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Abstract

This paper is concerned with a special case of stochastic distributed optimal
control, where the objective is to design a structurally constrained controller
for a system subject to state and input power constraints. The structural con-
straints are induced by the directed communication between local controllers
over a strongly connected graph. Based on the information structure present,
that is, who knows what and when, we provide a control synthesis with the
optimal control law consisting of two parts: one that is based on the common
information between the subsystems and one that uses more localized informa-
tion. The developed method is applicable to an arbitrary number of physically
interconnected subsystems.
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1 INTRODUCTION

Distributed control problems arise naturally in large-scale
networked systems such as smart grids, transportation
networks, and communication networks. In recent years,
particular attention has been directed to understanding
and controlling interconnected systems. In such net-
worked control systems, communication is essential since
different systems are aiming to minimize both local and
global cost metrics. In order to meet the requirements of
such cyber-physical applications it is essential to reduce
time delay and packet loss probability within control loops.
This goes in line with in-network control [1], where the
control task is distributed to a potentially large number
of in-network devices (routers, switches), reducing the
communication distance. Rüth et al. [2] demonstrate
the applicability of in-network processing for control, a

Abbreviations: DM, decision maker; NCS, networked control system.

previously unexplored area, by offloading small but critical
control tasks into network elements managed and orga-
nized through remote environments.

In the controller design process of large-scale networked
systems, it is immediately evident that some control
actions must be based solely on locally available informa-
tion. At the same time, the globally available information,
which is strictly monotonically increasing, must also be
taken into consideration in order to minimize global met-
rics. We effortlessly identify three challenges: (i) can the
globally available information, which is strictly monoton-
ically increasing with time, be summarized by some con-
stant size information? In other words, can we identify
sufficient statistics for the globally available information?
(ii) can we prove the existence of optimal distributed poli-
cies and compute them efficiently? (iii) does the solution
to distributed optimal control problem scale to an arbitrary
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number of subsystems? The work presented in this paper
addresses these three questions for large-scale networked
systems of arbitrary dimension subject to state and input
power constraints, under the assumption that the com-
munication between decision makers occurs as fast as the
state interconnections propagate through the plant.

2 RELATED WORK AND
CONTRIBUTIONS

The design of optimal distributed control laws is difficult
in general because the “information structure” (i.e., “who
knows what and when”) decides on the convexity of the
problem [3-5]. Intuitively, this difficulty arises because
of additional sparsity constraints on the feedback control
that model the availability of information to local deci-
sion makers [6]. In Witsenhausen, [4] this is demonstrated
by providing an example of information structure which
results in optimal nonlinear policy even for a linear system
and quadratic cost function. The linearity of optimal poli-
cies with respect to the associated information is proven
for so-called partially nested information structures in Ho
and Chu [7]. A more general result is given in Rotkowitz
and Lall [8], where the quadratically invariant information
structures are characterized which allow for the convex
formulation of the problem. Lastly, the design of quadrat-
ically invariant information structures for distributed sys-
tems with intermittent observations is presented in Abara
et al. [9]. The latter two results concern the computa-
tional tractability of the optimal information-constrained
control problem. On the other hand, a lot of focus has
been given to the design of optimal control laws for fixed
information structures that have the property of being
partially nested. The authors in Nayyar et al. [10] argue
that the information hierarchy between the decision mak-
ers (DMs) can be exploited to obtain the optimal control
law. In other studies [11–13], based on such hierarchy,
the structure of the controller is given for linear quadratic
Gaussian team problems with partially nested information
structure. An extension of the latter results towards output
feedback and correlated process and measurement noises
is given in [14]. However, all of those works [11–14] con-
sider either a two-player team or three-player chain, and it
is not straightforward to see how those methodologies can
be extended to an arbitrary number of DMs. To the best of
our knowledge, this is partially due to the fact that no exist-
ing paper in the literature identifies sufficient statistics
for general partially nested team over graphs. In Mahajan
and Nayyar, [15] sufficient statistics are derived for linear
control strategies and systems with partial information
sharing. However, the approach does not provide the com-
putation of the optimal control law, but rather its structure,
and it is not easily seen if their approach simplifies for

partially nested information structures. Interestingly,
Wang et al. [16] address the design of optimal decentral-
ized output feedback control, given a one-step delayed
information pattern, over a connected digraph. However,
while individual states are assumed to be communicated
with one-step delay between neighboring decision mak-
ers, the authors assume that each DM has access to global
control input vector at current time. This assumption
seems unrealistic as communication delay should affect
not only transmission of individual states but also con-
trol inputs. However, the optimal control design for an
arbitrary number of physically coupled subsystems under
partially nested information structure induced by one-step
communication delays between neighboring DMs and
state/input constraints is largely open.

The main contribution of this paper is a methodol-
ogy for the design of optimal control laws for large-scale
information-constrained system, given state and/or input
power constraints in the system. Our approach differs from
existing related works in the field of large-scale distributed
optimal control subject to delayed information sharing in
the following lines:

• We assume no process noise histories available to DMs
at each time instant—contrary to the approach in Wang
et al. [17]. Our approach is motivated by limited mem-
ory of in-network devices and therefore builds on the
derivation of constant-size sufficient statistics for the
part of control based on common information between
DMs. This sufficient statistics (as later proven) can be
computed efficiently using a recursive form. We then
prove independence between derived sufficient statis-
tics and locally available information, assuming that
neighboring controllers communicate with one-step
delay, over a connected directed graph.

• Our problem formulation permits definition of
safety/actuation constraints - formulated as state/input
power constraints. These can be defined locally (for the
power of individual subsystems) or globally (for the
overall power). Unlike model-predictive control (MPC)
methodology that handles constrained problems, in
our approach the effect of state/input constraints is
incorporated and can be directly seen as part of the
computed optimal control gains.

• Based on the control hierarchy induced by the derived
optimal control policy we provide an interpretation
of such hierarchy in terms of its implementation on
in-network elements. This enables both optimal con-
trol actions and scalable orchestration through cloud
environments.

The problem is reformulated in its dual form, and
according to the information constraints, the structure of
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the controller as well as computation of controller gains is
given.

The remainder of the paper is outlined as follows. We
start with problem setting in Section 3. The method to
decouple problem into several sub-problems via covari-
ance decomposition is presented in Section 4. In Section 5,
we provide structural characterization of the solution to
the problem, and in Section 6, we illustrate the devel-
oped methodology via simulations. Finally, conclusions
are given in Section 7.

2.1 Notation
In this paper, for appropriate matrices Ci, the matrix D =
blkdiag (C1,C2, … ,Cn) is the block-diagonal matrix such
that Dii = Ci and Di𝑗 = 0 for i≠ j. Given a matrix
A, we denote by [A]ij its element with position (i.j) and
furthermore we denote by 1 a matrix of all ones. For a
time-varying vector x(k), we denote by x(k1 : k2) stacked
vector x(k1 ∶ k2)⊤ = [x⊤(k1), x⊤(k1 − 1), … , x⊤(k2)].
where k1 > k2. By Sn, we denote a space of symmetric
matrices of dimension n×n. The symbol ◦ denotes the
element-wise multiplication of matrices. Finally, we define
the left-multiplication operator

∏
as

b∏
z=a

P(z) = P(b)P(b − 1) … P(a + 1)P(a)

for a≤b and some square matrices P(·).

3 PROBLEM SETTING

Consider a large-scale physically interconnected system
composed of N linear subsystems, where the interconnec-
tions are described through a graph  = ( , ), called the
physical interconnection graph. Each node i ∈  corre-
sponds to one of the subsystems i∈ {1, … , N}. An edge
( 𝑗, i) ∈  if the dynamics of node i is directly affected by
node j. We consider a directed graph  and assume it to be
strongly connected. The set of direct neighbors of subsys-
tem i is defined as i = {𝑗 |( 𝑗, i) ∈  , 𝑗 ≠ i}, i = 1, … ,N.
The dynamics of the ith subsystem is given by a first order
stochastic difference equation

xi(k + 1) = Aixi(k) + Biui(k) +
∑
𝑗∈i

Ai𝑗x𝑗(k) + wi(k), (1)

where xi(k) ∈ Rni is the state, ui(k) ∈ Rmi is the control
signal, Ai ∈ Rni×ni , Ai𝑗 ∈ R

ni×n𝑗 and Bi ∈ Rni×mi .
The noise process wi(k) ∈ Rni is zero mean i.i.d. Gaus-
sian with covariance matrix Σwi . The initial state xi(0) is
a random variable with zero mean and finite covariance
Σxi . Moreover, xi(0) and wi(k) are assumed to be pair-wise

independent at each time instant k and every i. Equation 1
can be written as

x(k + 1) = Ax(k) + Bu(k) + w(k) (2)

where the stacked vectors are defined as x⊤(k) =
(x⊤1 (k), … , x⊤N(k)) ∈ Rn, w⊤(k) = (w⊤

1 (k), … ,w⊤
N(k)) ∈

Rn and u⊤(k) = (u⊤
1 (k), … ,u⊤

N(k)) ∈ Rm. The corre-

sponding dimensions are n =
N∑

i=1
ni, m =

N∑
i=1

mi. Addi-

tionally, we define Σw = blkdiag(Σw1 , … ,ΣwN ) and Σx =
blkdiag(Σx1 , … ,ΣxN ). For each DM i, the admissible con-
trol policies at time instant k are measurable functions of
the available information  i

k

ui(k) = 𝛾 i
k(

i
k) (3)

where we define  i
k as

 i
k = { i

k−1, xi
k}

⋃
𝑗∈i

{𝑗

k−1}, (4)

that is, the information set of each DM is updated by the
current state value and the one-step delayed information
from the direct neighbors i. At k = 0, it holds  i

0 = {xi
0}.

Thus, we assume here that DMj communicates its state to
DM i with one-step delay iff 𝑗 ∈ i.

Remark 1. In practice, the validity of the assumption
that the controllers communicate with a maximum
delay of one sampling interval [18] depends on the
communication technology and sampling rates. In
case of wired communication between subsystems,
communication delay is typically low and can be
assumed within the range of one sampling interval
for systems with low and high sampling rates. Wire-
less communication typically induces larger delays,
but technology developments such as 5G aim to reduce
this delay.

Remark 2. Notice that (4) represents the information
history that is in principle available to each decision
maker i and that increases with time. However, for
the ease of computation and memory optimization for
each DM, we will later introduce sufficient statistics
for control policy (3). This is of particular relevance as
we assume that local controllers have limited memory,
computation, and access (as they represent in-network
elements).

The objective is to minimize the global cost

J = E

[T−1∑
k=0

[
x(k)
u(k)

]⊤
Λ
[

x(k)
u(k)

]
+ x(T)⊤QTx(T)

]
, (5)
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where Λ = blkdiag(Q,R). The matrix R is assumed to
be positive-definite, while matrices Q, QT are assumed to
be positive semi-definite. The cost (5) is to be minimized
under state/input power constraints

E

[[
x(k)
u(k)

]⊤
Wi

[
x(k)
u(k)

]]
≤ pi

k, ∀i = 1, … ,M (6)

where pi
k is the maximum average power at every time

instant k = 1, … ,T − 1, and Wi, i = 1, … ,M, is a sym-
metric weighting matrix. By appropriate choice of Wi, the
set of constraints in (6) captures limited power of actuators
and/or safety constraints imposed on the state variables.
Also, as shown in Shannon, [19] Gaussian channel capac-
ity limitation can be modeled via power constraints.

Remark 3. Note that constraints (6) are defined in
expectation, that is, we require satisfaction of those
constraints on average. This (later proven), together
with assumptions on one-step delay between neig-
boring decision makers, implies the optimality of lin-
ear control policies for the information-constrained
problem addressed here. An interesting example [20]
that illustrates the role of state power constraints is a
vehicle platoon that suddenly increases its velocity due
to an increased speed limit on the road. As the target
speed of the platoon increases, it is crucial to limit the
deviation of distances from desired ones (as the failure
of one vehicle can have bigger consequences when the
platoon is moving at higher velocity).

Ultimately, the problem is formally stated as

min
𝛾0∶T−1

J s.t. (2), (3), (6), (7)

where 𝛾k = [𝛾1
k , … , 𝛾N

k ] contains all DMs control policies.

Example 1. In Figure 2 a physical interconnection
graph and at the same time information topology that
satisfy the assumptions are given. The nodes i (i =
1, … , 4) represent either physical subsystems i or
corresponding control units i. The links denote the
physical coupling between i and also the commu-
nication delay between i. Indeed, one can see that
dynamics of subsystem 1 affects the dynamics of sub-
system 4 with delay of three steps, which defines the
communication delay between control units 1 and 4.

4 LOCAL CONTROL ACTIONS AND
COMMON CONTROL

In this section, we give the structure of the optimal control
law, for a fixed partially nested information pattern defined
in (4) and given constraints on control input and state

introduced in (6). To this end, we derive sufficient statis-
tics for the part of the control law that is based on common
information between DMs and establish its independency
from locally available information.

4.1 Information decomposition
In this subsection, the information history defined in (4)
is split into two sets: common history known by all DMs
and more localized information. To this end, we recall the
definitions of path and diameter of a graph.

Definition 1 (Path). Let  = ( , ) be a directed
graph. A path p(a, b) between any two vertices va, vb ∈
 is defined as an ordered tuple p(a, b) = (vi1 , … , vin)
where (a, b) = (i1, in), (vir , vir+1 ) ∈  and r∈ [1, n− 1].
Let lp(a, b) denote the number of vertices in p. Then
length of a path is Lp(a, b)= lp(a, b)− 1.

Definition 2 (Diameter of a graph). Consider a graph
 = ( , ). The diameter of a graph  is defined as

 = () = max
a,b∈

min
p

Lp(a, b)

that is, it is the length of the longest shortest path in .

In the particular example in Figure 1, the diameter is
 = 3. Referring to (3), (4) the diameter  = () deter-
mines a common information history for all N DMs at time
k

C
k = {x(0 ∶ k −())}. (8)

Indeed, the complete history until time k is divided into
two intervals: [0 ∶ k −] that defines the information set
in (8) and [k −  + 1 ∶ k] which defines more localized
information. Introducing a vector x̄(k) = x(k ∶ k −  +
1), and w̄⊤(k) = (w⊤(k), 0⊤, … , 0⊤), the augmented system
representing the evolution of the localized information is
written as

x̄(k + 1) = Āx̄(k) + B̄u(k) + w̄(k) (9)

FIGURE 1 Example of information (and physical
interconnection) graph

2052



CAUSEVIC ET AL.

where the matrices Ā, B̄ are defined as

Ā =

⎡⎢⎢⎢⎢⎣
A 0 0 … 0
I 0 0 … 0
0 I 0 … 0
⋮ ⋮ ⋱ … ⋮
0 0 … I 0

⎤⎥⎥⎥⎥⎦
, B̄ =

⎡⎢⎢⎢⎣
B
0
⋮
0

⎤⎥⎥⎥⎦ .

4.2 Structure of the optimal control law
In this section, in order to derive the structure of the opti-
mal control law, we prove an important property of the
information structure (4), that is, partial nestedness. To
this end, we first give the definition of partial nestedness
[21].

Definition 3. The information structure k ={
1

k , … ,N
k

}
and system (2) are partially nested if, for

every admissible policy (3), whenever ui(𝜏) affects 𝑗

k ,
then  i

𝜏 ⊂ 𝑗

k .

Lemma 1 (Partial nestedness). The information struc-
ture defined by (4) and system (2) are partially nested.

Proof. Let dji be the length of the shortest path j→ i
in the physical interconnection graph. Considering (4),
the information set  i

k contains the measurement
xj(k− dji) which is affected by uj(k− dji − 1). Thus, to
check if information structure (4) is partially nested,
one should verify the condition: 𝑗

k−d𝑗i−1 ⊂  i
k. Recall-

ing the assumption that graph  is connected we have

 i
k =

⋃
n=1,… ,N

{xn(0 ∶ k − dni)} ,

𝑗

k−d𝑗i−1 =
⋃

n=1,… ,N

{
xn(0 ∶ k − dn𝑗 − d𝑗i − 1)

}
,

which reduces the partial nestedness condition to
dnj + dji + 1≥ dni. Since dni is the length of the shortest
path between nodes n and i in , one can write
dni ≤ dnj + dji < dnj + dji + 1 which concludes the
proof.
Remark 4. Even though Lemma 1 verifies partial
nestedness of information structure in (4), this does
not guarantee that optimal control inputs for the
problem (7) are linear in the associated information,
due to the presence of constraints (6). A complete proof
for linearity of optimal control policies is given in the
next corollary.

Proposition 1. [Linearity of optimal control policies]
Considering problem (7), the optimal control policies (3)
are linear in the associated information, that is, of the
form

ui(k) = 𝛾 i
k(

i
k), k = 0, … ,T − 1, i = 1, … ,N,

where 𝛾 i
k is a linear admissible map.

Proof. Let us define li(k) as

li(k) = E

[[
x(k)
u(k)

]⊤
Wi

[
x(k)
u(k)

]]
. (10)

There exists a dual multiplier 𝜆⋆i (k) [22] such that
minimizing (5) under power constraints (6) is equiva-
lent to minimizing

J = J +
T−1∑
k=0

M∑
i=1

𝜆⋆i (k)li(k)

Since J is quadratic and the information structure, (4)
is partially nested, the optimal policies (3) to the
problem (7) are linear in the associated information
[7]. This concludes the proof.
From Lemma 2, the optimal control input u(k) is a linear

function of the complete history

u(k) = Γ(k)x(k ∶ 0) = [Γ2(k) Γ1(k)]
[

x̄(k)
x(k − ∶ 0)

]
(11)

where Γ1(k),Γ2(k) are control gains of appropriate dimen-
sions. The dimension of the vector x(k −  ∶ 0) increases
in time, and therefore, we derive a sufficient statistics for
it in order to express the control law (11) as a function of a
finite-dimensional recursive estimate. The control part

uc(k) = Γ1(k)x(k − ∶ 0) (12)

is referred to as the coordinator's control actions. The coor-
dinator observes the common history in (8) by updating
its measurement set at each time instant k with 𝑦c(k) =
x(k − ). Formally, combining Equations 9, (11) and (12)
the coordinator is represented as the following dynamical
system

x̄(k + 1) = Acx̄(k) + B̄uc(k) + w̄(k) (13)

𝑦c(k) = C̃x̄(k − 1) = x(k −) (14)

where C̃ = [0 … 0 I] and Ac(k) = Ā + B̄Γ2(k).

Remark 5. Note that the system above and in par-
ticular matrix Ac(k) are derived assuming that Γ2 is
known to the coordinator. As we will demonstrate
later, this gain can be computed offline, which justifies
the assumption.
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Using the identity x(k) = Fx̄(k),F = [I 0 … 0] and
Equations 11, (12) the cost function in (5) can be written as

J = E

[T−1∑
k=0

[
x̄(k)
uc(k)

]⊤
Λc

[
x̄(k)
uc(k)

]
+ x̄(T)⊤QT,cx̄(T)

]
,

where

Λc =
[
Γ⊤

2 RΓ2 + F⊤QF ΓT
2 R

RΓ2 R

]
,QT,c = F⊤QTF.

To conclude, due to the quadratic nature of the cost above
and Equations (13) and (14), the coordinator is a central-
ized, partially observable LQG system whose state estimate
is computed by standard results in linear stochastic control
[23]

x̂(k + 1) =E
[
x̄(k + 1)|C

k+1

]
= Acx̂(k)

+ B̄uc(k) + Kc(k)(𝑦c(k + 1) − C̃x̂(k))
(15)

with corresponding Kalman gain Kc computed as

Kc(k) = Ac(k)Vee(k)C̃T(C̃Vee(k)C̃⊤)−1 (16)

where Vee(k) is the variance of estimation error.

Remark 6. Note that x̄(0) = x(0 ∶ −+1) and Vee(0) =
blkdiag(Σx,Σx−1 , … ,Σx−+1) that is, states x(k − i) (i =
1, … , − 1) for k = 0 are considered as mutually
independent zero-mean Gaussian variables with finite
covariance Σxk−i ≽ 0.

To conclude, the estimator in (15) represents sufficient
statistics [15] for (12), and the optimal control law (11)
becomes

u(k) = K1(k)x̂(k) + Γ2(k)x̄(k) (17)

where K1(k) represents the gain with constant dimension
compared to Γ1 defined in (11) due to constant dimen-
sion of x̂(k). Differently than K1(k), the gain Γ2(k) needs to
satisfy sparsity constraints coming from the imposed infor-
mation structure (3). In fact, partitioning Γ2 according to u
and x̄, it is seen that Γ2 has N × N blocks, and therefore,
the sparsity constraints can be defined as

Γi,𝑗+N𝜏

2 (k) = 0 ⇐⇒ x𝑗(k − 𝜏) ∉  i
k (18)

where Γi,𝑗+N𝜏

2 indicates the block matrix in position
(i, j+N𝜏), for i∈ [1 : N], j∈ [1 : N] and 𝜏 ∈ [0 ∶  − 1].
Hence, we define the subspace S as

S =
{
Γ2 ∈ R

m×n|Γ2 satisfies (18)
}

(19)

and the structural identity of S is given as

[IS]i𝑗 =

{
1, if Si𝑗 can take arbitrary value
0, if Si𝑗 = 0

(20)

with structural identity of the complementary subspace Sc

defined as Ic
S = 1 − IS.

Remark 7. As seen in (15), the estimator x̂ is con-
ditioned on the information that is common for all
DMs. In terms of in-network control implementation
this means that its value will be computed by each
in-network node.

4.3 Orthogonality of control
decomposition
In this subsection, we write the optimal control law (17)
in a form that will allow us to decompose the cost in (7)
into independent cost functions, exploiting the informa-
tion decomposition already introduced. Introducing the
estimation error

e(k) = x̄(k) − x̂(k) (21)

the control law in (17) is written as

u(k) = 𝜙1(k) + 𝜙2(k), (22)

where

𝜙1(k) = (K1(k) + Γ2(k))x̂(k), 𝜙2(k) = Γ2(k)e(k). (23)

From (13) and (15), the evolution of error e is written as

e(k + 1) = x̄(k + 1) − x̂(k + 1) =
(

Ac(k) − Kc(k)C̃
)

e(k)

+ w̄(k) = Φ(k + 1, 0)e0 +
k−1∑
l=0

Φ(k + 1, l + 1)

w̄(l) + w̄(k)
(24)

where the transition matrix Φ(k + 1, l) for l = 0, … , k is

Φ(k + 1, l) =

{
Ac(k) − Kc(k)C̃ l = k(

Ac(k) − Kc(k)C̃
)
Φ(k, l) l < k

Referring to (24) and (15), it follows

E
[
e(k + 1)x̂(k + 1)⊤

]
= E

[
e(k + 1)

]
x̂(k + 1)⊤

since the coordinator at time instant (k+ 1) knows its pre-
vious estimate x̂(k), the previously computed control uc(k)
and its partial measurement of the overall state vector
yc(k+ 1). Finally, referring to (24), it follows E

[
e(k + 1)

]
=

0 ∀k due to assumption on zero mean Gaussian noise w(k)
and proper initialization of Kalman filter x̂(0) = E [x̄(0)],
sinceE[e(0)] = E[x̄(0)−x̂(0)] = 0 andE[w̄(k)] = 0 for every
k. Thus, it follows that e(k) and x̂(k) are orthogonal, which
also implies independency between 𝜙1 and 𝜙2 as defined
in (23).
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Remark 8. Notice that the optimal control policy (22)
is a superposition of two components. The compo-
nent 𝜙1(k) is proportional to the estimator x̂(k) of the
state x̄(k), conditioned on the common information
between all decision makers (in-network elements).
This common information is not the full informa-
tion available at the in-network elements. Indeed,
each in-network element, at time instant k, also mea-
sures only locally available state value as well as state
that was communicated to it with a number of steps
less than the diameter of the physical interconnection
graph. Thus, local corrections 𝜙2(k) have to be applied
to compensate for the discrepancy of estimator x̂(k)
and actual state x(k), due to the process noise. In other
words, additional available local information has to be
considered as the part of the optimal control action of
each in-network element.

5 COMPUTATION OF CONTROL
GAINS

In this section, we write the problem (7) in terms of
variance of the state and input components defined
in (21), (22), and split it into two subproblems: computa-
tion of the coordinator's control actions 𝜙1(k) and compu-
tation of local control actions 𝜙2(k).

5.1 Cost function decomposition
The cost function in (7) is decoupled introducing the vector
z̄ as a decision variable

z̄(k) =
[

x̂(k)⊤ 𝜙1(k)⊤|e(k)⊤ 𝜙2(k)⊤
]⊤
, (25)

which was proven to be block-wise independent in previ-
ous section. Due to the quadratic cost J and constraints
in (6), we introduce the covariance matrix

V̄(k) = E
[
z̄(k)z̄(k)⊤

]
= blkdiag(V1(k),V2(k)) (26)

where the covariance matrices of the individual blocks of
z̄(k) are

V1(k) = E

[[
x̂(k)
𝜙1(k)

] [
x̂(k)
𝜙1(k)

]⊤]
=
[

Vx̂x̂(k) Vx̂𝜙1
(k)

V𝜙1 x̂(k) V𝜙1𝜙1
(k)

]
,V2(k)

= E

[[
e(k)
𝜙2(k)

] [
e(k)
𝜙2(k)

]⊤]
=
[

Vee(k) Ve𝜙2
(k)

V𝜙2e(k) V𝜙2𝜙2
(k)

]
.

The sparsity of V̄ is due to the following facts: (1) x̂(k) and
e(k) are ortoghonal; (2) both process noise and initial state
are zero-mean. The power constraints are written as

E

[[
x(k)
u(k)

]⊤
Wi

[
x(k)
u(k)

]]
= E

[[
Fx̄(k)
u(k)

]⊤
Wi

[
Fx̄(k)
u(k)

]]
= tr(W̃iV1(k)) + tr(W̃iV2(k)) ≤ pi

k
(27)

where W̃i = (blkdiag(F, I))⊤Wi blkdiag(F, I). Analogously,
the quadratic cost is written as

J = tr(Q̄TVx̂x̂(T)) +
T−1∑
k=0

tr(Λ̄(k)V1(k))

+
T−1∑
k=0

tr(Λ̄(k)V2(k)) + tr(Q̄TVee(T))

(28)

where

Λ̄(k) = (blkdiag(F, I))⊤Λ(k)blkdiag(F, I), Q̄T = F⊤QT F.

Proposition 2. Suppose that Γ2(0 : T− 1) in
Equation (11) are given such that the information con-
straints in (18) are satisfied. Problem (7) is reduced to

min
V1(0∶T−1)≽0

tr(Q̄TMV1(T)M⊤) +
T−1∑
k=0

tr(Λ̄(k)V1(k))

s.t. MV1(0)M⊤ = 0

MV1(k + 1)M⊤ =
[

Ā B̄
]

V1(k)
[

Ā B̄
]⊤

+ (KcC̃)MV2(k)M⊤(KcC̃)⊤

tr(W̃iV1(k)) + tr(W̃iV2(k)) ≤ pi
k

(29)
where M is such that Vx̂x̂(k) = MV1(k)M⊤.

Proof. Given the gains Γ2(0 : T− 1) that satisfy (18),
in the cost function (28) only the first two terms are
dependent on V1(0 : T− 1). Such cost is to be mini-
mized with respect to V1(0 : T− 1) with constraints on
the evolution of the dynamics of the estimator given
by Equation (15), and subject to power constraints
in (27). Indeed, calculating the variance of (15) yields
the second constraint in the Proposition 1. The ini-
tial condition Vx̂x̂(0) = MV1(0)M⊤ = 0 holds since
x̂(0) = E[x̄(0)] i.e. it follows Vx̂x̂(0) = E

[
x̂(0)x̂(0)⊤

]
=

E[x̄(0)]E[x̄(0)⊤] = 0. Finally, the last constraint is
from (27).

5.2 Computation of dual variables
In this section, we exploit Langrangian duality to solve
the problem in (29). We introduce dual variables S(k) ∈
Sn(k = 0, … ,T) to account for constraints on the evolu-
tion of V1(k) and its initial value, and dual variables 𝜏i(k) ∈
R+ (k = 0, … ,T − 1) to account for the power constraints
in (27). The Lagrangian function(S0∶T , 𝜏i,0∶T−1,V1(0 ∶ T))
for problem (29) is
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 =(T) +
T−1∑
k=0

{(k) + tr{S(k + 1)ΣV2}}

+
T−1∑
k=0

M∑
i=1

𝜏i(k)(tr(W̃iV2(k)) − pi
k),

ΣV2 = (KcC̃)MV2(k)M⊤(KcC̃)⊤,

(30)

where the Hamiltonian function (k), (k = 0, … ,T) is

(T) = tr{MT (
Q̄T − S(T)

)
MV1(T)},

(k) = tr{(Λ̄ +
[

Ā B̄
]⊤S(k + 1)

[
Ā B̄

]
− M⊤S(k)M

+
M∑

i=1
𝜏i(k)W̃i)V1(k)} ≜ tr{𝜉(k)V1(k)}.

The value of S(T) can be computed by imposing the bound-
ary condition on the Hamiltonian, that is, (T) = 0 which
implies S(T) = Q̄T . The dual function is

g(S(0∶T), 𝜏i,(0∶T−1)) = min
V1(0∶T)



and since it is linear in V1 the dual problem is feasible
iff 𝜉(k)≽ 0. In fact, since the cost function as well as con-
straints in (29) are linear, Slater's condition [22] reduces
to feasibility of either primal or dual problem, and hence,
optimal duality gap is zero. Thus, the dual problem is

max
S(0∶T),𝜏i(0∶T−1)

T∑
k=0

tr{S(k)ΣV2} + rT

s.t. 𝜉(k) ≽ 0, S(T + 1) = 0.

(31)

It can be proven analogously to Gattami [24] that, with
fixed values of 𝜏 i, the previous equation is maximized with

S(k) = Ā⊤S(k + 1)Ā + Λ̃xx(k) − L(k)⊤(B̄⊤S(k + 1)B̄

+ Λ̃uu(k))L(k) ≻ 0

L(k) = (B̄⊤S(k + 1)B̄ + Λ̃uu(k))−1(B̄⊤S(k + 1)Ā + Λ̃⊤
xu(k))

(32)
where

Λ̃(k) =
[
Λ̃xx(k) Λ̃xu(k)
Λ̃ux(k) Λ̃uu(k)

]
=
⎧⎪⎨⎪⎩
Λ̄(k) +

M∑
i=1

𝜏i(k)W̃i, k < T

blkdiag(Q̄T , 0), k = T

where Λ̃uu(k) ∈ Rm×m. The variables 𝜏 i are computed
from cost in (31) accounting for (32). Interestingly, as a
conclusion, the dual variables can be computed offline.

5.3 Optimal coordinator action
In this section, we show how to compute optimal coordina-
tor control action 𝜙1(k). Consider the primal optimization
problem in (29) and let S(k) and 𝜏 i(k) be the optimal values

of the dual variables computed from (31) and (32). Sim-
ilarly to Causevic et al. [11], the dual problem to (29) is
written as

min
V1(0∶T−1)≽0

T−1∑
k=0

tr(Z(k)V1(k)) + tr(S(k)ΣV2) −
T−1∑
k=0

M∑
i=1

𝜏i(k)pi
k

(33)
where Z(k) is given by

Z(k) =
[

X(k)Y−1(k)X⊤(k) X(k)
X⊤(k) Y (k)

]
where the values of X(k), Y(k) are computed as

X(k) = Ā⊤S(k + 1)B̄ + Λ̃xu,

Y (k) = B̄⊤S(k + 1)B̄ + Λ̃uu
(34)

Proposition 3. The optimal covariances V1(k) in (29)
and the corresponding control action 𝜙1(k) are

V1 =
[

Vx̂x̂ −V⊤

x̂x̂K⊤

−KVx̂x̂ KV⊤

x̂x̂K⊤

]
, 𝜙1(k) = −K(k)x̂(k) (35)

where the gain K(k) = Y−1(k)X⊤(k), with Y(k), X(k)
defined in (34).

Proof. To prove (35), note that dual problem in (33) is
an unconstrained minimization problem. In order to
compute the optimal covariances V1(k), it is sufficient
to verify if the condition tr(Z(k)V1(k)) = 0 is satis-
fied for a certain choice of the covariance matrix V1.
Recalling the definition of V1 we get

tr(ZV1) = tr
[

XY−1X⊤Vx̂x̂ + XV𝜙1 x̂ ∗
∗ X⊤Vx̂𝜙1 + YV𝜙1𝜙1

]
(36)

Due to the linearity of the problem, it is sufficient
to find V1(k) such that the block diagonal elements
in (36) are zero. Additionally, from the assumption on
positive-definiteness (and thus invertibility) of Λ̃uu we
obtain

V𝜙1 x̂ = −Y−1X⊤Vx̂x̂

V𝜙1𝜙1 = −Y−1X⊤Vx̂𝜙1 = Y−1X⊤Vx̂x̂(Y−1X⊤)⊤

From Equation (23) and latter expression for V𝜙1𝜙1 it
follows that K1(k) + Γ2(k) = −Y−1X⊤ ≜ K(k).

5.4 Local control updates
Finally, we now provide the main result of the paper, which
gives the computation of optimal local control actions
𝜙2(k) or equivalently control gains Γ2(k). The computa-
tion is given in the form of an iterative algorithm, namely,
Algorithm 1.
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Theorem 1. Given the problem in (7) and control policy
in (11) the gains Γ2(k), k = 0, … ,T − 1 computed via
Algorithm 1 are optimal.

Proof. As the optimal cost for problem (29) sets Hamil-
tonian in (30) to zero, from (28) the cost for computing
Γ2(0 : T− 1) becomes

J2(V2(0 ∶ T − 1)) = tr(Q̄TVee(T)) +
T−1∑
k=0

tr(Λ̃(k)V2(k))

+
T∑

k=0
tr(S(k + 1)ΣV2)

= tr(Q̄TVee(T)) +
T−1∑
k=0

tr(Λ̃(k)V2(k))

+
T−1∑
k=0

tr(S̃(k + 1)Vee(k))

where the second row is obtained by taking into
account the expression for ΣV2 as defined in (30) and
S̃(k + 1) = (Kc(k)C̃)⊤S(k + 1)(Kc(k)C̃). The latter cost
function is to be minimized with respect to V2(0 : T− 1)
such that the constraints on the evolution of Vee(k)
due to Equation (24) are satisfied, that is, the following

equation has to be satisfied at every time instant k:

Vee(k + 1) = (Ac(k) − Kc(k)C̃)Vee(k)(Ac(k) − Kc(k)C̃)⊤ + Σw̄.

(38)
Additionally, structural constraints on Γ2 as defined

in (18) have to be preserved. As we want to minimize
J2 with respect to Γ2(0 : T− 1) we first express elements
of V2 as a function of it. Indeed, rewriting the elements
of V2 explicitly we get

Ve𝜙2 (k) = V⊤
𝜙2e(k) = Vee(k)Γ⊤

2 (k)

V𝜙2𝜙2 (k) = Γ2(k)Vee(k)Γ⊤
2 (k)

Computation of gains Γ2(k), k = 0, … ,T − 1 is done
using the principle of optimality. Indeed, lets first com-
pute Γ2(T− 1). We construct a Lagrangian:

 = tr(Q̄T Vee(T)) + tr(Λ̃(T − 1)V2(T − 1)) + tr(G⊤(T − 1)(Γ2(T − 1)◦Ic
S))

where the last term with multiplier G(T− 1) is intro-
duced to account for sparsity on Γ2(T− 1) according
to (18). In what follows a quadratic term is introduced
to penalize infeasible points, yielding the augmented
Lagrangian

c =  + c
2
||Γ2(T − 1)◦Ic

S||2 (39)

where the penalty weight c is a positive scalar and || · ||
is the Frobenius norm. Starting with initial estimate of
the Lagrange multiplier G(T − 1) = 0, the augmented
Lagrangian method [25] iterates between minimizing
c(G(T − 1),Γ2(T − 1)) with respect to unstructured
Γ2(T− 1) and updating:

G(T − 1)h+1 = G(T − 1)h + ch(Γ2(T − 1)h◦Ic
S) (40)

where Γ2(T− 1)h is the minimizer of c(G(T − 1)h,

Γ2(T − 1)). The latter update rule for G(T− 1) guaran-
tees that G(T− 1)h belongs to the subspace Sc. Since
c(G(T − 1),Γ2(T − 1)) is convex it can be shown
[26] that sequence {G(T− 1)h} converges to the opti-
mal value G(T− 1)∗, and consequently, local control
gain Γ2(T− 1) converges to the optimal structured gain
Γ2(T− 1)∗. To this end, replacing Vee(T) as a function
of Γ2(T− 1) using (38) and deriving c with respect to
Γ2(T− 1) yields

2B̄⊤Q̄T(Ā + B̄Γ2(T − 1) − Kc(T − 1)C̃)Vee(T − 1)

+ G(T − 1) + (Λ̃⊤
xu + Λ̃ux)Vee(T − 1)

+ 2Λ̃uuΓ2(T − 1)Vee(T − 1) + c(Γ2(T − 1)◦Ic
S) = 0
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which proofs the Equation (37) for k = T−1. Then, for
time k, k<T− 1 the cost-to-go is written as

 = tr(Q̄TVee(T)) + tr(Λ̃(k)V2(k)) +
T−1∑
𝑗=k+1

tr(Λ̃( 𝑗)V2( 𝑗))

+
T−1∑
𝑗=k+1

tr(S̃( 𝑗 + 1)Vee( 𝑗))

+
T−1∑
𝑗=k

tr(G⊤( 𝑗)(Γ2( 𝑗)◦Ic
S)) +

T−1∑
𝑗=k

c
2
||Γ2( 𝑗)◦Ic

S||2
(41)

The latter function should be minimized accounting
for dependency of Vee(j)(j= k+ 1, … , T− 1) on Γ2(k)
and assuming that Γ2(k+ 1 : T− 1) are known. Thus, it
is important to express Vee(j)(j> k) as function of Γ2(k)

Vee( 𝑗) = (
𝑗−1∏
l=k

(Ac(l) − Kc(l)C̃))Vee(k)(
𝑗−1∏
l=k

(Ac(l) − Kc(l)C̃))⊤

+
𝑗−1∑

l=k+1
(
𝑗−1∏
z=l

(Ac(z) − Kc(z)C̃))Σw̄

l∏
z=k+1

(Ac(z) − Kz(l)C̃))⊤ + Σw̄

(42)
For compactness, we denote by Υ( 𝑗) =∏𝑗−1
l=k+1((Ac(l) − Kc(z)C̃)). Replacing (42) into (41)

and deriving with respect to Γ2(k), assuming that
Γ2(k+ 1 : T− 1) are known, we get

2B̄⊤Υ⊤(T)Q̄TΥ(T)(Ā − Kc(k)C̃ + B̄Γ2(k))Vee(k) + G(k)

+ (Λ̃⊤
xu + Λ̃ux + 2Λ̃uuΓ2(k))Vee(k)

+
T−1∑
𝑗=k+1

2B̄⊤Υ⊤( 𝑗)𝜃( 𝑗)Υ( 𝑗)(Ac(k) − Kc(k)C̃ + B̄Γ2(k))Vee(k)

+
T−1∑
𝑗=k

c(Γ2( 𝑗)◦Ic
S)

where

𝜃( 𝑗) = Λ̃xx + Λ̃⊤
xuΓ2( 𝑗) + Γ⊤

2 ( 𝑗)(Λ̃ux + Λ̃uuΓ2( 𝑗)) + S̃( 𝑗 + 1)

Setting the derived expression to zero, and solving
explicitly for Γ2(k) the proof is concluded.
As a conclusion, since both gains K(k) and Γ2(k) can

be computed offline, in terms of in-network control
implementation, they can be computed beforehand and
communicated to each in-network device on time. More-
over, from (23), it follows K1(k) = K(k) − Γ2(k), which
finalizes the computation of gains in the control law (17).

5.5 Control structure interpretation
5.5.1 Computational nodes
Consider a network with N subsystems where neighboring
DMs communicate with one-step delay. In addition to
process i (i = 1, … ,N), each subsystem i is collocated

with a local computing unit i. The control units i are
assumed to be of limited computing power and mem-
ory, or the access to their resources might be restricted
(e.g., routers and switches). Additionally, the network
contains a computationally and memory-wise powerful
device, denoted by .

5.5.2 Offline computation
In order to account for memory and computation
constraints of in-network computational units i, a task
decomposition is introduced. Indeed, primarily  com-
putes and stores the sequences of dual variables S(0 : T),
𝜏 i(0 : T− 1) using the Equations (31) and (32). Then it com-
putes the gains K(0 : T− 1),Γ2(0 : T− 1) according to (35)
and Alghoritm 1, respectively.

5.5.3 Online computation
At each time k, each i computes the estimate of x̄(k)
according to (15) as it is based on common information
defined in (8). This means that  needs to send to each
i, respectively ith row of gain K1(k) and ith row of gain
Γ2(k), one step in advance. Finally, local computational
units i can calculate individual control input using (17).
Indeed, what i computes is computationally inexpensive
as it is given in an explicit form and based on operations of
summing and multiplying matrices.

6 SIMULATIONS

We illustrate the the developed control methodology on
the example of an interconnected plant consisting of
four subsystems. The physical interconnections between
subsystems are given via an undirected line graph (as
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FIGURE 2 Physically-interconnected plant consisting of four
subsystems interracting via line graph. Subsystems are denoted by
i(i = 1, 2, 3, 4)

shown in Figure 2). An example of system whose dynam-
ics is described via a line graph is a vehicle platoon [20].
Referring to (2), we define the following global dynamics
matrices:

A =
⎡⎢⎢⎢⎣

1 10 0 0
1 0.1 1 0
0 0.1 1 1
0 0 0.1 1

⎤⎥⎥⎥⎦ ,B =
⎡⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦ .
The initial state is drawn from zero-mean distribution with
covariance Σx = 10−2 × I4x4, and the system noise is
drawn from the zero-mean distribution with covariance
25 × 10−4 × I4x4, where I4x4 denotes identity matrix with
corresponding dimensions. For the state and input penalty
matrices we define Q = R = I4x4. Given a control hori-
zon T = 30, for time instants k = 1, … , 29 we impose the
following power constraints

E
[
u⊤(k)u(k)

]
≤

1
4
E
[
x⊤(k)x(k)

]
⇐⇒ E

[[
x(k)
u(k)

]⊤
[
−I4x4 04x4

04x4 4I4x4

] [
x(k)
u(k)

]]
≤ 0

where the latter inequality is written in the form of
constraint (6).

Considering the graph structure in Figure 2 which has a
diameter of  = 3 the optimal control policy is of the form

u(k) = K1(k)x̂(k) + Γ2(k)x̄(k) (43)

where x̄⊤(k) = [x⊤(k)x⊤(k − 1)x⊤(k − 2)] and the estima-
tor x̂(k) = E[x̄(k)|x(0 ∶ k − 3)] is computed according
to (15). The gains K(k) ∈ R4x12, k = 1, … , 29 while
Γ2(k) ∈ R4x12, k = 0, … , 29 satisfy the following sparsity
constraints Γi,𝑗+4𝜏

2 (k) = 0, for i∈ [1 : 4], j∈ [1 : 4], 𝜏 ∈ [0 : 2].
By choosing 𝛾 = 0.5 the gains Γ2(k) are computed by
applying Algorithm 1. Subsequently, the gains K1(k) are
computed as K1(k) = K(k) − Γ2(k) where K(k) are com-
puted via Riccati-like forms in (35). In Figure 3, one can
see the evolution of costs for computed optimal control
and given 500 different realizations of the process noise
and the initial state. It can also be seen that the optimal
expected cost with the imposed power constraints (6) (total
cost J∗con = 13.96) is always higher compared to optimal
expected cost when power constraints neglected (total cost
J∗ = 5.72). This is not to surprise since power constraints

FIGURE 3 Monte Carlo simulation showing performance of
computed optimal control for 500 different process noise
realizations (thin lines), the optimal expected cost with power
constraints (thick black line), and the optimal expected cost without
power constraints (thick blue line)

FIGURE 4 Power constraint function (solid line), the area of
allowed values (shaded green area), and the area of constraint
violation (shaded red area)

introduce additional limits on the range of control actions.
The satisfaction of power constraint is validated in the
Figure 4.

7 CONCLUSIONS

In this paper, a framework for large-scale information-
constrained optimal control with power constraints on
input and state variables, is introduced. The optimal
control law is linear and a superposition of two control
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components—one based on common information in the
system and the other based on locally available informa-
tion. The approach presented is applicable to an arbitrarily
interconnected systems and an arbitrary number N of deci-
sion makers, under the assumption that communication
between decision makers occurs as fast as information
travels through the plant [27]. Finally, the implementa-
tion aspects of the resulting optimal control law on the
in-network elements are provided.
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