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Association between Habitual Diet and the Postprandial
Glucose Response—An Enable Study

Anna Reik, Beate Brandl, Gunther Schauberger, Nina Wawro, Jakob Linseisen,
Thomas Skurk, Dorothee Volkert, Hans Hauner, and Christina Holzapfel*

Scope: It is inconclusive which factors influence inter-individual variations of
postprandial glucose response (PPGR). This study investigates whether the
habitual diet is associated with PPGR.
Methods and results: Data from healthy adults (young adults with 18–25
years, middle-aged adults with 40–65 years, and older adults with 75–85
years) is collected at baseline and during an oral glucose tolerance test
(OGTT) collected. Habitual diet is assessed by a food frequency questionnaire
and two 24-h food lists. Associations between habitual diet and glucose
incremental area under the curve (iAUCmin) are examined by regression
models. The intake of cereals and cereal products is negatively associated
with glucose iAUCmin (p = 0.002) in the total cohort (N = 459, 50% women,
55 ± 21 years, BMI 26 ± 5 kg m−2). Up to 9% of the variance in the glycemic
response is explained by the respective dietary parameters identified in the
models of the specific age groups.
Conclusion: There are age-specific diet-related effects on PPGR. The usual
intake of cereals and cereal products seems to play a greater role in PPGR in
more than one age group. Further research is needed, to establish how diet
can be optimized based on age and PPGR.
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1. Introduction

People show inter-individual postpran-
dial changes in metabolite circulation in
the blood to standardized meals,[1–3] pos-
sibly providing crucial information on
the metabolic resilience.[4] Changes in
metabolite circulation are often referred
to as postprandial response, whereas
metabolic resilience describes how the
postprandial response to an external
stimulus is.[5] Research on which factors
determine the variability of postprandial
responses indicates that health status,
phenotype, genotype, and lifestyle might
be major contributors.[1–4]

Diet may affect postprandial response
and metabolic resilience in two ways.
Firstly, the high availability of energy
shortly after meal intake puts the body
into an anabolic state, in which the
absorbed energy is stored.[6,7] Specific
stress stimuli can in turn mobilize en-
ergy reserves, thereby changing substrate
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Table 1. Baseline characteristics of participants.

Variable Total N = 459a) Young adults n = 94a) Middle-aged adults n = 205a) Older adults n = 160a) pb)

Age [years] 55 (±21) 22 (±2) 52 (±7) 78 (±3) <0.001

Women 230/459 (50%) 48/94 (51%) 103/205 (50%) 79/160 (49%)

Weight [kg] 76 (±16) 68 (±12) 82 (±16) 74 (±13) <0.001

BMI [kg m−2] 26.0 (±4.5) 22.1 (±2.5) 27.5 (±4.5) 26.5 (±4.0) <0.001

Fat mass [%] 32 (±10) 21 (±8) 32 (±8) 37 (±8) <0.001

WC [cm] 91 (±15) 78 (±8) 94 (±14) 96 (±14) <0.001

HC [cm] 101 (±9) 96 (±6) 103 (±9) 103 (±9) <0.001

Systolic BP [mmHg] 130 (±19) 114 (±12) 127 (±16) 143 (±18) <0.001

Diastolic BP [mmHg] 83 (±10) 76 (±7) 85 (±9) 84 (±9) <0.001

Glucose [mg dL−1] 94 (±10) 91 (±8) 94 (±10) 95 (±11) 0.060

Total cholesterol [mg dL−1] 213 (±43) 179 (±32) 223 (±39) 221 (±43) <0.001

TAG [mg dL−1] 111 (±55) 94 (±40) 121 (±65) 107 (±43) 0.001

HDL-C [mg dL−1] 61 (±17) 61 (±16) 59 (±16) 64 (±17) 0.006

LDL-C [mg dL−1] 132 (±39) 102 (±27) 140 (±37) 138 (±38) <0.001

BMI, body mass index; BP, blood pressure; HC, hip circumference; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; p, p-value; TAG,
triacylglycerol; WC, waist circumference. a)Data are shown as mean (±SD) or n/N (%); b)Kruskal–Wallis rank sum test; Pearson’s Chi-squared test.

utilization.[6] However, chronic stress can trigger adaptive
mechanisms of postprandial response that negatively affect
metabolic resilience in the long term, contributing to disease
predisposition.[7,8] Secondly, food components play a role in vari-
ous metabolic processes to maintain homeostasis. Therefore, in-
adequate intake of food compounds could disrupt metabolic pro-
cesses, negatively impacting metabolic resilience.[7] As shown
by Berry et al.,[1] diet-related modifiable factors, such as meal
composition or meal context, seem to determine postprandial re-
sponses to a meal challenge to a larger extent than previously
assumed. Further, it is well known that people following an unfa-
vorable habitual diet show adverse metabolic characteristics and
disease prevalence to a higher degree, in comparison to people
following a healthier dietary pattern.[9] Therefore, it is of inter-
est to identify diet-related factors that may be associated with the
postprandial response, possibly altering the metabolic resilience
in the long term.
It has been established that the macronutrient composition

of a meal has a direct effect on the postprandial response after
its consumption.[10a,b,11] However, knowledge about the effect of
long-term diet composition and dietary habits on postprandial
response and metabolic resilience is limited. Most studies focus
onmeasures such as glucose tolerance or insulin sensitivity, both
based on the 2-h glucose level after an oral glucose tolerance test
(OGTT), serving as a proxy for the risk of type 2 diabetes melli-
tus (T2DM), rather than the postprandial glycemic response. Fi-
amoncini et al.[5] observed that less healthy dietary patterns were
associated with dysfunctions in postprandial glycemic response
after a mixed meal challenge, defined as a lower glucose clear-
ance. Furthermore, studies have shown that a diet characterized
by high consumption of red and processed meat, alcoholic bever-
ages, refined grains, sugar-sweetened beverages, as well as a low
intake of fruits is positively associated with a higher risk for dia-
betes, based on the glucose tolerance after an OGTT.[12,13] These
findings indicate that there is an interplay between diet, the post-

prandial response, and health. However, there is limited knowl-
edge on whether dietary patterns have long-term effects on the
postprandial response and whether there are age-specific differ-
ences in the postprandial response.
Therefore, we performed an OGTT across three different age

groups. Clinical and metabolic parameters were quantified, and
the long-term habitual diet was estimated, to investigate the asso-
ciation between various nutritional parameters and postprandial
glycemic response as incremental glucose area under the curve
(iAUCmin) after a glucose load across different age groups. We as-
sume possible associations of generation-specific dietary habits
on the postprandial glucose response (PPGR).

2. Results

2.1. Characteristics of the Study Population

Baseline parameters significantly differ between age groups
(p < 0.010), except for fasting glucose (Table 1).
The mean postprandial blood glucose trajectory of young

adults during the OGTT differs from the other two age groups
(Figure 1A). The peak of mean postprandial glucose concentra-
tion for middle-aged and older adults is reached 60 min after
glucose drink consumption, 30 min later than in young adults.
In all age groups, glucose reaches the lowest mean postprandial
concentration 180 min after glucose drink consumption. In
addition to age-specific differences, inter-individual variation
within each age group (Figure 1B) can be observed, especially for
middle-aged and older adults. The glucose iAUCmin significantly
differs between age groups (7490± 3166mg*min dL−1 for young
adults, 10197 ± 4489 mg*min dL−1 for middle-aged adults, and
10910 ± 4326 mg*min dL−1 for older adults; p < 0.001; data not
shown).
Total energy intake, as well as the intake of dairy products,

sugar and confectionery, and alcoholic beverages, does not
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Figure 1. A) Mean postprandial glucose trajectories for each age group during the OGTT, B) with plotted dots for mean blood glucose levels at each
time point. Individually fitted blood glucose trajectories (grey) with the mean blood glucose concentrations (blue) after OGTT-drink consumption.

significantly differ between age groups (Table 2). Older adults
have the highest AHEI (51 ± 10) and show the highest intake
of fruits and nuts (237 ± 100 g d−1) and fish and shellfish
(27 ± 15 g d−1), as well as the lowest consumption of meat and
meat products (101 ± 38 g d−1) (Table 2). Young and middle-aged
adults have a similar AHEI value (46 ± 10 and 46 ± 9, respec-
tively) but show differences in the average intake of food groups,
such as vegetables (259 ± 82 and 194 ± 56 g d−1, respectively)
or cereals and cereal products (218 ± 68 and 177 ± 54 g d−1,
respectively) (Table 2).

2.2. Associations of Diet-Related Parameters with the Glucose
iAUCmin

For the total cohort, univariate linear regression models show a
statistically significant negative association of the intake of ce-
reals and cereal products with glucose iAUCmin (Table 3), which
remains statistically significant after Bonferroni correction. The
intake of eggs and egg products, meat and meat products, and
alcoholic beverages show positive associations with glucose
iAUCmin (Table 3). Multivariate prediction models based on the
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Table 2. Dietary characteristics of participants at baseline.

Variable Total N = 459a) Young adults n = 94a) Middle-aged adults n = 205a) Older adults n = 160a) pb)

Total energy intake [kcal d−1] 1934 (±388) 1941 (±387) 1906 (±365) 1972 (±421) 0.400

Protein intake [E%] 16.05 (±1.62) 16.22 (±1.54) 16.40 (±1.57) 15.40 (±1.56) <0.001

Fat intake [E%] 40.2 (±3.5) 39.0 (±3.7) 40.8 (±3.2) 40.1 (±3.5) <0.001

Carbohydrate intake [E%] 43.1 (±4.2) 44.4 (±4.5) 42.0 (±4.0) 43.9 (±4.0) <0.001

Fiber intake [g d−1] 20.8 (±6.2) 22.7 (±7.5) 19.0 (±5.0) 22.1 (±6.2) <0.001

Potatoes, other tubers [g d−1] 57 (±22) 41 (±15) 51 (±13) 77 (±24) <0.001

Vegetables [g d−1] 204 (±68) 259 (±82) 194 (±56) 181 (±53) <0.001

Pulses, legumes [g d−1] 6.45 (±4.86) 8.28 (±8.43) 5.89 (±3.29) 6.04 (±2.75) 0.014

Fruits, nuts [g d−1] 190 (±97) 163 (±92) 171 (±85) 237 (±100) <0.001

Dairy products [g d−1] 236 (±126) 249 (±125) 234 (±129) 229 (±121) 0.400

Cereals, cereal products [g d−1] 182 (±59) 218 (±68) 177 (±54) 165 (±49) <0.001

Meat, meat products [g d−1] 110 (±43) 104 (±40) 118 (±45) 101 (±38) <0.001

Fish, shellfish [g d−1] 22 (±14) 12 (±8) 23 (±14) 27 (±15) <0.001

Eggs, egg products [g d−1] 19 (±13) 15 (±12) 19 (±14) 21 (±13) <0.001

Fats [g d−1] 24 (±9) 18 (±7) 25 (±8) 29 (±8) <0.001

Sugar, confectionery [g d−1] 35 (±14) 34 (±12) 35 (±14) 36 (±15) 0.500

Cake [g d−1] 51 (±23) 31 (±8) 48 (±18) 69 (±23) <0.001

Non-alcoholic beverages [mL d−1] 1638 (±264) 1625 (±218) 1671 (±252) 1597 (±302) 0.006

Alcoholic beverages [mL d−1] 148 (±180) 138 (±164) 157 (±195) 141 (±166) 0.600

Condiments, sauces [g d−1] 25 (±12) 39 (±15) 23 (±8) 17 (±4) <0.001

Soups, bouillon [g d−1] 32 (±30) 22 (±19) 29 (±22) 44 (±41) <0.001

Miscellaneous [g d−1] 15 (±18) 34 (±26) 13 (±9) 6 (±8) <0.001

AHEI 47 (±10) 46 (±10) 46 (±9) 51 (±10) <0.001

AHEI, alternate healthy eating index; p, p-value. a)Data is shown as mean (±SD); b)Kruskal-Wallis rank sum test.

stepwise regression method revealed that the intake of vegeta-
bles, cereals and cereal products, meat and meat products, fish
and shellfish, eggs and egg products, and condiments and sauces
(Figure 2A), as well as the carbohydrate and fat intake (Figure 2B)
improved the model for the total cohort according to the AIC
(see values in Tables S2, S3, Supporting Information). Increased
consumption of cereals and cereal products, significantly pre-
dicts a reduced glucose iAUCmin, whereas a higher consumption
of meat and meat products predicts a higher glucose iAUCmin
(Figure 2A). A higher carbohydrate intake significantly predicts
a decrease in glucose iAUCmin (Figure 2B).
Regarding the age groups, after Bonferroni correction, uni-

variate linear regression models revealed that despite the intake
of pulses and legumes as well as meat and meat products
being positively associated with glucose iAUCmin in middle-aged
adults, no other diet-related parameters showed to be associated
with the glucose iAUCmin in the age groups (Table 3). Multivari-
ate prediction models based on the stepwise regression method
revealed a different set of predictors for glucose iAUCmin in each
age group (Figure 2). Increased consumption of cereals and
cereal products, predicts a lower glucose iAUCmin in young and
older adults (Figure 2A). A higher intake of vegetables, meat
and meat products, and eggs and egg products, predict a higher
glucose iAUCmin in middle-aged adults (Figure 2A). Overall, no
dietary parameter was included as a predictor for the glucose
iAUCmin through all three age groups.

The proportions of variance of the glucose iAUCmin explained
by dietary parameters are shown in Table S4, Supporting Infor-
mation. Food groups or nutrients explained up to 9% of the ob-
served variation in glucose iAUCmin, whereas age-specific differ-
ences are apparent.
Cross-validation demonstrated that the addition of the food

groups selected by stepwise regression improves themultivariate
prediction models since all values of the cross-validated R2 and
the cross-validated RMSE improve compared to the basic model
which only contains the mandatory variables. The addition of the
macronutrients hardly improves the respective measures (Table
S4, Supporting Information).

2.3. Cluster Analysis

Cluster analysis according to postprandial blood glucose trajec-
tories revealed three clusters (Figure 3). Cluster A is the group
with the largest share of participants (47.9%) and shows the
lowest rise in mean postprandial blood glucose. The glucose
peak of cluster A is reached after 30 min, and the glucose curve
returns to its mean baseline value around 120 min. Cluster B
is the second largest cluster with 40.9% of the participants and
shows a higher rise in mean postprandial blood glucose. The
mean glucose level reaches its peak around 60 min and returns
to baseline values around 150 min. Cluster C represents 11.2%
of the participants. The mean postprandial blood glucose of this
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Figure 2. Forest plot. A) Food groups B) and nutrients as predictors for glycemic response (glucose iAUCmin) during an OGTT based on the stepwise
multivariate linear regression model. Different colors refer to age groups and shape refers to significance level (n.s., not significant; *, p < 0.005).
Predictors were scaled, under-, or overreporters were limited from analysis by winsorization.

cluster rises the highest, reaches its peak around 60 min, and
decreases to the baseline value around 180 min (Figure 3). The
mean glucose iAUCmin increases continuously from cluster A
to C (6615 ± 2167, 11632 ± 2474, 17726 ± 3163 mg*min dL−1,
respectively; data not shown).
Table 4 summarizes the baseline characteristics of each clus-

ter. Sex is equally distributed in clusters A and B, whereas male
participants are overrepresented (76%) in cluster C. Almost all
baseline parameters significantly differ between clusters, with ex-
ception of diastolic blood pressure, and total and LDL-cholesterol.
Overall, cluster A is characterized by the lowestmean age (51± 22
years), BMI (25.0 ± 4.1 kg m−2), fat mass (30 ± 11%), and
waist circumferences (87 ± 14 cm). Further, health-related pa-
rameters such as blood pressure (127/82 ± 20/10 mmHg), fast-
ing blood glucose (90 ± 8 mg dL−1), or triacylglycerol levels
(102± 48mg dL−1) are significantly lower in cluster A. The AHEI
does not significantly differ between clusters. There are char-
acteristic differences in the consumption of nutrients and food
groups (Table 4).
Table 5 displays the results of the multinomial logistic re-

gression models. Overall, a higher intake of carbohydrates,
dairy products, cereals and cereal products, and condiments and
sauces lead to a higher odds ratio for assignment to cluster A
or B in comparison to cluster C. With a higher intake of pulses
and legumes, eggs and egg products, and alcoholic beverages, the

odds ratio for assignment to cluster C is higher in comparison to
cluster A or B.
Figure 4 visualizes the stepwise regression model, which was

applied to evaluate which dietary predictors best explain the vari-
ability of the cluster assignment (Table S5, Supporting Infor-
mation). Overall, food groups such as cereals and cereal prod-
ucts, and non-alcoholic beverages lead to an improvement of the
model according to the AIC (Figure 4A). Higher consumption of
cereals and cereal products, for example, indicates a higher like-
lihood of assignment to cluster A (OR 3.79, 95% CI 1.90–7.53,
p< 0.001) andB (OR2.33, 95%CI 1.19–4.56, p= 0.014) compared
to cluster C. For the nutrient intake, only carbohydrate intake en-
tered themodel as a predictor for cluster assignment (Figure 4B).
A higher intake of carbohydrates, predicts that participants are
less likely to be assigned to cluster C in comparison to clusters A
or B (OR 1.60, 95% CI 1.07–2.41, p = 0.023 and OR 1.35, 95% CI
0.91–2.01, p = 0.137, respectively).

3. Discussion

Our findings demonstrate that the investigated anthropometric,
blood, and vital parameters change with age. There is a shift in
body composition and other health-related parameters, such as
blood pressure or lipid profile. Mean fasting blood glucose levels
were not significantly different between age groups. This might
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Figure 3. Individually fitted blood glucose trajectories with color-coded cluster assignment (cluster A= red; cluster B= blue B; cluster C= green). Means
of blood glucose trajectories of each cluster are represented by the bold line of the corresponding color.

be due to adaptation mechanisms of insulin secretion to main-
tain a normal glucose level in the fasting state.
In agreement with previous studies,[1,3] we observed high

inter-individual variability of glycemic response to an OGTT,
even within each age group. Glucose trajectories of people with
impaired metabolic resilience, do not return to baseline values
within 2 h.[8] In our study, we observed that baseline glucose was
similar in each age group, but the postprandial glucose trajecto-
ries of middle-aged and older adults were biphasic and reached
their peak 30min later compared with young adults. These obser-
vations suggest that age-depended differences in PPGR during
an OGTT are attributable to age-dependent changes in metabolic
resilience.[6] Differences in the PPGR despite similar fasting glu-
cose levels were also observed elsewhere.[5,11] Overall, carbohy-
drate metabolism deteriorates with age,[14] which is further con-
firmed by the here observed higher glucose iAUCmin to an OGTT.
The distribution of the intake of macronutrients or fiber, the

intake of almost all main food groups, and the AHEI significantly
differ between each age group, illustrating generation-specific
food preferences. Young adults follow an overall less healthy di-
etary pattern in comparison to older adults, supporting previous
findings.[15] As stated elsewhere,[16] we observed that older adults
have the highest AHEI score, describing a greater adherence

to a healthier diet. Some publications on German cohorts have
equally demonstrated, that older adults are more likely to follow
a healthier diet, characterized by lower consumption of meat or
soft drinks and the highest intake of fish, vegetables, fruits, or
whole grains in comparison with younger participants.[17,12]

Results based on nutrient intake indicate that the usual carbo-
hydrate intake might be a significant predictor of a decrease in
the glycemic response in the total cohort (Table 2). Since carbo-
hydrates are absorbed as glucose in the bloodstream, leading to
the release of insulin from the pancreatic 𝛽-cells and triggering
several pathways of glucose metabolism,[7] it is assumed that
if this process is frequently activated by stress stimuli, more
adaptive mechanisms are likely to occur, possibly cumulatively
affecting metabolic resilience in the long term.[7,8] However,
Zeevi et al.[3] described that the PPGR to different meals varies,
although the total amount of consumed carbohydrates was
similar. This was confirmed by another publication, showing
that carbohydrate intake explains less than 25% of postprandial
variability.[18] It has to be mentioned that these results are not
fully comparable with our findings, since these studies evalu-
ated what effect a specific amount of carbohydrate has on the
postprandial response, instead of looking at the long-term effects
of the habitual diet as a whole.
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Table 4. Baseline characteristics of the three clusters.

Variable Cluster A n = 210a) Cluster B n = 179a) Cluster C n = 49a) pb)

Age [years] 51 (±22) 58 (±19) 65 (±15) <0.001

Women 118/210 (±56%) 90/179 (±50%) 12/49 (±24%)

Anthropometry Weight [kg] 73 (±14) 78 (±16) 85 (±16) <0.001

BMI [kg m−2] 25.0 (±4.1) 26.5 (±4.5) 28.4 (±4.3) <0.001

Fat mass [%] 30 (±11) 32 (±9) 33 (±8) 0.023

WC [cm] 87 (±14) 94 (±14) 102 (±14) <0.001

HC [cm] 100 (±9) 102 (±9) 103 (±9) 0.002

Health status Systolic BP [mmHg] 127 (±20) 133 (±20) 136 (±15) <0.001

Diastolic BP [mmHg] 82 (±10) 84 (±10) 84 (±9) 0.056

Glucose [mg dL−1] 90 (±8) 95 (±9) 105 (±14) <0.001

Total cholesterol [mg dL−1] 215 (±44) 214 (±41) 208 (±43) 0.600

TAG [mg dL−1] 102 (±48) 113 (±53) 135 (±68) <0.001

HDL-C [mg dL−1] 64 (±17) 60 (±16) 56 (±17) 0.002

LDL-C [mg dL−1] 131 (±40) 134 (±38) 131 (±38) 0.600

Diet Total energy intake [kcal d−1] 1913 (±388) 1940 (±399) 2048 (±343) 0.016

Protein intake [E%] 15.97 (±1.57) 16.14 (±1.62) 15.84 (±1.60) 0.300

Fat intake [E%] 39.9 (±3.2) 40.3 (±3.7) 40.7 (±3.9) 0.300

Carbohydrate intake [E%] 43.8 (±3.9) 42.9 (±4.5) 41.5 (±4.5) <0.001

Fiber intake [g d−1] 21.3 (±6.2) 20.7 (±6.6) 20.0 (±5.1) 0.300

Potatoes, other tubers [g d−1] 55 (±23) 58 (±21) 63 (±24) 0.011

Vegetables [g d−1] 210 (±63) 202 (±72) 179 (±71) <0.001

Pulses, legumes [g d−1] 6.66 (±5.39) 6.39 (±4.76) 6.11 (±3.33) 0.400

Fruits, nuts [g d−1] 186 (±93) 195 (±102) 202 (±99) 0.600

Dairy products [g d−1] 241 (±134) 237 (±116) 202 (±129) 0.046

Cereals, cereal products [g d−1] 189 (±62) 177 (±57) 169 (±43) 0.120

Meat, meat products [g d−1] 102 (±39) 113 (±42) 132 (±47) <0.001

Fish, shellfish [g d−1] 20 (±13) 22 (±15) 25 (±14) 0.039

Eggs, egg products [g d−1] 17 (±11) 20 (±14) 25 (±18) <0.001

Fats [g d−] 23 (±8) 26 (±10) 28 (±9) 0.007

Sugar, confectionery [g d−1] 35 (±14) 35 (±14) 36 (±16) 0.900

Cake [g d−1] 48 (±23) 52 (±22) 60 (±26) 0.004

Non-alcoholic beverages [mL d−1] 1663 (±254) 1624 (±273) 1581 (±252) 0.048

Alcoholic beverages [mL d−1] 121 (±135) 150 (±188) 252 (±263) 0.030

Condiments, sauces [g d−1] 26 (±13) 24 (±11) 21 (±6) 0.016

Soups, bouillon [g d−1] 31 (±31) 33 (±29) 39 (±35) 0.042

Miscellaneous [g d−1] 18 (±19) 13 (±17) 12 (±11) <0.001

AHEI 48 (±10) 47 (±10) 47 (±11) 0.600

AHEI, alternate healthy eating index; BMI, body mass index; BP, blood pressure; HC, hip circumference; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density
lipoprotein cholesterol; p, p-value; TAG, triacylglycerol; WC, waist circumference. a)Data are shown as mean (SD) or n/N(%); b)Kruskal–Wallis rank sum test; Pearson’s
Chi-squared test.

We observed that the AHEI is not associated with iAUCmin.
Similarly, it has been reported that the habitual diet, measured by
a food frequency questionnaire, has only a small effect (<2%) on
an individual’s PPGR (iAUC0–2 h).[1] It has to bementioned, that
there is no universally valid definition for the term “habitual diet”
and the dietary data of this publication is not fully comparable
with our dietary dataset.
Results based on food groups indicate that cereals and ce-

real products have a decreasing effect on the glycemic re-
sponse for the total cohort and two age groups. As reviewed by

Desmarchelier et al.,[19] dietary fiber such as 𝛽-glucan found in
oats can decrease postprandial lipemia. Several mechanisms, in-
cluding slowed gastric emptying and modified insulin secretion,
are discussed to be involved,[19] whereby one can assume that
such mechanisms might also influence glucose metabolism. In
this work, only themain food group “cereals and cereal products”
was evaluated. Therefore, no assumptions can be made regard-
ing which subcategory of cereals might be possibly responsible
for the observed effects, especially since dietary fiber alone did
not show any associations with PPGR. All other investigated food
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Table 5. Associations between diet-related parameters and cluster assign-
ment.

Variableb) Cluster A→ Ca) Cluster B→ Ca)

OR 95% CI p OR 95% CI p

Total energy intake 0.89 −0.54; 0.3 0.576 0.92 −0.49; 0.33 0.703

Carbohydrate intake 1.60 0.07; 0.88 0.023 1.35 −0.1; 0.7 0.137

Fat intake 0.83 −0.57; 0.19 0.321 0.89 −0.49; 0.25 0.530

Protein intake 1.01 −0.4; 0.42 0.958 1.17 −0.25; 0.56 0.442

Fiber intake 1.18 −0.43; 0.76 0.581 1.10 −0.49; 0.68 0.745

Potatoes, other tubers 1.10 −0.32; 0.52 0.644 1.04 −0.37; 0.45 0.837

Vegetables 0.78 −0.8; 0.29 0.366 1.00 −0.54; 0.54 0.988

Pulses, legumes 0.72 −0.79; 0.15 0.176 0.79 −0.71; 0.23 0.320

Fruits, nuts 0.80 −0.67; 0.21 0.314 0.88 −0.56; 0.31 0.571

Dairy products 1.40 −0.14; 0.82 0.169 1.45 −0.1; 0.85 0.127

Cereals, cereal products 3.22 0.51; 1.83 0.001 2.07 0.08; 1.38 0.028

Meat, meat products 0.76 −0.83; 0.28 0.327 1.03 −0.51; 0.58 0.901

Fish, shellfish 1.12 −0.29; 0.51 0.577 1.01 −0.39; 0.4 0.975

Eggs, egg products 0.74 −0.63; 0.02 0.067 0.85 −0.46; 0.14 0.291

Fats 0.97 −0.48; 0.41 0.889 1.09 −0.35; 0.52 0.699

Sugar, confectionery 1.05 −0.31; 0.41 0.802 0.97 −0.39; 0.33 0.865

Cake 0.87 −0.58; 0.3 0.535 0.83 −0.62; 0.24 0.396

Non-alcoholic beverages 1.24 −0.2; 0.63 0.310 1.00 −0.41; 0.41 0.994

Alcoholic beverages 0.71 −0.7; 0.01 0.057 0.80 −0.55; 0.11 0.193

Condiments, sauces 1.68 −0.22; 1.26 0.169 1.56 −0.29; 1.19 0.236

Soups, bouillon 0.90 −0.47; 0.26 0.575 0.91 −0.44; 0.26 0.616

Miscellaneous 0.81 −0.76; 0.35 0.459 0.59 −1.12; 0.07 0.086

AHEI 0.85 −0.58; 0.25 0.430 0.78 −0.66; 0.17 0.242

AHEI, alternate healthy eating index; CI, confidence interval; OR, odds ratio; p, p-
value. a)Multinominal logistic regression (N = 412) adjusted for total energy intake,
BMI, sex, and age; b)Variables are scaled and winsorized.

groups showed either no association or rather sporadic associa-
tions through age groups, with no discernible pattern. Although
a previous work does suggest that meal composition plays a sig-
nificant role in the glycemic response,[18] we cannot conclude that
the here observed associations between the intake of food groups
with the glucose iAUCmin are due to the age-specific differences
in dietary preferences or whether other determinants influenced
these results.
There is no single diet-related parameter that predicts glucose

iAUCmin in all three age groups, rather each age group has shown
a specific set of predictors. Finally, it should be mentioned that
food groups are not consumed individually and do not reflect an
individual’s food choices.[12] Consequently, a breakdown of the
main food groups into their subcategories would give more in-
sights into which food components have higher health implica-
tions and are possibly associated with changes in the glycemic
response.
We were able to identify three clusters of postprandial blood

glucose excursions, that are characterized by distinct metabolic
phenotypes. Cluster A shows the lowest metabolic risk for
chronic diseases and the healthiest dietary pattern. Riedl et al.[13]

described that unfavorable food choices (low intake of fruits, and
a high intake of meat and sugar-sweetened beverages) are signif-

icantly associated with T2DM, which was assessed through an
OGTT. This finding implies, that the habitual diet might have
a long-term effect on postprandial glucose metabolism, increas-
ing the risk for later metabolic diseases, such as T2DM. Morris
et al.[20] clustered their study population based onmetabolic traits
as well as characteristics of their PPGR to anOGTT andwere able
to identify four different metabotypes, with one cluster being at
“metabolic risk” and having the most differential response to an
OGTT. Another publication described that ametabotype in which
the majority of participants showed a healthier dietary pattern,
had a reduced glycemic response.[5]

Overall, univariate and multivariate regression confirmed that
carbohydrate intake and the consumption of cereals and cereal
products show an association with cluster assignment, and can
significantly predict cluster assignment based on the shape of
postprandial glycemic trajectories.
We acknowledge that the sample size for each age group is

limited, possibly affecting statistical power due to stratification.
However, since age group stratification was already considered
in the recruitment of participants, we were able to evaluate age-
specific differences in the association between diet and glucose
iAUCmin.
In addition, it should be noted that with the applied diet assess-

ment tools, recall bias or misreporting cannot be ruled out. How-
ever, we had substantial dietary data available, which enabled us
to investigate not only the effect of specific food items on post-
prandial metabolic response but also the effect of the habitual
diet.
We acknowledge that the postprandial response to an OGTT

does not correspond to “real-life” postprandial metabolism, since
it only reflects the ingestion of a sugary drink.[21] Further, there
is no available data regarding food consumption the day prior
to the OGTT in this work. Without this information, we can-
not verify whether participants adhered to standardization spec-
ifications before the OGTT and how the food consumption of
the previous day might influence the postprandial glycemic re-
sponse. Nevertheless, the OGTT provides valuable insights into
glucose metabolism, since it was carried out based on a stan-
dardized protocol by trained staff, enabling us to precisely con-
trol the glycemic stimulus andmeasure different rates of glucose
absorption.
Due to the high complexity of the available data on ha-

bitual diet, we limited our primary outcome to the glucose
iAUCmin. However, several metabolic pathways are synergisti-
cally activated through a homeostasis-changing stimulus. There-
fore, metabolomics data could better help to unravel the complex-
ity of metabolic resilience.
The AUC as an outcome gives insights into the overall size of

the glycemic response.[4] We should keep in mind, that the AUC
is estimated based on the integrated function between specific
time points and is, therefore, only a simplified proxy to evaluate
blood glucose variations in a time frame. However, we were able
to collect blood samples covering 4 h of the postprandial state,
which we consider well-suited to characterize the glycemic re-
sponse to an OGTT.
Finally, due to the cross-sectional design of this study, we can-

not make assumptions about causal effects of diet on postpran-
dial glycemic response. In this context, it is conceivable that peo-
ple with a healthier lifestyle show better metabolic resilience
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Figure 4. Forest plot. A) Food groups B) and nutrients as predictors for cluster assignment based on the stepwise multivariate linear model. Odds ratio
for assignment to cluster A in comparison to cluster C (green) and odds ratio for assignment to cluster B in comparison to cluster C (orange). Predictors
were scaled, under-, or overreporters were limited from analysis by winsorization.

to metabolic perturbations. In contrast, it is also possible that
people with a higher risk for chronic disease follow a health-
ier lifestyle, to reverse unfavorable metabolic responses or slow
down their long-term consequences. Therefore, both longitudi-
nal and intervention studies considering habitual diet as a pre-
dicting factor for PPGR in different life stages are needed.
This study provides insights into diet-related metabolic con-

sequences of an OGTT in defined age groups. We were able to
demonstrate that diet-related factors such as the usual intake
of cereals and cereal products are associated with postprandial
glycemic response. Moreover, these observations are confirmed
if the cohort is clustered by the shape of their postprandial glu-
cose trajectories. Intervention studies including deep phenotyp-
ing of participants are needed to better understand interactions
involved in postprandial metabolism and to elucidate how diet
can influence metabolic resilience. Such data might be of impor-
tance for the development of personalized prevention strategies
for people at risk. The vision is, that diet can be optimized based
on age and the postprandial phenotype, to counteract dysfunc-
tions in the postprandial metabolism.

4. Experimental Section
Study Design and Setting: A study cohort with cross-sectional data of

defined age groups was established within the enable cluster, an interdis-
ciplinary consortium of nutrition research. Data collection of the enable
cohort took place between 2016 and 2018 in Freising and Nuremberg,
Germany. Enrolled participants attended two face-to-face visits. Clinical
examinations (e.g., anthropometry, blood samples, and nutritional behav-

ior) were assessed in visit 1. During visit 2, an OGTT was performed and
questionnaires from various disciplines were completed. Further details
on the study design were described elsewhere.[22]

The study protocol had been approved by the local Ethics Review Com-
mittee of the School of Medicine, Technical University of Munich (ap-
proval no. 452/15) and of the Friedrich-Alexander-University Erlangen-
Nuremberg (approval no. 291/15B). The trial had been registered in the
German Clinical Trials Register (DRKS00009797). All participants provided
written informed consent.

Study Population and Eligibility Criteria: Healthy adults of Caucasian
ancestry with a BMI between 18.5 and 35.0 kg m−2 of different age
groups were recruited: young adults aged 18–25 years (n = 94), middle-
aged adults (40–65 years) (n = 205), and older adults aged 75–85 years
(n = 160).

Exclusion criteria included severe health conditions (such as chronic
infections, endocrine diseases such as T2DM, untreated hypertension,
history of myocardial infarction or stroke, heart failure, cancer, autoim-
mune diseases, stomach ulcer, psychological or neurological disease, or
severe lung, liver, and kidney diseases), blood transfusion within the past
3 months, immobility, active smokers, weight loss >5% in the previous 3
months and participation in intervention studies.

Oral Glucose Tolerance Test: After a 12-h overnight fast, the OGTT was
carried out. The OGTT-drink was prepared with 82.5 g glucose monohy-
drate (≥99.5% 𝛼-d (+)-glucose monohydrate Ph. Eur., Carl Roth GmbH +
Co. KG, Germany), providing an equivalent to 75 g glucose, and filled up
to 300 mL with boiled tap water. Blood was drawn at baseline and 30, 60,
90, 120, 180, and 240 min after consuming the OGTT drink. For the mea-
surement of plasma glucose, a plasma-calibrated rapid tester (HemoCue
Glucose 201+ System, HemoCue AB, Sweden) was used.

Dietary Assessment: Habitual diet was recorded by a web-based food
frequency questionnaire (FFQ)[23] and two repeated 24-h food lists,[24]

applied during visit 2. To account for seasonal changes in food intake,
the second 24-h food list was repeated 3 months later. The 24-h food lists

Mol. Nutr. Food Res. 2022, 66, 2200110 2200110 (10 of 12) © 2022 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.mnf-journal.com


www.advancedsciencenews.com www.mnf-journal.com

are similar to 24-h recalls but are intended for repeated applications to
assess the probable consumption of food groups instead of the portion
size.[24] Based on these data, the usual food intake was derived by a
two-part statistical model via mixed models as described elsewhere.[25]

For nutrient intake calculation, food items were further linked to the
German food composition table (Bundeslebensmittelschlüssel, version
3.02). Table S1, Supporting Information, gives a detailed overview of all
main food groups and their corresponding subcategories. Data were used
to estimate the modified alternate healthy eating index (AHEI).[26] The
AHEI score can reach a maximum of 100 points, meaning that one of the
10 available food components is assigned to a value ranging from 0 to
10; data on trans fatty acids were not available. The higher the score, the
healthier the dietary pattern is considered.

Assessment of Clinical Parameters: Anthropometric measurements
were conducted in underwear, without shoes, and with an empty bladder.
Body composition was assessed by bioelectrical impedance analysis (Seca
mBCA 515; Seca GmbH + Co KG, Germany). Height was assessed using
a stadiometer. Waist and hip circumferences were measured in a standing
position, with a non-stretch measuring tape.

Systolic and diastolic blood pressure were assessed using the Om-
ron M8 comfort (OMRON, Germany) blood pressure monitor with a cuff
around the upper arm.

Blood was drawn from all participants in the fasted state by venipunc-
ture. Collected blood was stored at room temperature until sent to an ex-
ternal lab (SYNLAB Medizinisches Versorgungszentrum Labor München
Zentrum GbR, Munich, Germany) for the analysis of routine parameters.

Statistical Analysis: Statistical analysis was performed using the RStu-
dio programming environment version 1.3.959 that uses R version 4.0.0 (R
Core Team, 2020, http://www.r-project.org). P-values≤0.05 were regarded
as statistically significant.

The iAUCmin was calculated using the trapezoidal rule, taking the lowest
glucose concentration as a baseline value into account.

To evaluate the association of habitual diet with glucose iAUCmin, lin-
ear regression models were fitted. Models were adjusted for total energy
intake, BMI, sex, and age. After Bonferroni correction for the total number
of individual dietary parameters, a p-value ≤0.002 was considered statisti-
cally significant.

To get a simplified and interpretable prediction model, a stepwise re-
gression method with both forward and backward selection was applied
to estimate a multivariate regression model. Total energy intake, BMI, sex,
and age were chosen as mandatory predictors necessary to adjust for their
respective effects. Macronutrient and fiber intake, as well as the intake of
the main food groups, were chosen as facultative predictors which were
only included in the model if their inclusion leads to an improved model.
Potential models were compared using the Akaike information criteria
(AIC).[27] The predictive power of the multivariate models was evaluated
via 10-fold cross-validation, comparing the selected models to the basic
models only containing the mandatory predictors. Cross-validated R2 and
cross-validated root mean squared error (RMSE) were used as predictive
performance measures.

All predictor variables were scaled before running the regression mod-
els so that all parameter estimates referred to the average change of the
response variable (glucose iAUCmin) if the corresponding variable was
increased by one standard deviation. Furthermore, under- and overre-
porters were winsorized with a percentile limit set at 0.01.

Cluster analysis was performed to identify homogenous subgroups,
based on their postprandial glucose trajectories. Longitudinal k-means
clustering was used as proposed by Genolini et al.,[28] using the classifica-
tion criteria by Calinski andHarabasz.[29] Multinominal logistic regression
was performed to assess the association between diet-related factors and
the glucose iAUCmin to an OGTT. Finally, the stepwise regression method
was applied to receive multivariate models.
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