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Es ist nicht genug zu wissen, 

man muss es auch anwenden; 

es ist nicht genug zu wollen, 

man muss es auch tun. 

 

[Knowing is not enough;  

we must apply. 

Willing is not enough; 

we must do.] 

 

 

 

Johann Wolfgang von Goethe (1907). Maximen und Reflexinen: nach den Handschriften des Goethe-

und Schiller-Archivs (Vol. 21). Goethe-Gesellschaft. 
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Zusammenfassung 

Digitalisierung und Robotik haben ihren Weg in die landwirtschaftliche Praxis 

gefunden. Damit verbunden sind Chancen und Risiken, aber auch spezifische 

Herausforderungen. Es sind mitunter ökonomische Aspekte, aber auch Aspekte des 

Tierwohls, des Umweltschutzes, der Akzeptanz von Landwirtinnen und Landwirten und 

der gesellschaftlichen Akzeptanz, die über die weitere Entwicklung der digitalen 

Landwirtschaft bestimmen. Während bei technischen Innovationen in der 

Vergangenheit oftmals technisch-funktionale Bewertungen oder Aspekte der 

Wirtschaftlichkeit im Vordergrund standen, wurden Rufe nach einer 

multiperspektivischen Betrachtung lauter. Das System Landwirtschaft ist ein Komplex 

aus verschiedenen Subsystemen, welche zueinander in Abhängigkeiten und 

Wechselbeziehungen stehen und sich in einem ständigen Veränderungsprozess 

befinden. Um diese Komplexität zu erkennen und zu verstehen, gewinnen 

systemorientierte Forschungsansätze an Bedeutung. Ein möglicher Ansatz, das 

System Landwirtschaft aus mehreren Perspektiven zu bewerten, ist die Orientierung 

an einer Nachhaltigkeitsbewertung.  

Die vorliegende publikationsbasierte Dissertation umfasst eine Bewertung von 

digitalen Technologien in der Landwirtschaft und fokussiert dabei auf Sensorsysteme 

an der Kuh zur Verhaltensüberwachung. Die Dissertation umfasst drei die Technologie 

hinsichtlich verschiedener Gesichtspunkte bewertende Publikationen. Während zwei 

der Publikationen ausschließlich Sensorsysteme an der Kuh adressieren, wirft eine 

dritte Publikation neben den Sensorsystemen im Speziellen einen umfangreicheren 

Blick auf eine größere Bandbreite an digitalen Technologien in der Landwirtschaft. Den 

Ansatz einer multiperspektivischen Betrachtung verfolgend, nähert sich die 

Dissertation einem systemorientierten Forschungsansatz. Weg von einer 

eindimensionalen Bewertung berühren die drei Publikationen die drei Dimensionen der 

Nachhaltigkeit „Soziales“, „Ökologie“ und „Ökonomie“. Sie liefern damit einzelne 

Bausteine für eine Nachhaltigkeitsbewertung digitaler Landwirtschaft. Neben einer 

Pluralität an Perspektiven zur Bewertung von digitalen Technologien in der 

Landwirtschaft stützen sich die drei Publikationen der Dissertation dabei auch auf eine 

Pluralität an methodischen Ansätzen. 

Die erste Publikation fokussiert auf die Nachhaltigkeitsdimension „Soziales“ und stellt 

die gesellschaftliche Akzeptanz von digitalen Technologien in der Landwirtschaft in 

den Mittelpunkt. Auf das Potential von digitalen Technologien in der Landwirtschaft 

hinsichtlich Tierwohl und Umweltschutz stützend, gibt es Stimmen, welche eine 

Aufwertung des Images der Landwirtschaft aus gesellschaftlicher Sicht erwarten. Die 

Datenbasis der Studie bildete eine im Jahr 2018 mit einem Verbraucherpanel 

durchgeführte Online-Umfrage unter der Bevölkerung in Deutschland, welche in 2.012 
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auswertbaren Datensätzen resultierte. Methodisch stützte sich die Umfrage zur 

Einstellungsakzeptanz sowohl auf quantitative (z. B. Abfrage von Items zur Einstellung 

mittels Likert-Skalen) als auch qualitative (Spontanassoziationen zu gezeigten Bildern) 

Ansätze. Die Ergebnisse aus den quantitativen Abfragen zeigten eine im Durchschnitt 

positive Einstellung der Befragten zu einem Einsatz von digitalen Technologien in der 

Landwirtschaft und zu deren staatlicher Förderung. Verglichen damit fiel die 

Bewertung von einer Auswahl spezifischer Einzeltechnologien anhand der 

Spontanassoziationen kritischer aus, insbesondere für die beiden gezeigten Bilder mit 

Robotertechnologien aus der Milchviehhaltung (Melkroboter und Fütterungsroboter). 

Da viele der spontan genannten negativ konnotierten Assoziationen sich mehr auf das 

bestehende landwirtschaftliche Produktionssystem im Allgemeinen als auf die 

abgebildeten digitalen Technologien im Speziellen bezogen, wird schlussgefolgert, 

dass eine Aufwertung des gesellschaftlichen Images durch digitale Technologien in 

der Landwirtschaft als unwahrscheinlich anzusehen ist, da einzelne positive Aspekte 

der Digitalisierung (Tierwohl, Umweltschutz) im Schatten allgemeiner Kritik am 

aktuellen Produktionssystem stehen. 

Die zweite Publikation fokussiert auf Tierwohlaspekte von Kalbesensoren, welche als 

Thema der Nachhaltigkeitsdimension „Ökologie“ zugeschrieben werden. Sie 

untersuchte, ob das Befestigen eines praxisüblichen Kalbesensors am Schwanz der 

Tiere zu Verhaltensänderungen beim Tier führt. Der Datensatz stammte aus der 

Milchviehherde des Staatsguts Achselschwang (Bayern, Deutschland), bei der im 

kalbenahen Zeitraum Kalbesensoren am Schwanz mehrere Tiere befestigt wurden. 

Die Tiere waren ebenfalls mit einem Pansenbolus ausgestattet, welcher kontinuierlich 

die Bewegungsaktivität der Tiere erfasst. Der erste von zwei methodischen Ansätzen 

stützte sich auf eine Analyse der Variabilität der Bewegungsaktivität (Pansenbolus). 

Der zweite methodische Ansatz umfasste eine visuelle Verhaltensbeobachtung über 

Videoanalyse, bei welcher eine Vielzahl an Verhaltensweisen erfasst wurden: Dauer 

des Stehens, Gehens, Liegens, der Futteraufnahme, des Trinkens, von sozialer 

Interaktion, dem Scheuern des Schwanzes an Gegenständen sowie die Häufigkeit des 

Schwanzhebens und der Anzahl an Steh- und Liegeperioden. Bei beiden 

methodischen Ansätzen wurden die Analysezeiträume in 4-Stunden-Blöcke unterteilt 

und mit einem Referenzzeitraum verglichen. Bei der Analyse der Variabilität der 

Bewegungsaktivität konnte im Mittel über alle analysierten Tiere keine Zunahme der 

Anzahl an 4-Stunden-Blöcken mit einer signifikanten Zunahme der Variabilität der 

Bewegungsaktivität festgestellt werden. Bei der visuellen Verhaltensanalyse zeigte ein 

Mittelwertvergleich über alle analysierten Tiere keine signifikante Veränderung nach 

Anlegen eines Kalbesensors für die Mehrheit der Verhaltensweisen. Jedoch war zu 

beobachten, dass einzelne Tiere auf das Befestigen eines Kalbesensors unter 

anderem mit einer erhöhten Häufigkeit des Schwanzhebens oder Scheuern des 
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Schwanzes an Gegenständen (z. B. Wassertrog) reagierten. Diese tierindividuellen 

Reaktionen sollten in einem größeren Rahmen weiter beforscht werden. 

Schließlich beschäftigt sich die dritte Publikation der Dissertation mit der 

Nachhaltigkeitsdimension „Ökonomie“. Um den Gewinnbeitrag einer Investition in 

Aktivitätssensoren zur automatischen Brunsterkennung zu ermitteln, wurde ein 

stochastisches Modell angewandt, welches Unsicherheiten sowohl für 

Brunsterkennungsraten (visuell, sensorgestützt) als auch den Zeitaufwand zur 

Tierkontrolle (visuell, sensorgestützt) mittels Monte-Carlo-Simulation modelliert. Den 

jährlichen Kosten der Investition lagen drei marktverfügbare Sensorsysteme zugrunde. 

Der Deckungsbeitrag für visuelle und sensorgestützte Brunsterkennung wurde jeweils 

mittels SimHerd (SimHerd A/S, Viborg, Dänemark) berechnet. SimHerd ist ein 

dynamisches, mechanistisches und stochastisches Simulationsmodell für 

Milchviehherden, welches mit über 2.000 Parametern verschiedene Ereignisse der 

Milchkuh wie beispielsweise Fruchtbarkeit und Gesundheit berücksichtigt. Um eine 

Vielzahl an möglichen betrieblichen Gegebenheiten abzudecken, umfasste die Studie 

verschiedene Szenarien: die Rassen Fleckvieh (Milchleistungen 7.000 kg und 

9.000 kg) und Holstein (Milchleistungen 9.000 kg und 11.000 kg), Herdengrößen von 

70 und 210 Kühen, eine Ausstattung von nur Kühen oder Kühen und Jungvieh und 

Lohnkosten von 10 €/h und 20 €/h. Der Erwartungswert für den Gewinnbeitrag bei 

einer Investition in Aktivitätssensoren zur automatischen Brunsterkennung lag über 

alle analysierten Szenarien hinweg bei +7 € bis +46 € je Kuh und Jahr. Betrachtet man 

alle analysierten Szenarien, so lag die ermittelte Wahrscheinlichkeit für einen positiven 

Gewinnbeitrag über alle Szenarien hinweg bei 74 % bis 99 % der Simulationsläufe. Da 

die Mehrheit der Aktivitätssensoren die Funktion der Brunsterkennung mit einer 

Gesundheitsüberwachung und teils sogar einer Früherkennung von Kalbungen 

vereint, sind weitere neben den in der Studie berechneten ökonomische Effekte zu 

erwarten. 

Als Synthese der drei Publikationen der Dissertation kann festgehalten werden, dass 

wichtige Erkenntnisse für eine systemorientierte Bewertung digitaler Technologien in 

der Landwirtschaft erarbeitet wurden. An den drei Nachhaltigkeitsdimensionen 

orientierend, bilden sie einzelne Bausteine zur Bewertung der sozialen, ökonomischen 

und ökologischen Auswirkungen des Einsatzes digitaler Technologien in der 

Landwirtschaft. Basierend auf den Ergebnissen der drei Publikationen als auch der 

zusätzlich einbezogenen Literatur wird schlussgefolgert, dass Sensorsysteme an der 

Kuh zur Verhaltensüberwachung einen Beitrag zu einer nachhaltigeren 

Milchproduktion leisten können. So liefern die Sensorsysteme für den Großteil der 

analysierten betrieblichen Konstellationen einen positiven Gewinnbeitrag, obwohl bei 

der Studie zur ökonomischen Bewertung nur die Leistung der Brunsterkennung 
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bewertet wurde. Da die ökonomischen Vorteile der Funktionen zum Gesundheits- und 

Kalbemanagement nicht bewertet und berücksichtigt wurden, handelt es sich um eine 

konservative Betrachtung. Gerade diese Funktionen bieten neben dem zusätzlichen 

ökonomischen Potential auch positive Auswirkungen auf die Tiergesundheit. Aufgrund 

der Potentiale hinsichtlich Arbeitsentlastung und -flexibilisierung leisten die 

Sensorsysteme in gewissem Maße auch einen positiven Beitrag im Sinne sozialer 

Nachhaltigkeit. In diesem Kontext ist auch die gesellschaftliche Akzeptanz der 

Technologien von zentraler Bedeutung. Hier zeigen die Ergebnisse, dass zumindest 

keine grundsätzliche Abneigung gegenüber dem Einsatz digitaler Systeme in der 

Landwirtschaft beobachtet werden kann. 

Auf den Publikationen der Dissertation basierend ergibt sich weiterer 

Forschungsbedarf, mitunter zur gesellschaftlichen Akzeptanz digitaler Technologien in 

der Landwirtschaft. Mittels den Spontanassoziationen wurden Gründe für eine 

Ablehnung von Tierhaltungssystemen identifiziert, wobei sich jedoch nicht in allen 

Fällen feststellen ließ, ob und in welchem Ausmaß die gennannten kritischen Begriffe 

tatsächlich in der Tatsache der Digitalisierung der auf den Bildern gezeigten 

Technologien begründet waren. Darüber hinaus können weitere Forschungsansätze 

darüber Aufschluss geben, welche digitalen Technologien kritischer gesehen werden 

als andere. Eine interdisziplinäre Zusammenarbeit mit anderen wissenschaftlichen 

Disziplinen wie der Soziologie scheint hierbei zukünftig zielführend. Weiterhin gilt es 

nun, das Potential der Sensorsysteme hinsichtlich Tiergesundheit mit einer Erfassung 

geeigneter Parameter und einer Vernetzung mit weiteren gesundheitsrelevanten 

Datenquellen auszuschöpfen. Schließlich wurde im Gesamtkontext des 

Dissertationsthemas ein bestehender Forschungsbedarf zu möglichen negativen 

externen Auswirkungen von digitalen Technologien (in der Milchviehhaltung) 

identifiziert. So wären zukünftig weitere Untersuchungen wie beispielsweise zu 

Rebound-Effekten beim Einsatz digitaler Technologien anzustreben. 

Es wird künftig geeignete Strategien der betroffenen Stakeholder bedürfen, damit jene 

digitalen Technologien mit einem Potential für eine nachhaltigere Landwirtschaft 

Akzeptanz finden und damit auch in der Praxis angewandt werden. Die 

Herausforderung, Tierhaltungssysteme so weiterzuentwickeln, dass sie sowohl von 

der Gesellschaft als auch von Milchviehhaltern akzeptiert werden, zeigt die Bedeutung 

eines systemorientierten Ansatzes auf. Bereits bei der Entwicklung von digitalen 

Technologien für die Landwirtschaft ist es unabdingbar zu berücksichtigen, dass es 

sich hierbei nicht nur um einen rein technischen Prozess handelt, sondern dass dieser 

auch weitreichende Veränderungen auf soziale, ökologische und wirtschaftliche 

Aspekte des gesamten landwirtschaftlichen Systems haben kann.  
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Summary 

Digitalization and robotics have found their way into agricultural practice, presenting 

many opportunities and risks, but also specific challenges. Economic aspects, but also 

aspects of animal welfare, environmental protection, and the acceptance by farmers 

and the public are factors that determine the future viability of digital agriculture. 

Whereas the focus was on technical-functional evaluation of technological innovations 

or aspects of economic viability in the past, nowadays the need for a multi-perspective 

view is becoming increasingly apparent in the interests of sustainable agriculture. The 

agricultural system is a complex of different subsystems that are interdependent and 

interrelated and are in a constant process of change. To recognize and understand 

this complexity, systems-oriented research approaches are gaining more and more 

importance. One possible approach to evaluate the agricultural system from several 

perspectives is to follow the structure of a sustainability assessment.  

This publication-based dissertation focuses on an evaluation of digital farming 

technologies, especially on wearable sensor systems for behavioral monitoring in dairy 

farming. It comprises three publications evaluating the technology with respect to 

different aspects. While two of the publications exclusively address wearable sensor 

systems on cows, a third publication takes a broader look at a wider range of digital 

technologies in agriculture. Following the objective of a multi-perspective view, the 

dissertation takes a systems-oriented research approach. Moving away from a one-

dimensional assessment, the three publications touch on the three dimensions of 

sustainability "social", "ecological" and "economic". They thus provide individual 

building blocks for a sustainability assessment of digital farming technologies. In 

addition to a plurality of perspectives on the assessment of digital technologies in 

agriculture, the three publications of the dissertation also rely on a plurality of 

methodological approaches. 

The first publication touches on the sustainability dimension "social" and focuses on 

the public acceptance digital farming technologies. Relying on the potential of digital 

farming technologies in terms of animal welfare and environmental protection, there 

are voices that postulate an enhancement of the social image of agriculture through 

digitalization. The data basis of the first publication was an online survey conducted in 

2018 among a German consumer panel, which resulted in 2,012 analyzable data sets. 

Methodologically, the attitudinal acceptance survey relied on both quantitative (e.g., 

querying items on attitude using Likert scales) and qualitative (spontaneous 

associations with pictures shown) approaches. The results from the quantitative 

queries showed an on average positive attitudinal acceptance toward a use of specific 

digital farming technologies and also toward state subsidies for farmers investing in 

these technologies. Compared to this result, the spontaneous associations brought out 
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the perception that digital farming technologies (milking robot, feeding robot) are seen 

more critically in connection with animals than when applied in crop production. Also, 

many of the spontaneously mentioned associations related more to the existing 

farming system in general than to the depicted digital farming technologies in particular. 

It is, therefore, concluded that an improvement of the public image through 

digitalization is to be regarded as unlikely, since individual positive aspects of 

digitalization are too strongly overshadowed by general criticism of the current farming 

system. 

The second publication focuses on animal welfare aspects of calving sensors, a topic 

attributed to the sustainability dimension "ecology". It analyzed whether attaching a 

calving sensor to the tail of the animals leads to behavioral changes. The data set 

originates from the dairy herd at Achselschwang state farm (Bavaria, Germany), of 

which several animals had calving sensors attached to their tails in the pre-calving 

period. These animals were also equipped with a rumen bolus, which continuously 

records the animals' activity. The first of two methodological approaches analyzed the 

variability of activity (rumen bolus). The second methodological approach involved 

visual behavioral observation via video analysis, during which a variety of behaviors 

were recorded: duration of standing, walking, lying, feed intake, drinking, social 

interaction, rubbing the tail on objects, and frequency of tail raising and number of 

standing and lying bouts. In both methodological approaches, periods were divided 

into 4-hour blocks and compared with a reference period. When analyzing the 

variability of activity, no increase in the number of 4-hour blocks with a significant 

increase in the variability of locomotor activity was detected on average across all 

animals analyzed. In the visual behavior analysis, a comparison of means across all 

animals analyzed showed no significant change after attachment of a calving sensor 

for the majority of behaviors. However, it was observed that individual animals 

responded to the attachment of a calving sensor with, among other things, an 

increased frequency of tail raising or rubbing the tail on objects (e.g., water trough). 

These animal-specific responses should be further researched on a larger scale. 

Finally, the third publication of the dissertation covers the sustainability dimension 

"economics". To determine the net return of investment in activity sensor for automated 

estrus detection, a stochastic model was applied, which modeled uncertainties for both 

estrus detection rates (visual, sensor-based) and the time required for animal control 

(visual, sensor-based) using Monte Carlo simulation. Annual investment costs were 

based on three commercially available wearable sensor systems. The gross margin 

for visual and sensor-based estrus detection was calculated in each case using 

SimHerd (SimHerd A/S, Viborg, Denmark). SimHerd is a dynamic, mechanistic, and 

stochastic simulation model for dairy herds that involves over 2,000 parameters to 
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account for various dairy cow events such as fertility and health. To cover a wide range 

of possible farm situations, the study included different scenarios: the Simmental (milk 

yields of 7,000 kg and 9,000 kg) and Holstein (milk yields of 9,000 kg and 11,000 kg) 

breeds, herd sizes of 70 and 210 cows, an equipment of only cows or cows and heifers, 

and labor costs of 10 €/h and 20 €/h. The mean net return of investment in activity 

sensors for estrus detection was +7 € to +46 € per cow and year across all analyzed 

scenarios. Considering all analyzed scenarios, the determined probability for a positive 

net return of investment was 74% to 99% of the simulation runs. Since the majority of 

activity sensors combine the function of estrus detection with health monitoring and in 

some cases even early detection of calving, further economic effects can be expected 

in addition to those analyzed in the study. 

As a synthesis of the three publications of the dissertation, it can be stated that 

important findings for a systems-oriented assessment of digital farming technologies 

have been developed. Based on the three sustainability dimensions, they form 

individual building blocks for evaluating the social, economic and ecological impacts of 

the use of digital farming technologies. Based on the results of the three publications 

as well as the additional literature included, it is concluded that wearable sensor 

systems in dairy farming can contribute to more sustainable milk production. Thus, the 

sensor systems provide a positive net return of investment for the majority of the 

analyzed farm situations, although only the function of estrus detection was evaluated 

in the economic study. Since the economic benefits of the health and calf management 

functions were not evaluated and considered, this is a conservative view. In addition 

to the additional economic potential, these functions in particular also offer positive 

effects on animal health and can thus serve animal welfare. Due to the potential in 

terms of reduced workload and flexibility for the farmer, the sensor systems also make 

a positive contribution toward social sustainability to a certain extent. In this context, 

the public acceptance of the technologies is also of central importance. The respective 

results show that at least no fundamental aversion to the use of digital farming 

technologies can be observed. 

The publications of the dissertation highlight areas in need of further research, 

including on the public acceptance of digital farming technologies. By means of the 

spontaneous associations, reasons for a rejection of animal husbandry systems were 

identified, although it was not in all cases possible to determine whether and to what 

extent the critical terms named were actually rooted in the digital nature of the 

technology shown in the pictures. In addition, further research may shed light on which 

digital technologies are viewed more critically than others. Interdisciplinary cooperation 

with other scientific disciplines such as sociology would seem a promising approach in 

the future. Furthermore, it is now necessary to exploit the potential of the sensor 
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systems with regard to animal health by recording suitable parameters as part of a 

network of other health-relevant data sources. Finally, in the overall context of the 

dissertation topic, a need for research on possible negative external effects of digital 

technologies (in dairy farming) was identified. Thus, further studies on rebound effects, 

for example, in the use of digital technologies should be considered in the future. 

In the future, appropriate strategies will be required from the stakeholders concerned 

to ensure that those digital technologies with a potential for more sustainable 

agriculture find acceptance and are thus also applied in practice. The challenge of 

further developing animal husbandry systems in such a way that they are accepted by 

both society and dairy farmers highlights the importance of a systems-oriented 

approach. Already in the development of digital farming technologies, it is essential to 

consider that this is not just a purely technical process, but that it can also have far-

reaching changes on social, ecological, and economic aspects of the entire agricultural 

system.  
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1 Structure and objectives of the dissertation 

This cumulative dissertation is based on three studies published in peer-reviewed 

scientific journals. It is devoted to an evaluation of wearable sensor systems in dairy 

farming. The dissertation follows a systems-oriented research approach. Therefore, an 

orientation toward the social, economic, and ecological sustainability dimensions was 

chosen as the approach for evaluation. To evaluate the digital technologies from 

different perspectives, the three studies focus on aspects of the three dimensions of 

sustainability. Similarly, a plurality of methodological approaches was applied. 

Regarding the “social” sustainability dimension, quantitative as well as qualitative 

methods of empirical social research were applied to address the question of public 

acceptance of digital farming technologies. Addressing the sustainability dimension 

“environment” and considering aspects of animal welfare of digital calving sensors, 

behavior of dairy cows after calving sensor attachment was analyzed. Both visual 

evaluation and analysis of activity data were performed to assess potential changes in 

dairy cow behavior. In the third publication, an economic evaluation of activity sensors 

for estrus detection was conducted, methodically based on applying an economic 

simulation model for dairy herds and stochastic modeling. This study thus covers the 

sustainability dimension “economy”.  

The dissertation is structured as follows: First, an overview of systems-oriented 

research and sustainability assessment is presented, forming the framework of the 

dissertation. Then, an insight into digital technologies in dairy farming and in particular 

wearable sensor systems for behavior monitoring is given and research fields on the 

evaluation of these technologies are classified. A literature review of the specific topics 

covered in the three publications follows. The methodological approaches are outlined, 

and the results of the publications are presented. The dissertation ends with a 

discussion of the results and methods and resulting implications.  
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2. The systems-oriented research approach for technology assessment 

2.1 The need for a comprehensive technology assessment 

Regarding digital farming technologies, the focus of the literature has been mainly on 

technical functionality and economics so far. Indeed, technical functionality represents 

a relevant basis for successful adoption on farms. However, sustainable use of 

technologies requires much more than a purely technical functionality assessment. 

The relationship between technology and sustainability is described as ambivalent 

(Grunwald 2010). The history of technology use is characterized by a long-lasting 

positive association of technological innovations with progress and prosperity. During 

the Industrial Revolution, the use of technology was advocated as an enabler of 

emerging ideals of the European Enlightenment, such as the relief of physical labor. 

Gradually, however, and seriously only in recent decades, also unintended 

consequences of technology use have been recognized. Previously, these unintended 

consequences did not receive much attention because their solution was seen in an 

extended use of (even more advanced) technology and because they were judged to 

be negligible compared to the technologies’ benefits. In addition, environmental 

damage still received comparatively little attention. This tension necessitated the need 

for approaches to assess technology use more comprehensively. One of these 

approaches is “Technology Assessment”, which deals with a comprehensive 

assessment of the consequences of technology use and with the analysis and 

evaluation of perspectives of those potentially affected by the consequences of 

technology (Grunwald 2010). The term “Technology Assessment” describes a 

nonspecific collection of different approaches to analyzing the multiple consequences 

of technology use. For instance, communicating risks of a technology and observing 

sustainability are gathered under this term (Grunwald 2009). Public criticism of modern 

agri-food technologies has also often been underestimated in the agricultural sector, 

although it may be a relevant barrier to the future commercialization of food produced 

(Shaw 2002, König et al. 2010, Gupta et al. 2012). Pesticides, nanotechnology, 

cloning, and genetic engineering are striking examples that have raised public 

concerns (Shaw 2002, König et al. 2010, Gupta et al. 2012, Frewer 2017), leading to 

policy interventions (e.g., ban on the cultivation of genetically modified plants), or to a 

deterioration of the image of agriculture in general. Therefore, there is a need to move 

away from a pure technology assessment and toward a holistic view of digital farming, 

thus looking at digital technologies for farming from a broader perspective.  
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2.2 The systems-oriented research approach in agricultural sciences 

Agricultural science has already been characterized as a systems science by Mayer 

and Mayer in 1974. Many years later, in 2005, the German Research Foundation 

dedicated its memorandum to the question of how agricultural research defines itself. 

Since the framework conditions for research are constantly changing over time, a 

critical scrutiny and realignment of topics being dealt with and methodologies being 

applied in research is reasonable. For example, changing public demands made on 

agriculture and technological innovations require adaptive capabilities of agricultural 

research. Thus, the memorandum of the German Research Foundation (2005) again 

emphasized that a systems-oriented approach is indispensable in agricultural 

sciences.  

“Even in oral traditions, agriculture has always been perceived as a system… More 

than ever, the science of agriculture stands at the center of a broader system 

integrating human society and its physical environment”. 

(Mayer and Mayer 1974) 

Although Mayer and Mayer described agricultural sciences as systems science as 

early as 1974, agricultural sciences still have not arrived at following a fully systems-

oriented approach. Gradually, it has been recognized that farms operate not 

necessarily according to the principles of “rational decision-making“ or the logic that 

research suggested as guiding principles. It was thus realized that farms cannot be 

represented in a monocausal manner, since external effects such as ecological and 

social impacts influence their decision making (Bellon and Hemptinne 2012, Darnhofer 

et al. 2012). The need to consider this ecological and social context has not only been 

recognized for decisions made by farmers, but also when it comes to the development 

of agricultural technologies (Biggs 1995, Collinson and Lightfoot 2000). 

In systems-oriented agricultural research, the farm is seen as a whole, embedded in a 

natural, social, economic, and technological context (Gilbert et al. 1980, Darnhofer et 

al. 2010, Darnhofer et al. 2012). Thus, the subject of research is the agroecosystem 

including its subsystems “soil“, “plants“, “animals“, and “humans“, on which technology, 

economy, and the public have an impact. All these subsystems are constantly evolving 

due to mutual influence and changing conditions of the environment in which the 

farming system is embedded (German Research Foundation 2005). According to 

Gilbert et al. (1980), farming systems research “also recognizes the interdependencies 

and interrelationships between the natural and human environments”. Since humans 

play a decisive role in the agroecosystem as farmers and the public alike, they have 

an influence on inputs, outputs, and interactions within the system. This implies and 

highlights the need to look at the agroecosystem with all its facets to understand it 
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comprehensively. Pursuing a farming systems research approach means capturing 

dynamics and interactions between the different elements of the system, thus focusing 

on a larger number of causal relationships instead of a monocausal scheme (German 

Research Foundation 2005, Darnhofer et al. 2012). In other words, links between 

(sub)systems may provide even more decisive information than the (sub)systems 

themselves. It is in the nature of a farm to be subject to a constant process of 

adaptation to new, sometimes even unpredictable circumstances (Darnhofer et al. 

2010), which may be driven, for example, by changes in the legal framework, changes 

in the demands of society, or modified production conditions. These dynamics of the 

farming systems have to be captured. The need for a systems-oriented research 

approach has also been acknowledged in livestock farming (Gibon et al. 1999). Since 

a farming systems research approach appears so plausible, the first assumption is that 

one can adhere to proven and established methodical procedures. However, the reality 

is sobering: There is no “one size fits all“ approach to farming systems research, which 

is probably one reason why systems-oriented research has not yet established itself 

as a standard in agricultural research.  

2.3 Sustainability assessment 

A possible methodological approach to achieve a holistic view is, for instance, a 

sustainability assessment that analyzes the different dimensions of “social”, 

“ecological”, and “economic” sustainability and their trade-offs. A comprehensive 

sustainability assessment requires the analysis of a large number of sustainability 

indicators of these three dimensions (see Food and Agriculture Organization of the 

United Nations (FAO) 2014, Latruffe et al. 2016).  

What does “sustainability” mean? It was mentioned for the first time in the context of 

forestry. In 1713, Hans-Carl von Carlowitz published his book “Sylvicultura 

Oeconomica” (Carlowitz 2000), describing as a principle of forestry that only as much 

wood may be harvested as the forest yields in new growth. Thus, he had recognized a 

certain connection between ecological factors and economic and social concerns 

(Klöpffer and Renner 2007). The current definition of “sustainability” stems from a 

global development context and received its inspiration from the Brundtland Report, 

according to which sustainable development is development that “meets the needs of 

present without compromising the ability of future generations to meet their own needs” 

(World Commission on Environment and Development 1987). The Brundtland Report, 

also known as “Our Common Future”, was published by the World Commission on 

Environment and Development in 1987 and represents the starting point of a worldwide 

discourse on the importance of sustainability and sustainable development. In its 

definition, sustainability now comprises three dimensions: an ecological, an economic, 

and a social one, of which the social dimension has received the least attention (Bitsch 
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2016). The initially strongly ecological-economic understanding of sustainability by von 

Carlowitz has thus been expanded over time to include a social dimension, as can now 

be found in the Brundtland Report. In 1990, Francis and Youngberg defined 

“Sustainable agriculture“ as “a philosophy based on human goals and on 

understanding the long-term impact of our activities on the environment and on other 

species. These [farming] systems reduce environmental degradation, maintain 

agricultural productivity, promote economic viability in both the short and long term, 

and maintain stable rural communities and quality of life.” (Francis and Youngberg 

1990). The idea of viewing sustainability in three dimensions has also gained ground 

in German politics. The German Parliament set up the Enquete Commission 

“Protection of People and the Environment“, which developed the three-pillar model of 

“social”, “economic”, and “ecological” sustainability in 1995. According to its 

understanding, the three pillars are of equal importance; they are interdependent and 

cannot be optimized partially (Flora 1992, Bartol and Herkommer 2004). John 

Elkington coined the term “triple bottom line“ to describe the interaction of the three 

dimensions of sustainability (Elkington 1998). The three dimensions of the “triple 

bottom line“-concept are also known as “people – planet – profit“ (Kuhlman and 

Farrington 2010). 

Approaches and instruments applied to assess sustainability following the three 

dimensions are broad and come from different disciplines. A difficulty in measuring 

agricultural sustainability is that it is “a dynamic rather than static concept” (Hayati et 

al. 2010, p.95). Indicators are applied as points of reference to assess sustainability. 

Economic, ecological, and social indicators allow farmers to assess achievements in 

terms of sustainable farming, both for their own farm and against a benchmark with 

other farms. But also for other stakeholders such as politics, industry, or science, 

indicators provide information to assess the state of sustainability and its changes. A 

variety of indicators can be found in the literature (Hayati et al. 2010). Due to the 

increasing relevance of environmental issues (Bockstaller et al. 2008), many indicators 

have been added in recent years (Riley 2001, Rosnoblet et al. 2006), especially for 

evaluating the ecological dimension. Not all indicators are directly measurable. 

Bockstaller et al. (2011) therefore classified ecological indicators into “simple 

indicators” (based on a causal variable), “predictive indicators” (based on outputs from 

models of varying complexity), and “measured indicators” (based on field 

measurement or observation). Examples of ecological indicators are “soil health”, 

“nitrate content of groundwater and crops”, and “yield trends” (Becker 1997, Zhen and 

Routray 2003). Ecological integrity also includes animal welfare aspects, including 

animal health and freedom from stress (see FAO 2014). Economic sustainability 

describes the economic viability of a farm, focusing on whether a “farming system can 

survive in the long term in a changing economic context” (Latruffe et al. 2016). In this 



20 

 

context, profitability, liquidity, stability, and productivity are relevant aspects. Zhen and 

Routray (2003) cite “net farm income”, “benefit-cost ratio of production”, and “crop 

productivity” as examples of indicators of economic sustainability. Social sustainability 

puts people at the center, encompassing both the welfare of the farmer and his family 

as well as the demands of society. Social indicators analyzed in this context address 

e.g., working conditions, quality of life, education, multifunctionality, quality of products, 

and acceptable agricultural practices (Van Cauwenbergh et al. 2007, Lebaq et al. 

2013, Terrier et al. 2013). 

In their review, Lovarelli et al. (2020) stated that precision livestock farming brings 

benefits on all three dimensions of sustainability. Considering the social sustainability 

dimension, they mentioned farmer and animal welfare as potential benefits of precision 

livestock farming. However, they pointed to the need of quantifying the benefits being 

generated and of demonstrating not only positive but also negative impacts of precision 

livestock farming on ecological, economic, and social sustainability (Lovarelli et al. 

2020). Eastwood et al. (2004) also let it be known that they are taking a holistic view 

of precision dairy farming by defining it as “the use of information technologies […] 

aimed at improved management strategies for optimizing economic, social, and 

environmental farm performance”. So did Spilke and Fahr (2003): Their way of thinking 

is characterized by considering the three dimensions of sustainability, as they stated 

that precision dairy farming “aims for an ecologically and economically sustainable 

production of milk with secured quality, as well as a high degree of consumer and 

animal protection” (Spilke and Fahr 2003).  

As a sustainable farming system does not aim to optimize single aspects of the three 

sustainability dimensions if this might have a negative impact on other sustainability 

dimensions (Flora 1992 ,Bartol and Herkommer 2004), the focus is rather on finding 

an appropriate balance between ecological, economic, and social targets (Flora 1992). 

This way of thinking thus poses new challenges to research, as research approaches 

have to be rethought and boundaries between research disciplines have to be broken 

down. People from different disciplines have to collaborate to meet the various 

objectives of sustainability. Systems-oriented agricultural research represents an 

approach which considers farming operations in their complexity, having to cope with 

the balance of various sustainability criteria. 

The approach and thematic structure of the dissertation is based on three studies 

covering selected aspects of the social, economic, and ecological sustainability 

dimensions. Together with further analyses, they form relevant building blocks for a 

sustainability analysis of sensor systems in dairy farming. The three studies in the 

context of evaluating wearable sensor systems in dairy farming not only address the 
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three sustainability dimensions but are also based on a plurality of methodological 

approaches (see Figure 1). The social sustainability dimension is covered by a study 

on the public attitudinal acceptance of digital farming technologies in Germany. 

According to the literature, “[S]ocial acceptance is a prerequisite to social sustainability 

[because] if a technology is rejected by a society or its members, it is not viable” (Wood 

et al. 2016). Quantitative as well as qualitative methods of empirical social research 

were chosen as methodological approach for the study on the public attitudinal 

acceptance. The second study deals with an assessment of dairy cow behavior after 

calving sensor attachment to their tail, thus analyzing aspects of animal welfare as 

topic of the ecological sustainability dimension. The data of the study originates from 

a dairy research and demonstration farm (on-farm experiment) and includes both 

visual assessment of behavior and analysis of automatically recorded activity data. 

Finally, the third publication addresses “economy“ as the third sustainability dimension. 

Applying a farm systems modeling approach, sensors for automated estrus detection 

are evaluated with respect to their profitability.  

 
Figure 1. Thematic and methodological approach of the dissertation 
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This cumulative thesis is based on the following international published and peer-

reviewed journal publications: 

I. Pfeiffer, J., Gabriel, A., Gandorfer, M. (2021a). Understanding the public 

attitudinal acceptance of digital farming technologies: a nationwide survey in 

Germany. Agriculture and Human Values, 38(1), 107-128. 

II. Pfeiffer, J., Spykman, O., Gandorfer, M. (2021b). Sensor and video: two 

complementary approaches for evaluation of dairy cow behavior after calving 

sensor attachment. Animals, 11(7), 1917. 

III. Pfeiffer, J., Gandorfer, M., Ettema, J. F. (2020). Evaluation of activity meters for 

estrus detection: A stochastic bioeconomic modeling approach. Journal of Dairy 

Science, 103(1), 492-506. 
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3 Literature review of the research fields of the dissertation 

Chapter 3 provides an overview of digital technologies in dairy farming and a compact 

review of the literature on their evaluation. It additionally focuses on the research fields 

of the three publications. Specifically, it includes a literature review on the public 

acceptance of digital farming technologies, on calving sensors in dairy farming, and on 

economics of sensor-assisted estrus detection. Information on the methodological 

approaches is found in the respective sections of the three publications. 

Data-driven dairy farming: an overview of available digital technologies 

In recent years, digitalization has found its way into dairy farming, now affecting the 

whole production process: milking (milking process, milk yield, milk component 

analysis), feeding (feed supply, feed pushing), hygiene management (slat cleaning, 

bedding, udder care), and herd management (fertility, calving, health monitoring) (see 

e.g., Bewley 2010, Da Borso et al. 2017, Grodkowski et al. 2018). Sensor systems on 

or in dairy cows enable monitoring of individual animals, specifically identifying them, 

determining their position, and monitoring their behavior and health condition (see 

Rutten et al. 2013). Digital scales for continuous weight monitoring and camera-based 

sensors for body condition recording (Peiper et al. 1993, O’Leary et al. 2020, Zin et al. 

2020) complete the range of sensor systems to monitor animal-specific parameters. 

Collecting data automatically, in particular at the level of the individual animal, for more 

precise animal management is described as “Precision Dairy Farming”. It comprises 

“technologies to measure physiological, behavioral, and production indicators” (Bewley 

2010) or “the use of information technologies for assessment of fine-scale animal and 

physical resource variability” (Eastwood et al. 2004). Precision Dairy Farming involves 

continuous monitoring of milk yield and milk components as well as parameters such 

as activity, feeding and rumination behavior, and physiological parameters such as 

body temperature or pH value in the stomach (see e.g., Bewley 2010, Rutten et al. 

2013, Borchers and Bewley 2015) to make more informed decisions at individual 

animal level. Besides hardware-based technologies, digitalization in dairy farming also 

involves software applications supporting the dairy farmer in decision making. Farm 

management information software (e.g., documentation, herd management), apps 

(health assessment, market information), and digital marketplaces (e.g., marketing 

platform, used machinery exchange platform) are also part of digitalization.  

Wearable sensor systems to manage dairy cows 

Activity, step count, rumination, eating time, number of drinking cycles, pH-value in the 

stomach, rumen motility, and body temperature – all these are examples of parameters 

already being measured automatically and continuously by means of sensor 

technology either on or in the dairy cow (see Bewley 2010, Rutten et al. 2013, Borchers 
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and Bewley 2015). The beginnings of wearable sensor systems date back to the 1980s 

(Mottram 2016). After the development of sensors for individual animal identification, 

the first pedometers for attachment to the animal’s leg entered the market. The first 

generations of pedometers were technically based on simple position sensors to 

record parameters such as the number of steps taken by an animal. Gradually, sensors 

have been developed to be attached on the neck, in the ear, or to be orally 

administered and reside in the reticulum, while the use of 3D accelerometers enabled 

a more precise measurement of activity at the same time (Rutten et al. 2013, Mottram 

2016). These sensor systems aim at three main functions: the detection of estrus, 

monitoring the cow’s health, and an early detection of calving. After a sensor system 

has been attached to the cow, it determines her individual behavior, which is 

continuously adapted as reference behavior over time. Algorithms detect changes in 

the parameters recorded and issue, depending on frequency, duration, and intensity 

of deviation from the reference behavior, a message to the farmer. Estruses are 

recognized by an increase in activity (Saint-Dizier and Chastant-Maillard 2012). In the 

case of calving, a decrease in body temperature, a decrease in rumination, or typical 

activity patterns in advance of calving support sensor-assisted detection (Cooper-

Prado et al. 2011, Miedema et al. 2011, Ouellet et al. 2016, Rutten et al. 2017). The 

various parameters recorded by the wearable sensor systems also provide decisive 

indications for health monitoring. For instance, indications of febrile diseases based on 

an increase in body temperature (Benzaquen et al. 2007, Kim et al. 2019) or metabolic 

diseases based on a decrease in rumination (Kaufman et al. 2016, Goff et al. 2020) 

may be provided. 

Amid the growing number of parameters measured by wearable sensor systems on or 

in the dairy cow, the vision is clear: the automation of processes and even the 

automation of decisions. Rutten et al. (2013) have already dealt with the current and 

visionary use of parameters that are recorded by sensor systems in dairy farming. In 

their review of the literature from 2002 to 2012 on 139 sensor systems, they 

characterized the development of sensor systems in dairy farming into four levels: 

While level 1 describes a mere recording of parameters (e.g., activity), level 2 already 

includes interpretation of the recorded data, thus revealing changes in the measured 

parameters (e.g., an increase of activity, indicating estrus). In Level 3, Rutten et al. 

(2013) see an additional integration of external information such as economic 

information. Level 4 finally characterizes the decision-making process, e.g., whether 

insemination should be performed or not. While this decision is still made by the farmer 

today, the vision is an automatic decision made by the sensor system. The sensor 

systems of the publications included in the review of Rutten et al. (2013) were assigned 

only levels 1 and 2 of the described levels of development. Their review thus illustrates 
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that the sensor systems are so far still more of a decision support than providing actual 

decision recommendations to dairy farmers.  

Literature on the evaluation of digital dairy farming technologies 

The evaluation of digital dairy farming technologies has already been a topic of 

research for some time. This section provides an overview of aspects having been 

researched to date, referencing specific research findings in the discussion section. So 

far, research has been focusing on the technical functionality of various digital dairy 

farming technologies. As a result, there is, for example, a large number of studies 

evaluating estrus detection rate of activity-measuring sensor systems (e.g., Firk et al. 

2002, Hockey et al. 2010, Dela Rue et al. 2012, Chanvallon et al. 2014). Additionally, 

evaluating functionality of sensors for an early detection of calving (Marchesi et al. 

2013, Saint-Dizier and Chastant-Maillard 2015), of automated body condition scoring 

systems (O’Leary et al. 2020, Zin et al. 2020), and of automated in-line milk analysis 

(Caria et al. 2019) has been playing a major role in research so far. The potential of 

automated and continuous recording of parameters on or in the animal, such as 

activity, rumination, and body temperature, by means of sensor systems has also been 

exploited in research. The parameters recorded are not only applied to describe the 

cows’ behavior during events such as disease (Alsaaod et al. 2012, Stangaferro et al. 

2016), calving (Jensen 2012, Saint-Dizier and Chastant-Maillard 2015), or stress 

(Abeni and Galli 2017, Kovács et al. 2019). Rather, due to the larger database enabled 

by the sensor systems, models are being created for an early detection of these events 

mentioned. Automated milking systems have also been subjected to assessments of 

their functionality and impact on performance and health of cows (e.g., Sørensen et al. 

2016, Bach and Cabrera 2017). Economic evaluations have already been carried out 

for digital technologies such as robotic milking (Hyde and Engel 2002, Rotz et al. 2002), 

automated body condition scoring systems (Bewley et al. 2010a), and information 

technology applications on a dairy farm (activity meter, automated concentrate 

feeders, and automated recording of milk yield and temperature) (Van Asseldonk et al. 

1999), finding a certain economic potential of these technologies, that, however, 

depended on the scenarios considered. While literature on the assessment of digital 

dairy farming has a strong focus on the technologies and their functionality themselves, 

only a small number of studies has dealt with impacts of digital dairy farming on farmers 

and their families. Studies on adoption rates as well as on promoting and inhibiting 

factors for the adoption of digital dairy farming technologies (Jago et al. 2013, Groher 

et al. 2020), on the characterization of dairy farms applying digital technologies 

(Steeneveld and Hogeveen 2015), and on impacts of digital dairy farming technologies 

on the dairy farmers’ work (Michaelis et al. 2013) and human-animal interactions 

(Hostiou et al. 2017) are examples to cite in this regard. The literature shows that digital 
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dairy farming technologies are still far from being standard, that they tend to be applied 

more often in larger herds, and that their non-adoption is often justified by economic 

considerations (Jago et al. 2013, Steeneveld and Hogeveen 2015, Groher et al. 2020). 

Studies on the public perception of digital farming technologies, especially in animal 

husbandry, are, however, rare. 

The public acceptance of digital farming technologies 

With regard to digitalization in agriculture, scientific analysis of topics being assigned 

to the social dimension has emerged late. And yet, although the topic has been 

addressed partially, literature focuses on the farmer as a user of digital technologies 

and thus on the adoption of technologies (e.g., Jago et al. 2013, Steeneveld and 

Hogeveen 2015, Groher et al. 2020) and their effects on farm work (e.g., Michaelis et 

al. 2013). However, such benefits are not sufficient for newly developed technologies 

or innovations to succeed. Rather, also the public perspective has to be taken into 

account. Investigations of the public perspective of digital agriculture are, however, 

rare. 

Apart from digital farming technologies, research on the public acceptance of 

technologies and innovations in general has a slightly longer history. Public 

controversies and concerns about technologies being implemented in the past have 

led to a gradual increase not only in the number of studies on the public acceptance of 

technologies, but also in the diversity of the determinants investigated (see Gupta et 

al. 2012). Gupta et al. (2012) date the starting point of investigations on the public 

acceptance of technologies to 1977, when the first study on nuclear technology was 

published. Another socially controversial topic is the use of pesticides, leading to first 

empirical studies being conducted in 1988. The review by Gupta et al. (2012) also 

revealed that genetic modification is one of the most intensively analyzed technologies 

in terms of public acceptance (first paper in 1988, see Gupta et al. 2012), possibly due 

to its controversial public discussion.  

With regard to agriculture, pesticides and genetic engineering were thus among the 

first technologies to be analyzed from a public perspective. Gradually, various 

agricultural topics have been in the focus of the public, which is why one tried to 

understand their perception in the public more comprehensively (see Figure 2): animal 

cloning (e.g., Garnier et al. 2003, Butler 2009), agrifood technologies such as 

nanotechnology or cultured meat (e.g., Frewer et al. 2011), renewable energy 

innovations such as biomass cogeneration heat and power plants (e.g., Stiehler et al. 

2011), and production methods in and on urban buildings (e.g., Specht et al. 2016). 

The studies analyzing food technologies revealed that the public weighs perceived 

risks and benefits against each other, with the benefits of e.g., genetically modified 

food and food irradiation seen predominantly for the industry. It also plays a role in 
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public acceptance whether the impacts emanating from a (new) technology have been 

comprehensively assessed and whether people can retain control over the extent of 

consumption of food produced this way (see Frewer et al. 2011). Regarding animal 

production, numerous studies have been devoted not only to (modern) livestock 

farming with a focus on different husbandry systems (Kühl et al. 2019), large-scale 

facilities (Sharp and Tucker 2005), or modern production methods (Boogaard et al. 

2011), but also to the public relevance of animal welfare more generally (e.g., Bennett 

1997, Kendall et al. 2006, Deemer and Lobao 2011). Public acceptance of (modern) 

animal husbandry systems correlated positively with the relevance attributed to 

animals being able to perform their behavior in accordance with nature as well as with 

stronger trust in farmers (Sharp and Tucker 2005, Boogaard et al. 2011, Kühl et al. 

2019). Although the need to investigate the public socio-ethical implications of digital 

farming technologies has been addressed several times (Wathes et al. 2008, Stilgoe 

et al. 2013, Rose and Chilvers 2018, Eastwood et al. 2019, Klerkx et al. 2019), 

literature is scarce. To the best of the author’s knowledge, there are only two studies 

on public acceptance of digital dairy farming technologies. Millar et al. (2002) analyzed 

consumer attitudes toward automated milking systems and found that 38.3 % of 

respondents rated them as “ethically acceptable”, with higher awareness of the 

technology being associated with more positive attitudes. In a study by Krampe et al. 

(2021), consumers indicated that they see potential for precision livestock farming 

technologies in pork and dairy farming to improve animal health. However, they also 

feared that these would lead to more industrialization, and that information about the 

technologies would be inadequately communicated to consumers (Krampe et al. 

2021). The dissertation’s study (Pfeiffer et al. 2021a) thus complements this still little-

researched area (highlighted in black in Figure 2). While the societal view of 

digitalization has already been examined from several angles in non-agricultural 

contexts, this is not the case in agricultural research. Since the question of public 

acceptance of digitalization more generally has already attracted attention in non-

agricultural contexts, these findings can possibly be transferred to digital agricultural 

innovations or at least provide suggestions for relevant determinants of acceptance. 

While the public acceptance of autonomous driving (e.g., Fraedrich and Lenz 2016) 

has already been researched in the automotive industry, this is not the case for 

agricultural machinery. Also, possible fields of robot application in social life, especially 

for care (e.g., Broadbent et al. 2009, Eurobarometer 2012, De Graaf and Allouch 

2013), have already been analyzed. However, in the aforementioned studies on the 

public acceptance of various non-agricultural digital technologies, the majority of the 

public is a potential user of these technologies. Since this is not the case for digital 

farming technologies, different approaches are required to measure public acceptance.  
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Figure 2. Research on public acceptance in agricultural and non-agricultural topics with regard 

to digital technologies (exemplary research topics and studies, no claim to completeness) 

Calving sensors in dairy farming 

Animal welfare in livestock farming has taken center stage with consumers (Clark et 

al. 2016, Cornish et al. 2016, Kühl et al. 2019). The public discussion about dairy 

farming focuses on topics such as husbandry systems, production intensity, and the 

handling of calves (Kühl et al. 2019, Simons et al. 2019, Placzek et al. 2021). Indeed, 

sustainable dairy farming begins with appropriate calving management. Mee (2008) 

summarized several international studies, finding a dystocia rate of 2 to 7 % (cows and 

heifers) or 3 to 10 % (heifers) in dairy farming. According to Gevrekci et al. (2006), 

dairy farms in the United States have an even higher dystocia rate. As a result of 

dystocia, calf mortality may occur. Calves born under dystocia often suffer from lower 

passive immunity transfer and physiological stress (Barrier et al. 2013). According to 

Lombard et al. (2007), heifer calves born under dystocia are also more susceptible to 

respiratory and digestive disorders. Consequently, negative impacts on animal health 

and corresponding treatment costs arise. The data on many calvings have shown that 

calving monitoring and assistance, if appropriate, have the potential to reduce 

incidence of stillbirths and post-partum endometritis and uterine infections with cows. 
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Genetic engineering

(Bauer 2002, Frewer 2017)

Use of pesticides

(Yiridoe et al. 2005, Lusk et al. 

2014, Simonne et al. 2016)

Renewable energy innovations

(Stiehler et al. 2011)

Animal cloning

(Garnier et al. 2003, Butler 2009)

Agrifood technologies (e.g., 

nanotechnology, cultured meat)

(Frewer et al. 2011)

(Modern) livestock farming (e.g., 

husbandry systems, production

methods,…)

(Sharp and Tucker 2005, Boogaard 

et al. 2008, Boogaard et al. 2011, 

Heid and Hamm 2012, Busch and 

Spiller 2018, Kühl et al. 2019)

Production methods

in and on urban buildings

(Specht et al. 2016)

Animal welfare

(Bennett 1997, Kendall et al. 2006, 

Deemer and Lobao 2011)

Digital farming technologies

(Millar et al. 2002,

Krampe et al. 2021)

Autonomous driving

(Fraedrich and Lenz 2016)

Fields of robot application

(Eurobarometer 2012)

Modern technologies in general (e.g., digital telecommunication)

(Flynn 2007)

Social/ Healthcare robots

(Broadbent et al. 2009, 

De Graaf and Allouch 2013)

Studies addressing the need for research on the

public acceptance of digital agriculture

(Wathes et al. 2008, Stilgoe et al. 2013, Rose and 

Chilvers 2018, Eastwood et al. 2019, Klerkx et al. 2019)
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Similarly, the effects on reproductive performance, measured by the calving to 

conception interval and the number of required inseminations per conception, were 

positive (Paolucci et al. 2010, Palombi et al. 2013). In order to ensure the welfare of 

both calves and cows, monitoring of calving should thus be a high priority. This is 

difficult for farmers to achieve, however, due to uncertainty about exact calving times. 

Sensors for early detection of calving are therefore applied as a technical solution to 

improve calving management. Currently, there are three commercially available 

calving sensors to be attached to the cows’ tail to detect the onset of calving based on 

an increase in the frequency and duration of tail raising (Miedema et al. 2011, Giaretta 

et al. 2021): Moocall (Moocall Ltd., Ireland: attached with a ratchet), CalveSense 

(Allflex Group Germany GmbH: attached with an adhesive and tape), and Calving Alert 

Set (Patura KG: attached with a clamp and tape). In studies, sensors for attachment 

on the cows’ tail detected up to 95% of calvings (see Giaretta et al. 2021), offering 

great potential for the health of cow and calf and reducing calf mortality (Lombard et 

al. 2007, Mee 2008, Barrier et al. 2013). Although these sensor systems showed the 

potential of early calving detection with a high accuracy (Giaretta et al. 2021, Horváth 

et al. 2021, Voss et al. 2021), studies provide first evidence that attaching sensors to 

the animals’ tail may cause changes in animal behavior, or that these sensors are 

being dropped (Lind and Lindahl 2019, Giaretta et al. 2021, Voss et al. 2021). However, 

the literature landscape on potential changes in the behavior of cows after attachment 

of a calving sensor to their tail is sparse. 

The economics of sensor-assisted estrus detection 

A glance at the literature revealed that studies on the economic evaluation of sensor-

assisted estrus detection are barely researched – despite sensors for estrus detection 

already having entered the market in the 1980s (Mottram 2016). Although it has often 

been emphasized that good reproductive performance has a crucial economic 

relevance in dairy farming (e.g., Groenendaal et al. 2004, Giordano et al. 2012, Galvão 

et al. 2013), only few studies have addressed the economics of automated estrus 

detection. While Rutten et al. (2014) and Bekara et al. (2017) did include investment 

costs in their economic analyses of activity sensors for estrus detection, the studies by 

Van Asseldonk et al. (1999) and Inchaisri et al. (2010) focused on a more general 

comparison of economic effects of different estrus detection rates (without considering 

investment costs for automated estrus detection). All these four studies chose 

stochastic dynamic simulation models to assess economic effects in dairy herds. To 

better understand the observed economic effects, several variables and scenarios 

(e.g., herd size, milk yield, reproductive performance) were included in these studies. 

The authors of the studies concluded that high estrus detection rates as well as 

investing in activity sensors for estrus detection are, on average, profitable for dairy 



30 

 

farms (Van Asseldonk et al. 1999, Inchaisri et al. 2010, Rutten et al. 2014, Bekara et 

al. 2017). However, the average values determined for a limited number of scenarios 

did not yet provide sufficient information about the percentage of dairy farmers for 

whom an investment in automated estrus detection would be profitable. As fixed values 

were assumed for estrus detection rates (visual, sensor-assisted) in the 

aforementioned studies, the results were limited to individual farm-specific situations 

in dairy herds. Thus, the existing literature does not fully account for the heterogeneity 

of dairy farms in the economic evaluation of sensor-assisted estrus detection.  

The underlying reasons for this limited number of studies on the economics of 

automated estrus detection are plausible: A dairy herd is a complex system. It consists 

of many individual living beings that react differently to changes, e.g., in fertility 

management. Changes in fertility management continue to involve a variety of 

adaptations in the dairy herd (e.g., demography or health status of the herd), which are 

difficult and very costly to capture in a real experiment conducted on a farm (Shalloo 

et al. 2004). Furthermore, changes in the fertility management of a dairy herd can only 

be detected comprehensively and reliably after a certain time, which would require a 

long period of on-farm experimentation. Further influencing factors that are gradually 

implemented, such as advancements in breeding, husbandry systems, or feeding, 

complicate the evaluation of the effects of changes in fertility management caused by 

sensors for automated estrus detection in isolation, particularly in a complex system 

such as a herd. Various operational situations such as breed, size, and milk yield of a 

dairy herd furthermore imply a need to consider many variables and would, therefore, 

result in very extensive on-farm experimentation. 
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4 Publications  

4.1 Understanding the public attitudinal acceptance of digital farming 

technologies: a nationwide survey in Germany 

Pfeiffer, J., Gabriel, A., Gandorfer, M. (2021). Understanding the public attitudinal 

acceptance of digital farming technologies: a nationwide survey in 

Germany. Agriculture and Human Values, 38(1), 107-128. 

(see Appendix for full text) 

Contributions  

The contributions of the authors to the publication were as follows: 

Johanna Pfeiffer took the lead in writing the first draft of the manuscript as well as in 

editing the manuscript in the review process. She also performed the literature review 

and discussion of the results of the study. Johanna Pfeiffer analyzed the data together 

with Andreas Gabriel. Andreas Gabriel developed the questionnaire with substantial 

input from Sebastian Schleicher. Andreas Gabriel also conducted the online survey 

and contributed valuable input to the manuscript, in particular to the material and 

methods section. Markus Gandorfer developed the research idea and improved the 

study with suggestions throughout the whole process.  

Methodological approach  

That technology acceptance plays a relevant role worth investigating was first 

recognized in Germany in the mid-1970s. It was triggered by critical voices rising in the 

population against an increasing technization of the living and working world, and 

initially particularly against nuclear energy (Gupta et al. 2012). A change in the attitude 

of the public was expected and technology acceptance research became increasingly 

important from then on (Hüsing et al. 2002, Petermann und Scherz 2005). 

Per se, “acceptance“ is an elastic and multifaceted term, a dynamic, complex construct, 

lacking a uniform definition (Renn and Zwick 1997, Kollmann 2004). In general, 

“acceptance“ describes “approval“, “appreciation“, “endorsement“, “confirmation“, or 

“agreeing with something“ (Lucke 1995). In the midst of this ambiguity, a wide variety 

of definitions and delimitations of the concept of acceptance is given in the literature. 

Lucke (1995) described three dimensions of acceptance: a cognitive (having 

knowledge of an issue), a normative-evaluative (considering the issue to be good or 

not good), and a conative (explicit agreement or disagreement with the issue) 

dimension. Another approach to defining “acceptance“ found in the literature is to 

differentiate between attitudinal and behavioral acceptance. For example, Kollmann 
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(2004) coined the definition of “acceptance“ this way: According to his definition, 

“acceptance“ is seen in three phases: “attitude“, “adoption“, and “acceptance“. 

“Attitude“ describes the level of assessment before purchasing a product (“assessment 

acceptance“), “adoption“ describes the level of action, i.e. purchase of a product 

(“action acceptance“), and “acceptance“ itself describes the level of use, i.e. active use 

of a product (“use acceptance“). Thus, capturing passive (attitude) and active 

(purchase and use) components of acceptance requires different approaches in 

acceptance research.  

As acceptance is a complex construct lacking a uniform definition, there are some 

aspects to consider in acceptance research:  

▪ Acceptance cannot be measured directly. Therefore, there is no single valid 

methodological way to measure acceptance. 

▪ As great as the diversity of definitions of acceptance, so, too, will be the diversity 

of what has been measured as “acceptance“ in studies (see Renn and Zwick 

1997, Hüsing et al. 2002). 

Since acceptance cannot be measured directly, suitable indicators are needed to 

indirectly capture relevant dimensions of acceptance (Renn and Zwick 1997). Adell 

(2009) gave some examples of different ways to assess acceptance: Assessment of 

the usefulness of and satisfaction with a product, assessment of the willingness to buy/ 

pay/ have/ keep/ use a product, assessment of the voluntary use of a product combined 

with the frequency of use, or assessment of physiological reactions.  

Nowadays, a comprehensive range of models for assessing acceptance and use of 

technologies in general is available to the scientific community: Theory of Reasoned 

Action (Ajzen and Fishbein 1980), Technology Acceptance Model (TAM) (Davis 1989), 

Theory of Planned Behaviour (TPB) (Ajzen 1991), Motivational Model (Davis et al. 

1992), Social Cognitive Theory (Compeau and Higgins 1995), Innovation Diffusion 

Theory (Rogers 1995), Unified Theory of Acceptance and Use of Technology (UTAUT) 

(Venkatesh et al. 2003), and the Dynamic Acceptance Model (Kollmann 1998), to 

name just a few of them. These models have in common that they include an active 

behavioral component of acceptance in terms of using a technology. However, public 

acceptance of digitalization in agriculture is characterized by the fact that the 

technology to be assessed (digital farming technologies) is not even considered for 

use by the public. Determining an adoption rate or frequency of use is thus not a 

suitable approach to assess public acceptance. Therefore, an attitude-oriented 

approach was chosen for the study on public acceptance by basing it on the construct 

“assessment acceptance“ from Kollmann’s (1998) Dynamic Acceptance Model. 
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To get to the bottom of the public’s view on digital farming technologies, the study in 

this dissertation draws its methodology from empirical social research. Empirical social 

research describes a systematic collection of data aiming to understand human 

behavior (Schnell et al. 2005). Therefore, it combines different methods, techniques, 

and instruments. The three basic methods of data collection are surveys, observations, 

and content analysis (Häder 2010, Punch 2013). Empirical social research combines 

both quantitative and qualitative methods. Since the focus of the study on the public 

acceptance of digital farming technologies was not only on making generalizable 

statements, but also on approaching to understand what thoughts the public 

associates with these technologies, it includes quantitative and qualitative research 

approaches. An online survey was conducted to answer the research question. 

Specifically, Likert scales for statements concerning digital farming technologies 

(quantitative approach) and subsequently spontaneous associations with four pictures 

showing digital farming technologies in action (qualitative approach) complemented 

each other. However, as the spontaneous associations mentioned were finally grouped 

into categories and their frequency of naming was quantified, the procedure combines 

qualitative with quantitative approaches. The two approaches represent two 

successive parts of the online questionnaire, which were both answered by the same 

sample. This resulted in a high sample size for both the quantitative and qualitative 

approaches.  

Empirical data on the attitudinal acceptance of digital farming technologies were 

collected in a nationwide survey in Germany. Since 90 % of the population living in 

Germany use the internet (Federal Statistical Office Germany (Destatis) 2018), an 

online survey was determined as the method of choice to achieve a high sample size 

across the whole country. This approach allowed for the assessment of a 

geographically distributed sample within a short time, thus being time- and cost-

effective (see also Lefever et al. 2007, Sue and Ritter 2012). There is a hypothesis of 

differences in rural-urban attitudes toward agriculture (e.g., Van Liere and Dunlap 

1980, Freudenburg 1991, Sharp and Tucker 2005). These differences could thus not 

only apply to agriculture per se, but also potentially to digital farming technologies. 

Since the respondents had to indicate the size of their place of residence (divided into 

three size categories), rural-urban differences in the attitudinal acceptance of digital 

farming technologies could be assessed. In this regard, a sample distributed across 

Germany provided reliable results. Although internet usage is comparatively more 

limited among older generations (Destatis 2018), the sample of the study is 

representative in terms of e.g., age due to pre-quotation. Thus, this does not represent 

a significant limitation in the interpretation of the data. 

 



34 

 

Summary 

The aim of the study was to assess the general attitudes of the German public toward 

the use of digital farming technologies and their effects on farmers, consumers, animal 

husbandry, and crop production. An additional objective of the study was to identify 

indications of concerns about digital farming technologies. The attitudinal acceptance 

of digital farming technologies was assessed as the first phase (assessment phase) in 

the acceptance process of Kollmann’s (2004) acceptance model. A nationwide online 

survey in 2018 combined quantitative and qualitative approaches of empirical social 

research and yielded 2,012 analyzable questionnaires. Likert scales were applied to 

capture the respondents’ general attitudes toward benefits of digital farming 

technologies, their consent to the use of digital farming technologies, and their consent 

to state subsidies for farmers investing in digital farming technologies as target 

variables. The latter two target variables were assessed based on four examples of 

digital farming technologies: spot spraying, digital hoeing, near-infrared spectroscopy 

sensor technology, and sensors for animal husbandry. The respondents’ socio-

demographics, connection to agriculture, knowledge about present-day agriculture, 

trust in farmers, and general attitudes toward farming were queried as factors 

potentially influencing the target variables. A multivariate regression model was applied 

to identify factors influencing the target variables. As a second methodological 

approach, respondents could voluntarily write down up to three spontaneous 

associations for each of four pictures showing digital farming technologies: a milking 

robot, a feeding robot, an autonomous tractor, and a swarm of small field robots. 

In their general attitudes toward digital farming technologies, respondents were, on 

average, more positive than negative. Also, there was, on average, more consent than 

disapproval to the use of the four specific digital farming technologies and on state 

subsidization for farmers investing in them. Some factors were found to influence the 

target variables. Respondents having more positive general attitudes toward farming 

(e.g., animal welfare and environmental protection are considered very important) and 

more trust in farmers rated all three target variables on digital farming technologies 

significantly more positive. Comparatively smaller, but also positive influences on some 

of the target variables were identified for knowledge of present-day agriculture, gender, 

age, and education level. Only work experience in the agricultural sector of the 

surveyed participants had a significant negative influence on the two target variables 

of general attitudes toward the benefits of digital farming technologies and consent to 

the use of the specific four digital farming technologies. From the spontaneous 

associations with the four pictures showing digital farming technologies, categories 

were formed for each technology. Categories such as “future and progress“, “efficiency 

and reduced workload“, “industrial agriculture“, and “costs of technology“ were 
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associated with all four digital farming technologies. In the case of the milking robot 

and feeding robot, additionally terms belonging to the categories “dairy 

farming/milking“, “cow“, “hygiene“, and “animal cruelty“ were mentioned, and in the 

case of the swarm of field robots and the autonomous tractor, terms belonging to the 

categories “field cultivation“, “nature and plants“, “environmental protection“, “concerns 

for environmental protection“, “animal protection“, “safety“, and “human health“ were 

mentioned. In general, more negative terms were associated with the milking robot and 

feeding robot than with the swarm of field robots and the autonomous tractor. For both 

the milking robot and feeding robot, a particularly high number of negative terms 

belonging to the categories “animal cruelty“, “industrial agriculture“, and “terms of 

rejection” (e.g., “awful”) were noted by the respondents. The spontaneous associations 

thus provided relevant clues as to the concerns on which a potential rejection, or non-

acceptance, of digital farming technologies is based. 

The study showed a positive public attitudinal acceptance of digital farming 

technologies when their potential in terms of environmental protection and animal 

welfare was briefly explained. However, the spontaneous associations evoked 

comparatively more negative attitudes toward digital farming technologies, as 

emotions were aroused by the pictures. Since more negative terms were associated 

with the milking robot and feeding robot than with the two digital farming technologies 

applied in crop production, it is assumed that applying digital technologies on animals 

is viewed more critically. Another conclusion of the study is that it is unlikely that digital 

farming technologies will improve the image of agriculture per se. If a system is 

generally called into question (e.g., indoor housing in livestock farming or conventional 

crop production applying pesticides), the use of digital farming technologies that may 

contribute to environmental protection or animal welfare will not significantly attenuate 

this overall criticism. 

4.2 Sensor and video: two complementary approaches for evaluation of dairy 

cow behavior after calving sensor attachment 

Pfeiffer, J., Spykman, O., Gandorfer, M. (2021). Sensor and video: two 

complementary approaches for evaluation of dairy cow behavior after calving 

sensor attachment. Animals, 11(7), 1917. 

(see Appendix for full text) 

Contributions 

The contributions of the authors to the publication were as follows: 
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Johanna Pfeiffer developed the conceptualization of the study and methodological 

approaches applied. She was responsible for the collection of the entire data set. She 

also performed data analysis (in particular video observations) and literature review. 

Johanna Pfeiffer wrote the original draft of the manuscript and led the review process. 

Olivia Spykman made important contributions to the paper by developing and 

executing the methodology of analyzing the variability of activity index. She also 

performed reviewing and editing of the manuscript. Markus Gandorfer provided 

valuable input to the paper with the development of the research idea and 

conceptualization of the study design and methodology. He provided relevant 

comments on the manuscript and interpretation of the results. 

Methodological approach  

Various parameters have been analyzed and different approaches have been applied 

in literature to assess behavioral changes or even stress in dairy cows. When 

assessing stressors, behavioral and physiological parameters can be distinguished 

(see Table 1), which may be influenced simultaneously (Ratnakaran et al. 2017) and 

may consequently impact animal performance.  

Table 1. Parameters applied in the literature to measure stress response in dairy cattle (no 

claim to completeness) 

Parameter Source 

Behavioral  

Intake of feed and water, 

rumination 

Gorewit et al. 1985, Ominski et al. 2002, Reinemann 

et al. 2004, Abeni and Galli 2017, Kovács et al. 2019  

Defecation, urination Rushen et al. 1999, Rushen et al. 2001, Müller and 

Schrader 2005 

Vocalization Rushen et al. 1999, Watts and Stookey 2000, Rushen 

et al. 2001, Müller and Schrader 2005  

Activity (stepping, leg lifting, 

kicking, tail lifting, fidgeting, 

overall activity level) 

 

Visual (video/live 

observation) 

Gorewit et al. 1985, Winter and Hillerton 1995, Boissy 

and Le Neindre 1997, Rushen et al. 2001, Wenzel et 

al. 2003, Müller and Schrader 2005, Cook et al. 2007, 

Stewart et al. 2017, Kovács et al. 2019, Pilatti et al. 

2019 

Activity sensor Rigalma et al. 2010, Abeni and Galli 2017, Stewart et 

al. 2017, Heinicke et al. 2019 

Physiological  
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Endocrine hormones (e.g., in 

milk, blood) 

Lefcourt et al. 1986, Wise et al. 1988, Lay et al. 1992, 

Wenzel et al. 2003, Rigalma et al. 2010 

Heart rate Hopster and Blokhuis 1994, Lefcourt et al. 1999, 

Wenzel et al. 2003, Kovács et al. 2019 

Respiration Gaughan et al. 2000, Schütz et al. 2010, Schütz et al. 

2014 

Temperature Hillman et al. 2005, Schütz et al. 2010, Stewart et al. 

2017 

Pain sensitivity Rushen et al. 1999 

 

Stressors for cows having been analyzed in the literature include, for instance, isolation 

from the herd (Boissy and Le Neindre 1997, Rushen et al. 1999, Rushen et al. 2001, 

Müller and Schrader 2005), confrontation with novelties such as a milking system 

(Winter and Hillerton 1995, Wenzel et al. 2003, Kovács et al. 2019), exposure to stray 

voltage (Gorewit et al. 1985, Lefcourt et al. 1986, Reinemann et al. 2004, Rigalma et 

al. 2010), and heat (Wise et al. 1988, Kadzere et al. 2002, Ominski et al. 2002, Hillman 

et al. 2005, Cook et al. 2007, Schütz et al. 2010, Schütz et al.2014, Abeni and Galli 

2017, Heinicke et al. 2019, Pilatti et al. 2019). In many of these studies, activity 

behavior has been analyzed to assess the onset of discomfort or stress response (see 

Table 1). Activity was evaluated either visually (e.g., by means of an ethogram) or with 

recording devices such as activity sensors. 

The study combines two methodological approaches to assess dairy cow behavior 

after calving sensor attachment to the tail. The first methodological approach is a 

behavioral classification based on video analysis, which is frequently applied in dairy 

behavior research (e.g., Gorewit et al. 1985, Winter and Hillerton 1995, Boissy and Le 

Neindre 1997, Rushen et al. 2001). As a second, innovative methodological approach, 

the study relies on activity data measured by a rumen bolus to evaluate the cows’ 

behavior. Specifically, the second methodological approach is an analysis of the 

variability of activity values around the mean. Studies have revealed that the scattering 

of values around a mean provide relevant information (Alsaaod et al. 2012, Van Nuffel 

et al. 2013, Thorup et al. 2015) as an increase in mean does not necessarily go along 

with an increase in the variability around this mean (and vice versa). Analyzing the 

variability around a mean value (testing for homogeneity of variance) is well known 

from economics, as it is a commonly applied approach to describe the impact of 

specific shocks on price volatility (e.g., Gandorfer et al. 2017). The scattering of values 

around a mean was shown to provide also valuable information in animal behavior 

research. In this context, analyzing the variability of cow activity has become 

established for the detection of diseases. In a study by Edwards and Tozer (2004), 

additional insight provided by analyzing the variability of activity became apparent for 
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the detection of cows with metabolic or digestive disorders: The variability of activity, 

recorded with pedometers, was higher in sick compared to healthy cows (Edwards and 

Tozer 2004). Analyzing variability of cow activity has also become established for the 

detection of lameness (Chapinal et al. 2010, Thorup et al. 2015). Alsaaod et al. (2012) 

concluded a low adequacy of single analysis of thresholds and absolute values for an 

early detection of lameness in dairy cattle. Instead, more precise results were obtained 

with both positive and negative deviations from normal behavior of the cows. Van 

Nuffel et al. (2013) analyzed the variability of gait variables such as step width or stance 

time for early detection of lameness in dairy cattle. Based on standard deviations, a 

coefficient of variation for gait variables of different legs was calculated to detect cows 

suffering from lameness. Following these findings, the methodological approach of 

analyzing the variability of activity was also applied in this study. 

Summary 

The study aim was to analyze cow behavior after attaching two commercial calving 

sensors (Moocall (Moocall Ltd., Dublin, Ireland) and CalveSense (Allflex Group 

Germany GmbH, Bad Bentheim, Germany)) to the tail. The data stem from 18 animals 

on a dairy research and demonstration farm (state farm Achselschwang, Bavaria, 

Germany) where they were separated into a maternity pen littered with straw prior to 

calving and had one of the two calving sensors attached. Two methodological 

approaches were chosen to answer the research question. As all 18 animals of the 

sample were equipped with a rumen bolus (smaXtec animal care GmbH, Graz, Austria) 

to continuously record their activity, the first methodological approach was an analysis 

of activity behavior (activity index of the rumen bolus) before and after calving sensor 

attachment. In a period from five days before to 24 hours after calving sensor 

attachment, variability of automatically recorded activity was analyzed using the 

Brown-Forsythe test. The second, more established methodological approach was a 

behavioral observation via video analysis in a subgroup of nine animals. The behaviors 

walking, standing, lying, eating, drinking, social interaction, tail raising, rubbing the tail 

on objects, and the number of standing and lying bouts were observed visually. These 

behaviors were analyzed twelve hours immediately after calving sensor attachment 

and twelve hours at the same time of day the day before. The periods considered on 

the day(s) before and on the day of calving sensor attachment were divided into time 

slots of four hours each for both methodological approaches. 

In the first methodological approach, no change in the absolute number of time slots 

showing a significant increase in the variability of activity was found on average across 

all 18 cows. In the second methodological approach, no significant changes in most 

visually analyzed behaviors, namely walking, eating, drinking, social interaction, tail 
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raising, rubbing the tail on objects, and the number of standing and lying bouts was 

found on average. On average, cows spent more time lying and less time standing 

during the first hours after calving sensor attachment. However, this could be sourced 

to one single cow and was rather interpreted as a shift in lying and standing time. 

Inspecting the cows individually, it appeared that in some of them there was a greater 

number of time slots showing a significant increase in the variability of activity and an 

increased frequency of tail raising and rubbing the tail on objects after calving sensor 

attachment. Although these changes were only observed in individual cows, it would 

be relevant to analyze these findings on a larger scale. 

From the findings obtained in both methodological approaches in the study, it was 

concluded that attaching a calving sensor to the tail is not generally perceived as 

disturbing by cows. However, as some cows showed an increased frequency of tail 

raising and rubbing the tail on objects after calving sensor attachment, they could have 

tried to drop the sensor. Because these observations were only made in the first hours 

after calving sensor attachment, a short adaptation period may be assumed, which 

should be weighed against the positive effects of calving sensors on the welfare of cow 

and calves due to the prevention of dystocia. 

4.3 Evaluation of activity meters for estrus detection: A stochastic bioeconomic 

modeling approach 

Pfeiffer, J., Gandorfer, M., Ettema, J. F. (2020). Evaluation of activity meters for 

estrus detection: A stochastic bioeconomic modeling approach. Journal of Dairy 

Science, 103(1), 492-506. 

(see Appendix for full text) 

Contributions 

The contributions of the authors to the publication were as follows: 

Johanna Pfeiffer developed the conceptualization of the study together with Markus 

Gandorfer. She parameterized the SimHerd model and performed all analyses of the 

study (SimHerd and @RISK). She also conducted the literature review, wrote the 

original draft of the manuscript, and led the review process of the manuscript. Markus 

Gandorfer contributed decisively to the study conceptualization and methodological 

development of the net return model. His feedback on the manuscript led to 

improvements throughout the whole writing and editing process. Jehan Ettema, as co-

developer of SimHerd, gave important comments on the parameterization of SimHerd. 

He contributed to the manuscript with the description of SimHerd in the material and 

methods section. 
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Methodological approach  

Simulation experiments are established in science, expanding the spectrum of 

methodological approaches in addition to real experiments. Simulation experiments 

are performed applying agricultural system models that include relevant farm system 

components and their interactions. Jones et al. (2017) date the beginnings of 

agricultural system models back to the 1950s. Starting with the simulation of plant and 

soil processes (Van Bavel 1953, De Wit 1958), the development of herd dynamics 

simulation models followed in the 1970s (Jones et al. 2017). To transfer the knowledge 

gained in this way to the real system, it is important that the model represents the 

system as closely to reality as possible. With an increasing number of variables and 

their interactions considered in a model, its potential to represent a farm as realistically 

as possible increases (Jalvingh 1992). To answer a scientific question, either new 

models are developed, or existing models are adapted. The establishment of model-

based simulation experiments in agricultural research is demonstrated by the large 

number of farm models applied in studies (see e.g., Berentsen and Giesen 1995, 

Herrero et al. 1999, Hansen et al. 2000, Keating et al. 2003, Cabrera et al. 2006, 

Modin-Edman et al. 2007, Schils et al. 2007, Crosson et al. 2011, Doole et al. 2013).  

Considering dairy herds in a model is expedient when it comes to decisions regarding 

herd management or technology investments. In the literature, dynamic stochastic 

simulation models of dairy herds for this purpose exist, mostly based on Microsoft 

Excel (Microsoft Corporation, Redmond, WA, USA). Such a model of a dairy herd has 

been used by Bewley et al. (2010b) to assess the economic impact of investments in 

technologies such as an automated body condition scoring system. Stochastic dairy 

herd models have also been applied in studies evaluating different strategies of 

reproduction management (Inchaisri et al. 2010), or calving management (Jalvingh et 

al. 1993). Bekara et al. (2017) and Rutten et al. (2014) have even applied dairy herd 

models for their economic evaluation of technologies to improve estrus detection. 

For the study on the economic evaluation of automated estrus detection, the dairy herd 

model SimHerd (SimHerd A/S, Viborg, Denmark) was parameterized. SimHerd is a 

dynamic, mechanistic, and stochastic simulation model for dairy herd management 

decision support. It takes into account more than 2,000 parameters that describe a 

plethora of aspects of a dairy herd, including parameters of fertility management 

(Sørensen et al. 1992). The biological parameters are specified at cow level, 

embedded in management strategies at herd level. Therefore, changes in estrus 

detection rates (e.g., due to automated estrus detection) and their effects on gross 

margin per cow and year are simulated. The idea of SimHerd was born at Aarhus 

University (Denmark) in 1989, from when it was continuously developed. Initially, it was 

https://www.sciencedirect.com/science/article/abs/pii/S0308521X06001818#!
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used solely for research purposes, but its field of application was extended to 

consulting and veterinary medicine. Meanwhile, analyses on animal health economics 

and herd management, methodically based on the SimHerd model, have been 

published in several studies. These studies based on SimHerd dealt with different dairy 

herd breeding strategies such as crossbreeding (Clasen et al. 2020) or the use of 

sexed semen (Ettema and Østergaard 2015, Ettema et al. 2017). SimHerd was also 

applied to address animal health issues, as comprehensive analyses have already 

been carried out on mastitis (Østergaard et al. 2005a), milk fever (Østergaard et al. 

2003), ketosis (Østergaard et al. 2000), and lameness (Ettema and Østergaard 2006). 

Also changes in the incidence of diseases that may result from the use of technologies 

such as an inline progesterone indicator (Østergaard et al. 2005b) have been 

simulated with SimHerd. 

In the few existing studies on the economics of automated estrus detection, different 

herd sizes, labor costs, and milk yields were simulated, and sometimes even stochastic 

simulation models for dairy herds were applied (Van Asseldonk et al. 1999, Rutten et 

al. 2014, Bekara et al. 2017). A closer look at the studies reveals that they assumed a 

deterministic value for the visual and sensor-assisted estrus detection rate, 

respectively. Thus, the results of these studies were limited to a single mean value for 

each scenario, respectively. However, quite a variation in both estrus detection rates 

(visual and sensor-assisted) (see Rutten et al. 2013) and time spent for estrus 

detection (visual and sensor-assisted) exists. The study in this dissertation differs from 

previous economic studies especially in that the latter were limited to individual farm-

specific situations in dairy herds. Applying a stochastic dynamic simulation model for 

dairy herds and analyzing different scenarios (as in previous studies), the study in this 

dissertation additionally modeled estrus detection rates (visual, sensor-assisted) with 

distributions using the Monte Carlo method in @RISK (Palisade Corporation, Ithaca, 

NY) to account for the heterogeneity observed on dairy farms. In contrast to previous 

studies, the study also considered probability distributions for the time spent for estrus 

detection (visual, sensor-assisted) (see Table 2). Thus, a probability distribution for the 

net return of investment in activity meters for estrus detection was modeled. 

Monte Carlo simulation is a stochastic method that allows taking uncertainties of 

variables into account, thus being a tool for quantitative risk analysis. Underlying 

distributions of variables represent the probabilities of occurrence of values the 

variable can take and form the basis for a large number of random experiments. The 

principle of Monte Carlo simulation is based on drawing many random samples from 

the distributions while at the same time making the resulting combinations traceable 

(Harrison 2010). Thus, it allows understanding the behavior of a sampling distribution 

in random samples. For the target variable, a relative frequency distribution is given, 
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which could also be observed in the simulated populations (see Mooney 1997, Casella 

and Robert 1999). This makes Monte Carlo simulation a scientific tool for questions 

that are analytically intractable and too costly, time-consuming, or impractical to 

conduct experiments (Harrison 2010). 
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Summary 

The aim of this study was a comprehensive economic evaluation of automated estrus 

detection by means of activity meters. As methodological approach, a stochastic model 

was applied with the net return of investment in activity meters for estrus detection 

being the target variable. The net return of investment quantifies the economic benefit 

of sensor-assisted compared to visual estrus detection. The model included the gross 

margin, expressed as a function of estrus detection rate (visual, sensor-assisted), the 

time spent for estrus control (visual, sensor-assisted), labor costs, and all costs 

associated with the investment in activity meters. As both estrus detection rate (visual, 

sensor-assisted) and time spent for estrus control (visual, sensor-assisted) are subject 

to heterogeneity on farms, they were modeled using the Monte Carlo method in @RISK 

(Palisade Corporation, Ithaca, NY). The gross margin was calculated using SimHerd 

(SimHerd A/S, Viborg, Denmark). In SimHerd, average production prices of the years 

2016 to 2019 were assumed. As uncertainty was considered for estrus detection rates 

and time spent for estrus control, probability distributions for the net return of 

investment in activity meters for estrus detection were given as results. The scenarios 

analyzed included the Simmental and Holstein breed, milk yields of 7,000, 9,000, and 

11,000 kg/year, herd sizes of 70 and 210, labor costs of 10 and 20 €/h, and an 

equipment with activity meters of only cows or cows and heifers. 

The net return of investment was calculated for 32 different scenarios, which included 

many constellations of dairy farms and thus gave a realistic range for the economic 

benefit when investing in activity meters for estrus detection. The first step was 

analyzing the change in gross margin with increasing estrus detection rate. The 

relationship between estrus detection rate and gross margin could be described with a 

polynomial function. An increase in the gross margin by optimizing the estrus detection 

rate is largely attributed to increased revenues from calves and heifers. Since fewer 

cows have to leave the herd due to poor fertility when estrus detection rate increases, 

the number of productive years per cow increases. This is accompanied by a change 

in herd demographics: Cows are getting older and are therefore more susceptible to 

disease, which also increases expenses for disease treatment. However, revenues 

increased faster than expenses in all scenarios analyzed, leading to an increase in 

gross margin with improved estrus detection rate. 

The average net return of investment in activity meters for estrus detection was 

between +7 and +46 € per cow and year for all scenarios analyzed. The values for the 

10th percentile were between -11 and +13 € per cow and year and for the 90th percentile 

between +17 and +95 € per cow and year. Considering all scenarios analyzed, 



45 

 

investing in activity meters for estrus detection would be profitable for 74 to 99 % of 

dairy farms (i.e., net return of investment > 0 € per cow and year).  

Due to fixed cost degression effects, the net return of investment in activity meters for 

estrus detection was higher for herd sizes of 210 compared to 70. Equipping not only 

cows but also heifers resulted in a higher average net return of investment and higher 

values for the 90th percentile. The net return of investment also increased with higher 

labor costs. With higher milk yield level, the average net return of investment generally 

increased as well. However, this increase was more pronounced from 7,000 to 

9,000 kg (Simmental breed) than from 9,000 to 11,000 kg (Holstein breed).   

The study results revealed a certain economic potential of activity meters for 

automated estrus detection. This economic potential has been quantified for the first 

time in this study for a comprehensive range of dairy farm constellations. As activity 

meters nowadays combine other functions besides estrus detection, such as an early 

detection of diseases and an early detection of calving, their economic potential will be 

even higher. This additional benefit needs to be evaluated and quantified in future 

research studies.  



46 

 

5 Discussion, conclusions, and implications 

In the three publications of the dissertation, new valuable findings on a systems-

oriented evaluation of digital technologies in dairy farming were developed. The results 

form important elements for closing the research gaps described in the respective 

literature reviews of the three research fields of the dissertation. The aspects analyzed 

in the studies give a predominantly positive assessment of the digital technologies 

analyzed: Activity sensors for automated estrus detection showed certain economic 

potential for the majority of scenarios analyzed, calving sensors attached to the tail of 

animals did not lead to significant behavioral changes on average across all animals 

analyzed, and analysis of public acceptance did not reveal a major fundamental 

aversion to digital farming technologies per se.  

5.1 Discussion of main findings 

Following a systems-oriented view of dairy farming, it has to be considered that a dairy 

farmer is influenced in his actions by the environment in which he is embedded 

(Darnhofer et al. 2012). Animal welfare has been playing an increasingly important role 

in the last two decades, especially in North-West Europe (Te Velde et al. 2002, 

Boogaard et al. 2006, María 2006, Miele et al. 2011, TNS Emnid 2012), but also in 

other regions of the world such as North America (e.g., Sharp and Tucker 2005, 

Kendall et al. 2006, Deemer and Lobao 2011, Ventura et al. 2016). Although similar 

results to the study on the public attitudinal acceptance of digital farming technologies 

among the German public might be obtained in other North-West European countries, 

the results cannot be transferred one to one to other countries or regions in the world. 

The results have to be seen in the context of region and culture. In particular, the public 

acceptance study (Pfeiffer et al. 2021a) only represents a momentum for Germany and 

thus also cannot necessarily be transferred in time.  

The results of the online survey among the German public show a lack of acceptance 

of current animal husbandry systems in general. This is in line with findings from other 

studies showing a similar mood in the German public toward animal husbandry (e.g., 

Helmle 2010, Rovers et al. 2018). Reasons explaining this lack of acceptance, which 

emerged both in the spontaneous associations of the study (Pfeiffer et al. 2021a) and 

in further literature, include for instance factory farming, industrial farming, a dwindling 

contact between animal and farmer, the use of antibiotics, and a perceived lack of 

animal welfare (see Vanhonacker et al. 2012, Simons et al. 2019, Wolfram et al. 2019). 

These are critical aspects of agriculture that are frequently addressed in the German 

media (Helmle 2010, Wolfram et al. 2019) and therefore exert a relevant influence on 

the public, for whom the media are one of the most important sources of information 

(TNS Emnid 2012). 
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To develop approaches for increasing public acceptance and put efforts in the right 

place, knowledge of most decisive influencing factors in this respect is relevant. A 

frequently postulated reason for the lack of public acceptance of (digital) animal 

husbandry is the public’s low level of agricultural knowledge, due to a great spatial 

distance from primary agricultural production. The factual situation on this is not yet 

clear, but there are indications, including the data of the study in this dissertation 

(Pfeiffer et al. 2021a), to refute this hypothesis. Studies among urban and rural 

population on the public acceptance of agriculture in terms of animal welfare and 

environmental aspects did not demonstrate a clear direction of influence (see e.g., Van 

Liere and Dunlap 1980, Freudenburg 1991, Sharp and Tucker 2005). Among the 

survey respondents in Germany (Pfeiffer et al. 2021a), neither the size of place of 

residence (as potential indicator of spatial proximity to agriculture) nor the level of 

knowledge of present-day agriculture nor personal contact with farmers and discussion 

about agricultural topics had a clear positive influence on the attitudinal acceptance of 

digital farming technologies. It has already been investigated whether providing more 

information or more insights (e.g., by means of a farm visit) lead to greater public 

acceptance. However, there are studies on genetically modified food (Wuepper et al. 

2019), biotechnology (Scholderer and Frewer 2003), and dairy cattle welfare (Ventura 

et al. 2016, Weary and Von Keyserlingk 2017) that do not find any positive correlation 

in this respect, but in some cases even negative influences. An underlying reason for 

this is that opinions are not only based on experience and knowledge, but rather on 

one’s own values (Te Velde et al. 2002). Although it was not directly observable in the 

model applied in the public acceptance study (Pfeiffer et al. 2021a), it is advocated that 

personal contact and face-to-face conversation between farmer and consumer is a 

more important step than solely providing information to strengthen public acceptance 

(see also Boogaard et al. 2011, Weary and Von Keyserlingk 2017, Wildraut et al. 

2019). Furthermore, the results of the study (Pfeiffer et al. 2021a) call for further well-

founded analyses on a larger basis of whether the hypothesis that public acceptance 

of agriculture is particularly low in urban areas can be confirmed.  

The literature on dairy cow behavior after calving sensor attachment is limited to a few 

studies, all of which focus on the Moocall sensor (Lind and Lindahl 2019, Giaretta et 

al. 2021, Voss et al. 2021). The findings of the study in this dissertation (Pfeiffer et al. 

2021b) reveal similar tendencies as the previous studies on the Moocall sensor, but 

also provide information that goes beyond these previous findings. As the behavioral 

analysis study (Pfeiffer et al. 2021b) did not show a generally altered ethological 

pattern of the dairy cows analyzed after attachment of a Moocall or CalveSense 

sensor, it reinforces the findings of the Giaretta et al. (2021) study focusing on the 

Moocall sensor. While the study in the dissertation (Pfeiffer et al. 2021b) and the 

Giaretta et al. (2021) study did not show any significant changes in tail raising after 
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calving sensor attachment on average across the cows analyzed, 80% of dairy farmers 

interviewed by Lind and Lindahl (2019) reported increased tail raising. In the Giaretta 

et al. (2021) study, however, the visual behavioral observation was performed with 

time gaps (three times a day, with 15 min per observation). The study in this 

dissertation (Pfeiffer et al. 2021b) supports the findings of Lind and Lindahl (2019) to 

some extent, as individual animal analysis showed that three of nine cows responded 

to calving sensor attachment (Moocall or CalveSense) with a temporarily increased 

frequency of tail raising. Also, the rubbing of the tail on objects observed in two of these 

three cows strengthens the indications of a reaction of individual cows after calving 

sensor attachment, which may be interpreted as discomfort or an attempt to drop the 

calving sensor. Rubbing the tail attenuated over the time period analyzed, suggesting 

an adaption process of behavior, as also reported in Lind and Lindahl (2019). Thus, 

larger samples are needed to provide the scientific evidence for the behavioral 

changes found in individual animals. 

The study in the dissertation on a comprehensive behavioral evaluation after 

attachment of the two calving sensors Moocall and CalveSense (Pfeiffer et al. 2021b) 

provides valuable insights into animal welfare aspects of calving sensors. Per 

definition, appropriate behavior is an animal welfare principle, in addition to good 

feeding, good housing, and good health (absence of pain) (Welfare Quality 2009). 

Apart from the unaffectedness of the usual behavior pattern (Giaretta et al. 2021, 

Pfeiffer et al. 2021b), increases in tail raising and rubbing the tail observed in individual 

cows (Pfeiffer et al. 2021b) need to be analyzed more deeply in terms of frequency 

and impact on animal welfare. It is also relevant to avoid pressure marks or swellings 

of the tail observed in some animals (Lind and Lindahl 2019, Pfeiffer et al. 2021b, Voss 

et al. 2021) by an appropriate design of calving sensors.  

In addition to a sufficiently high sensitivity of the sensor systems and acceptance of 

the sensor systems by the animals, cost-effectiveness plays a central role in the future 

dissemination on dairy farms. The economic potential of activity meters for estrus 

detection determined in the study in the dissertation (Pfeiffer et al. 2020) underscores 

the economic relevance of good fertility performance in dairy herds (see Van 

Asseldonk et al. 1999, Groenendaal et al. 2004, Inchaisri et al. 2010, Giordano et al. 

2012, Galvão et al. 2013). The study demonstrated that this economic potential can be 

exploited by sensor systems. Due to considered probability distributions and a diversity 

of analyzed scenarios, the economic study in the dissertation (Pfeiffer et al. 2020) 

covers a wide range of dairy farm situations when investing in activity meters for estrus 

detection. The results of the few previous studies on profitability of automated estrus 

detection can be placed in this resulting range for the net return of investment in activity 

meters for estrus detection. Rutten et al. (2014) demonstrated an average marginal 
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financial effect of 2,827 € for the baseline scenario when increasing estrus detection 

rates from 50 to 80 % by investing in estrus detection sensors. Considering the 

assumed herd size of 130 cows, this would result in an average marginal financial 

effect of 22 € per cow, which is in line with the mean value for the net return of 

investment of 7 to 46 € (depending on scenario) calculated in the study in the 

dissertation (Pfeiffer et al. 2020). Bekara et al. (2017) demonstrated even greater 

economic potential for an investment in automated estrus detection with a calculated 

increase in annual gross margin per cow by 8 to 92 €, assuming that estrus detection 

rate increases from 50 to 90 %. An economic advantage of this amount is also found 

in the results of the study in this dissertation (Pfeiffer et al. 2020) for particularly 

favorable scenarios, especially since in one scenario (herd size 210, cows and heifers, 

milk yield 11,000, and labor costs of 20 €/h) even the value for the 90th percentile 

already amounts to 95 €. The 74 to 99 % probability of an investment having a positive 

economic effect (depending on scenario) obtained in the study (Pfeiffer et al. 2020) 

has also been found in previous studies: In Rutten et al. (2014), an investment was 

profitable for most of the analyzed scenarios, and in Bekara et al. (2017) for two-thirds 

of the analyzed situations. The results gained in the dissertation’s study are also 

consistent with the assessment by dairy farmers. Out of 219 dairy farmers surveyed in 

Germany, only 18 % denied that they were saving money after installing a collar sensor 

for automated estrus detection (Michaelis et al. 2013). The positive economic effects 

of larger herd size (Rutten et al. 2014, Bekara et al. 2017), higher labor costs (Rutten 

et al. 2014), higher milk yield level (Van Asseldonk et al. 1999), and optimization of 

fertility performance in heifers (Ettema and Santos 2004) observed in the study (Pfeiffer 

et al. 2020) has also been found in previous studies. 

5.2 Methodological discussion 

It is methodologically challenging to grasp the public acceptance of technologies that 

are not directly intended for use by consumers. Therefore, it was not possible to apply 

common models for measuring technology acceptance such as the Technology 

Acceptance Model (Davis et al. 1989), Theory of Planned Behavior (Ajzen 1991), or 

Unified Theory of Acceptance and Use of Technology (Venkatesh et al. 2003). The 

construct “attitudinal acceptance” according to Kollmann (2004) was therefore chosen 

as a possible approach, knowing that it does not cover any action (e.g., purchase of 

technology) or use components, which are integral parts of “acceptance” by definition 

(Lucke 1995, Schäfer and Keppler 2013).Thus, the results are not to be interpreted as 

overall acceptance of digital farming technologies, but are nevertheless a basis for 

assessing the attitudinal acceptance. 

An important finding regarding the methodology of the public acceptance study 

(Pfeiffer et al. 2021a) is that it is purposeful to rely on different methodological 
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approaches to draw reliable conclusions about the public acceptance. As the 

spontaneous associations led to a more negative evaluation of the digital technologies, 

on the one hand, the pictures evoked “affective resonances” (Shouse 2005), feelings 

and emotions (Cvetkovich 2003) and thus appealed to a further level of meaning, and, 

on the other hand, it is suggested that the spontaneous associations reflect a 

somewhat more subconscious assessment of attitudinal acceptance. Relying on 

multiple methodological approaches to capture attitudinal acceptance was a valuable 

approach as they all provided multifaceted results, whereby a consideration of the 

statements that are rated on Likert scales alone would have rather overestimated the 

public attitudinal acceptance. 

Regarding the questionnaire, it can be stated that although examples of digital farming 

technologies were briefly explained, it remains open to what extent the respondents 

were able to gain an idea of the inherently comprehensive and complex topic of digital 

farming technologies that is not very tangible for respondents. It remains unclear 

whether providing more information on digital farming technologies would have led to 

a different assessment of the statements rated on Likert scales. Also, showing other 

pictures of the four digital farming technologies chosen could have led to different 

spontaneous associations. 

As recognizing behavioral changes or even stress in animals is such a relevant issue, 

the behavioral analysis study (Pfeiffer et al. 2021b) highlights the potential to automate 

the process of animal behavior analysis to increase efficiency of behavioral research. 

The combination of the two methodological approaches applied for the first time to 

evaluate dairy cow behavior after calving sensor attachment provided precise 

information. So far, behavior in cows is assessed to a large extent visually via live 

observation or video analysis. As visual assessment of animal behavior is very time-

consuming (Müller and Schrader 2003), studies relying on visual observation of 

behavior often use small sample sizes (e.g., Gorewit et al. 1985, Winter and Hillerton 

1995, Boissy and Le Neindre 1997, Rushen et al. 2001). To increase sample size and 

thus efficiency of video analysis, it is argued for the need to automate the process of 

visually assessing animal behavior. Automation of video analysis can be achieved 

through progress in artificial intelligence (see e.g., Jingqiu et al. 2017, Li et al. 2018). 

Thus, an efficient and at the same time objective and reliable (Winckler and Willen 

2001, O’Callaghan et al. 2003, Weary et al. 2006) behavioral assessment would be 

realized in animals. 

Regarding the methodological implementation of the study on evaluating dairy cow 

behavior after calving sensor attachment (Pfeiffer et al. 2021b), it has to be noted that 

the study contains some limitations in terms of parameters and variables analyzed. 

The small sample size does not yet allow any conclusions on a potential influence of 



51 

 

breed, or age of the cows on the behavior of dairy cows after calving sensor attachment 

to their tail. Due to the small sample size, conclusions about potential differences 

between the two calving sensors, Moocall and CalveSense, cannot yet be drawn 

based on the study in this dissertation. Besides the limited sample size, limitations of 

the measured parameters also have to be discussed. Some of the behaviors observed 

in the study, such as standing, lying, and intake of food or water, are maintenance 

behavior (Giaretta et al. 2021), meaning that they are characterized by high resilience 

(Weary et al. 2006). As a result, they may not be the most sensitive indicators of 

changes in the animals’ state. Building on the findings on behavioral changes analyzed 

in the study (Pfeiffer et al. 2021b), the question of a potential stress response of the 

animals to the attachment of calving sensors arises. Stress situations trigger hormonal 

changes that would have provided deeper insights into the animals’ state. Additional 

measurements of endocrine hormones (e.g., in milk, blood) (Lay et al. 1992, Wenzel 

et al. 2003, Rigalma et al. 2010) could potentially react more quickly or sensitively to 

calving sensor attachment. Thus, there are a variety of parameters and variables, the 

analysis of which on a larger scale would provide more in-depth insights into the animal 

welfare assessment of calving sensors. 

The primary objective of the third study (Pfeiffer et al. 2020) was to comprehensively 

assess the economic viability of an investment in activity sensors for automated estrus 

detection for dairy farms in Germany. Combining the application of a stochastic model 

with the simulation of gross margin with SimHerd (A/S) proved to be an appropriate 

methodological approach to answer the research question. In comparison to the few 

previous economic studies on automated estrus detection, the study in the dissertation 

(Pfeiffer et al. 2020) did not determine an average value for the economic gain or loss 

for only a limited range of dairy farm situations (Rutten et al. 2014, Bekara et al. 2017), 

but rather a variety of dairy farm scenarios. Both the results of the economic studies 

on individual dairy farm situations (Inchaisri et al. 2010, Rutten et al. 2014, Bekara et 

al. 2017) and German dairy farmers’ assessment of the profitability of sensor systems 

for automated estrus detection (Michaelis et al. 2013) confirm the plausibility of the 

generated results and thus verify the suitability of the chosen methodological 

approach. The SimHerd (A/S) model was confirmed to be an appropriate tool for the 

simulation of dairy herds, having shown its applicability for analyzing a wide range of 

research questions in other research (e.g., Østergaard et al. 2003, Ettema and 

Østergaard 2015, Ettema et al. 2017, Clasen et al. 2020) due to the numerous 

parameters it takes into account. Therefore, compared to previous economic studies, 

side effects of improved estrus detection rate such as changes in herd demographics 

and thus higher disease incidences could be automatically accounted for in a 

scientifically sound manner. 
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In terms of the methodological approach, it also has to be noted that the stochastic net 

return model applied takes aspects of working time into account only to a limited extent. 

It does include savings in time for estrus control and, considered in the annual cost of 

investment, also labor time for installation of the sensor system. However, in most 

cases, adoption of an estrus detection system results in further changes in labor time 

required that were not included in the economic model: impacts on labor time 

requirements due to changes in dry cow, calving, calf, and disease management. 

Investment in a sensor system, mostly leading to an increase in estrus detection rates 

of a dairy farm, entails that more cows are dry at herd level, resulting in a higher time 

requirement for dry cow management, and lower time requirement for milking. As there 

are more calvings at herd level, the time required to control calving cows and feed and 

care for the larger calf herd also increases. Furthermore, there is an increased time 

requirement for disease management as, firstly, cows stay in the herd for longer (i.e., 

get older) and are therefore more susceptible to diseases (Gröhn et al. 1995) and, 

secondly, more cows are in transition period, which is a very sensitive period for the 

occurrence of diseases (Redfern et al. 2021). A resulting implication for the 

methodological approach of the study (Pfeiffer et al. 2020) is to account for these 

additional labor time effects. 

The net return model only included sensitivity of the estrus detection systems, but not 

their specificity. High sensitivity is more easily realized at the expense of specificity 

(Mottram 2016). Low specificity may result in increased insemination of animals not in 

estrus and increased time spent on animal control with estrus alerts issued by the 

sensor system (Rutten et al. 2014). Rutten et al. (2014) did already include this aspect 

in their economic analysis and found that blind insemination of all animals for which an 

estrus alert was issued might not be profitable, depending on specificity. Including 

specificity of the sensor systems in the net return model, in addition to the sensitivity 

already considered, can therefore be recommended for further specification of the 

economic evaluation. 

In summary, the methodological approach of considering specific aspects of the three 

sustainability dimensions presented an appropriate way for a multi-perspective 

evaluation of wearable sensor systems in dairy farming. The three studies in the 

dissertation resulted in relevant aspects and partially also hypotheses, which have to 

be verified in further steps. In particular, the quantitative study on the public attitudinal 

acceptance gave a first impression of the prevailing situation. However, a stronger 

focus on qualitative approaches could have provided more insight into the results 

determined. This could include, for example, in how much detail the topic is understood 

by the public at all and what the critical arguments are with regard to the use of digital 

farming technologies. Overall, the selected foci of the three studies in the context of 
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the pursued research approach resulted in the dissertation containing only a few 

aspects representing the dairy farmers' view on wearable sensor systems in dairy 

farming. However, these will be crucial for the acceptance and future diffusion of the 

technology. Again, qualitative interviews (e.g., focus groups) could contribute to get 

detailed feedback from dairy farmers, e.g., on practical suitability of the sensors 

(sensitivity, specificity, handling), which may be even more decisive than economic 

aspects with regard to future dissemination. 

5.3 Development potential of sensor systems in dairy farming and their future 

adoption 

A glance into the future: How will the sensor systems evolve? 

In recent years, there has been a trend toward wearable sensor systems not only 

recording activity, but also additional parameters such as rumination, body core 

temperature, feeding behavior, rumen activity, or heart rate (Bewley 2010, Saint-Dizier 

and Chastant-Maillard 2012). Since these parameters provide decisive indications for 

estrus (e.g., Mottram 2016), calving (e.g., Miedema et al. 2011, Saint-Dizier and 

Chastant-Maillard 2015), and disease (e.g., Vickers et al. 2010, Kim et al. 2019), their 

application will continue to gain importance in future dairy farming. Monitoring several 

parameters with one sensor system may even increase precision of the alerts given by 

the sensor systems (e.g., Cavero et al. 2008, Miedema et al. 2011, Ouellet et al. 2016). 

To develop sensor systems holding many functions with high sensitivities and 

specificities at the same time, one will need to rely on the combination of different 

parameters. It is therefore purposeful to further develop the sensor systems in such a 

way that they cover many functions (estrus detection, calving, and health monitoring) 

and thus do not require multiple sensors to be attached to the animal at the same time.  

The data recorded by wearable sensor systems on or in the dairy cow are increasingly 

linked to further data recorded in the barn. In the future dairy barn, digital technologies 

such as automated milking systems, automated feeding systems, and sensor systems 

to monitor individual animals (e.g., behavior, body condition, weight) will be 

interconnected and will collect large amounts of data detailing the daily routine of each 

individual animal. Thus, linking data recorded by the sensor systems on or in the dairy 

cow (e.g., activity, rumination, core body temperature) with data on milk yield, milk 

components, body condition, body weight, or retrieved concentrate feed results in a 

pool of comprehensive information on each individual animal. Algorithms may thus be 

applied that incorporate large amounts of data from multiple sources in the barn. By 

analyzing this data pool, conclusions may be drawn about the animals’ state and 

events such as estrus, calving, and disease may be identified at an early stage with 

even higher precision (see e.g., Cavero et al. 2008). In their review on the development 

of sensor systems, Rutten et al. (2013) have even described an automated initiation of 
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a decision-making process by the technology as an advanced stage of development. 

This would allow automatic notification of the veterinarian or insemination technician 

when an event such as estrus or disease is detected by the sensor systems. 

Adoption and future adoption potential of sensor systems in dairy farming 

Based on the largely positive results obtained in the studies in this dissertation 

evaluating wearable sensor systems on dairy cattle, the question arises as to the 

acceptance of this technology by dairy farmers. A Germany-wide survey (Gabriel et al. 

2021) provides information with regard to the adoption and future adoption potential of 

the sensor systems: In the survey conducted between November 2019 and January 

2020, 20% of livestock farmers indicated having already invested in a sensor system 

for behavior monitoring (Gabriel et al. 2021). In a 2013 study conducted by the 

University of Kentucky, 41% of dairy farmers surveyed reported using sensors to 

measure cow activity (Borchers and Bewley 2015). In Switzerland in 2018, 6% of dairy 

farmers surveyed indicated that they apply activity sensors (Groher et al. 2020). In 

pasture-based countries such as New Zealand or Australia, sensors for activity 

measuring play a minor role, as patches are frequently used for estrus detection (e.g., 

Gargiulo et al. 2018). There are reasonable aspects that explain future investment 

interest in the sensor systems and suggest a high adoption potential in the future: e.g., 

the given profitability of the sensor systems, reduced workload, and combined 

purchase of the sensor systems when investing in new milking technology. In terms of 

adopting digital technologies, aspects of profitability (initial investment, questionable 

profitability, running costs) are cited by dairy farmers as a key barrier (e.g., Borchers 

and Bewley 2015, Gabriel et al. 2021). This dissertation demonstrates a given 

profitability of investing in sensor systems for automated estrus detection for dairy 

farms in Germany. Further economic effects are to be expected from their application 

in early calving detection (Crociati et al. 2020) and health management (Hogeveen et 

al. 2011), thus probably increasing dairy farmers’ future interest in investing in the 

technology. Investment subsidies such as the “Bayerisches Sonderprogramm 

Landwirtschaft Digital (BaySL Digital)“ in Bavaria, Germany, are further accelerating 

the adoption process. The majority of dairy farmers already using such sensor systems 

indicate being satisfied with the technology and also describe them as useful (e.g., 

Michaelis et al. 2013, Borchers and Bewley 2015). In particular, they report time and 

cost savings, reduced workload, and easy handling of the sensor systems (Michaelis 

et al. 2013). As these sensor systems are often also used for animal identification in 

the milking system (e.g., for automated animal-specific recording of milk quantity), 

some dairy farmers purchase them along with new milking technology. This gives an 

additional boost to investment, which will be reinforced with further digitalization of 

milking technology. Thus, although sensor systems for automated measurement of 
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activity and other parameters on the cow are not yet widespread in all countries, 

relevance of the technology is expected to further increase in the future.  

Based on the results of the studies in this dissertation and from the literature, it is 

concluded that wearable sensor systems in dairy farming are a viable digital technology 

for the future, due to an identified economic benefit and a positive evaluation of 

selected calving sensors with regard to animal behavior. The dissertation also showed 

that increasing “mechanization” and “industrialization” of animal husbandry systems 

are sensitive issues from the public's point of view. However, it can be assumed that 

small sensors on dairy cows will not primarily drive this criticism. It is, nevertheless, 

necessary to fully exploit the sensors’ potential regarding animal health by recording 

appropriate parameters and linking the sensors to other health-relevant data sources 

in the barn to force the future viability of the technology. 

5.4 Further research requirements 

In the three studies in the dissertation, distinct aspects of social, ecological, and 

economic sustainability were analyzed. However, each of the three sustainability 

dimensions is assessed by looking at a variety of individual aspects captured by 

different indicators. Thus, a sustainability assessment becomes complete only when 

additional indicators are considered and analyzed. In this regard, questions regarding 

labor conditions, satisfaction among farmers (and their families), internal family 

situations including equality between men and women, animal health, and quality of 

food, to name just a few, should be considered in an expanded assessment scheme.   

Since the “dairy farming system” integrates various subsystems and their interactions, 

there is a need for further research in the overall system. The different actors and 

influencing factors in the dairy farming system call for a comprehensive assessment of 

the technologies. For example, further research has to be conducted on the economics 

of sensor-assisted health monitoring and early detection of calving, as these two 

functions are frequently combined with the estrus detection function. Furthermore, this 

dissertation analyzed the economics of sensor-assisted estrus detection for different 

farm situations (e.g., breed, herd size, milk yield). Future research should also analyze 

the effect of risk and farmers risk aversion on the economic evaluation and adoption 

process. Ackoff (1999) described the farming system as purposeful, meaning that it 

pursues a purpose (e.g., profit maximization) and may achieve this purpose in different 

ways. Thus, individual parts of the farming system may have own, possibly 

contradictory purposes, resulting in a dynamic in the behavior of the whole farming 

system. Thus, although profit maximization is a goal pursued by the farmer, it is not 

the only explanatory variable of his actions (see Norton 1976, Colin and Crawford 

2000). 
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In addition to different farm situations considered in the economic study in this 

dissertation, there is a need for better understanding the adoption of sensor technology 

in dairy farming. For instance, the farmer’s knowledge, his previous experience with 

digital technologies, his family situation, or his extra-familial activities may have a 

decisive influence on the adoption of digital farming technologies. Thus, aspects that 

are difficult to evaluate in monetary terms, such ease of work or a gain in flexibility, can 

also be a motivation for dairy farmers to act in a way that is not purely rational in 

monetary terms. Also in the context of digital farming technology adoption, sequential 

adoption has been little analyzed so far (e.g., Khanna 2001, Schimmelpfennig and Ebel 

2016, Gabriel and Pfeiffer 2021). Therefore, there is a need for more research 

regarding whether the presence of specific machinery or technologies (e.g., milking 

robot, automated feeding system) has an impact on the adoption of sensor systems 

on dairy cows. 

Particularly with regard to public acceptance, there is a continuous need for research 

in the future. This dissertation revealed that different methodological approaches to 

capture public acceptance elicited diverse perspectives of the public on digital farming 

technologies. In addition to quantitative research approaches, qualitative research 

approaches will play an increasingly important role in the future, also when it comes to 

identifying reasons for a lack of acceptance of digital farming technologies. Building on 

the results gained on public acceptance, the focus is now on identifying and initiating 

appropriate measures to strengthen public acceptance of (digital) dairy farming. In the 

sense of a systems-oriented approach, it is pointed out that cooperation with other 

disciplines such as sociology is important for this process. This process is made 

complex due to the results on public acceptance representing only a snapshot for a 

specific region. Public acceptance will remain subject to rapid change due to a strong 

influence of media and culture, which poses and will continue to pose great challenges 

for research.  

Sensor systems in dairy farming have the potential to positively influence health, 

reproduction, and calving management of a dairy farm. However, from a systems-

oriented perspective, it is important to consider not only potential positive external 

effects, but also negative ones and trade-offs associated with the technologies. 

Possible negative external effects may include direct negative environmental impacts 

such as the emission of greenhouse-active gases (Herzog et al. 2018) or rebound 

effects (Berkhout et al. 2000, Sorrell et al. 2009). The application of many digital 

technologies for dairy farming occurs under the umbrella of improving herd 

management and thus animal welfare. In the literature, potentially positive effects of 

digital technologies on animal health and thus animal welfare are described several 

times (see e.g., Bewley 2010, Kim et al. 2019). Herzog et al. (2018) devoted their 
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review to the greenhouse gas and NH3 emission mitigation potential of, for example, 

improved fertility (Garnsworthy 2004), improved longevity (Bell et al. 2015), and 

improved health (Chen et al. 2016). Such improvements may occur when sensor 

systems are applied, as they may improve estrus detection rate, reduce fertility-related 

cullings, and detect diseases and calvings earlier. Further, rebound effects may occur 

as a result of technological progress. Rebound effects are known and well researched 

in economics (Berkhout et al. 2000, Sorrell et al. 2009) and have already been 

analyzed in the context of digitalization (e.g., Coroamă and Mattern 2019) or agriculture 

(e.g., Song et al. 2018). With regard to digital (dairy) farming technologies, however, 

rebound effects have so far received only scant attention (e.g., Weller von Ahlefeld 

2019). As a concrete example, sensor systems in dairy farming have the potential to 

detect cases of disease early – in some cases even earlier than humans (Kim et al. 

2019). However, the resulting increase in the likelihood of disease cases being 

detected in the dairy herd could thereby potentially increase the use of medications in 

dairy farming. Potentially positive effects on animal health, animal welfare, or 

emissions could thus be reduced or, in the worst case, even completely eliminated. To 

date, there is still too little evidence on these side effects. 

5.5 Further implications for research, farmers, and technology development 

This dissertation follows aspects of a systems-oriented research approach and 

emphasizes the need to have a look at the various stakeholders in the dairy farming 

system, including the public. Capturing spontaneous associations in the public 

acceptance study, a great deal of general criticism of current animal husbandry 

systems emerged. These spontaneous associations are an indication that systems-

oriented research approaches should be given more relevance, knowing well that it is 

in no way trivial to realize an animal husbandry system accepted by both farmers 

(practicable and economic solutions) and the public alike. However, it is now a matter 

of intercepting the public criticism of animal husbandry and integrating and taking it 

into account as well as possible in further research and development processes in 

agriculture, such as digitalization – this can be stimulated through a systems-oriented 

research approach. “Traditional“ research, being based on reductionist approaches, 

analyzes specific parts of the whole farming system (e.g., animal nutrition, or milk 

yield), looks for linear cause-effect relationships, and considers the farmer as a person 

making decisions independently (Röling and Jiggins 1998). Thus, there is an 

increasing need for scientists to also think of a livestock farming systems approach. It 

is essential to recognize the complexity of the livestock farming system, to pursue 

interdisciplinary approaches, and to consider other actors besides animals and farmers 

as subjects to research (e.g., environment, product quality, society). Systems thinking 

is, thus, not to be seen as an isolated sub-project in a research project, but rather as 
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“the foundation, starting point from which to explore and analyse a complex problem 

in a holistic way” (Darnhofer et al. 2012). Although beginnings of livestock farming 

systems research date back to the 1980s in Western Europe (Gibon et al. 1999), this 

approach has not yet been fully internalized in current research. In the Netherlands, 

for example, transformation of agricultural research toward a systems-oriented way of 

thinking was initiated by politics (Spiertz and Kropff 2011). In Germany, the 2005 

memorandum “Perspektiven der agrarwissenschaftlichen Forschung” reiterated the 

need for an agricultural systems science. It was addressed to decision-makers in 

research institutions, politics, and administration.  

The profession of farmer is subject to a constant process of change. Initially driven by 

a demand to increase production efficiency in the past, farmers now have to pursue 

more diverse functions and goals at the same time. In addition to primary agricultural 

production, farmers have to cope with various actors and challenges: the public 

(debates on applied working methods and technologies, increased demands on 

product quality), climate change (environmental protection), animal welfare (increasing 

priority of animal welfare and societal perception as a living being to be protected 

instead of a mere farm animal), politics (changing framework conditions such as 

documentation requirements to prove regulations of environmental protection), and at 

the same time maintaining competitiveness. Digitalization can have an impact on this 

field of tension in various ways: It can enable more environmentally friendly 

management, increase animal health and thus animal welfare, facilitate 

documentation, generate more transparency in the value chain, reduce the workload 

of farmers, and increase profitability of the farm. Digitalization can therefore contribute 

to overcoming the current challenges facing agriculture. At the same time, however, it 

can also be a challenge for some farmers who, for instance, lack IT affinity and for 

whom the adoption of digital technologies therefore represents a major hurdle. Thus, 

in addition to sound technical knowledge, farmers will need further skills to enhance 

sustainability of their farming system, such as a constant adaptive capacity (see 

Darnhofer et al. 2010). In this context, digital technologies are also supposed to expand 

the range of measures available to farmers. Still, it is important to keep in mind that the 

process of adaptability involves transaction costs and therefore inevitable trade-offs 

with farm efficiency that have to be weighed (see Darnhofer et al. 2010). 

In the process of developing technologies for agriculture, it is indispensable to keep in 

mind that this does not only involve a purely technical process but may also have far-

reaching changes on social and economic aspects of the whole farming system (Klerkx 

et al. 2012). Thus, development can rarely be described as a mere technical process 

(Diedrich et al. 2011, Scott 2011). As the field of digital agriculture is very fast-moving, 

many new (digital) technologies are being developed and entering the market in a short 
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time. In order not to reduce this fast-moving development to a purely technical process, 

the relevance of a responsible, sustainable development process has already been 

emphasized in literature. Rose and Chilvers (2018) emphasized the need for a 

structured involvement of the public in the innovation process. Also, consumers should 

participate in socio-ethical discussions, not after an innovation has been launched, but 

from the very beginning. Driven by this motivation to guide technology development 

socially and ethically acceptably, responsible research and innovation (RRI) (see Von 

Schomberg 2011, Stilgoe et al. 2013) is one of the concepts described in literature: “A 

transparent, interactive process by which societal actors and innovators become 

mutually responsive to each other with a view to the (ethical) acceptability, 

sustainability and societal desirability of the innovation process and its marketable 

products (in order to allow a proper embedding of scientific and technological advances 

in our society).” (definition by Von Schomberg 2011, p. 11). According to Von 

Schomberg (2011), the framework of responsible research and innovation combines 

four dimensions: anticipation, reflexivity, inclusion, and responsiveness. Anticipation 

describes the call to think in advance about possible consequences of technology 

innovation, their probability and plausibility. Reflexivity means being self-critical with 

one’s own activity and commitments and acknowledging the limits of one’s knowledge. 

Inclusion refers to the inclusion of voices from the public in the innovation process. 

Finally, responsibility in this context stands for acknowledging outside criticism of an 

innovation and adapting the development process to the lessons learned. Responsible 

research and innovation thus turns away for an innovation process mainly focusing on 

productivity and efficiency aims and addresses socio-ethical challenges. The 

beginnings of responsible research and innovation lie in Europe and North America 

and refer to technology development in a general context (Eastwood et al. 2019). 

Therefore, the task now is extending it to other countries as well as to digital 

technologies for agriculture (see also Eastwood et al. 2019) to ensure economically, 

ecologically, and socially sustainable digital agriculture in the future. 
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Abstract
The magnitude of public concerns about agricultural innovations has often been underestimated, as past examples, such as 
pesticides, nanotechnology, and cloning, demonstrate. Indeed, studies have proven that the agricultural sector presents an 
area of tension and often attracts skepticism concerning new technologies. Digital technologies have become increasingly 
popular in agriculture. Yet there are almost no investigations on the public acceptance of digitalization in agriculture so 
far. Our online survey provides initial insights to reduce this knowledge gap. The sample (n = 2012) represents the German 
population in terms of gender, age (minimum 18 years), education and size of place of residence. Results showed that if 
the potential of digital farming technologies (DFT) regarding animal welfare and environmental protection was described, 
respondents reacted positively. Thus, the general attitudes of respondents toward the benefits of DFT were mostly positive. 
The approval to increasing adoption rates of particular DFT by providing subsidies was also high. Linear regression models 
showed that the dominant positive influences on respondents’ attitudes toward the benefits of DFT were a generally posi-
tive attitude toward farming and a strong trust in farmers in Germany. Confronting respondents with pictures showing DFT 
resulted in many spontaneous negative associations and general criticism of agricultural production. The latter holds true 
for DFT in animal husbandry in particular. However, as agriculture as a whole is criticized by many groups in Germany, it 
is unlikely that benefits from digitalization will significantly increase the public acceptance of agriculture as a whole.

Keywords Spontaneous associations · Precision livestock farming · Precision crop farming · Dairy · Robot

Abbreviations
DFT  Digital farming technology

Introduction

Public acceptance of digital farming technologies

In recent years, digitalization has found its way into agricul-
ture and is now increasingly used in both animal husbandry 
and crop production. Digital farming technologies (DFT) 
include, for example, the application of sensors, automa-
tion, and robots in production systems (Banhazi et al. 2012; 
Shamshiri et al. 2018). Currently, stakeholders in the sector 
confirm that digitalization may increase public acceptance of 
agriculture because of its potential regarding animal welfare 
and more environmentally-friendly production. However, 
increased agricultural efficiency through digitalization is 
not necessarily accepted by the public as these technologies 
may also be perceived as a threat (Driessen and Heutinck 
2015; Pfeiffer et al. 2019). In the past, it has been shown 
that innovative technologies have often been met with little 
or no acceptance in the public, and in some cases have even 
had to endure far-reaching criticism as a result (Frewer et al. 
1997; Bauer 2002). Indeed, public concerns about the intro-
duction of modern technologies, especially in the food and 
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agricultural system, have often been underestimated (Shaw 
2002; König et al. 2010; Gupta et al. 2012). Thus, it is essen-
tial to analyse the public acceptance of innovations right at 
the beginning of their developmental process in order to 
ensure a successful implementation later on (Millar et al. 
2002; Verbeke et al. 2007; Gupta et al. 2012).

Although public acceptance of DFT is of paramount 
importance, little research has been conducted in this area. 
Often, the economic and environmental impacts of farm-
ing systems are analyzed while the social component is 
neglected. In a recent review of the literature on digitali-
zation in agriculture the authors concluded that the topic 
has gradually entered social science (Klerkx et al. 2019). 
Klerkx et al. confirmed that studies published so far have 
focused on topics such as adoption and adaptation of tech-
nologies, effects on farm work as well as ownership, privacy, 
and ethics in digital agriculture. However, no comprehen-
sive studies have been listed for the research field of public 
perception of DFT. Nevertheless, the necessity of analyzing 
possible social resistance in the establishment of new tech-
nologies has been acknowledged (Stilgoe et al. 2013; Asveld 
et al. 2015; Rose and Chilvers 2018). Wathes et al. (2008) 
emphasized that new farming technologies may have a wider 
impact not only on farmers and animals, but also on soci-
ety, which should be evaluated objectively to identify ethi-
cal issues. Along this line, Eastwood et al. (2019) pointed 
out that too much emphasis was placed on the development 
and adoption of smart farming technologies on farms while 
socio-ethical implications of society were neglected.

Studies on public acceptance in general provide first 
impressions of factors, which may also play a putative role 
in the public acceptance of DFT. Analyzing 292 research 
papers regarding determinants influencing public acceptance 
of technologies (e.g., pesticides, nanotechnology, cloning), 
Gupta et al. (2012) showed that six major determinants 
accounted for about 60% of all determinants mentioned: per-
ceived risk, trust, perceived benefit, knowledge, individual 
differences and attitudes. In the literature, intra-personal, 
inter-personal, but also technology-related characteristics 
appear to form public acceptance of innovative food tech-
nologies (Bearth and Siegrist 2016). More precisely, Bearth 
and Siegrists’ (2016) meta-analysis provided evidence of 
predictors such as socio-demographics, knowledge of food 
technology, trust in the regulators of the technologies, per-
ceived naturalness of the food technology as well as risk 
and benefit perception. Regarding technologies in the food 
sector, perceived risks and benefits are often characterized 
as decisive determinants of public acceptance (Ronteltap 
et al. 2007; Gupta et al. 2012; Bearth and Siegrist 2016). If 
the public associates too little benefit with a technology, the 
fundamental need for an innovative technology is called into 
question (Gaskell 2000). Communicable, perceived benefits 
that increase the potential for public acceptance of a new 

technology can be triggered, for example, by a reduction 
in the final product price or an increase in product health 
(Spence and Townsend 2008). At present, there is only 
superficial knowledge of the publicly perceived risks and 
benefits of DFT, and even less knowledge of their influence 
on public acceptance.

Some studies investigated the public acceptance of agri-
culture and modern farming in general (e.g., Sharp and 
Tucker 2005; Boogaard et al. 2011a; Kühl et al. 2019), new 
agrifood technologies such as genetic engineering or nano-
technology (e.g., Frewer 2017), renewable energy innova-
tions (e.g., Devlin 2005; Wüstenhagen et al. 2007; Stiehler 
2015), and novel agricultural production methods in and 
on urban buildings (Specht et al. 2016). In the context of 
agriculture and modern farming, research on public accept-
ance has focused on individual aspects of animal husbandry 
such as animal welfare (e.g., Kendall et al. 2006; Deemer 
and Lobao 2011). Public concern about animal welfare is 
mainly associated with modern animal husbandry and, in 
particular, with increasing farm sizes as shown by studies 
in North-West Europe and the US (Bennett 1997; Winter 
et al. 1998; Sharp and Tucker 2005; Boogaard et al. 2011a). 
A study conducted by Boogaard et al. (2011a) revealed that 
modern dairy farming is viewed critically by Dutch society 
as it is associated with a loss of family farms and growing 
herd sizes, and thus contradicts the desired image of dairy 
farming. Here, modern dairy farming was considered as a 
whole, with no focus on specific innovations or technologies. 
The survey of Boogaard et al. (2011a) provided evidence 
that public acceptance of modern dairy farming (e.g., farm 
practices, farm animals) is determined by the following fac-
tors: values and convictions, knowledge, relation to agricul-
ture regarding explicit working experience and farm visits, 
and socio-demographics. This relationship is supported 
by Sharp and Tucker (2005) who analyzed public opinion 
about large-scale livestock farming using livestock welfare 
concern and livestock environmental concern as target vari-
ables. Their survey among inhabitants of the US state of 
Ohio revealed an influence of socio-demographics, physical 
and social distance from agriculture, agricultural attitudes, 
and trust in farmers.

Further studies on the public acceptance, without a focus 
on agriculture, provide additional information on possible 
influencing factors. In the field of renewable energy, research 
has been carried out on the public acceptance of new tech-
nologies such as biomass plants or wind turbines, revealing 
an influence of factors such as socio-demographics, knowl-
edge, working experience in the sector, trust in key actors, 
perceived benefit and costs, and general attitudes (e.g., 
toward environmental protection) (Devlin 2005; Devine-
Wright 2008; Stiehler 2015).

Even technological developments overlapping 
with other industries such as autonomous driving find 
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little attention in agricultural literature. While the pub-
lic acceptance of autonomous driving has already been 
researched in the automotive industry (e.g., Fraedrich 
and Lenz 2016), the public acceptance of autonomous 
machines for agricultural practice have never been stud-
ied in-depth. A recent study carried out across the EU 
provided information on public attitudes toward robot-
ics as one of several technological developments in digi-
tal agriculture. In general and regardless of the field of 
application, a majority (70%) of EU citizens indicated 
to feel positive about robotics. While the positive atti-
tude toward robotics varied between individual countries, 
ranging from 54 to 88%, German respondents showed a 
general positive attitude (69%) toward the application of 
robotics in agriculture. In the study, the majority of all 
respondents (88%) agreed with a need for robotics for 
dangerous work previously carried out by humans (Euro-
barometer 2012). However, as the acceptance of autono-
mous vehicles in general draws a heterogeneous picture, 
with skepticism certainly being present, the public’s atti-
tude toward autonomous agricultural machinery remains 
to be investigated.

Considering the above cited studies, public accept-
ance has been studied with regard to various agricultural 
topics. However, with regard to DFT specifically, the 
findings were limited to the milking robot so far. As the 
milking robot is one of the first autonomous machines 
in dairy farming, it has been the subject of analyses on 
social aspects of technologies in dairy farming. However, 
the focus in this respect is mostly on animals and farmers, 
covering topics such as human-animal-technology inter-
action or impacts on animal welfare (e.g., Wenzel et al. 
2003; Holloway et al. 2014; Driessen and Heutinck 2015), 
neglecting the overall social perspective. In their study 
on consumer attitudes toward the use of dairy technolo-
gies, Millar et al. (2002) demonstrated social concerns 
about DFT in terms of the milking robot, as only 39.3% 
of participants of a UK postal survey rated the milking 
robot as “ethically acceptable” and only roughly 30% 
would have welcomed its use in practice. In addition to 
the questionnaire, a short description of the milking robot 
was provided to the participants. Apart from demographic 
and household information as well as awareness of the 
technology, only little information on further factors pos-
sibly influencing the acceptance was included in the study 
(Millar et al. 2002).

In summary, so far results of the existing literature 
have shown that agriculture is certainly situated in an area 
of social tension. However, it is unclear to what extent 
the public accepts new DFT in different fields of applica-
tion and whether concerns will potentially lead to future 
public debates.

Research methods and concept of acceptance

Modern acceptance research comprises a multitude of 
approaches to a variety of research objects (e.g., consumer 
products, technologies, political decisions). Many of these 
objects are judged by people in their roles as users, con-
sumers, or citizens. Accordingly, the literature provides 
a plethora of characterizations for numerous concepts of 
acceptance, which differ not only in extent (individual, 
group attitude), level of observation (specific, general), 
and detectable effects. The term acceptance itself also has 
a versatile character. Endruweit (1986) defined the goal 
of acceptance research as determining the probability of 
a positive reaction to a certain stimulus. Thus, accept-
ance can be seen as the result of an interaction process 
(Hofinger 2001), as the adoption of an object or idea 
(Dethloff 2004) or as the mere allegorization of an opinion 
expressed at a certain point in time (Lucke 1995).

It turns out that several studies apply a purely attitude-
based understanding of acceptance, as public attitude is 
used as a measure of advocacy or rejection in public (e.g., 
Devine-Wright 2008; Amin et al. 2011) and attitude-ori-
ented approaches are used to survey opinions on technolo-
gies in the population. Schäfer and Keppler (2013) noted 
that an attitude-oriented understanding of acceptance may 
also include intention or willingness to act, but not action 
itself (see Lucke 1995). They considered several studies 
on acceptance and concluded that the majority that treats 
acceptance as a comprehensive construct includes not only 
an attitude component but also an action component (see 
e.g., Huijts et al. 2012).

Our research approach to determine public acceptance 
leans on the acceptance process described by Kollmann 
(2004), who based his studies about the acceptance pro-
cess of innovative consumer products on three subsequent 
behavioral phases. He determines the first phase in the 
acceptance process as the attitude toward a product prior 
to purchase or use (assessment phase). The second phase 
in the acceptance process is described as action phase and 
is characterized by the purchase and adoption of a prod-
uct. Building on the first two phases, the use phase of the 
purchased product follows as the third phase and is under-
stood as completion of the acceptance process.

When looking at new technologies that directly ben-
efit separate groups (farmers, animals) and only indirectly 
affect the respondent personally (e.g., through health bene-
fits and quality of life, improving animal welfare, preserva-
tion of the natural environment), it is difficult to determine 
public acceptance, as is the case with DFT. Therefore, we 
do not analyze acceptance as a complete construct includ-
ing a use phase, but follow the approach of attitude-ori-
ented acceptance research and measure the first phase of 
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Kollmann’s acceptance model (attitude); hence the term 
attitudinal acceptance.

The focus in acceptance research was on the cognitive 
component for a long time, but the relevance of affect in 
decision making has gradually been recognized. It has 
been postulated that relying solely on cognitive com-
ponents is not effective (see Mowrer 1960; Shafir et al. 
1993). Initially it was unclear whether attitudes are also 
directly influenced by non-cognitive factors. Over time, 
however, studies have increasingly shown that affect can 
be independent of cognitive structures and thus influences 
attitudes directly (Onur Bodur et al. 2000). People give 
affective responses rapidly and automatically, thus repre-
senting spontaneous, rather than deliberate, associations. 
They express an emotional state and reflect a negative or 
positive stimulus that may be connected to pictures cre-
ated in the mind. Reliance on such feelings is described 
as the “affect heuristic” (Collier 1957). People rely on 
their “affective pool”, which contains both positive and 
negative connotations. Regarding affects, people refer to 
events in the past that have remained in their memory, 
including emotional states associated with them (Zajonc 
1980; Epstein 1994; Finucane et al. 2000; Slovic et al. 
2007; Spence and Townsend 2008). According to Slovic 
et al. (2007), incorporating affective impressions is easy 
and efficient, especially when the assessment is complex 
or knowledge is limited, as is the case with DFT.

Although the majority of studies described above 
rely on quantitative approaches, methods of acceptance 
research go far beyond quantitative analyses. As qualita-
tive research approaches can make a valuable contribu-
tion to measuring acceptance, they are increasingly being 
used on agricultural topics to clarify a wide range of ques-
tions regarding the acceptance of agriculture. To measure 
acceptance, pictures and videos have already been used to 
stimulate spontaneous associations of survey respondents 
(Harper 2002; Kühl et al. 2019). Media, such as pictures, 
can evoke “affective resonances” (Shouse 2005) as well 
as being “repositories of feelings and emotions” (Cvet-
kovich 2003). Thus, affect and emotions are elicited by 
the targeted use of media. Suchar (1989) described the 
revealing of aspects of “social psychology” as one of the 
reasons for the application of photo-elicitation. Especially 
in comparison to a purely text-based survey, the benefits 
of photo-elicitation are the stimulation of latent memory, 
the awakening of deeper elements of human conscious-
ness and the release of emotional statements, thus eliciting 
additional information (Collier 1957; Harper 2002; Rich-
ard and Lahman 2015). Analysis of elicited emotions, in 
addition to assessing given statements, serves to capture 
determinants of attitudes and acceptance such as risk per-
ception (Sjöberg 2007; Gupta et al. 2012).

Research fields

In the current context of agriculture as a field of social 
tension, questions arise regarding the extent to which a 
use of modern DFT will be supported by the public as a 
whole. We conducted a survey among the German public 
to gather insights into their opinion on the digitalization 
of farming. To better elucidate the opinion of respondents, 
we employed a mixed method approach, as recommended 
by Weary and Keyserlingk (2017). The following research 
fields (1), (2) and (3) were queried by Likert scales to gain 
information on the public attitudinal acceptance of DFT 
(quantitative approach). For research field (4), a qualitative 
approach was employed including spontaneous associa-
tions with pictures showing specific DFT.

(1) General attitudes of respondents toward the use of 
DFT and evaluation of the effects of DFT on farmers, 
consumers, animal husbandry and crop production. 
Respondents’ consent to the use of selected DFT in 
animal husbandry- and crop production-practice.

(2) Extent of the respondents` agreement to a provision of a 
state subsidy to farmers as a means to disseminate DFT 
in practice.

(3) Influence of the factors socio-demographics, connec-
tion to agriculture, knowledge of present-day agricul-
ture, trust in farmers, and general attitudes toward 
farming on the attitudinal acceptance of DFT.

(4) Respondents’ spontaneous associations with pictures 
showing specific DFT to gain first insights into con-
cerns and benefits being associated with the technolo-
gies.

Materials and methods

Empirical model to measure public attitudinal 
acceptance of digital farming technologies

We developed a specific model to evaluate the public atti-
tudinal acceptance of various DFT and to detect the rel-
evant factors responsible for shaping these attitudes. An 
online survey was elaborated to collect first-time empirical 
data from a representative sample of the German adult 
population.

According to Kollmann (2004), the attitude toward a 
product (assessment phase) is composed of awareness, 
interest, and expectations. Addressing the subordinate 
indication of consumer expectations and assessment of the 
use of a new technology, we measured the general attitudes 
toward the benefits of DFT, the consent to the use of DFT, 
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and the consent to state subsidies for farmers using DFT as 
target variables of attitudinal acceptance (see Fig. 1). The 
two other phases in Kollmann’s acceptance model relate 
to the decision and final use of the new technology. Since 
in our case the population does not purchase and use the 
technology itself, but chooses the products resulting from 
it, an investigation that goes beyond attitudinal acceptance 
was omitted.

Questionnaire structure

In the first part of the study, information on consumers’ 
socio-demographics was gathered and Likert scales were 
applied to assess attitudes toward DFT. Relevant literature on 
thematically similar acceptance studies was used to compile 
the influencing factors and scale items included. Based on 
the review by Gupta et al. (2012), we used the determinants 
described as the most relevant ones of public acceptance 
of technologies to gain information about influences on the 
attitudinal acceptance of DFT. In our model, individual dif-
ferences were covered as the factors socio-demographics and 
connection to agricultural sector. Knowledge, trust and atti-
tudes are further determinants of public acceptance of tech-
nologies integrated into the model (see Gupta et al. 2012). 

We queried them as the factors knowledge of present-day 
agriculture, trust in farmers, and general attitudes toward 
farming. To measure both latent predictors and target vari-
ables for the objectives on the analysis, Likert scales were 
used as essential components. To prevent skewed results 
due to certain answering patterns, the order of the items 
in each of the surveyed scales was randomly distributed 
for each respondent. In a further part of the questionnaire, 
photo-elicitation was used to gather spontaneous associa-
tions with pictures showing different DFT. Scale items from 
the first survey part do not allow us to identify reasons that 
are seen by the public as promoting or inhibiting attitudinal 
acceptance of DFT. Therefore, we applied photo-elicitation 
as a second methodological approach to elicit affect-based 
thoughts from the respondents.

Socio‑demographics and quota control

Based on recent studies, socio-demographics were expected 
to potentially play a role in the attitudinal acceptance of DFT 
(Haartsen et al. 2003; Sharp and Tucker 2005; María 2006; 
Devine-Wright 2008; Boogaard et al. 2011a). Therefore, we 
evaluated the socio-demographic distribution of the survey 
sample by assessing four variables: age, gender, education 

Fig. 1  Framework for measuring acceptance. Adapted from Kollmann (2004). DFT digital farming technology
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and size of place of residence. Regarding the size of place of 
residence, we included three categories, due to the hypoth-
esis of different rural–urban attitudes toward agriculture and 
environmental issues (Van Liere and Dunlap 1980; Freuden-
burg 1991; Sharp and Tucker 2005; Boogaard et al. 2011a). 
The categories of the variables were classified on the basis 
of official population statistics and literature-based consid-
erations. This resulted in the classification of the variables 
of age (five categories, minimum 18 years), education (five 
categories), size of place of residence (three categories), and 
gender (two categories).

Connection to agricultural sector

In addition to socio-demographics, contact with agriculture 
or farmers can have an impact on the respondents’ accept-
ance of agriculture and of innovative technologies specifi-
cally (Devlin 2005; Sharp and Tucker 2005; Delezie et al. 
2006; Devine-Wright 2008; Boogaard et al. 2011a). Personal 
contact with farmers in the social environment, exchange 
about agricultural topics, or professional experience in the 
areas of agribusiness and food supply allows people to gain 
expertise and consolidate points of view. Therefore, we 
included scales on work experience in the agricultural sec-
tor and on personal contact with a farmer as independent 
variables. Within the scale of personal contact with a farmer, 
we differentiated whether or not conversations also covered 
agricultural topics.

Predictors from Likert scales

General attitudes toward the subject context may transpire 
to be an acceptance-relevant factor or a basic prerequisite 
for acceptance (Lucke 1995; Grunert et al. 2003; Kollmann 
2004). In our study, the scale general attitudes toward farm-
ing was rated via five items. Since public acceptance may 
be determined by inherent characteristics of technologies as 
well as by their impact on humans, nature and animals, the 
items refer to relevant topics confirmed in previous studies to 
be decisive regarding public acceptance. Since these aspects 
were rated by the majority of respondents in the study by 
Boogaard et al. (2011a) as desired image of agriculture, the 
two items “Preservation of the environment for future gen-
erations” and “Welfare of farm animals is important” were 
included in the scale of our survey. Additionally, the item “I 
have a fundamentally positive attitude toward agriculture in 
Germany” was integrated, following previous results of scale 
measurement of consumer attitudes toward livestock welfare 
and environmental concerns (Sharp and Tucker 2005) and 
toward the use of renewable energies in the direct environ-
ment (Stiehler 2015). As the support of small farming struc-
tures was positively associated with livestock welfare con-
cerns and environmental concerns in the study by Boogaard 

et al. (2011a), we included the item “Family farming struc-
tures seem valuable and should be preserved” as an item on 
the scale. As a further item, “Farmers should get more free 
time” was added. The scale was supplemented by three addi-
tional items to quality-check participants’ response behavior 
after completion and the plausibility of the answers. These 
additional items were not included in the analysis.

Since knowledge can be a decisive determinant of the 
public acceptance of a new food technology (Bearth and 
Siegrist 2016) it was included in our model. According to 
Te Velde et al. (2002), the construction of perceptions in 
individuals is influenced by factors such as experience- and 
impression-based knowledge. Along this line, a survey by 
Stiehler (2015) found supportive empirical evidence, reveal-
ing that public acceptance of biomass cogeneration heat (and 
power) plants significantly depended on the degree of infor-
mation in this field. However, a review on public accept-
ance of renewable energy technologies by Devine-Wright 
(2008) has suggested that a higher level of knowledge is 
not necessarily correlated with higher public acceptance. 
Whether there is a connection between the level of knowl-
edge of present-day agriculture and the public acceptance of 
DFT is, to date, unclear. Therefore, the analysis of the rela-
tionship between knowledge of agricultural processes and 
public attitudinal acceptance of DFT can provide initial indi-
cations as to whether providing information on agriculture 
can influence public attitudinal acceptance of DFT. In our 
study, cognitive knowledge, in terms of having knowledge 
of a fact, was assessed by the scale knowledge of present-day 
agriculture. Survey respondents were asked to self-assess 
their level of knowledge on animal husbandry, crop produc-
tion and modern agricultural equipment.

Besides the general attitudes toward farming and knowl-
edge of present-day agriculture scales, the scale trust in 
farmers was included in the model. Studies on the accept-
ance of new technologies often focus on inherent character-
istics of technologies, although several studies provide solid 
empirical evidence that trust in the user of a new technol-
ogy is also a crucial influencing factor in public acceptance 
(Dunlap et al. 1993; Slovic 1993; Cvetkovich and Lofstedt 
1999; Eiser et al. 2002; Roosen et al. 2015; Stiehler 2015; 
Bearth and Siegrist 2016). Siegrist et al. (2000) explicitly 
described trust as “social trust”, i.e. relying on people who 
are in charge of handling a technology, and emphasized that 
the group of people being trusted is usually not known per-
sonally. Especially when one’s own knowledge and interest 
in a technology is limited, trust in people using the tech-
nology appears all the more relevant (Siegrist et al. 2000; 
Bearth and Siegrist 2016). Wüstenhagen et al. (2007) illus-
trated public acceptance of renewable energy innovation 
as a triangle, consisting of the three dimensions of socio-
political, market, and community acceptance, of which the 
latter represents a central component of trust. In addition, 
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Sharp and Tucker (2005) demonstrated that elevated trust 
in farmers is associated with less concern about livestock 
welfare and environmental aspects of large-scale livestock 
and poultry operations. To take social trust into account, we 
surveyed the items “German farmers pay great attention to 
the welfare of their animals” and “German farmers protect 
our environment”.

Target variables from Likert scales

Since digitalization in agriculture is per se an abstract topic 
for many of the respondents, we introduced them to DFT 
by means of some general information and the presentation 
of examples of DFT. Four individual DFT were illustrated 
and briefly explained in the questionnaire as specific exam-
ples: spot spraying (selective application of pesticides in 
crop production), digital hoeing (alternative chemical weed 
control), near-infrared spectroscopy (NIR) sensor technol-
ogy (measuring nutrient content in manure), and sensors 
for animal husbandry (early detection of problems and dis-
eases in animals in livestock farming). Respondents gave 
their approval or disapproval on five-point Likert scales. The 
scale general attitudes toward the benefits of DFT was used 
to assess public acceptance of DFT on a general level. The 
rating of DFT was conducted not only at a general level, but 
also at a technology-specific level. With regard to each of the 
four specific DFT mentioned, the respondents stated their 
level of consent to the use of specific DFT and their level 
of consent to state subsidization for farmers using DFT as 
target variables.

Spontaneous associations with digital farming 
technologies

In the second part of the online survey, respondents were 
asked for voluntary spontaneous associations with pictures 
showing DFT. For animal husbandry, pictures of a cow dur-
ing the milking process in a milking robot and of cows in 
a barn being fed by a feeding robot were selected.1,2 For 
crop production, pictures of an autonomous tractor and of a 
swarm of small robots, both during the sowing process on 
the field, were shown.3,4 We deliberately chose pictures of 
these four technologies from the internet to obtain feedback 

on widespread media-based pictures of DFT. For each of the 
two digital technologies in dairy farming and crop produc-
tion, up to three spontaneous associations could be stated. 
Survey participants were not given any additional informa-
tion about the respective pictures. The spontaneous associa-
tions helped to identify further reasons for attitudinal accept-
ance of DFT (or a lack thereof).

While the rating of given statements with Likert scales in 
the first part of the questionnaire served to provide a cogni-
tive evaluation of DFT by the respondents, the affect- and 
thus emotion-based approach provided another dimension 
of determining attitudinal acceptance, as cognitive and emo-
tional responses do not necessarily align. As emotions serve 
to capture risk perception, the spontaneous associations were 
supposed to obtain initial indications of the risks and ben-
efits that respondents associate with some examples of DFT. 
This should pave the way for further analyses of perceived 
benefits and risks in order to optimize communication with 
the public on the subject of DFT.

Data collection: nationwide online‑survey

The questionnaire was handed to a professional field ser-
vice provider with an extensive nationwide online consumer 
panel, thus facilitating sample determination (German resi-
dents aged at least 18 and with internet access) and enabling 
a pre-set quota control of the sample for representativeness 
regarding selected socio-demographics. For representative 
evaluation of the German adult population in terms of age, 
gender, education level, and size of place of residence, sta-
tistical data from the “b4p- Best for planning 2017” dataset 
were used to pre-select the quota in this survey. b4p is a 
long-term market media study program in Germany that has 
been analyzing media use and consumer behavior (random 
sample of more than 30,000 participants older than 13 years) 
since 2013. This enables target group-specific distribution 
quotas via queries at associated counting services.

In 2018, 90% of the German population used the internet, 
with the proportion of internet users being lowest among 
the older generations (Federal Statistical Office Germany 
(Destatis) 2018a). However, as our sample is representative 
in terms of age, we can ensure that age groups are covered 
by the respective shares of the entire sample (see Table 1). 
Collecting data online enabled us to obtain a large and geo-
graphically distributed sample within a short time, thus sav-
ing time and costs (see also Stanton 1998; Ilieva et al. 2002; 
Lefever et al. 2007). Nevertheless, it can be critically noted 
that our survey on digital technology only addressed people 
who are familiar with the internet.

Furthermore, choosing an online survey as data collection 
method enabled an adaptive course of the survey, depending 
on the information provided by the interviewees, and there-
fore an effective and user-friendly procedure. The integration 

1 https ://www.schwe izerb auer.ch/landt echni k/firme n--perso 
nen/20000 -melkr obote r-von-lely-in-betri eb-19341 .html (accessed on 
June 15, 2018).
2 https ://melkt echni k-cente r.com/Fuett erung stech nik/FMR-Robot er/ 
(accessed on 15 June, 2018).
3 https ://www.casei h.com/emea/de-at/News/Pages /2016-08-30-Case-
IH-stell t-auf-der-Farm-Progr ess-Show-neues -Trakt orkon zept-vor.aspx 
(accessed on June 15, 2018).
4 https ://www.fendt .com/int/fendt -mars (accessed on June 15, 2018).

https://www.schweizerbauer.ch/landtechnik/firmen--personen/20000-melkroboter-von-lely-in-betrieb-19341.html
https://www.schweizerbauer.ch/landtechnik/firmen--personen/20000-melkroboter-von-lely-in-betrieb-19341.html
https://melktechnik-center.com/Fuetterungstechnik/FMR-Roboter/
https://www.caseih.com/emea/de-at/News/Pages/2016-08-30-Case-IH-stellt-auf-der-Farm-Progress-Show-neues-Traktorkonzept-vor.aspx
https://www.caseih.com/emea/de-at/News/Pages/2016-08-30-Case-IH-stellt-auf-der-Farm-Progress-Show-neues-Traktorkonzept-vor.aspx
https://www.fendt.com/int/fendt-mars
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of additional information (short information on the purpose 
and function of specific DFT) and visual material (pictures 
showing selected DFT) into the online questionnaire sup-
ported the conduct of the survey and provided more clar-
ity to the respondents for better responsiveness. The online 
questionnaire was pre-tested by a subsample of the online 
panel of 10% of the desired total sample size concerning 
comprehensibility and technical procedure of the survey. 
Subsequently, the main survey was carried out from July 13 
to 23, 2018. In total, more than 4,000 online interviews were 
initiated, with 2215 completely answered data sets remain-
ing due to lack of target group affiliation or quota fulfilment. 
After final quality control, 2012 data sets could be used for 
the analysis.

Analyzing methods

In order to use the individual scales for further calculations, 
homogeneity and internal consistency of the overall con-
structs (scales) and reliability of the items were checked by 
Cronbachs α (Cα).5 Using the Spearman-Brown test, the 
contribution of each item to scale reliability could be deter-
mined to obtain the overall scale quality and, if necessary, 

Table 1  Socio-demographic distribution of survey sample (n = 2012)

a Representative distribution of the German population according to b4p dataset 2017 (German residents over 18 with permanent access to the 
internet)
b Basic secondary school (Mittelschule), leading to basic school-leaving qualification (Qualifizierender Abschluss)
c Higher secondary school (Realschule), leading to higher school-leaving qualification (Mittlere Reife)
d Upper secondary school (Gymnasium), leading to University entrance qualification (Abitur)

Variable Category Absolute 
frequency

Relative 
frequency 
(%)

Socio-
demo-
graphic 
character-
istics

Gendera Female 1011 50.2
Male 1001 49.8

Agea 18–29 years old 340 16.9
30–39 years old 364 18.1
40–49 years old 395 19.6
50–59 years old 459 22.8
60 years and older 454 22.6

Size of place of  residencea Less than 5000 inhabitants 284 14.1
5000 to 99,999 inhabitants 1075 53.4
100,000 and more inhabitants 653 32.5

Education  levela No general school-leaving qualification (yet) or basic secondary  schoolb 
without vocational qualification

94 4.7

Basic secondary  schoolb with vocational qualification 487 24.2
Higher secondary school-leaving  qualificationc or upper secondary 

 schoold
686 34.1

University entrance  qualificationd without university degree 327 16.3
University degree (university, college, technical college, academy, poly-

technic)
418 20.8

Connection 
to agri-
cultural 
sector

Work experience Work experience in agricultural sector 165 8.2
No work experience in agricultural sector 1847 91.8

Personal contact with farmers Yes, with conversations about agricultural topics 387 19.2
Yes, without conversations about agricultural topics 285 14.2
No 1340 66.6

5 While Cα test values above 0.7 are assumed to be acceptable 
(“acceptable” ≥ 0.7, “good” ≥ 0.8, “excellent” ≥ 0.9), measures below 
this limit cast doubt on the homogeneity of the scale (“questionable” 
< 0.7, “poor” < 0.6, “unacceptable” < 0.5) (see Field 2017).
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to decide whether individual items should be excluded from 
a scale (Field 2017).

Reliability analyses can be equated with a confirmatory 
one-dimensional factor analysis, allowing for the assign-
ment of an individual, metric-scale value (factor value) to 
each data set. The metric values for each of the scales were 
applied in the subsequent multivariate regression model to 
identify their impacts on respondents’ attitudes concerning 
DFT, consent to the use of specific DFT, and consent to a 
state subsidy for DFT. Further predictor co-variables (socio-
demographics, respondents’ connection to agricultural sec-
tor) were dummy-coded and added to the three linear regres-
sion models.

Regarding the spontaneous associations affected by the 
respective pictures of DFT, statements not suitable for evalu-
ation (e.g., “I have no idea”, “I don’t know”) were removed 
from the data set. After that step, depending on the specific 
technology, 3982 (swarm robots), 4035 (feeding robot), 4397 
(autonomous tractor), and 4649 (milking robot) associations 
were included for further analysis. Categories including 
similar terms and expressions were formed allowing a cat-
egorization of associations. Nine categories were applica-
ble to all shown technologies (e.g., Future and Progress). 
Besides, the formation of five animal- (e.g., Animal Cruelty) 
and seven crop-specific (e.g., Concerns for Environmental 
Protection) categories was necessary. For illustrating the 
result of the analysis, the ten categories most frequently 
associated with each of the four pictures, respectively, were 
compiled. Within each category, the connotation of the indi-
vidual associations was evaluated as negative (“−”), neutral 
(“0”) or positive (“+”). If associations with different conno-
tations were found in a category, multiple connotations were 
assigned. By assigning connotations, our approach resem-
bles that of Kühl et al. (2019), who categorized associations 
with pictures of different husbandry systems for dairy cattle 
and classified them as negative or positive.

Results

Socio‑demographic distribution and connection 
to agriculture of survey sample

The distribution of the survey sample (n = 2012) represents 
the German population with regard to the socio-demo-
graphic characteristics of gender, age (minimum 18 years), 
size of place of residence, and level of education (see 
Table 1). With regard to their connection to agriculture, 
8.2% of respondents stated that they have some work expe-
rience in the agricultural sector, while 91.8% have none. 
19.2% of respondents know a farmer and discuss agricultural 
topics with him or her, while 14.2% of respondents know a 

farmer with whom they do not talk about agricultural topics, 
however (Table 1).

Descriptive analysis of response scales

The response scales concerning general attitudes toward 
farming, knowledge of present-day agriculture as well as 
trust in farmers were used as predictors for the subsequent 
multivariate evaluation (independent variables). The scales 
concerning general attitudes toward the benefits of DFT 
(D1), consent to the use of specific DFT (D2), and consent 
to a state subsidy for farmers using DFT (D3) represent the 
dependent variables. The results of the individual items of 
the scales are expressed as mean values and standard devia-
tions (Table 2). The responses range between the scale poles 
of “1 = I fully agree” and “5 = I fully disagree”, or “1 = very 
high”, and “5 = very low” for the scale of knowledge of pre-
sent-day agriculture. The literature-based selection of the 
items provided “acceptable” to “excellent” quality criteria 
of the composed scales.

General attitudes toward farming, knowledge, and trust 
in farmers

The general attitudes toward farming-scale revealed that 
values linked to agriculture play a relevant role. The preser-
vation of the environment for future generations (µ = 1.55), 
family farming structures (µ = 1.64), and welfare of farm 
animals (µ = 1.65) are valued most highly by respondents. 
On average, respondents indicated that they have a funda-
mentally positive attitude toward agriculture in Germany 
(µ = 2.06) and that farmers should get more free time 
(µ = 2.11). Respondents rated their knowledge of present-
day agriculture as mediocre to rather low. In particular, 
the self-assessment covered production methods in animal 
husbandry processes (µ = 3.33), crop production (µ = 3.53), 
and the latest machinery and equipment used in agriculture 
(µ = 3.57). For all three items of this scale, a substantial pro-
portion of respondents indicated to have very good or good 
knowledge of present-day agriculture (13.6%, 20.3%, and 
12.6%, respectively). Considering that 8.2% of the respond-
ents claimed to have work experience in the agricultural 
sector, these proportions are high. It is interesting to note 
that especially those respondents who stated that they have 
already personally talked to farmers about agricultural issues 
also claimed a significantly higher level of knowledge of 
present-day agriculture (T value 20.67; p = 0.000) compared 
to those who have no contact with acquaintances in this sec-
tor. This also applies to those respondents who already had 
their own experiences in the agricultural sector, as opposed 
to those who have never been in contact with agriculture (T 
value 12.59, p = 0.000).
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As a third scale, trust in farmers in Germany was sur-
veyed, which, in contrast to the general attitudes, dealt 
directly with information on the applied practice of farm-
ers. The results revealed that trust in farmers was rated less 
positive than the general attitudes toward farming indicated. 
The agreement that German farmers pay great attention to 
the welfare of their animals (µ = 2.73) and protect our envi-
ronment (µ = 2.77) in their practice was modest. For the two 
items, a high proportion of undecided respondents (44.2%, 
and 45.4%, respectively) emerged.

Attitudes toward the benefits of digital farming 
technologies (D1, D2, D3)

Regarding the general attitudes toward the benefits of DFT 
(D1), respondents primarily saw an improvement in the 
quality of life of the farming family through relieving the 

farmer (µ = 2.10). More environmentally-friendly production 
(µ = 2.31) and improvement of animal welfare and animal 
health (µ = 2.39) were seen as further areas of potential ben-
efits from DFT. The respondents’ agreement that DFT bring 
consumers and farmers closer together was only moderate 
(µ = 2.80). Likewise, a high share of undecided respondents 
(23.0% to 44.3%) was found for all items on this scale.

The overall consent to the use of sensors for livestock 
farming, digital hoeing technology, NIR sensors for organic 
fertilization, and spot spraying (D2) was very high. The 
mean values for the agreement to their use ranged from 
µ = 1.82 to µ = 2.22, with 63.0% to 78.3% of the respond-
ents fully agreeing or agreeing. The consent to the use of 
spot spraying, however, was markedly lower than that of the 
other three DFT. Not only was the consent to the use of the 
DFT in practice high, but also the consent to a state subsidy 
for farmers using DFT (D3). Here, the averages ranged from 

Table 2  Scales for independent and dependent (D) variables (n = 2012)

DFT digital farming technologies
a Cronbach’s α (Cα) of full-item scale
b 5-point scale: minimum 1 = I fully agree/very high; 3 = undecided/mediocre; maximum 5 = I fully disagree/very low
( −)Original question with negative polarization; Cα and mean refer to ex-post reversion of item

Scales
Scale reliabilitya

Items Mean (µ)b SD

General attitudes toward farming
Cα = 0.72

Preservation of the environment for future generations 1.55 0.72
Welfare of farm animals is important; this influences my actions 1.65 0.74
Family farming structures seem valuable and should be pre-

served
1.64 0.74

I have a fundamentally positive attitude toward agriculture in 
Germany

2.06 0.83

Farmers should get more free time 2.11 0.78
Knowledge of present-day agriculture
Cα = 0.90

Knowledge of animal husbandry processes 3.33 1.03
Knowledge of production methods in crop production 3.53 0.99
Knowledge of the latest machinery and equipment used in 

agriculture
3.57 0.99

Trust in farmers
Cα = 0.80

German farmers pay great attention to the welfare of their 
animals

2.73 0.90

German farmers protect our environment 2.77 0.89
General attitudes toward the benefits of DFT (D1)
Cα = 0.75

Bring farmers and consumers closer together 2.80 0.92
Enable a more environmentally-friendly production 2.31 0.82
Lead to the alienation of the farmer from his soil and  animals(−) 2.91 1.01
Improves the quality of life of the farming family 2.10 0.76
Improves animal welfare and animal health 2.39 0.87

Consent to the use of specific DFT (D2)
Cα = 0.76

Digital hoeing technology 1.82 0.88
Sensors for livestock farming 1.92 0.88
NIR sensors for organic fertilization 1.96 0.89
On-field spot spraying 2.22 1.00

Consent to state subsidization for farmers using DFT (D3)
Cα = 0.85

State subsidization of digital hoeing technology 2.09 1.02
State subsidization of sensors for livestock farming 2.16 1.03
State subsidization of NIR sensors for organic fertilization 2.28 1.04
State subsidization of spot spraying 2.36 1.07



Understanding the public attitudinal acceptance of digital farming technologies: a nationwide…

1 3

µ = 2.09 to µ = 2.36, with 59.5% to 66.7% of the respondents 
fully agreeing or agreeing, depending on the technology. 
Again, spot spraying experienced the lowest approval and 
digital hoeing technology the highest. The statistics showed 
significantly higher consent to state subsidization of digital 
hoeing technology and sensors for livestock farming than to 
NIR sensors and spot spraying.

Determinants for peoples’ attitudes 
concerning digital farming technologies

The linear regression models revealed influence of the inde-
pendent variables (socio-demographics, connection to agri-
cultural sector, general attitudes toward farming, knowledge 
of present-day agriculture, trust in farmers) on the depend-
ent variables (digitalization in agriculture models D1, D2, 
and D3) (Table 3). The main influences on respondents’ 
attitudes toward the benefits of digitalization in agriculture 
appeared to be general attitudes toward farming as well as 
trust in farmers. With more positive general attitudes toward 

farming, the respondents’ general attitudes toward the ben-
efits of DFT (D1) were more positive, and the consent to the 
use of specific DFT (D2) and to state subsidy for farmers 
using DFT (D3) was increased. This positive influence on 
D1, D2, and D3 applied equally to the trust in farmers-scale. 
It turned out that there were further independent variables 
influencing the attitudinal acceptance of DFT, but their influ-
ence was comparatively low. Respondents who claimed to 
have better knowledge of present-day agriculture had signifi-
cantly more positive general attitudes toward the benefits of 
DFT (D1). There was evidence of a statistically significant 
influence of gender on the agreement to DFT (D1 and D2). 
Men had slightly more positive general attitudes toward the 
benefits of DFT (D1), and their consent to the use of spe-
cific DFT (D2) was slightly increased compared to women. 
In terms of age, it appeared that consent to state subsidy 
for farmers using DFT (D3) was higher among younger 
respondents (age classes under 40 years). With higher educa-
tion (university degree and university entrance qualification 
without university degree), the consent to the use of specific 

Table 3  Determinants for peoples’ attitudes concerning digital farming technologies (n = 2012)

***p < 0.001, **p < 0.01, *p < 0.05
a p < 0.1
b Testing on multicollinearity shows independence between predictors

Independent  variablesb Dependent variables (standardized coefficients)

Model D1
General attitudes toward 
benefits of digital farming 
technologies

Model D2
Consent to the use of 
specific digital farming 
technologies

Model D3
Consent to state subsidies for farmers 
using digital farming technologies

Constant 0.045 0.138 − 0.028
Scales variables (metric scaled)
 General attitudes toward farming 0.183*** 0.298*** 0.308***
 Knowledge of present-day agriculture 0.116*** 0.044a 0.030
 Trust in farmers 0.385*** 0.097*** 0.237***

Socio-demographics (dummy-coded, 
standardized)

 Gender (1 = male) 0.096* 0.177*** − 0.076a

 Age (1 < 40 years) − 0.011 − 0.018 0.154***
 Education level
(1 = university entrance
qualification or higher)

0.063 0.205*** − 0.061

 Size of place of residence
(1 ≤ 5000)

− 0.055 − 0.108a − 0.080

Connection to agricultural sector 
(dummy-coded, standardized)

 Work experience in agricultural sector 
(1 = yes)

− 0.201** − 0.179* − 0.114

 Personal contact with farmers & 
discussion about agricultural topics 
(1 = yes)

0.006 0.029 − 0.001

 R 0.497 0.363 0.443
 R2-adj 0.244 0.128 0.193
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DFT (D2) was significantly higher. For the size of place 
of residence, no significant effect on the attitudes toward 
digitalization in agriculture could be shown. Respondents 
claiming to have worked in the agricultural sector had more 
negative general attitudes toward DFT (D1) and showed less 
consent to the use of specific DFT (D2). However, the results 
did not reveal any impact of work experience on the general 
consent to a state subsidy for farmers using DFT. The three 
models that address digitalization in agriculture do not show 
a statistically significant correlation with personal contact 
with farmers (with and without conversations on agricultural 
topics).

In addition to the regression model results, partial cor-
relations among the three dependent study variables pro-
vide information about their coherences (Table 4). A highly 
significant positive correlation was found between the con-
sent to the use of the four selected DFT (D2) and the con-
sent to state subsidies of their use in agricultural practice 
(D3). They are closely linked due to the respective ques-
tions being placed consecutively for each technology in the 
survey. A significant correlation, however, could also be 
found between these two variables and D1 (general attitudes 
toward the benefits of DFT), confirming the reliability of the 
results and the successful choice of measurement methods.

Spontaneous associations with pictures showing 
digital farming technologies

The ten most frequent aggregate categories of spontane-
ous associations with the pictures showing specific DFT in 
crop production and dairy farming are shown in Table 5. 
Categories that could be formed with all four pictures are 
Future and Progress; Efficiency and Reduced Workload; 
Technology; Digitalization, Autonomy and Automation; 
Industrial agriculture/Size dimension; Costs of Technology; 
Farmer; Terms of Agreement and Terms of Rejection. Ani-
mal-specific categories included Dairy Farming/Milking; 
Cow; Hygiene; Animal Cruelty; Agriculture. Crop-specific 
categories included Field Cultivation; Nature and Plants; 

Environmental Protection; Concerns for Environmental Pro-
tection; Animal Protection; Safety; Human Health. 

The positively connoted category Future and Progress 
appeared for each picture, as respondents assigned attributes 
such as “futuristic” or “innovative” to each of the presented 
technologies. Another frequent category was increased Effi-
ciency and Reduced Workload for the farmer by means of 
DFT. In this regard, a high number of respondents stated 
terms such as “effective”, “fast”, and even “higher precision” 
of agriculture (for example, in the distribution of feed in the 
barn). However, as “loss of jobs” was also mentioned several 
times in this category, the overall rating is mainly positive, 
but also partially negative. Neutral categories such as Digi-
talization, Autonomy and Automation; Dairy Farming; and 
Field Cultivation played a crucial role in the associations 
with all four pictures. We merged terms such as “machine” 
and “high-tech” into the neutral category Technology, which 
consistently polled a large proportion of the aforementioned 
spontaneous associations in all four pictures.

In general, we saw that the most commonly mentioned 
categories for the animal-related technologies were more 
negative than those for the crop production technologies. 
This was especially true for the picture of the milking robot, 
for which three negative categories were among the five 
most common. Negative terms with regard to the issue of 
Animal Cruelty such as “animal suffering”, “tight”, “poor 
cow”, “not animal-appropriate”, and “imprisoned” were 
associated most frequently with the picture of the milking 
robot. The issue of Animal Cruelty was also mentioned in 
the context of the feeding robot, but at a lower frequency.

The aspect of Industrial Agriculture played a relevant 
role in the case of the two animal husbandry technologies. 
Respondents were worried, for example, about “exploitation 
of the animals”, “alienation”, “factory farming” and “ani-
mal as an object” (negative). The picture of the autonomous 
tractor also led survey participants to think of Industrial 
Agriculture, but at a lower frequency than the dairy farming 
technologies. In this case, terms such as “impersonal” were 
noted, but also “mass production”, “large-scale farmers”, 
and “monster”. Often, however, only the Size Dimension was 
described with terms such as “big” or “large area”, which 
is why we included this aspect in the category Industrial 
Agriculture. For the picture of the autonomous tractor, this 
resulted in a combination of neutral and negative associa-
tions. Swarm robotics was also associated with words such 
as “mass production” and “industrial” (negative), but with 
regards to the Size Dimension, it was described as “small”, 
“toy”, and “cute” (positive). For the picture of the autono-
mous tractor, many respondents expressed Concerns for 
Environmental Protection (negative), using words like 
“environmental pollution”, “soil compaction”, “chemistry”, 
“poison”, and “monoculture”. In relation to the picture of 
the swarm robots, this category also applied, but only a few 

Table 4  Partial correlations (Pearson correlation coefficient) between 
dependent variables

D1 General attitudes toward the benefits of digital farming technolo-
gies; D2 Consent to the use of specific digital farming technologies; 
D3 Consent to state subsidy for farmers using digital farming tech-
nologies
**Correlation at the level of 0.01 (2-sided) significant

D1 D2 D3

D1 1 0.478** 0.457**
D2 0.478** 1 0.602**
D3 0.457** 0.602** 1
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terms could be assigned to it. For the pictures of the milking 
and feeding robots, we assigned a similar number of terms to 
the category Hygiene, which was mainly composed of words 
like “hygiene”, “clean”, and “sterile” and rated as neutral. 
Strikingly, many of the mentioned spontaneous associations 
did not explicitly target the DFT depicted, but rather criti-
cized agricultural production processes per se. For exam-
ple, associations such as “factory farming” and “locked up” 
call the animal husbandry system in general into question. 
Likewise, terms such as “monoculture”, “environmental 

pollution”, and “pesticide” are a criticism of agronomic 
practices in agriculture, with no specific reference to the 
DFT depicted.

Table 5  Frequently mentioned categories in spontaneous associations with four pictures of digital farming technologies

Ranking of the ten most frequent categories for each of the shown pictures
Assignments of connotation: “+” = positive; “0” = neutral; “−” = negative

Picture 1 
Autonomous tractor sowing in the field
Total number of mentions suitable for evaluation: 4397

Picture 2 
Swarm robots sowing in the field
Total number of mentions suitable for evaluation: 3982

Rank Aggregate categories Mentions Connotation Rank Aggregate categories Mentions Connotation

1 Future and Progress 737  + 1 Digitalization, Autonomy and Auto-
mation

667 0

2 Efficiency and Reduced Workload 635  +/(−) 2 Efficiency and Reduced Workload 643  +/(−)
3 Digitalization, Autonomy and Auto-

mation
605 0 3 Future and Progress 591  +

4 Field cultivation 493 0 4 Field Cultivation 357 0
5 Technology 452 0 5 Industrial Agriculture/

Size Dimension
333 −/0/+

6 Terms of rejection
(e.g., “creepy”)

303 − 6 Technology 284 0

7 Terms of agreement
(e.g., “good”)

235  + 7 Terms of Rejection
(e.g., “creepy”)

275 −

8 Concerns for environmental protection 173 − 8 Terms of Agreement
(e.g., “good”)

267  +

9 Industrial agriculture/size dimension 170 −/0 9 Costs of Technology 142 −/(0)/(+)
10 Nature and plants 156 0 10 Environmental Protection 76  +

Picture 3 
Cow-feeding robot during feed provision in the barn
Total number of mentions suitable for evaluation: 4035

Picture 4 
Cow in milking robot during milking process
Total number of mentions suitable for evaluation: 4649

Rank Aggregate categories Mentions Connotation Rank Aggregate categories Mentions Connotation

1 Efficiency and Reduced Workload 572 +/(−) 1 Animal Cruelty 754 −
2 Digitalization, Autonomy and Auto-

mation
478 0 2 Dairy Farming/Milking 687 0

3 Dairy farming/feeding 475 0 3 Terms of Rejection
(e.g., “awful”)

546 −

4 Industrial agriculture 380 − 4 Technology 470 0
5 Animal cruelty 370 − 5 Industrial Agriculture 427 −
6 Future and Progress 360  + 6 Digitalization, Autonomy and Auto-

mation
385 0

7 Terms of rejection
(e.g., “awful”)

317 − 7 Future and Progress 359  +

8 Terms of agreement
(e.g., “useful”)

255  + 8 Efficiency and Reduced Workload 307  +/(−)

9 Hygiene 233 0 9 Hygiene 250 0
10 Technology 213 0 10 Cow 177 0
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Discussion

Classification of results

The connection to the agricultural sector and general 
attitudes toward agriculture

With regard to the connection to agriculture, the sam-
ple showed a high proportion of respondents with work 
experience in the agricultural sector (8.2%) compared to 
the current share of employed persons in agriculture of 
about 1.1% in Germany (Federal Statistical Office Ger-
many (Destatis) 2018b). This may be explained, on the 
one hand, by the fact that some of the respondents’ work 
experience in the agricultural sector lies in the past. On the 
other hand, the question asked for work experience in the 
agriculture sector or a related field, which also includes the 
upstream and downstream sectors (such as food retailing).

The mediocre to rather low knowledge of present-day 
agriculture in Germany can be explained by increasingly 
fewer points of contact between farmers and the public 
(Weber et al. 1995; Holloway 2004). The higher propor-
tion of people who claimed to have good or very good 
knowledge of agricultural production compared to those 
who have work experience in agriculture may be attributed 
to overconfidence (Moore and Healy 2008). The spontane-
ous associations confirmed a partially low level of knowl-
edge of present-day agricultural production of the German 
public (see also Simons et al. 2019) as, for example, the 
milking robot, was often not recognized as such.

In general, the level of trust in farmers in Germany was 
only moderate. The agreement that farmers contribute to 
the protection of the environment and pay close attention 
to the welfare of their animals behaved similarly mod-
erately in other studies conducted in Germany (Helmle 
2010), but also in the Netherlands (Boogaard et al. 2011a) 
and the US-State of Ohio (Sharp and Tucker 2005). The 
fact that respondents rated the items of trust in German 
farmers better than those reflecting their knowledge of 
present-day agriculture showed that a comprehensive 
knowledge of current agricultural production methods 
among the public is not the only prerequisite for a posi-
tive perception of agriculture in the public. The forma-
tion of opinions on agricultural topics and thus trust in 
farmers is largely influenced by how a topic is presented 
in the media. Throughout the past 20 years, the major-
ity of the German public obtained information on agri-
culture from television (TNS Emnid 2012). The majority 
of the German public considers media reports on agri-
culture to be balanced (TNS Emnid 2012), implying that 
the image of agriculture is strongly influenced by its rep-
resentation in the media. Studies analyzing the effect of 

the type of communication on the image of agriculture 
among German residents revealed that while direct contact 
with agriculture through conversation with farmers had a 
positive influence on the image, contact with agriculture 
via media (media-mediated agriculture) had a negative 
influence. Agricultural topics often discussed in German 
media include rising meat prices, meat scandals, animal 
husbandry conditions (associated with so-called factory 
farming), and the use of antibiotics (Helmle 2010; Wolf-
ram et al. 2019). Thus, these critical portrayals at least 
partly explain the moderate level of trust in German farm-
ers observed in our survey.

Rating of digital farming technologies

Regarding studies on the public acceptance, one has to bear 
in mind that the results have to be seen in the context of cul-
tural and geographical differences (e.g., societal values, reli-
gion) shaping public attitudes (Srite and Karahanna 2006; 
Costa-Font and Gil 2009; Bearth and Siegrist 2016). The 
literature reveals that research on the public acceptance of 
technologies is mainly concentrated on the developed world 
(especially North America and North-Western Europe) 
and does not provide sufficient insight into the situation in 
developing countries (see also Gupta et al. 2012; Bearth and 
Siegrist 2016). Thus, it has to be considered that this study 
was conducted in Germany, a country with a low share of 
the population being employed in the agricultural sector.

The respondents’ evaluation of the statements to DFT was 
quite positive—both in the general statements and in the four 
specific DFT. Given our explanations of DFT, most agreed 
that they show potential in the areas of animal welfare as 
well as environmental protection and advocated their use 
in practice. The similarly high level of agreement on the 
use of DFT in practice and on subsidies for farmers using 
them, underlines the seriousness of respondents’ answers, as 
they were well aware that taxpayers’ money would be used 
for this purpose. Since we asked about the consent to the 
use of taxpayers’ money in the survey, our attitude-oriented 
approach also included an intention or willingness to act-
component (see Schäfer and Keppler 2013). In the Dutch 
survey by Boogaard et al. (2011a), agreement on a higher 
willingness to pay for both environmental and landscape care 
and subsidies to farmers (if they can only stay in business 
with governmental subsidies) was more subdued compared 
to our results, but still more supportive than negative. Also 
in studies conducted in the UK (Bennett 1997), Spain (María 
2006), and Germany (Weinrich et al. 2014), the majority 
of respondents indicated a willingness to pay for improved 
animal welfare standards (e.g., phase-out use of cages in egg 
production, pasture-raised milk). However, a meta-analysis 
by Lagerkvist and Hess (2011) on consumer willingness to 
pay for farm animal welfare showed that French and German 
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consumers exhibited higher, and Danish consumers lower 
willingness to pay for farm animal welfare than consumers 
from other countries such as the US, UK and Sweden. The 
result of this meta-analysis highlights once again that the 
results concerning the consent to state subsidies for farmers 
using DFT, have to be seen in the context of the country of 
survey of the study.

The influence of socio-demographic factors (Devlin 
2005; Sharp and Tucker 2005; Devine-Wright 2008; Boo-
gaard et al. 2011a), knowledge (Devlin 2005; Devine-Wright 
2008; Boogaard et al. 2011a; Stiehler 2015), general atti-
tudes (Lucke 1995; Grunert et al. 2003; Kollmann 2004; 
Sharp and Tucker 2005; Boogaard et al. 2011a; Stiehler 
2015), and trust (Dunlap et al. 1993; Slovic 1993; Cvetko-
vich and Lofstedt 1999; Eiser et al. 2002; Roosen et al. 2015; 
Stiehler 2015; Bearth and Siegrist 2016) on acceptance has 
already been revealed many times. Socio-demographic vari-
ables such as gender, age, and education not only influence 
general views of agriculture (Haartsen et al. 2003; Sharp 
and Tucker 2005; María 2006) but partly also the attitudes 
toward the benefits of DFT, as shown in our study. For 
instance, Boogaard et al. (2011a) showed that older people 
were more positive about contemporary agricultural produc-
tion methods, more open-minded toward modern production 
processes, and had a higher willingness to pay for added 
values such as maintaining nature. María (2006) showed that 
younger people were more critical than older ones in terms 
of animal welfare on farms and found a higher willingness 
to pay a surcharge to improve animal welfare among younger 
or middle aged people than among older ones. However, 
Kühl et al. (2019) applied a picture-based approach to ana-
lyze the overall acceptance of different husbandry systems 
for dairy cattle, with socio-demographics such as gender, 
age, and education not driving any significant differences 
in acceptance. Although there were also a few studies to 
the contrary, a review of the social basis of environmental 
concerns by Van Liere and Dunlap (1980) confirmed that 
age is predominantly negatively correlated with environmen-
tal concerns. Our results point in a similar direction as the 
findings of María (2006), showing that younger (< 40 years 
old) rather than older people agreed to a state subsidy for 
farmers using DFT.

Although points of contact between the population 
and agriculture are becoming fewer, our results did not 
reveal a significant effect of the size of place of residence 
on the attitudinal acceptance of DFT. Numerous studies 
have dealt with the hypothesis of a difference in agricul-
tural and environmental attitudes between rural and urban 
populations (e.g., Van Liere and Dunlap 1980; Freuden-
burg 1991; Sharp and Tucker 2005). Yet there appears 
to be no clear overall tendency. For example, in their 
survey, Sharp and Tucker (2005) did not identify a clear 
pattern between the place of residence on the one hand 

and livestock welfare and environmental concerns on the 
other hand. Similarly, our results did not demonstrate any 
significant impact of the size of place of residence on the 
attitudinal acceptance of DFT. A possible explanation for 
this is the declining number of farmers in rural areas and 
the simultaneously increasing influx of urban population 
into rural areas, resulting in a growing proportion of rural 
residents without agricultural ties. Therefore, our chosen 
limit for the size of place of residence (5000) may have 
been still too high to recognize significant differences in 
the attitude toward agricultural issues.

The literature shows that personal contact with farmers 
as well as work experience in agriculture can have a positive 
effect on an individual’s image of agriculture (Sharp and 
Tucker 2005; Helmle 2010; Wildraut et al. 2019), including 
attitudes toward modern animal husbandry and willingness 
to pay for values such as maintaining nature and landscape 
(Boogaard et al. 2011a). Sharp and Tucker (2005) found 
that people who grew up on farms had fewer livestock wel-
fare and environmental concerns. However, their study did 
not reveal an impact of a mere visit to rural areas (e.g., for 
recreational purposes) on concerns about livestock welfare 
and the environment. Kühl et al. (2019) also did not identify 
significant differences in the overall acceptance of different 
husbandry systems for dairy cattle between respondents who 
had already visited a farm and those who had not. However, 
our results are not in line with the findings of Sharp and 
Tucker (2005), Helmle (2010), Boogaard et al. (2011a) and 
Wildraut et al. (2019), as our study did not show an effect 
of personal contact with farmers, including conversations 
on agricultural topics, on the attitudes toward DFT. We 
even found a slightly negative effect of work experience in 
the agricultural sector on the general attitudes toward the 
benefits of DFT and consent to the use of specific DFT. 
Thus, our results regarding the influence of personal contact 
with farmers on the public acceptance of DFT cannot yet be 
clearly explained and require further studies to substantiate 
them. The increased negative general attitudes toward the 
benefits of DFT and lower consent to the use of DFT by 
respondents with work experience in the agricultural sec-
tor could partly be explained by negative experiences with 
using DFT. It is not known how many of the respondents 
with work experience in the agricultural sector had explicit 
experience with DFT. However, there exists well-founded 
evidence that the use of DFT still poses certain challenges 
that could be reflected in our results. Challenges of digital 
agriculture, are, amongst others, high complexity of inter-
pretation of the collected data and thus a lack of decision 
support for the average user, and too high costs to implement 
them nation-wide (Reichardt and Jürgens 2009; Weersink 
et al. 2018). For the public to be convinced of technologies 
such as DFT, first and foremost, its users must be convinced 
so that they can convey this positive image to the public.
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According to the findings of our survey study conducted 
in Germany, accepting DFT and agreeing to their subsidi-
zation is mainly based on positive general attitudes toward 
farming and trust in farmers. Altogether, these determinants 
had a greater impact on the attitudinal acceptance of DFT 
than other variables such as socio-demographics. Thus, our 
results confirmed the role of values and beliefs shaping peo-
ples’ attitudes and decisions (Lusk et al. 2014), including 
agricultural issues. To alter values and beliefs, however, is 
not easy to realize in practice: Trust in risk regulators is dif-
ficult to build, but is quickly lost (Frewer and Salter 2002). 
Using the example of novel food technologies, Siegrist 
(2008) emphasized that advantages and disadvantages of 
technologies may not always be obvious, thus being difficult 
for the public to evaluate. About 87% of the EU popula-
tion has never worked with a robot, regardless of its field 
of application (Eurobarometer 2012). This reinforces the 
explanation that it is difficult to assess the risks and benefits 
of technologies without respective experience. In addition, 
to form a well thought out and balanced opinion on agricul-
tural topics can be difficult with a low level of knowledge 
of present-day agriculture. Therefore, trust in the user of 
a technology is a relevant factor for the public acceptance 
of agricultural innovations. In this context, it is important 
to keep in mind that the topic of digitalization in agricul-
ture is rather specific and new. Therefore, especially when 
decisions cannot be made on the basis of sound knowledge, 
values and trust are central factors in making decisions that 
are not fully rationally justified (Sparks et al. 1994; Siegrist 
2008).

As our results showed, the public values some positive 
aspects of modern agriculture such as food quality and low 
prices and perceives the sector to be innovative and techni-
cally advanced (see also Boogaard et al. 2008). The spon-
taneous associations confirmed that the addressed DFT are 
considered to be innovative and relevant to the future by 
many. However, the public attitude toward modern agri-
culture, including modern animal farming, is ambivalent 
as there are also many negative impressions in the public. 
Modernity and technical progress in agriculture are not con-
sidered to be negative in general, but the loss of values, tra-
ditions, and naturalness (Alrøe and Kristensen 2002; Lassen 
et al. 2006) often accompanying technological innovations 
are not appreciated. This dilemma is a reason why modern 
agricultural production is often criticized by the public as 
it contradicts the deeply rooted vision of romantic, idyllic 
family farms and museum agriculture in European society 
(Boogaard et al. 2011b; Simons et al. 2019).

Looking at the categories of spontaneous associa-
tions, it seemed that some of the respondents impulsively 
referred to events in the past that have remained in their 
memory due to media coverage, as issues such as concerns 
for environmental protection, industrial agriculture, or 

animal cruelty are often addressed in German media (see 
Helmle 2010; Wolfram et al. 2019). In group discussions 
on the understanding of modern agriculture in Germany 
by Simons et al. (2019), terms such as “mass production” 
and “less contact between humans and animals” were 
mentioned by the respondents, similar to participants in 
our study. There, many individuals spontaneously associ-
ated the idea of Industrialization with the two pictures of 
the milking robot and the feeding robot that we showed 
them. It was noticeable that the spontaneous associations 
with the two DFT for dairy farming were more negative 
compared to the ones for crop production. The negative 
connotation of DFT in dairy farming may be shaped by the 
high level of concern for animal welfare in the Germany 
public. This was confirmed by previous studies conducted 
in Germany, showing that animal welfare was consistently 
ranked the highest among a multitude of public demands 
and wishes for agriculture (see TNS Emnid 2012; Luy 
et al. 2019). A survey among EU citizens on their attitudes 
toward possible fields of application of robotics (Euroba-
rometer 2012) provides further explanations. While pri-
ority was given to space exploration and manufacturing, 
citizens were more empathic about the use of robotics for 
the care of people. When asked about a ban on robotics in 
application areas, care of children, elderly, and disabled 
people (60%) led the way, while only 6% voted for a ban in 
agriculture. It may be possible to draw parallels between 
the EU survey and our survey: when using robotics in the 
handling of living beings (human or animal), the views are 
comparatively critical. Comparing the two dairy farming 
technologies, the milking robot was associated with more 
negative terms than the feeding robot. This was mainly due 
to a more frequent association of the milking robot with 
Animal Cruelty and Industrial Agriculture. Therefore, it 
can be assumed that the milking robot was perceived as a 
technology used with the aim of increasing herd size and 
milk yield (performance-oriented), thus counteracting the 
wishful thinking about small family farms. In sum, the 
share of negative connotations associated with the milk-
ing robot (35%) in our study was consistent with the share 
of respondents in the UK study by Millar et al. (2002), 
who rated the milking robot as “not ethically acceptable” 
(32%). It is striking that in the general attitudes toward 
the benefits of DFT, the potential was seen primarily in 
an increase in the farmer’s wellbeing. In comparison, the 
perceived potential for improving animal welfare was 
lower. This tendency was also evident in the evaluation of 
a milking robot by citizens of the UK (Millar et al. 2002). 
A reason for a critical attitude toward DFT may therefore 
be that benefits are seen more relevant to the farmer than 
to the animal or nature. With regard to the size dimension 
of agricultural robotics for sowing, the survey participants 
graded small swarm robots more positively than the large 
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autonomous tractor, largely due to increased safety and 
environmental concerns related to the large and thus heavy 
machine.

The more general criticism of the animal husbandry 
technologies shown included year-round indoor housing as 
opposed to free-range and pasture systems as a concept of 
ideal animal husbandry (Miele et al. 2011; Weinrich et al. 
2014; Cardoso et al. 2016). Surveys in Germany revealed 
that animal husbandry of other species (pork, poultry) is 
judged at least as critically as cattle farming. This assess-
ment was made by farmers and the broader public alike 
(Simons et al. 2019; Wildraut and Mergenthaler 2019). 
Likewise, crop production is often met with criticism in 
the German public. Aspects such as decreasing biodiver-
sity, nitrate leaching, and the desire to reduce pesticide use 
are just a few examples of the many points of criticism of 
agriculture in Germany. Consequently, DFT may be well 
accepted as a building block for improving animal welfare 
and a more environmentally-friendly production. However, 
the impact of these positive effects on the general acceptance 
of agriculture will probably be limited due to a lot of general 
criticism of agriculture in Germany, particularly in the case 
of animal husbandry.

Methodical considerations

Our study provides relevant results on public attitudinal 
acceptance of DFT in the German population. Consumer 
studies carried out on innovations in the food sector so far 
have measured various forms of acceptance. Willingness to 
pay, or acceptance, were measured as target variables in a 
large number of studies on, for example, gene technology, 
or nanotechnology (Bearth and Siegrist 2016). The fact 
that the use of DFT has a direct influence on farmers and 
animals, and only an indirect one on consumers, makes it 
harder to grasp public acceptance at the action and usage 
levels. Therefore, an approach based on models such as 
the technology acceptance model (Davis et al. 1989) was 
not appropriate for our study. Moreover, as our study did 
not cover any action component (e.g., purchase of a prod-
uct), our measured target variables cannot be interpreted as 
“acceptance”, as defined in the literature (see Lucke 1995; 
Schäfer and Keppler 2013). However, it has to be noted that 
the construct “attitudinal acceptance” by Kollmann has been 
mainly applied to innovation in use, although it is described 
as an independent construct that precedes the purchase of a 
product (Kollmann 2004).

The evaluation of the consent to state subsidies for farm-
ers who purchase DFT, however, provides first relevant 
indications. Further studies on the actual willingness of 
consumers to pay for improving environmental and live-
stock conditions by means of DFT (action phase) should 

be pursued, for which choice experiments would be a suit-
able methodological approach (see also Lagerkvist and Hess 
2011). Presumably, in terms of willingness to pay for higher 
animal welfare or environmental protection standards, there 
might be a different outcome, depending on the study being 
methodologically based on a choice experiment or on Lik-
ert scales for provided statements, as was the case in our 
study. Thus, the results of our study are not yet sufficient for 
evaluating the overall acceptance of DFT. Nevertheless, with 
our study we are taking a necessary step that enables an ini-
tial assessment of the situation in Germany, on the basis of 
which further methodological procedures can be developed.

The combination of the two methodological approaches 
emerged to be particularly valuable. Based on the results 
of our study, we recommend that surveys on the accept-
ance of technologies that are not comprehensively known 
to the general public should not be structured purely text-
based. The results demonstrated that asking for the evalua-
tion of provided statements (Likert scales), on the one hand, 
and spontaneous associations with pictures showing DFT, 
on the other hand, leads to a multi-faceted assessment. As 
described in the literature, the pictures showing DFT con-
tributed to the release of feelings and emotions (Cvetko-
vich 2003), as evidenced by emotional references such as 
“animal suffering”, “poor cow”, or “poison”. Our results 
confirmed the finding of Slovic et al. (2007) that integrating 
affective impressions may lead to higher efficiency, espe-
cially if the assessment of a given issue is complex. In fact, 
whereas the evaluation of DFT was largely positive in the 
given statements, the spontaneous associations revealed a 
much more differentiated picture. Asking for spontaneous 
associations proved to be a suitable methodical approach to 
obtain valuable indications of perceived benefits and risks 
of DFT from the public. Therefore, spontaneous associations 
provide a sound basis for determining concerns in the public, 
which need to be addressed for developing approaches to 
strengthen public acceptance.

Public acceptance is to be considered against a cultural 
and also media background in which public perceptions 
arise. Since the general image of agriculture varies from 
country to country, it can be assumed that this heterogeneity 
also applies to the public acceptance of DFT. The results of 
our study conducted among the German population revealed 
that general attitudes and values influence acceptance of 
DFT. However, attitudes and values are to a considerable 
extent anchored in a cultural and socio-economic context. 
Therefore, we suggest similar future studies in further coun-
tries in order to gain insights that are not limited to the Ger-
man public. Furthermore, integrating respective components 
into the framework of the survey could provide valuable 
indications of the extent to which public opinions on agricul-
ture are influenced by its representation in the media (e.g., 
type of media used).



 J. Pfeiffer et al.

1 3

Implications and conclusions

The high share of undecided respondents in questions 
concerning general attitudes toward agriculture, trust in 
farmers, and the assessment of DFT shows that there is a 
need to inform the public in an objective way. However, 
more comprehensive, balanced information on a topic may 
not necessarily always result in greater acceptance of an 
issue (Scholderer and Frewer 2003; Weary and Keyser-
lingk 2017; Wuepper et al. 2019), as opinions are based 
not only on experience and knowledge but also, and very 
importantly, on values and beliefs (Te Velde et al. 2002). 
Since opinions on a topic are thus very deeply rooted, 
simply providing information in order to change them will 
most likely be insufficient (Grunert et al. 2003). In the 
study by Millar et al. (2002) on the consumer acceptance 
of the milking robot in the UK, a short description of the 
technology was provided. However, 29% of respondents 
answered they were unable to judge whether the milk-
ing robot was “ethically acceptable”—a similar propor-
tion of undecided consumers could be found in our study 
regarding the general attitudes toward the benefits of DFT, 
although Millar et al. did provide more background infor-
mation in their survey. Ventura et al. (2016) have already 
addressed the question of whether a self-guided farm visit 
(carried out on a 500-head dairy farm in North America) 
can contribute to changing perceptions, concerns, and val-
ues about dairy cattle. In their study, a farm visit helped 
to resolve some concerns of the public, while at the same 
time other concerns arose. Studies carried out in Germany 
on the acceptance of animal husbandry systems confirmed 
that merely providing information does not necessarily 
lead to greater acceptance in the public. In comparison, 
a personal dialogue between the public and farmers had 
a stronger, positive effect regarding some issues, such as 
conditions under which farm animals are kept. In this con-
text, it is interesting to note that the effect of a personal 
dialogue was particularly strong in the statement “Tech-
nology makes the work of animal owners easier and farm 
animals can be better cared for” (Wildraut et al. 2019). 
Although personal contact with a farmer had no signifi-
cant impact on the attitudes toward the benefits of DFT in 
our study, the dialogue between farmers and consumers 
is essential and an important step in the process of build-
ing trust between farmers and the public. In line with the 
literature, we see that public acceptance of DFT is not 
only determined by the characteristics of technologies and 
the associated impacts on animals or nature. Rather, the 
public must have trust in the farmer, who is seen as the 
person responsible for the most appropriate use of DFT, 
thus deciding on a possible improvement of animal wel-
fare and environmental protection. Weary and Keyserlingk 

(2017) analyzed various strategies for dealing with public 
concerns about dairy-cow welfare. They concluded that 
engagement with the public is more successful than efforts 
to educate the public. Two-way conversations in particular 
are effective when addressing the most concerned peo-
ple, possibly directly on a farm that is being opened up 
to the public. These conversations may also help farm-
ers understand the concerns of the public, and help the 
public put itself in the farmers’ shoes. Regarding farmer-
consumer dialogues, public interest in technical details 
of agricultural processes is probably limited. Information 
should be focused on fundamental values and take into 
account emotional components. To this end, the potential 
of DFT for animal welfare and environmental protection 
may serve as a supportive argument. Importantly, in this 
context, farmers, and especially trainees in agricultural 
education, should be trained in communication strategies 
with the public. For farmers, it is becoming increasingly 
necessary to recognize and develop social communication 
skills as an entrepreneurial competence.

Our study revealed that the need for considering the pub-
lic acceptance of an increasing use of DFT should not be 
neglected. Although our results are limited to the German 
public, they indicate the urgent need for other countries to 
involve the social component at an early stage when evaluat-
ing DFT. Regarding the social component, not only research 
and farmers should become active when establishing tech-
nologies on the market. Also innovators and developers have 
to involve the public as early as possible in a development 
process. Initial studies on responsible research and innova-
tion (RRI) aiming to guide socially and ethically accept-
able innovation (Stilgoe et al. 2013) are already address-
ing relevant points in this regard (see Rose and Chilvers 
2018; Bronson 2019; Eastwood et al. 2019). To this end, 
in agriculture, more intensive and coordinated cooperation 
between public, private, and civil society actors involved 
in the development of technical innovations needs to be 
established (Rose and Chilvers 2018). End-users and con-
sumers should be involved in a socio-ethical discussion, for 
example relating to farmer-technology interaction or animal-
technology interaction, using workshops or citizen panels, 
so that critical feedback can be taken into account early on. 
The beginnings of RRI lie in a social and political European 
setting, which is why the focus of its application lies in the 
European and North American context, without previous 
application to DFT (Eastwood et al. 2019). Therefore, an 
extension of RRI to digital agriculture as well as to other 
countries is indispensable.

In summary, the results of our study prove that future 
research on digital agriculture must put more emphasis on 
the analysis of public response to agricultural modernization 
and its dynamics in order to ensure an appropriate image of 
increasingly automated agriculture.
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Simple Summary: We analyzed whether attaching sensors to the tail of cows for the early detection
of calving leads to behavioral changes. In this study, we combined conventional video analysis with
data from digital sensor technologies. To detect the potential agitation of cows after calving sensor
attachment, we analyzed cow activity behavior. Based on the combined results of video and sensor
analysis, there was no clear evidence that attaching sensors to the tail generally altered the ethological
pattern of all cows analyzed. However, the investigation of individual cows showed an increase
in the frequency of tail raising and rubbing the tail after calving sensor attachment. These changes
would be worth analyzing in more detail on a larger scale.

Abstract: Studies evaluating calving sensors provided evidence that attaching the sensor to the tail
may lead to changes in the cows’ behavior. Two different calving sensors were attached to 18 cows, all
of which were equipped with a rumen bolus to record their activity. Two methodological approaches
were applied to detect potential behavioral changes: analysis of homogeneity of variance in cow
activity (5 days pre-sensor and 24 h post-sensor) and analysis of video-recorded behavior (12 h pre-
and post-sensor, respectively) in a subgroup. The average results across the sample showed no
significant changes in the variability of activity and no statistically significant mean differences in
most visually analyzed behaviors, namely walking, eating, drinking, social interaction, tail raising,
rubbing the tail, and the number of standing and lying bouts after calving sensor attachment. In
addition to considering mean values across all cows, individual cow investigations revealed an
increased number of time slots showing a significant increase in the variability of activity and an
increased frequency of tail raising and rubbing the tail on objects after calving sensor attachment in
some cows, which should be investigated in more detail on a larger scale.

Keywords: activity; Brown–Forsythe test; digital; variance; video

1. Introduction
1.1. Sensor Systems to Improve Calving Management

Calving monitoring and assistance can reduce the incidence of stillbirths and the
proportion of cows with post-partum endometritis and uterine infections while also having
a positive effect on reproductive performance [1,2]. To improve calving management,
sensors for early calving detection are discussed as a technological solution. These sensors
can detect parameters such as behavior or body temperature, which change a few hours
before calving [3]. Saint-Dizier and Chastant-Maillard [3] described four different types
of commercially available calving detection devices: accelerometers and inclinometers
that are attached to the tail and measure activity, abdominal belts to monitor uterine
contractions, vaginal probes to monitor vaginal temperature, and devices in the vagina
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or on the labia that detect expulsion of the calf. Predicting the onset of calving through
the continuous monitoring of tail movement is possible due to changes in the behavior of
a cow before calving, such as a significant increase in the frequency and duration of tail
raising [4,5]. There are currently three different market available sensors for attachment
to the tail, which differ in the way they are attached: with a ratchet (Moocall, Moocall
Ltd., Dublin, Ireland), with an adhesive and tape (CalveSense, Allflex Group Germany
GmbH, Bad Bentheim, Germany), and with a clamp and tape (Calving Alert Set, Patura
KG, Laudenbach, Germany). In addition, many sensor systems that were originally used
exclusively for estrus detection have been further developed in recent years to include the
function of calving monitoring. Parameters such as activity, temperature, or rumination are
used for this purpose. The available literature shows that some sensors on the market have
the potential to achieve satisfying results in the early detection of calving [5–9]. Studies on
tail-attached sensors have reported sensitivities of up to 95% [5].

Although the literature suggests that sensors can help to improve calving manage-
ment and, therefore, specific animal welfare aspects (e.g., calf mortality), there is also
evidence that sensors attached to the cow’s tail in particular can cause behavioral changes
or even injuries. Studies evaluating tail-attached calving sensors have so far focused on
the Moocall sensor. Investigations on the behavior of dairy cows after attaching a calving
sensor to the tail are, however, rare. In this context, Lind and Lindahl [10] reported on
practical experience with the Moocall calving sensor. Their study on cow behavior after
the attachment of the sensor system had to be discontinued due to frequent tail injuries.
They subsequently conducted telephone interviews with 15 farmers and confirmed these
initial experiences: 80% of the farmers stated that the behavior of the cow worsened after
the Moocall sensor system had been attached, which they inferred from increased tail
raising and fidgeting. Additionally, 87% noticed injuries to the tail of the animals. However,
the interviewed farmers’ assessment that the cows’ behavior changed in a way that was
judged to be negative after attaching a Moocall sensor [10] was a visual and subjective
one, as it was not recorded according to a uniform classification scheme. Recently, Giaretta
et al. [5] investigated precision of calving prediction with the Moocall sensor and dairy
cow behavior after its attachment. They visually analyzed walking, eating, lying down,
standing, and tail movement one day before and on the day of calving sensor attachment,
concluding that the Moocall sensor was well tolerated by the cows, as only eating behavior
showed an increase after its attachment to the tail. Voss et al. [8] conducted a study on the
Moocall sensor, focusing on its fit on the tail and skin integrity after attachment. In their
experiment, the Moocall sensor did not continuously remain on the tail in 86.1% of the
animals, with reason being mainly categorized as ‘fell off tail’ or ‘tail swollen or painful’.

1.2. How Can Behavioral Changes in Dairy Cows Equipped with Tail-Attached Calving Sensors
Be Assessed?

To assess behavioral changes or even stress in cows, various parameters have been
analyzed and different approaches have been applied in literature. The extent to which
animals respond to stress depends not only on the duration and intensity of exposure to a
stressor, but also on environmental conditions, physiological status, and previous expe-
rience with the stressor [2]. So far, the analyzed stressors for cows include isolation from
the herd [11–14], confrontation with novelty such as a milking system [15–17], exposure
to stray voltage [18–21], or heat [22–31], among others. The previous studies showed that
cows responded to stress by increased activity [12,14,16,18,20].

To describe changes in the behavior of an animal, the mean and median of activity
data from different time periods are often used [20,29,32]. In addition, analyzing variability
of activity and movement behavior is a common methodological approach to characterize
and predict, among others, diseases in cows [33–38]. For instance, Edwards and Tozer [33]
showed a reduced average walking activity, recorded with pedometers, in cows with
metabolic or digestive disorders compared to healthy cows. Their study also indicated that
the variability of activity was higher in sick cows compared to healthy ones, regardless
of lactation number and calving season. Thus, multiple studies indicate that not only the
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activity level per se is relevant for describing cow behavior, but rather it appears that the
scattering of activity values around a mean value can provide further valuable information.

Digital sensor technologies for dairy farming are currently being used with the argu-
ment of improving animal welfare as they contribute to calving and health management.
At the same time, there are concerns as to whether the attachment of sensors has negative
effects on cows. In the worst case, there could be a contradiction: Does a digital technology
with the intention to improve animal welfare by monitoring calving actually disturb cows?
This study therefore addresses the question of whether the attachment of two different
calving sensors leads to behavioral changes indicating that cows are being disturbed by
these monitoring devices.

2. Materials and Methods
2.1. Data Collection
2.1.1. Animals and Housing

The data (mid-July to early December 2018) originate from a dairy research and
demonstration farm located in Bavaria, southern Germany. On the dairy farm, cows were
kept in a free-stall barn year-round. Six to eight weeks before the expected calving date, the
animals were dried off and moved to the dry cow area. Approximately eight days before
the expected calving date, the cows were separated into one of four maternity pens littered
with straw. The animals were paired in the maternity pens solely dependent on their
expected date of calving and thus independent of age, lactation, breed, and type of calving
sensor attached. In the maternity pen, the total mixed ration was provided daily at the same
time (09:15 to 09:30 a.m.) and water was available ad libitum. Two video cameras were
placed above the four maternity pens and recorded continuously. Mobotix D15 cameras
were used, which ensured good night vision by means of an integrated infrared lens.
The video recordings were stored in a network-attached storage. The analysis included
15 cows and 3 heifers (mean age ± SD = 5.5 ± 2.6 years; mean parity ± SD = 4.1 ± 2.5), of
which eleven were Simmentals, four were Brown Swiss, and three were Holstein breed (see
Table A1 in Appendix A).

2.1.2. Sensors and Calving Management

On this dairy farm, cows were equipped with a calving sensor and received a rumen
bolus (smaXtec animal care GmbH, Graz, Austria) several weeks before the expected
calving date. We used Moocall (Moocall Ltd., Dublin, Ireland; weight: 329 g including pad)
and CalveSense (Allflex Group Germany GmbH, Bad Bentheim, Germany; weight: 172 g)
as sensors for an early detection of calving. Both calving sensors analyze tail movement
and issue a message to the farmer a few hours before calving. Therefore, they are attached
to the cow’s tail only a few days before the estimated calving date. As tail-attached calving
sensors are only applied for a short period before calving, the behavioral analysis focused
on a short-term adaptation period (see also [5]). The user has no insight into the recorded
raw data from the calving sensors, but only receives messages in the case of an imminent
calving. As it was not the purpose of this study to analyze the calving alarms of the sensor
systems themselves, this was not a limitation. The second type of sensor, a rumen bolus, is
a commercial product administered orally into the reticulorumen using an oral applicator.
In the reticulorumen, it continuously records animals’ activity in ten-minute intervals on
a scale between 1 and 100 as a dimensionless index using a 3D acceleration sensor. It
additionally measures core body temperature with an accuracy of ±0.05 ◦C [39]. The data
is then sent to a base station, from where it may be exported for analysis. The activity
measurement is not influenced by rumen motility since disturbance factors that cannot be
attributed to the movement of the animal itself (e.g., movement of the rumen) are filtered
out [40]. The smaXtec bolus has already been applied in scientific studies to clarify a
range of research questions (see [41–43]). Studies on the performance of the activity-based
estrus detection of the smaXtec bolus showed a sensitivity of 92% (blood progesterone as
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reference) and a precision (positive predictive value) of 89% [44]. Based on a review of
estrus detection rates in other sensor systems [45], this accuracy can be classified as good.

In the maternity pen, either a Moocall or CalveSense sensor was attached to the tail
five days in advance of the estimated calving date. The attachment of the calving sensors
was carried out by only two staff members, who received instructions and training on
the correct handling of the two sensor systems with cows outside the study cohort before
the start of documentation. As such, a learning process of attaching the sensors, which
could potentially influence the animals’ behavior could be excluded. Sensor attachment
was performed according to the respective manufacturer’s guideline: the Moocall sensor
was fastened with a ratchet whereas the CalveSense sensor was secured to the tail with an
adhesive and tape. After the calving sensor attachment, the farm staff checked its fit on
the cow’s tail and for potential pressure marks or swellings on the tail. The calving sensor
check was performed one to two hours after its attachment and then twice daily during the
routine inspection of animals to calve. In this process, any abnormalities such as swelling of
the tail, conspicuous behavior such as rubbing the tail on objects, or sensor dropping after
attachment were documented. As recommended by the manufacturer, Moocall sensors
were removed for three to four hours if they had already been attached to the tail for four
days (and the cow had not yet calved) before being reattached.

On the dairy research and demonstration farm, CalveSense sensors were attached to a
total of 36 animals and Moocall sensors were attached to a total of 37 animals. Due to the
defined period of analysis and not all the calving sensors attached remaining on the tail
(e.g., due to falling off), 18 animals could be included in methodological approach 1, and
nine of them also in methodological approach 2. The analysis included only animals on
which a calving sensor remained attached to the tail for at least 24 h (exception: cow 15
with sensor being removed after 23 h and 15 min).

Because a cow’s behavior may be influenced by its overall state of health [46,47],
we also considered health data for the analysis. As the dairy farm is participating in
ProGesund, an information service for veterinarians and farmers, documentation on all
diseases diagnosed by a veterinarian was available. Prior to calving sensor attachment, a
health assessment of the animals was performed, which included a visual assessment of
the animal as well as continuous data on core body temperature and number of drinking
cycles collected via the rumen bolus.

2.2. Methodological Approach 1: Analysis of the Activity Index Recorded by Sensors
(Rumen Bolus)

The first methodological approach was an analysis of the variability of activity [33–38].
All statistical calculations were performed using the software R [48] (packages: “tseries” [49],
“car” [50], “DescTools” [51]). The aim of the statistical analysis was to determine whether
the variability of the activity index recorded by the rumen bolus changed after attaching a
calving sensor to the cow’s tail. In this process, the cows served as their own control [34,37].
By choosing a reference period of four days (see Figure 1), our study resembled the approach
of Thorup et al. [34] who considered a reference period of two to eight days for analyzing
variability of activity. To be representative of the actual activity, its variability was measured
over a period of multiple days. At the same time, the exclusion of potential influences of cow
drying off, being moved to the dry cow area, and being separated into a maternity pen was
taken into consideration, resulting in a four-day reference period. Given the timeframe of
five days prior to sensor attachment required for data analysis (see Figure 1) and at least 36 h
between sensor attachment and calving, it was possible to include 18 cows in the analysis
(five cows with Moocall sensors, 13 cows with CalveSense sensors). A period of 36 h was
required between sensor attachment and calving to allow for a 24-h post-sensor study period
while also accounting for natural pre-calving changes in behavior [4,52,53].
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An analysis of the variability of activity was performed on the average activity index
data across all 18 cows. We measured activity in six four-hour time slots, i.e., a total of
24 h consecutive to sensor attachment (t0 to t + 24; post-sensor) and compared it to the
four-day baseline (t − 96 to t0) immediately prior to sensor attachment. To avoid any
influences of the sensor attachment on the activity data of the first timeslot, we removed
the data point(s) closest to the manually recorded time of attachment, thus generating a
buffer of 10 to 15 min before the first data point was included in the analysis. To eliminate
any bias from possible long-term trends, the activity data were detrended. The calculation
of the first differences was sufficient to achieve stationarity for the time series before and
after sensor attachment, as confirmed by the augmented Dickey–Fuller test (p < 0.01 for all
tested cows and time series). All subsequent analyses were carried out on the detrended
data. Since activity behavior may vary greatly from cow to cow [23,37], analyses of the
detrended variability of the activity index were also performed separately for all cows.
To assess whether activity behavior changed after attaching the calving sensor, we tested
for homogeneity of variances between the four-day baseline and each of the post-sensor
four-hour time slots, respectively (see Figure 1). Given the non-normal distribution of the
data, we substituted the mean with the median, i.e., used the Brown–Forsythe test [54].
The term “variance” as such is technically not correct but is commonly used for reasons of
comprehensibility [55,56]. Levene’s test and its modification, the Brown–Forsythe test, are
frequently applied for testing the homogeneity of variances in different contexts [57–64].

The time at which the sensor is attached to the cow’s tail is defined as t0 and corre-
sponds to a different time of day for each animal. To account for any possible influence
of the diurnal activity pattern, we also conducted the Brown–Forsythe test for each of the
six four-hour time slots on the day before the sensor was attached (pre-sensor). To remain
consistent, the four days (t − 120 to t − 24) preceding this day were again used as a baseline
(see Figure 1), resulting in a second baseline. This explains the required timeframe of five
days prior to sensor attachment. In the process, the respective time slots, both pre- and
post-sensor, refer to the same time of day for each animal (i.e., both first, second, . . . , and
sixth time slots, respectively). The evaluation of 24-h pre- and post-sensor data enabled us
to interpret changes in the variability of the activity index. More specifically, it allowed
us to classify whether changes in the post-sensor activity behavior occurred more often
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than in the usual activity behavior of the cows (pre-sensor) and may thus be attributed to
the calving sensor. To account for multiple testing, we applied the Bonferroni correction to
maintain the significance level over all tests at 0.05 so that only those time slots for which
p < 0.0083 were considered significant.

The analysis of significances focused on the absolute number of significant time slots.
If a sensor attached to the tail is perceived as disturbing and agitates the cow, she may try
removing the sensor while suffering from restlessness. We therefore continued with the
premise that time slots showing an increase in variability of activity with regard to the
attachment of calving sensors were the relevant indicator. As cows exhibited periods of
lower or higher variability of activity more frequently, for example, due to diurnal patterns
of activity, we focused on changes in the number of time slots showing a significant increase
in variability of activity in the post-sensor compared to the pre-sensor period.

2.3. Methodological Approach 2: Behavioral Observation via Video Analysis

The second methodological approach was a conventional visual observation of the
cows’ behavior recorded on video. The video recordings were available for nine of the
18 cows included in methodological approach 1 (cow ID 1 to 9 in Table A1). The subsample
for video analysis included three cows with Moocall and six cows with CalveSense sensors.
The assignment of animal behavior was performed on all nine cows by the same observer
using the software Interact (Mangold International GmbH, Germany). All behavior patterns
were observed for the first twelve hours consecutive to calving sensor attachment (t0
to t + 12) and for twelve hours at the same time of day the day before calving sensor
attachment (t − 24 to t − 12) as the reference period. The twelve-hour periods were divided
into three time slots of four hours each (see Figure 1). Again, the respective time slots, both
pre- and post-sensor, referred to the same time of day for each cow (i.e., both first, second,
and third time slots, respectively). In congruence with methodological approach 1, the
cows thus served as their own control.

For the behavioral observation, an ethogram appropriate for the research question
and based on published literature was developed. The ethogram included eight behavior
patterns (see Table 1).

Table 1. Ethogram including the respective descriptions of the behaviors.

Unit Behavior Description

Duration of Walking The cow is moving all four legs (walking or running) [13]

Standing The cow is standing without moving [13,25]

Lying The cow is lying in different natural lying positions [65]

Eating The cow places its head above the feeding table and searches,
masticates or sorts the feed (silage) [66]

Drinking The cow places its head over the water trough [24]

Frequency of Tail raising 1 Lateral > 90◦

Duration of Rubbing the tail
on objects 1

Rubbing the tail on objects (other cow in maternity pen, penning, or
water trough)

Social interaction 1

social licking: licking another cow’s head, neck, and/or shoulder areas
sniffing head: head or muzzle stretched towards/maybe touching
another cow’s head
sniffing body: head or muzzle stretched towards/maybe touching
another cow’s body
gentle pushing: hard push of body against body
head butting: blow with the forehead directed at another cow
fighting: head-to-head pushing, sometimes followed by head to neck
pushing and manoeuvring for position
([67], based on work from [68])

1 Observed parallel to the behaviors walking, standing, lying, eating, and drinking.
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Walking [13,25,65], standing [17,24,25,65], lying [17,24–26], and the number of stand-
ing and lying bouts [26,65,69,70] per time slot were captured visually. Furthermore, eat-
ing [17,18,24,25,66] and drinking [18,24,25] were included in the ethogram. Eating and
drinking took place exclusively while standing, but both behaviors were analyzed and
presented separately. To take this into account, eating and drinking were counted as
“standing” when determining the number of lying and standing bouts.

Since a potential perception of calving sensors as disturbing depends on sensor
position on the tail, we observed two further behaviors, tail raising [5] and rubbing the tail
on objects, which may indicate that the cow was trying to change the position of the sensor
on the tail. To differentiate between slight tail movements, tail raising was defined as lateral
>90◦. Tail-rubbing was performed on another cow in the maternity pen, on the penning, or
on the water trough. In addition to the observation of individual animal behavior, social
interaction [65,67,68] was recorded.

Central tendencies were compared to evaluate whether changes in the analyzed
behaviors occurred after attachment of calving sensors. Due to the non-normal distribution
of the data, the Wilcoxon test for paired samples was applied. For each behavior, the
medians of paired time slots were compared (i.e., first time slot pre- and post-sensor, second
time slot pre- and post-sensor, and third time slot pre- and post-sensor, respectively). The
sample of each time slot consisted of nine cows. Due to the sample size, a continuity
correction was included in all Wilcoxon tests.

3. Results and Discussion

To interpret the results of our analyses, a brief overview of cows with relevant health
documentation or showing abnormalities (Section 3.1) commences this section. Subsequently,
the results on variability of activity and on behavioral observation (Sections 3.2 and 3.3) are
interpreted and discussed.

3.1. Documentation Concerning Calving Sensor Attachment, Abnormalities after Calving Sensor
Attachment, and Health

On the dairy research and demonstration farm, a total of 36 CalveSense devices were
attached to the tail of cows, of which four devices (11.1%) fell off. Neither pressure marks
nor swellings on the tail were documented after attachment of CalveSense devices. Of the
total of 37 Moocall devices attached, 23 (62.2%) did not remain on the tail because they
either fell off (and were then reattached) or were removed by the barn staff due to pressure
marks, swellings, or technical problems (e.g., battery often empty although sensor charged).
In eight of these 23 animals, pressure marks or swellings were documented during the
twice daily routine inspection, whereupon the Moocall sensor was immediately removed.
Due to the large number of Moocall sensors that did not remain on the tail, there were
comparatively more cows with a CalveSense device in the analyzed sample of 18 animals.

Regarding the health documentation of the cows in the study, we focused on two
weeks before and two weeks after attachment of the calving sensor. During this period,
metaphylaxis against hypocalcemia was performed in eight of the 18 cows. However,
it was carried out more than 24 h after the calving sensor was attached. Four cows (7,
12, 14, and 17) suffered from hypocalcemia after calving (diagnosed four, eight, two, and
two days after attachment of the calving sensor, respectively). Also, after calving, one cow
suffered from mastitis (cow 16; diagnosed four days after attachment of the calving sensor),
one from metritis (cow 4; diagnosed ten days after attachment of the calving sensor), and
one from retentio secundinarum (cow 3; diagnosed three days after attachment of the
calving sensor).

Based on the farm staff’s protocol, three of the 18 animals included in the analysis
were identified to show abnormalities after attaching a calving sensor to their tail:

• In cow 2, conspicuous activity behavior was observed immediately after attaching the
sensor (CalveSense) to the tail. She rubbed her tail heavily on the water trough for the
first 15 min, although this decreased afterwards (also observed in video).
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• About an hour after the calving sensor (Moocall) was attached to cow 7, the fit of the
sensor on the tail had to be readjusted. The cow was fixed in the feed fence for a short
time and the sensor was reattached (attachment: 08:24 a.m.; reattachment: 09:35 a.m.).

• Cow 15 showed discomfort in her activity behavior 23 h and 15 min after attachment
of the calving sensor (Moocall). As pressure points and slight swelling were visible on
the tail, the sensor was removed immediately (no video available).

3.2. Methodological Approach 1: Changes in the Variability of the Activity Index

On average across all 18 cows analyzed, the mean absolute deviation around the
median (MAD) values as well as the medians were in a similar range for both of the four-
day baselines (see Table 2). We could therefore assume that the selected baselines offered
a stable representation of the usual activity behavior. This allowed for a comparison of
each time slot with its respective baseline and subsequently the classification of deviations
in activity behavior. The Brown–Forsythe test, applied to analyze variability of activity of
all 18 cows, revealed that three of the pre-sensor and none of the post-sensor time slots
showed a significant increase in the variability of activity. In addition, a significant decrease
in the variability of activity was detected in one time slot pre-sensor, which was, however,
outside of the focus of our investigation. In summary, the number of time slots showing
a significant increase in the variability of the activity index in the post-sensor time slots
was not increased compared to the pre-sensor time slots. On average across all 18 cows, an
increase in the variability of the activity index after calving sensor attachment indicating
severe agitation as a stress response as documented in other studies (e.g., [12,14,16,18,20])
was not observed.

Table 2. Median and mean absolute deviation around the median (MAD) of the activity index, and results of the Brown–
Forsythe test for the pre-sensor and post-sensor time slots using the respective four-day baseline as reference (n = 18).

Baseline
a (Pre-

Sensor)

Baseline
b (Post-
Sensor)

t − 24
to

t − 20

t − 20
to

t − 16

t − 16
to

t − 12

t − 12
to

t − 8

t − 8
to

t − 4

t − 4
to
t0

t0
to

t + 4

t + 4
to

t + 8

t + 8
to

t + 12

t + 12
to

t + 16

t + 16
to

t + 20

t + 20
to

t + 24

MAD 0.16 0.17 0.23 0.25 0.19 0.16 0.09 0.30 0.24 0.15 0.12 0.11 0.13 0.23
median −0.02 −0.02 −0.05 −0.06 −0.06 0.09 0.01 0.01 0.01 −0.05 0.01 0.01 −0.04 0.05
Brown–
Forsythe

test
sig.I sig.I sig.D sig.I

a Four-day baseline (t − 120 to t − 24) as reference for pre-sensor time slots. b Four-day baseline (t − 96 to t0) as reference for post-sensor
time slots. sig.I significant increase in variability of activity, p < 0.05, Bonferroni-corrected p < 0.0083. sig.D significant decrease in variability
of activity, p < 0.05, Bonferroni-corrected p < 0.0083. t0 = attachment of calving sensor.

In addition to the overall evaluation of all 18 cows shown in the section above, indi-
vidual animal investigations elicited further information. Again, the analysis of individual
cows revealed that, for both four-day baselines of any given cow, the MAD values as well
as the medians were in a similar range (see Table A2). Figure 2 visualizes the absolute
number of pre-sensor and post-sensor time slots showing a significant increase in the
variability of activity relative to the respective four-day baseline (Brown–Forsythe test:
p < 0.05). After the calving sensor was attached, none of the 18 cows exhibited a constant
significant increase in the variability of activity in all six post-sensor time slots, while
for twelve out of 18 cows no significant increase in the variability of activity could be
detected in any of the post-sensor time slots. Four cows revealed a significant increase in
the variability of activity in only one of the six post-sensor time slots and only two cows
showed a significant increase in the variability of activity in two of the six post-sensor
time slots. Considering the six cows that showed a significant increase in the variability of
activity in one or two post-sensor time slots, a similar significance pattern in the pre-sensor
time slots emerged for four of them. Cows 11 and 15, however, did not reveal a significant
increase in the variability of activity in any of the pre-sensor time slots.
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Figure 2. Depiction of the number of time slots pre-sensor (t − 24 to t0) and post-sensor (t0 to t + 24),
showing a significant increase in the variability of the activity index using the respective four-day
baseline as a reference (Brown–Forsythe test: p < 0.05, Bonferroni-corrected p < 0.0083).

Cows 7 and 15, for which abnormalities were visually detected by the farm staff
within 24 h of attaching the calving sensor, showed a significant increase in the variability
of activity in the first time slot following the attachment of the calving sensor (t0 to t + 4),
thus making them the only cows to show such immediate reactions (see Table A2). In cow
7 (readjustment of the sensor in time slot t0 to t + 4), the Brown–Forsythe test did not reveal
statistically significant increases in the variability of activity occurring in the subsequent
time slots (t + 4 to t + 24). Cow 15, however, showed a significant increase in the variability
of activity also in the time slot t + 21 to t + 24 h post-sensor (see Table A2). In this period,
tail swelling was detected, and the calving sensor was removed by the farm staff.

Findings on cow behavior should be interpreted in a differentiated manner because
reasons for changes in cow behavior may be rooted in a variety of causes. Changes in
the activity of a cow can be attributed to individual animal behavior, diurnal patterns of
activity, parity, stage of lactation, disease, estrus, and external effects [32–34,71,72], among
other aspects. Behavioral changes may also be explained by a rebound effect, which has
been demonstrated, for example, around the time of calving, with different surface types, or
lying deprivation in dairy cattle [52,73,74]. As individual cow analyses revealed that some
of the post-sensor time slots showing a significant increase in the variability of activity
also showed statistical significance for the same time of day on the previous day, diurnal
patterns of activity [32] became apparent.

Since a maximum of two of the six post-sensor time slots for each cow revealed a
significant increase in the variability of activity, behavioral changes potentially caused by
calving sensor attachment seem to have subsided after a short time. If the attachment of a
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calving sensor led to agitation in a cow, it can be assumed that this was only temporary.
Several studies found that cows are able to acclimate to changes [13,18,75]. Concerns
about the negative effects on animal welfare should therefore be greater in the presence
of evidence of significant long-term changes in activity behavior. However, none of the
18 animals analyzed revealed significant changes in the variability of activity over the
entire period of 24 h post-sensor attachment. In the two cows that did show a significant
increase in the variability of activity in the first time slot post-sensor (cows 7 and 15), the
significant result was not reproduced in the ensuing time slots. Farmers interviewed by
Lind and Lindahl [10] reported that negative animal behavior lasted up to one hour after
attaching a Moocall. Consequently, their observations are consistent with our results.

We applied the Brown–Forsythe test for comparing the variability of activity between
the four-day baselines and four-hour time slots, i.e., between samples of different sizes.
However, since observation of a sole 24-h time slot post-sensor would have been too
imprecise, a subdivision into time slots was deemed appropriate. In the literature, it was
reported that the Brown–Forsythe test is robust to unequal sample sizes [55,56].

The Bonferroni correction applied to account for Type I error accumulation in multiple
testing is known to be conservative compared to alternative correction methods [76,77].
There is controversy about its use because reduction of the Type I error is accompanied
by an increase in the risk of Type II error, leading to actual differences not being de-
tected. However, as a low number of multiple tests was conducted in our evaluation,
the Bonferroni-corrected significance level was not minimized to such an extent that the
analysis would no longer have yielded any significant outcomes. A previous analysis of
the significant time slots without Bonferroni correction revealed that the overall conclusion
of methodological approach 1 remained the same, since Type I error accumulation affected
both pre- and post-sensor time slots equally. This is a crucial point of our study, as our focus
was on the change in the number of significant time slots between pre- and post-sensor
periods rather than their absolute numbers.

The activity index used for methodological approach 1 is based on a proprietary
algorithm that is not open source. Therefore, the detailed calculation of the activity index
is not known. Although this is a limitation of our study, it does not weaken the proposed
methodological approach of analyzing the variability of the activity index rather than
activity itself to monitor dairy cows’ behavior. Furthermore, since all analyzed data from
all animals and all time slots are based on the same algorithm, all steps in our analysis are
subject to the same limitations so that the results of the comparisons are not biased. The
lack of details on the calculation of the proprietary algorithm therefore does not impact the
basic conclusions of our study.

3.3. Methodological Approach 2: Behavioral Observation via Video Analysis
3.3.1. Standing, Walking, Lying, Eating, Drinking

The video analysis revealed that the behaviors standing, walking, lying, eating, and
drinking were performed by all nine cows during the analyzed time. Behaviors being
performed by a cow in the pre-sensor time slots were also observed in the post-sensor
time slots (see Figure A1). Although different activity levels could be observed between
the cows, the majority of post-sensor time slots revealed only slight changes in time spent
being active compared to the previous day (see Figure A1). An exception was cow 8, which
spent comparatively more time lying on the day of sensor attachment in the first time slot
(t0 to t + 4), but comparatively less in the second time slot (t + 8 to t + 12). Considering all
nine cows and their respective time slots, on average 45% (8 to 96%) were spent lying, 34%
(4% to 69%) standing, 3% (0% to 8%) walking, 2% (0% to 12%) drinking, and 15% (0% to
40%) eating (see Figure A1).

The comparison of the behavior observed by means of video analysis in the pre- and
post-sensor period is shown in Figure 3. Only the first time slots (t − 24 to t − 20; t0 to
t + 4) of the behaviors standing and lying (n = 9) differed significantly in their means.
Considering these time slots, the cows spent comparatively less time standing and more
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time lying on average after calving sensor attachment. However, these mean differences
were mainly due to activity changes of cow 8 (see Figure A1). When excluding cow 8 from
the Wilcoxon test, the sample of the remaining eight animals did not show any significant
differences in the mean values of the behaviors standing and lying (p > 0.05).Animals 2021, 11, x  13 of 22 

 

 

 
Figure 3. Medians of the behaviors observed by video analysis in the respective three time slots 
before (black dashed line) and after (gray solid line) calving sensor attachment (n = 9) (For each 
behavior, the black dashed lines represent the three pre-sensor time slots and the gray solid lines 
the three post-sensor time slots. Significant mean differences (p < 0.05) identified by the Wilcoxon 
test between the respective first, second, and third time slots pre- and post-sensor are marked with 
different superscripts (a, b). Mean absolute deviation around the median (MAD) is added). 

  

0
0.2
0.4
0.6
0.8

t-24 t-20 t-16

%
 o

f t
im

e 
slo

t

Eating

vorher nachher

0

0.02

0.04

0.06

t-24 t-20 t-16

%
 o

f t
im

e 
slo

t

Drinking

vorher nachher

0

0.02

0.04

0.06

t-24 t-20 t-16

%
 o

f t
im

e 
slo

t

Walking

vorher nachher

0

0.2

0.4

0.6

0.8

t-24 t-20 t-16

%
 o

f t
im

e 
slo

t

Standing

vorher nachher

0

0.2

0.4

0.6

0.8

t-24 t-20 t-16

%
 o

f t
im

e 
slo

t

Lying

vorher nachher

0

100

200

300

t-24 t-20 t-16

A
bs

ol
ut

e 
fre

qu
en

cy

Tail raising

vorher nachher

0

2

4

6

8

t-24 t-20 t-16

M
in

ut
es

Rubbing the tail on objects

vorher nachher

t−24 to t−20      t−20 to t−16     t−16 to t−12
t0 to t+4       t+4 to t+8        t+8 to t+12

day before calving sensor attachment (t−24 to t−20; t−20 to t−16; t−16 to t−12)

day of calving sensor attachment (t0 to t+4; t+4 to t+8; t+8 to t+12)

a

b

a

b

0

2

4

6

8

t-24 t-20 t-16

M
in

ut
es

Social interaction

0

2

4

6

t-24 t-20 t-16

A
bs

ol
ut

e 
fre

qu
en

cy

Lying bouts

0

20

40

60

t-24 t-20 t-16

A
bs

ol
ut

e 
fre

qu
en

cy

Standing bouts

t−24 to t−20      t−20 to t−16     t−16 to t−12
t0 to t+4       t+4 to t+8        t+8 to t+12

t−24 to t−20      t−20 to t−16     t−16 to t−12
t0 to t+4       t+4 to t+8        t+8 to t+12

t−24 to t−20      t−20 to t−16     t−16 to t−12
t0 to t+4       t+4 to t+8        t+8 to t+12

t−24 to t−20      t−20 to t−16     t−16 to t−12
t0 to t+4       t+4 to t+8        t+8 to t+12

t−24 to t−20      t−20 to t−16     t−16 to t−12
t0 to t+4       t+4 to t+8        t+8 to t+12

t−24 to t−20      t−20 to t−16     t−16 to t−12
t0 to t+4       t+4 to t+8        t+8 to t+12

t−24 to t−20      t−20 to t−16     t−16 to t−12
t0 to t+4       t+4 to t+8        t+8 to t+12

t−24 to t−20      t−20 to t−16     t−16 to t−12
t0 to t+4       t+4 to t+8        t+8 to t+12

t−24 to t−20      t−20 to t−16     t−16 to t−12
t0 to t+4       t+4 to t+8        t+8 to t+12

Figure 3. Medians of the behaviors observed by video analysis in the respective three time slots
before (black dashed line) and after (gray solid line) calving sensor attachment (n = 9) (For each
behavior, the black dashed lines represent the three pre-sensor time slots and the gray solid lines
the three post-sensor time slots. Significant mean differences (p < 0.05) identified by the Wilcoxon
test between the respective first, second, and third time slots pre- and post-sensor are marked with
different superscripts (a, b). Mean absolute deviation around the median (MAD) is added).
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As lying and standing behavior are used as a sign of well-being in cattle, they have
been assessed in cow behavior studies to answer a variety of research questions. These
studies investigated changes in standing and lying subject to a variety of influences such
as management factors, stall size and configuration, stocking density, heat stress, social
ranking, overall health status, and pen layout and flooring [31,69]. The type of flooring
may have a substantial impact on standing and lying, as cows reduce their number of
standing and lying bouts on floorings considered uncomfortable, indicating an avoidance
of frequent changes of position from lying to standing [70]. However, an increased number
of standing and lying bouts as well as higher stepping rates, more frequent step and
kicking behavior, and higher activity levels were recorded as signs of restlessness and stress
responses in cows [12,16–18,20]. As we did not find any restrictions in the basic activity
behaviors standing, walking, lying, eating, and drinking in eight of the nine cows observed
in methodological approach 2, we cannot assume a general discontent of the cows. Only
cow 8 changed especially its lying and standing behavior, as she spent more time lying and
less time standing in the first time slot post-sensor compared to pre-sensor. However, this
may be interpreted as a mere shift of lying and standing time between the first two pre-
and post-sensor time slots, respectively (e.g., rebound effect).

3.3.2. Tail Raising and Rubbing the Tail on Objects

Considering tail raising and rubbing the tail on objects, the Wilcoxon test did not
show any significant mean differences between the respective pre- and post-sensor time
slots (see Figure 3). However, an individual analysis of the cows provided further insights:
Cows 2, 7, and 8 responded to the calving sensor attachment with an increased frequency
of tail raising. In the post-sensor time slots, they performed the behavior of tail raising on
average 2.0, 2.8, and 5.2 times as often (first, second, and third time slot) as in the pre-sensor
time slots. While the analysis of activity index variability (methodological approach 1) did
not show any significant results for the post-sensor period for cows 2 and 8, it revealed a
significant increase in the variability of the activity index for the first post-sensor time slot
(t0 to t + 4) for cow 7. Thus, the required readjustment of the sensor on the tail by farm staff
during this time slot resulted in both an increased frequency of tail raising and an increase
in the variability of the activity index in cow 7.

Whereas tail raising was performed by all nine cows, rubbing the tail on objects was
observed only in cows 2 and 8. Both did not rub their tails on objects in the pre-sensor
time slots, but in the post-sensor time slots for 3.1 (cow 2) and 0.8 (cow 8) minutes on
average per time slot. For cow 2, rubbing of the tail on objects was predominantly observed
in the first post-sensor time slot and for cow 8 in the first and second post-sensor time
slots. Presumably, a certain degree of adaption can also be interpreted for the behavior
of rubbing the tail on objects, reinforcing the findings of the Lind and Lindahl study [10],
in which negative animal behavior reported by farmers persisted for up to one hour
after calving sensor attachment, and of the Giaretta et al. [5] study, in which increased
eating behavior after sensor attachment was characterized as temporary. Individual animal
behavioral investigations via video observation leads to the assumption that especially
tail raising (see [5]) and rubbing the tail on objects were appropriate, sensitive parameters
to recognize that individual cows found the calving sensor uncomfortable and tried to
remove it. However, this is not a reaction that occurred in all cows. The extent to which an
increase in tail raising and rubbing the tail on objects can be considered stress in the cow is
still an open question and would require more data for validation.

3.3.3. Social Interaction

Social interaction was observed in all nine cows analyzed. The observed behaviors
predominantly included sniffing head, sniffing body, and social licking, and are therefore
described as non-agonistic social interaction [67]. Sniffing head or body was observed in all
nine cows. Only one gentle pushing (cow 8; time slot t − 16 to t − 12) and one head butting
(cow 5; time slot t + 8 to t + 12) were observed as agonistic social interactions. Compared to
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the pre-sensor time slots, less social interaction was observed in the post-sensor time slots
in five cows (1, 4, 6, 7, 9) and more social interaction was observed in four cows (2, 3, 5, 8).
However, Wilcoxon testing did not indicate any significant mean differences between the
respective compared pre- and post-sensor time slots (see Figure 3).

Social behavior [65,67,68] is an important welfare issue as stable social relationships
in a dairy herd can help to reduce the effects of stressful conditions on animals. However,
herding cows may also lead to aggression or social disturbance. For example, inappropriate
housing conditions can cause social stress and aggressive behavior [68]. Since there were
only two cows in the maternity pen simultaneously in our research facility, the results of
social interaction should be interpreted carefully, as social interaction is usually recorded
in loosely housed, larger dairy herds (e.g., [67]). Winckler et al. [78] already noted that the
validity of analyzing social interaction over a short period of time may be limited due to
high inter-day variation. It is known that the social interaction of licking specifically is
perceived as comforting by animals [79]. For example, Galindo and Broom [79] compared
social interaction of lame and non-lame cows. In lame cows, more non-agonistic social
interaction, including licking, was observed on average. It was concluded that licking
has a role in alleviating discomfort by looking for comfort from other cows. Although no
statistically significant mean differences in social interaction were found in our study, it is
striking to note that cow 8—which also exhibited an increased frequency of tail raising and
rubbing the tail on objects in the post-sensor time slots—showed the greatest post-sensor
increase in social interaction, thus possibly coping with discomfort.

3.4. General Discussion

Similar to what was described by Giaretta et al. [5], attaching a sensor to the tail did
not generally alter the ethological pattern of the animals we analyzed. In Giaretta et al. [5]
as well as in our study, no difference in tail movement after calving sensor attachment was
detected across animals. Nevertheless, compared to Giaretta et al. [5], we analyzed tail
raising continuously and over a longer period of time, finding an increase in the frequency
of tail raising in three of nine animals, which was mainly observed in phases, indicating
that tail raising should be recorded without gaps.

As also reported in Lind and Lindahl [10] and Voss [8], we point out that attaching
a sensor with a ratchet (as is the case with the Moocall sensor) to an animal’s tail is
challenging, even after long-time practice. The two studies reported swellings to the tail
in 17% [8] and 87% [10] of animals to which a Moocall sensor was attached, and frequent
dropping off the tail. Both these problems were also experienced on the dairy research and
demonstration farm. In contrast, the fixation of the CalveSense device with an adhesive
and tape did not cause any swellings to the animals’ tails. We thus reinforce that swelling
of the tail due to calving sensor fixation is unacceptable (see [8,10]).

Applying two methodological approaches allowed for a multi-sided evaluation of the
effect of attaching calving sensors on the behavior of cows. An analysis of the variability of
the activity index provides additional insights to conventional visual observation of the
active time of a cow (e.g., walking, eating). It was evident in many of the time slots that the
variability of activity significantly increased while the median simultaneously decreased.
This confirmed that an increase in the absolute activity level does not necessarily lead to
an increase in the variability around this activity level (and vice versa). As analyzing the
variability of general activity or specific movements is also a common methodological
approach to predict diseases in cows [34–36], it may provide valuable information for
describing the behavior of cows in further research and should receive more attention in
animal behavioral research.

Both objective and subjective methods make an essential contribution to knowledge
generation in animal behavior research [80]. While validity can be questioned for both
subjective and objective methods, subjective methods are more prone to yielding different
results when repeating an analysis of the same data set [80]. The reliability of animal
observations can vary between several different observers (inter-observer reliability) as
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well as between observations repeated by one person (intra-observer reliability) [80,81].
The analysis of sensor-recorded activity data with regard to the variability of activity
represents an objective and time-efficient solution that provides valuable information for
the evaluation of animal behavior.

Stress situations usually trigger a reaction that is a combination of both physiological
and behavioral parameters [2,11,28]. In addition to behavioral indicators, physiological pa-
rameters such as hormone measurements, heart rate, or respiration (e.g., [15,16,29]) would
have provided a further gain in information, and potentially would have reacted more
quickly or more sensitively to the attachment of sensors to the cows’ tails. Additionally,
some of the behaviors investigated in our study are described as maintenance behavior
(e.g., lying, walking, intake of food and water [5]). Since animals are highly motivated
to perform them, these behaviors are characterized by high resilience and therefore may
not always be sensitive indicators for capturing animal responses [80]. Related to this,
cows sometimes remain calm for very long periods of time despite discomfort or even
pain [80,82], which makes the early detection of animal welfare problems challenging. Our
results thus contribute to initial steps for identifying appropriate, sensitive behaviors and
thereby answering the research question of whether the attachment of calving sensors leads
to behavioral changes that could indicate disturbance by the sensors.

4. Conclusions

Based on the two methodological approaches, analysis of activity index and behavioral
observation via video analysis, it can be concluded that there is little evidence that the
attachment of calving sensors to the tails of dairy cows generally led to significant changes
in behavior. No significant behavioral changes were found on average for the variability of
the activity index and most visually analyzed behaviors, namely walking, eating, drinking,
social interaction, tail raising, rubbing the tail, and the number of standing and lying
bouts. On average across all cows analyzed, an increased lying time and reduced standing
time was found in the first hours after calving sensor attachment, which, however, was
sourced to one single cow and may be interpreted as a shift of lying and standing time.
However, both methodological approaches revealed some abnormalities in individual
cows. Individual cow investigations showed an increased number of time slots showing a
significant increase in the variability of the activity index in two of 18 animals analyzed.
Additionally, the two indicators, rubbing the tail on objects and tail raising, showed a
temporarily increased occurrence after sensor attachment in two and three of nine cows
analyzed, respectively. Since these two indicators may be interpreted as cow discomfort,
further analysis is required to support the evidence. When calving sensors are attached to
cows’ tails, short adaptation periods may occur in the animals, which, however, should
be weighed against positive effects of calving prediction in terms of calf and cow welfare.
However, the application of calving sensors must be limited to those devices that do not
cause swelling or even injury to the tail.

Author Contributions: Conceptualization, J.P. and M.G.; methodology, J.P., O.S. and M.G.; formal
analysis, J.P. and O.S., investigation, J.P.; writing—original draft preparation, J.P.; writing—review
and editing, J.P., O.S. and M.G. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the Bavarian State Ministry of Food, Agriculture and Forestry
(D/17/01). The funders did not play a role in study design, data collection and analysis, the decision
to publish, or in preparing the manuscript.

Institutional Review Board Statement: Ethical review and approval were waived for this study due
to data being obtained from the application of commercially available technologies (also used on
commercial dairy farms) on a dairy research and demonstration farm which is certified according to
Section 1 para. 1 no. 1 “Tierschutzgesetz” (animal protection law).

Informed Consent Statement: Not applicable.



Animals 2021, 11, 1917 15 of 21

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. Restrictions apply to the availability of video data that show farm staff.

Acknowledgments: We would like to thank the staff of ‘Staatsgut Achselschwang’ with special
thanks to Georg Hammerl, Thomas Angermeier, Doreen Schwarz, and Robert Duschl.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Breed, age, parity, and type of calving sensor attached of the 18 animals included in the analysis.

Cow ID Breed Age [years] Parity Type of Sensor Included in Methodological Approach

1 Simmental 4.1 3 Moocall 1 a and 2 b

2 Simmental 2.3 1 CalveSense 1 and 2
3 Brown-Swiss 2.1 1 CalveSense 1 and 2
4 Simmental 2.4 1 CalveSense 1 and 2
5 Simmental 10.4 8 CalveSense 1 and 2
6 Holstein 9.3 8 CalveSense 1 and 2
7 Simmental 8.6 7 Moocall 1 and 2
8 Simmental 4.3 3 Moocall 1 and 2
9 Brown-Swiss 5.5 4 CalveSense 1 and 2

10 Brown-Swiss 4.2 3 CalveSense 1
11 Simmental 4.3 3 CalveSense 1
12 Simmental 10.1 9 CalveSense 1
13 Holstein 6.6 5 Moocall 1
14 Simmental 6.8 5 CalveSense 1
15 Simmental 5.1 4 Moocall 1
16 Simmental 4.6 3 CalveSense 1
17 Holstein 4.2 3 CalveSense 1
18 Brown-Swiss 4.6 3 CalveSense 1

a Analysis of the activity index recorded by rumen bolus. b Behavioral observation via video analysis.
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Table A2. Mean absolute deviation around the median (MAD), median, and results of the Brown–Forsythe test for the pre-sensor and post-sensor time slots (four hours each) using the
respective four-day baseline as reference.

Cow
ID Breed Time Sensor Was

Attached
Type of
Sensor Item Baseline b

(Pre-Sensor)
Baseline c

(Post-Sensor)

t − 24
to

t − 20

t − 20
to

t − 16

t − 16
to

t − 12

t − 12
to

t − 8

t − 8
to

t − 4

t − 4
to
t0

t0
to

t + 4

t + 4
to

t + 8

t + 8
to

t + 12

t + 12
to

t + 16

t + 16
to

t + 20

t + 20
to

t + 24

1 S 09:15 M MAD 0.66 0.73 1.10 0.69 0.43 0.98 0.62 0.55 0.44 0.60 0.53 0.26 0.76 0.33
median −0.01 0.01 0.59 −0.09 −0.37 0.06 −0.05 0.25 0.12 −0.10 −0.05 0.04 −0.07 0.12

BF a sig.I sig.I sig.D sig.D
2 S 19:20 C MAD 0.66 0.65 1.00 0.50 0.52 0.60 0.73 0.59 0.86 0.50 0.67 0.55 0.48 0.29

median 0.02 0.01 −0.37 −0.21 0.18 0.13 0.11 −0.09 −0.19 0.12 0.35 0.28 −0.04 −0.03
BF sig.I sig.D

3 BS 09:50 C MAD 0.79 0.77 0.97 1.28 0.51 0.55 0.42 0.58 0.97 0.90 0.70 0.63 0.55 0.60
median 0.03 −0.03 −0.10 0.39 −0.27 −0.34 −0.04 0.06 0.03 0.15 −0.20 0.12 −0.21 0.23

BF sig.I sig.D
4 S 08:50 C MAD 0.62 0.61 0.68 0.68 0.47 0.46 0.81 0.50 0.56 0.77 0.70 0.51 0.58 0.45

median 0.03 −0.01 −0.10 0.30 −0.24 −0.20 0.30 −0.46 0.17 0.20 −0.38 0.12 −0.22 −0.02
BF

5 S 08:20 C MAD 0.54 0.54 0.36 0.52 0.38 0.33 0.44 0.55 0.51 0.49 0.75 0.32 0.42 0.38
median −0.04 −0.02 0.01 −0.13 0.12 −0.04 −0.02 −0.01 −0.11 0.06 0.24 −0.05 0.10 −0.05

BF
6 H 08:50 C MAD 0.36 0.35 0.28 0.54 0.27 0.45 0.12 0.35 0.21 0.37 0.29 0.27 0.34 0.19

median −0.03 −0.03 0.24 −0.16 −0.06 0.09 −0.07 0.09 0.09 0.09 −0.20 −0.19 −0.03 −0.04
BF sig.I sig.D sig.D

7 S 08:24 M MAD 0.53 0.55 0.39 0.31 0.32 0.41 0.55 0.94 0.87 0.66 0.36 0.48 0.69 0.50
median 0.00 0.01 0.11 −0.24 0.13 −0.03 −0.02 0.05 −0.11 0.02 0.15 0.20 −0.20 0.10

BF sig.I sig.I
8 S 17:55 M MAD 0.82 0.82 1.44 0.65 0.79 1.03 0.70 1.28 0.71 0.90 0.54 0.82 0.96 0.77

median −0.01 −0.01 −0.21 −0.02 −0.01 0.02 −0.38 −0.33 −0.31 −0.25 −0.23 0.09 0.03 −0.19
BF sig.I sig.I

9 BS 08:25 C MAD 0.97 1.06 0.34 0.50 1.10 0.66 2.11 1.92 0.78 0.27 0.50 1.70 0.61 2.05
median 0.01 0.03 0.17 −0.145 0.25 −0.09 0.56 −0.87 −0.20 0.04 −0.02 −0.29 −0.11 −0.69

BF sig.D sig.I sig.I sig.D sig.I sig.I
10 BS 09:00 C MAD 0.84 0.86 0.67 0.73 2.05 0.73 0.93 0.68 0.97 0.85 0.46 0.67 0.52 0.65

median 0.01 −0.07 −0.08 −0.32 −0.46 −0.43 −0.30 0.05 −0.06 0.05 −0.24 0.00 0.45 −0.31
BF sig.I sig.D

11 S 18:45 C MAD 0.52 0.49 0.34 0.38 0.31 0.50 0.71 0.59 0.39 0.46 0.46 0.48 0.63 0.73
median −0.04 −0.02 −0.18 0.06 0.20 −0.10 −0.16 −0.22 −0.05 0.11 −0.10 −0.10 0.28 −0.47

BF sig.I
12 S 18:30 C MAD 0.41 0.41 0.49 0.25 0.30 0.36 0.21 0.48 0.33 0.45 0.24 0.47 0.28 0.34

median −0.01 0.00 −0.18 0.18 −0.16 0.16 0.01 −0.05 −0.13 −0.06 0.20 −0.12 0.31 −0.10
BF sig.D sig.D

13 H 17:45 M MAD 0.35 0.37 0.59 0.55 0.29 0.33 0.31 0.42 0.41 0.26 0.50 0.29 0.33 0.29
median 0.02 0.01 0.11 −0.14 0.04 −0.03 −0.09 0.15 −0.08 −0.07 −0.11 −0.04 −0.13 0.04

BF sig.I sig.I
14 S 10:00 C MAD 0.38 0.38 0.21 0.46 0.41 0.27 0.30 0.23 0.34 0.28 0.27 0.50 0.32 0.34

median 0.01 0.01 0.20 −0.01 0.11 −0.22 0.04 −0.10 0.01 0.12 −0.12 −0.18 0.03 0.12
BF
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Table A2. Cont.

Cow
ID Breed Time Sensor Was

Attached
Type of
Sensor Item Baseline b

(Pre-Sensor)
Baseline c

(Post-Sensor)

t − 24
to

t − 20

t − 20
to

t − 16

t − 16
to

t − 12

t − 12
to

t − 8

t − 8
to

t − 4

t − 4
to
t0

t0
to

t + 4

t + 4
to

t + 8

t + 8
to

t + 12

t + 12
to

t + 16

t + 16
to

t + 20

t + 20
to

t + 24

15 S 08:50 M MAD 0.48 0.46 0.45 0.55 0.32 0.53 0.24 0.37 0.86 0.57 0.45 0.40 0.34 0.75
median 0.01 0.01 0.00 −0.03 0.04 0.15 0.01 0.07 −0.27 0.17 0.14 −0.30 −0.09 0.09

BF sig.D sig.I sig.I
16 S 19:20 C MAD 0.56 0.54 1.09 0.35 0.25 0.41 0.53 0.41 0.37 0.32 0.41 0.47 0.39 0.43

median 0.00 0.00 −0.32 −0.11 0.08 0.10 −0.02 0.06 −0.03 −0.01 0.06 0.04 0.07 0.01
BF sig.I sig.D

17 H 10:15 C MAD 0.56 0.60 0.38 0.69 0.86 0.68 0.75 0.51 0.49 0.39 1.07 0.55 0.43 0.70
median 0.02 0.06 0.25 0.19 0.27 0.18 −0.28 0.39 0.07 −0.17 0.25 −0.31 0.07 0.20

BF sig.I sig.I
18 BS 17:45 C MAD 0.81 0.87 1.63 0.47 0.82 1.02 1.04 1.28 0.86 0.51 0.73 1.08 1.19 1.77

median −0.04 −0.07 −0.5 0.25 0.12 0.01 −0.28 0.35 −0.39 −0.14 0.22 0.43 −0.69 −0.26
BF sig.I sig.I sig.I

S = Simmental; BS = Brown Swiss; H = Holstein; C = CalveSense; M = Moocall. a Brown–Forsythe test. b Four-day baseline (t − 120 to t − 24) as reference for pre-sensor time slots. c Four-day baseline (t − 96 to t0)
as reference for post-sensor time slots. sig.I significant increase in variability of activity, p < 0.05, Bonferroni-corrected p < 0.0083. sig.D significant decrease in variability of activity, p < 0.05, Bonferroni-corrected p
< 0.0083. t0 = attaching of calving sensor.
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ABSTRACT

Although estrus detection makes a relevant contribu-
tion to the reproductive performance of dairy cattle, 
studies on the economic evaluation of automatic estrus 
detection systems are rare. The objective of the present 
study is to provide an economic evaluation of activity 
meters used for estrus detection. The effect of different 
estrus detection rates on gross margins was modeled 
with SimHerd (SimHerd A/S, Viborg, Denmark). The 
analysis considers all costs associated with the invest-
ment in activity meters. The economic evaluation was 
carried out through simulation of Simmental herds with 
yearly milk yields of 7,000 or 9,000 kg and Holstein 
Friesian herds with yearly milk yields of 9,000 or 11,000 
kg, each with herd sizes of 70 or 210 cows. Furthermore, 
we distinguished between 2 investment scenarios. In 
scenario 1, only cows are equipped with activity me-
ters for estrus detection, whereas scenario 2 assumes 
that cows and heifers are equipped with activity me-
ters. Because existing empirical information for some 
variables shows significant variability (estrus detection 
rates, time for estrus detection), they were modeled 
with distributions using the Monte Carlo method in @
RISK (Palisade Corporation, Ithaca, NY), allowing us 
to model a probability distribution of net returns (NR) 
of investment in activity meters for estrus detection. 
The simulation results show that the average NR of 
investment in activity meters for estrus detection over 
all scenarios ranges from +€7 to +€40 per cow per year 
for the Simmental breed, and from +€19 to +€46 per 
cow per year for the Holstein Friesian breed. Generally, 
the NR depends on the milk production level assumed. 
For the Simmental breed, depending on the scenario, 
the simulation results show a 54 to 200% larger average 
NR of investment in activity meters for estrus detection 

with a milk yield of 9,000 kg/yr compared with 7,000 
kg/yr. For the Holstein Friesian breed, the effect of the 
modeled milk yield on the NR is much less pronounced. 
Average NR of investment in activity meters are greater 
for larger herd sizes because of cost degression effects. 
An additional equipping of heifers has, on average, a 
positive effect on the economics of activity meters for 
estrus detection because of the resulting reduction in 
the age at first calving. Considering all scenarios, the 
probability of a positive NR of investment in activity 
meters ranges between 74 and 98% for the Simmental 
breed and between 85 and 99% for the Holstein Friesian 
breed.
Key words: activity meter, estrus detection, Monte 
Carlo simulation, SimHerd

INTRODUCTION

Good health and reproductive performance are 
prerequisites for sustainable dairy farming. A litera-
ture review revealed that it is well known that good 
reproductive performance is crucial for the economic 
success of a farm (Groenendaal et al., 2004; Giordano 
et al., 2012; Galvão et al., 2013). Studies document 
that poor fertility is one of the main causes of culling 
in dairy cattle (Rozzi et al., 2007; Ahlman et al., 2011). 
Therefore, early and precise detection of estrus is es-
sential. According to the literature, there is potential 
to optimize the visual estrus detection rate on dairy 
farms (Diskin and Sreenan, 2000; Roelofs and Van 
Erp-van der Koij, 2015). Visual estrus detection rates 
are often low due to decreasing durations and weaker 
signs of estrus (Mee, 2004), partly because of high milk 
production levels (Westwood et al., 2002; López-Gatius 
et al., 2005; Dobson et al., 2008). Accordingly, stud-
ies show that signs of estrus are often more intense 
in the evening and at night (Hurnik et al., 1975; Van 
Vliet and Van Eerdenburg, 1996; Wangler et al., 2005). 
Increasing farm sizes and workloads limit the time 
available for observation of individual animals. Activ-
ity meters for estrus detection have been discussed as 
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a technical solution to tackle the described challenges. 
The development of automatic estrus detection systems 
began in the 1980s (Mottram, 2016). Available studies 
on the economics of activity meters for estrus detec-
tion indicated profitability but usually only considered 
individual farm-specific situations. For example, Van 
Asseldonk et al. (1999) showed an increase in gross 
margin (GM) by Dfl. 1.02 (9,000 kg of milk; Dfl. 1 
= €0.45) or 1.28 (7,500 kg of milk) per 100 kg of milk 
per year under Dutch production conditions, assuming 
that the estrus detection rate increases from 50 to 90%. 
Rutten et al. (2014) calculated the economic benefit of 
investing in activity meters for automated estrus detec-
tion. Their estimate of an average marginal financial 
effect of €2,827 for a herd of 130 cows was based on the 
assumption of an increase in estrus detection rate from 
50% (visual) to 80% (activity meter). Inchaisri et al. 
(2010) calculated the economic consequences of “poor,” 
“average,” and “good” reproductive performance. In the 
“average” scenario, changing the single input parameter 
of estrus detection rate from 30 to 50% and from 50 to 
70% resulted in a reduction of the annual net economic 
loss by €53 and €11 per cow, respectively.

Depending on the study, different herd sizes, labor 
and labor costs, and milk yields were considered, and 
even stochastic simulation models were used for the 
calculations. The focus of some studies, however, was 
on reproductive performance, which is why costs for 
sensor-assisted estrus detection were not considered. 
Furthermore, herd dynamics and diseases were some-
times not modeled. All listed studies analyzed and 
compared several scenarios. For estrus detection rates, 
however, they assumed only one value per scenario, 
when Rutten et al. (2014) have already indicated that 
quite a variation exists in the estrus detection rate (vi-
sual and sensor-assisted).

The objective of our study was to present a com-
prehensive economic evaluation of activity meters for 
estrus detection. We demonstrated the potential of ac-
tivity meters and their influence on farm profitability. 
To this end, we conducted an evaluation for farms with 
different reproductive performance. Similar to other 
studies, we worked with a stochastic simulation model 
and compared different scenarios for milk yield, herd 
size, labor costs, and equipment options. The simula-
tion model for dairy herds we used considered herd 
dynamics as well as nonreproductive diseases. Differ-
ing from previous studies, we modeled estrus detection 
rates and time spent for estrus detection with prob-
ability functions to account for different farm-specific 
situations. Thus, we calculated the profitability of an 
investment in activity meters for estrus detection under 
various farm conditions.

MATERIALS AND METHODS

Stochastic Net Return Model

The net return (NR) of investment of activity me-
ters for estrus detection was calculated through GM 
for both sensor-assisted and visual estrus detection, 
each expressed as a function of estrus detection rate. 
Additionally, all costs associated with the investment 
in activity meters for estrus detection were considered. 
Some costs (e.g., base station, antennas, necessary 
software) have a fixed character and are, therefore, 
widely independent of herd size. However, costs for the 
activity meters increase with herd size. Because sensor-
assisted estrus detection affects the time necessary for 
estrus detection, labor costs in the cases of visual and 
sensor-assisted estrus detection were included in the 
calculation of NR:

 NR(SED) = [GMSEDf(EDR) − (LC × TEDSED)   

− (VCSED + FCSED)] − [GMvisualf(EDR)  

− (LC × TEDvisual)],

where NR = net return, GM = gross margin, f = as 
a function of, SED = sensor-assisted estrus detection, 
EDR = estrus detection rate, TED = time spent for 
estrus detection, VC = variable costs, FC = fixed costs, 
and LC = labor costs.

We used SimHerd (SimHerd A/S, Viborg, Denmark) 
to calculate scenario-specific GM as a function of estrus 
detection rate. In SimHerd, estrus detection rates var-
ied in 5% steps. Thus, the relationship between estrus 
detection rate and GM was known for each scenario.

Model Structure of SimHerd

The SimHerd model simulates the production and 
state changes of a dairy herd, including young stock, 
and has been used to study various herd-management 
tasks (Østergaard et al., 2005a; Kristensen et al., 2008; 
Ettema et al., 2017) as well as implications of genetic 
trends for their effects on reproduction management 
(Ettema et al., 2011) and the derivation of economic 
value of production and functional traits (Nielsen, 
2004). In SimHerd, the reproductive state of an animal 
is defined by age, parity, lactation stage, actual milk 
yield, body weight, culling status, reproductive status 
(i.e., estrus and pregnancy), somatic cell count, disease 
status, and a fixed component of milk yield potential. 
The current state is predicted week-by-week for each 
cow and heifer in the herd. Drawing random numbers 
from relevant probability distributions triggers indi-
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vidual inherent and lactational milk yield potential and 
simulates discrete events, such as conception, abortion, 
sex, and viability of the calf, diseases, involuntary cull-
ing, and death. The state of the individual animal is 
updated, and the production and input consumption of 
the entire herd are calculated. Production and develop-
ment within the herd are thus determined indirectly 
by simulation of production and changes in state of 
each individual cow and heifer. This makes SimHerd a 
mechanistic model.

Model behavior is controlled by a set of decision 
variables that define particular production systems and 
management strategies. Modeled culling and reproduc-
tion rates are the key components responsible for the 
effects on herd structure of various simulated scenarios. 
A cow that does not conceive during the AI period is 
replaced if it is the lowest-yielding candidate for volun-
tary culling, and a heifer is ready to calve and, thus, to 
enter the herd. The proportion of cows showing estrus 
after calving was set to 0.95. The replacement rate is 
determined as a result of individual cows’ reproductive 
performance, disease occurrence, involuntary culling, 
and mortality, and the availability of replacement heif-
ers. Involuntary culling is determined given a base-risk 
of 0.9% in wk 1, which declines linearly to a risk of 
0.079% in wk 29. Thereafter, the weekly risk remains 
constant at 0.079% for the remainder of the lacta-
tion period. Mortality is based on a constant weekly 
base-risk of 0.034%. In addition to the base risks of 
involuntary culling and mortality, production diseases 
such as mastitis (Østergaard et al., 2005b), metabolic 
diseases (Østergaard et al., 2000), and diseases result-
ing in lameness (Ettema et al., 2010), as simulated in 
SimHerd, may increase a cow’s individual risk of invol-
untary culling and mortality. All parameters describing 
the lactation curve model in SimHerd are identical to 
those described by Kristensen et al. (2008). The con-
ception rate of heifers is set to 0.55, and the default 
value for the visual estrus detection rate is also 0.55. 
An additional risk of fetal death, including early fetal 
death, is set to 0.13 for both cows and heifers. These 
assumptions result in conception among 90% of all heif-
ers during the AI period. Heifers that do not conceive 
during this period are sold to slaughter. Heifers are 
sold as livestock if no cows are selected for culling and 
the maximum number of cows in the herd is reached. 
Additional heifers are purchased if the herd size falls 
below a given minimum number.

Many studies have been performed on the influence of 
milk yield on the occurrence of diseases. However, these 
studies do not provide a clear answer to the question, 
but often only very vague or even contradictory results. 
Fleischer et al. (2001) reviewed several studies on this 
issue and concluded that it is not generalizable that 

increased milk production is associated with higher risk 
of disease. Rather, he found many studies that refuted 
this relation. In SimHerd, herds with different milk 
production levels have the same base risk for disease. 
However, within a given herd, cows with greater milk 
yield have a higher risk of disease compared with those 
with an average milk yield. Herd demography also influ-
ences disease incidence, as older animals become more 
susceptible to diseases (Gröhn et al., 1995). Therefore, 
in SimHerd, the values for incidence of diseases per cow 
and per year are not fixed but are adjusted according 
to the scenario.

The economic evaluation was carried out both for the 
milk-oriented Holstein Friesian breed and for the dual-
purpose Simmental breed. In SimHerd, we parameter-
ized Simmental herds with milk yields of 7,000 or 9,000 
kg/yr and Holstein Friesian herds with milk yields of 
9,000 or 11,000 kg/yr. The standard herds were of good 
health and average reproductive performance. SimHerd 
is parameterized by default for Holstein Friesian. How-
ever, prices were changed according to the current mar-
ket situation. For the Simmental breed, we made some 
adaptations based on the literature (Table 1). The ma-
ture weight of a Simmental cow was set to 725 kg (aver-
age Bavarian herdbook cows in 2015). The Simmental 
breed shows generally good health, also, compared with 
other breeds (Schichtl, 2007; LKV, 2018). Therefore, 
the default values for incidence of disease per cow-year 
were reduced by 10% for the Simmental breed. With 
reference to the average SCC for Simmental cattle in 
2017 in Bavaria, Germany (LKV, 2018), SCC was set 
to 200,000 cells per mL. According to the literature, 
the probability of stillbirth in Simmental cattle is be-
low the default value (Grupp, 2003; LKV, 2018), which 
was therefore reduced by 10% to 5.0%. Mean producer 
prices (e.g., for milk, slaughter cows, heifers for sale) of 
the last 3 years in Bavaria were used to determine the 
GM (period: January 2016 to January 2019). Likewise, 
the cost of feed was calculated using the current 3-yr 
average (January 2016 to January 2019). All other de-
fault values represent the status of SimHerd in January 
2019.

Time Spent for Estrus Detection

Because values for some variables (estrus detection 
rates and time spent for estrus detection) significantly 
differ from farm to farm, they were modeled using the 
Monte Carlo method in @RISK (Palisade Corporation, 
Ithaca, NY) to account for the heterogeneity observed 
in practice. To take into account the time requirements 
for visual and sensor-assisted estrus detection, triangle 
distributions were incorporated into the model. Because 
scant literature is available on the time savings related 
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to sensor-assisted estrus detection, assumptions regard-
ing time spent for estrus detection were made accord-
ing to empirical data, expert assessments, and practice 
reports (Michaelis et al., 2013; Greil, 2017). For a herd 
size of 70 cows, we assumed a minimum of 0.9, a mode 
of 2.4, and a maximum of 5.2 h per cow per year for 
visual estrus detection, and a minimum of 0.4, a mode 
of 1.2, and a maximum of 3.5 h per cow per year for 
sensor-assisted estrus detection. For a herd size of 210 
cows, we assumed a minimum of 0.9, a mode of 2.3, and 
a maximum of 2.8 h per cow per year for visual estrus 
detection, and a minimum of 0.4, a mode of 1.0, and a 
maximum of 1.7 h per cow per year for sensor-assisted 
estrus detection. Therefore, based on the underlying 
distributions, farmers may benefit significantly in terms 
of time savings from applying activity meters for estrus 
detection.

Estrus Detection Rates

Rates of visual and sensor-assisted estrus detection 
were determined from the literature, as shown in Table 
2. For this purpose, we considered studies in which 
the estrus detection rates of activity meters were de-
termined. Rates ranged between 35 (Peter and Bosu, 
1986) and 91% (Dela Rue et al., 2012) for visual estrus 
detection and between 59 (Holman et al., 2011) and 
92% (Firk et al., 2003) for the activity meters. The 
empirical distribution of visual and sensor-assisted es-
trus detection rates based on the literature (see Table 

2) was used to simulate random estrus detection rates 
based on the empirical cumulative probability function 
using the RiskCumul function in @RISK. Cumulative 
probabilities for visual and sensor-assisted estrus de-
tection rates are illustrated in Figure 1. The curves 
show that the estrus detection rates determined in the 
studies tended to be higher for activity meters than for 
visual assessment. The minimum values found in the 
literature were smaller for visual estrus detection than 
for sensor-assisted estrus detection. Nevertheless, both 
methods allowed achievement of estrus detection rates 
of over 90%. With visual estrus detection, however, 
more time tends to be required to do so.

Although farmers, on average, save time from invest-
ing in activity meters for estrus detection, we further 
assumed that farmers who spend more time on visual 
estrus detection tend to also do so when using activ-
ity meters. Thus, we considered a correlation of 0.9 
between the time spent on visual and time spent on 
sensor-assisted estrus detection, using the Define Cor-
relation option in @RISK. We made this assumption 
so as not to exclude completely the possibility that, 
for some dairy farmers, investing in activity meters for 
estrus detection may not lead to any time savings. To 
test the sensitivity of this assumption, we analyzed cor-
relations between r = 0.8 and r = 1. The sensitivity 
analysis showed no significant effect on the results.

We determined a correlation of r = 0.94 between the 
time spent for estrus detection and the estrus detection 
rate, based on the work of Van Vliet and Van Eerden-
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Table 1. Assumptions for the calibration of SimHerd

Parameter1 Holstein Friesian  Simmental

Mature weight,2 kg 680 725
Stillbirth risk,3 % 5.5 5.0
SCC,4 cells per mL (× 1,000) 230 200
Price,5 €
 ECM, /kg 0.34 0.34
 Cull cow, per kg of live weight 1.00 1.40
 Dead cow −134.23 −134.23
 Springing heifer 1,367.90 1,431.80
 Nonpregnant heifer 822.57 1,108.93
 Bull calf, sold at 14 d 97.00 264.50
 Heifer calf, sold at 14 d 56.50 144.00
 First-parity cow, sold for life 1,509.90 1,641.40
 Milk replacer, per kg of powder 1.62 1.62
 Price per feeding unit for concentrates, heifers 0.26 0.26
 Price per feeding unit for roughage, heifers 0.11 0.11
 Breeding, unsexed proven bull semen 22.00 22.00
1Yearly milk yield classes were set at 9,000 or 11,000 kg/yr for Holstein Friesian cattle and at 7,000 or 9,000 
kg/yr for Simmental. Prices for feeding unit of TMR for cows of each of these classes were calculated as €0.15 
or 0.16, and €0.14 or 0.15, respectively.
2Default values for Holstein Friesian. For Simmental, average Bavarian herdbook cows in 2015.
3Default values for Holstein Friesian. For Simmental, Grupp (2003), LKV (2018).
4Default values for Holstein Friesian. For Simmental, LKV (2018).
5Net prices (average of the last 3 yr in Bavaria, period: January 2016 to January 2019) according to LfL (2019), 
GM (gross margin) calculator.
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burg (1996), who described achieved estrus detection 
rates as a function of time spent. We considered this 
correlation in the case of both visual and sensor-assisted 
estrus detection. Based on the results of Michaelis et al. 
(2013), we assumed in the model that estrus detection 
rates of dairy farms do not deteriorate after the instal-
lation of activity meters for estrus detection.

Annual Cost of Investing in Activity Meters  
for Estrus Detection

The annual cost of the investment in activity meters 
for estrus detection comprises expenses for the acquisi-
tion of sensors and basic additional equipment (e.g., 

antenna, transformer, wire, software) as well as imple-
mentation and repair costs. The implementation costs 
account for the time spent on initial information (we 
estimated 5 h), learning, and installation (estimated 10 
h). The time requirement was included in the calcula-
tion with labor costs of €10 and €20/h. An interest rate 
of 4% and cost for repair of 8% per year were assumed. 
The annual cost of investment was calculated from the 
mean of 3 activity meters commonly used in Germany: 
Heatime Pro by SCR (Madison, WI), Smarttag by 
Nedap (Groenlo, the Netherlands), and Track a Cow 
by ENGS Systems (Rosh Pina, Israel). Systems are at-
tached to the foot or neck and detect estrus through 
changes in behavior. The useful life of the activity 
meters was set to 7 years. The average annual cost of 
investment for the 3 systems are shown in Figure 2. 
Increasing herd sizes lead to a cost degression caused 
by the distribution of costs, especially for basic equip-
ment over a larger number of animals. Depending on 
the simulated scenario, the annual cost of investment 
amounts to €22 to 36 per cow per year.

Modeled Scenarios

The economic evaluation was carried out for differ-
ent scenarios (see Table 3). For Simmental we assumed 
yearly milk production levels of 7,000 or 9,000 kg, and 
9,000 or 11,000 kg for Holstein Friesian, using herd 
sizes of 70 or 210 cows for each milk production level. 
Furthermore, we distinguished between 2 investment 
scenarios: in scenario 1, only cows were equipped with 
activity meters, whereas scenario 2 assumed monitor-
ing of both cows and heifers of breeding age. Labor 
costs for estrus detection were included at rates of €10 
and €20/h. For each scenario, 10,000 iterations were 
performed in @RISK.

RESULTS AND DISCUSSION

Gross Margin Depending on Estrus Detection Rate

The GM modeled in SimHerd, depending on estrus 
detection rate of only cows and cows plus heifers in 
Simmental (milk production levels 7,000 or 9,000 kg/
yr) and Holstein Friesian (milk production levels 9,000 
or 11,000 kg/yr) herds is shown in Figure 3. In the 
NR model, the GM was calculated as a function of 
the estrus detection rate from the respective estimated 
second-degree polynomial equation (see Figure 3). 
Van Asseldonk et al. (1999) also determined GM as a 
function of estrus detection rate for similar milk yields 
(7,500 and 9,000 kg) and demonstrated that the rela-
tionship was not linear. In our model, an increase in 
GM with an improved estrus detection rate was largely 
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Table 2. Estrus detection rates (%) reported in the literature for 
visual estrus detection and detection via activity meters1

Source
Estrus detection  

rate, %

Visual
 Peter and Bosu, 1986 35
 Heersche and Nebel, 1994 38
 Peralta et al., 2005 49
 Stevenson and Britt, 1977 51
 Fulkerson et al., 1983  542

 Kempf, 2016  552

 At-Taras and Spahr, 2001  552

 Kossaibati and Esslemont, 1995 55
 Williamson et al., 1972 56
 Rougoor et al., 1997 56
 Liu and Spahr, 1993 58
 Fulkerson et al., 1983 61
 Maatje et al., 1997 67
 Williams et al., 1981 68
 Mayne et al., 2002 71
 LeBlanc et al., 1998  792

 Dela Rue et al., 2012 91
Activity meter
 Holman et al., 20113 59
 Chanvallon et al., 20143 62
 Dela Rue et al., 20123 62
 Holman et al., 2011 63
 Dela Rue et al., 2012 70
 Chanvallon et al., 2014 71
 Aungier et al., 2012 72
 Peter and Bosu, 1986 76
 Dela Rue et al., 2012 77
 Klindtworth et al., 20023 78
 Talukder et al., 2015 80
 Cavalieri et al., 2003 81
 At-Taras and Spahr, 2001  852

 De Mol et al., 1997 872

 Hockey et al., 2010  872

 Klindtworth et al., 2002 88
 Jónsson et al., 2011 89
 Dela Rue et al., 2012 89
 Kempf, 2016  892

 Cohen et al., 1990 91
 Klindtworth et al., 2002 91
 Firk et al., 2003 92
1Studies sorted in ascending order of estrus detection rates.
2Average of several experiments.
3Authors tested several activity meters.
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attributable to increased revenues from calves and heif-
ers for both breeds, resulting from shorter calving in-
tervals and, thus, a larger number of births per year in 
the herd (lower replacement costs). Moreover, the age 
at first calving could be decreased with the additional 
equipping of heifers, enhancing the GM effect. The age 
at first calving (for scenarios with addition of heifers) 
and the calving interval decreased to similar extents for 
both breeds over all considered milk production levels. 
Thus, the revenues from calves increased in all sce-
narios analyzed. Changes in milk yield were dependent 
on the balance between positive and negative effects. 
On the one hand, improved estrus detection rates led 
to a shorter duration of the late lactation period, more 
calves being born, and a greater share of lactating cows 
at peak yield per year. On the other hand, this also 
led to a greater share of dry cows, because cows reach 
the dry period faster when reproducing, having a nega-
tive effect on the average milk yield of the herd. In all 
scenarios, a larger proportion of cows at the herd level 
was dry and a smaller share lactated (but at larger 
peak yields). In sum, these effects produced no positive 
change in the milk yield per cow-year for milk yield 
level of 7,000 kg, and only a small positive change for 
milk yield levels of 9,000 and 11,000 kg. Considering 
only the milking days, however, improved estrus detec-

tion rates resulted in a greater increase in milk yield 
per cow-year for both breeds and for the respective 
milk production levels.

In the model, heifers are sold whenever there are 
no cows on the culling list (for example, due to very 
long calving-to-conception intervals) and the maximum 
number of cows is reached. Particularly for animals 
showing weaker signs of estrus, using activity meters 
improves estrus detection and insemination success. 
The activity meters enable the detection of even slight 
changes in activity both during the day and at night, 
and often provide a recommendation for the optimal 
insemination time. Thus, using activity meters results 
in improved estrus detection rates and shorter calving-
to-conception intervals in many cases. As a result, 
fewer cows leave the herd due to poor fertility. This 
increases the number of productive years per cow in 
all scenarios analyzed, resulting in a increased lifetime 
production of milk per cow overall. Because fewer old 
cows leave the herd, more heifers are available for sale. 
The larger number of productive years per cow also 
leads to changes in the herd demography. Cows remain 
in the herd to older ages, which increases their suscep-
tibility to diseases (Gröhn et al., 1995). As a result, 
it is simulated that better reproductive performance 
of the herd increases expenses for disease treatment 
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Figure 1. Cumulative probability for estrus detection rates (%) of activity meters and visual estrus detection.
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Figure 2. Annual cost of investment (€ per cow per year) in activity meters for estrus detection, considering prices of Heatime Pro by SCR 
(Madison, WI), Smarttag by Nedap (Groenlo, the Netherlands), and Track a Cow by ENGS Systems (Rosh Pina, Israel). Assumed labor costs: 
€20/h.

Table 3. Scenarios simulated in the study

Milk yield, 
kg/yr  

Herd size, 
no. of cows  

Animals 
equipped  

Labor costs, 
€/h  Breed

7,000 70 Cows 10 Simmental
20 Simmental

Cows + heifers 10 Simmental
20 Simmental

210 Cows 10 Simmental
20 Simmental

Cows + heifers 10 Simmental
20 Simmental

9,000 70 Cows 10 Simmental
Holstein Friesian

20 Simmental
Holstein Friesian

Cows + heifers 10 Simmental
Holstein Friesian

20 Simmental
Holstein Friesian

210 Cows 10 Simmental
Holstein Friesian

20 Simmental
Holstein Friesian

Cows + heifers 10 Simmental
Holstein Friesian

20 Simmental
Holstein Friesian

11,000 70 Cows 10 Holstein Friesian
20 Holstein Friesian

Cows + heifers 10 Holstein Friesian
20 Holstein Friesian

210 Cows 10 Holstein Friesian
20 Holstein Friesian

Cows + heifers 10 Holstein Friesian
20 Holstein Friesian
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and the number of dead cows on the herd level in all 
scenarios. In sum, improved estrus detection rates and 
improved reproductive performance lead to increased 
revenues and, in most scenarios, to greater expenses. 
However, the revenues rise at a faster rate, resulting in 
an increase in the GM.

The effect of changes in reproductive performance on 
milk yield also depends on the shape of the lactation 
curve (Seegers, 2006). It is already known that the ef-

fect of long calving intervals on productivity depends 
on the persistency of the lactation curve (Louca and 
Legates, 1967; Olds et al., 1979). With deteriorating 
reproductive performance, reduction in milk yield is 
greater in cases of lactation curves with low persistency 
and strong peaks than in cases of flat curves with good 
persistency (Seegers, 2006). Therefore, at the herd level 
it is particularly beneficial to equip cows with charac-
teristically low persistency with activity meters.
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Figure 3. Gross margin (€ per cow per year) for the Simmental breed (yearly milk yield levels: 7,000 or 9,000 kg) and the Holstein Friesian 
breed (yearly milk yield levels: 9,000 or 11,000 kg) as a function of estrus detection rate (%) of cows only or of cows and heifers. Polynomial of 
degree 2 and coefficient of determination R2 added in each case.
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The change in GM due to improved estrus detec-
tion rates further depends on whether the same culling 
criteria are maintained. In SimHerd, a cow becomes a 
culling candidate as soon as she exceeds a maximum 
number of days open. If this maximum number is main-
tained after the estrus detection rate is improved, the 
number of culled cows will be greatly reduced. If, on 
the other hand, the maximum number of days open is 
reduced in combination with improved estrus detection 
rate, the culling rate will remain unchanged. The prof-
itability of maintaining or changing the culling criteria 
depends, in part, on the slaughter value of cows. Dif-
ferent culling criteria were not included in this analysis 
and would have introduced yet another dimension to 
the research question.

Net Return of Investment in Activity Meters  
for Estrus Detection

The integration of uncertainty in selected variables 
using @RISK results in probability distributions for the 
NR of investment in activity meters for estrus detection 
in each of the scenarios analyzed. For each scenario, 
10,000 iterations reveal possible combinations of estrus 
detection rates and time spent for estrus detection, 
including their probability of occurrence, based on the 
defined distributions and correlations. The simulation 
results show that the average NR on investing in ac-

tivity meters for estrus detection ranges from +€7 to 
+€40 per cow per year for the Simmental breed and 
from +€19 to +€46 per cow per year for the Holstein 
Friesian breed (Table 4). The probability distributions 
of the NR are shown for selected scenarios in Figure 4.

A comparison of all scenarios shows higher NR for 
larger herd sizes on average, owing to cost degression 
effects for both breeds. The calculations by Rutten 
et al. (2014) and Bekara et al. (2017) also resulted in 
greater benefits from an investment in activity meters 
for estrus detection in larger herds.

Equipping not only cows but also heifers results in 
larger mean NR and also in larger values for the 90th 
percentiles, due to a possible reduction in the age at first 
calving. Due to additional costs for activity meters for 
heifers, the NR can decline if reproductive performance 
is not sufficiently improved. This applies equally to the 
Simmental and the Holstein Friesian breeds. However, 
it is recommended that most dairy farms equip both 
cows and heifers at breeding age with activity meters 
for estrus detection because of the importance of an 
optimal age at first calving, for which the economic 
benefits are already known (Ettema and Santos, 2004). 
It should also be considered that dairy farmers choose 
the age at first calving and calving intervals individu-
ally for their farms. Because a young age at first calving 
can increase the risk for dystocia and stillbirths (Wick-
ersham and Schultz, 1963; Ettema and Santos, 2004), 
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Table 4. Net return of investment (€ per cow per year) for activity meters for estrus detection under simulated scenarios1

Item2

Herd size 70

 

Herd size 210

 

Herd size 70

 

Herd size 210

Cows
Cows +  
heifers Cows

Cows +  
heifers Cows

Cows +  
heifers Cows

Cows + 
 heifers

Simmental
 Milk yield, kg/yr 7,000 9,000
  10th percentile −7 −10 −6 −11 −3 −8 −3 −8

3 3 7 −11 11 8 9 4
  Mean 7 13 12 17 21 26 25 30

18 23 21 26 32 37 35 40
  90th percentile 17 28 24 37 37 50 46 60

32 39 32 61 47 57 53 66
  Ratio (%) net return  
   > €0 per cow per year

76 74 79 77 86 82 88 84
92 93 98 93 97 95 98 93

Holstein Friesian
 Milk yield, kg/yr 9,000 11,000
  10th percentile −1 −5 −1 −5 −2 −6 −2 −6

13 12 11 8 13 11 10 −11
  Mean 19 31 24 35 20 32 24 37

30 41 33 44 30 43 33 46
  90th percentile 33 57 43 68 35 60 44 70

44 61 49 73 44 63 50 95
  Ratio (%) net return 
   > €0 per cow per year

89 87 89 88 88 86 89 87
98 97 99 95 97 97 99 85

110,000 iterations of each scenario.
2For each statistical item [10th percentile, mean, 90th percentile, and ratio (%) net return > €0 per cow per year], the first row of values indicates 
labor costs set to €10/h, and the second row of values indicates labor costs of €20/h.
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Figure 4. Probability distribution of net return of investment (€ per cow per year) in activity meters for estrus detection for each milk yield 
class (kilograms per year) of the Simmental and Holstein Friesian breeds, with herd sizes of 70 and 210 cows (equipping of cows only) and as-
sumed labor costs of €20/h.
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it should be reduced only to a certain limit. Because 
SimHerd is a dynamic model, it takes into account the 
effects of disease incidence as parameters, such as age 
at first calving and calving interval, change. However, 
the calving intervals realized in the model are within 
a reasonably practicable range in all scenarios and are 
consistent with those of farms in Germany (Bundes-
verband Rind und Schwein e.V., 2018). This applies 
equally to the simulated age at first calving.

Due to the different slopes of the GM functions (see 
Figure 3), the assumed milk yield affects the NR calcu-
lated in the scenarios. In the Simmental scenarios, the 
average NR is greater by 54 to 200% (depending on the 
scenario) for milk yield of 9,000 kg/yr compared with 
7,000 kg/yr. Also the probability of a positive NR is 
generally higher at a milk yield of 9,000 kg/yr than at 
7,000 kg/yr. In the case of the Holstein Friesian breed, 
the difference in effect of the 2 modeled milk yield 
levels on the NR of investment in activity meters for 
estrus detection is much less pronounced. Comparing 
the milk yield level of 9,000 kg/yr for both breeds, it 
becomes clear that the average NR are similar. How-
ever, the probability of a positive NR with a milk yield 
of 9,000 kg/yr is slightly higher in all Holstein Friesian 
scenarios.

In general, NR are greater for both Simmental and 
Holstein Friesian breeds when a higher cost of labor 
was assumed. Often, time savings, greater attractive-
ness of work, and a higher level of convenience resulting 
from sensor-assisted estrus detection are weighted more 
strongly than economic benefits. For example, during 
labor-intensive periods of the year, activity meters for 
estrus detection can provide helpful support for fertil-
ity management and present a relief to dairy farmers. 
The results show a certain sensitivity of the NR to the 
assumed remuneration of working time. Especially for 
farms with restricted working time available, an invest-
ment in activity meters for estrus detection can gener-
ate great value. To improve herd fertility performance, 
in many cases, it may be more appropriate to invest in 
sensors rather than a larger amount of time to achieve 
improved estrus detection rates. Similarly, Rutten et 
al. (2014) showed that investing in activity meters to 
improve estrus detection rates could be more profitable 
than increasing labor input for estrus detection.

Our simulation results reveal that investing in ac-
tivity meters for estrus detection results in a positive 
NR for the majority of dairy farms. Considering all 
the scenarios shown in Table 4, the probability of a 
positive NR for investing in activity meters ranges be-
tween 74 and 98% for Simmental and between 85 and 
99% for Holstein Friesian. The economic advantage or 
disadvantage of investing in the technology depends on 

the pre-existing fertility management of a dairy farm. 
Generally, dairy farms that initially have a high visual 
estrus detection rate or that spend little time for estrus 
detection, or both, tend to have small or even negative 
NR. In contrast, the NR will be large for farms with 
previously poor visual estrus detection rates or high ex-
penditure of time for estrus detection, or both. Owing 
to the slopes of the GM functions (Figure 3), in both 
Simmental and Holstein Friesian herds, improvement in 
the estrus detection rate leads to a greater increase in 
GM for farms with initially poor visual estrus detection 
rates compared with farms with initially good visual 
estrus detection rates. This was also evident in other 
studies (Inchaisri et al., 2010). Nevertheless, it should 
be noted that it always takes a few years for the effects 
of improved reproductive performance to be realized. 
Because changes in the number of calvings and in the 
number of productive years per cow and, thus, in the 
demography of the herd are only noticeable after a cer-
tain time, economic effects and others do not become 
immediately evident.

Our results largely agree with the few available stud-
ies on the profitability of activity meters for estrus 
detection, confirming their economic potential. Rutten 
et al. (2014) analyzed the economic benefit of investing 
in activity meters for estrus detection. In their calcula-
tions, an investment in activity meters turned out to 
be profitable in most scenarios analyzed (e.g., different 
herd sizes, labor costs, and estrus detection rates), as 
is the case in our results, where, on average across all 
scenarios, 88% (Simmental) and 92% (Holstein Frie-
sian) of the simulation runs show a positive NR. For 
example, an increase in the estrus detection rate from 
50% (assumed for visual estrus detection) to 80% (as-
sumed for sensor-assisted estrus detection) resulted in 
an average marginal financial effect of €2,827 for the 
baseline scenario, which assumed a herd of 130 cows 
and a default milk production level of 8,310 kg per 
cow per 305 d (Rutten et al., 2014). This corresponds 
to an average marginal financial effect of €22 per cow 
per year when investing in activity meters. Accordingly, 
the scale of the financial benefit of investing in activity 
meters for estrus detection is roughly in line with our 
simulated average NR, considering that Rutten et al. 
(2014) assumed labor costs of €18/h for the baseline 
scenario. However, nonreproductive diseases, such as 
lameness, were not considered in their study, although 
they affect fertility. Inchaisri et al. (2010) analyzed the 
economic implications of different reproductive perfor-
mances using 3 scenarios: “poor,” “average,” and “good” 
reproductive performance. Compared with their “good” 
scenario, the scenarios with “average” and “poor” repro-
ductive performance showed a mean net economic loss 
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of €34 and €231 per cow per year, respectively. They 
also found a reduction in the annual net economic loss 
of €53 and €11 per cow with an increase in the estrus 
detection rate from 30 to 50% and from 50 to 70% in 
the “average” scenario, which roughly coincides with 
the average NR in our study. However, the focus of the 
study by Inchaisri et al. (2010) was on the reproductive 
performance per se and not on sensor technology, which 
is why no costs for the investment in sensors and no 
working time effects were accounted for.

In their scenarios with “average” and “poor” re-
productive performance, Inchaisri et al. (2010) found 
that the cost of decreased milk production explains 
on average 100 and 52%, respectively, of the total net 
economic losses compared with the “good” scenario. For 
Rutten et al. (2014), increasing milk yield due to im-
provement in estrus detection had the largest effect on 
the financial benefits. In our simulations of improved 
estrus detection rates with SimHerd, however, the ad-
ditional total revenues result to a greater extent from 
an increase in sales of calves and heifers than from an 
increase in milk production. For the Simmental breed, 
in comparison to the Holstein Friesian breed, these 
additional revenues from heifers account for a greater 
share of the additional total revenues. This is due to 
the fact that the assumed prices for calves and heif-
ers are higher for the Simmental breed than for the 
Holstein Friesian breed. This difference arises because 
Simmental is a dual-purpose breed, whereas Holstein 
Friesian is a milk-oriented breed.

Bekara et al. (2017) simulated an investment in au-
tomatic estrus detection devices for 7 different dairy 
farms in France, for which an improvement of the 
estrus detection rate from 50% (visual) to 90% (sensor-
assisted) was assumed. They found that investing in 
the technology was profitable for most (two-thirds) of 
the simulated scenarios, with a large herd size and high 
milk prices, among other things, having a positive ef-
fect. Their study showed that the annual GM per cow 
increased by €9 to €93 when estrus detection rate was 
increased with the use of automatic estrus detection 
devices. These results also correspond roughly to the 
simulation results of our study, although the hetero-
geneity of the farms simulated by Bekara et al. (2017) 
made it difficult to draw conclusions about individual 
influencing factors. Additionally, changes in labor time 
related to sensor-assisted estrus detection were not 
included by Bekara et al. (2017), whereas they were 
included in our calculations. The survey by Michaelis 
et al. (2013) confirmed the benefits of activity meters 
for estrus detection, as 95% of the participating dairy 
farmers who employed the estrus detection system Hea-
time (SCR) would install it again (n = 219). Although 
only 54% of the dairy farmers surveyed reported cost 

savings from using the system, only 18% stated that 
the technology achieved no cost savings. The remain-
ing dairy farmers (25%) experienced neither a positive 
nor a negative financial effect (Michaelis et al., 2013). 
These practical experiences coincide with the results 
of the present study, because, on average across all 
scenarios analyzed, only 10% of simulation runs show 
negative NR.

Methodological Considerations

The multiplicity and complexity of influencing fac-
tors make it difficult to determine the economic effects 
of activity meters for automatic estrus detection, which 
is why a stochastic model is applied in this study as an 
appropriate approach to evaluating such effects.

In addition to changes in the time required for es-
trus detection, there may be changes in the total time 
required for further work per animal. The results mod-
eled in SimHerd show that, with improvements in the 
rate of estrus detection, on the one hand, time required 
for milking decreases (more dry cows at herd level), 
but on the other hand, working time needed for disease 
treatment increases. In sum, however, only a marginal 
change in the working time requirement per cow per 
year results from these and other effects, which were 
therefore not taken into account in the calculation of 
NR. Regarding the increased workload associated with 
the treatment of animal diseases, it can be argued that 
many of the commercially available activity meters for 
estrus detection enable early detection of diseases. This 
benefit positively influences the cost-effectiveness of the 
technology. Health monitoring is possible because sen-
sor systems can continuously record further parameters 
in addition to animal activity. Changes in activity and 
rumination, and variations in temperature and pH, may 
indicate possible diseases. Owing to abnormalities in 
these parameters, it is possible to detect diseases before 
the appearance of visually recognizable symptoms.

Our calculations account for the estrus detection 
rates (sensitivity) of the activity meters specified in the 
literature. However, in assessing the quality of these 
sensors, other metrics, such as specificity, play an im-
portant role. A good estrus detection rate, per se, does 
not give any indication of the correctness of all messag-
es from the sensor system. Good sensitivity sometimes 
even comes at the expense of specificity (Mottram, 
2016). For example, Rutten et al. (2014) compared dif-
ferent scenarios with different assumptions for sensitivi-
ties and specificities of activity meters. Assuming that 
a farmer inseminates his animals “blindly” upon every 
alert, an investment in activity meters turned out to 
be unprofitable. Activity meters for estrus detection 
with high sensitivity but low specificity can present a 
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challenge to dairy farmers. In practice, there is often a 
combination of visual estrus detection and estrus detec-
tion by sensors, which is generally justified by greater 
efficiency compared with mere visual or automatic 
estrus detection (Peralta et al., 2005; Holman et al., 
2011; Rutten et al., 2014), resulting in positive effects 
for the dairy farm.

CONCLUSIONS

The results of our study show that activity meters 
for estrus detection can increase the profitability of a 
dairy farm. Analyzed scenarios consider the Simmental 
(yearly milk yields 7,000 or 9,000 kg) and Holstein Frie-
sian (yearly milk yields 9,000 or 11,000 kg) breeds, herd 
sizes of 70 or 210 cows, equipping only of cows or of 
both cows and heifers, and labor costs of €10 or €20/h. 
The results show positive annual NR for the majority 
of simulation runs (88% for the Simmental breed and 
92% for the Holstein Friesian breed on average) when 
investing in activity meters for estrus detection. The 
financial advantage or disadvantage depends strongly 
on the previously dominant reproduction management 
method of the dairy farm. It becomes clear that milk 
yield, herd size, and assumptions on labor cost influ-
ence the economic effects of sensor-assisted estrus de-
tection. In many cases, a positive economic effect could 
be achieved from the additional equipping of heifers, 
which results in a younger age at first calving. More-
over, activity meters for estrus detection often have 
additional functions for early detection of illnesses, 
resulting in additional cost savings.
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