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Abstract—Nowadays, point clouds acquired through laser scan-
ning and stereo matching have deemed to be one of the best
sources for mapping urban scenes. Spatial coordinates of 3-D
points directly reflect the geometry of object surfaces, which sig-
nificantly streamlining the 3-D reconstruction and modeling of
objects. The construction industry has utilized point clouds in
various tasks, including but not limited to, building reconstruction,
field inspection, and construction progress tracking. However, it is
mandatory to generate a high-level (i.e., geometrically accurate,
semantically rich, and simply described) representation of 3-D
objects from those 3-D measurements (i.e., points), so that the
acquired information can be fully utilized. The reconstruction of
3-D objects in a scene of man-made infrastructure and buildings
is one of the core tasks using point clouds, which involves both
the 3-D data acquisition and processing. There are few systematic
reviews summarizing the ways of acquiring 3-D points and the
techniques for reconstructing 3-D objects from point clouds for
application scenarios in a built environment or construction site.
This article therefore intends to provide a thorough review of the
state-of-the-art acquisition and processing techniques for building
reconstruction using point clouds. It places particular focus on data
acquisition and on the strengths and weaknesses of key processing
techniques. This review work will discuss the limitations of current
data acquisition and processing techniques, as well as the current
research gap, ultimately providing recommendations on future
research directions in order to fulfill the pressing needs of the
intended construction applications in the foreseeable future.

Index Terms—3-D reconstruction point clouds building and
infrastructure construction applications.

I. INTRODUCTION

IN RECENT decades, the demands for effective and efficient
monitoring of the dynamic change of buildings and construc-

tion installations in urban areas have continually increased in
the fields of architecture, engineering and construction/facility
management (AEC/FM), urban planing, and surveying and
mapping. This is especially true in applications like tracking
progress, increasing profitability, controlling quality, ensuring
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security, and investigating incidents [1]. In these various ap-
plications, automatic methods using measurements like 2-D
imaging [2]–[4], photogrammetry [5]–[7], or 3-D laser scan-
ning [8]–[10] have been paid much attention, compared with
conventional approaches using visual inspection and extensive
manual data collection and document analysis. Among all the
data type used in these methods, 3-D point clouds generated
by laser scanning and multiview stereo vision have become
commonplace across a broad range of applications [11]. The
point cloud is a kind of direct data source, which has shown
itself to be one of the adequate data sources for urban mapping
and 3-D building reconstruction. With point clouds, measured
points of an object are directly assigned 3-D coordinates during
measuring. Compared with indirect data sources such as 2-D
projected images or 1-D measured distance, the use of point
clouds can considerably streamline the modeling of surfaces
and the reconstruction of geometry [12]. Making use of point
clouds, the 3-D reconstruction of man-made infrastructure or
buildings in an urban scenario has been extensively developed.
The scan-to-BIM is one of the most well-known examples [13],
[14]. The reconstructed as-built BIM is even becoming a power-
ful solution for accurate project progress monitoring and change
detection tasks on construction sites [8], [15]. However, raw
point clouds typically comprise countless dynamic and tem-
porary objects, for instance, temporary formwork for concrete
walls, which are deemed impeding to the reconstruction of walls.
Furthermore, the acquired 3-D coordinates do not contain any
semantic and topological information. Thus, we need a work-
flow within a designed framework to reconstruct 3-D models
from input 3-D point clouds. Unlike in the fields of computer
vision, computer graphics, or earth observation, in the fields of
AEC/FM and related applications, the building reconstruction
should encompass more content. This includes the processes
of capturing the geometric shape and the appearance of real
objects, reconstructing 3-D geometry, interpreting semantic and
topological information, and representing 3-D information with
surface or volumetric representations.

In Fig. 1, we demonstrate an example pipeline from the
acquired photogrammetric point cloud to the expected seman-
tically rich 3-D building model. As seen from the figure, the
creation of desired 3-D models of objects in the scene of con-
struction involves not just acquiring 3-D points, but also deriving
the spatial geometry of surfaces and interpreting the semantic
labels of objects. That is to say, we need to convert those 3-D
scenes of the real world into digital models described with a
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Fig. 1. Reconstruction of the object with semantically rich 3-D models from point clouds (Example using as-built BIM from [5]).

high-level, semantically rich representation. The following two
essential questions should be considered and answered when we
design processing workflows and related methods.

1) What is the best method to acquire 3-D point clouds from
construction sites and urban scenes?

2) What is the workflow for reconstructing objects from
construction sites and urban scenes?

These two questions have pointed out two major topics of
the 3-D reconstruction of buildings and civil infrastructures:
data acquisition and processing techniques. Here, aside from
buildings, we also take the civil infrastructures into consid-
eration, composing of public and private physical structures
like roads, railways, bridges, tunnels, and so on, which is of
importance in the field of AEC/FM. Comparing with residential
buildings, they have different geometries but use common key
techniques when reconstructing 3-D models. Relating to these
topics, various attempts and numerous solutions have been re-
ported in publications covering the topics of shape reconstruc-
tion or object detection from point clouds of multiple sources.
However, the majority of existing publications only partially
solved one or several specific problems in the entire workflow
of reconstructing 3-D building models, involving diverse tech-
niques such as classification or modeling. Moreover, although
there are already comprehensive review papers like [8], [16],
and [17], their content focuses more on the applications of point
clouds or the general development of scan-to-BIM, rather than
the investigation of different data properties and an in-depth
analysis of data processing techniques themselves. Considering
that the level of technology we have achieved is the bottleneck
to any potential application in practical engineering projects, we
give a review of related work, covering solutions of the following
questions, to have an overview of the current state of the art of
data acquisition and processing techniques.

1) How to acquire 3-D measurements mapping the scene?
2) How to integrate datasets to the same reference frame?
3) How to interpret scenes and extract objects of interests?
4) How to represent the object with geometric models?
For the first two questions, we will talk about strategies and

methods of acquiring 3-D points from target scenes, organizing
the unstructured point clouds, as well as aligning multiple point
clouds from different sources, which are related to tasks of
acquisition, organization, and registration of point clouds. For

the third question, we survey the work to interpret the scene
with semantic labels and extract objects of interest, namely the
segmentation and classification of point clouds. For the last
question, we will discuss the generation of geometric models
from point clouds of objects, which is more frequently termed
as geometric modeling. In Fig. 2 , we have drafted a general
framework giving an overview of the relationship between these
questions, as well as related techniques that will be reviewed.

II. POINT CLOUDS DATA

A point cloud is a set of 3-D data points in Euclidean
space. These points stand for a single point with x-, y-, and
z-coordinates of the Cartesian system on the sampled surfaces
of 3-D objects. By organizing a large number of such individual
spatial points into a single dataset with a common coordinate
frame, we can completely capture the geometric information of
the entire 3-D object. Each point in the point cloud can not
only describe the 3-D coordinates of a position, but also be
assigned with attributes like intensity, RGB color, numbers of
impulse returns, and semantic information. By acquiring dense,
large-scale, and information-rich 3-D points, we can obtain an
implicit representation of the geometry, location, and attributes
of objects, which can be further utilized in explicit modeling
of building objects in either built environments or construction
sites. When using 3-D point clouds for building reconstruction,
three essential procedures are always mandatory, namely the
acquisition of 3-D points, the organization and structuring of
3-D points, and the registration of multiple point sets.

A. Acquisition of 3-D Points

The acquisition of 3-D points is to measure the 3-D coordi-
nates, as well as attributes, of points in Euclidean space, and
then to record these measured points and organize them under
the same coordinate frame. The acquisition of 3-D points can
be achieved through a wide variety of sensors and methods
following different principles of measuring 3-D coordinates.

1) Major Principles of Measuring 3-D Coordinates: There
are two major working principles for measuring 3-D coordinates
when generating point clouds, namely the ranging-based princi-
ple and imaging-based principle. Methods using the ranging-
based principle rely mainly on active sensors, with the 3-D
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Fig. 2. Generic workflow of reconstruction of semantically rich 3-D models from point clouds.

Fig. 3. Two principles of measuring 3-D coordinates. (a) Ranging-based method using laser scanning. (b) Imaging-based method using multiview stereo vision.

laser scanner being a commonly employed example. Meanwhile,
methods using the imaging-based principle rely on measure-
ments from passive sensors, particularly different types of cam-
eras [18]. In Fig. 3, we give an illustration of estimating 3-D
coordinates of a point in the same scene using methods of these
two principles (e.g., laser scanning and multiview stereo vision).
Ranging-based methods physically infer the position of a 3-D
point by the use of active rangefinders, including structured light,
laser beams, and other active sensing techniques, with light de-
tection and ranging (LiDAR) systems, and time-of-flight (ToF)
camera frequently used as sensors. Contrarily, imaging-based
methods do not directly derive ranges between the sensor and
the object. Instead, they only use the sensor to receive 2-D signals
(i.e., images) reflected or emitted by the object surface. Estima-
tion of 3-D point coordinates is then achieved via triangulation
from stereo image pairs. For imaging-based methods, image

cameras which respond to visible light and output a matrix of
digital pixels are usually used. As a comparison, ranging-based
methods can directly get 3-D information from measurements
with implicit scale factors, while imaging-based methods need
to derive this information from the images, meaning scale fac-
tors must be identified using ancillary information. Moreover,
imaging-based methods can provide more reliable radiometric
information ranging from visible domain to infrared ones, de-
pending on the optical sensors used. By contrast, ranging-based
methods usually provide methods generally only provide the
intensity of reflected signals as the primary attribute. For the
accuracy of measured points, points acquired by ranging-based
methods typically have higher accuracy in the direction of depth
than in the directions perpendicular to depth. The points acquired
by ranging based methods normally have higher accuracy in
the directions of image plane than that of the depth. One more
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Fig. 4. Laser scanning systems and different types of cameras for point cloud generation. (a) TLS (Z+F IMAGER 5010), (b) ALS (WHU Kylin Cloud-I), (c) MLS
(Fraunhofer IOSB MODISSA), (d) handheld single reflected camera (Canon EOS 5D), (e) stereo cameras mounted on the crane (red circles), and (f) UAV-based
camera.

thing to note is that the quality of each point acquired by
imaging-based methods can be assessed by the uncertainty of
stereo matching, while for points of the ranging based method
we can only conduct a general assessment according to errors of
the sensor system. Cameras used in imaging-based methods are
portable and more compact, which makes them more suitable in
critical situations (e.g., no observation points or highly occluded
scenes) of construction-related applications. Benefiting from the
recent development of laser scanning devices, more portable
active sensors like the backpack-based solid-state LiDAR have
been developed, facilitating indoor mapping and reconstruction
as well. Some new devices like the Leica CountryMapper1

hybrid LiDAR system and optical sensors have been developed,
so that the acquired point clouds can have both high accurate
geometry, textures, and RGB colors.

2) Methods of Generating Point Clouds: By using the two
aforementioned principles, as well as a combination thereof,
there are a wide variety of methods available for generating
point clouds with 3-D measurements, including laser scanning
(i.e., ALS, MLS, and TLS), ToF imaging, multiview stereo
(MVS) vision, structure from motion (SfM), simultaneous lo-
calization and mapping (SLAM), and single image depth esti-
mation (SIDE). The devices used in these method involves laser
scanners on various platforms and different types of cameras. In
Fig. 4, we illustrate several laser scanning systems and different
types of cameras. To have an overview of pros and cons of these
method, we provide a comparison of methods using different
principles in Fig. 5(a). Considered aspects include point density,
point accuracy, point attribute, time efficiency, coverage areas,
cost, assistance required. The density and accuracy of points

1[Online]. Available: https://leica-geosystems.com/products/airborne-
systems/leica-citymapper-2

relate to the geometric performance of generated point clouds.
Ideally, we expect the acquired points could be dense and accu-
rate. The attribute indicates whether acquired point clouds have
rich information (e.g., intensity, RGB colors, and the number of
returns). More attributes with rich information can significantly
broaden the application fields. Time efficiency, coverage areas,
and cost stand for the difficulties and total cost of conducting a
measuring campaign when using a method. A feasible solution
must keep a good balance between efficiency and cost. The
required assistance is to evaluate whether the measure campaign
(i.e., the generation of point clouds) need special assistance (e.g.,
precise maps, GPS/IMU measures) or not. This reflects the need
for skilled operators in the measurement campaign and pre-or
post-processing.

It can be seen from this radar chart that each method has its
pros and cons, which makes it suitable for specific applications.
For example, the ALS and MLS are more suitable for large-
scale outdoor mapping tasks, while ToF imaging and SIDE are
more suited for close-range scenarios. SfM and MVS are always
used together as sequential steps. For indoor 3-D reconstruction,
SLAM is becoming increasingly popular. For the point density
and accuracy, TLS is the best solution. For the coverage area,
only ALS can measure large-scale point clouds in one single
flight but the cost is very high. It is noteworthy that an increasing
number of novel data-collection methods and sensors (such as
radar) are emerging as well, which enable more selections for
generating 3-D point clouds. In Fig. 5(b), we provide a statistic
on the methods for generating point cloud in the publication we
reviewed. From the statistic, we can find TLS and MVS (using
stereo vision) are primary solutions but many new methods like
RGB-D data and MLS are emerging.

3) Restrictions on Data Acquisition: For acquiring point
clouds in an urban scenario or construction site, it is inevitable to

https://leica-geosystems.com/products/airborne-systems/leica-citymapper-2
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Fig. 5. Comparison of point cloud generation methods. (a) Advantages and
disadvantages of various methods. (b) Statistic from selected papers (shown in
Table II) about point cloud data used in reconstruction.

encounter complex environments. In practice, there are plenty
of restrictions on the measured sites during the acquisition of
3-D data observation. Especially, several critical aspects should
be further considered, including the accessibility and visibility,
dynamics and temporal changes, and demands for multimodal
measurements.

a) Accessibility and visibility: The first restriction on data
acquisition pertains to the accessibility and visibility of the
observed site. Due to inaccessibility to specific site locations, the
desired viewing angle may not always be available in crowded
places. For terrestrial measurements, due to legal issues like the
protection of privacy and the ownership of private residences,
cameras or laser scanners are not allowed to be placed in a certain
area without permission. This means in some situations, the
backside of street buildings in residential areas is not accessible.
For example, the construction site investigated in [6] is located in
central Munich, very near to the central railway station. As seen
in Fig. 6(b), the buildings, sidewalks, and even subway lines are
crowded in all surrounding areas. The distance from the site to
the surrounding buildings can be no more than 12 m.

Such a large, complex urban environment raises the difficulty
of obtaining adequate and accurate images, as suitable locations
for acquiring images are quite limited. Moreover, for UAV-based
observations, the flying area and altitude of the drone are also
limited in urban areas due to security risks caused by power
lines and high-rise buildings. Thus, many aerial observation
positions are not available. As a consequence of accessibility,
the visibility of the observed targets will be strongly affected.

For example, occlusions may frequently occur, because barriers
between the sensor and the object may impede the line of sight.
The occlusions blocking the view for specific observation points
will contribute to an inadequate collection and information loss.
For example, in Fig. 6(a), the lattice frame of the crane makes
some parts of the building roof invisible. Moreover, the man-
made objects with repetitive patterns and periodic shapes will
increase the difficulty of recognizing certain kinds of structural
elements, which is counterproductive to scene interpretation.
All these factors should be considered for a successful data
acquisition in urban scenarios. Actually, such a requirement will
influence related policies and regulations should coincide with
the urbanization and engineering demands.

b) Dynamics and temporal changes: The second restriction
stems from the dynamics and temporal changes in the observed
site. Dynamics represent the moving objects in the observed
scene, such as pedestrians and moving vehicles. Temporal
changes denote the changes of static objects. For example,
building elements that have undergone changes, planned or
otherwise, during construction. Thus, it is always challenging
to capture 3-D spatial information without disturbances caused
by dynamics and temporal changes in the urban scenario. All
this will cause substantial deformation of the measured objects
from laser scanning points due to the line by line principles
of scanning. In Fig. 6(c), we give a comparison between the
scanned points of static and dynamic cars, and we can see that
the points of the moving vehicle are significantly deformed.
Similarly, for construction engineering projects, since construc-
tion is always a dynamic process, moving workers, equipment,
machines, and temporary device/installation commonly appear
in the site. For example, in Fig. 6(d), we show a typical situation
of a construction site. We can find that the moving of the
excavator will lead to temporal occlusions during laser scanning,
leading to missing points in the acquired point cloud. To cope
with such dynamic changes during data acquisition, an opti-
mized and adaptive measuring plan and the cooperation with the
construction schedule are always necessary, which is different
from conventional surveying and mapping applications.

c) Demands for multimodal measurements: A multimodal
dataset is different from the commonly used multisource dataset.
Only when a data acquisition includes multiple measurements
with different modalities, the acquisition is characterized as
multimodal ones. The multimodal measurements refer to the
measurements acquired with different modalities. Theoretically,
an optimized data acquisition should be multimodal, including
more than one single data source or data mode, for example,
RGB images, 3-D points, GIS maps, and cadastral records.
For instance, in the work [19], combining the thermal infrared
image and the point clouds gives us a 3-D representation of the
object with its temperature distribution and emission property
[see Fig. 6(e)], which simplifies the task of thermal inspection of
buildings. The need for multimodal measurements is increasing,
but conventional data acquisition cannot fully satisfy it.

B. Organization of 3-D Point Clouds

A point cloud is a discrete sampling of continuous surfaces of
the object. Thus, in order to ensure adequate resolution and point
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Fig. 6. Restrictions of data acquisition. Accessibility and visibility. (a) Image taken from the crane and (b) the actual scenario of the streets and buildings
neighboring the site (reproduced with permission from the author of [6]). Dynamics during measuring: (c) Scanned points of static and moving cars from MLS.
(d) Moving excavator in the scene. Multimodal data of the same scene: (e) Thermal infra red image and (f) MLS point clouds of the street building.

Fig. 7. Statistic of studies from selected papers (shown in Table II) using
different data structures.

set density in an urban environment, millions or even billions of
points are needed. To this end, the organization of data directly
influences the operation of a designed framework or workflow.
Moreover, the raw points cloud usually is unstructured, meaning
that if we can use the specific data structure to recover the local
geometry and spatial topology of measured points, it will also
facilitate the processing step and improve the processing perfor-
mance. Apart from the point-based structure (i.e., the direct use
of points as fundamental elements for processing), voxel-based
and patch-based structures are also frequently used in plenty
of applications. In Fig. 7, we visualize a statistic of reviewed
literature on data structures used for point cloud processing. As
seen from the pie chart, we can find that the point-based struc-
tures still dominate the majority of applications. However, data
structures with pre-clustered points (i.e., voxels, supervoxels,
and superpoints) occupy approximately 15% of all the studies,
revealing that they also play a vital role in the data structure.

These data structures will be discussed in further detail in the
following sections.

1) Point-Based Structure: Discrete points with their 3-D co-
ordinates stored as items in a list is the most simple data structure
for point clouds. Here we can classify the point-based structure
into two categories: structured point clouds and unstructured
point clouds. In this context, structured means that the point
cloud has a structure like a fixed raster or 3-D grids. Laser
scanners using fixed rasters will generate such structured point
clouds. ToF cameras measure depth in a 3-D scene, which is
actually an image with its intensities representing distance. As
an image, the point cloud data (i.e., depth image) is naturally
structured by 2-D grids, in which the points are also termed
as pixels. In such a structured point cloud the relation between
points, namely the spatial topology, is known. More specifically,
the relation between points is constrained by the raster. With such
a regular raster constraint the processing steps for a structured
point cloud are made easier. For instance, the detection of
planes can be simplified to checking local homogeneity of depth
in the 2-D rasters. Moreover, by figuring out the relationship
between adjacent points, operations relating to searching for
nearest neighbors are accelerated. For a point cloud acquired
via stereo matching, as each point can be back-projected to the
image having a raster structure, it can possibly be organized as
a structured one. By contrast, unstructured point cloud data has
no such fixed raster. Thus, in an unstructured point cloud, the
processing algorithm has to traverse the entire list of points to
identify the adjacency of points, which is time-consuming.

2) Voxel-Based Structure: Like a pixel in a 2-D image, a
voxel in 3-D space is a basic rasterized unit structuring the space,
standing for a position in a regular cubic grid. Voxelization is
to transform a point set into a voxel grid and to estimate the
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Fig. 8. Point cloud representation using the octree-structure.

geometries of surfaces that are created with a spatial resolution
by points inside voxels. Voxels are normally indexed by tree
structures within a 3-D grid. In [20], the input point cloud is
organized with an octree structure, which partitions each piece
of space into eight equal subspaces. Here the octree serves as
a 3-D version of a 2-D quadtree indexing the spatial positions.
As a consequence, each subspace (i.e., voxel) of a certain level
in the octree structure will occupy different sizes of the space.
A general representation of the voxelization of point clouds is
shown in Fig. 8.

Compared with the previous point-based data organization
method, the voxel structures result in a simpler depiction of
complicated scenes. Simultaneously, the voxelization process
is also a down-sampling one, eliminating more computational
costs. Furthermore, the tree structure is established during the
division of the space, which restores the adjacency topology
considerably accelerating the traversal process (i.e., searching
for neighbors). Furthermore, in common cases, points inside a
voxel will be approximated by plane models [21] or abstracted
features [22]. In this way, negative influences resulting from
the inhomogeneous density of points can be suppressed. The
noise and outliers will also be reduced since they are suppressed
during the approximation or abstraction process. However, the
resolution of voxels determines the granularity of segments and
labeled points, meaning the use of voxel structures is always a
compromise. In other words, the selection of a suitable resolution
of the voxel structure is one of the keys to output performance.
It is therefore necessary to have a heuristic or analytical un-
derstanding of the application prior to the voxelization, due to
the various criteria mandated by different situations. Taking all
this into consideration, we conclude that further development
of the voxel structure resides in the pre-clustered framework of
simplified or evolutionary constraints (e.g., supervoxels).

3) Patch-Based Structure: The patch-based structure entails
the preclustering of points having common characteristics into
patches, and the use of these patches as basic units for further
processing. The supervoxel structure is a popular example of
patch-based structures, which includes clustered basic voxels,
using local k-means clustering [23], weighted distance [24],
link-chain [25], among others. In contrast with the voxel struc-
ture, supervoxels maintain the borders between neighboring en-
tities and increase computational performance further. We give

Fig. 9. Comparision between (a) original points, (b) voxels, and (c) supervox-
els.

an example in Fig. 9 of the comparison of point clouds arranged
with three different structures: points, voxels, and supervoxels.

Supervoxelization is, however, merely an over-segmentation
of entire point clouds, which involves a second patch cluster-
ing. Therefore, the clustering of over-segmented patches into
complete segments is an inevitable task when using patch-based
structures. There are two popular strategies used to address this
twice clustering problem. One utilizes supervised classification
to label patches. For obtained patches (e.g., superpoints [26] or
supervoxels [27]), geometric features [25], [28], [29], spectral
information [30] or colors [24] can be extracted using points al-
located in individual patches. Considering that the use of patches
involves preclustered points with homogeneous characteristics,
the selection of a suitable neighborhood for the approximation
of features will easily be avoided, as the edges of a patch
have already been defined adaptively during preclustering, with
eliminated isolated points and smoothed rough borders. Besides,
taking advantage of the strengths of using supervised learning,
the assigned labels of patches are highly accurate. Therefore,
complete segments can be easily attained through the recurrently
coalescing patches of the same semantic labels. Nonetheless,
supervised approaches need a large amount of accurate training
data, a tremendous amount of time and extensive manual work.

One way around these constraints is to aggregate patches with
local or global optimization algorithms in an unsupervised way.
The local convexity is coupled with the region growing to cluster
supervoxels into complete segments in [31]. In [32], a global
adjacency graph with geometric consistency is constructed by
the supervoxel structure serving as nodes. Then, the aggregation
of supervoxels is accomplished by evaluating the connectivity
by minimizing a binary cost function. Supervoxels are put in a
local neighboring graph with a certain width in [33]. Then, a
clustering is determined by their connections via Markov CLus-
tering (MCL). The main strength of unsupervised approaches
is that they require no training sets and usually require lower
calculation costs. Nonetheless, they can not receive conceptual
patch labels and may have issues with adaptability in dealing
with complex structures.

C. Registration of Multiple Point Sets

In many applications the use of multiple PCs point clouds
from various sensors, platforms, times, and/or observation po-
sitions needs to be considered. The registration of these varying
point clouds is a precondition to obtaining full cover of the entire
testing scene or repeatedly observed temporal dataset [35]. Point
clouds of arbitrary initial positions and orientations are aligned
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Fig. 10. Illustration of registration between two point clouds. (a) Target data: MLS point cloud. (b) Source data: Photogrammetric point cloud from SfM.
(c) Registration result (reproduced with permission from the author of [34]).

TABLE I
STATISTIC OF STRATEGY, ELEMENTS, AND METHODS USED IN REGISTRATION

with 3-D models or with other point clouds by the use of a
spatial transformation from one coordinate frame to another. In
Fig. 10, we display an illustration of aligning different point
clouds into the same coordinate frame. These two point clouds
are normally termed as target and source data, respectively, and
such kind of registration aligning the source data to the target
data are called pairwise registration. Once there is more than one
set of source data, it becomes a multiview registration. Unlike
manual registration using surveying markers, here we focus only
on the automatic point cloud registration, which is also termed
as marker-less registration.

There is a wide range of publications describing methods for
marker-less registration between different point clouds by the
use of geometric characteristics. For any registration method, it

always includes two major phases, namely the extraction of fea-
ture elements and the finding of correspondences. These types of
registration can be roughly divided into three main groups based
on the type of feature elements they use: point-based, primitive
based, and global feature-based approaches. In Table I, we
present a statistic derived from reviewed literature on point cloud
registration. As can be seen from the table, points, primitives and
global features are all commonly used are commonly used in
registration applications. It is also noteworthy that the bulk of the
data required by the registration process is the TLS point cloud
[see statistics in Fig. 11(a)]. As described in the previous section,
this is because the static platform of TLS restricts its field of
view, so that occlusions sometimes occur in the urban scenario.
The occlusions should be solved by registration to achieve a full
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Fig. 11. Statistic from selected papers (shown in Table I) about the (a) data
acquisition and (b) feature elements used in registration.

scene analysis. Moreover, in Fig. 11(b), we also present a statistic
of feature elements used in different methods, which reveals that
the points and primitives are still the dominating elements used
for registration.Besides the data and feature elements, Table I
also lists many strategies and algorithms (e.g., 4PCS) used for
finding corresponding points or elements from target and source
point clouds. These feature elements and algorithms will be
discussed in further detail in the following sections.

1) Point-Based Registration: The concept of point-based ap-
proaches lies in the determination of corresponding pairs of
points from different point clouds. For instance, the classic
iterative closest point (ICP), as well as its variants, iteratively
minimize distances between points in overlapping areas be-
tween various point clouds [43], [85], [86]. ICP-based methods
normally require approximate initial transform parameters, and
the iteration process takes a great deal of time. Requiring no
iterations, the 4-point congruent sets (4PCS), as well as its vari-
ants, are another representative point-based method, utilizing
unique sets of four congruent points, the ratios of the distance
between which are invariant to affine transformations [39], [40],
[48]. Nonetheless, the core of 4PCS is to reduce the number
of candidate elements, with correspondences still need to be
found by the use of rejectors like RANSAC. For a large dataset
with a high point density, a down-sampling stage is usually
necessary before applying 4PCS-based approaches, but this will
miss the specifics in the scene. Rather than a down-sampling of
all points, using selected key points as elements is a solution that
significantly reduces the computational cost. For selecting key
points many detectors are used, for example, SIFT [87], [88],
DoG [48], and virtual intersecting points [60]. Similarly, feature
points extracted by FPFH [52] and structural semantics [64]
are also used as elements, but in these cases, the finding of
correspondences is achieved via the similarity between features
rather than distances.

In Fig. 12, we give a comparison of point-based registration
using key points with the 4PCS strategy and global-based reg-
istration using 3-D phase correlation [84]. It is clear that in
this workflow key points are first extracted from both source
and target datasets using 3-D key points detectors. Then, corre-
spondences between key points from source and target datasets
are identified by the use of the 4PCS strategy. In this process,
incorrectly matched pairs of points will be rejected. Transforma-
tion parameters are finally estimated from the 3-D coordinates

of these corresponding points. Point-based methods have been
widely used in either coarse or fine registrations, since they
are entirely feasible for various scenarios [55]. However, point-
based methods are also sensitive to a varying density of points
and outliers, as distances measured by point can be influenced
by them.

2) Primitive-Based Registration: Primitive-based registra-
tion is an alternative registration strategy in which the geometric
primitives formed by points (e.g., lines and curves [68], [89] or
planar surfaces [69], [72] are generated as candidates for regis-
tration. Compared with points, geometric primitives are higher
level structures with less degrees of freedom, enhancing the
robustness of matching corresponding feature pairs and the es-
timation of orientations [90]. Line features are typical instances
of geometric primitives used for registration. Related primitives
used for registration include straight-lines of edges [86], [89],
lines between intersecting planes [61], crest curves [68], and
borders of building footprints [91]. By contrast, planes [92]–
[94], as well as curved surfaces [76], are also utilized as ge-
ometric primitives for aligning two coordinate frames. Planes
are the dominant structures in many point clouds, particularly
for those of urban areas [95], and they can be easily extracted
from geometric attributes (e.g., positions and normal vectors
of points). Nonetheless, by contrasting point-based registration
methods with methods using lines or planes, we can see that the
latter ones need abundant linear artifacts or smooth surfaces for
creating adequate primitive candidates, which mainly depends
on the scene content. Therefore, the primitive-based methods
may encounter problems in scenarios with natural landscapes
only (i.e. those have no artificial infrastructure). Additionally,
the quality of extracted lines or surfaces will affect the reg-
istration result at the same time. When using primitive-based
methods, the extraction of planes through fitting a plane model or
region growing with smoothness is somewhat time-consuming
and unreliable when extracting planes using model fitting or
region-building algorithms, which decreases the efficiency of
registration. The consistency of the planes collected will also
have a significant impact on the exactness of the orientation
parameters. It is also popular to use voxelized structures as
primitives. For example, EGI features of the voxel clusters [96]
have been used as coarse registration of correspondence that
provides acceptable results when matching point clouds in an
indoor scenario. Their promising results encourage the concept
of using the voxel structure in lieu of the point structure for fast
and efficient registration between point clouds pairs.

As for finding corresponding primitives, the similarity be-
tween geometric attributes is usually utilized. In [89], angles
and distances between lines are calculated to identify corre-
spondences. In [97], the alignment between extracted planar
patches is established by means of an interpretation tree and
additional constraints. In [92], planar surfaces identified by
region growing are matched via their locations, lengths of bound-
aries, bounding boxes, and mean intensities. In [98], in order to
prevent iterations, global optimization has been implemented by
the use of locally consistent of planes. In addition to utilizing
similarities between properties of planes, there are also geo-
metric constraints on the layout of planar surfaces. In [99], the
intersection angle of plane triples is used to compute the coarse
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Fig. 12. Illustration of different workflows for point-based registration (using K4PCS of [48]) and global-based registration (using GRPC of [84]).

transformation parameters. In [60], the intersecting points are
used as tie points for estimating the transformation. Similarly,
in [72], the distances between plane triples and intersecting
points are minimized by the use of the RANSAC process for
the transformation. Nonetheless, in urban scenes, parallel planes
(e.g., parallel facades of a building) will lead to ambiguities in
searching for correspondences [72]. Thus, when applying plane
registration technologies in a large-scale urban district, how to
decrease redundant planar surfaces becomes a critical problem.
To tackle this drawback, instead of using triple planes, a four
planes-based solution combining the plane orientation and 4PCS
strategy [34], or similarity matching via angles between pairs of
planes [75] is implemented. The use of certain four plane sets
considerably reduces the number of element sets so that the
finding of correspondences can be accelerated.

3) Global Feature-Based Registration: All the abovemen-
tioned registration methods utilize the local information of point
clouds derived either from points themselves or clustered prim-
itives. Besides this, the registration can also be achieved using
global features of the entire point cloud. For example, point
densities are utilized to conduct registration using coherent point
drift [79] and kernel correlation of affinities [80], respectively.
In [55], authors introduce a global vector of a locally aggregated
descriptor in order to align multiple point clouds without know-
ing the view orders or position. In [81], fundamental spatial
structures corresponding to low-frequency components in the
frequency domain are separated. With the help of 2-D projec-
tion and Fourier transformation, the translation and rotation in
Euclidean space can be converted to the global phase difference
in the phase domain. In [83], a fast and sturdy solution for
shift estimation between point clouds is proposed, which used
a global strategy by matching low-frequency components in the
frequency domain. As an improvement, a new perspective for

point cloud registration from local to global is proposed in [84].
By correlating the whole signals presented by point clouds
and estimating parameters in a closed-form way, robust point
cloud registration can be achieved, even in low-overlapping
and highly-noisy cases. Theoretically the global feature-based
registration methods are more robust than those based on local
features, but generally require a large overlapping ratio. Without
a sufficient overlap, the global features may have significant
differences.

III. KEY TECHNIQUES FOR 3-D RECONSTRUCTION

Having reviewed the acquisition, organization, and registra-
tion of different 3-D point clouds, we will survey key techniques
for 3-D reconstruction (i.e., modeling of objects) using point
clouds. Here, key techniques stand for the basic and common
strategies, approaches, and algorithms that play important and
indispensable roles in the reconstruction of 3-D models from
point clouds. In the context of this article, key techniques
should also have versatility, namely it could be used in the
reconstruction of either residential buildings or civil infrastruc-
tures. For these approaches reconstructing objects from 3-D
point clouds, if we categorize these very different workflows
into two strategies, we can distinguish them into the grouping-
based strategy and the labeling-based strategy, in accordance
with the sequence of conducting segmentation or classification
processes. The difference between the workflows using these
two strategies is given in Fig. 13. We can clearly see in these
two general workflows that for the grouping-based strategy
(i.e., Type I), the segmentation or clustering of points will be
carried out first. Then the recognition of objects will be done
on the segmented primitives. By contrast, in the labeling-based
strategy (i.e., Type II), all the points will be first annotated
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Fig. 13. Different strategies for object reconstruction from point clouds [subfigures courtesy of [100] (up) and [101] (down)].

TABLE II
STATISTIC OF DIFFERENT 3-D RECONSTRUCTION TASKS

with specific labels. For example, in the Type II case [101]
shown in Fig. 13, the input point clouds are only building roofs,
which have been labeled already. Then these labeled points
will be clustered into individual segments representing various
objects.

For the workflow of the grouping-based strategy, the primary
procedure is segmenting the point cloud into primitives with the
common attributes or geometric properties. Then the partitioned
primitives are provided with semantic labels, and subsequently,
the modeling of the labeled primitives is enforced. Conversely,
the workflow of a labeling-based strategy begins with the seman-
tic labeling directly on the points. Then the labeled points are
clustered into geometric primitives, and finally, the modeling
is implemented using the cluster of labeled points. However,
regardless of which workflow a strategy follows, it can never

avoid core processing steps involving segmentation, classifi-
cation, and geometric modeling. Under certain circumstances
the borders between these processing steps may cease to be
evident. For instance, the model-fitting method can generate
parametric models, but in the meantime, it also serves as the
operator segmenting the point cloud and classifying points of
different objects. We list a number of representative publica-
tions in Table II, concerning topics about the reconstruction of
man-made infrastructure and buildings in urban scenarios. The
strategies used in the workflow, fields of applications, as well
as specific tasks are concluded in the table as well. Specifi-
cally, publications marked as Type I stand for the approaches
using the grouping-based strategy, while the ones termed as
Type II denote the approaches implemented following the
labeling-based strategy. In these applications, the 3-D data are
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Fig. 14. Illustration of building segmentation. (a) Raw point cloud from TLS, rendered with RGB values and (b) segmentation results.

acquired via various sensors (e.g., TLS, depth camera, To-
moSAR, MVS vision). Simultaneously, according to the applied
algorithms and methods, the 3-D data are organized in various
structures, including points, pixels, voxels, superpoints, and
supervoxels. In accordance with the reviewed publications from
the table, we provide detailed reviews and discussions concern-
ing the segmentation, classification, and geometric modeling
algorithms and methods in the following sections, in order to
give a thorough technical analysis.

A. Segmentation of Point Clouds

The segmentation of point clouds is the grouping of points
into several homogeneous components of one or more common
features [157]. We provide an example in Fig. 14 that illustrates
the segmentation of a set of points. Relevant approaches to
point cloud segmentation can be divided into two major cat-
egories: attribute-based techniques and geometry-based tech-
niques. The attribute-based techniques use point intensities or
color specifics to group them into segments sharing the same
semantic information or the same attributes. Meanwhile the
geometry-based techniques segment points according to the
structural homogeneity of corresponding surfaces or structures
that points belong to. Both these two approaches have their
positives and negatives. Nevertheless, the brightness or color
information is not always accurate or reliable, as the reliability
of the information primarily depends on sensor recording tech-
nology. On the other side, information regarding the brightness
and colors of the materials and the lighting of artifacts, as well
as the light conditions, will possibly be influenced. For urban
areas particularly, changing lighting conditions, and complex
artifact environments with similar textures, colors, and lights
render the attribute-based techniques ineffective. Therefore, we
face a strictly geometric segmentation problem in many cases
when parsing building scenes. In general, the methods using
geometry-based techniques can be subdivided into four essential

Fig. 15. Statistic of studies from selected papers (shown in Table III) using
different segmentation methods.

categories: model-based methods, region growing-based meth-
ods, clustering-based methods, and energy optimization-based
methods [20]. In Fig. 15, we present an statistic of reviewed
literature (listed in Table III) on segmentation methods. As
seen in the figure, we find that model-fitting methods dominate
more than one-third of applications. While the region growing
and clustering-based methods share nearly equal portions of
all applications, energy optimization-based methods occupies
a much smaller portion of all applications. The details, pros, and
cons of these four categories...will be discussed in detail in the
following sections.

1) Model-Based Segmentation: Model-based approaches as-
sociate points at a local or global level using specific mathemat-
ical representations, relying on their geometric characteristics
(for instance, spatial locations and normal vectors). Points that
meet the criteria for fitting the same mathematical model (either
spatially or parametrically) are extracted from the point cloud as
a single segment. To be specific, model-based methods are pri-
marily implemented via two strategies: parameter domain-based
methods and spatial domain-based methods. The parameter
domain-based methods match the spatial points in the parameter
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TABLE III
STATISTIC OF DIFFERENT SEGMENTATION METHODS USING 3-D RECONSTRUCTION

domain according to the mathematical models transforming
spatial structures to parametric expressions. Typical examples
for this type of method are the 3-D Hough transform (HT) and
its variants. The fitting of points in HT is implemented via a
vote-based procedure, which is carried out in the mathematical
parameter space with points of the entity chosen by the local
maximum in the accumulating space. Herein the mathematical
model, as well as corresponding parameters, receiving the high-
est voting scores, will be chosen as the model for segmenting
points. The HT has been utilized in the segmentation of detecting
lines [158], planes [159], cylinders [160], and spheres [161] in
parametric space. Many similar methods can also be categorized
in this group as the voting and accumulating technique within the
parameter domain, such as the Gaussian map [162] and tensor
voting [163].

Whereas space domain-based approaches explicitly infer
the optimal parameters of geometric structures from 3-D co-
ordinates points within the space domain, the optimal parameters
are usually calculated using robust estimators and least square-
based algorithms. Both robust estimators and least-squares serve
the model fitting process, but their mechanisms of fitting vary.
For a given mathematical model the robust estimators reject
those outliers, so that inlier points can be kept. However, a robust
estimator can not directly optimize the parameters of a model.
Thus, a least-square estimation is usually applied to the inliers
selected by robust estimators. RANSAC and its extensions are
the most common robust estimators that are used for fitting
regular geometric shapes [124], [164], [165], and can even
extract shapes formed by primitives from point clouds polluted
with noise or outliers. As far as the use of the least square
algorithms is concerned, the classic least squares approach is
sensitive to gross errors and outliers. Thus, for the model fitting

task, the robust variants of least squares are generally used [166].
For example, it is used to classify surfaces and geometric prim-
itives of [167]. Still, their studies often point out how difficult
and computationally inefficient it can be to suit higher order
surfaces. It is noteworthy that the principal component analysis
(PCA)-based methods [168] belong to the least square-based
methods since they optimize the L2 norm solution as well. The
model-based approaches are known to be resilient to noise and
outliers, and also have access to parametric models of obtained
segments. Nonetheless, model-based approaches usually come
at high computational costs, induced by the iteration phase,
which results in a high storage usage [20]. There are also
problems with artifacts and structures for which there are no
mathematical expressions, such as irregularly curved surfaces.

2) Region Growing-Based Segmentation: Region growing
(RG)-based methods are the second option, the so-called grow-
ing process of which is implemented by a iterative process
that analyses neighboring points in seed regions and assesses
whether or not they belong to the seed region. In the growing
process, the selection of seeds and the growing criteria are two
influential factors for this kind of method. A seed is the origin of
a growing process, and a region growing procedure consists of a
number of parallel growing processes from different seeds. Two
growing regions can be merged into a single one if points at the
border have common characteristics. In other words, the growing
process can cross the boundaries between two regions. Here, the
number and distribution of seeds influence the granularity of the
segments, while the seed positions impact the performance of
the segmentation significantly. Typically, areas with the least
curvature [168] or areas with the smallest plane matching resid-
uals [161] are often marked as seeds, because seed positioning
should avoid the areas of boundaries and borders. For instance,
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Fig. 16. Over- and under-segmentation of point clouds. (a) Original point
cloud, (b) result with over-segmentation (area in the dash line box), and (c)
result with under-segmentation (area in the dash line box) (reproduced with
permission from the author of [182]).

seeds on the edge of a surface or a corner of an object will
yield over-segmentation [e.g., over-segmented fences shown in
Fig. 16(b)], as the frequently changed curvatures in these areas
will stop the growing process. Over-segmentation may be also
possible for curved objects of large sizes (e.g., tubes with an
extended radius elbow joint) [169] or surfaces with irregular
shapes [e.g., over-segmented bushes shown in Fig 16(b)]. The
decision on whether the growing process should be continued or
stopped, it depends on the consistency between the grown region
and the examined point, which is assessed by the growing crite-
ria. The consistency of orientations of normal vectors [170], the
curvatures of points [171], and the smoothness of surface [161]
are widely used criteria for continuing or stopping the growing.
In [168], PCA-based local characteristics were recently adopted
as growing criteria for their distinctive features.

It is noteworthy that the elements used for growing are not lim-
ited to original points, meaning patches from clustered points can
also be utilized. For instance, in [20], the octree architecture and
the region growing frame are combined for rapid surface patch
segmentation. Likewise, the octree-based voxel structure in tan-
dem with graph-based slicing is applied to segment cylindrical
artifacts in industrial scenarios in [169]. In [172], voxels serve
as patches for the growth of planes with the similarity between
eigenvalue based features as the criteria. In [173], fragments
with planar surfaces identified by RANSAC or 3-D HT are used
to represent all surfaces in the scene. In [101], TIN meshes are
used for the growth of building roof primitives. Throughout these
approaches, the identification of neighboring points is essential
to growing. The most commonly used strategy is to find the
adjacent ones or the k-nearest neighbors (KNN). Some recent
improvements of RG also place emphasis on the efficiency of this
neighbor searching process. For example, in [21], the efficient
encoding of the tree structure is used to accelerate the growing
process. On principle, the region growing-based methods can
well maintain the edges and borders of surfaces and artifacts
but are vulnerable to noise or outliers. In addition, the KNN
estimation for growing candidate points contributes to the high
complexity of computation.

3) Clustering-Based Segmentation: The third major cate-
gory consists of segmentation methods based on clustering.
Such methods investigate the relation or resemblance of adjacent
positions in a given region according to their spatial coordinates
and geometric characteristics. Points of proximity or similarity
that meet the appropriate thresholds shall be treated as associated
or even connected ones. On this basis, all associated points are

aggregated into one single cluster, namely a complete segment.
In comparison to region growing based methods, methods based
on clustering do not involve the setting of seeds. Instead, only
the connectivity between points is checked. To ensure the right
balance between the completeness and the preservation of edges
of segments, the clustering criteria and clustering manner are
crucial aspects. The former judges whether two points should
be connected or not, while the latter decides which will be the
candidate point in the next clustering iteration and the strat-
egy of how to find candidate points. Euclidean distance [174],
the angle between normal vectors [20], and the consistency
of densities [175], [176] between two elements (e.g., points
or patches) are typical criteria that are used as guidelines for
performing a clustering. With respect to the clustering manner,
mean-shift [177], and connected relations [31] are the most
common strategies for clustering.

One of the major bottlenecks for clustering-based methods
is computational cost, which is dependent on the complexity
with which similarity and/or proximity are calculated and cost
functions optimized. Currently, in the segmentation process,
normally multiple clustering criteria are implemented to create a
reliable segmentation method, which will significantly increase
computational costs. In addition, the definition of optimal clus-
tering thresholds also influences the granularity of segmented
clusters. Otherwise, under-segmentation [e.g., under-segmented
roofs shown in Fig 16(c)] may occur. Recently, patch-based
clustering approaches has attracted more attention, which uti-
lizes points-composed 3D patches instead of points as basic
elements For instance, voxels [178]–[180], slices [181], and
planar fragments [173] are used as elements for clustering.
Similar to the general elements used in region growing, the
generation of patches is actually a preclustering, which creates
over-segmented elements. These elements usually have capabil-
ities in terms of finding edges between objects, and facilitating
the boundary preservation of segments. Furthermore, the use of
a patch structure will greatly reduce the costs for measurements
and reduce the adverse effects of outliers and different point
densities [24]. Nevertheless, the resolution (i.e., the size of each
element) of patches appears to impact the accuracy and retention
of details of segments.

4) Energy Optimization-Based Methods: Energy
optimization-based methods convert point cloud segmentation
into an optimization task of the energy functions under a
specified data structure and the energy estimation process. The
aforementioned region growing or clustering-based methods
are actually implemented under the local strategy, since the
neighboring examination dominates the entire segmentation
process. Compared with region growing and clustering, energy
optimization-based methods convert the partition of points into
a problem minimizing the costs (i.e., energy) of clustering
points into different possible groups. This means that assigning
a point into a cluster will create a cost, and only when all
points are assigned to the optimized/optimal clusters will the
sum of all costs of assigning points be minimized. Thus, to
find an optimized clustering of points is to find the solution
minimizing a designed cost function on a global scale. The
graphic model is the most common approach used to to directly
depict points with a mathematically sound structure that uses
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Fig. 17. Sketch of classification of the point cloud. (a) Real scene, (b) original point cloud, and (c) labeled points (reproduced with permission from the author
of [201]).

context to deduce hidden information from the provided
observations [183]–[185]. The two major groups of methods
using the graphical model include the methods using regular
weighted graphs and the ones using Markov-based graphs. The
former group include normalized cuts [186], min cuts [187], and
graph-based segmentation [188], [189]. Meanwhile, the latter
group pertains to approaches such as the Markov random field
(MRF) [190] or conditional random field (CRF) [191], which
are solved by the graph-cut algorithm or its variants [192]. A
large topological range of the constructed graph can produce
better results in segmentation for methods using graphical
models. Still, such a complex and large graph leads to a heavier
computational burden [193].

Except for graphical models, other energy-based methods
like the level set [194] and global energy minimization [195],
[196] can also be used for separating planes from the entire
scene. We should also remember that energy optimization-based
approaches are often used to refine the initial segmentation
outcomes [129], [197], [198], which define segment refining
as a labeling optimization task. For some specific applications,
energy optimization-based methods are the prioritized solution
for segmentation. For example, plane segmentation is better
formulated as a global optimization problem concerning the
entire scene [196]. During the quest for a globally optimal so-
lution, the optimization-based methods are likely to be resilient
to elevated noise and outlier proportions in contrast with the
other strategies [199]. They also result in higher computational
costs [195], [196].

B. Classification of Point Clouds

Compared with segmentation, classification is a crucial step
in parsing the point clouds of 3-D scenes, offering semantic
tags for individual points or grouped-point primitives. We dis-
play an example of the classification of a set of points with
semantic labels in Fig. 17. Recent progress in machine learn-
ing and computer vision has also shown that a well-designed
solution to 3-D point cloud classification is suitable for the
labeling task, even in a real dynamic world. Actually, semantic
interpretation via classification is also a vital step for object
reconstruction, due to the necessity for parsing the semantics
of building points. For the labeling of points or primitives,
the classification can be implemented in either a rule-based

Fig. 18. Typical workflow of point cloud classification (figure courtesy
of [202].

or data-driven manner. The rule-based manner is to classify
points or primitives with predefined rules or prior knowledge.
Typical examples include knowledge-based classification [102],
model-based recognition [132], among others. In other words,
the classifier is manually designed and estimated from prior
knowledge. By contrast, data-driven manners require a learning
process with labeled training samples, in which the classification
rules, as well as the classifier, are learned and optimized from
the training. However, for both these two manners, they typically
comprise three essential steps [200], namely the recovery of the
local neighborhood for the point or primitive, the description
of the geometry based on 3-D information of the local neigh-
borhood, and the classification of all 3-D points based on their
respective geometric descriptions.

We show a standard workflow of carrying out point-based
classification using features and classifiers in Fig. 18. We find
that for labeling a point, a local neighborhood for this point
should be first selected. According to the spatial position and
distribution of points within this neighborhood, geometric fea-
tures can be extracted and then selected. Based on these features
a trained classifier can be used to assign this point a label,
indicating a specific kind of object in the real world. Researchers
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Fig. 19. Local neighborhood of the points of interest. (a) Defined neighbor-
hood of 3-DSC [203]. (b) defined neighborhood of LSSHOT [6]. (c) Selection
of neighborhood for a point.

have recently reported many accomplishments in solving prob-
lems relating to these three steps. Nevertheless, there are still
many difficulties in distinguishing building structures in com-
plex scenes from point clouds, such as random point sampling,
different point density, complex structural components, and var-
ious data sources. In addition, when dealing with large 3-D point
clouds, computing costs should also be taken into consideration.

1) Recovery of the Local Neighborhood: The recovery of
the neighborhood, which determines the point or primitive of
a certain local area, is necessary if one is to represent a point
or a primitive with detailed information. With diverse purposes,
the description of various objective details is dependent on the
local context of all points within the chosen neighborhood.
However, the scale and shape of the objects vary, meaning the
selected neighborhood should be capable of describing geo-
metric information at various scales and ranges. The ways of
defining neighborhoods can be roughly split into two types:
single-scale neighborhoods and multiscale neighborhoods. The
first type derives characteristics from a fixed-size neighborhood.
The second, by contrast, adopts flexible neighborhood sizes. A
neighborhood can be defined by a given shape centered at a
point of interest with a certain size. For example, the spheri-
cal [203] [see Fig 19(a)] or cylindrical [204] [see Fig 19(b)]
neighborhoods around an investigating point (i.e., the point of
interest) with LRF/LRA are the most widely used single-scale
neighborhood definitions. The investigating point here is that of
which the features have to be extracted and is generally rich in
information content. It is also termed as the key point or the point
of interest. Rather than by defining a shape as the neighborhood,
the neighborhood of each point can also be defined by a certain
number of k nearest neighbors without specific shapes [see
Fig 19(c)], in which the range between two points is either

3-D distance [205] or 2-D projective distance [206]. However,
as we have mentioned, the scale of the neighborhood plays a
vital role in the performance of feature expression. To tackle
this problem, in [200], the authors present an approach based
on the estimation of entropy within the scope of independently
optimized neighborhoods in 3-D scenes. However, in order to
describe objects with significant scale differences, a multiscale
neighborhood selection can usually offer more effective solu-
tions.

In [207], a feature selection technique is used with in a
multiscale neighborhood to enhance the performance of feature
engineering. The multiscale neighborhood can be described
as a hybrid of simple neighborhoods with various forms and
sizes, with identical features from multiscale neighborhoods
being separately extracted to carry out additional feature en-
coding. Another option is to use over-segmented or preclustered
patches [201] for specifying an adaptive neighborhood. For ex-
ample, point-based hierarchical clusters with a Latent Dirichlet
allocation (LDA) model are generated in [208], in which cluster
features are extended for classification of objects of different
sizes. Similarly, in [209], in the octree partition framework, the
author introduces a multilayer framework for generating features
that comprise different levels of subspace, to detect a single
entity (e.g., vehicles).

2) Description of the Local Geometry: A local geometry
description is intended to abstract local geometric information
in a defined neighborhood of the investigating point or primitive.
The description encapsulates derived information with feature
vectors in the form of a histogram [210], with the similarity or
dissimilarity of the feature vectors being used as the basis for
inducing labels by the classifier. During the last decade, a wide
range of feature extraction algorithms is introduced, with various
description methods of local geometry developed. In accordance
with the level of geometric details described, they can generally
be grouped into two main categories: low-level and high-level
descriptions.

The low-level description consists of only fundamental geo-
metric properties of the neighborhood (e.g., dimensionality) and
the spatial arrangement (e.g., the curvature of the surface) of 3-D
points within a neighborhood [200]. In other words, if we depict
the point cloud in the frequency domain, a low-level description
will focus only on the low-frequency components. As a represen-
tative, the eigenvalue-based feature description is exploited from
the tensor of coordinates encoding 3-D structures, relating to the
3-D covariance matrix derived from the coordinates of all points
in a local neighborhood [211], [212]. This 3-D tensor structure,
which is defined by three eigenvalues from the covariance matrix
of coordinates, can be viewed as a dimensionality reduction of
local structural information. More precisely, these three eigen-
values will describe the local properties of 1-D, 2-D, and 3-D
primitives. A number of local 3-D structural features, including
eigenentropy, scattering, ominvariance, etc. [200], have been
established, which allow a more intuitive depiction of volumetric
structures [213]. It is worth mentioning that the features of
the low-level description are usually adaptive to the scale of
the chosen area so that the optimum neighborhood size can be
identified. In [200] a thorough investigation has been carried out
on how to improve the distinction between low-level geometrical
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features by adjusting neighborhood sizes and subsets for the re-
moval of trivial features. Through optimization of neighborhood
dimensions, an acceptable low-level geometric combination can
provide a higher quality classification, which can also lead to
significant increases in processing time and space usage. In
contrast, deriving features through 3-D local shape descriptors
presents a kind of high-level description, which is an abstracted
or compact depiction of points characteristics based upon their
supporting area (i.e., the neighborhood in our statement) [214].

If we depict the point cloud in the frequency domain, a high-
level description focuses more on the high-frequency compo-
nents. As concluded in [6], these 3-D local shape descriptors can
be classified into three major categories [210], [215]: descriptors
encoding spatial distributions of points in the neighborhood,
descriptors depicting the geometric signature of points on the
local surface, and descriptors featuring a hybrid of both spatial
distributions and geometric signatures. Descriptors of the first
category typically specify a local reference frame or axis (LRF
or LRA) for the investigating point, which directs the 3-D
neighborhood to be separated into a certain amount of bins. By
collecting the distribution in these bins of spatial locations in the
3-D support area, a histogram is encoded. This category includes
spin image (SI) [216], 3-D tensor [217], and 3-D shape context
(3-DSC) [76] as well as its variations such as unique shape con-
text (USC) [214] and cylindrical-3-DSC [218]. For descriptors
of the second category, the feature histogram of the descriptor
is generated by encoding concise geometrical attributes (e.g.,
orientations of normal vectors or curvatures of surfaces) of
the investigating point in the 3-D neighborhood. Point feature
histograms (PFH), fast point feature histograms (FPFH) [132]
with efficiency improved, local surface patch (LSP) [219], and
radius-based surface descriptor (RSD) [174] are representatives
of this category of shape descriptors. Descriptors of the last
category utilize a hybrid structure that incorporates histograms
of spatial distribution with geometric signatures. An example
of the hybrid descriptor is the signature of the histogram of
orientations (SHOT) [214], encoding histograms of the direc-
tions of normal vectors in accordance with different spatial point
locations in a spherical neighborhood. The output histogram of
SHOT encapsulates both the global distribution of points and
the contextual histograms that represent the angles of normal
vectors of points.

The definition of the local reference frame and the scale of
the neighborhood have significant effects on the quality of the
depiction of local geometry for either a low- or high-level de-
scription. A consistent and reliable local reference frame should
be invariant with rigid transformations, which will enable the
extraction of robust features [215]. For the scale of the neighbor-
hood, a large neighborhood codes more data. However, it renders
the local shape descriptors more prone to occlusion and noise,
which can significantly affect the effectiveness and reliability of
feature extraction [200], [220]. In the event that the point cloud
is polluted with distortion and outliers, the LRF/LRA can be
skewed, which specifically affects the accumulation of spatial
positions of points. Especially when using photogrammetric
point clouds, the geometric quality of points is inferior to those
created from laser scanning. To address this problem, in the work
of [6], the robust estimator (i.e., MLESAC) is used to define the

principle axis instead of the one identified via PCA. Foremost in
the representation of features is the shape of the neighborhood
that defines a respective neighborhood range, encapsulating all
considered 3-D points. Developing a local 3-D shape descriptor
with a robust LRF and a specific neighborhood could be a
potential way to improve accuracy in particular applications.

3) Classifier Used for Labeling Inference: Derived feature
vectors representing geometric properties must eventually be
loaded into the classifier in order to infer semantic labels.
Currently, as we have mentioned, the majority of labeling ap-
proaches favor a data-driven classification strategy, which is also
termed as a supervised solution. Supervised classification means
learning a classifier by means of training data, including its
associated vectors and labels. This form of classification can be
conducted in several different ways. Point-based classification
is a typical category where each point is labeled during the
inference process [220]. By comparison, segment-based clas-
sification has gained interest due to its advantage of being able
to distinguish individual objects from scenes simultaneously,
in which preclustering or segmentation is done in advance to
produce primitives with homogeneity [221].

Commonly used classifiers for point cloud classification in-
clude almost any supervised learning classifiers like support
vector machines (SVM) [222], [223], AdaBoost [224], RF [212],
and CRF [206], [225]. For an ALS dataset covering a large
area, the work of [224] proposes a classification framework
using SVM and compares the output of different variants of the
SVM algorithm, with a comprehensive analysis of multiclass
classification results published. The author uses the AdaBoost
classifier in tandem with the input ratio for identification tests
and measurements of attribute significance in [226]. A compar-
ison of the various approaches can be achieved by looking at the
results of the RF classifier. More than twenty features in [212]
are extracted from LiDAR points by iterative backward removal
of elements. With the aid of an RF classifier, points with reliable
labels in large-scale urban scenes are obtained, with the variable
importance estimated. Further research is presented in the use
of the RF classifier in [227]. The significance of features and the
strengths of the classifier are tested with permutation accuracy
parameters in this study.

A multiscale CRF implementation is provided in [225] to
improve the classification accuracy of TLS points. CRF offers
incremental labeling accuracy via logistical regression, in con-
trast to other classifiers. For instance, a context-based labeling
approach with minimal CRF is developed in [213] to provide
a high point density MLS dataset in complex urban scenes.
Then the reliability of CRF is objectively measured by inte-
grating the outcomes of the point-specific labeling by the RF
category. The researchers also incorporate the RF classifier into
a CRF framework in [206] to boost classification accuracy. An
evaluation of the RF feature importance is performed, as well
as the classification of 3-D scenes by a hierarchical CRF. A
multiscale neighborhood selection strategy is applied in the work
of [207], grouping neighbors into subspaces of three different
dimensions and merely integrating characteristics with lower
associations. This results in improved classification efficiency
when using the RF classifier. Recently, over-segmentation on the
basis of a preclustered data structure (e.g., supervoxels [228])
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has often been used to minimize data size and to increase
computational performance, together with the classifier and the
method from [201].

4) Deep Learning for Classification: In recent years, high-
performance computational hardware has significantly boosted
deep learning techniques, which have proven to be powerful
tools for PC classification tasks. Unlike traditional point cloud
classification approaches, deep learning techniques are usually
implemented in an end-to-end way, combining feature extraction
with classifiers in a single network, so usually we cannot separate
these two parts in deep learning based methods.

In its initial stage, the deep learning methods for point clouds
are proposed based on the projection strategy from 3-D-to-2-
D [229], [230]. For example, in [231], 2-D images are generated
using point-based features projecting 3-D local features of a
point into a 2-D matrix. After the labeling of 2-D pixels, the
semantic label of each pixel is then back-projected to the corre-
sponding 3-D point. Alternatively, deep learning for point clouds
can be implemented in volumetric ways, which is inspired by
voxel-based point cloud classification. For instance, in [232],
the octree-based convolutional neural network is proposed, and
normal vectors of points in each leaf are averaged as the input for
a CNN network. Moreover, in [233], 3-D points are organized
with the voxel structure. Unified features of individual voxels
are generated, encapsulating layer based on region proposal
networks , tackling the sparsity of 3-D points. Unlike the con-
ventional frame transforming points into other formats, one of
the breakthroughs of using deep learning in point cloud classi-
fication is the emergence of PointNet and its derivatives [234]–
[236], which introduce a novel scheme that directly processes
points. For improved techniques derived from PointNet, point
sets are processed in the proposed networks directly, so that an
end-to-end classification framework is achieved without initial
processing of points, dramatically streamlining semantic label-
ing. On the basis of PointNet, in [237] a multiscale approach is
added, which has successfully been applied to a large scale ALS
point cloud classification. Recently, graphical structures with
neural network have also been adopted in different fields with
remarkable performance. For example, GraphCNN is ground-
breakingly implemented with mini batches for hyperspectral
image classification with stunning performance [238]. In point
cloud processing, GraphCNN, utilizing graphical model to or-
ganize points for feeding the designed network, has also shown
promising results in various applications [26], [239], [240].

Compared with classic approaches, these deep learning-based
methods can provide less noisy results with unmanageable
regularity as a by-product of the metaparameterization of net-
works [241]. Moreover, for some deep learning techniques (e.g.,
PointNet), their performance depends on the sampling of input
data, since noise and errors can be induced in the splitting,
down-sampling, and interpolation processes for objects of vary-
ing scales, especially in the boundaries between those objects.
Thus, postprocessing (e.g., interpolation or smoothing) should
be applied to network outputs. Recently, deep learning based
methods have become popular for classification tasks in con-
struction fields. For example, in [242], road cracks from laser
scanned range images can be detected and extracted via deep
learning methods. In [243], transfer learning is applied to acquire

labels of point clouds from online photos. In [244], point clouds
of building interiors are semantically segmented via augmented
training datasets and deep learning.

C. Geometric Modeling of 3-D Primitives

Geometric modeling is intended to generate 3-D shape models
of labeled primitives, such as walls, floors, and ceilings. The
type of representation used for the output of reconstruction
may usually be either parametric modeling(e.g., model fitting or
matching), surface modeling (e.g., boundary representation), or
volumetric modeling [e.g., Constructive Solid Geometry (CSG)
representation]. In Fig. 20, we give an illustration sketching the
surface modeling of a set of discrete photogrammetric points.

As stated in [8], the volumetric object extraction and paramet-
ric object description are the most applicable method for as-built
BIM reconstruction, as BIMs are defined mainly by volumetric
and parameters representations. However, the reconstruction
of models of surface representations is more common in the
field of reverse engineering. This is because the solid geometry
of as-built BIMs in volumetric models can not be thoroughly
observed or deduced due to the existing occlusion of measure-
ment and the absence of topological interactions (e.g., the way
of connections) between structures. Only observable surfaces
with visible geometrical connections and configurations can be
reconstructed. Therefore, we typically recreate a mathematical
representation of parametric structures and map them to a vol-
umetric model with additional information (e.g., CAD base) or
parametric knowledge (e.g., grammar dictionary of structures).
In Fig. 21, we present a distribution of selected literature (listed
in Table IV) regarding reviewed segmentation methods. As can
be seen in the figure, surface modeling is still the mainstream
method used in plenty of applications, but in many newer works,
parametric and volumetric methods are preferred. The pros and
cons of these modeling methods will be discussed in further
detail in the following sections.

1) Parametric Modeling: The most striking feature of para-
metric modeling is that the geometric representation can be
represented concisely using standard mathematical expressions
(e.g., cylinders, cubes, or planes). There are two major para-
metric modeling strategies. The first is model fitting, which
has been discussed in the review of segmentation techniques
that analyze points at local or global scales, employing certain
geometric models according to their geometric attributes (e.g.,
spatial positions and normal vectors). Among all model-fitting
methods using mathematical equations, HT [159]–[161] and
sample consensus (e.g., RANSAC [124] and maximum like-
lihood estimation SAC (MLESAC) [149]) are popular repre-
sentatives. Since these algorithms have been discussed in the
introduction to segmentation methods, the respective details
will not be repeated here. As we have pointed out, however,
challenges arise because model fitting can not deal with objects
or structures with complex and irregular surfaces. One possible
solution for modeling objects with surfaces of complex math-
ematical expressions is shape matching. This approach relates
directly to the use of local 3-D shape descriptors, which have
been discussed in the section regarding high-level geometry
description. To implement this method, we need several objects
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Fig. 20. Sketch of modeling of the point cloud. (a) Original photogrammetric point cloud from acquired by UAV. (b) Surface models of individual buildings.

TABLE IV
STATISTIC OF DIFFERENT MODELING METHODS FOR 3-D RECONSTRUCTION

Fig. 21. Statistic of studies from selected papers (shown in Table IV) using
different modeling methods.

as references with known mathematical expressions to build a
dictionary and match the geometric primitives with those refer-
ences according to their features extracted via shape descriptors
(e.g., feature histogram) [245]. The respective pairs of primitives
and references are then considered as matched, and the model

of the reference assigns both the primitives and mathematical
expressions.

2) Surface Modeling: Surface modeling is a type of non-
parametric representation called surface reconstruction. Surface
models are useful for modeling complex geometrical entities
(e.g., incomplete structures during construction). Unlike para-
metric modeling, the representation of surface modeling may
also be quantified with parameters, but the geometric shape of
the primitives is not necessarily described by a fixed mathemat-
ical model. Alternatively, a surface representation (e.g., with
polygons or meshes) can be generated based on the actual basic
geometry. The most popular approaches to surface modeling
involve boundary-based description (B-rep) and mesh-based
representation [8]. The B-rep defines the 2-D or 3-D contours of
the primitives as surfaces and then symbolizes the boundaries
of primitives through indirect or tacit lines. These lines form a
closed polygon as the surface description, with the 3-D model
consisting of a combination of such surfaces. Boundaries of
primitives (e.g., structural components) are generated by the
use of the alpha-shape algorithm in [6], [130], and then rep-
resented with polygons using rotating calipers [246] and cell
decomposition [247], respectively. The closed surfaces of 3-D
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Fig. 22. Example workflow of point cloud modeling of buildings (figure courtesy of [141]).

models can be achieved with the use of energy minimization of
surface orientations [114], horizontal slicing and vertical projec-
tion [129], [130], [248], stochastic analysis, or the graph editing
dictionary [249]. The modeling of surfaces is simple and easy
to implement. However, the modeling process always attempts
to approximate the complex geometry of an object by means
of simple polygon surfaces (e.g., planes and curved surfaces).
This leads to a tradeoff between the details and the abstraction
of polygons when creating simple surfaces. Furthermore, the
surface modeling focuses only on the visible part of a struc-
ture, which requires a further transformation into a grammar-
rich representation of building components. In addition, the
mesh-based description is also a viable alternative. Many resi-
dential buildings have repeated structures or standard shapes,
and pattern-based modeling may estimate such details using
predefined configurations for buildings [101]. The mesh-based
representation defines the surface by meshes (e.g., triangles [51]
or cubes [174]). A mesh-based model is easy to implement and
accurately describes complex surfaces. In Fig. 22, we provide
a mesh and surface-based modeling workflow given in [141].
This workflow illustrates a typical procedure using the Type II
strategy. Points of buildings is first classified and than clustered
into primitives with RANSAC. However, it is challenging to
parameterize meshes, as there are no clear mechanics.

3) Volumetric Modeling: At present, volumetric modeling
has not been comprehensively employed to create 3-D models of
objects from point clouds. This approach usually requires prior
knowledge to help determine volumetric geometry since, in the
majority of cases, only part of the surface can be observed and
measured. Thus, the topology between two structural elements
cannot be accurately identified through surface observations.
In Fig. 23, we give an illustration of this ambiguity problem
when recovering volumetric models of connecting walls merely
from surface observations. It can be seen in the figure that,
when using only surface observations, the way of connecting
two wall elements cannot be inferred. To overcome such a
problem, a common strategy is to assume that these structures
can be described by a combination of a small number of volume
primitive elements [8] (e.g., planes, superquadrics, and gener-
alized cylinders). Such volumetric primitives may be placed in

Fig. 23. Ambiguity problem in the volumetric modeling using surface obser-
vations of two connected walls, from which there are two possible topological
connections. (a) End of Wall II is connected to the surface of Wall I or (b) the
end of Wall I is connected to the surface of Wall II.

a general CAD repository [1], [104] with these basic design
models being linked to artifacts by looking for the best alignment
between the model and the artifacts. The volumetric primitive is
selected to represent the matched part of the object, and the entire
object will be reproduced by a combination of such volumetric
primitives. The volumetric representation is also currently pos-
sible by transforming the surface-based representation [250],
which could benefit from mainstream trends in advanced surface
modeling techniques.

D. Limitations on Current Techniques

Despite the abundance of research conducted on the matter,
there are also limitations on the techniques designed to recon-
struct buildings, limiting their application to practical projects.
The limitations on current technologies contain four significant
aspects: efficiency and effectiveness, the generality of uses, and
robustness to disturbances.

1) Efficiency and Implementation: The first limitation is the
efficiency of current methods and algorithms. This efficiency di-
rectly relates to the computational cost and the complexity of im-
plementation. A method implemented with high computational
cost requires high-performance hardware, which goes against
the trend of using low-cost Internet of things (IoT) devices for
the automated and intelligent monitoring of construction, since
these portable and unattended devices are usually of limited
computational power. The complexity of implementation will
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significantly affect the efficiency of executing proposed methods
or workflows as well. Moreover, the complexity of the employed
algorithms will also influence the applicability of the proposed
approaches. Fortunately, current algorithms and methods still
have a large room for improving efficiency.

2) Effectiveness of Methods: The second limitation is the
effectiveness of current methods, which means that the per-
formance of developed methods is limited by the current tech-
niques, leading to these methods underperforming when prac-
tically applied. Specifically, two aspects should be mentioned,
namely the levels of detail and accuracy, as well as the levels of
automation.

a) Levels of details and accuracy: Regarding the reconstructed
3-D models of buildings, levels of detail (LODs) and levels of
accuracy (LOAs) [251] are an essential indicator showing the
quality, complexity, and applicability of the modeling [252].
The LODs and LOAs of a building model, indicating how
detail and how accurate a model is, are usually set according to
various concerns, including data acquisition cost, labor expense,
and target applications [253]. For applications in the fields of
AEC/FM, a building model with high LODs and LOAs will
increase usability, but will require more storage space at a higher
cost. Moreover, the reconstruction of buildings from point clouds
is a reverse-engineering task, which results in less information
compared with the BIM generated from given blueprints, which
makes it difficult to fully recover all the details. Regarding
accuracy, not only does the level of accuracy matter, but also
the type of accuracy. These must be considered as they relate
directly to the data structures used and the topology of objects.

b) Levels of automation: In current construction practices, the
level of automation is an essential criterion that affects the per-
formance of algorithms and methods. However, with respect to
the current system or framework integrating the abovementioned
data acquisition and processing techniques, the workflow is still
of a low level of automation, with many manual steps involved.
Moreover, the setting and tuning of parameters and thresholds
still need human intervention. To avoid manual work, the design
concept should consider a more adaptive and intelligent work-
flow with prior knowledge in software development. This prior
knowledge can be driven from existing documented records.

3) Generality and Reproducibility of Uses: The third lim-
itation is the generality of uses for the techniques. From the
technique aspect, the civil engineering and construction industry
are highly standardized fields, but related projects and appli-
cations are considered unique to each other. This is because
the geological and climate conditions, locations, legal issues
and policies, as well as site situations could be different from
one project to another. Therefore, the developed algorithms and
methods should have generality for various tasks, which lie in
two major aspects: universality of methods and interoperability
of data formats.

a) Universality of methods: In many presented studies, the
developed solutions strongly depend on the prior knowledge
or preconditions from the data itself, which is more akin to a
data-driven strategy. For example, many classification methods
only work on certain classes or shapes of objects and cannot
generalize to complex environments. Such a solution is counter-
productive to the industrial implementation in practical projects,

Fig. 24. Different types of point clouds at the same scene. (a) TLS point cloud
and (b) photogrammetric point cloud. (reproduced with permission from the
author of [22]).

which requires a standardized workflow or modular processing.
In Fig. 24, we give an illustration from the work [22] showing
that for the same construction site, the data sourcing from differ-
ent sensors will present different levels of data quality. Thus, the
proposed method should have the universality of dealing with
various low-quality data. If the proposed reconstruction method
has no universality, it cannot be evaluated with benchmark
datasets for a fair comparison of its performance.

b) Interoperability of data formats: This is a practical question
for data exchange between software and system of different
research or engineering fields. This is because different fields
will have different and independent standards of data formats so
that the created data of different formats can hardly be shared by
software and systems between different fields. For example, both
the PLY and IFC formats can be used to describe the 3-D shape of
an object. However, even if they maintain the same 3-D shapes in
the working-space, their ways of modeling parametrization are
totally different. In this case, they are surface and volumetric
modeling, respectively, so it is almost not possible to directly
modify or utilize them in different systems.

4) Robustness to Disturbances: The last major limitation of
the current techniques is the robustness to disturbances. Here,
the disturbance covers the outliers, noise, and systematic errors
in low-quality data. The robustness is the ability of a method to
cope with errors during its execution. Urban mapping, construc-
tion, and infrastructure-related projects are always dynamic and
complex, which means that disturbances like temporal objects,
noisy backgrounds, and outliers in datasets are inevitable. For
example, defects in point cloud data due to occlusion in cluttered
scenes and noisy data due to registration errors will lower the
quality of data. Thus, any algorithm or method should be robust.
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Fig. 25. Possible reference data. (a) Illustrative sketch of a 2-D blueprint. (b) 3-D BIM. (c) Photogrammetric point cloud.

However, even for the same site, this idea has not yet been fully
implemented in the design of methodology yet. Too complicated
algorithms or methods will increase the risk of failed output. An
optimized solution should follow the Occam’s razor principle,
which consists of merely one dominant framework, including
several independent core processing steps. This is easier for the
enhancement of the robustness of each step and troubleshooting.
Moreover, such a modular design is also mandatory for any
possible upgrading of the entire workflow. To increase the ro-
bustness and reliability of proposed methods, plenty of software
and toolkit has to involve manually operated steps, but this will
simultaneously hinder automation.

IV. RESEARCH GAPS

So far we have surveyed commonly used 3-D point cloud
data and a wide variety of existing methods for building recon-
struction from point clouds, and discussed their restrictions and
limitations. However, our current research also has considerable
gaps between the state of the art and the application demands,
which have between previously ignored or limited. Specifically,
the research gaps involve three essential aspects: development of
a public benchmark and evaluation, adoption and adaptation of
computer vision and machine learning, and new trends of novel
devices and techniques.

A. Public Benchmark and Evaluation

For any research applications, the performance of the devel-
oped algorithm or method should be assessed through public
standard benchmark datasets, which contribute significantly to
algorithm development, evaluation, and comparison [254]. For
building reconstruction from point clouds, we also need standard
frameworks for conducting the evaluation process, which should
be assisted by benchmark datasets. Unlike urban mapping,
construction and infrastructure-related applications are complex
and result in unique projects, requiring specific labor, materials,
equipment, and processes. This means that it would be challeng-
ing to generate benchmarks assessing the performance of algo-
rithms and methods because the applications vary drastically
from one to another. Currently, the majority of the evaluation
is done based on the self-made ground truth or benchmarks
from other fields (e.g., computer vision). Blueprints and BIM
are authoritative references that can serve as the reference of
surface-based or volumetric based modeling performance. In

Fig. 25, we show an illustrative sketch of a 2-D blueprint and
the created 3-D BIM corresponding to measured point clouds.
However, they are only available when the designs or BIM is
accessible. One such proposed benchmark is the ISPRS Bench-
mark on Indoor Modeling,2 which has brought the validation
of indoor modeling to a new stage. However, for many inverse
engineering applications in archaeology or architecture, there
are still very few existing BIMs or available blueprints for the
validation of 3-D reconstruction results. In the future, more
benchmarks for building or object reconstruction in the scenario
of construction projects should be developed.

Evaluations done in civil engineering and construction
projects should be slightly different from those used in computer
vision and remote sensing, in which the theoretical accuracy is
a significant index. Current evaluation methods place emphasis
solely on technical issues, which is out of the application reality.
Thus, the evaluation system concerning both data acquisition
and data processing should be established for selecting and
assessing appropriate methods under different applications.

B. Adoption and Adaptation of Computer Vision and Machine
Learning

Computer vision (CV) and machine learning (ML) are two of
the most active branches in computer science which are inter-
ested in point clouds, and they have presented a wide range of
inspiring algorithms, methods, and strategies. In many previous
studies like [255] and [256], the reconstruction or progress moni-
toring of as-built buildings or infrastructures have been achieved
through the use of methods from computer vision and machine
learning. Deep learning in particular, which has asserted itself
as a dominating technique in the field of artificial intelligence,
has broadened the horizon of 3-D building reconstruction from
point clouds, with numerous methods having been proposed.
However, to use these algorithms and methods in the fields of
civil engineering and the construction industry, there is a gap
between the state of the art of point cloud processing techniques
from CV and ML and the practical demands of AEC/FM and
engineering projects. The following points should be considered
in the future in order to facilitate a better collaboration between
the fields of computer vision and machine and those of AEC/FM
and engineering projects.

2[Online]. Available: http://www2.isprs.org/commissions/comm4/wg5/
benchmark-on-indoor-modelling.html

http://www2.isprs.org/commissions/comm4/wg5/benchmark-on-indoor-modelling.html
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1) Application Scenario: The algorithms and methods de-
veloped in the fields of computer vision are mainly designed for
the indoor scenario and do not pay much attention to low-quality
outdoor datasets contaminated by noise and outliers [254]. Our
demands in AEC/FM and engineering projects regarding both
indoor and outdoor application scenarios are of different scales,
densities, and qualities. However, the data acquired in indoor
scenario are vastly different from those gathered on construc-
tion sites, which makes the current algorithms and methods
infeasible.

2) Training Data Preparation: A large percentage of com-
puter vision-based methods are based on the supervised learning
strategy, which means that a manual preparation of training
datasets is required. Only a few datasets have been proposed for
civil engineering tasks [7] and transfer learning from existing
datasets can partially solve this problem [257]. However, there
is still an urgent demand for generating such training datasets,
but this is a time-consuming and labor-intensive task.

3) Evaluation Criteria: In the field of computer vision, the
overall accuracy represented by recall and precision and mean
average precision are the most significant [254]. These metrics
represent the outcomes of a statistical evaluation. However, for
applications in the civil engineering, the output accuracy of cer-
tain objects is of higher value, which links to object-based evalu-
ation. For instance, topological clarification [258] of objects is a
crucial point for reconstructed structural elements, which should
be considered as well. Moreover, with different applications, the
accuracy can be assessed at a pixel-level, point-level, or even
object-level, which differs from field to field and relates to the
real demands.

C. New Trends of Novel Devices and Techniques

The last research gap lies in the recent trends of novel devices
and techniques, including the Ubiquity acquisition and online
processing, embedded system and IoT devices, and computing
power for big data. The following points should be considered
in the future to enhance the connection between the current
data acquisition and processing techniques and the demands of
AEC/FM fields.

1) Ubiquity Acquisition and Online Processing: With the
increasing variety of sensors, both high-end acquisition systems
and consumer-level acquisition devices can provide massive,
publicly accessible datasets. These new acquisition paradigms
translate into a lower control over the acquisition process, which
must be compensated by increased robustness of the algorithms
and structural or physical a prior knowledge. Moreover, there
are many applications such as disaster management and damage
assessment from reconstructed buildings and landscapes where
tight timing restrictions make an online reconstruction approach
indispensable. In particular, we foresee a need to extend the
survey prior to the online setting, in order to support such chal-
lenging problems in building reconstruction from point clouds.

2) Embedded Systems and IoT Devices: Due to rapid devel-
opment in the fields of technology and the internet, embedded
systems and IoT devices bring a new era to the AEC/FM and
engineering projects. IoT devices and embedded systems intend
to amalgamate everything under a common infrastructure and

provide not only control over everything, but also define and
provide the actual status of things (i.e., buildings and infrastruc-
ture). Various applications of IoTs for the development of smart
city infrastructure and smart dwelling construction projects have
already been presented. The use of IoTs greatly accelerates the
automation and monitoring of construction projects. However,
for point cloud processing techniques with IoT devices, as well
as embedded systems, the research is at a very early stage,
including the development of both hardware and software.

3) Computing Power for Big Data: Novel point cloud ac-
quisition methods will not only contribute to an increase in
the variety and popularity of collected datasets, but also to a
quickly growing scale of acquired data. With the large scale
of datasets required for urban mapping and construction tasks,
we no longer deal with individual buildings or installations, but
rather with entire scenes, possibly at a city-scale with enormous
numbers of objects and structural elements of various shapes
and sizes. Moreover, the need for computing power also comes
from the higher dimension of 3-D point clouds, which have a
one more dimension than 2-D images. For recording the same
scene, acquired 3-D point clouds would be much larger than
images, if we consider relatively similar resolutions. Under
such a situation, recovering geometry, semantics, and topology
of objects from billions of measured points is a challenging
big data problem. To address this problem, the computational
power should be improved and the processing frame should be
redesigned.

V. CONCLUSION

3-D point cloud data plays a vital role in the monitoring of
construction sites, construction works, as well as construction
equipment. A wide range of techniques has been developed
to acquire 3-D point clouds, including ranging-based methods
like laser scanning and imaging-based methods like MVS and
SLAM. Moreover, the point cloud data have already been used
with a range of applications, including 3-D building model
reconstruction, building condition assessment, and construction
progress analysis.

With this background, this article provides a comprehensive
review of the state of the art of 3-D point clouds and their related
key techniques. The measuring of 3-D coordinates and the
generation of 3-D point clouds are also introduced. Furthermore,
the related data structures for organizing discrete points, as well
as the registration techniques for aligning multiple point clouds,
are reviewed and analyzed. Several essential technologies are
reviewed and discussed. These techniques include three ma-
jor parts: segmentation of point clouds, classification of point
clouds, and modeling from generated 3-D points. The benefits,
drawbacks, and appropriate conditions are also addressed in
this article for each representative technique. As a consequence,
based on the literature review and discussions, the limitation of
current techniques, as well as research gaps, are discussed and
identified, indicating the following future research directions.

1) An application-oriented data acquisition workflow and
a benchmark-based evaluation system should be devel-
oped, concerning aspects like improving the accessibil-
ity and visibility during data acquisition, the creation of
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benchmark datasets, the establishment of an effective eval-
uation system, and the possible use of multimodal datasets.

2) Advanced data processing techniques should be further
studied, considering the balance between efficiency and
effectiveness, the generality of uses, and the robustness to
disturbances in the scenarios of civil engineering applica-
tions and construction sites.

3) Collaboration with computer vision and machine learning,
as well as a deeper connection with the fields of AEC/FM
and engineering projects, should be further enhanced to fill
the gaps between developed techniques and real demands
of applications.

Hopefully, this work can provide a recommendation and
direction to researchers in the field of building and infrastructure
reconstruction from point clouds.
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