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Abstract

In this work, we present mixed dimensional models for simulating blood flow

and transport processes in breast tissue and the vascular tree supplying

it. These processes are considered, to start from the aortic inlet to the capil-

laries and tissue of the breast. Large variations in biophysical properties and

flow conditions exist in this system necessitating the use of different flow

models for different geometries and flow regimes. In total, we consider four

different model types. First, a system of 1D nonlinear hyperbolic partial differ-

ential equations (PDEs) is considered to simulate blood flow in larger arteries

with highly elastic vessel walls. Second, we assign 1D linearized hyperbolic

PDEs to model the smaller arteries with stiffer vessel walls. The third model

type consists of ODE systems (0D models). It is used to model the arterioles

and peripheral circulation. Finally, homogenized 3D porous media models are

considered to simulate flow and transport in capillaries and tissue within the

breast volume. Sink terms are used to account for the influence of the venous

and lymphatic systems. Combining the four model types, we obtain two differ-

ent 1D–0D–3D coupled models for simulating blood flow and transport pro-

cesses: The first model results in a fully coupled 1D–0D–3D model covering

the complete path from the aorta to the breast combining a generic arterial

network with a patient specific breast network and geometry. The second

model is a reduced one based on the separation of the generic and patient spe-

cific parts. The information from a calibrated fully coupled model is used as

inflow condition for the patient specific sub-model allowing a significant com-

putational cost reduction. Several numerical experiments are conducted to cal-

ibrate the generic model parameters and to demonstrate realistic flow

simulations compared to existing data on blood flow in the human breast and

vascular system. Moreover, we use two different breast vasculature and tissue

data sets to illustrate the robustness of our reduced sub-model approach.
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1 | INTRODUCTION

The development of computational models for the simulation of blood flow and transport processes within the human
cardiovascular system has become an important field in modern computational medicine. Accurate predictions of flow
and transport processes can provide non-invasive options to study and design effective medical procedures for treating
several kinds of diseases.1,2 Invasive medical procedures such as biopsy not only cause damage to healthy tissue but also
may yield useful data only at one point in time. In silico modeling, on the other hand, is a valuable tool for studying the
individual patient's pathophysiology throughout, systematically evaluating and forecasting the outcomes of candidate
treatments, and, most importantly, personalizing healthcare. In addition, numerical simulation techniques are used for
testing hypotheses; for example, see References [3–8].

To obtain a high fidelity systematic drug delivery surrogate, it is necessary to create a model for blood flow and
transport of a solute in the heart chambers, pulmonary circulation, arteries branching out of the heart, as well as the
arterial vessels in the breast. In addition, flow and transport models for the vasculature have to be coupled with the
corresponding models for the breast tissue that is supplied by the vasculature and possibly contains tumor. Because
flow characteristics vary depending on the geometry and mechanical properties of various vascular components, devel-
oping a computer model of such complex processes is a challenging undertaking. We describe and implement such flow
and transport models in this paper.

Due to the complexity of the vascular tree, it is not feasible to model cardiovascular systems using conventional flow
models. The diameters of the larger systemic arteries are centimeters, while capillary diameters are micrometers. Fur-
ther, large systemic arteries experience turbulent flow while capillary flow has low Reynolds numbers and velocities.
To capture the wide variations in both time and length scales in the cardiovascular systems, we employ when feasible
simplified flow models of different dimensions and complexity.

The various flow behaviors and vessel features appearing in our vasculature are represented by a combination
of 1D partial differential equation (PDE) systems, ODEs, and 3D flow models, which form a 1D–0D–3D coupled
model. In contemporary literature, ODEs coupled with higher dimensional models are also referred to as “0D
models,” since they contain no space variable. A similar type of modeling approach has been applied, for example,
to model flow processes in the brain.9,10 To compute the flow field within the brain, a three-dimensional (3D) flow
model of Darcy type is used. Dimensional reduced models based on one-dimensional (1D) PDEs are coupled with
the 3D flow model to provide realistic boundary conditions. Mixed-dimensional models have also shown success in
the simulation of flow and transport within small microvascular networks and surrounding tissue.11 Here, the tis-
sue matrix is again considered as a 3D porous medium and the blood vessel network is approximated by a 1D
graph. Contrary to the previous approach the 1D blood vessel network is directly embedded into the tissue matrix,
which results in a 3D–1D coupled flow model. The respective model equations are coupled by means of their
source terms, where the source term of the 3D model exhibits a Dirac measure concentrated on the 1D network.
This modeling approach has been used in Wu et al.12,13 to model flow and transport in a breast network consisting
of smaller arteries as well as breast tissue.

In our model, flow and transport processes in the larger arteries branching out of the heart and the smaller arteries
containing the breast are governed by 1D PDE systems. For the larger arteries we use a nonlinear hyperbolic equation
to model pulsatile blood flow in vessels with elastic walls, see.14,15 For the smaller arteries in the breast, a linearized ver-
sion of this flow model is considered which is valid for small deformations of the vessel diameter. Preliminary research
on the coupling of various 1D-flow models appears in Drzisga et al.4 At the interface between the larger and smaller
arteries, we have to create new bidirectional coupling conditions. This coupling places a significant constraint on the
time step size, which motivates a low-cost one-directional coupled model. Surrogate models that account for the influ-
ence of vessels that are not part of the 1D networks are required at the outlets of the 1D networks. We couple the
corresponding 1D models with Windkessel models based on ODEs at the outlets of the nonlinear 1D network to incor-
porate the capacity and flow resistance of the vasculature located beyond the outlets.16,17 These models are commonly
known as lumped-parameter models, see Fernandez et al.18 At the outlets of the linear network, we attach surrogate
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models for the arterioles that connect the breast network outlets to the capillary bed. New lumped parameter models
are developed for these vessel trees.

We consider 3D homogenized models such as those presented in References [9, 10, 19–22] to determine the flow
field within the capillaries and tissue. This results in a 3D-3D double continuum model of flow within the breast micro-
vasculature and tissue. Both 3D models are based on the theory of porous media. Because the Reynolds numbers in
both the capillaries and the tissue are less than one, Darcy's equation is used to calculate the pressures in both regions.
We couple both equations by their source terms to model fluid exchange between the vascular system and the intersti-
tial space of the tissue. By including sink terms in the Darcy equation for the capillary continuum, the influence of the
venous system draining the breast tissue is accounted for. For tissue permeability, values from Wu et al.12 are consid-
ered, whereas for capillary bed homogenization, existing results from literature21–25 are adopted.

Finally, the model for arterioles is coupled with the capillary continuum. Unlike previous models,9,10,19,23 we do not
directly couple the 1D PDEs in the terminal vessels with the continuum, but we employ that the lumped parameter
model for the arterioles is coupled with both the 1D PDEs in the terminal vessels and the 3D continuum model for the
capillaries. This is required because the pulsatile flow in the breast network must be converted into a non-pulsatile flow
that is present in capillaries and tissue. To simulate the propagation of a solute, all flow models must be coupled to
either a convection diffusion equation modeling solute concentrations. This is done in References [26, 27] for the larger
arteries and the breast network. All other models, particularly the 0D or lumped parameter models, must be augmented
by a transport process equation.

This paper is organized as follows: The generic and patient-specific blood vessel networks, as well as the modeling
assumptions, are introduced in Section 2. Section 3 describes the mathematical sub-models that adhere to these
assumptions and their coupling and boundary conditions are given in Section 4. In Section 5, the vascular data from
Section 2, the model from Section 3 and the coupling and boundary conditions from Section 4 are combined into a com-
plex 1D–0D–3D coupled model that contains nonlinear components. This model is referred to as a fully coupled model.
Further, we also describe a more efficient computational modeling approach that decomposes our data into a generic
patient independent part that only needs to be calculated once and a patient specific part that needs to be recalculated
for different breast geometries. Section 6 discusses our numerical solution methods, and Section 7 displays simulation
results. We compare the fully coupled model to available medical data and the simplified sub-model. Finally, closing
remarks are given and an outlook to future work is described in Section 8.

2 | MODEL SETTING

In this section, we describe our data sets and formulate our most significant modeling assumptions.

2.1 | Description of the data sets

In order to simulate blood flow and transport processes in the larger systemic arteries branching out of the heart,
we use the data28 as a generic patient unspecific geometry. These data describe an arterial network consisting of
33 arteries and containing the aorta, carotid arteries as well as the Circle of Willis. Moreover, the main brachial
arteries and the subclavian arteries are part of this network (see Figure 1, upper left). Table 1 in Alastruey et al.28

contains the average lengths, radii, wall thicknesses and elasticity parameters of the corresponding vessels. In par-
ticular, the subclavian arteries are of great interest for the objective of this paper since they contain several bra-
nches supplying blood and other constituents to the breast tissue (see Figure 1, upper right). Therefore, the right
subclavian artery and brachial artery of the data set are split into two parts which yield the network in the lower
left corner of Figure 1 with the additional Vessels 34 and 35 and the additional branches (see Figure 1, lower left).
Hereafter, this network (i.e., the network consisting of Vessel 1, …, 35) is denoted as macrocirculation, and the set
containing all its vessel ids is denoted by Imacro. The vessels with an outlet are contained in Ioutmacro, while the only
inlet at the aorta is assigned to I inmacro.

As a patient specific geometry, we use the breast network that can be found in Wu et al.,12,30 see Figure 1 (lower
right). First, a 3D volumetric mask of vasculature was segmented from high-resolution Dynamic Contrast-Enhanced
Magnetic Resonance Imaging (DCE-MRI).12 A multiscale Hessian filter31 was used to subtract the pre-contrast from the
post-contrast, high-spatial resolution DCE-MRI, calculating the probability of each voxel containing a vessel, and then
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a threshold was set to generate a binary mask of vasculature.12 Second, the segmented vascular mask was skeletonized
to its centerline, with the branching points, terminal ends, and vessels in the vascular network identified and the vessel
orientation calculated for each vessel. After that, a gap filling process was used to transform the vascular network into a
single connected graph.30 Finally, a moving average of one imaging voxel size (i.e., 0.8 mm) was used to smooth out the
vessel centerlines.

The breast network is considered as a graph-like structure that is, the data set comprises a list of 3D coordinates of
the branching points, inlets and outlets. In the following, we will refer to them as ‘network nodes'. Additionally, it con-
tains information on the connectivity of the network nodes that is, the edges of the graph are defined by it. An average
radius is assigned to each edge.

FIGURE 1 Upper left: idealized network consisting of the main arteries branching out of the heart and the Circle of Willis. Upper right:

vasculature supplying the breast tissue. Reproduced from Figure 13.4 from Barral et al.29 with permission from publisher. Lower left:

thoracic arteries branching out of the right subclavian (Vessel 7) and brachial artery (Vessel 15). As a result Vessel 728 is split into new

vessels having the indices 7 and 34, while Vessel 1528 is split into 15 and 35. Lower right: a vascular network embedded inside a 3D breast

volume. Connections between the thoracic arteries and the 1D breast network are blue for the lateral thoracic arteries and red for the

interior thoracic arteries.
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Considering the size of the radii, it turns out that they range from 0.13 to 0.42 mm. Thus, it can be considered as a
network of smaller arteries, see Table 1.1. in Formaggia et al.32 In the following subsections, this network is denoted as
the breast network, and its vessel indices are combined in a set Ibreast. We choose the five largest arteries as inlets and
collect their indices in I inbreast and the remaining terminal vessels in Ioutbreast.

There is still an information gap between the generic macrocirculation and the patient specific breast geometry
which we close by introducing an extension network. According to standard medical textbooks, the blood vessels
linking the subclavian arteries and the vasculature contained in breast tissue are called thoracic arteries, see Chapter 13
in Barral et al.29 and Figure 1 (upper right) below. These consist of two main branches which are referred to as the
internal and lateral thoracic arteries. Our construction of the thoracic network is depicted on the right of Figure 1
together with its connections to the macrocirculation and breast networks. We assign the indices of the vessels Lt I and
It I to Itho,1, Lt II and It II to Itho,2 and the remaining vessels to Itho,3 such that Itho = Itho,1 [ Itho,2 [ Itho,3 contains all
indices of the extension or the thoracic vessels.

2.2 | Model assumptions

In order to model flow and transport processes from the heart down to the breast tissue, it is necessary to take into
account many different vessel types. Considering Figure 2, the systemic vessel tree consists of the aorta, elastic arteries,
muscular arteries, arterioles, capillaries, and veins. The exchange of fluid and substances between the vasculature and
tissue occurs at the capillary level.

Before the model equations for the different parts of the vascular tree and the tissue are presented, we discuss the
most important modeling assumptions and simplifications, which are essential for the design of the mathematical
model. In total, eight assumptions for our modeling concept are introduced:

(A1) Blood flow in the macrocirculation is pulsatile and turbulent. Elastic deformation behavior of the vessel walls is
assumed. According to Table 1.7 in Formaggia et al.,32 blood flow in most vessels of the macrocirculation exhibits Reyn-
olds numbers that are larger than 1000. Therefore, we assume that turbulent flow is present in this sub-network. Fur-
thermore, flow in these vessels is pulsating (see Figure 2). Since the vessel walls of the larger arteries are highly
deformable, a fluid structure interaction (FSI) model has to be considered which couples the flow in the lumen of the
vessel with the deformation of the vessel wall.

(A2) Blood flow in the breast network and extension is laminar and the deformations of the vessel walls are small. Con-
sidering the range of diameters occurring in the breast network, it can be concluded that the breast network consists
mainly of small arteries. The Reynolds numbers occurring in these vessels are significantly lower (see Table 1.732) com-
pared to the ones in large arteries. Thus, we can expect laminar flow in these vessels. Moreover, the deformation of the
vessel walls is much smaller than that of the larger vessels.

(A3) Tissue is modeled as a porous medium. Considering the composition of a tissue block, it can be observed that it
is mainly composed of cells, fibers, and interstitial space filled with a fluid similar to blood plasma. The interstitial space
exhibits several pores that are connected by pore throats. Therefore, it is reasonable to consider tissue as a porous
medium which can be described by REV-based flow models8,34,35 constructed from Darcy's law.

(A4) Inertial effects concerning flows in the capillary bed and tissue are not considered. According to Table 1.7,32 blood
velocity is about 0.1 (mm/s) in the arterioles and venules and about 0.01 (mm/s) in the capillary bed in a human sys-
tem. Therefore, it is reasonable to assume that the Reynolds numbers are significantly lower than 1.0.

(A5) Drainage systems are modeled as sink terms. In (A1) and (A2), we have considered the supply systems for the
breast tissue. To remove the fluid mass flowing into the breast tissue, drainage systems are required. Within the sys-
temic circulation, the veins and lymphatic system act as drainage systems. As in the case of capillaries and arterioles,
there are no data available describing both the venous and lymphatic system. Due to that, we model these drainage sys-
tems by means of sink terms within Darcy's equation for both the capillary bed and tissue. Therefore, the sink term rep-
resenting the veins is assigned to the capillary system, while the source term for the lymphatic system is added to the
tissue model.

(A6) Gravity effects are neglected.
(A7) Blood is an incompressible fluid. In general, the density of blood is non-constant, since in microvascular net-

works the red blood cells are not distributed in a homogeneous way.36–38 However, in many publications,8,21,39-41 that
are concerned with the modeling of blood flow in microvascular networks, compressibility is neglected with only minor
effects on the flow.

FRITZ ET AL. 5 of 40



(A8) The non-Newtonian flow behavior is accounted for by an algebraic relationship. Red blood cells govern the vis-
cosity of blood μbl (Pa s) significantly, since the red blood cells have to deform when they move through capillaries. We
use the relation42 which depends on the vessel radius and holds for human blood.

Based on the assumptions (A1)–(A8), we design in the following sections a class of models for flow and transport in
breast tissue and its vasculature.

3 | MULTISCALE MODEL COMPONENTS

In this section, the model equations for blood flow and transport are introduced, which are based on the assumptions
(A1)–(A8) and assigned to different parts of the vasculature.

3.1 | The 1D model

We use reduced 1D models for the parts of the vasculature for which we have topological information describing the
connectivity between vessels with known diameters and lengths. Recalling the description of the data sets in Section 2,
this is the case for the macrocirculation Imacro, the thoracic arteries Itho and the breast network Ibreast. The single vessels
Λi ≡ [0, li] of length li are considered as one-dimensional manifolds, which are glued together at their boundaries, for-
ming a graph structure. For a time-dependent scalar field F on the vasculature we denote its restriction to Λi by
Fi and its evaluation at time t ≥ 0 at z � Λi with Fi(z, t).

3.1.1 | The nonlinear model

For the larger arteries contained in Imacro and Itho,1, we have to consider assumptions (A1), (A7) and (A8). In order to
model blood flow within these vessels, we use a nonlinear hyperbolic PDE model (Equations C2 and C3).26,43,44 It

Systolic
pressure

Diastolic
pressure

Aorta Muscular
arteries

Arterioles Capillaries Venules Medium and
large veins

Venae
cavae

mmHg
Pulse

pressure

Elastic
arteries

120

60

30

90

0 vessel
type

Meanarterial
pressure

Breast
network

1D 0D 3D 3D sink terms

Macrocirculation Arterioles Capillaries Veins

1D

FIGURE 2 Typical pressure curves within various vessel types in the systemic circulation. In our setting, the aorta and the elastic

arteries are partially contained in the macrocirculation, while the breast network is composed of muscular arteries. Flow and transport

through both networks are governed by means of 1D models. The remainder of the arterial tree is modeled by lumped parameter models

(0D models), homogenized 3D models, and 3D sink terms, resulting in a 1D-0D-3D coupled model. The plot of the pulse pressure is based

on Figure 20.10 in Reference [33] (CC BY 4.0).
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describes time-dependent scalar fields for the flow Qi (cm
3 s�1) and vessel area Ai (cm

2) on each 1D-vessel Λi, i � Inon,
where Inon contains the vessel indices on which we impose this model. The resulting velocity fields Qi/Ai are then
coupled to a 1D transport equation for the line concentration field Γi (mmol cm�1) (see Equation C4).

For vessel i � Inon, we denote the backward and forward propagating characteristics of the flow problem by W1,i and
W2,i, while W3,i is the single, scalar characteristic for the transport problem. These characteristics enable us later to infer
coupling conditions. The couplings of the nonlinear model at branching points follows the procedure described in Masri
et al.27

3.1.2 | The linearized model

For smaller vessels further down the vascular tree that is, the vessels contained in Itho,2, Itho,3 and Ibreast, the defor-
mations are less significant. Thus, a simplified linearized model can be applied, based on assumptions (A2),
(A7) and (A8). We collect the vessel indices for this model in Ilin. It describes the pressure pi (Ba) and flow qi
(cm3 s�1) fields for each vessel i � Ilin. The model itself is given by a 1D hyperbolic PDE system (Equations C12 and
C13). A derivation is given in Section 6.2.1 in Reference [1]. The resulting velocities qi/Ai are coupled to the trans-
port of the concentration Γi as in the nonlinear case (see Equation C14). We denote the characteristics for the flow
by w1,i, w2,i and for the decoupled transport by w3,i. Thereby w1,i is the backward traveling wave, while w2,i is the
forward traveling wave. The coupling of linear models at branching points using characteristics is discussed in
Chapter 7 in Reference [1].

3.2 | The 3D model

In this subsection, we consider the lowest level within the vascular tree that is, the capillary bed and the tissue matrix.
Both systems have to be combined since the capillaries exhibit gaps in their thin vessels such that an exchange between
the vascular system and the cells can take place. In order to avoid a discrete resolution of the capillary network, homog-
enized Darcy-type models have been investigated in the literature.9,19,22,24,45–47 Following this approach and modeling
the lymphatic and venous systems by means of source terms (see Assumption (A5)), one obtains for the capillary bed
(3D porous medium, flow problem)

�r� ϱbl
Kcap

μc
rpcap

� �
¼ qcvþqctþqca, inΩ,

ϱc
Kcap

μc
rpcap �n¼ 0, on ∂Ω,

8>><>>: ð1Þ

and for the tissue (3D porous medium, flow problem)

�r� ϱint
Kt

μint
rpt

� �
¼�qctþqtl, inΩ,

ϱint
Kt

μint
rpt �n ¼ 0, on ∂Ω:

8>><>>: ð2Þ

Here, Ω�ℝ3 denotes the tissue volume, and pcap Bað Þ and pt Bað Þ represent the pressures in capillary bed and tis-
sue, respectively. Moreover, ϱbl g=cm3ð Þ is the density of blood. Following J�ozsa et al.,9 the diameter of a capillary
is between 5.0 and 10.0 μm. Thus, we can use μbl from (A8) with an averaged capillary radius rc ¼ 3:75 μm to define the
viscosity μc ¼ μbl rcð Þ. The permeability tensors Kcap cm2ð Þ and Kt cm2ð Þ have the following shape: Kcap = kcap� I3 and
Kt = kt� I3, where I3 �ℝ3�3 is the identity matrix. In contemporary medical literature,39 a constant value for kt
is chosen. Following Reference [9], the permeability of the capillary bed can be estimated as follows:
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kcap ¼ nSEV� r4c �π

8�AREV
:

Here, nSEV is the number of capillaries passing a facet of a cubed REV, see Figure 3, having the area AREV. In Refer-
ences [22, 24], the edge length of a cubed REV is about 1.0 mm. Thus, AREV ≈ 1.0 mm2.

On the right hand side of (1), three different source terms appear. The first one, qcv, accounts for the drainage of the
capillary bed by means of the venous vessel systems. Following Chapter 6 in Reference [1], it is given by:

qcv ¼ ϱbl�Lcv� pv�pcap
� �

,

where pv is an averaged venous pressure. Lcv 1=Ba sð Þ represents a conductivity parameter for the blood transfer from
the capillary system into the venous system. In a next step, we examine the source term qct which includes the flow of
blood plasma from the capillaries into the interstitial space of the tissue matrix. To determine this source term, a simpli-
fied version of Starling's filtration law is considered. Neglecting the oncotic pressures, it reads as follows47:

qct ¼ ϱint�Lct�Sct� pt�pcap
� �h i

:

The hydraulic conductivity of the vessel wall is given by the parameter Lct cm s=Bað Þ. Another crucial parameter
governing the fluid exchange between vascular system and interstitial space is the surface area per REV: Sct cm2=cm3ð Þ.
This parameter can be estimated similar to kcap:

Sct ¼ nREV�2� rcπ� lc=VREV ¼nREV�Scap=VREV:

Here, nREV denotes the average number of capillaries per REV and lc is the average length of a capillary that is, the
average surface area of a capillary is given by:

Scap ¼ 2π� rc� lc:

Moreover, VREV denotes the volume of an REV. The last term on the right hand side of (1) incorporates the blood
transfer from the arterioles into the capillaries and is described in Section 4.4, since it couples the two models used for
these vessel types.

Finally, it remains to specify the source term for the drainage of the interstitial space via the lymphatic system.
Here, we assume it is given by:

qtl ¼ ϱint�Ltl� pl�ptð Þ,

where pl = 1333.22 (Ba) and Ltl 1=Ba sð Þ is again a conductivity parameter for the lymphatic drainage process. In order
to model the transport processes within the capillary bed and tissue, two volumetric concentration values

Interstitial fl uid

Tissue cells

Capillaries

Continuum

(capillaries)

Continuum

(interstitial

space/ fl uid)

Continuum

(tissue cells)

FIGURE 3 Illustration of the capillaries, tissue cells and interstitial fluid, which undergo a homogenization procedure.
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ccap mmol=cm3ð Þ and ct mmol=cm3ð Þ are considered. Following (A4), the evolution of both concentration variables are
governed by stationary convection-diffusion equations. In case of the capillary bed, we obtain:

r� vcap ccap�Dcaprccap
� � ¼ tcvþ tctþ tca, inΩ,

vcap ccap�Dcaprccap
� � �n ¼ 0, on ∂Ω:

(
ð3Þ

For the tissue matrix, the equations read as follows:

r� vt ct�Dtrctð Þ ¼�tctþ ttlþ rt, inΩ,
vt ct�Dtrctð Þ �n ¼ 0, on ∂Ω:

�
ð4Þ

The velocity fields vcap cm=sð Þ and vt cm=sð Þ are computed by means of Darcy's law:

vcap ¼�Kcap

μc
rpcap, vt ¼� Kt

μint
rpt,

based on the fluid pressure pcap and pt from (1) and (2). On the other hand, diffusivity of the transported substance in
the capillary and interstitial space is governed by Dcap cm2=sð Þ and Dt cm2=sð Þ, respectively. As in the case of the flow
equations, there are in total four different source and sink terms incorporating the transfer of mass between the differ-
ent compartments of our model. The first sink term tcv mmol=cm3 sð Þ models the mass flux from the capillary bed into
the venous system. Using the flux qcv from (1), the mass transferred from the capillary bed into the venous system,
reads as follows:

tcv ¼ qcv� ccap:

As in case of the flow problem, the tca term describing the mass flux between the arterioles and the capillary system
is discussed in Section 4.4. Furthermore, we have for the lymphatic drainage system:

ttl ¼ qtl� ct,

and the exchange between capillaries and interstitial space:

tct ¼
qct� ct, if qct ≥ 0,

qct� ccap, if qct < 0:

�

The only source term that is not related to source and sink terms of the flow problems (1) and (2) is the reaction
term rt. For simplicity, we use in this work a simple decay term:

rt ¼�λtct,

where λt 1=sð Þ is the corresponding decay rate. Depending on the transported substance more sophisticated reaction
terms could be taken into account. In case of oxygen, for example, the Michaelis–Menten law1 could be considered to
model metabolism.

3.3 | 0D models

After modeling flow and transport within the larger arteries as well as the microcirculation contained in the breast, we
consider in this subsection the remaining parts of the systemic blood vessel system that is, the vessels located beyond
the outlets of larger arteries and the arterioles attached to the breast network.

FRITZ ET AL. 9 of 40



3.3.1 | The Windkessel model

Considering the network composed of larger arteries (see Figure 1), it becomes obvious that we neglect a huge number
of vessels within the lower body, arms, and head. In order to account for the omitted vessels, we use a Windkessel
model described by a surrogate RCR circuit.16,32 The total resistance and conductance originate from a calibration pro-
cedure described in Alastruey et al.,28 while we take as an input resistance the one of the adjacent 1D vessel to avoid
reflections. In addition, the pressure of the veins is required to close the Windkessel model. Recalling (A5), the pressure
associated with the veins is approximated by an average pressure pv = 5.0 mmHg. Therefore pv is used to incorporate
the flow into the veins. We denote the indices of the involved vessels by Iwk � Inon.

3.3.2 | The tree model

Consistent with the flow regimes indicated in Figure 2, one could see that the pressure within the arterioles decreases
significantly and pulsatile flow is transformed into a uniform flow. Since no data is available describing the arterioles
between the breast network and the capillary bed, we introduce a surrogate model based on a number of plausible
physical assumptions.

Attaching a single Windkessel model to the outlets of the breast network is not sufficient to model the damping
effect of the arterioles. Recalling the model equations of the Windkessel model (see e.g., Appendix C.3, (C17)), one can
see that the two solution variables of the Windkessel model are given by the averaged pressure of the omitted arterial
system and the flow rate from the arteries into the veins. Since the omitted arterial system connects the larger arteries
in which pulsatile flow is present and the venules in which no pulsatile flow can be observed, flow in the omitted arter-
ies is partially pulsatile. As a consequence the averaged windkessel pressure can exhibit significant amplitudes. This
means that emulating the damping of the pressure between arteries with pulsatile flow and the capillary bed requires
either different windkessel models with different parameters or a sequence of windkessel models as in (C16) to account
for the heterogeneous flow behavior in the omitted vessels.

A further way to model the arterioles can be found in References [10, 19]. In these publications Darcy type equa-
tions are used to emulate the influence of the arterioles. However, in this paper, we consider another approach to avoid
ambiguity as to how the permeability tensor of the Darcy-type equation has to be chosen such that the pulsatile pres-
sure in the breast network is damped.

To model the damping effect, we enhance a modeling concept described in.48 The key idea of this modeling
concept is to replace the omitted vessels by a structured tree model. In the remainder of this subsection, we
outline the details of this tree model as well as some enhancements to be able to simulate the transport of a
solute.

All the indices of the vessels to which the “tree model” is attached are contained in Itree � Ilin and we assume that
they belong to the terminal vessels of the linearized model. To design a surrogate model for the missing arterioles, we
assume for simplicity that the vessel tree attached to a terminal Vessel Λi, i � Ilin has a symmetric structure. This means
that, out of each mother vessel, there are two branches of equal length and radii (see Figure 4).

The issue arises at to how the lengths and radii of the different vessels can be chosen and how many branching
levels should be considered. For this purpose, we use an approach described in References [49–54]. Let us denote by rk
the radius of the vessels within branching level k and lk the corresponding length. For k = 0, we set the radius of the ter-
minal vessel Λi to Ri. According to literature,51,52 the radius of a mother vessel rm and the radii rb1 and rb2 of the bra-
nches are related to each other by the following formula:

rγm ¼ rγb1þ rγb2,

where γ � 2:5,3:5½ � is a parameter that can be tuned. Since we assumed that the vessel tree is symmetric, it follows:

rb1 ¼ rb2 and rb1 ¼ rm�2�
1
γ:

This implies that the radii of branching level k � 1 and k have the following relationship:
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rk ¼ rk�1�2�
1
γ: ð5Þ

This recursion also helps us to estimate the number of branching level NB,i. Using (5) and r0 = Ri, we obtain:

rk ¼Ri�2�
k
γ :

In order to estimate NB,i, we set rk = rcap, where rcap is the average radius of a capillary. Therefore, one obtains:

NB,i ¼�γ� log2
rcap
Ri

� �
:

Determining the lengths lk, we consider the observation from Schneider et al.53,54 that there is a fixed ratio ra
between the length and radius of a vessel. This means that the length lk is given by: lk = ra � rk. Here, ra and rcap are
given by 28.0 and 5.0 μm, see Table 1.7.32 Since the surrogate vessel tree is fully symmetric, it is sufficient to calculate
the pressures only along a single path and not for the entire tree, yielding a linear complexity in the tree-depth. For a
simplified flow model, the tree is converted into an electrical circuit consisting of resistances KRk and capacities Ck on
each branching level k in the tree hierarchy, where pressure and flow-rates correspond to voltage and current, see
Chapter 6.1 in D'Angelo.1 Applying the current–voltage relations for a capacitor on the circuit in Figure 4 yields

Ck
dpk
dt

¼ qin,k�qout,k,

where qin,k and qout,k are the flows entering and leaving the kth vessel and pk is the pressure at the capacitor. These are
related by Ohm's law to the pressures such that

qin,k ¼
1
2
�pk�1�pk

KRk�1

, qout,k ¼
pk�pkþ1

KRk

,

where the factor 1/2 in qin,k is due to the fact that the flux through resistance KRk�1 has to split up equally from the par-
ent vessel into the child vessels (see Figure 4). Combining the above equations, we obtain

b
if
u
rc

a
ti
o
n
 l
e
v
e
l:

Transition to
electrical circuit

FIGURE 4 Construction of a surrogate model for the arterioles adjacent to a 1D terminal vessel Λi using an electrical circuit.

FRITZ ET AL. 11 of 40



Ck
dpk
dt

¼ pk�1�pk
2KRk�1

�pk�pkþ1

KRk

, k¼ 1,…,NB,i, ð6Þ

where the value pNB,iþ1 for k = NB,i is determined by a coupling condition (see Section 4.4). At the other boundary
k = 1, it holds: p0 ¼ pi li, tð Þ. It remains to provide formulas for the computation of KRk and Ck. Therefore, we use the
expressions from Chapter 6.1 in Reference [1], which are given by

KRk ¼
8�μ 2� rkð Þ� lk

πr4k
, Ck ¼ 3� r3k�π� lk

2Ekhk
,

where Ek is the elasticity parameter for the vessels within the kth branching level, hk represents the thickness of the ves-
sel wall, and the viscosity μ is again given by (A8). We set hk = 3 � 10�3 cm which corresponds to the wall thickness of
arterioles listed in Table 1.1.32 The elasticity parameter was estimated uniformly on all levels as Ek = 5.2 MPa. This
value is four times higher than the elasticity parameters of the breast network to simulate the damping effect by the
arterioles. All in all, we determine for each time point a vector of pressures p�ℝNB,i and flow rates between the differ-
ent branching levels q�ℝNB,iþ1 given by qk = (pk� pk+1)/KRk.

Having the flow field at hand, a model for transport of a solute in blood can be derived. In a first step, a concentra-
tion value ck mmol=cm3ð Þ and a volume Vk cm3ð Þ is assigned to each branching level. To determine these variables, for
each branching level a mass balance equation for the solute and blood volume can be established. In case of the kth
level the equations read as follows:

dVk

dt
¼ 1
2
qk�1�qk and

d
dt

Vk tð Þck tð Þð Þ¼Nk,in�Nk,out,
ð7Þ

where Nk,in and Nk,out are the number of particles in mmol entering and leaving the kth level per second. Using the flow
rates and concentrations of the neighboring vessels we get

d
dt

Vk tð Þck tð Þð Þ¼

1
2
qk�1ck�1�qkck, if qk�1 ≥ 0, qk ≥ 0,

1
2
qk�1ck�1�qkckþ1, if qk�1 ≥ 0, qk <0,

1
2
qk�1ck�qkckþ1, if qk�1 < 0, qk <0,

1
2
qk�1ck�qkck, if qk�1 < 0, qk ≥ 0:

8>>>>>>>>><>>>>>>>>>:
ð8Þ

In case of k = NB,i + 1, the boundary concentration cNB,iþ1 is determined by the coupling conditions in Section 4.4.
For k = 0, c0 is given by the solution in the 1D terminal vessel Λi: c0 ¼Γi li, tð Þ=Ai li, tð Þ. In total, we have to determine
the two vectors V�ℝNB,i and c�ℝNB,i .

4 | COUPLING AND BOUNDARY CONDITIONS

In the previous section, model equations for the different parts of the vascular tree are discussed. It remains to specify
the missing boundary and coupling conditions if one of these models is defined on a vessel with an inlet or an outlet.

First, the inflow boundary conditions for the nonlinear model are introduced. For the linearized model, we pre-
scribe a pressure boundary condition at the inlets. The vessel indices at which an inflow boundary condition is applied
are contained in the set Iin. The boundary conditions and the coupling conditions between the different model compo-
nents remain to be determined. In Section 3.3, the coupling of the Windkessel- and Tree-model with the 1D models in
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the terminal vessels is outlined. The missing coupling conditions between the nonlinear and linearized models are
given in Section 4.3. For this, the index sets Icouplin � I lin and Icoupnon � Inon collecting all vessel indices at the interface
between the nonlinear and linear model are introduced. Section 4.4 discusses the 0D–3D coupling conditions, of the 0D
Tree-models for the arterioles with the 3D porous media models for the capillaries. An overview on the different kinds
of coupling can be found in Figure 5 and Figure 6.

FIGURE 5 Overview on the coupling concepts for the 1D and 0D models. Red and blue circles indicate inflow and outflow conditions

within the macrocirculation network. Dark and light green indicate the coupling of a 1D model to a simplified model.

FIGURE 6 Left: terminal 1D vessel of the breast network supplying the capillary bed contained in a perfusion territory. The arterioles

connecting the 1D terminal vessel and the capillaries are modeled by a 0D model (see Section 3.3). Right: perfusion zones of the 3D breast

geometry with each zone containing an outlet of the 1D geometry.
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4.1 | Inflow nonlinear model

Let Λi be an inflow vessel in the nonlinear regime that is, i � Iin \ Inon. For convenience, we assume
that the parametrization of the vessel Λi is oriented in such a way that zi = 0 is adjacent to the inlet of the
aorta. In order to simulate the impact of the heartbeats, we prescribe at zi = 0 the following profile for the flow
rate:

Qheart tð Þ¼Qmax� sin
t�π

0:3�T

� �
, 0≤ t≤ 0:3�T,

0:0, 0:3�T < t≤T:

8<: ð9Þ

Qmax cm3=sð Þ is the maximal flow rate and T sð Þ is the duration of the heartbeat, which are for our simulations cho-
sen as Q = 485 cm3 s�1 and T = 1 s. To determine the flow rate for time points T< t, we extend Qheart periodically. The
remaining boundary condition is obtained from the outgoing characteristic variable W 1,i 0, tð Þ. By this, the boundary
conditions for Ai and Qi at the inlet can be computed. More details on computing the boundary data at an inflow
boundary can be found in literature.44,55 For the concentration variable, we use a constant concentration value
cin = 1mmol cm�3, see Chapter 2 in D'Angelo.1 Thus, we have

Γi 0, tð Þ¼ cin�Ai 0, tð Þ, ð10Þ

if Qi 0, tð Þ>0. In the other case, an upwinding with respect to the concentration variable has to be performed.

4.2 | Inflow linearized model

For each vessel Λi with i � Iin \ Ilin, we assume that a time-dependent pressure profile epi tð Þ mmHgð Þ is given. If we
assume again for convenience that zi = 0 is adjacent to the inflow boundary, then the boundary conditions for flow can
be determined from the outgoing characteristic w1,i(0, t) and the pressure profile epi tð Þ.
4.3 | Direct nonlinear to linearized model coupling

Let us consider two vessels Λj, j� Icoupnon and Λi, i� Icouplin where Λi and Λj are connected and should be coupled. Assum-
ing that zj = lj and zi = 0, the outgoing non-linear and linear characteristic variables W 2,i lj, t

� �
and w1,j 0, tð Þ are known,

for example, by extrapolation,56 which yields two coupling conditions. In addition, we enforce the conservation of mass
and the continuity of pressure:

Qj lj, t
� �¼ qi 0, tð Þ, Pj lj, t

� �¼ pi 0, tð Þ: ð11Þ

These equations form a non-linear system of equations for the four boundary values Qj lj, t
� �

, Aj lj, t
� �

, pi 0, tð Þ
and qi 0, tð Þ that has to be solved for time points of interest. By means of the fluid variables, we can determine the con-
centration variables Γj lj, t

� �
and Γi 0, tð Þ. If the fluid is leaving the respective vessel an upwinding procedure is per-

formed; otherwise, the conservation of solute mass transported through the interface is enforced.

4.4 | Coupling between 0D tree and 3D capillaries

The 0D tree model and the 3D capillary model are coupled by suitable source terms qca and tca. In order to define these
source terms, we decompose the breast volume into perfusion zones. A similar idea57 has been considered in context of
modeling the myocardial perfusion.
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4.4.1 | Perfusion zones

To define so-called perfusion zones, the breast volume Ω is decomposed in Ioutlin

		 		 perfusion volumes which correspond
to the number of outlets contained in the linearized model. We denote the perfusion volumes by Ωi�Ω and assume
that they form a disjoint decomposition of our 3D-domain that is, Ω¼ [ i � Ioutlin

Ωi: This decomposition is motivated by
the fact that each terminal vessel of the breast network supplies blood to a certain tissue volume. Thereby, we assume
that the arterioles branching out of a terminal vessel i� Ioutlin are distributed in Ωi connecting the breast network and the
capillary bed (see Figure 6, left).

Now the challenge arises, how the perfusion areas Ωi can be defined. In context of our modeling approach, we con-
sider the end point xi � Ω of a terminal vessel i. Using this notation, Ωi is defined as follows:

Ωi ¼ x�Ω j dist x,xið Þ<dist x,xj
� �

, 8j≠ i, j� Ioutlin


 �
:

Here dist x,yð Þ is the Euclidean distance between two points x, y � Ω. This definition is motivated by the assump-
tion that a point in the tissue domain is usually supplied by the terminal vessel with minimal distance to this point. The
decomposition of Ω into the different perfusion areas is shown on the right of Figure 6.

4.4.2 | 0D to 3D coupling

With respect to each perfusion area the source term qca is given by:

qcajΩi
¼ ϱbl�Lca� pNB,i

�pcap,i
� �

:

pNB,i
is the pressure at the tips of the 0D-tree emulating the influence of the arterioles, while pcap,i is the averaged

capillary pressure with respect to the perfusion area Ωi:

pcap,i ¼
1
Ωij j
Z

Ωi

pcap xð Þ dx:

As in the previous source terms, the pressure difference is weighted by a conductivity parameter Lca 1=Ba sð Þ. The
mass flux from the arterioles into the capillary system is given by:

tcajΩi
¼ qcajΩi

� cNB,i ,

where cNB,i is the concentration of the last compartment within the 0D tree modeling the arterioles attached to outlet i.

4.4.3 | 3D to 0D coupling

The back coupling from 3D to 0D is done by setting the boundary pressure pNB,iþ1 and boundary concentration cNB,iþ1 at
the outlets of the 0D-trees to the averaged values pcap,i and ccap,i inside perfusion zone Ωi that is,

pNB,iþ1 ≔ pcap,i, cNB,iþ1 ≔ ccap,i ¼ 1
Ωij j
Z

Ωi

ccap xð Þ dx for all i� Ioutlin :

5 | COUPLED MODELS

After introducing model equations for the different parts of the vascular tree in Section 3 and establishing suitable cou-
pling and boundary conditions in Section 4, we use them to define two different models for flow and transport
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processes. The first model is referred to as the fully coupled model (see Section 5.1). It covers the whole flow path from
the aorta down to the capillaries and tissue of the breast. After that a sub-model of the fully coupled is defined in
Section 5.2 in which only the vascular tree and tissue in the breast are taken into account. In the remainder of this
work, it is referred to as the breast model.

5.1 | Fully coupled model

We assign the nonlinear model to all the larger arteries as well as to the first two vessels Lt I and It I of our extension.
Flow and transport in all the other vessels are governed by the linearized model. We thus have

Inon ¼ Imacro[ Itho,1, I lin ¼ Ibreast[ Itho,2[ Itho,3:

Conditions (9) are imposed at the inlet of the aorta that is, we set Iin ¼ Iinmacro. At all outlets of the larger arteries
Windkessel models are providing the missing boundary data. Therefore, we have: Iwk ¼ Ioutmacro. The nonlinear and line-
arized models are coupled with the coupling conditions introduced in Section 4.3. Finally, the linear models in Ioutbreast,
the 0D-Tree models and the 3D models for capillaries and tissue are linked together using the coupling conditions from
Section 4.3 and 4.4.

5.2 | Breast model

To design our breast model, we proceed in two steps: First, we need boundary conditions, which are provided by the
nonlinear purely generic model in Section 5.2.1. In the following, this model is called the macrocirculation model.
Then, we simulate in a second step (in Section 5.2.2) flow and transport processes in our patient-specific breast network
using the linearized PDE model without the generic components. Due to the fact that this model is focused on flow and
transport through middle-sized vessels and microcirculation, we refer to it as a meso-microcirculation model.

The first model is based completely on patient-independent data, thus its results can be precalculated and used for
all patients. Obviously, not every patient fits the generic data described before, for example, the anterior communicating
artery (Vessel 31 in Figure 1) is not always contained in the Circle of Willis. This could be solved by dividing patients
into groups sharing similar networks. For each group a generic network could be derived for which the
macrocirculation model is precomputed. A new patient would just have to be assigned to one of these groups, before
simulations with respect to the individual breast geometry can be taken into consideration. A further advantage would
be that the model for the breast is purely linear. Thus, the computational costs are much lower compared to the fully
nonlinear model.

5.2.1 | Macro-circulation model

To obtain appropriate pressure boundary conditions for the next purely linear model, we only want to simulate the
nonlinear model and thus impose

Inon ¼ Imacro[ Itho,1, I lin ¼;:

To close the model, we assign Windkessel models to both vessels from the extension network that is,
Iwk ¼ Ioutmacro[ Itho,1. To calibrate the models, we use the algorithm described in Reference [28] with one modification:
The compliance and resistance for the right auxiliary artery will distributed between itself, the Lt I and It I vessels. The
distribution of the capacities is proportional to the fluid masses leaving these three vessels, while the resistances are dis-
tributed in a reciprocal way.

We expect that flows predicted by this nonlinear model will reach a steady state sooner than the fully coupled
model. When the pressure and velocity waves become periodic, we can compute the pressures at the outlets i � Itho,1 for
one period and extend them periodically. The tip pressure at vessel i � Itho,1 defines a boundary condition epj for the
adjacent vessel j � Itho,2.
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5.2.2 | Meso-microcirculation model

If our data is restricted to the patient specific parts, we obtain the index sets

Inon ¼;, I lin ¼ Ibreast[ Itho,2[ Itho,3:

As inflow conditions, we prescribe the pressures at the vessels

I in ¼ Itho,2 � Itho

as outlined in Section 4.2, with the pressure profiles epi tð Þ, i� I in defined in the previous section. As in case of the fully
coupled model, we combine the 3D and 1D equations using the coupling conditions in Section 4.4.

6 | NUMERICAL ALGORITHM

In this section, we first introduce the numerical discretization for the models we presented earlier.
Both 1D-flow models and the transport model are discretized by a second order discontinuous Galerkin dis-

cretization in space. The upwinding is determined from the characteristics which can be calculated analytically in our
regime.

6.1 | 1D-nonlinear flow solver

In time, we use for the nonlinear flow model a 3-step strongly stability preserving method (SSP).58 The explicit time
integrator results in a restriction on the time step sizes due to the Courant–Friedrichs–Lewy (CFL) condition. In case of
our application area this is acceptable, since we need small time steps to resolve the pressure and velocity waves. The
algorithm is implemented in a matrix-free way using the GMM++59 and Eigen60 libraries. For inter process communi-
cation, we use the standard MPI primitives.

6.2 | 1D-linearized and 0D-tree flow solver

The linearized 1D flow model together with the 0D-Tree model are solved numerically using an implicit Euler scheme
in time. Thus, we have no restrictions on the time step size in these regimes. This is convenient in our case, since espe-
cially at the beginning of the simulation huge flows from the 3D domain pass the 0D-Tree models and would lead to a
severe restriction on the time step size for the 1D model. The implicit-linearized scheme can now act as a buffer
between the explicit-nonlinear and the 3D domain making the whole scheme more robust.

For inverting the 1D-linear system, we use the PETSc library,61 with GMRES as an outer solver and a per processor
ILU factorization as a preconditioner. Since all the degrees-of-freedom on a blood vessel get distributed as a whole to
one processor the ILU is expected to work well in this case. In addition, since the underlying matrix does not change
over time, the factorization has only to be calculated once.

6.3 | 1D–1D coupling

The fully coupled model from Section 5.1 needs a direct coupling between the nonlinear and linearized regimes.
Thus, both schemes have to work on the same time scale. Their coupling in time is depicted in Figure 7. We first
advance the nonlinear scheme with the old characteristic boundary values. The new values from the nonlinear
scheme are then fed into the characteristic boundary conditions of the implicit linearized scheme. Using the linear-
ized characteristic as input yields a linear problem, which can be inverted by a standard solver, while using the
nonlinear characteristics would result in a nonlinear boundary condition. This requires the usage of a nonlinear
solver.
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Note that with this coupling the explicit nonlinear solver still restricts the time step size of the linearized solver. This
is not the case with the model introduced in Section 5.2.2 whose 1D discretization is purely implicit and thus exhibits
no time step restriction.

6.4 | 0D–3D coupling

For the spatial discretization of the 3D capillary flow problem, we use the space of continuous piecewise-linear polyno-
mials as ansatz functions. The matrices are assembled in FEniCS. To retain the sparsity of the system one additional
scalar variable per compartment is introduced which holds the pressure to an average value. The coupling between 0D
and 3D is depicted in Figure 7. Due to the small time steps used in terms of the 1D systems, the 3D system is not solved
in every time step. Hence, we apply a very basic multi-rate time stepping scheme, which only update the 3D pressures
after the time period τ3D and then update the 1D boundary condition. This crude coupling works, due to the small
changes of the averaged 3D-pressure in time. We solve the 1D systems until the solutions become periodic at a time
point tinit,1D. After that, we activate the 0D–3D coupling and simulate until the flow simulation shows a periodic
behavior.

6.5 | Transport solvers

For a time integrator for the 3D, 1D, and 0D models, we use the implicit Euler method. Since the transport processes in
the breast capillaries and tissue are slower compared to the transport process in the vascular tree, we use in case of the
3D models a larger time step size, which aligns with the one for the flow problems. The 3D and 0D transport models
are coupled in the same manner as the flow solver. Discontinuous Galerkin methods are used to discretize the 1D
model equations in space, while standard linear finite elements are considered for the 3D model equations. The discon-
tinuous Galerkin method has to be combined with a slope limiter technique in order to avoid the formation of spurious
oscillations in the vicinity of steep gradients.62,63

6.6 | Overview of the numerical scheme

Here, we summarize and discuss how the individual components are combined. This is done in Figure 8 for the flow
problems and in Figure 9 for the transport. The columns of the table correspond to the different vessel types in our
blood flow model. Each of our three flow models is divided into five rows:

In the first three rows, we assign the respective models from Section 3, state their primary variables and their spatial
discretization. For the main arteries and parts of the thoracic arteries of the fully coupled model, we assign the
nonlinear model from Section 3.1.1 with the vessel area A and blood flow Q as primary variables, which are each dis-
cretized by second order discontinuous Galerkin elements (DG2). Similarly, we assign the linearized model from

Nonlinear-Flow Linearized-Flow

(explicit) (implicit)

1

2

3

4

1D-0D-Flow

3D-Flow

FIGURE 7 Left: Coupling of the nonlinear-explicit and linearized-implicit 1D schemes in time. Here, wL
in and wNL

in represent the

incoming characteristics of the linearized and nonlinear models. Right: A simple multi-rate time stepping scheme. After several 1D time-

steps, the boundary conditions of the 3D Darcy equation are updated and evaluated. The new average 3D pressures at the vessel outlets are

used as new boundary conditions for the linearized 1D flow.
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Section 3.1.2, with pressure p and flow q to the breast network. For the arterioles we use the 0D-tree model from
Section 3.3, which consists of NB,i scalar pressure values p at each outlet i� Ioutlin , where NB,i is the depth of the 0D-tree.
Finally, we use the 3D-model from Section 3.2 with the capillary pressure pcap, the tissue pressure ptis and the pressure
averages pcap at each outlet. We use continuous, piecewise linear functions (P1) for the pressure fields and real scalar
variables for the averages.

In the fourth row, we specify the applied time integrators to the spatially discretized sub-models. A 3-step SSP-
method is assigned to the 1D-nonlinear model (Section 6.1), while the 1D-linearized model and 0D-tree model are

FIGURE 8 From macroscopic flow models to discretized models in time and space.

FIGURE 9 From macroscopic transport models to discretized models in time and space.
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combined and discretized by an implicit Euler scheme (Section 3.1.2). No time integrator is assigned to the time-
independent 3D-model.

Finally, in the fifth row, the coupling conditions between the different time integrators are depicted by arrows in
which the arrow head denotes the direction of the coupling. Unidirectional couplings from outside are the inflow
boundary condition (Section 4.1) and the vein pv and lymphatic pressures pl which couple to our 3D-model
(Section 3.2). Both the 1D-1D coupling between the explicit and implicit schemes (Section 6.3), as well as the 0D–3D
coupling between the implicit scheme and the stationary 3D-model (Section 6.4) are bidirectional and hence depicted
by arrows in both directions.

For the macro-circulation of the breast model we see that the 1D-linearized model, 0D-tree model, and 3D-model
are replaced by the 0D Windkessel models from Section 3.3.1, which model the remaining vasculature by a single aver-
aged capillary pressure pc. Only the inflow boundary conditions and the vein pressure pv couple into the model.

The meso-circulatory part of the breast model consists of the discretized fully coupled model without the 1D-
nonlinear model. Instead, a unidirectional arrow points from the macro-circulation model to the meso-circulation
model and indicates, that the time-dependent pressure values epi tð Þ at the tips of the 1D-nonlinear model are used as
boundary conditions for the 1D-linearized model.
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FIGURE 10 Pressures (mmHg) and flows (cm3/s) at vessel midpoints in the nonlinear regime around the Circle of Willis from

14 to 16 s.
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In Figure 9, we give a similar overview for the transport model. We assign the 1D-linearized models from Sec-
tions 3.1.1 and 3.1.2 to the complete vascular network. Here, the line concentration Γ is the primary variable, and it is
discretized by DG2 elements. The arterioles are modeled with the 0D-models from Section 3.3, which consists of NB,i

concentration c and volume V values at each outlet i� Ioutlin . For the capillaries and tissue, we use the 3D-model
(Section 3.2) with the homogenized concentration fields ccap and ct in the capillaries and tissue matrix. As a spatial dis-
cretization we again rely on P1 elements.

We discretize in time the combined 1D-linearized and 0D-tree model with the implicit Euler scheme (Section 6.5).
No time integrator is needed for the stationary 3D-model.

Again, the inflow values at the heart couple into the system as well as concentrations in the lymphatic cl
system and the veins cv. The latter do not play any role in practice due to the direction of the flows into the
lymphatic system and into the veins. Thus they are not part of our discretization. In addition, the upwinded
velocities from the flow model couple into the transport, which is depicted by black coupling arrows. The only
bidirectional coupling between time integrators is between the 0D and 3D models which follows the strategy
from Section 6.4.
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7 | RESULTS AND DISCUSSION

The results obtained using our fully coupled model are first presented and then compared to available biological data
by moving through the vessel hierarchy, starting at the inlet of the aorta and ending at the homogenized capillaries.
Since the fully coupled model is considered to be our reference model, the results are compared to the simpler breast
model, in particular the meso-microcirculation model. This allows us to assess the quality of this sub-model. The source
code underlying all numerical experiments, including data for testing, is available at https://github.com/
CancerModeling/Flows1D0D3D/releases/tag/v1.0.

As model parameters, we use ϱc = 0.997 and ϱt = 1.060 g cm�3 for the densities of blood in the capillaries and tis-
sue. We estimate Sct by assuming nREV = 460 which is a lower estimate for the capillary density in muscles,64 rc ¼
3:375�104 and lc ¼ 0:06 cm. We set kcap = 1� 10�9 and kt = 1� 10�14 cm2 from Table 1 in Vidotto et al.22 For the
mean vein and lymphatic pressures we assume pv = 10mmHg and pl = 1mmHg. Applying Ohm's law to the last com-
partment of the 0D model and averaging yields

Lca ¼ ϱbl
j Ioutbreast j

X
i � Ioutbreast

1
jΩi j

2NB,i

KRNBi,i

, ð12Þ

as an estimate for Lca. The remaining permeabilities are set to Lcv = Ltl = 10�8 Ba�1 s�1 and Lct = 10�9 cm s Ba�1. For
the transport we use the oxygen specific values Dt = 1.7 � 10�5 cm3 s�1 and λt = 6 � 10�5 s�1 from Reference [1] and
set Dc = Dt.

The numerical parameters for the fully coupled model are set to τ = 2�16 s, tinit,1D = 6 s and τ3D = 2�3 s. The bound-
ary condition for the transport is activated after 6 s.

7.1 | Fully coupled model

Results related to the 1D flow models are presented first. In Figure 10, the pressures and flow rates in the nonlinear
regime of our model are depicted, which contains the circle of Willis.

This scenario describes a good benchmark test for the nonlinear part of our model. The pressure at the entrance of
the aorta is 130/80 mmHg, while the pressures in the arm arteries are a little higher at 140/80 mmHg, both of which
are well within a physiologically meaningful regime. While the order of magnitude of pressure values stays constant in
the whole nonlinear regime, the same is not true for the flows, which depend strongly on the vessel diameter. Flow
rates of up to 500 cm3 s�1 leave the heart and thus most of the blood flows into the lower torso (77%), the head (13%) or
the arms (10%). Only a small fraction of 1.2 per-mille, reaches the breast. The flow through the “anterior communicat-
ing artery” at the very top, connecting both parts of the Circle of Willis, is very small. This vessel typically only acts as a
backup in case one of the inflows to the brain fails, and our prediction matches medical knowledge. The pressures and
flows in Vessels 5 and 6, 23 and 24 as well as in 14 and 16 are nearly the same. This is due to the high spatial symmetry
of the underlying vasculature and is to be expected for a valid model.

Figure 11 depicts the flow through the artificial vessels connecting the larger arteries with the measured breast
geometry. A periodic behavior is observed and flows have a similar shape. Compared to the flows into the brain, arms,
and lower torso, the flows into the breast are small, but always positive and therefore continuously provide blood to the
breast. The high frequency components of the flow are quite possibly due to reflections at the vessel boundaries, since
the arm arteries have a much larger diameter than the artificial arteries to the breast.

In Figure 12, the pressures and flows of the linearized model for a single flow path starting at an inlet connected to
the nonlinear regime and ending at an outlet connected to our lumped parameter models are shown. It is observed that
approaching the outlet, the average pressure is slowly damped down. Starting at 123/75 mmHg, it gets damped down to
70/45 mmHg. The flow on the other hand decreases much faster, since it strongly depends on the size of the vessel
which visibly decreases. Also, the high frequency components of the flow, which are visible near the coupling points
and are still prominent near the inlet, get smoothed in space so that the flow reaching the outlets already appears very
smooth.

In Figure 13, pressures inside the vessels of 0D-Tree models are depicted. Every subplot belongs to one lumped ves-
sel in the hierarchy, where the leftmost vessel interacts with the linearized 1D model, while the rightmost vessel is
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coupled to the 3D homogenized capillary domain. The time interval contains two heart beats from 14 to 16 s. After
14 heart beats, the solution is already periodic in all the compartments of our vascular tree. In addition, a large drop in
the pressure amplitude from about 16–0.5 mmHg is observed. The pressures in the last compartment falls into the range
of capillary pressures in Figure 2.
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FIGURE 11 Pressure and flow rates within the artificial vessels connecting the large arteries with the breast geometry.
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In Figure 14, additional results on the flow inside the vessels of our 0D tree models are shown. As can be seen in
the upper row, for a single vessel the flow decreases by one half from one compartment level to the next due to the
bifurcation. Multiplying the flow by the number of vessels on each level replicates the total flow. The bottom row in the
figure shows that the total flow is conserved. Integrating the total flow of all 0D models over time yields that
1.3 � 10�1 cm3 of blood leave the 0D-networks every heartbeat. The blood volume leaving a single 0D network is
between 1.3 � 10�3 and 8 � 10�3 cm3.

In Figure 15, the pressure amplitude on the left, as well as the mean, maximal, and minimal pressure values in our
1D and 0D models are shown. The color gets lighter from the nonlinear, over the linearized to the 0D tree-models. In
1D, the pressures are measured at the center of the vessels, and for the varying radii in the nonlinear regime, we use
the one at zero pressure. For large and medium-sized arteries, the pressure amplitude stays in the same range at
55 mmHg, and we have a stable mean pressure just below 100 mmHg. Our model can replicate the effect that the pres-
sure does not attain its maximum at the aorta, but in the brachial arteries, where we reach a pressure amplitude of
72 mmHg. For smaller arterial vessels, we see a pressure drop from 50 to 7 mmHg, which is smeared out over a large
range of different pressure values. Here we enter the arterioles, which are modeled by means of lumped parameter
models. The pressure amplitude decreases significantly, and the mean pressure values converge for smaller radii until

FIGURE 12 Pressures (upper right) and flows (lower right) through one exemplary path in the breast geometry (left).

FIGURE 13 Pressure decay within a 0D-tree model. For each compartment the pressure waves for two heart beats are shown.
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they are in a range between 25 and 12 mmHg. Both plots are in agreement with the expected qualitative results of
Figure 2. It can be observed that the input pressure for the arterioles is around 30 mmHg and that the pressure ampli-
tudes decrease significantly.

To test the transport model, a time-independent source of 1 mmol cm�1 is placed at the aortic entrance. The con-
centration front propagates through the whole network, mostly during the systolic phase of the cardiac cycle. Figure 16
depicts the transport inside the 0D trees. The upper row depicts the concentration inside the compartments. The con-
centration front enters the tree around heart beats eight and propagates nearly instantaneously through the whole tree.
At heart beat 14 it has reached a fixed value of 1 (mmol/cm3). The middle row shows the amount of substance in mmol
in each compartment, while the lower row shows the total amount of substance stored in all vessels of our tree at a
given hierarchy level. Both quantities decrease from one level to the next level. Thus, only a small amount of mass is
stored in the arteriol trees. Combining these results with the flow rate of approximately 2.25 � 10�3 cm�3 s�1 at the tip
of our tree from Figure 14, suggests an average flow rate of 2.25 � 10�3 mmol s�1 from our trees into the 3D domain.

FIGURE 14 The graphs show the flow rates in one prototypical vessel of the 0D tree over time. Top: flow rate in one vessel on each

bifurcation level. Bottom: total flow in all vessels of the tree belonging to one bifurcation level.

FIGURE 15 Plot of the vessel radii of the nonlinear, linearized and 0D flow models against the pressures which were averaged from

heart beat 14 to heart beat 20. To differentiate between the models, the color value gets lighter from the nonlinear over the linearized to the

0D model. The left plot shows the pressure amplitude in this time interval, while the right shows the maximum, mean and minimum

pressures for all radii.
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In Figure 17, we see the concentration in capillaries and tissue of our perfusion domains. When a concentration
front arrives at the vessel tips it starts to spread uniformly in its domain. The capillary concentration approaches a
constant value of 1 mmol cm�3, while the asymptotic mean tissue concentrations vary between 0.6 and
0.8 mmol cm�3.

7.2 | Breast model

Next, results delivered by the much cheaper uncoupled breast model are compared with the fully coupled model.
Figure 18 compares both models in Lt I, It I and Lt II, It II. For the pressure we observe for all four cases an excellent

FIGURE 16 Transport in the compartments of a 0D tree. Top: volumetric concentration for each tree level. Middle: the amount of

substance in one vessel per level. Bottom: the total amount of substance in all 2k vessels of the kth level in one tree.

FIGURE 17 Left: concentration in capillaries at t = 10. Right: average concentrations in capillaries (upper) and tissue (lower) for the

four perfusion zones marked on the left.
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agreement. For the flow, the situation is significantly different. For Lt I and It I, the macrocirculation model with the
Windkessel boundary overestimates the flow rate by ≈ 30% and expects more fluid to enter the breast. However for Lt
II and It II, the flow rates obtained from the pressure boundary condition coincide again. Figure 19 (left) depicts the
time-dependent relative error between the fully coupled and breast model along a given path for a fixed time step width
τmin. Its mean in time, depicted with a dashed line, is smaller than 1% for both the pressure and the flow. The error
itself is periodic and has peaks when the underlying pressure and flow curves change in a nonsmooth way. In space,
these peaks are damped, while the mean relative error stays constant. For the fully coupled model, the time step size
cannot be increased due to the CFL condition of the explicit nonlinear parts in our 1D equations. This is not the case
for the linearized equations for which we use an implicit scheme and can choose τ without any restriction. Figure 19
(right) depicts the mean error between the fully coupled model at a fixed time step width τmin versus the breast model
with varying τ. For a large range of τ, the modeling error dominates. Thus, even increasing τ by a factor of 100 does not
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change the relative error. For larger τ the error increases first in the vessels near the inlets. If we are only interested in
the flow at the outlets, this justifies even more the usage of larger time step sizes.

7.3 | Comparison of two breast geometries

To test the robustness of our approach, we apply the breast model to a second breast geometry and compare the results
of our flow model. The geometry is depicted in Figure 20A), where the inlet are marked with circles and the outlets
with triangles. Just as in the previous subsections, the vessel network is connected to the Circle of Willis using the tho-
racic network shown in Figure 1.

Obtaining physiological meaningful pressures in the capillary bed, we quarter and halve the permeabilities Lcv and
Ltl such that Lcv = 2.5 � 10�9 Ba�1 s�1 and Ltl = 5 � 10�9 Ba�1 s�1. If we use the same parameter set as for the original
geometry, some of the pressures in the capillary bed would become smaller than the coupled pressures from the venous
system, and therefore, we would get a flow from the veins into the capillaries.

These parameters changes are related to the different shapes of both breasts, which can be observed in Figure 20B),
and possible physiological differences in the patients due to different distribution of vessels. For instance, the second
breast geometry has much less imaging-visible vessels in the anterior region of breast. Therefore, each terminal 1D ves-
sel of the breast network and its attached 0D arterioles have to supply a larger region of the 3D capillary bed. These
effects decrease the source parameter Lca which is estimated by Equation 12 from L breast 1ð Þ

ca ¼ 1:1�10�6Ba�1 s�1 to
L breast 2ð Þ
ca ¼ 3:7�10�7Ba�1 s�1 by 35%. This means, that we also have to rescale the sink terms modeled by Ltl and Lcv,

since otherwise too much fluid volume is transferred to the lymphatic system and veins. For our workflow, this means
that a calibration run for these two patient specific parameters is needed, before we can run the full patient-specific
sub-model including the transport. We stress that the parameters of our generic part in the fully coupled model do not
require recalibration. Moreover from the generic model, we obtain reasonable inflow information to the patient-specific
submodels. For our simulations, we use a time step size of τ = 2�11 s which according to Figure 19 yields accurate
enough results.

In Figure 21, we show the pressures and flows for a path through the network and its attached 0D model. Inside the
network the pressures are 125/70 mmHg near the inlet from the extension to 70/50 mmHg closer to the attached 0D
model. The 0D model damps down the pressure amplitude further such that the final pressure at the tips of our tree is
almost constant before we couple it with the homogenized capillary bed. Figure 22 shows the averaged pressures of the
capillary bed and the interstitial space for each compartment Ωi with a unique color. The pressures of the capillaries
range from 28 to 13 mmHg and they are consistently above the 10 mmHg which we assume for the venes. The ampli-
tudes are always below 1 mmHg. For the interstitial space we get pressures from 22.5 to 10.3 mmHg.

FIGURE 19 Left: comparison between fully coupled and breast model for vessels along the path of Figure 12 (left). A solid line is used

for the relative error, its mean in time is depicted with a dashed line. Right: the mean relative errors between the fully coupled model at a

fixed time step τmin = 1.5625 � 10–5 s versus the breast model with a varying time step width τ.
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7.4 | Runtime comparison flow models

In this section, we want to strengthen our claim, that the breast model can yield a significant speed up for our flow
problem. Obviously, all the runtimes strongly depend on the linear solvers and on the discretizations of the different
parts of our flow model. We want to stress that these results are not definitive and only serve the purpose to give an
impression into the possible difference in the runtimes of the algorithms. Each component of the algorithms could be
further optimized which would possibly yield significantly different results. In Figure 23, we show a runtime compari-
son between the different submodels. The runtimes were measured for a single processor and consisted of 100 time
steps each. On the left, we show the relative runtime of one iteration of the linearized 1D model compared to one itera-
tion of the nonlinear model for different time step widths τ. For τ = 2�16 s the relative runtime of the linearized model
is approximately 1.2 and increases to 20 for τ = 2�3 s. This moderate increase is due to the fact that our linear solver is
not completely robust with respect to τ. Even though each iteration takes longer, we still expect to save computational
time with the breast sub-model, since significantly less iterations are needed to simulate a fixed amount of heartbeats.

FIGURE 20 Left: the second breast geometry including the 1D vasculature. The inlets are marked with circles and the outlets with

triangles. Right: side by side comparison of the second (left) and first breast geometry (right).

FIGURE 21 Pressures and flows through one exemplary path in the breast geometry and in the attached 0D model.
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FIGURE 22 Left: perfusion zones Ωi of the second breast geometry. Right: averaged 3D pressures in the capillary bed and interstitial

space for each perfusion zone.

FIGURE 23 Runtime plots for the 1D-linearized flow model (left) and the 3D flow model (right) compared to the 1D-nonlinear flow

model for different time step widths τ. Left axis: the absolute runtime in seconds. Right axis: The relative runtime compared to the 1D-

nonlinear flow model.

FIGURE 24 Speed up of the breast sub-model compared to the fully coupled model.
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On the right, we show the runtime of one iteration of the 3D model compared to one iteration of the nonlinear model.
The relative runtime of the 3D system is between 780 and 800. It slightly increases with τ, due to a worse intial guesses
for our linear solver. Note that the linear system itself is not dependent on τ.

In Figure 24 we compare the runtime of the breast sub-model and the fully coupled model which were both simu-
lated for one heart beat on a single processor. Using the breast model instead of the fully coupled model with the same
time step size already yields a speed up of 1.8, since we circumvent the expensive calculations of the characteristics
inside the nonlinear model. Increasing the time step size leads to less iterations of our 1D-0D models and hence further
improves the performance, until the 3D equations start to dominate the runtime of our algorithm. The largest speed up
is 25 which we attain for τ = 2�3 s. From Figure 19, we can conclude that for a time step size of τ = 10�3 s the solution
is still accurate enough. Thus, we can expect a speed up of 10–15 by using the breast model.

8 | CONCLUSION AND OUTLOOK

A class of multiscale models has been introduced in this investigation to simulate flow and transport from heart to
breast. To simulate the pressure amplitudes in a realistic way, a nonlinear model was used for the arteries, a linearized
model for the smaller arteries, and a 0D model for the arterioles. Then this model has been coupled to the interstitial
space via the homogenized 3D capillary model. Our findings are qualitatively consistent with medical knowledge about
the circulation of blood within the human body. A fully coupled model has been described and compared to a simpler
sub-model. It has been demonstrated experimentally that they produce sufficiently similar results for all practical pur-
poses. The breast model consists of a nonlinear model on the patient independent parts and a linearized model for the
patient specific parts. This suggests, that the expensive nonlinear computation can be done once for a large class of
patients in an offline computation. For the patient specific parts, we can use a fully implicit solver allowing us to
cheaply bridge long simulation times by using large time step sizes.

Results also suggest that precompiling the outlet pressures with the macrocirculation model and feeding these into
the breast networks of various patients is sufficiently accurate for use in future studies of drug delivery and tumor
growth. A typical example of a prevalent therapeutic procedure in which drug delivery plays a central role is systemic
therapy for breast cancer patients. Thereby, a port is placed in the upper vena cava during such procedures. Chemo-
therapeutic drugs are injected through the port and delivered to the vasculature in the affected breast via the heart's,
pulmonary circulation, and engage the larger arteries of the systemic circulation.65,66 It is critical to know which por-
tion of the injected drugs reaches the tumor in order to estimate the efficacy of this therapy. With this information, the
duration rate and dose of an infusion can be optimized so that both the tumor and any negative impact of the injected
drug on healthy tissue are minimized.
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APPENDIX A: DATA SET DESCRIPTION

The estimated parameter values for the vessels in the simulations are reported here in Table A1.

APPENDIX B: VISCOSITY

Red blood cells govern the viscosity of blood, significantly. As the red blood cells have to deform such that they can
move through capillaries, the viscosity varies within the microvascular network. A quantitative relationship between
the vessel diameter D is given by the following formula for the in vivo viscosity μbl Pa sð Þ, see42:

μbl Dð Þ¼ μp 1þ μ0:45�1ð Þ 1�Hð ÞC�1

1�0:45ð ÞC�1
� D

D�1:1

� �2
 !

� D
D�1:1

� �2

: ðB1Þ

In (B1), the diameter D is dimensionless. The physical diameter d μmð Þ has to be divided by 1.0 μm to obtain D.
Here, μp Pa sð Þ denotes the viscosity of blood plasma, and H stands for the discharge hematocrit, which is defined by
the ratio between the volume of the red blood cells and the total blood volume. The apparent viscosity μ0.45 is given by:

μ0:45 ¼ 6:0exp �0:085�Dð Þþ3:2�2:44exp �0:06�D0:645
� �

,

and C is a coefficient determining the influence of H on μbl:

C¼ 0:8þexp �0:075�Dð Þð Þ �1þ 1
1þ10�11D12

� �
þ 1
1þ10�11D12 :

In this context, one should be aware of the fact that the constitutive relationship (B1) is known to hold for human
blood.

TABLE A1 Data for the thoracic arteries as well as the breast network.

Vessel name Id l (cm) r (cm) h (cm) E (MPa)

Subclavian artery (I) 7 1.70 0.423 0.067 0.4

Subclavian artery (II) 34 1.70 0.423 0.067 0.4

Brachial artery (I) 15 40.5 0.403 0.067 0.4

Brachial artery (II) 35 1.70 0.403 0.067 0.4

Internal thoracic artery (I) 36 2.5 0.06 0.005 1.3

Internal thoracic artery (II) 37 2.5 0.06 0.005 1.3

Internal thoracic artery (III) 38 2.0 0.06 0.005 1.3

Internal thoracic artery (IV) 39 0.5 0.06 0.005 1.3

Internal thoracic artery (V) 40 0.5 0.06 0.005 1.3

Internal thoracic artery (VI) 41 5.0 0.06 0.005 1.3

Lateral thoracic artery (I) 42 2.5 0.06 0.005 1.3

Lateral thoracic artery (II) 43 2.5 0.06 0.005 1.3

Lateral thoracic artery (III) 44 2.5 0.06 0.005 1.3

Lateral thoracic artery (IV) 45 7.0 0.06 0.005 1.3

Breast network – – 0.013–0.042 0.005 1.3

Note: The elasticity parameters and radii of the thoracic arteries are estimated. In the case of the breast network, only the wall thickness h and the elasticity E
are relevant, since the lengths and radii are given by the data set from 12. For simplicity, we use for each vessel in the breast network the same wall thickness
and the elasticity parameter.
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APPENDIX C: REDUCED 1D AND 0D MODELS

The multiscale model developed here uses various well-established submodules, which are summarized here for conve-
nience. The reduced 1-dimensional nonlinear model and its linearized variant are given in Sections Appendix C.1 and
Appendix C.2, followed by the lumped 0D Windkessel model in Section Appendix C.3.

C.1. | Nonlinear 1D model

First, the most accurate 1D model, which consists of a set of nonlinear equations, is considered. Consider a single vessel
Ωi, i � Inon with a length of li. We use a one-dimensional model to describe the propagation of pressure waves and sol-
utes. For each curve parameter z� 0, li½ � and a time point t>0, we consider the section area Ai z, tð Þ cm2ð Þ, flow rate
Qi z, tð Þ cm3=sð Þ and averaged concentration Γi z, tð Þ mmol=cmð Þ. Averaging the Navier–Stokes equations and a convec-
tion diffusion equation across the section area and using (A1), one obtains a first order PDE-system governing Ai, Qi

and Γi, see1,14,15:

∂Ai

∂t
þ ∂Qi

∂z
¼ 0, z� 0, lið Þ, t>0, ðC1Þ

∂Qi

∂t
þ ∂

∂z
Q2
i

Ai

� �
þAi

ϱ

∂Pi

∂z
þ2� γþ2ð Þ�μ 2�Rið Þ

ϱ
�Qi

Ai
¼ 0, z� 0, lið Þ, t>0, ðC2Þ

∂Γi

∂t
þ ∂

∂z
Qi

Ai
Γi

� �
¼ 0, z� 0, lið Þ, t>0: ðC3Þ

Here, ϱ g=cm3ð Þ is the density of blood. Since blood is assumed to be incompressible, ϱ is taken to be constant. The
viscosity of blood μ is given by (B1), Ri cmð Þ is the radius of the vessel Ωi. The choice of the dimensionless parameter γ
depends on the type of flow and the radial velocity profile. According to Chapter 2 in [15] and Section 6.1 of [1] γ = 9 is
an appropriate choice for a turbulent flow.67 Pi Bað Þ denotes the fluid pressure on the vessel surface. To complete the
system, we present a simple FSI-model that relates the section area Ai and the pressure Pi. The FSI model can be
derived from the Young Laplace equation48,68:

Pi z, tð Þ¼G0,i

ffiffiffiffiffiffiffi
Ai

A0,i

s
�1

 !
, G0,i ¼

ffiffiffi
π

p �h0,i�Ei

1�ν2ð Þ� ffiffiffiffiffiffiffi
A0,i

p , ðC4Þ

where Ei is the Young modulus, A0,i stands for the section area at rest, h0,i is the vessel thickness and ν is the Poisson
ratio. Due to the fact that biological tissue is practically incompressible, ν is chosen as ν = 0.5 (32, Chapter 10).
Equation (C4) is based on the assumption that the vessel wall is instantaneously in equilibrium with the forces act-
ing on it.

Analyzing the characteristics of this system of Equations (C1)–(C3), it can be shown that changes in pressure, flow
rate, and the concentration variable are propagated by W1,i, W2,i and W3,i:

W 1,i ¼�Qi

Ai
þ4

ffiffiffiffiffiffiffi
G0,i

2ϱ

s
Ai

A0,i

� �1
4

�1

 !
¼�viþ4 � c Aið Þ� c A0,ið Þð Þ, ðC5Þ

W 2,i ¼Qi

Ai
þ4

ffiffiffiffiffiffiffi
G0,i

2ϱ

s
Ai

A0,i

� �1
4

�1

 !
¼ viþ4 � c Aið Þ� c A0,ið Þð Þ, ðC6Þ
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W 3,i ¼ Γi

Ai
: ðC7Þ

vi cm=sð Þ is the flow velocity in Ωi and c Aið Þ cm=sð Þ is the characteristic wave speed in Ωi. According to Reference
[69] it can be shown that assuming vi � c Aið Þ, the PDE-system Equations (C1), (C2) is strictly hyperbolic. Furthermore,
it is revealed that W1,i can be compared to a wave moving in a negative direction and that W2,i is a wave moving in a
positive direction. The flow direction of W3,i depends on the sign of the velocity field vi. This information is crucial to
couple the single vessels and impose boundary conditions in a consistent manner.

A branching point is referred to as n-furcation, if n vessels are coupled at this branching point. In order to couple
n vessels at a branching point, we require 3n equations to determine the boundary conditions for the adjacent vessels.
For deriving these equations, we follow the considerations, presented in References [26,43,44]. Therefore, an index set
of the vessels connected at branching point is introduced:

IB ¼ j1,…, jnf g� Inon:

The curve parameters of the corresponding inlets and outlets are denoted by zij � 0, lij

 �

. One coupling condition is
motivated by enforcing mass conservation at the branching point. To achieve this, we demand that the flow rates times
the “outer normal” σ sum up to zero:

X
k � IB

σ zkð ÞQk zk, tð Þ¼ 0, σ zkð Þ¼ 1, if zk ¼ lk,

�1, if zk ¼ 0:

�
ðC8Þ

Further coupling conditions are based on the continuity of the total pressure:

pt,j1 zj1 , t
� �¼ pt,k zk, tð Þ, pt,k ¼

1
2
�ϱ� Qk zk, tð Þ

Ak zk, tð Þ
� �2

þpk zk, tð Þ, k� IB ∖ j1f g: ðC9Þ

In Reference [43] it is shown that the total energy of the system is bounded by boundary conditions and initial con-
ditions, if the continuity of the total pressure is enforced. From (C8) and (C9), we obtain n coupling conditions. Thus,
n further coupling conditions are required to determine the fluid variables Ak zk, tð Þ and Qk zk, tð Þ. As we know from our
characteristic analysis, either W 1,k zk, tð Þ or W 2,k zk, tð Þ is moving towards the branching point. With n characteristic vari-
ables moving towards the n-furcation, n additional coupling conditions can be established. This results in a non-linear
system of equations that has to be solved for time points of interest. A more detailed description of the system of equa-
tions can be found in References [56, 70].

For modeling transport processes through a branching point, we require some further notation. The index set IB is
divided into two disjunctive sets IBin and IBout . For these index sets it holds:

k� IBin , zk ¼ 0^Qk zk, tð Þ≤ 0ð Þ_ zk ¼ lk ^Qk zk, tð Þ≥ 0ð Þ,

and

k � IBout , zk ¼ 0^Qk zk, tð Þ>0ð Þ_ zk ¼ lk ^Qk zk, tð Þ<0ð Þ:

Accordingly, the conservation of solute mass at a branching point can be formulated as follows:

N in tð Þ¼
X

k � IBin

Qk zk, tð Þj jΓk zk, tð Þ
Ak zk, tð Þ¼

X
k � IBout

Qk zk, tð Þj jΓk zk, tð Þ
Ak zk, tð Þ : ðC10Þ

N in mmol=sð Þ is the number of particles flowing through the bifurcation within a second. Next, we note that the
concentration variables Γk zk, tð Þ, k � IBin can be determined by means of an upwinding method, since the
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corresponding characteristic variables W 3 zk, tð Þ are leaving the inflow vessels and entering the bifurcation. This means
that Nin can be computed for each time point t>0. It remains to determine Γk zk, tð Þ, k� IBout . For this purpose, we
assume that an instantaneous mixing at the branching point takes place. This means that:

Γk zk, tð Þ
Ak zk, tð Þ¼W 3,k zk, tð Þ� constant, 8k� IBout :

Taking this into account and using the mass conservation for the fluid system, it holds for l� IBout :

Γl zl, tð Þ¼ Al zl, tð Þ
Ql zk, tð Þj j�Nin tð Þ� Ql zk, tð Þj jP

k � IBin

Qk zk, tð Þj j ¼
Al zl, tð Þ�Nin tð ÞP
k � IBin

Qk zk, tð Þj j : ðC11Þ

This completes the coupling conditions of the nonlinear scheme.

C.2. | Linearized 1D model

After introducing the nonlinear model, we move one step further down the vascular tree and consider
smaller vessels for which a linearized equation is sufficient. To a vessel Ωi, i � Ilin of length li, we assign a
pressure variable pi Bað Þ, a flow rate qi cm3=sð Þ and the averaged concentration variable Γi mmol=cmð Þ.
Based on assumption (A2), 1D linearized version of (C1)–(C3) is used to model flow and transport within
the breast network. Its derivation is based on the assumption Ai≈Ai,0 and can be found in Section 6.2.1 of
Reference [1]:

∂pi
∂t

þ 1eCi

∂qi
∂z

¼ 0, z� 0, lið Þ, t>0, ðC12Þ

∂qi
∂t

þ 1
Li

∂pi
∂z

þKr,i� qi
A0,i

¼ 0, z� 0, lið Þ, t>0, ðC13Þ

∂Γi

∂t
þ ∂

∂z
qi

A0,iþ eCipi
Γi

 !
¼ 0, z� 0, lið Þ, t>0: ðC14Þ

The parameters eCi, Li and kr,i represent the wall compliance, inertia and resistance parameter of vessel Ωi, they are
given by:

eCi ¼ A0,i

ϱ � c A0,ið Þ , Li ¼ ϱ

A0,i
, Kr,i ¼ 2� γþ2ð Þ�μ 2�R0,ið Þ

ϱ
:

Here, R0,i cmð Þ is the radius of vessel Ωi. It is given by R0,i ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
A0,i=π

p
. Since we assumed laminar and Poiseuille type

flow, the parameter γ is set to two according to Section 6.1 of 1. Again the viscosity parameter μ is given by (B1) to
account for non-Newtonian effects.

Similar to (C1)–(C3) one can show that the first order PDE-system (C12)–(C14) is hyperbolic and that the solution
variables can be transformed into characteristic variables w1,i, w2,i and w3,i. The first two characteristic variables are
connected to the fluid variables pi and qi, and w3,i is related to Γi:

w1,i ¼ 1
2

�
ffiffiffiffiffieCi

Li

s
piþqi

0@ 1A, w2,i ¼ 1
2

ffiffiffiffiffieCi

Li

s
piþqi

0@ 1A andw3,i ¼ Γi

A0,iþ eCipi
: ðC15Þ
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Thereby, w1,i can be compared to a wave moving into negative direction, while w2,i is moving in the oppo-
site direction. The direction of motion of w3,i depends on the sign of qi. As for the non-linear PDE-system
(C1)–(C3) this knowledge is important to impose boundary conditions in a meaningful manner.

Coupling n linear flow and transport models (C12)–(C14) at a branching point can be done in a similar way as in
the non-linear case. Replacing in (C8) Qk by qk, we obtain the mass conservation equation. The continuity of the total
pressure is replaced by the continuity of the fluid pressure [1]:

pj1 zj1 , t
� �¼ pk zk, tð Þ, k� IB ∖ j1f g:

Closing the system, the outgoing characteristic variables are extrapolated using (C15). This yields a linear
system of equations governing the fluid variables at a branching point. The concentration variables are deter-
mined similar to (C10). Replacing Qk by qk and Al by A0,l in (C10) the concentration values for the vessels in
IBout are obtained. The concentration values for the vessels in IBin are obtained by extrapolating the outgoing
characteristics.

C.3. | 0D Windkessel model

We consider a vessel Ωi with i � Iwk and assume that their parametrization is oriented such that zi = li is adjacent to the
outlets. At the outlet of a larger artery Ωi, the reflections of the pulse waves at the omitted vessels have to be incorpo-
rated to be able to simulate realistic pressure and velocity curves. For this purpose, we assign to each terminal vessel a
reflection parameter Rp,i = R1,i + R2,i, where R1,i is the resistance parameter of Ωi [16]:

R1,i ¼ ϱ� c A0,ið Þ
A0,i

:

This choice is motivated by the goal to keep the artificial reflection at the interface between the 1D and
the 0D model at a minimum. R2,i is the resistance parameter for all the vessels that are connected to Ωi but
not contained in the macrocirculation. The third parameter Ci represents the compliance of the omitted vessels
and is a measure of the ability of these vessels to store a certain blood volume. The triple R1,i,Ci,R2,ið Þ is
referred to as a “three-element Windkessel” model in [16,32]. The values for the Windkessel parameters used in our
simulations are listed in Table 1 of [28]. In order to describe the dynamics of a Windkessel model, the following ODE
has been derived using averaging techniques and an analogy from electrical science [16,28,71]:

Ci
dpc,i
dt

¼Pi li, tð Þ�pc,i
R1,i

�pc,i�pv
R2,i

, ðC16Þ

Qi li, tð Þ¼ Pi li, tð Þ�pc,i
R1,i

, Qven,i ¼
pc,i�pv
R2,i

:

Pi li, tð Þ¼ pi Ai li, tð Þð Þ is given by (C4). Here, pc,i and pv are averaged arterial and venous pressures and Qven,i

represents the flow rate from the arterial system into the venous system. Solving (C16) and using the outgoing
characteristic variable W 2,i li, tð Þ, the boundary conditions for Ai li, tð Þ and Qi li, tð Þ can be determined. Further details
can be found, for example, in [16,28,71]. It remains to model the behavior of the concentration variable at an outlet.

For Γi li, tð Þ, a concentration variable ci mmol=cm3ð Þ is introduced for the omitted arterial system and to establish a
mass balance equation for the solute particles leaving or entering the omitted arterial system:

d
dt

V i tð Þci tð Þð Þ¼Ni tð Þ�Nven tð Þ,
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where Ni mmol=sð Þ represents the number of particles leaving or entering the terminal 1D vessel per second, while
Nven mmol=sð Þ denotes the number of particles migrating into the venous system during a second. Moreover, Vi cm3ð Þ
is the fluid volume contained in the omitted arterial system. It can be computed by means of the following ODE:

dVi

dt
¼Qi li, tð Þ�Qven,i tð Þ: ðC17Þ

To determine Ni, we have to check the sign of Qi li, tð Þ:

Ni tð Þ¼
Γi li, tð ÞQi li, tð Þ

Ai li, tð Þ , if Qi li, tð Þ≥ 0,

Qi li, tð Þ � ci tð Þ, if Qi li, tð Þ<0:

8<:
Assuming that Qven,i ≥ 0, Nven tð Þ is given by:

Nven tð Þ¼ ci tð Þ�Qven,i tð Þ¼ ci tð Þ�
pc,i�pv
R2,i

:

Summarizing the above equations, the following ODE for ci results:

d
dt

V i tð Þci tð Þð Þ¼
Γi li, tð ÞQi li, tð Þ

Ai li, tð Þ � ci tð Þ�
pc,i�pv
R2,i

, if Qi li, tð Þ≥ 0,

Qi li, tð Þ � ci tð Þ� ci tð Þ�
pc,i�pv
R2,i

, if Qi li, tð Þ<0:

8>><>>: ðC18Þ

Solving (C17) and (C18) for each time point, we have for Γi li, tð Þ:

Γi li, tð Þ¼ W 3,i li, tð Þ�Ai li, tð Þ, if Qi li, tð Þ≥ 0,

ci tð Þ�Ai li, tð Þ, if Qi li, tð Þ<0:

�
ðC19Þ
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