
Analysis of the temporal and
spatial pattern of air pollution and
the heterogeneity of its
influencing factors in central
Inner Mongolia from 2016 to
2018

JieWang1,2, Dongwei Liu1,3,4*, Xijie Xu5, Jiali Ma1 and Lijing Han1

1School of Ecology and Environment, Inner Mongolia University, Hohhot, China, 2School of Life
Sciences, Technical University of Munich, München, Germany, 3Inner Mongolia Key Laboratory of River
and Lake Ecology, Hohhot, China, 4Key Laboratory of Ecology and Resource Use of the Mongolian
Plateau, Ministry of Education of China, Hohhot, China, 5IoT2US Laboratory, School of Electronic
Engineering and Computer Science, Queen Mary University of London, London, United Kingdom

The central region of Inner Mongolia is the northern ecological safety barrier of

Beijing and even the whole country. It is one of the main sources of dust in

North China, and air pollution control is the top priority in this region. In this

study, the central region of Inner Mongolia was selected as the study area,

multiple auxiliary variables were used to estimate the spatial distribution of

PM2.5 concentration from2016 to 2018 by geographically weighted regression,

and the socioeconomic determinants of PM2.5 concentration were analyzed by

geographic detectors. The results show that: 1) the established model can

better estimate the spatial distribution of PM2.5 concentration in the study area,

and themonthly mean correlation coefficient R of the verification parameters is

stable, ranging from 0.58 to 0.66. 2) PM2.5 concentration in central Inner

Mongolia showed significant temporal and spatial variation. The mean annual

PM2.5 concentration along the Yellow River basin is the highest in the study

area. PM2.5 concentration first increased and then decreased from 2016 to

2018. 3) Urban built-up area, permanent population and per capita GDP are the

key factors affecting the spatial and temporal distribution of

PM2.5 concentration in the study area. The results of this study provide

theoretical basis and technical support for air pollution monitoring,

management and prevention in central Inner Mongolia.
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1 Introduction

With the rapid development of global economy, the progress of

urbanization and industrialization has accelerated, people’s living

standards have improved. The consumption of coal and electricity

have increased (Xiao et al., 2015), and the demand for sand, steel, etc.

Required in the process of urban construction has increased (Wu

et al., 2015). The extensive development of industry and the

substantial increase in pollutant emissions have directly or

indirectly brought about an important impact on atmospheric

pollution (Miao Zhang et al., 2021). At the same time, air

pollution has a greater impact on the ecological environment

(Yan, 2012), climate change (Sui, 2019) and human health

(Guan et al., 2016), and it has become a global focus of attention.

Air pollution refers to the phenomenon that the

concentration of pollutants in the atmosphere reaches a

harmful level, even destroying the conditions for the normal

survival and development of the ecosystem and human beings,

and causing harm to people and objects (Bai et al., 2018).

Suspended Particulate Matter is an important source of air

pollution (Meng et al., 2019; Kong et al., 2020). Fine

Particulate Matter (PM2.5, Particulate Matter, PM) is the

Particulate with aerodynamic equivalent diameter less than or

equal to 2.5 microns in ambient air (Vo et al., 2020), and is also an

important component of suspended Particulate Matter (Yang

and Jiang, 2020). From the perspective of research methods,

scholars from various countries made a thorough analysis of air

pollution, which has laid a relatively solid theoretical foundation.

In 1969, Ken Whitby, an American scientist, conducted the first

study on PM2.5 (Whitby et al., 1972). In 1970, the United States

enacted and implemented the Clean Air Act, establishing an air

pollution control system (Domenici, 1979). In 1984, the

European Community established the EMEP (European

Monitoring and Evaluation Program) (Tørseth et al., 2012),

and in 1987, the European Union issued an air pollution

restriction order to control the discharge of relevant pollutants

(McNaughton, 2018). In 1997, The US National Environmental

Protection Agency proposed a relatively accurate concentration

standard value based on particulate matter, and a higher standard

was proposed in 2013 (Esworthy, 2014). Juliette et al. (2008)

mainly explored the connection between PM10 and

meteorological factors, and studied the relationship between

the concentration of PM10, O3, NOX and SO2 and the spatial

change by using the environmental data detected by the weather

station for a trade port. For the study of air pollution in typical

regions, scholars from various countries have conducted research

and analysis to different degrees for regions with different

geographical and social environments. Liu et al. (2020)

studied on the environmental air quality of 366 cities in

China showed that China’s air pollution is mainly PM10 and

PM2.5. The high value of PM10 is mainly concentrated in

Xinjiang and greatly influenced by natural factors. The high

value of PM2.5 is mainly distributed in central China, North

China and northern Jiangsu and is more influenced by human

activities. Wang et al. (2019) studied the change characteristics of

PM2.5 in the Beijing-Tianjin-Hebei region from 2013 to 2018.

They found that PM2.5 pollution in the Beijing-Tianjin-Hebei

plain showed a more significant change than that in the

mountainous region. PM2.5 mass concentration was the

highest in winter and the lowest in summer, and its spatial

distribution was high in the south and low in the north. Zhou

et al. (2019) found that air quality is closely related to the synoptic

circulation and local wind field affecting a specific area, and

conducted a validation analysis in Shanghai, China. They found

that the Shanghai area is most prone to severe haze under specific

circulation patterns (CT1, CT2, and CT4), mainly related to cold

air activity and the displacement of the high pressure system

relative to Shanghai (Zhao et al., 2019). At present, there are few

studies in arid and semi-arid regions dominated by dust

pollution, and in China it is mainly concentrated in the

northwest regions (Haijun et al., 2020; Rupakheti et al., 2021).

Understanding the characteristics of air pollution is the basis for

scientific decision-making and comprehensive management of

air pollution control.

Scientific identification of spatial heterogeneity and driving

factors of PM2.5 concentration is of great significance to regional

air linkage governance and has become the focus of various

disciplines. Current research methods can be divided into the

following six categories: 1) Using the statistical yearbook data of

a certain region, combined with the data of the meteorological

department and the environmental protection department, the

results are obtained by integrated analysis. 2) Through a

combination of questionnaires and interviews, the awareness and

specific opinions of residents on urban air pollution are obtained. 3)

Specific models are used to obtain information on major urban

pollution sources, such as AOD (Aerosol optical thickness) remote

sensing model, super-efficiency DEA (Data envelopment analysis)

model, DOAS (Differential Optical Absorption Spectroscopy)

technology, TDLAS (Tunable Diode Laser Absorption

Spectroscopy) technology, ground-based multi-axis differential

absorption spectrometer (MAX-DOAS), weather research and

prediction model chemical module WRF-Chem (Zhang and Li,

2020). 4) the specific relationship between urbanization level and air

pollution in multiple cities is comparatively analyzed by selecting

urbanization indicators and specific pollutant information of

multiple cities. 5) Comparing and analyzing the differences and

contents of pollutants in different economic zones by selecting

specific locations and monitoring them at fixed points. 6)

Through the magnetic and heavy metal monitoring of the

samples, the specific association between the samples and air

pollutants is found. The most common used model of these is

remote sensing model, which uses Aerosol Optical Depth (AOD)

data from satellite remote sensing to evaluate the

PM2.5 concentration in a wide range. In remote sensing models,

commonly used inversion models include semi-empirical Model

(Yuan Wei et al., 2021), Artificial Neural Network (ANN) Model
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(Casallas et al., 2021), Machine Learning Algorithm Model (Jain

et al., 2021), Generalized Additive Model (GAM) (Analitis et al.,

2020), General Linear Regression Model (Xin Zhang et al., 2021),

Geographically Weighted Regression (GWR) model (Song et al.,

2014), remote sensing formula (Lin et al., 2015), statistical

downscaling method (Qian Yang et al., 2020), Geographically

and Temporally Weighted Regression (GTWR) model (Wei

et al., 2019), etc. In recent years, the GTWR model has become

increasingly popular in environmental research because the model

can incorporate temporal information into spatial variability (He

and Huang, 2018a; Mirzaei et al., 2019; Liu et al., 2021). However,

whenGTWR lacks sample points in time and region, the accuracy of

the model needs to be optimized (He and Huang, 2018b). GWR is a

technique to test spatial variability and non-stationarity by

generating local regression results, which is suitable for

PM2.5 prediction at regional scale (Hu et al., 2013). Therefore,

the GWR model was selected for PM2.5 estimation in this study.

The central region of Inner Mongolia includes Ordos,

Hohhot, Bayannur, Ulanqab and Baotou. They are located in

the traffic arteries of China’s western development. Their terrain

is flat, and the land resources are relatively rich. In addition, the

region has a strong economic foundation, certain technological

innovation capabilities and good development potential (Liu,

2002). However, the central region of Inner Mongolia is one of

the largest coal chemical bases in China, and its air quality has

been greatly affected. Therefore, how to better improve the air

quality of Inner Mongolia’s central cities while ensuring the

supply of energy in the Beijing-Tianjin-Hebei region has

become the primary problem to be solved in the protection of

atmospheric environment in this region (Qiu et al., 2017; Gao

et al., 2021). And it is also the key problem of air pollution

prevention and control in the region in the future.

In this paper, the central region of Inner Mongolia was selected

as the study area, and the factor with the greatest monthly

correlation with PM2.5 from 2016 to 2018 was selected from

multiple factors to establish a GWR model and invert the spatial

distribution data of PM2.5 from 2016 to 2018. In this study, the

spatial and temporal distribution characteristics of PM2.5 in central

cities of Inner Mongolia were analyzed from different time scales,

such as space, year, season and month, and the impact of economic

development, urbanization, industrialization and energy on

PM2.5 was analyzed. The results of this paper provide a

theoretical basis for air pollution monitoring, management and

prevention in central Inner Mongolia.

2 Data and methods

2.1 Study area

The central region of Inner Mongolia belongs to the Yin

Mountains, located on the northern slope of DaqingMountain in

Inner Mongolia, 105°12′–114°49′E, 37°37′–43°23′N, including

Ordos, Hohhot, Bayannur, Ulanqab and Baotou. (Figure 1A).

The Inner Mongolia Autonomous Region is the northern

ecological security barrier for Beijing and even the whole

country. The central part of Inner Mongolia is 804–2345 m

above sea level, the terrain is low in the middle part and high

in the north and south (Figure 1B). The south is dominated by

low mountains, the middle is dominated by low hills and tidal

wetlands, and the north is dominated by grasslands (Figure 1C).

The study area belongs to a continental monsoon arid climate

with large temperature changes. The highest temperature in the

past 20 years reaches 39°C, the lowest temperature in the past

20 years is −41°C, and the wind is mostly above six levels. The

maximum annual temperature difference can reach 70–80°C, and

the annual mean temperature is about 4°C. Since 1999, the annual

precipitation has been 200–360 mm, and the evaporation has

been 7–8 times of the precipitation. Sand and deserts are

distributed in the study area, which is one of the main

sources of sand and dust in North China and one of the chief

culprits of sand and dust weather in the surrounding areas of

Beijing (Yang et al., 2021).

The central region of Inner Mongolia is the region with the

highest regional economy in the Inner Mongolia Autonomous

Region. Among them, the economic development speed of Ordos

has ranked first in the Inner Mongolia Autonomous Region (Guo

and Wu, 2011). The central part of Inner Mongolia is one of the

largest coal chemical industrial bases in China. In the region, the

heating fuel is mainly coal, and the transportation fuel is mainly

gasoline. Combustion of these two fuels produces a large amount

of air pollution emissions. The heating period in central Inner

Mongolia is mainly in winter and spring (Bai et al., 2010). Coal-

fired heating has greatly increased the frequency of use of coal-

fired power plants and thermal power plants, resulting in more

air pollutants (Khuzestani et al., 2017). In addition, the number

of private motor vehicles in central Inner Mongolia is higher than

that in other areas of Inner Mongolia, and air pollution caused by

vehicle exhaust is also worthy of attention (Liu et al., 2022). The

air pollutant considered in this study is the PM2.5.

In 2013, the State Council of China issued the Air Pollution

Prevention and Control Action Plan, focusing on strengthening

the prevention and control of air pollution with a focus on fine

particulate matter (PM2.5). In 2018, the air pollution prevention

and control plan was successfully concluded by the Inner

Mongolia Autonomous Region, and the Inner Mongolia

Autonomous Region successfully completed various national

goals and tasks. Therefore, the research time interval of this

paper is in the 2016–2018 years of the completion plan.

2.2 Data

2.2.1 PM2.5 station data
The air pollutants considered in this study are mainly PM2.5.

The PM2.5 monitoring station data comes from the China
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National Environmental Monitoring Center (http://www.cnemc.

cn). The data format is the mean daily PM2.5 concentration

value, the concentration unit is μg/m3, and the selected time

range is 1 January 2016 to 31 December 2018. PM2.

5 concentration data quality in line with China ambient air

quality standards (Wang et al., 2010).

There are a total of 75 monitoring stations around the

selected study area, and the distribution of the stations is

shown in Figure 1B. In this study, the PM2.5 concentration

value was used as the model dependent variable. In order to

reduce the model error, the value of PM2.5 less than 2 μg/m3 was

discarded, and the stations with measurement days less than

10 days were also excluded. The monthly mean

PM2.5 concentration value is calculated by calculating the

monthly mean value from the daily mean

PM2.5 concentration value of each station. Since the

distribution of stations is too concentrated, 50 stations are

randomly selected to build the PM2.5 estimation model, and

the remaining 25 points are used for model accuracy verification.

2.2.2 MODIS AOD data
MODIS AOD data is a level 2 aerosol product released by

NASA, which can be used to obtain atmospheric aerosol optical

properties (such as optical thickness and size distribution) and

mass concentration in the global ocean and terrestrial

environment. In order to obtain higher spatial resolution

PM2.5 pollution inversion results, we use MODIS Collection

061 3 km (cross-border time 10:30 and 13:30 Beijing time)

aerosol data (https://ladsweb.modaps. eosdis. nasa.gov/), select

daily AOD data with a resolution of 3 km from January 2016 to

December 2018, and use the layer name: Optical_Depth_Land_

And_Ocean (AOT at 0.55 micron for both ocean (Mean)

(Quality Flag) = 1, 2, 3) and land (corrected) (Quality Flag = 3)).

In this study, ENVI 5.3 was used to organize and calculate the

monthly mean AOD data of MODIS AOD.

2.2.3 Meteorological data
We used the ERA-Interim (ECMWF Re-Analysis) reanalysis

data (http://apps.ecmwf.int/datasets/) of the European Center for

Medium-Range Weather Forecast (ECMWF) as the

meteorological data. Its spatial resolution is 0.125° and its

temporal resolution is Monthly Means of Daily Means. We

selected a total of five meteorological factors in the Surface

variable and Pressure levels variable: relative humidity (RH,

%) under 1000 h Pa, temperature of 2 m (T2m, K), wind

speed of 10 m (WS10, m/s), surface pressure (SP, Pa),

boundary layer height (BLH, m).

2.2.4 Socioeconomic data
Due to the inconsistency of statistical indicators in various

cities and incomplete data in some cities, the acquisition of data is

subject to certain restrictions. Based on the overall integrity and

FIGURE 1
(A)Geographical location of the study area; (B) Surface elevation and PM2.5monitoring stations in the study area; (C) Land use types in the study
area.
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availability of data, considering economic development,

urbanization, industrialization, etc., the urban built-up area

(km2), permanent population (10,000 people), and the

proportion of the secondary industry in the regional GDP

(%), GDP per capita (yuan), number of industrial enterprises

above designated size (unit), annual gas supply (natural gas,

104m3) and heat supply (water, 104 GJ) are selected as

independent variables to make the spatial relationship model

between PM2.5 and socioeconomic factors. Influencing factor

index data comes from the “2017–2019 Inner Mongolia

Statistical Yearbook” published by the Inner Mongolia Bureau

of Statistics (http://tj.nmg.gov.cn/tjyw/jpsj/). The 2017 Statistical

Yearbook is actually an overview of 2016 in 2017. Similarly, the

2018 and 2019 Statistical Yearbooks represent the values of Inner

Mongolia statistical data in 2017 and 2018, respectively.

2.2.5 Geographical data
In order to improve the accuracy of PM2.5 estimation, NDVI

(Normalized Difference Vegetation Index) and DEM (Digital

elevation model) are selected to provide reference for the

research. The NDVI data comes from MODIS 3 level 1 km

monthly NDVI data (https://ladsweb.modaps.eosdis.nasa.gov/).

DEM data is selected from ASTGTM: ASTER Global Digital

Elevation Model V002, with a resolution of 30 m (https://search.

earthdata.nasa.gov/). All the above data can be sorted into

Table 1.

2.2.6 Data preprocessing
In order to estimate the monthly PM2.5 data with a spatial

resolution of 3 × 3 km, the data of different spatial sizes and time

scales need to be processed uniformly, data integration, and

uniform resolution. The IDL software is used to resample the

meteorological factors with reference to the pixel size of the fused

MODIS 3 km AOD data. The DEM data first uses the Arc GIS

“mosaic” and “mask” tools to make the DEM coincide with the

study area, and then uses ArcGIS 10.3 to downscale the DEM and

NDVI data to 3 km.

2.3 Method

2.3.1 Geographically weighted regression model
Previous studies have shown that the relationship between

PM2.5 and AOD will change differently with the change of

geographical space, and there is spatial dependence and

spatial non-stationary between PM2.5 and AOD. For this

local variation GWR model, local variable parameters can

be more accurately used to reflect the spatial variation and

difference, and a continuous parameter value surface is

generated (Engel-Cox et al., 2004; Hu et al., 2013). GWR is

a regression model for testing continuous surface spatial

variation and non-stationary problems of regression

parameter values on a regional scale (Wang et al., 2020).

Although AOD is the most significant indicator of

PM2.5 concentration, PM2.5 concentration is also

significantly affected by temperature, precipitation and

other climatic factors (Lv and Li, 2018). AOD, RH, T2m,

WS10, BLH, SP, DEM, and NDVI were used as auxiliary

variables to estimate the spatial distribution of

PM2.5 concentration.

Based on the significant spatial difference between

PM2.5 and auxiliary variables, GWR was selected to test the

TABLE 1 Description of all data used in this study.

Variable Full name Unit Spatial resolution Time resolution

PM2.5 Particulate matter with aerodynamic equivalent diameter less than or equal to 2.5 microns μg/m3 Station Month

AOD Aerosol Optical Depth, MODIS Collection 061 3 km Day

NDVI Normalized Difference Vegetation Index 1 km Month

DEM Digital elevation model m 30 m Year

RH Relative humidity under RH 1000 h Pa % 0.125° Month

T2m 2 m temperature K 0.125° Month

WS10 10 m wind speed m/s 0.125° Month

SP Surface pressure Pa 0.125° Month

BLH Boundary layer height m 0.125° Month

UBA Urban built-up area km2 City Year

PP Permanent population 104 people City Year

SIP Secondary industry as a percentage of regional GDP % City Year

PGDP GDP per capita yuan City Year

NIE Number of industrial enterprises above designated size units City Year

AGS Annual gas supply 104m3 City Year

HS heat supply (water) 104J City Year
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variation and non-stationarity of continuous surface of

parameter values. Due to the serious loss of AOD daily data,

in order to reduce the model error and improve the accuracy, this

paper constructed the model on the monthly scale. The basic

form of the model is shown in Eq. 1:

PM2.5im � β0,im + β1,imAODim + β2,imRHim + β3,imT2mim + β4,imWS10im + β5,imSPim

+β6,imBLHim + β7,imDEMim + β8,imNDVIim + εim

(1)

Where, PM2.5im (μg/m3) is the PM2.5 concentration value of

the i grid cell in the m month; AODim (without unit) is the i

grid cell of AOD in the m month, T2mim, WS10im, RHim,

BLHim, SPim are the values of the i grid cell in the m month

corresponding to other auxiliary variables; β0,im represents the

intercept of the i grid cell in the m-month, β1,im, β2,im, β3,im,

β4,im, β5,im, β6,im, β7,im, and β8,im are the regression coefficients

of the corresponding variable of the i grid cell in the m month,

εim is the random error of the I grid cell in the m month. The

model is a local model, and the coefficients of the model will

vary with the time and geographic location of the sample

point.

Regarding the temporal heterogeneity relationship between

PM2.5 and auxiliary variables, the auxiliary variables of the

model are selected according to the following criteria: 1) the

selected auxiliary variables are significantly related to PM2.5; 2)

the selected auxiliary variables improve the model’s inversion of

PM2.5 spatiotemporal variation. In other words, under the

influence of the temporal and spatial heterogeneity of PM2.5,

the auxiliary variables used in the monthly GWR model are

different, and the models constructed are also different.

In the process of model construction, the self-adaptive Gauss

function is used to create the core surface according to the density

of the relevant element distribution (Utari et al., 2019), and the

cross-validation method proposed by Cleveland in 1979 is used

(Zhai et al., 2018).

2.3.2 Accuracy evaluation index
In order to test the accuracy of PM2.5 estimation, the error

between the actual observation value and the estimated value of

the effective PM2.5 stations used for verification is used to judge

the pros and cons of the model. The test indicators used are

correlation coefficient (R), residuals (RD) and root mean square

error (RMSE). R is used to measure the degree of agreement

between the measured value and the estimated value, and the

calculation method is shown in Eq. 2 (Machin et al., 2018). The

closer the statistic is to 1, the higher the accuracy of the model

result and the better the agreement between the measured value

and the estimated value. RMSE is used to measure the deviation

between the observed value and the true value, reflecting the

estimation sensitivity and extreme value of sample data (Joseph

and Agustí, 2021). The smaller the value of RMSE, the higher the

accuracy of PM2.5 estimation. The calculation method is shown

in Eq. 4.

R �
∑n

i (Yoi − Yo)(Ysi − Ys)�������������∑n
i (Yoi − Yo)2

√ ������������∑n
i (Ysi − Ys)2

√ (2)

RD � Yoi − Ysi (3)

RMSE �

��������������∑n
i�1(Yoi − Yo)2

n

√√
(4)

Where, Ysi is the i of PM2.5 estimated value, Yoi is the i of

PM2.5 measured value; Ys is the mean value of estimated PM2.5,

Yo is the mean value of measured PM2.5, n is number of samples.

2.3.3 Geographic detector
Geographic detector is a new statistical method for detecting

spatial differentiation and revealing the driving factors behind it

(Wang and Xu, 2017). The basic idea is: assuming that the study

area is divided into several sub-regions, if the sum of the

variances of the sub-regions is less than the total area

variance, there is spatial differentiation; if the spatial

distribution of the two variables tends to be the same, there is

a statistical correlation between the two. There are four sub-

detectors in the geographic detector. This article analyzes the

results of factor detectors. Factor detector explore the spatial

differentiation of Y, and detect the degree of interpretation of the

factor X to the spatial differentiation of Y (Wang and Xu, 2017).

Measured by the q value, the expression is:

q � 1 − ∑L
h�1Nhσ2

h

Nσ2
(5)

Where, h = 1, 2, 3. . . L is the stratification of variable Y or factor

X. There are seven types of variables in this article; Nh and N are

the number of units in the whole domain and a certain layer,

respectively. In this article, they represent central Inner Mongolia

total number of units and the number of units in each type of

prefecture-level city; and are the variances of the Y values of layer

h and the whole region, respectively.

In order to analyze the seasonal effects of socioeconomic

factors on PM2.5, a year was divided into four seasons. The

classification criteria are: spring from March to 359 May,

summer from June to August, autumn from September to

November, and winter from December 360 to January and

February of the following year.

3 Results and analysis

3.1 Analysis of model results

3.1.1 Model construction results
The correlation matrix between different explanatory

variables and PM2.5 from January to December in central
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Inner Mongolia from 2016 to 2018 is shown in Table 2. It can be

observed that the variable with the highest correlation coefficient

with PM2.5 is T2m, followed by RH, and NDVI has the lowest

correlation coefficient. In addition, we found that although the

monthly mean correlations of AOD, WS10 and BLH with

PM2.5 were not high; in some months, their correlations also

had significant advantages over other variables. For example, in

August, the correlation coefficient of AOD reached 0.655, and

that of WS10 reached 0.726, which was significantly higher than

other variables in the same month; in June and October, the

correlation coefficient of BLH reached 0.565 and 0.574,

respectively. Therefore, for the explanatory variables of the

GWR model in central Inner Mongolia, we choose T2m, RH,

AOD, WS10, and BLH.

The global mean fit (R2) of the 12 GWRs in central Inner

Mongolia from January to December 2016–2020 constructed in

this study is shown in Figure 2. It can be found from the figure

that 1) throughout the study period, the global mean build R2 of

GWR was higher than 0.40, with the highest value reaching 0.71.

In other words, the GWR model constructed in this study has a

high degree of fit. 2) The fit of the model from May to July was

generally inferior to other models, indicating that the explanatory

variables of PM2.5 concentration in these months were complex

and affected by multiple factors. The model fitting R2 of August,

September, and November is higher than that of other months,

indicating that the model has fully considered the main

explanatory variables of PM2.5 concentration in that month,

so the fitting degree is higher, which makes the results more

believable.

3.1.2 Model verification results
The verification data is used to verify the accuracy of the

PM2.5 inversion results in the study area. The verification

diagram is shown in Figure 3. From the figure, we can find:

1) The change of the monthly mean correlation coefficient R in

the verification parameters in 2016–2018 is relatively stable,

between 0.58–0.66; 2) The monthly mean correlation

coefficients R from August to December and January to

March in the 3 years are extremely stable, and fluctuate

greatly from April to July. Therefore, it is predicted that the

spatial heterogeneity of the simulation results from April to July

is relatively large. 3) The monthly mean RMSE of the verification

parameters fluctuated greatly from 2016 to 2018, from 4.0 to 15.0;

4) The RMSE of September to December and January of the

TABLE 2 Unsigned correlation matrix between different explanatory variables and PM2.5 from January to December.

Month AOD RH T2m WS10 BLH SP DEM NDVI

1 0.122 0.588** 0.507* 0.382* 0.216* 0.100 0.178 0.235*

2 0.271 0.121 0.474* 0.297* 0.149 0.161 0.136 0.258*

3 0.584** 0.632 0.508 0.203 0.305 0.223 0.370 0.148

4 0.406* 0.443* 0.212 0.462* 0.492* 0.350* 0.138 0.111

5 0.196 0.211 0.258* 0.109 0.330* 0.152 0.261* 0.188

6 0.155 0.510* 0.287 0.457* 0.565** 0.255 0.273 0.120

7 0.172 0.331* 0.254* 0.325* 0.401* 0.260 0.216 0.118

8 0.655** 0.366 0.324 0.726** 0.455* 0.261 0.337 0.117

9 0.284 0.413* 0.648** 0.655* 0.687* 0.629* 0.303 0.331

10 0.347 0.285 0.404* 0.527* 0.297 0.324 0.482* 0.214

11 0.570** 0.620** 0.594* 0.137 0.574* 0.324 0.465* 0.151

12 0.141 0.410* 0.540* 0.368* 0.169 0.191 0.118 0.188

Mean 0.325* 0.411* 0.417* 0.387* 0.387* 0.269 0.273 0.181

Note: * is sig <0.05, ** is sig <0.01.

FIGURE 2
The average fitting accuracy of the models in the study area
from 2016 to 2018.
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following year fluctuated little in the 3 years, and the RMSE from

February to July fluctuates greatly, which is similar to the rule of

(2). Therefore, it is guessed that the spatial heterogeneity of the

PM2.5 concentration simulation results from February to July is

relatively large.

The comparison between the measured value and the

predicted value of the verification point is shown in

Supplementary Appendix Figure S1. From the figure we can

find that all verification points are evenly distributed on both

sides of the dotted axis (y = x). Our model validation results are

good. Supplementary Appendix Figure S2 shows the residual

probability distribution. The validation residuals for all months

were normally distributed. The constructed model conforms to

statistical laws. In addition, the residual probability distribution

in July-October is more compact. Combining Supplementary

Appendix Figure S1 and Figure 3B, we find that the

comprehensive RMSE of July-October is also smaller, and the

verification points are more concentrated. It shows that the

model adaptability from July to October is better.

3.2 Analysis of the temporal and spatial
changes of PM2.5 concentration

3.2.1 The spatial variation of
PM2.5 concentration

The distribution of monthly PM2.5 patterns estimated by the

GWRmodel is presented in a later chapter. We superimposed the

PM2.5 data in different months from 2016 to 2018 to calculate

the annual mean, and obtained the spatial distribution pattern of

the annual mean PM2.5 concentration in the study area from

2016 to 2018 (Figure 4). The annual mean PM2.5 distribution

map can more directly observe the spatial distribution law. It can

be found from Figure 4 that the spatial distribution pattern of the

annual mean concentration of PM2.5 from 2016 to 2018 is

basically the same, with obvious spatial differentiation. The 3-

years mean PM2.5 concentration in the study area fluctuated

between 5 and 30 μg/m3. Comparing the ground elevation and

land use in the study area (Figures 1B,C), the spatial distribution

of PM2.5 concentration in the study area is similar to the

distribution of ground elevation and land use. Combining the

land use and ground elevation of the study area, we found that: 1)

Ground elevation was negatively correlated with the annual

mean PM2.5 concentration. The higher the ground elevation,

the lower the PM2.5 concentration. 2) The distribution of annual

mean PM2.5 concentration also has a certain correlation with the

distribution of land use types. The area above the lake is the place

with the lowest PM2.5 concentration in the entire study area;

secondly, the annual mean PM2 above the cultivated land far

away from the tributaries of the Yellow River. The concentration

of PM2.5 is also low; the annual mean PM2.5 concentration over

the unused land is the highest.

In addition, we can observe from Figure 4: 1) From 2016 to

2018, the central and southern parts of Ulanqab, the northeastern

end of Hohhot, and the southeastern end of Baotou were the

lowest in the study area (central Inner Mongolia). 2) The annual

mean PM2.5 concentration along the Yellow River Basin in

Bayannur is the highest in the study area. 3) The mean

annual PM2.5 along the Yellow River Basin in the northern

section of Ordos is also high. 4) On the whole, the mean annual

FIGURE 3
Model accuracy verification results in the study area: (A)Monthly average correlation coefficient between measured data and inverted data; (B)
Monthly average root mean square error of measured data and inverted data (μg/m3).
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PM2.5 concentration of central Inner Mongolia from 2016 to

2018 was the lowest in the east, increasing in order to the west,

lower in the south, and gradually increasing to the northwest.

3.2.2 Analysis of PM2.5 concentration time
change
3.2.2.1 Annual change

Table 3 describes the statistical characteristics of the annual

mean PM2.5 concentration in the study area from 2016 to 2018.

It can be directly observed from the table that 1) Bayannur is the

city with the highest annual mean concentration of PM2.5 in

central Inner Mongolia, followed by Ordos and Baotou. Hohhot

has a lower annual PM2.5 concentration, and Ulanqab has the

lowest annual PM2.5 concentration. Most cities exceed the China

national mean PM2.5 level 1 standard [(GB3095-2012) “Ambient

Air Quality Standard” (Wang et al., 2010), the annual mean

PM2.5 concentration limit is 15 μg/m3 at level 1 and 35 μg/m3 at

level 2]. The mean annual PM2.5 concentration in all cities is

greater than the health standard recommended by the World

Health Organization (WHO Air Quality Guidelines), that is, the

mean annual PM2.5 concentration is 5 μg/m3 (Ouyang et al.,

2022). 2) The mean annual concentration of PM2.5 in the study

area in 2016 was 17.03 μg/m3, the mean annual concentration of

PM2.5 in the study area in 2017 was 18.42 μg/m3, and the mean

annual concentration of PM2.5 in the study area in 2018 was

16.30 μg/m3. In the 3 years from 2016 to 2018, the overall

concentration value in 2017 was also the highest. 3) From

FIGURE 4
The spatial distribution of the average annual PM2.5 concentration in the study area from 2016 to 2018.

TABLE 3 Description of the statistical characteristics of the annual mean PM2.5 concentration (μg/m3) of cities in central InnerMongolia from 2016 to
2018.

Year Bayannur Baotou Ordos Ulanqab Hohhot Mean

2016 21.24 16.67 17.82 14.51 14.90 17.03

2017 21.06 18.71 18.53 15.00 18.79 18.42

2018 18.77 16.07 16.65 13.80 16.18 16.30

Annual mean 20.36 17.15 17.66 14.44 16.63 17.25

FIGURE 5
Percentage of air pollution days in central Inner Mongolia
cities from 2016 to 2018.
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2016 to 2018, it generally increased first and then decreased.

Except for Bayannur, which has been declining, other cities also

increased first and then decreased.

At the same time, we calculated the percentage of air

pollution days in central Inner Mongolia cities from 2016 to

2018 to the number of days in the whole year, as shown in

Figure 5. From the figure, we can find that the proportion of air

pollution days in Baotou and Hohhot in the past 3 years is higher

than 0.20, especially in 2017, the proportion of Hohhot is higher

than 0.3. Compared with the other four cities, Ulanqab has a

lower proportion of polluted days, but it is also higher than 0.1.

As a result, cities in central Inner Mongolia are plagued by air

pollution.

3.2.2.2 Seasonal change

The central part of Inner Mongolia has a continental

monsoon arid climate with four distinct seasons. In addition,

the region’s economic development is faster than other regions in

Inner Mongolia, and has obvious seasonal characteristics, which

has an important impact on the seasonal distribution of PM2.5,

so it is necessary to study and analyze the seasonal changes of

PM2.5 concentration. According to the monthly mean

PM2.5 concentration data in the study area from 2016 to

2018, the mean PM2.5 concentration values of the

corresponding seasons are calculated for many years. Figure 6

shows the spatial distribution of seasonal mean PM2.5 from

2016 to 2018. It can be seen from the figure that the highest

seasonal mean PM2.5 concentration value for many years occurs

in winter, and the spatial variation of the seasonal mean

PM2.5 concentration value in winter is also the largest. The

PM2.5 concentration value is the smallest in summer, and is at

the intermediate level in spring and autumn. The seasonal mean

concentration of PM2.5 has high value areas, which are

concentrated in the Yellow River Basin in the northern part

of Bayannur and along the banks of the Yellow River Basin in

other cities, especially in autumn and winter.

Figure 7 shows the change of the seasonal mean

concentration of PM2.5 in the cities of central Inner

Mongolia from 2016 to 2018. It can be found from the

figure that the seasonal variation of PM2.5 concentration in

FIGURE 6
Spatial distribution of seasonal average PM2.5 concentration from 2016 to 2018.
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the five cities is basically the same. The mean

PM2.5 concentration in the three seasons of spring,

autumn and winter in each city is higher, and the lowest in

summer. However, starting from the summer of 2018, the

seasonal mean concentration of PM2.5 in all cities began to

decline. The mean PM2.5 of Bayannur in each season is mostly

higher than that of other cities, except for Ordos in the winter

of 2016 and spring of 2018. In the summer of 2016, all cities

had the lowest mean PM2.5. In the fall of 2017 and the spring

of 2018, the seasonal mean PM2.5 concentration of all cities

was the highest in 3 years, especially in the spring of 2018.

2.3.3.3 Monthly change

The spatial distribution pattern of the monthly mean

concentration of PM2.5 in the study area from 2016 to

2018 from January to December can be found in the

Supplementary Appendix Figures S3–S5. The monthly

changes of PM2.5 concentration in the cities of central Inner

Mongolia from 2016 to 2018 are shown in Figure 8. It can be seen

from Figure 8 that the overall change patterns of the five cities are

basically the same. November is the month with the most severe

PM2.5 concentration in the urban agglomeration of central Inner

Mongolia, followed by January, March, and May. In addition,

June and September are months with lower

PM2.5 concentrations.

The monthly mean concentration of PM2.5 in most areas of

central Inner Mongolia from June to September was lower than

20 μg/m3, and the pollution was relatively small. In January, the

concentration of PM2.5 was highest in southwestern Bayannur,

southern Baotou, and northeastern Ordos; starting from

February, the overall PM2.5 concentration value slowed down

and drifted laterally along the main stream of the Yellow River;

until October, the PM2.5 concentration value began to increase

significantly, and continued to decay around the main stream of

the Yellow River, reaching the highest month of the overall

PM2.5 concentration distribution in the study area in

November and December. In addition, other spatial

distribution laws are consistent with the above-mentioned

characteristics of annual and seasonal changes of PM2.5.

3.3 Analysis of driving factors

Using factor detectors to determine the influence degree of

each influencing factor on the seasonal variation of PM2.5, the

results are shown in Table 4. It can be seen from Table 4 that,

overall, the single factor that has the greatest impact on the

seasonal concentration of PM2.5 is the urban built-up area (UBA,

q = 0.386), followed by the permanent population (PP, q = 0.340),

the least impact is the number of industrial enterprises above

designated size (NIE, q = 0.016). In addition, the concentration of

PM2.5 varies in different seasons, and the impact factors are

naturally also inconsistent. In spring, the most explanatory factor

is the permanent population, followed by the urban built-up area

and heat supply. In summer, the most explanatory factor is GDP

per capita (PGDP), followed by the area of urban built-up areas

and the number of industrial enterprises above designated size. In

autumn, the most explanatory factor is the area of urban built-up

areas (UBA). In winter, except for per capita GDP (PGDP) and

the number of industrial enterprises above designated size (NIE),

other factors have a high degree of explanation. The most

explanatory factor in winter and spring is the permanent

population (PP, q = 0.728), followed by heat supply (HS, q =

0.562) and urban built-up area (UBA, q = 0.536).

FIGURE 7
The seasonal variation of PM2.5 concentration of cities in
central Inner Mongolia.

FIGURE 8
Themonthly average change of PM2.5 concentration in cities
from 2016 to 2018.
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We calculated the influence degree of each impact factor on the

annual PM2.5 of different cities, and the results are shown in Table 5.

From the table, we can find that the main social factors affecting

PM2.5 are different for different cities. Among them, for Bayannur,

except for per capita GDP (PGDP, q = 0.045), other factors have a

very high degree of explanation. However, in Baotou, the per capita

GDP (PGDP) is highly explanatory, followed by the urban built-up

area. In Ordos, the most explanatory factors are the urban built-up

area (UBA), heat supply (HS), and permanent population (PP). In

Ulanqab, the most explanatory factors are the proportion of

secondary industry (SIP), heat supply (HS), per capita GDP

(PGDP), and permanent population (PP). In Hohhot, the most

explanatory factors are the number of units of industrial enterprises

(NIE), urban built-up area (UBA), permanent population (PP), and

annual gas supply (AGS). This is related to the development of

different cities and pillar industries.

4 Discussion

We choose this time period and build the model month by

month. Although there are only three distinct years for a month, we

have 50 data for modeling for each year, for a total of 150 modeling

data for each month. Increasing the year can make the model

generalize better, but at the same time too many variables and data

can lead to degraded computing performance and data redundancy.

So we chose this typical time period. On the other hand,

2016–2018 is the final stage to complete the action plan for air

pollution prevention and control.

The central area of Inner Mongolia is cold and dry in winter,

consumes a large amount of coal (Zheng et al., 2018), and

increases the number of car trips, which increases the

concentration of PM2.5 in the air, so the PM2.5 in winter is

extremely high. In summer, there is more rain, which has a

certain purification effect on pollutants in the air. The vegetation

coverage in summer also reaches the highest level, so the

concentration of PM2.5 in summer is low (Junyan Yang et al.,

2020). In spring and autumn, it is windy and there is more sand

and dust in the air (Gao et al., 2018). Especially in spring, when

sandstorms are reported, PM2.5 is also high. This is basically

consistent with our previous results.

The surface of the alluvial plain of the YellowRiver is flat and the

terrain is open. Except that the roughness of the surface affects the

atmospheric turbulence near the ground, the air flow does not have

much interference (Zhuorui Wei et al., 2021). Under normal

circumstances, pollutants will diffuse according to the Gaussian

diffusion model (Tee et al., 2020). As the Yin Mountains, which run

east-west and have an altitude ofmore than 1000 m along the Yellow

Plain, are distributed to the north of the Yellow River, which

prevents the diffusion of pollutants from strong winds. Therefore,

the concentration of air pollutants in the northern part of Ordos and

the southern part of Bayannur is slightly higher.

The most important factor affecting PM2.5 concentration in

central Inner Mongolia from 2016 to 2018 was the urban built-up

TABLE 4 Explanation degree of different social factors to PM2.5 concentration changes.

Factor UBA PP SIP PGDP NIE AGS HS

spring 0.613** 0.679* 0.208 0.057 0.141 0.413* 0.564**

summer 0.328* 0.158 0.110 0.461** 0.259* 0.023 0.202

autumn 0.369* 0.138 0.058 0.260* 0.072 0.001 0.019

winter 0.386* 0.626** 0.599* 0.087 0.083 0.438* 0.457**

spring + winter 0.536** 0.728** 0.496* 0.084 0.008 0.481* 0.562**

Overall 0.386* 0.340* 0.151 0.334* 0.016 0.125 0.292**

Note: * is sig <0.05, ** is sig <0.01.

TABLE 5 Explanation Degree of Different Social Factors to PM2.5 Concentration Changes in different cities.

Factor UBA PP SIP PGDP NIE AGS HS

Bayannur 0.998** 0.985** 0.636* 0.045 0.654** 0.955** 0.763*

Baotou 0.533** 0.051 0.299 0.951* 0.354* 0.101 0.283

Ordos 0.927** 0.540* 0.244 0.456* 0.341 0.182 0.603*

Ulanqab 0.128 0.520 0.899** 0.586** 0.108 0.249 0.795**

Hohhot 0.808** 0.683** 0.024 0.014 0.829** 0.503 0.370

Note: * is sig <0.05, ** is sig <0.01.
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areas. In other words, urbanization was the main factor affecting

PM2.5 pollution in central InnerMongolia during this period. There

are a certain number of industrial parks in the urban areas of central

Inner Mongolia, and the growth rate of green area is not enough to

offset the growth rate affected by urban development. In addition,

car ownership is high in this area, and car emissions can also cause

pollution (Khuzestani et al., 2017). Therefore, in the process of

urbanization, wemust pay attention to the prevention and control of

air pollution, and plan the urban layout according to the different

economic and natural conditions of each city. The number of

permanent residents and per capita GDP are also important

influencing factors of PM2.5 pollution. In the process of

economic development, we must pay attention to pollution

prevention and control, appropriately adjust the industrial

structure, and develop public transportation.

Heat supply is an extremely important factor influencing

PM2.5 pollution in winter and spring in central Inner Mongolia.

The peak heating period in this area is from October of the current

year to the beginning of May of the following year, and the heating

period is as long as 6 months. Air pollution ismainly concentrated in

spring and winter. At the turn of spring and summer, the pollution

will continue to reduce. When the autumn and winter alternate, the

pollution will increase again. The burning of a large amount of coal

during the heating process in winter is the main reason for the

increase of air pollution in winter (Khuzestani et al., 2017;

Khuzestani et al., 2018). Therefore, the government should

actively and orderly promote new energy, rationally and

effectively use clean energy, reduce the use of coal, and look for

alternatives such as electricity and natural gas.

5 Conclusion

In this paper, the central region of Inner Mongolia was selected

as the study area, and the factor with the greatest correlation with

monthly PM2.5 concentration from 2016 to 2018 was selected from

multiple factors to establish a GWR model and invert the spatial

distribution data of PM2.5 concentration from 2016 to 2018. In this

study, the spatial and temporal (annual, seasonal, and monthly)

spatial distribution characteristics of PM2.5 concentration in cities of

central Inner Mongolia were analyzed, and the impact on

PM2.5 concentration was analyzed from the aspects of economic

development, urbanization, industrialization and energy. The results

of this paper provide a theoretical basis for air pollution monitoring,

management and prevention in central Inner Mongolia.

This study investigated the temporal and spatial distribution

characteristics of PM2.5 concentration in central Inner Mongolia

from 2016 to 2018 and the impact of social and economic factors on

it. First, a geographically weighted regression model considering the

heterogeneity of time and space was established to describe the time

and space pattern of PM2.5 concentration in the study area. Then we

used geographic detectors to determine the impact of socio-economic

factors on PM2.5. The main conclusions of this study include:

1. There is significant temporal and spatial heterogeneity

between PM2.5 concentration and the selected auxiliary

variables. The established model can better estimate the

spatial distribution of PM2.5 concentration in the study

area. The variation of the monthly mean correlation

coefficient R in the verification parameters is relatively

stable, between 0.58–0.66.

2. PM2.5 concentration in central Inner Mongolia showed

significant temporal and spatial changes. The annual mean

PM2.5 concentration along the Yellow River Basin is the

highest in the study area. Although the

PM2.5 concentration increased first and then decreased, it

was still higher than the China national quality standard.

Therefore, further reducing the PM2.5 concentration is still a

huge challenge.

3. Urban built-up area, permanent population and per capita

GDP are the key factors affecting the temporal and spatial

distribution of PM2.5 concentration in the study area. In

addition, the influencing factors of PM2.5 concentration

changes in different seasons are inconsistent. In winter

and spring, heat supply is also an extremely important

factor.
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