The outer module includes the
single-agent sub-module as well as two sub-modules required in hierarchical multi-agent re-
inforcement learning. The first ensures the system remains stationary over the option-space,
and the second determines the structure of the option-space. The latter, by implication, also
includes traffic management capabilities and an exploration/exploitation trade-off.

The communication side mirrors this progression, from single-level clusters to hier-
archical multi-level clustering trees. Single-level clusters include sub-modules for cluster
formation, cluster maintenance, and clock synchronization, whereas multi-level clusters
implement the merge, split, and hand-off functionality. Multi-level clustering disseminates
local state information to all of the agents in the form of “beliefs”. The mechanism for belief
“sharing” or “propagation” includes some form of data compression.

Beliefs shared through the clustering tree must conform to the locally interactive struc-
ture of the state space; agents should only exert higher-order influence on any remote agent
receiving their compressed and aggregated local states. The module that interprets locally
interactive structure on the control side receives the beliefs shared from the communication
side. This module constructs a compressed global state for each agent centered at the agent,
and feeds this reconstructed state into the agents’ control policy, connecting the control and
communication components.

Each module in the architecture has received attention in the literature, and there is
no single implementation that supersedes all others. Incremental improvements at the
modular level will likely continue well into the future, but there are fundamental constraints
on capacity and complexity that can never be exceeded. Twin pillars of the proposed
architecture (i.e., locally interactive structure and multi-level clustering) cater precisely to

Aerospace 2022, 9, 488 17 of 24

these constraints. Locally interactive structure keeps complexity in check, by settling for
approximately optimal performance (13) and compressing the state-space (12). Multi-level
clustering satisfies throughput constraints by compressing the beliefs hierarchically (21).
These operations are mutually beneficial and motivate a yet-to-be-made proof-of-concept
for the full architecture.

A drawback of deep RL is that the learning process does not always find the optimal
policy π∗(s). Deep RL relies on neural networks to approximate the value V∗π(s) of π∗(s),
and these networks converge to local maxima via stochastic gradient descent. Local maxima
are generally not globally optimal. The optimal trajectories can be computed by solving an
extended version of the TSP, but such solutions are complex and do not scale in the number
of agents. An alternative is to use a lower-complexity upper-bound on V∗π(s) to measure
how far the computed policy is from the optimal in the worst case. One such upper-bound
was derived in (15)–(18).

5.1. Multi-Agent Coordination and Communication in the Literature

Despite the absence of a universally accepted architecture, multi-agent systems have
received sustained attention in the literature. Usually the scope of work falls within indi-
vidual modules in Figure 8. There have been studies that explore ways of disseminating
the minimally required local state information for global coordination [9,58]. To achieve
any coordination, global tasks must be converted into individual local tasks [59,60]. The re-
verse approach is also of interest; inferring the global effect of local controllers in robot
swarms [61]. The problem of designing multi-agent controllers is still unresolved. Some ap-
proaches rely on factoring “Partially Observable MDPs” or POMDPs [10]. Others use evolu-
tionary methods to weed out “unfit” controllers with fitness functions [60,62]. The promise
of deep RL for multi-agent control appears in recent surveys [63]. The closest realiza-
tion of the architecture in Figure 8 appears in [1]. The local controllers in [1] are largely
independent but include some nearest-neighbor interaction.

5.2. Developing a Proof-Of-Concept: A Structured Approach

The architecture in Figure 8 depicts a plausible strategy for the multi-agent tracking
problem, based on approaches to some of the sub-problems in the literature. A proof-
of-concept/implementation for the whole architecture has yet to appear, but the goal of
this paper is to motivate efforts to that end. The following section outlines a structured
approach towards a possible implementation, using insights from the authors’ experiences
in this space.

The main objective of this architecture is to support a scaleable solution; one that
enables “approximately” optimal tracking with arbitrarily many agents. If we assume all
agents have access to full state information, the complexity of multi-agent reinforcement
learning still grows exponentially in the number of agents (without any mitigating strate-
gies). It is natural to address this bottleneck first and progressively relax each assumption,
adding more modules in the architecture until reaching a fully decentralized solution.

Some reasonable guidelines define an approach towards a proof-of-concept. The first
is to keep the action-space small; the complexity of a primitive space (i.e., “up”, “down”,
“left”, “right”), still grows exponentially in the number of agents and remains unsolved.
Once a solution for the primitive space is found, more complex aerodynamic actions can be
considered. The next is to start with basic RL before proceeding to deep RL. The former
works with the “raw” Q-tables Qπ(s, a) and does not include any function approximation.
Since the number of entries in the table (state-action pairs) grows exponentially in the
number of agents and interest-points, basic RL is limited to small numbers of agents
and interest-points and grid sizes. Nevertheless, it is useful to understand the reward
function in small dimensions, for approximation in large dimensions with neural networks.
The overarching principle is to extrapolate more complex behavior of the system from its
simpler forms, proceeding in stages, gently increasing the complexity of the system while
adding forensic tools in software to help identify if and where divergence occurs.

Aerospace 2022, 9, 488 18 of 24

We propose a set of milestones consistent with the guidelines above, that define
a structured approach towards a proof-of-concept. While there is no one fixed set of
milestones, the approach we propose may inspire others.

(M1) The Single-Agent, Stationary Interest-Points Scenario. The agent visits a sequence
of stationary interest-points on a two-dimensional grid, using the shortest path.
Training is performed with basic RL, under the assumption the agent has full-state
state information.
For a single stationary interest-point, this scenario reduces to the grid-world problem,
a well-known example in RL. The grid-world problem becomes much harder with
two interest-points. A scenario with multiple interest-points corresponds to the TSP,
where the optimal solution requires an exhaustive search over all possible trajectories.
The next section will explain why this milestone, even with two interest-points,
benefits from advanced strategies like hierarchical RL.

(M2) The Multi-Agent, Stationary Interest-Points Scenario. A system of multiple agents finds
an approximately optimal set of trajectories that visit stationary interest-points on a
two-dimensional grid. Training is performed using basic RL under the assumption
that each agent now observes the full system state. This milestone incorporates macro-
actions (i.e., “Agents 1, 4, and 5 move to sub-region A”) to keep the distribution of
agents and interest-points in equilibrium. It focuses on policies reasonably achievable
by training Q-tables, excluding moving interest-points and the large scale activity of
many agents (i.e., dynamic sky-way networks).

(M3) The Multi-Agent Mobile Interest-Points Scenario. A system of agents tracks moving
interest-points on a two-dimensional grid. Training is performed using deep RL,
under the assumption that each agent observes the full system state. The objective is
to verify that neural networks can model tracking policies for various interest-point
trajectories. To achieve this milestone, it is logical to start with one agent and one
stationary interest-point, where the reward function has a simple discernible structure.
The next step is to let the interest-point move predictably (i.e., around a circle at
constant velocity). Next, add two interest-points. Then incrementally increase the
complexity of the system, verifying at each stage that the extra complexity is captured
in training.

(M4) The Scaleable Multi-Agent Scenario. The system maintains approximately optimal
performance as the number of agents grows large. Training is performed using deep
RL, but each agent relies on its local state and a compressed/aggregated version of
the global state space. Macro-actions now include unmanned traffic management
(UTM) to support large-scale high-traffic drone transportation. The “dynamic sky-
way network” redistributes agents over the grid to keep the distribution of agents
and interest-points in equilibrium, and consists of a few high-throughput airways for
long distances and many low-throughput airways for finer redistribution over short
distances. The shape of the network adapts to the distribution of interest-points in
real-time. Agents collectively determine the trajectories of airways that traverse their
respective sub-regions.

(M5) The Multi-Agent Multi-Level Clustering Scenario. Agents rely on a multi-level clustering
scheme to disseminate/aggregate their local state information and infer a common
view of the global state. Cluster-heads compress state information to ensure the
information throughput has sub-linear scaling. Each cluster organizes local activity
and cooperates with higher-level clusters to ensure the system behaves in a coordi-
nated manner. The system supports essential distributed tasks like cluster-formation,
cluster-maintenance, and synchronization. The clustering algorithm is fully integrated
into the RL training process developed in the previous milestones.

5.3. A Case-Study of Milestone M1

To further explore the process of developing a proof-of-concept, we offer a case-study
of milestone M1. First, we introduce a system with one agent and one stationary interest-

Aerospace 2022, 9, 488 19 of 24

point, then consider some challenges in the extension to two stationary interest-points.
The system, depicted in its initial state in Figure 9a, is a grid of side-length 4. The agent
objective is to find the shortest path (defined by four primitive actions {“up”, “down”,
“left”, “right”}) from the agent to the interest-point. By inspection, shortest paths have
length 4 and are thus simple to verify.

x

y

(a)

0
0

1

2

2

3

1 3

(b)

(c) (d)

Figure 9. The single-agent, single stationary interest-point scenario. (a) The initial position of the
agent is in cell (0,0). The interest-point is positioned in cell (2,2). (b) The number of training steps per
episode converges to the optimum of 4. (c) The number of visits to each cell over the entire training
process. Cells on the shortest path to the interest-point receive the most visits. (d) The estimated
maximum q-value of each cell. Cells closer to the interest-point have more value.

The scheme used in this case-study employs basic q-learning (i.e., q-tables). For the
single interest-point scenario, the reward r given to each state-action pair (s, a) is r = 500
if the positions of the agent and interest-point coincide, r = −10 if the action drives the
agent into the boundary, and r = −1 otherwise. The hyperparameters which determine the
update rule are α = 0.3, γ = 0.6, and ε = 0.1. The ε-greedy policy which samples the state
space selects a “greedy” or “exploitative” action a∗ = maxa q(s, a) with probability 1− ε
and a random exploratory action (uniformly from one of the four primitive choices) with
probability ε. After each step, the table of q-values (i.e., the value of each state-action pair) is
updated according to the following rule: q(s, a)← q(s, a) + α(r + γ maxa q(s′, a)− q(s, a)).
Recall that s′ is the state outcome after the agent performs action a in state s. The update
rule “boot-straps” old estimates of the q-values into new estimates. The training episode
terminates when the positions of the agent and interest-point coincide. Figure 9 shows the
outcome after 1000 training episodes.

Aerospace 2022, 9, 488 20 of 24

Figure 9b shows the number of steps per training episode converges approximately
to 4 (which is the length of the shortest trajectory). This convergence is also evident in
Figure 9c which shows the total number of visits to each cell over all training episodes.
The starting point at position (0, 0) has the most visits. The intermediate positions on the
shortest trajectories between (0, 0) and (2, 2) are also visible in Figure 9c. Positions outside
these trajectories are visited rarely indicating that the ε-greedy policy converges to the
optimal one.

Figure 9d shows the maximum q-value maxa q(s, a) for each cell. The q-value peaks
at position (2, 2) and a value of 500, because the agent at this position coincides with the
interest-point. The surrounding cells include the expectation of this discounted future
reward, yielding a pyramid shape. The ε-greedy policy uses the q-values to determine the
appropriate action in each state, choosing actions that maximize the expected return. This
policy corresponds to the shortest path between the agent and interest-point.

Now we add an additional stationary interest-point to the system and observe the
effect on the learning process. The reward function with multiple interest-points is modified
to assign r = 500 for every un-visited interest-point. The hyper-parameters and update
rule are the same as before. Figure 10 shows the results after 1000 training episodes.

x

y

(a)

0
0

1

2

2

3

1 3

(b)

(c) (d)

Figure 10. The single-agent, two stationary interest-points scenario. (a) The initial position of the
agent is in cell (0,0). The interest-points are positioned in cells (2,2) and (3,0) respectively. (b) The
number of training steps per episode does not appear to converge. (c) The number of visits to each
cell over the entire training process. Both interest-points receive many visits. (d) The estimated
maximum q-value of each cell. The max q-value of cell (3,0) is detrimentally small despite many
visits and the interest-point location.

Aerospace 2022, 9, 488 21 of 24

Figure 10b shows the training process does not converge; the number of steps per
episode oscillates between periods of stability and instability. Figure 10c,d provide some
insight into this undesirable behavior. Cells with interest-points receive a larger share
of visits compared to other cells, as evident in Figure 10c. However, visits to the first of
the two interest-points (cell (3,0)) do not seem to accrue much reward in Figure 10d; the
q-values acquired in training diverge from the “true” q-values. This occurs because the
first visit to an interest-point accrues a reward of r = 500, but the ε-greedy learning policy
keeps the agent in the vicinity of the interest-point. Subsequent visits to this interest-point
accrue negative reward (since it has already been visited), which reduces the value of the
cell. Eventually this cell loses most of its value, which under the ε-greedy policy, releases
the agent to explore other cells.

The true q-function resembles a two-stage pyramid or a “ziggurat”. The previous
discussion explains why ε-greedy policies with one-step returns cannot accurately estimate
multi-stage q-functions. This problem is partially mitigated by using multi-step returns in
the update (instead of one-step returns), but emerges again if the number of interest-points
or grid dimensions increase. A more permanent solution is to hierarchically structure the
action-space into primitive actions and macro-actions (i.e., “move agent 1 to interest-point 1”
and “move agent 1 to interest-point 2”). The training process then determines the order of
visitations and the shortest path to each interest-point from the current position of the agent.

The two-stage hierarchical action-space is one possible way of completing M1. Mobile
interest-points require more advanced techniques outlined in Section 5.2. Figures 9 and 10
demonstrate the forensic analysis needed to incorporate the extra complexity of each new
milestone.

6. Conclusions

This paper highlights possibilities for a unified control/communication architecture in
multi-agent tracking systems. The main components of this architecture, locally interactive
state spaces and multi-level clustering, address fundamental limitations in the control and
communication spheres. An architecture only gives an outline of a solution and omits (by
design) the details of any implementation. From the reward function, to options, the train-
ing algorithm, the performance metrics, the rules for clustering, and belief aggregation,
all of these details require further investigation, development, testing, and integration.
The case-study included in this survey provides some perspective of the work required to
develop a proof-of-concept for the overall architecture.

Author Contributions: Conceptualization, J.P.; investigation, J.P.; writing—original draft preparation,
J.P.; writing—review and editing, J.P. and O.D.D.; supervision, O.D.D. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AUV Autonomous underwater vehicle
DV Distance vector
F-MDP Factored Markov decision process
F-POMDP Factored partially observable Markov decision process
HIRO Hierarchical reinforcement learning with off-policy correction
HRL Hierarchical reinforcement learning

Aerospace 2022, 9, 488 22 of 24

LS Link state
MANETs Mobile ad-hoc networks
MDP Markov decision process
MLC Multi-level clustering
POMDP Partially observable Markov decision process
RL Reinforcement learning
TSP Travelling salesman problem
UAV Unmanned aerial vehicle
UTM Unmanned aerial traffic management

References
1. Haksar, R.N.; Schwager, M. Distributed Deep Reinforcement Learning for Fighting Forest Fires with a Network of Aerial

Robots. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain,
1–5 October 2018; pp. 1067–1074. [CrossRef]

2. Thiels, C.A.; Aho, J.M.; Zietlow, S.P.; Jenkins, D.H. Use of Unmanned Aerial Vehicles for Medical Product Transport. Air Med J.
2015, 34, 104–108. [CrossRef]

3. Wallar, A.; Plaku, E.; Sofge, D.A. Reactive Motion Planning for Unmanned Aerial Surveillance of Risk-Sensitive Areas.
IEEE Trans. Autom. Sci. Eng. 2015, 12, 969–980. [CrossRef]

4. Deruyck, M.; Wyckmans, J.; Joseph, W.; Martens, L. Designing UAV-aided emergency networks for large-scale disaster scenarios.
EURASIP J. Wirel. Commun. Netw. 2018, 2018, 79. [CrossRef]

5. Greenwood, W.W.; Lynch, J.P.; Zekkos, D. Applications of UAVs in Civil Infrastructure. J. Infrastruct. Syst. 2019, 25, 04019002.
[CrossRef]

6. Serna, J.G.; Vanegas, F.; Gonzalez, F.; Flannery, D. A Review of Current Approaches for UAV Autonomous Mission Planning for
Mars Biosignatures Detection. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; pp. 1–15.
[CrossRef]

7. Guestrin, C.; Koller, D.; Parr, R. Multiagent Planning with Factored MDPs. In Advances in Neural INFORMATION Processing
Systems Proceedings of the Annual Conference on Neural Information Processing Systems (NIPS), 3–8 December 2001; Dietterich, T.,
Becker, S., Ghahramani, Z., Eds.; MIT Press: Cambridge, MA, USA, 2001; Volume 14.

8. Oliehoek, F.A.; Whiteson, S.; Spaan, M.T. Approximate solutions for factored Dec-POMDPs with many agents. In Proceedings of
the Belgian/Netherlands Artificial Intelligence Conference, Delft, The Netherlands, 7 July 2013; pp. 340–341.

9. Nair, R.; Tambe, M.; Roth, M.; Yokoo, M. Communications for improving policy computation in distributed POMDPs. In
Proceedings of the 3rd International Joint Conference on Autonomous Agents and Multiagent Systems, (AAMAS), New York,
NY, USA, 19–23 July 2004; pp. 1098–1105.

10. Roth, M.; Simmons, R.; Veloso, M. Exploiting Factored Representations for Decentralized Execution in Multiagent Teams. In
Proceedings of the AAMAS ’07: Proceedings of the 6th international Joint Conference on Autonomous Agents and Multiagent
Systems; Honolulu, HI, USA, 14–18 May 2007; Association for Computing Machinery: New York, NY, USA, 2007. [CrossRef]

11. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

12. Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; et al.
A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 2018, 362, 1140–1144.
[CrossRef] [PubMed]

13. Sutton, R.S.; McAllester, D.; Singh, S.; Mansour, Y. Policy Gradient Methods for Reinforcement Learning with Function
Approximation. In Advances in Neural Information Processing Systems Proceedings of the Annual Conference on Neural Information
Processing Systems (NIPS); Solla, S.; Leen, T.; Müller, K., Eds.; MIT Press: Cambridge, MA, USA, 1999; Volume 12.

14. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous Methods for Deep
Reinforcement Learning. In International Conference on Machine Learning Proceedings of the 33rd International Conference on Machine
Learning, New York, NY, USA, 20–22 June 2016 ; Balcan, M.F., Weinberger, K.Q., Eds.; PMLR: New York, New York, USA, 2016;
Volume 48, pp. 1928–1937.

15. Watkins, C.J.C.H.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
16. Melo, F.; Ribeiro, I. Convergence of Q-learning with linear function approximation. In Proceedings of the 2007 European Control

Conference, ECC 2007, Kos, Greece, 2–5 July 2007.
17. van Hasselt, H.; Doron, Y.; Strub, F.; Hessel, M.; Sonnerat, N.; Modayil, J. Deep Reinforcement Learning and the Deadly Triad.

arXiv 2018. [CrossRef]
18. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous Control with Deep

Reinforcement Learning. arXiv 2015, arXiv:1509.02971. [CrossRef].
19. Fujimoto, S.; van Hoof, H.; Meger, D. Addressing Function Approximation Error in Actor-Critic Methods. arXiv 2018,

arXiv:1802.09477. [CrossRef].
20. Koller, D.; Parr, R. Computing Factored Value Functions for Policies in Structured MDPs. In Proceedings of the International

Joint Conferences on Artificial Intelligence Organization (IJCAI), Stockholm, Sweden, August 1999; pp. 1332–1339.

http://doi.org/10.1109/IROS.2018.8593539
http://dx.doi.org/10.1016/j.amj.2014.10.011
http://dx.doi.org/10.1109/TASE.2015.2443033
http://dx.doi.org/10.1186/s13638-018-1091-8
http://dx.doi.org/10.1061/(ASCE)IS.1943-555X.0000464
http://dx.doi.org/10.1109/AERO47225.2020.9172467
http://dx.doi.org/10.1145/1329125.1329213
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1126/science.aar6404
http://www.ncbi.nlm.nih.gov/pubmed/30523106
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.48550/ARXIV.1812.02648.
https://doi.org/10.48550/ARXIV.1509.02971
https://doi.org/10.48550/ARXIV.1802.09477

Aerospace 2022, 9, 488 23 of 24

21. Yang, Y.; Luo, R.; Li, M.; Zhou, M.; Zhang, W.; Wang, J. Mean Field Multi-Agent Reinforcement Learning. arXiv 2018. [CrossRef]
22. Barto, A.G.; Mahadevan, S. Recent Advances in Hierarchical Reinforcement Learning. Discret. Event Dyn. Syst. 2003, 13, 341–379.

[CrossRef]
23. Dietterich, T.G. Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition. arXiv 1999,

arXiv:cs/9905014.
24. Bacon, P.L.; Harb, J.; Precup, D. The Option-Critic Architecture. In Proceedings of the AAAI-17: Thirty-First AAAI Conference on

Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [CrossRef]
25. Bagaria, A.; Konidaris, G. Option Discovery using Deep Skill Chaining. In Proceedings of the 8th International Conference on

Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020.
26. Chunduru, R.; Precup, D. Attention Option-Critic. arXiv 2022, arXiv:2201.02628. [CrossRef].
27. Kamat, A.; Precup, D. Diversity-Enriched Option-Critic. arXiv 2020, arXiv:2011.02565. [CrossRef]
28. Nachum, O.; Gu, S.; Lee, H.; Levine, S. Data-Efficient Hierarchical Reinforcement Learning. arXiv 2018, arXiv:1805.08296.

[CrossRef]
29. Nachum, O.; Gu, S.; Lee, H.; Levine, S. Near-Optimal Representation Learning for Hierarchical Reinforcement Learning. arXiv

2018, arXiv:1810.01257. [CrossRef].
30. Levy, A.; Konidaris, G.; Platt, R.; Saenko, K. Learning Multi-Level Hierarchies with Hindsight. arXiv 2017, arXiv:1712.00948.

[CrossRef].
31. Beyret, B.; Shafti, A.; Faisal, A.A. Dot-to-Dot: Explainable Hierarchical Reinforcement Learning for Robotic Manipulation.

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, SAR, China, 3–8
November 2019; pp. 5014–5019. [CrossRef]

32. Kulkarni, T.D.; Narasimhan, K.; Saeedi, A.; Tenenbaum, J. Hierarchical Deep Reinforcement Learning: Integrating Temporal
Abstraction and Intrinsic Motivation. In Advances in Neural Information Processing Systems, Proceedings of the Annual Conference on
Neural Information Processing Systems (NIPS),Barcelona, Spain, 5–10 December 2016; Lee, D., Sugiyama, M., Luxburg, U., Guyon, I.,
Garnett, R., Eds.; Curran Associates, Inc.: New York, NY, USA, 2016; Volume 29.

33. Boutilier, C. Sequential Optimality and Coordination in Multiagent Systems. In Proceedings of the IJCAI’99 16th International
Joint Conference on Artifical Intelligence, Stockholm, Sweden, 31 July–6 August 1999; Morgan Kaufmann Publishers Inc.: San
Francisco, CA, USA, 1999; Volume 1, pp. 478–485.

34. Emery-montemerlo, R.; Gordon, G.; Schneider, J.; Thrun, S. Game theoretic control for robot teams. In Proceedings of the IEEE
International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005.

35. Ponniah, J.; Hu, Y.C.; Kumar, P.R. A Clean Slate Approach to Secure Wireless Networking. Found. Trends Netw. 2015, 9, 1–105.
[CrossRef]

36. Gupta, P.; Kumar, P. The capacity of wireless networks. IEEE Trans. Inf. Theory 2000, 46, 388–404. [CrossRef]
37. McQuillan, J.M.; Richer, I.; Rosen, E.C. The New Routing Algorithm for the ARPANET. IEEE Trans. Commun. 1980, 28. [CrossRef]
38. Moy, J. OSPF Version 2; RFC 2328; 1998. [CrossRef]
39. Hedrick, C.. Routing Information Protocol; RFC 1058; 1988. [CrossRef]
40. Perkins, C.E.; Bhagwat, P. Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for Mobile Computers.

SIGCOMM Comput. Commun. Rev. 1994, 24, 234–244. [CrossRef]
41. Jacquet, P.; Muhlethaler, P.; Clausen, T.; Laouiti, A.; Qayyum, A.; Viennot, L. Optimized link state routing protocol for ad hoc

networks. In Proceedings of the IEEE International Multi Topic Conference (INMIC), Technology for the 21st Century, Lahore,
Pakistan, 30 December 2001; pp. 62–68. [CrossRef]

42. Perkins, C.; Belding-Royer, E.; Das S. Optimized Link State Routing Protocol (OLSR); RFC 3561; 2003. Available online:
https://www.rfc-editor.org/rfc/pdfrfc/rfc3561.txt.pdf (accessed on 27 June 2022)

43. Perkins, C.; Royer, E. Ad-hoc on-demand distance vector routing. In Proceedings of the 2nd IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA), New Orleans, LA, USA, 25–26 February 1999; pp. 90–100. [CrossRef]

44. Ephremides, A.; Wieselthier, J.; Baker, D. A design concept for reliable mobile radio networks with frequency hopping signaling.
Proc. IEEE 1987, 75, 56–73. [CrossRef]

45. Daeinabi, A.; Pour Rahbar, A.G.; Khademzadeh, A. VWCA: An efficient clustering algorithm in vehicular ad hoc networks.
J. Netw. Comput. Appl. 2011, 34, 207–222. [CrossRef]

46. Rawashdeh, Z.Y.; Mahmud, S.M. A novel algorithm to form stable clusters in vehicular ad hoc networks on highways.
Eurasip J. Wirel. Commun. Netw. 2012, 2012, 15. [CrossRef]

47. Hassanabadi, B.; Shea, C.; Zhang, L.; Valaee, S. Clustering in Vehicular Ad Hoc Networks using Affinity Propagation.
Ad Hoc Networks 2014, 13, 535–548. [CrossRef]

48. Vodopivec, S.; Bester, J.; Kos, A. A Survey on Clustering Algorithms for Vehicular Ad-Hoc Networks. In Proceedings of the 35th
International Conference on Telecommunications and Signal Processing (TSP), Prague, Czech Republic, 3–4 July 2012; pp. 52–56.
[CrossRef]

49. Lundelius, J.; Lynch, N. An upper and lower bound for clock synchronization. Inf. Control. 1984, 62, 190–204. [CrossRef]
50. Giridhar, A.; Kumar, P. Distributed Clock Synchronization over Wireless Networks: Algorithms and Analysis. In Proceedings of

the 45th IEEE Conference on Decision and Control, San Diego, CA, USA, 13–15 December 2006; pp. 4915–4920. [CrossRef]

http://dx.doi.org/10.48550/ARXIV.1802.05438.
http://dx.doi.org/10.1023/A:1025696116075
http://dx.doi.org/10.1609/aaai.v31i1.10916
https://doi.org/10.48550/ARXIV.2201.02628
https://doi.org/10.48550/ARXIV.2011.02565
https://doi.org/10.48550/ARXIV.1805.08296
https://doi.org/10.48550/ARXIV.1810.01257
https://doi.org/10.48550/ARXIV.1712.00948
http://dx.doi.org/10.1109/IROS40897.2019.8968488
http://dx.doi.org/10.1561/1300000037
http://dx.doi.org/10.1109/18.825799
http://dx.doi.org/10.1109/TCOM.1980.1094721
http://dx.doi.org/10.17487/RFC2328.
http://dx.doi.org/10.17487/RFC1058.
http://dx.doi.org/10.1145/190809.190336
http://dx.doi.org/10.1109/INMIC.2001.995315
https://www.rfc-editor.org/rfc/pdfrfc/rfc3561.txt.pdf
http://dx.doi.org/10.1109/MCSA.1999.749281
http://dx.doi.org/10.1109/PROC.1987.13705
http://dx.doi.org/10.1016/j.jnca.2010.07.016
http://dx.doi.org/10.1186/1687-1499-2012-15
http://dx.doi.org/10.1016/j.adhoc.2013.10.005
http://dx.doi.org/10.1109/TSP.2012.6256251
http://dx.doi.org/10.1016/S0019-9958(84)80033-9
http://dx.doi.org/10.1109/CDC.2006.377325

Aerospace 2022, 9, 488 24 of 24

51. Kim, D.; Esteki, D.J.; Hu, Y.C.; Kumar, P.R. A Lightweight Deterministic MAC Protocol Using Low Cross-Correlation Sequences.
In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM), Houston, TX, USA, 5–9 December 2011;
pp. 1–6. [CrossRef]

52. Ponniah, J.; Theile, M.; Dantsker, O.; Caccamo, M. Autonomous Hierarchical Multi-Level Clustering for Multi-UAV Systems. In
Proceedings of the AIAA Scitech Forum, Virtual, 11–15 January 2021. [CrossRef]

53. Ramanathan, R.; Steenstrup, M. Hierarchically-organized, multihop mobile wireless networks for quality-of-service support.
Mob. Networks Appl. 1998, 3, 101–119. [CrossRef]

54. Ozgur, A.; Leveque, O.; Tse, D.N. Hierarchical Cooperation Achieves Optimal Capacity Scaling in Ad Hoc Networks.
IEEE Trans. Inf. Theory 2007, 53, 3549–3572. [CrossRef]

55. Ghaderi, J.; Xie, L.L.; Shen, X. Hierarchical Cooperation in Ad Hoc Networks: Optimal Clustering and Achievable Throughput.
IEEE Trans. Inf. Theory 2009, 55, 3425–3436. [CrossRef]

56. Bourgault, F.; Durrant-Whyte, H.F. Communication in General Decentralized Filters and the Coordinated Search Strategy.
In Proceedings of the International Conference on Information Fusion (FUSION), Stockholm, Sweden, 28 June–1 July 2004;
pp. 723–770.

57. Hollinger, G.A.; Yerramalli, S.; Singh, S.; Mitra, U.; Sukhatme, G.S. Distributed Data Fusion for Multirobot Search.
IEEE Trans. Robot. 2015, 31, 55–66. [CrossRef]

58. Wu, F.; Zilberstein, S.; Chen, X. Multi-Agent Online Planning with Communication. In Proceedings of the 19th International
Conference on Automated Planning and Scheduling (ICAPS), Thessaloniki, Greece, 19–23 September 2009.

59. Stone, P.; Veloso, M. Task decomposition, dynamic role assignment, and low-bandwidth communication for real-time strategic
teamwork. Artif. Intell. 1999, 110, 241 – 273. [CrossRef]

60. Valentini, G.; Hamann, H.; Dorigo, M. Global-to-Local Design for Self-Organized Task Allocation in Swarms. Intell. Comput. 2022,
2022, 9761694. [CrossRef]

61. Brambilla, M.; Ferrante, E.; Birattari, M.; Dorigo, M. Swarm robotics: A review from the swarm engineering perspective.
Swarm Intell. 2013, 7, 1–41. [CrossRef]

62. Marchesini, E.; Amato, C. Safety-Informed Mutations for Evolutionary Deep Reinforcement Learning. In Proceedings of the
GECCO ’22 Genetic and Evolutionary Computation Conference Companion, Boston, MA, USA, 9–13 July 2022; Association for
Computing Machinery: New York, NY, USA, 2022; pp. 1966–1970. [CrossRef]

63. Dorigo, M.; Theraulaz, G.; Trianni, V. Swarm Robotics: Past, Present, and Future [Point of View]. Proc. IEEE 2021, 109, 1152–1165.
[CrossRef]

http://dx.doi.org/10.1109/GLOCOM.2011.6134489
http://dx.doi.org/10.2514/6.2021-0656
http://dx.doi.org/10.1023/A:1019148009641
http://dx.doi.org/10.1109/TIT.2007.905002
http://dx.doi.org/10.1109/TIT.2009.2023681
http://dx.doi.org/10.1109/TRO.2014.2378411
http://dx.doi.org/10.1016/S0004-3702(99)00025-9
http://dx.doi.org/10.34133/2022/9761694
http://dx.doi.org/10.1007/s11721-012-0075-2
http://dx.doi.org/10.1145/3520304.3533980
http://dx.doi.org/10.1109/JPROC.2021.3072740

	Introduction
	Reinforcement Learning
	Overview
	The System State Space
	Rewards
	Actions, Policies, and Value Functions
	Value Iteration vs Policy Iteration
	The Deadly Triad

	Multi-Agent Planning and Control
	Locally Interactive State Spaces
	Soft Locally Interactive Structure
	Performance Metrics
	Hierarchical Reinforcement Learning
	Sequential Decision-Making

	Multi-Agent Communication and Networking
	Routing Protocols in Ad-Hoc Networks
	Clustering Protocols
	Hierarchical Multi-Level Clustering
	Belief Propagation in Multi-Level Clustering

	A Proposed Control/Communication Architecture for Multi-Agent Systems
	Multi-Agent Coordination and Communication in the Literature
	Developing a Proof-Of-Concept: A Structured Approach
	A Case-Study of Milestone M1

	Conclusions
	References

