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Multivariate ordinal random effects models including
subject and group specific response style effects
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Abstract: Common random effects models for repeated measurements account for the heterogeneity
in the population by including subject-specific intercepts or variable effects. They do not account for
the heterogeneity in answering tendencies. For ordinal responses in particular, the tendency to choose
extreme or middle responses can vary in the population. Extended models are proposed that account
for this type of heterogeneity. Location effects as well as the tendency to extreme or middle responses
are modelled as functions of explanatory variables. It is demonstrated that ignoring response styles may
affect the accuracy of parameter estimates. An example demonstrates the applicability of the method.
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1 Introduction

Random effects models are a common tool for the modelling of heterogeneity and
dependence of responses in repeated measurements and clustered data. Binary and
ordinal random effects models account for heterogeneity by including subject-or
cluster-specific effects in the linear predictor. The most widely used model is the
random intercept model which allows the overall tendency to positive responses to
vary over subjects. In more general models also slopes can depend on the subject.
However, there is one subject-specific trait that is usually ignored, the tendency to
select extreme or middle categories. This tendency can be considered as a response
style, which is a consistent pattern of responses that is independent of the content of a
response (Johnson, 2003). The problem with response styles is that they can affect the
validity of parameter estimates because estimates may be biased if the response style is
ignored. Therefore, models should account for the response style to avoid misleading
estimates. Response styles have been investigated in particular in the survey literature,
but the phenomenon occurs whenever subjects give ratings on an ordinal scale.
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Further examples could be if a medical diagnosis refers to categories such as normal,
borderline and abnormal or when patients rate their pain on a five-point scale. The
phenomenon is found in all assessed ordinal categorical variables, which arise when
an assessor processes an unknown amount of information, leading to the judgement
of the grade of the ordered categorical scale (Anderson, 1984).

Response styles have been investigated in particular in the social sciences, see, for
example, Messick (1991), Baumgartner and Steenkamp (2001), Marin et al. (1992)
and Meisenberg and Williams (2008), and in latent trait modelling in psychometrics,
see Bolt and Newton (2011), Johnson (2003), Eid and Rauber (2000), Böckenholt
(2017) and Tutz et al. (2018). An overview was given by Van Vaerenbergh and
Thomas (2013).

Binary and ordinal random effects models without the modelling of response style
are well established tools. In particular, the case of binary response variables has
been investigated thoroughly, see, for example, Hedeker and Gibbons (1994), Hinde
(1982), Anderson and Aitkin (1985), Liu and Pierce (1994), Pinheiro and Bates
(1995) and Booth and Hobert (1999). Also for ordinal responses, several modelling
strategies and estimation methods have been proposed. Harville and Mee (1984),
Jansen (1990) and Tutz and Hennevogl (1996) considered cumulative type random
effects models; adjacent categories type models were considered by Hartzel et al.
(2001).

Models that explicitly account for response styles are able to reduce the bias. They
account for additional heterogeneity in the population, which in some applications is
itself of interest, in particular if it is linked to explanatory variables. In this article it
is argued that simultaneous modelling of response styles is recommended if response
styles are present, more concisely, if individuals have a tendency to prefer middle
or extreme categories. According to the classification of different types of response
style by Van Vaerenbergh and Thomas (2013), these tendencies refer to a continuum
between the so-called mid-point response style (MRS) and extreme response style
(ERS). If response styles that vary over individuals are present but ignored, the
accuracy of parameter estimates may suffer. Moreover, the models, that are proposed
allow researchers to investigate which variables determine the preference for middle
or extreme categories. It should be noted that methods that account for response
tendencies have been used before in regression for univariate ordinal responses, see
Tutz and Berger (2016, 2017). However, in univariate ordinal models, response
styles are not modelled as a subject-specific trait but as a tendency that is determined
by covariates only. Consequently, estimation methods that are used for univariate
ordinal responses are quite different from the methods used here, where response
style is meant to represent a consistent pattern of responses independent of the
content. In a multivariate setting, response styles were incorporated by Tutz et al.
(2018) within the partial credit model. However, their model lacks the possibility to
include covariates.

The article is structured as follows. In Section 2, we introduce multivariate ordinal
response models. In Section 3, we develop an approach to include response styles
into multivariate ordinal response models, while in Section 4, we give further details
of the estimation procedure. Section 5, illustrates the performance of the proposed
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method using a simulation study. Finally, in Section 6, the method is applied to data
from the German Longitudinal Election Study (GLES).

2 Models for multivariate ordinal responses

Regression models for a single ordinal response form the constituents of multivariate
models. Therefore, we first briefly consider models that are in common use for ordinal
responses and then consider extensions to multivariate responses.

2.1 Ordinal response models

Interesting models for ordinal responses are in particular the cumulative model and
the adjacent-categories model. With the response Yi taking values from {1, . . . , k},
the cumulative model has the form

P(Yi ≤ r|xi) = F(γ0r + xT
i γ),

where F(.) is a distribution function, xT
i = (xi1, . . . , xip) is a covariate vector with

γ as the corresponding coefficient vector, and −∞ = γ00 ≤ γ01 ≤ · · · ≤ γ0k = ∞

are category-specific intercepts. The model is usually derived from an underlying
regression model. Let Ỹi = −xT

i γ + εi be a regression model which contains the latent
response variable Ỹi and a noise variable εi, which has cumulative distribution
function F(.). It is assumed that one cannot observe the variable Ỹi but a coarser
categorized version; more precisely, one observes Yi = r if γ0,r−1 < Ỹi ≤ γ0r. It is
easily seen that one obtains the cumulative model. The intercepts γ01, . . . , γ0k are
the thresholds on the latent continuum that determine the categorization. Thus, they
have to be ordered.

Among the class of cumulative models, the most widely used model is the
proportional odds model which uses the logistic distribution F(η) = exp(η)/(1 +
exp(η)) yielding

logit P(Yi ≤ r|xi) = γ0r + xT
i γ.

With ψrj(x) = P(Yi ≤ r|(x1, . . . , xj = x, . . . , xp)/P(Yi > r|(x1, . . . , xj = x, . . . , xp))
denoting the cumulative odds when the jth variable has value xj (all others kept
fixed), one obtains for the parameters the simple form

eγj = ψrj(x + 1)/ψrj(x),

that is, eγj is the change in cumulative odds if xj increases by one unit, and the change
does not depend on the category, which makes it a proportional odds model.

An alternative model is the adjacent-categories model, which has the form

P(Yi = r + 1|Yi ∈ {r, r + 1}, xi) = F(γ0r + xT
i γ),
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where F(.) is again a distribution function. For the logistic distribution function, one
obtains

log
(

P(Yi = r + 1)
P(Yi = r)

)
= γ0r + xT

i γ.

With φrj(x) = P(Yi = r + 1|(x1, . . . , xj = x, . . . , xp))/P(Yi = r|(x1, . . . , xj = x, . . . , xp))
denoting the local odds that compare categories r, r + 1, one obtains

eγj = φrj(x + 1)/φrj(x),

which is the change in local odds if xj increases by one unit. As in the proportional
odds model, the increase does not depend on r.

Also the so-called sequential model is used in ordinal regression but is less used in
multivariate settings. For an overview on ordinal regression see Agresti (2009), Tutz
(2012) and Peyhardi et al. (2015).

All of these models can be given in matrix form as multivariate generalized linear
models (GLMs) for categorical responses. For observation i, one obtains

g(πi) = X iβ or πi = h(X iβ),

where πT
i = (πi1, . . . , πiq), πir = P(Yi = r|xi), is the vector of response probabilities of

length q = k − 1, g is the (multivariate) link function, h = g−1 is the inverse link
function and X i is the corresponding design matrix with components of ηi = X iβ
having the form

ηir = γ0r + xT
i γ = (0, . . . , 0, 1, 0, . . . , 0, xT

i )β, r = 1, . . . , q,

where βT = (γ01, . . . , γ0q, γ
T), see Fahrmeir and Tutz (2001) and Tutz (2012).

2.2 Random effects models

Random effects models aim at explicitly modelling the heterogeneity of clustered
responses. A cluster can be any statistical unit for which repeated measurements
are available. In our applications, a cluster typically refers to a person and repeated
measurements refer to responses on a set of items. For such clustered data, let the
ordinal response Yit ∈ {1, . . . , k} denote measurement t in cluster i, i = 1, . . . , n, t =
1, . . . , Ti. In random effects models, one assumes that the corresponding model for
observation Yit has the form

g(πit) = X itβ + Zitbi, (2.1)

where πT
it = (πit1, . . . , πitq) denotes the vector of response probabilities with πitr =

P(Yit = r|X it, Zit, bi), X it and Zit are design matrices linked to the ith cluster, β is a fixed
coefficient vector, and bi is an s-dimensional cluster or subject-specific random effect,
for which a distribution, for example bi ∼ N(0, Q), is assumed. The corresponding
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linear predictor ηit = X itβ + Zitbi has components

ηitr = γ0tr + xT
itγ + zT

it bi,

where xT
it = (xit1, . . . , xitp) is the covariate vector associated with fixed effects and

zT
it = (zit1, . . . , zits) the covariate vector associated with random effects.

The simplest random effects model is a model that includes random intercepts
only. It has the linear predictor

ηitr = γ0tr + xT
itγ + bi,

where bi ∼ N(0, σ2). Thus, each respondent is assumed to have its own response
level. The random effect model accounts for the association between responses and
allows to investigate the heterogeneity of individuals captured in the variance of the
random effect. It models the response to items given the covariates and the individual
random effects and therefore the response behaviour on the level of the individual,
in contrast to marginal models, which are population averaged models.

3 Accounting for response styles

3.1 Including response styles

In both multivariate ordinal models, the cumulative and the adjacent categories
model, the intercepts γ0t1 . . . γ0tq, q = k − 1, can be seen as thresholds. As has
been shown, the cumulative model can even be derived from a latent continuous
variable which is observed in categories that are determined by thresholds on the
latent continuum. Usually the thresholds are considered as less interesting nuisance
parameters. They do not depend on covariates and just indicate the basic preference
for specific categories. For example, in the cumulative model if γ0t,r−1 = γ0tr, one
obtains P(Yit = r) = 0. If the difference between adjacent categories, γ0tr − γ0t,r−1 is
large the probability of Yit = r will be comparatively large. This property of the
thresholds, namely to determine the basic preference for specific categories, will
be used in the following to model the subject-specific tendencies to choose specific
categories.

Cumulative models
In the cumulative model, the ordering of thresholds, γ0t1 ≤ · · · ≤ γ0tq, is
indispensable. That means the introduction of response styles has to retain the order.
For this purpose, a reparameterization is necessary.

Let first the number of categories k be even. The model with random effects has the
predictor ηitr = γ0tr + xT

itγ + zT
it bi. We use for the thresholds γ0tr a reparameterization

that is centred at the middle. With m = k/2, the threshold γ0tm distinguishes between
the categories {1, . . . , m} and {m + 1, . . . , k}. This is the only threshold that is kept.
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All others are reparameterized by using

γ0tr = γ0tm +
r∑

j=m+1

exp(δtj), r > m, γ0tr = γ0tm −

m∑
j=r+1

exp(δtj), r < m.

The parameters eδtr represent the differences between thresholds, which is seen from
γ0tr − γ0t,r−1 = eδtr . That means, in particular, that all differences between adjacent
categories are positive. For illustration, let us consider the case k = 6, for which one
obtains

γ0t1 = γ0t3 − eδt2 − eδt3, γ0t2 = γ0t3 − eδt3, γ0t4 = γ0t3 + eδt4, γ0t5 = γ0t3 + eδt4 + eδt5,

which yields the structure

The new threshold parameters are given by γ0t3, δt2, δt3, δt4, δt5. In general, the
new parameters, which can take any value without any restriction, are given by
γ0tm, δt2, . . . , δtq. The ‘middle’ threshold γ0tm is kept but all others are reparameterized
by using the parameters δt2, . . . , δtq.

Let ai be a subject-specific response style parameter. It is included in the predictor
by substituting δtr + ai for δtr. Then the difference between adjacent linear predictors
is no longer eδtr but

ηitr − ηit,r−1 = eδtr eai . (3.1)

If ai → −∞, the predictors coincide and the probability mass is concentrated in
the extreme response categories 1 and k. If ai is large, all the differences become large
and the probability mass is concentrated in the middle categories m and m + 1. It is
straightforward to derive that for ai → ∞, the probabilities of categories m and m + 1
sum up to one. In summary, the subject-specific parameter ai modifies the thresholds
such that it accounts for a respondents tendency to middle or extreme categories.
Figure 1 shows the effect of the response style parameter on the probabilities. Positive
values of ai increase the probabilities of the middle categories, while negative values
increase the probabilities of the extreme categories.

For k odd, the reparameterization has a slightly different form. Then m = (k + 1)/2
denotes the middle category, which is between thresholds γ0t,m−1 and γ0t,m. Centring
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Figure 1 Probabilities of single categories (for an example with k = 6) depending on different values of
response style parameter ai for the cumulative model.

around the middle category is obtained by using the reparameterization

γ0t,m−1 = γ0t − exp(δtm)/2, γ0t,m = γ0t + exp(δtm)/2,

γ0tr = γ0tm +
r∑

j=m+1

exp(δtj), r > m, γ0tr = γ0t,m−1 −

m−1∑
j=r+1

exp(δtj), r < m − 1.

One obtains again ηitr − ηit,r−1 = eδtr . After substituting δtr + ai for δtr, one obtains
ηitr − ηit,r−1 = eδtr eai as in the case where k is even. Now the parameters are given by
γ0t, δt2, . . . , δtq. For ai → ∞, the probability of the middle category m becomes one;
if ai → −∞, the predictors coincide and the probability mass is concentrated in the
extreme response categories 1 and k.

The parameter ai is a subject-specific effect that models the individual tendency
to extreme or middle categories. It is important that the response style effects ai vary
over individuals but not over the repeated measurements. When response styles are
understood as a consistent pattern of responses that is independent of the content of
a response, the parameters should be the same in all the items or measurements that
are answered or taken on one individual.

Adjacent categories model
In the adjacent categories model, the intercept γ0tr determines which of the categories
r, r + 1 is preferred. It is seen from the model

P(Yit = r + 1|Yit ∈ {r, r + 1}, xit) = F(γ0tr + xT
itγ + bi), r = 1, . . . , k − 1

that γ0tr determines the basic level of a response in category r + 1 given Yit ∈

{r, r + 1}. The parameters can again be seen as thresholds, however, they are not
necessarily ordered. It is not as obvious as in the cumulative model but also for the
adjacent categories model, the difference between adjacent thresholds determines the
probability of observing a specific categorical value.

Therefore, for adjacent categories models also, response style effects can be
included by modifying the thresholds. The basic idea is to increase or decrease the
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Figure 2 Probabilities of single categories (for an example with k = 5) depending on different values of
response style parameter ai in the adjacent categories model.

difference between thresholds with a centring at the middle category (see also Tutz
and Berger (2016)). In the predictor ηitr = γ0tr + xT

itγ + bi for the tth variable, we
propose to replace the threshold γ0tr by

γ0tr + (k/2 − r)ai,

where ai is a subject-specific parameter. It is seen that the difference between adjacent
predictors has the form

ηitr − ηit,r−1 = γ0tr − γ0t,r−1 − ai. (3.2)

The weights (k/2 − r) are chosen such that the difference between predictors changes
by ai. If ai is positive the difference decreases, if it is negative the difference increases
with the introduction of the subject-specific parameter. Figure 2 illustrates how
different values of the parameter ai affect the probabilities of the single response
categories. Positive values of ai increase the probabilities of the middle categories,
while negative values increase the probabilities of the extreme categories.

For illustration, let us consider two specific cases, both with an odd (k = 5) and
an even (k = 6) number of categories. For k = 5, one obtains the following thresholds

For k = 6, one obtains the thresholds
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It should be noted that the modification of thresholds differs for the two types
of models. In the cumulative model, the thresholds have to be ordered, therefore
the subject-specific parameter modifies the difference between adjacent thresholds
in a way that retains the order. The modification of differences between thresholds
is multiplicative as is seen from equation (3.1). In the adjacent categories model,
thresholds do not need to be ordered. Therefore, one can use a parameterization that
changes the differences between thresholds in an additive way, see equation (3.2).
The modification by adding subject-specific parameters has the advantage that one
remains in the GLM framework, however, it can not be used for cumulative models.
For cumulative models, an additive term ai would destroy the ordering of thresholds
if it were assumed to be a random effect following a normal distribution.

3.2 Including covariates that determine the response style

In the general model proposed here, the effect of explanatory variables is included
by letting the parameters ai depend on them. Covariates that determine the response
style can be included by using the response style term ai + zT

itα instead of the simple
subject-specific effect ai. Then, in the adjacent categories representation, one obtains

ηitr = γ0tr + (k/2 − r)(ai + zT
itα) + xT

itγ + bi. (3.3)

In the cumulative model, one obtains (for k even)

ηitr = γ0tm +
r∑

j=m+1

eδtj eai+zT
it α +xT

itγ + bi, r > m,

ηitr = γ0tm −

m∑
j=r+1

eδtj eai+zT
it α +xT

itγ + bi, r < m.

The linear predictor is constructed by modifying the thresholds, which corresponds
to the increase or decrease of differences between adjacent thresholds. The concept
works for the cumulative and the adjacent-categories model. The corresponding
models contain two effects, the location effect captured in xT

itγ and the response
style effect contained in zT

itα. The variables xit and zit can be distinct, overlapping or
identical.

For zit = xit, it is instructive to investigate the structure of the linear predictor to
make the link to more general ordinal models. With zit = xit, the predictor (3.3) can
be rewritten as

ηitr = (k/2 − r)ai + bi + γ0tr + xT
it ((k/2 − r)α + γ)

= (k/2 − r)ai + bi + γ0tr + xT
itβr,
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where βr = (k/2 − r)α + γ, r = 1, . . . , k − 1. Thus, one has an ordinal model which
allows covariate effects to vary across categories, constraining the parameters such
that a parameterization βr = (k/2 − r)α + γ exists. In the cumulative model, the
model considered here cannot be seen as a sub-model of the general model with
category-specific effects because the predictor has a more complicated form to ensure
that thresholds are ordered.

4 Estimation of the random effects model

Let the data be given by (Yit, xit, zit), i = 1, . . . , n, t = 1, . . . , Ti, where xit denotes
the vector of explanatory variables that determine the location and zit denotes the
explanatory variables that determine the response style.

The model contains two random effects, the subject-specific intercept bi and the
subject-specific response style effect ai. For them, a normal distribution (bi, ai) ∼

N(0, �) is assumed. Maximization of the marginal log-likelihood can be obtained by
integration techniques. The marginal likelihood is

L(β, �) =
n∏

i=1

∫ ∫
P({Yi1, . . . , YiTi})f (bi, ai)dbidai,

where f (bi, ai) now denotes the two-dimensional density of the person parameters,
and β collects all fixed parameters. The diagonals of the matrix � contain the variance
of random intercepts σ2

b and the response style parameters, σ2
a , the off diagonals are

the covariances between intercepts and the response style, covba. The corresponding
log-likelihood is

l(β, �) =
n∑

i=1

log

(∫ ∫ Ti∏
t=1

k∏
r=1

{P(Yit = r|β, bi, ai)}yitr f (bi, ai)dbi dai

)
,

where yitr = 1 if Yit = r and yitr = 0 otherwise.
For the adjacent categories model, one has

P(Yit = r|β, bi, ai) =
exp(

∑r−1
l=1 {γ0tl + (k/2 − l)(ai + xT

itα) + xT
itγ + bi})∑k

s=1 exp(
∑s−1

l=1 {γ0tl + (k/2 − l)(ai + xT
itα) + xT

itγ + bi})
,

for the cumulative model, one has to build the differences P(Yit = r|β, bi, ai) = P(Yit ≤

r|β, bi, ai) − P(Yit ≤ r − 1|β, bi, ai). For the adjacent categories model, the embedding
into the framework of generalized mixed models allows to use methods that have
been developed for this class of models. One strategy is to use joint maximization of
a penalized log-likelihood with respect to parameters and random effects appended
by estimation of the variance of random effects, see Breslow and Clayton (1993)
and McCulloch and Searle (2001). However, joint maximization algorithms tend to
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underestimate the variances and, therefore, the true values of the random effects. An
alternative strategy, which is used here, is numerical integration by Gauss–Hermite
integration methods. Early versions for univariate random effects date back to Hinde
(1982) and Anderson and Aitkin (1985). For an overview on estimation methods for
generalized mixed model see McCulloch and Searle (2001) and Tutz (2012). For the
cumulative model one cannot rely on generalized mixed models, we used a modified
Gauss–Hermite procedure.

5 Simulation

A small simulation study is conducted to evaluate the performance of the method
and the possible consequences of ignoring the response style. Before presenting the
results, we first describe the general settings and the parameters that are used in the
simulation scenarios.

5.1 Simulation settings

Per simulation, n = 300 observations on T = 10 items are used with each response
variable having k = 5 categories. The data are simulated under the assumption
that the models proposed in Section 3 hold. Therefore, separate simulations were
performed for the cumulative model and for the adjacent categories model. For the
adjacent categories model, the linear predictor in the data generating process (DGP)
is defined as

ηitr = γ0tr + (k/2 − r)(ai + zT
itα) + xT

itγ + bi, (5.1)

while for the cumulative model the linear predictor in the DGP is defined as

ηitr = γ0t + (eδtm /2 +
r∑

j=m+1

eδtj) eai+zT
it α +xT

itγ + bi, r ≥ m,

ηitr = γ0t − (eδtm /2 −

m−1∑
j=r+1

eδtj) eai+zT
it α +xT

itγ + bi, r < m.

(5.2)

The explanatory variables contained in zit and xit are equal. We use two continuous
variables x1 and x2 drawn from a standard normal distribution and one binary
variable x3 drawn from a Bernoulli distribution with probability parameter p = 0.5.
The location covariate effects are fixed to γ = (0.5,−0.2, −0.3)T.
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The threshold parameters are set to fixed values. For the adjacent categories model,
the matrix of the true threshold values is



γ0·1

γ0·2

γ0·3

γ0·4


 =




− 0.84 −0.80 −1.26 −0.16 −1.07 −0.60 −1.01 −2.18 −1.76 −0.85
0.32 0.94 −1.08 0.07 0.82 −0.29 −0.60 −2.00 −0.66 −0.26
0.90 1.11 1.47 0.71 1.48 −0.14 −0.47 −0.64 −0.29 −0.14
1.23 1.38 2.22 1.22 1.71 0.95 1.42 1.50 0.24 0.14




while for the cumulative model the threshold parameters are



γ0·

δ0·2

δ0·3

δ0·4


 =




0.61 1.02 0.19 0.39 1.15 −0.21 −0.53 −1.32 −0.47 −0.20
0.15 0.55 −1.71 −1.47 0.64 −1.17 −0.89 −1.71 0.10 −0.53

−0.54 −1.77 0.94 −0.45 −0.42 −1.90 −2.04 0.31 −0.99 −2.12
−1.11 −1.31 −0.29 −0.67 −1.47 0.09 0.64 0.76 −0.63 −1.27


 .

Two parameters are varied, namely the standard deviation of the random response
style effect and the fixed response style effects corresponding to the explanatory
variables. For the covariance matrix of the random effects (bi, ai) ∼ N(0, �), we use

� =
(

1 0
0 σ2

a

)

with three different effect strengths

σa = 0 (Null), σa = 0.5 (Medium), σa = 1 (Strong).

For the response style effects α, we use α = (0, 0, 0)T (Null), α = (0.25, 0.125, −0.25)T

(Medium) and α = (0.5, 0.25, −0.5)T (Strong), respectively.
In total, these different values constitute nine different settings for the cumulative

model and the adjacent categories model, respectively. These nine settings indicate
different strengths of response styles, both for the response style caused by
explanatory variables and caused by the random effects. Per setting, 100 replications
are conducted. Each dataset is analysed with two different models: Model 1 (no RS)
is a simple model without response style effects where the linear predictor is specified
as ηitr = γ0tr + xT

itγ + bi, while model 2 (with RS) corresponds to the proposed model
containing response style effects with the linear predictor ηitr equal to the linear
predictor in the DGP as described in (5.1) and (5.2), respectively.

5.2 Simulation results

We are mainly interested in the fixed effects which are contained in both models,
namely the threshold parameters γ0tr and the location covariate effects γ. Figures 3
(for the adjacent categories model) and 4 (for the cumulative model) display box plots
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of the mean absolute deviation (MAD), separately for these two types of parameters
and for the single simulation settings.

We distinguish between model 1 (no RS) and model 2 (with RS) by using different
colours. With growing strength of the response style caused by the random effect and
by the explanatory variables, the MAD of the parameters is growing when fitting
model 1 while it remains rather constant for model 2. This effect is much stronger for
the threshold parameters than for the covariate effects. This behaviour can probably
be explained by the fact that the threshold parameters cover both the general location
of the different responses as well as the general (i.e., not individual-specific) response
styles across the studied population, while the covariate effects only cover location
effects connected to xit. It is seen that ignoring individual response style effects can
lead to poor estimates of the parameters in the model.

In the supplementary materials accompanying this manuscript, box plots for the
estimates for each of the 40 threshold parameters can be found, separately for
models 1 and 2, for the nine simulation setting, and for the adjacent categories
model and the cumulative model. For the sake of simplicity, within this manuscript
in Figure 5, we only present the respective results for the most extreme setting (with
strong response style effects both for the random effects and the covariate effects)
in the adjacent categories model. It can be seen that in model 2, the parameters are
estimated unbiased, while the estimates in model 1 are severely biased in many cases.

6 Application to pre-election data

The method is applied to data from the GLES (Roßteutscher et al., 2017). The GLES
is a long-term study of the German electoral process. It collects pre- and post-election
data for several federal elections. The data we are using originate from the pre-election
survey for the German federal election in 2017. In this specific part of the study, the
participants were asked about specific political fears. More precisely, the participants
were asked: ‘How afraid are you due to the ...’

1. refugee crisis?
2. global climate change?
3. international terrorism?

4. globalization?
5. political developments in Turkey?
6. use of nuclear energy?

The answers were measured on Likert scales from 1 (not afraid at all) to 7 (very
afraid). As explanatory variables in the model we used:

Abitur High School Diploma (1: Abitur/A levels; 0: else),
Age Age of the participant,
EastWest (1: East Germany/former GDR; 0: West Germany/former FRG),
Gender (1: female; 0: male),
Unemployment (1: currently unemployed; 0: else).

The age of the participants ranges from 15 years to 94 years. The variable
EastWest refers to the current place of residence where all Berlin residents are
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Figure 3 Mean absolute deviation (MAD) for threshold parameters γ0tr (a) and for covariate parameters γ

(b) depending on the response style strength of the random effect and of the explanatory variables,
separately for estimation with (black) and without (grey) response style effects in the adjacent categories
model.
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Figure 4 Mean absolute deviation (MAD) for threshold parameters γ0tr (a) and for covariate parameters γ

(b) depending on the response style strength of the random effect and of the explanatory variables,
separately for estimation with (black) and without (grey) response style effects in the cumulative model.

assigned to East Germany. For our analysis, the original dataset consisting of
2 179 observations was reduced to the 2 036 complete observations. In order to
make the effect sizes easier to compare all variables were standardized before the
respective analyses.
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Figure 5 Parameter estimates separately for all threshold parameters in the simulation setting with strong
response style effects both for the random effects and the covariate effects in the adjacent categories
model. True values are marked with crosses.

Table 1 (Standardized) parameter estimates (and p-values) for all covariate effects from models 1 and 2
(separately for the adjacent categories model and the cumulative model).

Adjacent categories model

Age Gender Unemployment EastWest Abitur

Model 1: γ 0.129 (0.000) 0.123 (0.000) −0.005 (0.686) −0.013 (0.273) −0.107 (0.000)
Model 2: γ 0.115 (0.000) 0.120 (0.000) −0.008 (0.484) −0.015 (0.196) −0.100 (0.000)
Model 2: α −0.066 (0.000) −0.010 (0.303) −0.013 (0.152) −0.009 (0.330) 0.021 (0.026)

Cumulative model

Age Gender Unemployment EastWest Abitur

Model 1: γ −0.351 (0.000) −0.318 (0.000) 0.015 (0.628) 0.029 (0.345) 0.286 (0.000)
Model 2: γ −0.317 (0.000) −0.333 (0.000) 0.026 (0.422) 0.048 (0.137) 0.278 (0.000)
Model 2: α −0.066 (0.000) 0.010 (0.414) −0.019 (0.126) −0.021 (0.078) 0.013 (0.287)
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We fitted two different models, in model 1 possible response style effects (both
the random effects and the covariate effects) are ignored, whereas they are included
in model 2. For both models we used the adjacent categories approach as well as
the cumulative modelling approach with logistic link. Table 1 shows the estimates
of all covariate effects γ and α (separately for the adjacent categories model and the
cumulative model) for models 1 and 2 together with their corresponding p–values. A
striking difference between the adjacent categories model and the cumulative model
is that the location parameters γ have reversed signs, which is simply an effect of the
parameterization. While a positive parameter in the cumulative model means that
the tendency to low response categories is increased (for increasing values of the
variable), it means a tendency to higher response categories in the adjacent categories
model. Otherwise, the two model types yield similar results.

Figure 6 gives a visualization of the estimated effects and confidence intervals (a
similar visualization tool was proposed by Tutz and Berger (2016)). It shows the
exponentials of the covariate effects both for the location effects γ (abscissa) and the
response style effects α (ordinate) given in Table 1, together with the respective 95%
confidence intervals, which determine the size of the stars. If the stars cross the no
effects lines exp(γ) = 1 and exp(α) = 1 the corresponding effects cannot be considered
as significant.

It is immediately seen that location effects for Abitur, Age and Gender and the
response style effect for Age are significant. In contrast to the cumulative model,
in the adjacent categories model also Abitur has a significant response style effect.
According to these estimates, the overall level of political fears is increased with
increasing age and for women in comparison to men, while people with Abitur tend
to have a lower level of fears than other respondents. On the other hand, with
growing age people have an increasing tendency towards extreme categories, while
people with Abitur show a tendency towards middle categories.

The random effects components are seen from the estimated (co-)variances for
each of the models. For the adjacent categories models, we obtained σ̂2

b = 0.184
(standard error se(σ̂2

b) = 0.0110) for model 1 and

�̂ =
(

0.166 −0.002
−0.002 0.077

)

for model 2 with standard errors se(σ̂2
b) = 0.0111 and se(σ̂2

a ) = 0.00628. For the
cumulative models, we obtained σ̂2

b = 1.337 (standard error se(σ̂2
b) = 0.0694) for

model 1 and

�̂ =
(

1.276 −0.185
−0.185 0.159

)

for model 2 with standard errors se(σ̂2
b) = 0.0717 and se(σ̂2

a ) = 0.0225. In both cases,
in model 2 the variance of the random location effects is estimated to be slightly
smaller than in model 1. There appears to be no strong correlation between the
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Figure 6 (Exponential) effects of explanatory variables in GLES data together with 95% confidence
intervals both for location effects γ and response style effects α (separately for the adjacent categories
model and the cumulative model).
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random location effects and the random response style effects. It is obvious that the
estimates of variances and covariances are quite different for the adjacent categories
models and the cumulative models. However, this is not surprising given that a very
different response function is used and that the random effects for the response styles
have exponential form in the case of the cumulative model.

7 Concluding remarks

We considered response styles for multivariate ordinal responses. Response styles
may be present whenever individuals use rating scales, that can be an assessment
of their own feelings or ratings that evaluate the performance of others. As has
been demonstrated, ignoring response styles may yield inferior estimates of location
effects. Therefore, one should check if they can be ignored or have to be included.
Beyond the effect on the accuracy of estimates, response styles are of interest by
themselves, in particular if explanatory variables are included. The modelling of the
dependence of response styles on covariates shows which groups of respondents tend
to more or less extreme responses.

The proposed models are implemented in an add-on package for R (R Core Team,
2018), it is available from https://github.com/Schaubert/MultOrdRS and
is supposed to be available from Comprehensive R Archive Network (CRAN)
soon. The package also contains the data and the code from our application to
the GLES (Roßteutscher et al., 2017) in Section 6 in order to make our results
easily reproducible. For the (bivariate) normal distribution of the random effect
parameters, we use (two-dimensional) Gauss–Hermite integration where the number
of sample points can be specified by the user. The marginal likelihoods (and score
functions) are implemented in C++ and integrated into R via the packages Rcpp
(Eddelbuettel et al., 2011) and RcppArmadillo (Eddelbuettel and Sanderson,
2014). The marginal likelihood is optimized numerically, either using the functions
optim() or nlminb() in R.

Supplementary materials

Supplementary materials for this article including more detailed results of
the simulation studies are available from http://www.statmod.org/smij/
archive.html.
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