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Monitoring of Oil Tank Filling With Spaceborne
SAR Using Coherent Scatterers

Carlos Villamil Lopez and Uwe Stilla , Senior Member, IEEE

Abstract—In this article a new method is introduced for the
automatic estimation of all the relevant parameters of oil storage
tanks using a single high-resolution synthetic aperture radar (SAR)
image. For a given storage tank, this method will estimate its
maximum capacity and determine whether it has a fixed or a
floating roof. For tanks with a floating roof, the amount of oil
stored will also be estimated. If a SAR time series is available all the
images can be processed jointly, exploiting the available temporal
information to provide more accurate and robust estimates than
those obtained from each individual image. The dimensions of each
storage tank are derived from its semicircular double reflections,
which are detected using the coherent scatterers in the SAR image.
The classification between tanks with fixed and floating roofs is
performed with a simple machine learning classifier using just three
features related to the detected semicircular double reflections. The
performance of the proposed method using a single image and a
time series is evaluated with three TerraSAR-X images of the port
of Rotterdam, containing 167 oil storage tanks of different sizes,
and with both fixed and floating roofs.

Index Terms—Oil storage monitoring, synthetic aperture radar
(SAR), time series.

I. INTRODUCTION

CYLINDRICAL tanks are commonly used to store large
quantities of petroleum products such as crude oil. Most

of these oil storage tanks are located above ground [1], and are
built following standards such as [2]. Two types of oil storage
tanks can be distinguished: Those with a fixed or a floating roof.
Floating roofs rise and fall with the amount of fluid inside the
tanks in order to decrease the vapor space above the liquid level,
and are preferred for the storage of highly volatile fluids [1].
High-resolution satellite images can be used to measure the
dimensions (radius and height) of these cylindrical tanks and, if
present, the position of the floating roof. This can be exploited to
determine the maximum capacity of a given tank and, if the tank
has a floating roof, also the level of fluid inside it. Therefore,
satellite imagery can provide much more relevant information
for oil tanks with a floating roof; by using a series of images
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Fig. 1. Appearance of an oil storage tank with a floating roof in (a) a nadir
optical image and (b) an oblique optical image, both obtained from Google
Earth, and in (c) a SAR image acquired with TerraSAR-X.

Fig. 2. Appearance of an oil storage tank with a fixed roof in (a) a nadir optical
image and (b) a oblique optical image, both obtained from Google Earth, and in
(c) a SAR image acquired with TerraSAR-X.

acquired at different times, the oil production of a refinery with
floating roof tanks can be effectively monitored. Because of
the relevance that oil production has in the economy, this has
recently become a popular commercial application of satellite
data [3], [4].

Two different types of satellite images are currently employed
for the monitoring of oil storage: Those acquired by optical and
synthetic aperture radar (SAR) sensors. The appearance of an oil
storage tank with a floating roof in both optical and SAR images
can be seen in Fig. 1. For comparison, a tank with a fixed roof
is shown in Fig. 2. When using optical images acquired close to
nadir angle, such as the one shown in Fig. 1(a), the position of a
tank’s floating roof can be estimated from the size of the shadow
created by the tank’s wall over this roof (since the sun’s position
at the time of the image acquisition is known). On the other hand,
in off-nadir (i.e., oblique) optical images and SAR images, the
position of the floating roof can be directly seen, as shown in
Fig. 1(b) and (c), respectively. Specifically, in SAR images the
vertical displacement of the floating roof with respect to the
bottom of the tank can then be directly measured by exploiting
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the well-known SAR layover effect, as it will be described later
in detail in Section II.

During the acquisition of the optical images, sunlight illumi-
nation and a cloud-free sky are required. Because the satellites
acquiring these images are on low Earth orbits, each of them
can only image a given location on Earth at a few specific
instants every several days. If the required sunlight illumination
or atmospheric conditions are not given during these time slots,
the monitoring of the oil storage tanks is not possible. This
severely limits the applicability of such methods, especially for
some locations, where clouds and smog are often present. In the
literature, most of the publications dealing with oil storage tanks
in optical remote sensing images focus exclusively on the detec-
tion of such tanks [5]–[9], whereas just one publication has been
found which describes an automatic method for the estimation
of oil storage from the shadow in the floating roof [10].

Unlike optical sensors, SAR sensors can acquire images day
and night, and those in X-band and lower frequency bands are
practically not affected by clouds, fog, or smog. Therefore, regu-
lar measurements of oil production can be ensured. The achiev-
able accuracy depends on the sensor’s spatial resolution, the
chosen imaging geometry and the quality of the algorithm used
to extract this information. However, this last point represents a
challenge. Due to radar specific imaging effects such as speckle
noise, a robust and automatic extraction of this information from
SAR images is far more challenging than in the case of optical
images.

In the literature, several methods have been presented for the
detection of oil storage tanks in SAR images [11]–[13], and
there are four publications dealing with the estimation of the
dimensions and the amount of oil stored in such tanks [14]–[17].
In [14], the authors show that it is possible to accurately estimate
the height and diameter of cylindrical oil storage tanks with
fixed roofs from SAR images, and that this can be achieved
by exploiting the imaging geometry as well as its radiometry.
They also mention that the same principle could be applied to
estimate the fill level of oil storage tanks with a floating roof.
In [15], a detailed analysis of the SAR signature of oil storage
tanks with both fixed and floating roofs has been performed
using SAR simulation, and the authors have additionally shown
how all the relevant dimensions of the storage tanks can be
estimated by measuring the distance between a few points on
their SAR signature and taking into account geometric effects
such as layover. The accuracy of these measurements has been
verified using a TerraSAR-X image and ground truth data about
the dimensions and fill level of the storage tanks, which was
provided by the company operating the imaged oil tanks. An
important limitation of the approaches presented in these two
papers [14], [15] is that these measurements must be performed
by a human operator, which has to manually select some specific
image points for each oil storage tank. This greatly limits the
applicability of these approaches for regularly monitoring the
fill level of a large number of oil storage tanks.

More recently, two publications [16], [17] have introduced
methods capable of automatically extracting some information
about oil storage from SAR images. The method described
in [16] can automatically estimate the vertical displacement

over time of the floating roof of oil storage tanks using time
series of moderate resolution SAR images. For this, a reference
point is automatically selected for each storage tank by ana-
lyzing the minimum and average amplitude of the time series,
and the location of the amplitude peak corresponding to the
double reflection at the tank’s floating roof is detected for each
individual image. The vertical displacement of the floating roof
with respect to the reference point can then be obtained from
the shift of this amplitude peak along the range axis. In [17], the
authors present a method capable of estimating the dimensions
and the amount of oil stored in tanks with a floating roof using
a single high-resolution SAR image. For this the image patch
containing an oil storage tank is first denoised, and then some
specific points of the storage tank are detected using two one
dimensional amplitude profiles along the azimuth and range
axes. The dimensions of the storage tank are then derived from
these points. However, a description of the algorithm applied to
automatically detect the points used to estimate the tank radius
is not provided. The method was tested using KOMPSAT-5
SAR data, and the obtained results were compared with those
estimated from optical images acquired by KOMPSAT-3.

In conclusion, all the methods employing optical images are
affected by external factors (e.g., sun and clouds), and regular
observations with optimal accuracy cannot be guaranteed. These
limitations are imposed by inherent characteristics of optical
sensors that cannot be easily changed. On the other hand, when
using SAR images for monitoring the fill level of oil tanks, the
main limitations are not imposed by the sensor, but rather by
the accuracy and robustness of the available algorithms that can
be employed for extracting this information. The complexity of
automatic information extraction from SAR images can be seen
by the fact that from the four methods that have been presented
in the literature which deal with the estimation of oil storage,
only the methods presented in [16] and [17] are capable of
extracting some of this information automatically without the
need of manual interaction. The method introduced in [17] will
be considered as the state of the art, as it is the most recent
publication and also capable of automatically extracting more
information on oil storage.

In this article a new method for the automatic and precise
monitoring of oil storage using high-resolution SAR images is
presented, which has some significant advantages when com-
pared to the current state of the art as folows.

1) It can be applied for both storage tanks with floating and
fixed roofs, and can automatically classify tanks according
to their roof type. The method described in [17] only works
with tanks with a floating roof.

2) It exploits the complete geometry of the storage tanks
by taking into account all the points in their semicircular
double reflections, rather than just using a few select image
points as in [17]. This increases the robustness and the
accuracy that can be achieved.

3) If multiple images are available, the proposed method
can exploit them jointly to increase the accuracy of each
measurement and the overall robustness of the method,
rather than simply performing multiple individual mea-
surements.
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4) It can track the vertical displacement of all the point
scatterers in a floating roof with subpixel accuracy, which
allows the precise estimation of changes in oil storage over
time.

The rest of this article is organized as follows: First, in
Section II the SAR signatures of oil storage tanks with floating
and fixed roofs will be briefly analyzed, and we will show how
their relevant parameters can be derived from the semicircular
double reflections in them. Additionally, some constraints which
simplify the detection of these semicircular double reflections
will be established. Then we will describe how this can be
applied to automatically extract all the relevant information for
a given storage tank. This will be shown for two different cases:
One in which a single SAR image is available, which will be
described in Section III, and another one in which a time series
of SAR images is available, presented in Section IV. Finally,
results are shown in Section V, and Section VI concludes this
article.

II. SAR SIGNATURE OF OIL STORAGE TANKS

Oil storage tanks have a simple and well-known geometry
and they exhibit a very characteristic SAR signature, which has
been analyzed in detail via SAR simulation in [15] for both
tanks with fixed and floating roofs. Multiple semicircular double
reflections are present on the SAR signatures of both types of
tanks. Knowledge of these semicircles is sufficient to estimate
all the relevant parameters of an oil storage tank: Its precise
location and maximum capacity, and also its current fill level if
the tank has a floating roof. Therefore, if these semicircles can
be detected in the SAR image, they can be exploited to extract
precise information about oil storage.

In this section we will analyze the geometry of both types of
storage tanks, as well their temporal behavior and backscattering
properties, and establish some constraints which can be enforced
to simplify the detection of these semicircles. As the monitoring
of oil storage tanks with a floating roof is the most interesting
use case, their SAR signature will be analyzed first and in more
detail. Then, the signature of an oil tank with a fixed roof will be
briefly analyzed by comparing it to the signature of a tank with
a floating roof.

A. Oil Storage Tanks With a Floating Roof

A SAR image showing an oil storage tank with a floating roof
can be seen in Fig. 3(a). This SAR image has been acquired by
TerraSAR-X with an incidence angle of 48.1◦, a resolution of
58 cm in slant range, and 23 cm in azimuth. For this visualization
the original single-look complex (SLC) image has been resized
to a square pixel spacing (in slant range) and rotated so that the
range axis corresponds to the image’s y-axis, making the layover
effect easier to interpret. This transformation will be applied
to visualize all the results shown in this article, but the actual
processing will be always performed using the original SLC
image rasters. As it can be seen in Fig. 3(a), the SAR signature
of an oil storage tank with a floating roof contains three bright
semicircles, which appear as semiellipses in the image due to
the chosen pixel spacing (i.e., corresponding to a slant-range

Fig. 3. The SAR signature of oil storage tanks with a floating roof contains
three semicircular double reflections. (a) Amplitude SAR image. (b) Amplitude
SAR image with highlighted semicircular double reflections. (c) Illustrative
drawing of the geometry.

projection). These are highlighted in Fig. 3(b), and correspond
to the three double reflections illustrated in Fig. 3(c).

1) One occurring between the outer wall of the cylindrical
tank and the ground [shown in blue in Fig. 3(b) and (c)].

2) Another between the outer wall of the tank and a main-
tenance walkway located near the top [shown in red in
Fig. 3(b) and (c)].

3) The last one between the inner wall of the tank and the
upper surface of the floating roof [shown in green in
Fig. 3(b) and (c)].

Even though these reflections typically appear as semiellipses
in SAR images, we will refer to them as semicircles, as this
is their true shape. The semiaxes of the ellipses in the SAR
image can be easily calculated from the radius of the oil tank
rt, the mean incidence angle θ with which the corresponding
SAR image was acquired, and the pixel spacing along the x axis
(δx) and y axis (δy). Without loss of generality, we will assume
throughout this article that the x and y image axes correspond to
the azimuth and range axes of the SAR image, respectively. The
semiaxes of this ellipse rtx and rty , expressed in image pixels,
can be computed with the following equations:

rtx =
rt
δx

(1)

rty =
rt
δy

sin θ. (2)

When attempting to detect these semicircles in a SAR image,
the following constraints, which are imposed by the geometry
of the problem, can be enforced.

1) The three semicircles have the same radius, as we can
assume the thickness of the tank’s wall to be negligible.
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2) Their centers lie along the same vertical axis, located
at different heights. Therefore, the three semicircles will
have the same center along the azimuth axis, but they will
exhibit a translation in range due to the layover effect.

3) Due to the side-looking imaging geometry of SAR sensors,
only the side of the tank’s outer wall which is closer to the
SAR sensor can be imaged. Therefore, the two semicircles
corresponding to the double reflections with the outer tank
wall will appear toward near range. These are highlighted
in red and blue color in Fig. 3.

4) Regarding the tank’s inner wall, only the side which is
farther away from the SAR sensor can be seen in the SAR
image. Therefore, the double reflection corresponding to
the inner wall of the tank (highlighted in green in Fig. 3)
will appear toward far-range.

The aforementioned displacement of the semicircles centers
along the range axis due to layover can be exploited to compute
the height of the cylindrical tank ht and the vertical position of
the floating roof hr by using the following equations:

ht =
ltδy
cos θ

=
(yb − yt)δy

cos θ
(3)

hr =
lrδy
cos θ

=
(yb − yr)δy

cos θ
(4)

where lt and lr represent the layover (in pixels) due to the height
of the cylindrical tank and the vertical position of the floating
roof, respectively. These can in turn be expressed as a function
of yb, yt, and yr, which are the pixel coordinates along the y axis
(range) of the centers of the semicircular double reflections at the
tank bottom, top, and floating roof, respectively. Both equations
assume that the range axis of the SAR image starts at near range
(such as in all the images shown in this article), and will result
in negative height values if the SAR image has an inverted range
axis (i.e., starting at far range), as in that case the layover effect
will occur toward the opposite direction.

It is important to note that the height of the tank ht might
be slightly underestimated, as it is obtained from the double re-
flection occurring at a maintenance walkaway, which is slightly
below the top of the tank. This error in the height of the cylindri-
cal tank will only affect the estimation of its maximum capacity
and not of the amount of oil stored inside it, which is the most
interesting parameter. Additionally, this slight underestimation
of a tank’s height should be easy to compensate. If ground truth
data is available for a few storage tanks, it should be possible
to derive a offset and/or a scale factor to calibrate the estimated
heights, as most oil storage tanks have standard sizes.

If a time series of SAR images acquired at different times
is available, additional constraints associated with the temporal
behavior can be imposed as follows.

1) The double reflections which correspond to the oil tank’s
outer wall [red and blue semicircles in Fig. 3(b)] will
remain constant over time, as the tank’s outer structure
does not change.

2) On the other hand, when observed at different times the
double reflection associated to the oil tank’s inner wall
[green semicircle in Fig. 3(b)] can move along the range

Fig. 4. SAR images of an oil storage tank with a floating roof at two different
dates. (a) First image. (b) Second image. (c) Multitemporal color composite
image with the two amplitude images in the red and green channels, and
coherence in blue.

axis, as the floating roof will rise or sink with changes in
the amount of oil stored.

This is illustrated in Fig. 4 for a pair of SAR images of
the same oil storage tank acquired 11 days apart. The two
individual amplitude images are shown in Fig. 4(a) and (b).
A multitemporal color composite image with both amplitude
images in the red and green channels, and the interferometric
coherence in the blue channel is shown in Fig. 4(c). Here, it
can be clearly seen how the double reflection corresponding to
the floating roof moves between both image acquisitions, which
appear in green and red colors in Fig. 4(c) due to the strong
changes in SAR amplitude and the low coherence. On the other
hand the two double reflections corresponding to the outer tank
structure remain unchanged and appear therefore in blue/white
colors, due to the high-interferometric coherence and lack of
change in amplitude. The outer tank structure is expected to
remain unchanged and have high coherence even during long
time periods. However, there is no guarantee that the floating
roof will move, especially for short time periods, and could also
appear unchanged. Therefore, both possibilities (the floating
roof moving or remaining static) must be taken into account
when exploiting the temporal information in a SAR time series
for the monitoring of oil storage.

Finally, in addition to these geometric and temporal con-
straints, the backscattering properties can also be exploited for
simplifying the detection of these semicircles. Many of the pixels
in these semicircular double reflections appear in high-resolution
SAR images as point scatterers which dominate their corre-
sponding resolution cells, which are sometimes denoted in the
literature as coherent scatterers (CSs) [18]. By detecting these
CSs in the SAR images, the detection of these semicircles can
be greatly simplified. The reason for this is that the majority
of the surroundings of the oil storage tank will be eliminated,
leaving only a few relevant point scatterers which can be used
to fit the semicircles. An example of the CSs detected for an oil
storage tank with a floating roof is shown in Fig. 5. The method
used for the detection of CSs will be later described in detail in
Section III-A.

B. Oil Storage Tanks With a Fixed Roof

A SAR image of an oil storage tank with a fixed roof can be
seen in Fig. 6(a). This image and the one of a tank with a floating
roof shown in Fig. 3(a) are part of the same TerraSAR-X image,
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Fig. 5. Coherent scatterers in an oil storage tank with a floating roof. (a) SAR
amplitude image. (b) Detected coherent scatterers.

Fig. 6. Oil storage tank with a fixed roof. (a) SAR amplitude image. (b)
Multitemporal color composite image showing temporal change across an image
pair acquired 11 days apart. (c) Detected coherent scatterers.

and have therefore the same resolution and imaging geometry.
By comparing both images it can be seen that the SAR signatures
of both types of storage tanks are relatively similar, with the
exception of the features corresponding to the floating roof. The
same two semicircular double reflections at the bottom and top of
the cylindrical tank are present, whereas the one corresponding
to the floating roof is missing. This implies that the geometrical
constraints established in the previous point regarding those two
semicircles also apply to storage tanks with a fixed roof, and their
height can also be computed using (3).

When observing a fixed roof tank at different times there will
be no significant change, as no floating roof is present, and
the two semicircular double reflections corresponding to the
outer tank structure will remain unchanged. This can be seen
in Fig. 6(a), which is a multitemporal color composite image
highlighting the changes between a pair of images acquired 11
days apart, such as the one shown previously in Fig. 4(c) for a
tank with a floating roof. The only changes which can be seen
are small amplitude changes in the clutter areas due to speckle
noise. The pixels corresponding to the oil storage tank have
a high-interferometric coherence and no significant amplitude
change, and appear therefore in blue and white colors.

The backscattering properties are also similar to those of a
tank with a floating roof, and the pixels on the semicircular
double reflections are also CSs. As in the previous case, the
detection of these point scatterers allows to eliminate the tank’s
surroundings and can simplify the fitting of these semicircles.
The detected CSs for this storage tank with a fixed roof are shown
in Fig. 6(c). Here, it can be seen that fewer CSs are detected at
the double semicircular reflection at the top of the tank than in
the case of a tank with a floating roof. However, there are still
enough point scatterers to fit the corresponding semicircle and
estimate the tank height using (3).

All these similarities can be exploited to develop a method
capable of extracting all the relevant parameters of both types
of tanks. Additionally, the main difference, which is the lack
of the third semicircular double reflection corresponding to the
floating roof, can be exploited to easily distinguish both types
of tanks. Such a method, capable of classifying both types of
tanks and extracting all their relevant parameters out of a high-
resolution SAR image, will be introduced in Section III. Then,
in Section IV, this method will be extended to the case in which a
SAR time series is available, exploiting the temporal information
to achieve more accurate and robust estimates than those possible
using each individual image.

III. OIL STORAGE ESTIMATION FROM ONE SAR IMAGE

In the previous section it has been established that if the
semicircular double reflections of an oil storage tank can be
extracted from a SAR image, all its relevant parameters can be
derived from them. In this section, a method which exploits
the detection of coherent scatterers (CSs) and the geometric
constraints described in the previous section to automatically
detect these semicircular double reflections will be presented.
After these double reflections have been detected for a given
storage tank, a simple machine learning classifier can be used to
determine whether this tank has a floating or a fixed roof. Given
one high-resolution SAR image of a oil refinery, the proposed
method can be applied to automatically estimate the maximum
capacity of each storage tank, as well as the amount of oil stored
in the tanks with a floating roof.

A. Preprocessing: Coherent Scatterer Detection

Strong point scatterers, also known as CSs, can be detected in
a high-resolution SLC SAR image by applying spectral diversity
techniques [18]. Multiple methods have been presented in the
literature for the detection of CSs [18]–[21]. All of these methods
are based on the same principle: They exploit the high band-
width available in high-resolution images by computing multiple
sublook images with lower spatial resolution, and then detect
CSs by identifying those targets which remain stable across these
sublooks. The main difference between these methods is the
criterion used to determine which targets remain stable across
the multiple sublooks. A comparison of the performance of the
different methods can be found in [18]. In this article, the phase
variance approach (PVA) [20] will be used for CS detection, due
to its simplicity and relatively good performance. This method
will be briefly described below.

The basic idea behind the CS detection using PVA is that if
a given image pixel contains a CS its phase will vary linearly
with sublook frequency, whereas if not it will vary randomly.
Therefore, multiple sublooks with a reduced bandwidth and
different central frequencies should be computed, so that the
phase trend can be analyzed for each pixel. A description of the
process of sublook calculation from a SLC SAR image can be
found in [18]. In this article, the sublooks will be computed along
range (i.e., corresponding to different frequency sub-bands), as
is typically done for CS detection [18]–[21]. The same detection
method could also be applied to azimuth sublooks [18], but the
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performance is expected to be worse in that case, due to the fact
that many point scatterers have a nonconstant azimuth angular
scattering pattern [19].

For a given pixel, we can denote its phase at each sublook
as φi, with i = 1, . . ., n, where n is the number of sublooks.
To avoid issues when analyzing the phase trend due to phase
jumps of 2π around±π, phase unwrapping should be performed
by adding or substracting multiples of 2π as required so that
|φi+1 − φi| ≤ π. To determine whether the pixel’s phase varies
linearly with frequency, the mean and variance of the phase
derivative with respect to frequency can be computed

μφ =
1

n− 1

n−1∑
i=1

φi+1 − φi

fs
(5)

σ2
φ =

1

n− 1

n−1∑
i=1

(
φi+1 − φi

fs
− μφ

)2

(6)

where fs is the difference between the central frequencies of
two consecutive sublooks, given in MHz. If this pixel has a
linear phase, the phase derivative should be nearly constant and
therefore have a low varianceσ2

φ. Therefore, CSs can be detected
by computing σ2

φ for each pixel and applying a threshold, which
can be denoted as T : Pixels with σ2

φ < T will be considered to
contain a CS.

For the pixels with a linear phase, the slope of this phase
ramp will be directly related to the distance along the range axis
between the center of that pixel and the actual location of the
corresponding CS [18]. Ifμφ is used as an estimation of the slope
of this linear phase ramp, this distance, which can be denoted as
dr, can be expressed as

dr =
c

4π
μφ (7)

where c is the speed of light. This relation can be exploited
to determine the location of CSs along the range axis with a
higher accuracy than that given by the range resolution of the
SAR sensor. Additionally, it can also be used to mitigate the
resolution loss introduced by sublook computation, which will
cause strong point scatterers to spread to neighboring pixels.
In such cases, those neighboring pixels might also have a linear
phase trend even if they do not contain a CS, and would be falsely
identified as CSs when just applying a threshold to σ2

φ. However,
because their phase ramps will have a steeper slope, these can be
filtered out by also thresholding μφ. The corresponding limits
for μφ can be analytically derived by enforcing that a CS must
be inside the resolution cell of a pixel (i.e., less than half a pixel
distance between the CS and the pixel center): |dr| ≤ 0.5 δy ⇒
|μφ| ≤ 2πδy

c .
For the detection of CS in this article the following parameters

were used: A threshold T = 0.005, and n = 40 sublooks cover-
ing the whole available bandwidth with a 75% spectral overlap
between consecutive sublooks. For the TerraSAR-X imagery
used in this article with 300-MHz total bandwidth, this resulted
on a sublook bandwidth of 27.90 MHz and a separation of
fs = 6.97 MHz between sublooks. An example of the results
obtained using the described method can be seen in Fig. 5.

B. Approximate Location of the Oil Storage Tanks

Before attempting to detect the semicircular double reflections
of a given storage tank, its approximate location in the SAR
image should be known. As the goal of the method presented
in this article is not the detection of oil storage tanks, but rather
the automatic and precise estimation of their dimensions and of
the amount of oil stored in the tanks with a floating roof, we
will assume that the approximate locations of the oil tanks are
known. Here, a brief overview of the different methods and data
sources which can be used for obtaining the locations of the
storage tanks will be provided.

One possibility would be to obtain these locations from GIS
data, such as OpenStreetMap (OSM), which is open and freely
available and contains the locations of many of such oil tanks.
For the oil refineries which are not present in OpenStreetMap,
the locations of their storage tanks could also be detected in
the SAR images using any of the approaches that have already
been presented in the literature for the detection of cylindrical
storage tanks [11]–[13]. Alternatively, the oil tanks could be
detected also in an optical image if one is available, using one
of the methods described in [5]–[8]. If enough optical imagery
is available, a convolutional neural network (CNN) could also
be trained to detect the oil tanks, as described in [9], [22]. For
this, a large training dataset can be semiautomatically generated
by using OpenStreetMap data to obtain the location of many oil
storage tanks, generating in this way the labels for the optical
imagery. In addition to the approximate location of the storage
tanks, most of the listed methods also provide a bounding box
around each tank, which can be used to estimate an approximate
value for its radius. While the method proposed in this article
does not require an initial estimate for the radius of a given
tank, it can be used if available to reduce the computing time
and slightly increase the robustness of the method, as it will be
shown later.

For the examples shown in this article, the approximate loca-
tions of the oil tanks were obtained automatically from Open-
StreetMap by performing a query using its Overpass API. For a
given storage tank, the latitude and longitude coordinates of its
center obtained from OpenStreetMap are projected into the SAR
image by performing geocoding with a digital elevation model
(DEM), obtaining the approximate pixel position for the center
of the tank bottom p̂b = (x̂b, ŷb). Additionally, an approximate
value for the radius r̂t of each tank was also estimated from
OpenStreetMap data. For this, the polygon associated to each
tank first projected into a UTM map projection, in order to avoid
errors in the estimated radius due to the map projection used by
OpenStreetMap.

Independently on the method used to obtain these locations,
this step only needs to be performed once, as the locations of
such oil tanks change very rarely, and the precise location and
other parameters will then be extracted from the SAR image
using the method described below.

C. Estimation of the Precise Location and Size of Oil Tanks

Once the CSs in the SAR image have been detected and the
approximate locations of the storage tanks in the SAR image are
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known, the semicircular double reflections of each tank should
be detected to obtain information about oil storage. For a given
storage tank, the goal is to determine the following parameters:
Its radius rt, height ht, and vertical position of the floating roof
hr (if there is one). Additionally, the exact pixel position for the
center of the tank bottom pb = (xb, yb) will also be determined,
from which the corresponding geographic coordinates can easily
be computed by applying geocoding. Out of these parameters,
the maximum capacity of the storage tank Vmax (given in cubic
meters) can be easily computed using (8). If the tank has a
floating roof, the volume of oil Voil stored inside it at the time
the SAR image was acquired can also be computed in the same
way

Vmax = πr2t ht (8)

Voil = πr2t hr. (9)

Both equations assume that the volume available for oil
storage begins at the height of the lower semicircular double
reflection, which is expected to occur at ground height. This
assumption should be valid for aboveground storage tanks (the
most common type of tanks) [1], as the thickness of the tank’s
bottom plate is expected to be negligible [2]. However, a bias
could possibly be introduced in some cases by a foundation of
unknown height below the tank: In [15], the authors observed
a bias in the tank fillings estimated from a SAR image, which
they attributed to a foundation height of approximately 1 m.

For the tank radius rt and height ht minimum and maximum
possible values can be specified, taking into account the possible
sizes for these storage tanks. For the examples shown in this
article, the following limits for the height ht and radius rt have
been chosen, which covered the sizes of all the storage tanks
present in the available SAR imagery: hmin

t = 12.5 m, hmax
t =

25 m, rmin
t = 10 m, and rmax

t = 50 m. These limits for the tank
height ht can be translated into the corresponding limits for the
layover lt (in pixels) using (3).

If the method previously used for obtaining the approximate
location of the storage tanks also provides an approximate value
for their radius r̂t, it can be used for setting tighter limits for
rt, specified individually for each tank. In Section V, the results
and runtimes will be compared for the cases in which the generic
limits for rt are used, with those obtained when an approximate
radius r̂t is available for each tank.

Besides these size limits, the only actual input required is
the approximate pixel position for the center of the tank bottom
p̂b, which should have been obtained using any of the methods
discussed in the previous subsection. Additionally, an uncer-
tainty value u giving the maximum expected error (in meters) of
this approximate position should be specified. For the examples
in this article, it was assumed that the locations obtained from
OpenStreetMap data had an uncertainty u = 15 m. This uncer-
tainty u, can be scaled into pixels for both the x axis (ux) and
y axis (uy) using the respective pixel spacings and incidence
angle, in the same way the radius rt was scaled in (1) and (2).

Using the approximate location of the storage tank p̂b and
its associated uncertainty u, as well as the established limits for
the tank radius rt and layover lt, a small image patch containing

Fig. 7. Detection of semicircular double reflections at the top and bottom
of a storage tank. (a) CSs inside the image patch surrounding a storage tank.
(b) Possible center pixels illustrated for three different CSs and two different
radii. (c) Two semicircles detected using the Hough accumulator h2.

the oil storage tank can be obtained by setting the following
boundaries for x and y:

x̂b − ux − rmax
tx ≤ x ≤ x̂b + ux + rmax

tx (10)

ŷb − uy − rmax
ty − lmax

t ≤ y ≤ ŷb + uy + rmax
ty . (11)

The CSs detected inside this image patch can then be used
to fit the semicircles corresponding to the double reflections of
the storage tank. An example of such an image patch can be
seen in Fig. 7(a), which shows the detected CSs for a storage
tank with a floating roof. It is important to note that even though
this and all the images shown in this article have a square pixel
spacing in slant range and the range direction along the y-axis,
this transformation is only applied for visualization purposes
and the actual processing is done using the original SLC SAR
image raster.

Initially, the two semicircles at the bottom and at the top of the
outer tank structure [highlighted in blue and red colors in Fig. 3]
should be detected, as these are present for both the storage
tanks with a fixed and a floating roof. Both semicircles appear
toward near range (i.e., toward the top of the y axis in the shown
examples), and are defined by the parameters xb, yb, rt, and lt.
Both have a radius rt (given in meters), the lower semicircle has
its center at pixel (xb, yb), and the upper one has its center at
pixel (xb, yb − lt). Their detection, and therefore the estimation
of these four parameters, can be formulated as an optimization
problem. The goal is to find the values for these parameters
which maximize the number of CSs that fit the corresponding
semicircles. While a brute-force search could be applied to test
all the possible parameter values inside their respective intervals,
a more efficient implementation is possible by using a Hough
transform. Below, a brief explanation will be provided on how
a Hough transform can be used for the detection of these two
semicircles on the SAR image.

The Hough transform will compute a 3-D accumulator array
h(x, y, r), whose values will give the number of CSs fitting the
semicircle of radius r centered at (x, y). All the elements of
this accumulator array must be initially set to zero, and will
be updated iteratively. For a given radius r0 and a CS located
at pixel pi, h(x, y, r0) should be incremented by 1 for all the
pixels (x, y) which could be the center of a semicircle of radius
r0 passing through pi. Here, the fact that semicircles appear
as semiellipses in the SAR image must be accounted for. This
process should be repeated for all the detected CSs, and for
multiple values of the radius r covering the interval between
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rmin
t and rmax

t . Fig. 7(b) illustrates how the computation of the
Hough accumulator works, showing the possible centers for
three different CSs (each highlighted in a different color) and
two different radii (one shown as continuous and the other
as dashed lines). For sampling the interval for the radius r,
it is recommended to select a step δr which ensures that the
corresponding change in image pixels is equal to or smaller than
one pixel for both the x and y axes

δr = min(δx, δy/ sin θ). (12)

The accumulator array h(x, y, r) will tend to have lower
values for smaller semicircles, even if they represent a good
fit. This can be compensated by computing a new accumulator
array h′(x, y, r) which accounts for this

h′(x, y, r) = h(x, y, r)/
√
r. (13)

Even though the number of CSs along each semicircle grows
linearly with the radius r, the normalization was performed by
dividing by a factor of

√
r instead, as this has shown in our

experiments to provide the best results for both small and large
semicircles. From h′(x, y, r), a new accumulator array to detect
two semicircles with a displacement of l pixels along the y axis
can be easily defined

h2(x, y, r, l) = h′(x, y, r) + h′(x, y − l, r). (14)

Finally, the values of xb, yb, rt, and lt can be obtained from
h2(x, y, r, l)

(xb, yb, rt, lt) = argmax
x, y, r, l
x ∈ [x̂b − ux, x̂b + ux]
y ∈ [ŷb − uy, ŷb + uy]
r ∈ [rmin

t , rmax
t ]

l ∈ [lmin
t , lmax

t ].

h2(x, y, r, l)

(15)

For the example of Fig. 7, the two semicircles detected using
(15) and the Hough accumulator h2 can be seen in Fig. 7(c).

At this point, the center pixel of the tank bottom and its radius
are known, and the tank height ht can then be easily computed
from the obtained layover lt using (3). This applies for both
tanks with a floating or a fixed roof. However, for tanks with a
floating roof, its vertical position hr is still unknown.

D. Estimation of the Floating Roof Position

The vertical position of the floating roof hr can be easily
computed from the corresponding layover lr, which can be
obtained by detecting the semicircle due to the double reflection
of the floating roof, shown in green in Fig. 3. This semicircle
also has a radius rt, its center is at (xb, yb − lr) and, in contrast
to the two previous semicircles, it appears toward far range (i.e.,
toward the bottom of the y axis in the shown examples). As only
one parameter (lr) needs to be determined, there is no need to
apply a Hough transform to detect this semicircle. Instead, cross
correlation with a semicircular binary mask can be performed,
displacing it along the range axis (y) over all the possible center
locations. For this, the minimum and maximum possible values
of lr need to be established, which can be easily obtained from

Fig. 8. Example for the estimation of the vertical position of the floating roof
position for the storage tank previously shown in Fig. 7.

the corresponding limits for the floating roof height hr. If a tank
is completely empty, the floating roof will be at the bottom, and
therefore hmin

r = 0. On the other hand, if it is full, the floating
roof will be at the top, and hmax

r � ht. As previously mentioned,
the tank height ht is obtained from a double reflection at a
maintenance walkaway near the top of the tank, and is therefore
slightly underestimated. Additionally, if the radius rt obtained
from the Hough transform is slightly larger than the actual radius
of the storage tank, a small error will be induced in the estimated
center yb, which in turn will cause to slightly overestimate lr.
To account for this, it is recommended to set an upper limit for
hr which is larger than ht. For the experiments shown in this
article, this limit was set to hmax

r = ht + 5.
The cross correlation between these two binary images will

give the number of CSs which match each semicircle inside the
defined height interval. The best fitting semicircle, and therefore
the layover lr (in pixels) due to the vertical position of the floating
roof, can be obtained by finding the maximum of this cross
correlation. If we denote as f(l) the function with the cross
correlation values for each layover displacement l, this can be
formulated as it follows:

lr = arg max
l∈[0,lmax

r ]

f(l) (16)

where lmax
r is the maximum possible layover value, computed

from hmax
r using (4). In Fig. 8, the results of this cross correlation

can be seen for the storage tank previously shown in Fig. 7. Here,
the maximum can be clearly identified, and the estimated layover
of the floating roof corresponds to the one that can be manually
measured in the image.

If a storage tank is very tall and has a comparatively small
radius, the floating roof might not be visible if it is located near
the tank’s bottom and the SAR image was acquired with a flat
incidence angle, as it will be hidden by the radar shadow caused
by the cylindrical outer wall. In order to be able to properly
detect the semicircular reflection of the floating roof when this is
located at the bottom, we can establish the following constraint:
tan θ ≤ 1.5r/ht. As long as this condition is satisfied, an arc of
around 80◦ of this semicircle should be visible. In real scenarios
this is not expected to significantly limit the applicability of the
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method, as this condition should be easily fulfilled for most tanks
with conventional sizes: Any incidence angle smaller than 50◦

would work for all the storage tanks in the dataset used in this
article (which is described later in Section V). From this analysis
it follows that using SAR images acquired with a steep incidence
angle is advantageous for this method, as this allows to see better
into the inside of the tank, and additionally it also allows to derive
the heights from the layover with a higher accuracy.

A priori it is often unknown whether a tank has a fixed or a
floating roof. In such cases the estimation ofhr can be performed
as described, even if this only makes sense for tanks with a
floating roof. If a given tank has a fixed roof, the cross-correlation
value obtained when estimatinghr will be very low, as the double
reflection of the floating roof is not present. This information can
then be used to determine whether a tank has a fixed or a floating
roof, as it will be described below.

E. Classification of Storage Tank Type

As described in Section II-B, the main difference between the
SAR signature of a storage tank with a floating roof and one with
a fixed roof is that in the latter there is no semicircular double
reflection toward far range (as it is caused by the floating roof).
This will imply that when attempting to estimate the vertical
position of the floating roof by detecting its double reflection
(as done in the previous step), the number of matched CSs will
vary significantly depending on whether the storage tank has a
fixed or a floating roof. For a fixed roof this number will be very
low, and for a floating roof it will be much higher. This number
is given by f(lr), as defined in Section III-D.

A further difference between both types of storage tanks is
that for a tank with a fixed roof, less CSs are detected at the
double reflection at its top than at the reflection at the bottom, as
shown in Fig. 6(c). On the other hand, for a tank with a floating
roof the number of CSs detected on these two double reflections
is similar, as it can be seen in Fig. 5(b). The number of CSs at
the bottom and top double reflections are given by h(xb, yb, rt)
and h(xb, yb − lt, rt), respectively, as defined in Section III-C.

Taking all this into account, we propose to use the number
of detected CSs at each of these three double reflections as the
features to be fed into a machine learning classifier such as an
support vector machine (SVM) or a random forest. For each
storage tank, the corresponding 3-D feature vector v can be
defined as

v = (f(lr), h(xb, yb, rt), h(xb, yb − lt, rt)). (17)

As we are only using three simple but informative features, it
will be possible to train an accurate classifier with little training
data. Additionally, as oil storage tanks have standard shapes and
sizes, a classifier trained with storage tanks located at a given
refinery should also be applicable to storage tanks at different
locations. The classification results obtained by applying this
approach to a dataset with over 150 storage tanks will be shown
in Section V-C. Here, different classifiers will also be evaluated,
as well as the effect that increasing the amount of training
samples has on the classification results.

IV. OIL STORAGE ESTIMATION FROM SAR TIME SERIES

In the previous section, a method to estimate all the relevant
parameters of oil storage tanks out of a single high-resolution
SAR image has been introduced. An interesting application of
such a method is the monitoring of changes in oil storage, by
observing many storage tanks with a floating roof using series
of SAR images acquired at different times. In such a scenario in
which a SAR time series is available, the presented method can
be improved by enforcing the temporal constraints established
in Section II. In this section we will show how the additional
observations can be exploited to make the method more robust,
enable more accurate estimates of several relevant parameters,
and improve the classification between tanks with a fixed roof
and those with a floating roof. To achieve this, a change detection
method will be first introduced, which will then be applied to
separate the coherent scatterers which remain static (e.g., those
corresponding to the outer structure of a storage tank) from those
that move over time (e.g., those corresponding to a floating roof).
Then, the previously introduced method will be extended to take
this temporal information into account.

A. Preprocessing: Change Detection With Coherent Scatterers

If two or more repeat pass acquisitions are available, coherent
change detection can be applied to determine which CSs remain
static and which move during the corresponding time period.
Even though computing the interferometric coherence involves
spatial averaging using a small window (which may contain
clutter in addition to the CS), strong point scatterers tend to
have high-coherence values in high-resolution SAR images and
they do not exhibit significant temporal decorrelation [23], [24].
Therefore, as long as a CS remains static the corresponding
pixel should have a high coherence, whereas even a small
displacement (i.e., of less than one pixel) will cause a significant
drop in the coherence. A change detection algorithm based on
this will be described in detail below.

Given a time series ofnSLC SAR images, these should be first
coregistered with subpixel accuracy by using a method such as
the one described in [25]. After this, the CSs should be detected
for each image in the stack as described in Section III. This will
result in a stack of n binary images Ii, with i = 1, . . ., n, which
will have a value of 1 for the pixels containing a CS and 0 for
the rest. To detect which of these CSs have moved during the
period covered by the time series, a threshold can be applied to
the interferometric coherence. If the coherence drops below this
threshold for a pixel containing a CS it will imply that this CS
has moved, whereas if it is always above this threshold it will
mean that it has remained static.

To implement this, the interferometric coherence must be
computed for the n− 1 consecutive image pairs, obtaining
a stack with the respective coherence images Cj , with j =
1, . . ., n− 1. When computing the coherence a boxcar filter with
a window of 7 × 7 pixels was used for the examples in this
article. Then the minimum coherence value can be computed
for each pixel, obtaining another image Cmin. In the same way,
the maximum of the binary images Ii should also be computed
pixelwise, obtaining another binary image Imax showing all the
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Fig. 9. Separation of static and moving parts of an oil storage tank using change
detection with an image pair. Input image pair shown as (a) a color composite
image and (b) and (c) detected CSs for each image. Change detection results.
(d) Static CSs. (e) and (f) Moving CSs in each image.

pixels for which at least one CS has been detected in the time
series. A binary imageSwith the CSs which remain static during
the time series can then be computed by applying the following
equation:

S(x, y) =

{
1 if Cmin(x, y) > ct and Imax(x, y) = 1

0 otherwise
(18)

where ct is the chosen threshold for the interferometric coher-
ence, which has been set to ct = 0.35 for the examples shown in
this article. A further implication of (18) is that if a CS always has
a coherence above ct, it will be considered that it has remained
static and it is therefore present in all the images, even if this CS
was detected in just a single image of the series. The reasoning
behind this is that a high-coherence value should only be possible
if there is no change, whereas false negatives during the CS
detection are much more likely to occur.

Finally, by comparing the static CSs in S with those detected
in each individual image Ii, a set of new images Mi showing
the CSs that moved can be obtained

Mi(x, y)
i=1,...,n

=

{
1 if Ii(x, y) = 1 and S(x, y) = 0

0 otherwise.
(19)

The results of this change detection algorithm can be seen in
Fig. 9 for an image pair showing a storage tank with a floating
roof at two different dates. Fig. 9(a) shows this image pair as
a multitemporal color composite image with both amplitude
images in the red and green channels, and the interferometric
coherence in the blue channel. The CSs detected in each indi-
vidual image are shown in Fig. 9(b) and (c). After the change
detection, these CSs are classified into those which remained
static [shown in Fig. 9(d)] and those that moved [shown for each
image in Fig. 9(e) and (f)]. As expected, it can be clearly seen that
most of the static CSs correspond to the two double reflections
at the outer tank structure, whereas most of the moving CSs
correspond to the floating roof, which moved vertically due to
a change in the amount of oil stored. It is important to note that

for time series covering short time periods, the floating roof of
some storage tanks might not move, as the amount of oil stored
in them might remain constant during this time. In these cases,
it will not be possible to separate the floating roof from the outer
tank structure, as both will remain static. Because of this, the
use of time series covering a long time period is advantageous.

B. Estimation of the Precise Location and Size of Oil Tanks

Once the described change detection method has been applied
to identify which CSs remained static and which moved, this
temporal information can be exploited when estimating the rel-
evant parameters of oil storage tanks. As in the previous scenario
in which a single SAR image was available, initially the size and
location of each storage tank should be determined. For this, the
approximate locations of the storage tanks in the SAR images
should be first obtained as described in Section III-B. Then, a
Hough transform can be applied as described in Section III-C to
estimate the parameters rt (tank radius), ht (its height), and pb

(the pixel position for the center of the tank bottom). In this case,
only the CSs which remain static (i.e., those in the binary image
S) should be taken into account when performing this Hough
transform. For tanks with a floating roof which moved, this
allows to separate the outer tank structure from the floating roof,
which in turn makes the detection of the two semicircles faster
and more robust, as most of the CSs which do not correspond to
these semicircles can be filtered out.

For a given storage tank, once its precise location and size
have been determined, what remains is to determine whether
this tank has a fixed or a floating roof and, for tanks with a
floating roof, the roof position at the acquisition time of each
image must be estimated. Again, initially it will be assumed that
all the storage tanks have a floating roof, and we will attempt to
estimate its position. The results of this step will be used later
to determine whether a storage tank has a floating or a fixed
roof. Rather than applying the same approach as in the single
image case to estimate the position of the floating roof, this
can now be decomposed in two separate steps: The estimation
of the vertical displacements of the floating roof between each
successive image pair, and the estimation of its initial height.

C. Estimation of the Vertical Displacements of the
Floating Roof

When the amount of oil stored in a tank with a floating roof
changes, the floating roof will move up or down accordingly.
Using a pair of SAR images acquired at different times, the
corresponding vertical displacement of a given floating roof can
be directly estimated, without the need to estimate its vertical
position in each image.

The vertical displacement of a floating roof between the
acquisition times of any two images i and j in the time series
will be denoted as dij , and can be defined as

dij = lrj − lri (20)

where lrj and lri denote the layover due to the vertical position
of the floating roof at the images j and i in the series. Here the
value of dij is given in pixels, but it can be easily converted into
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Fig. 10. Result from the estimation of the vertical displacement of the floating
roof using cross correlation with the image pair from Fig. 9.

meters in the same way the layover lr is scaled into the height
hr, using the relation defined in (4).

If a floating roof moves at some point during the period
covered by the time series, its vertical displacement dij can be
estimated using the binary images Mi and Mj , which contain
the CSs which moved during the time series and are present
at images i and j, respectively. Similar to the previously es-
timated parameters, the estimation of dij can also be seen as
an optimization problem. The vertical displacement for which
more CSs match between the two image patches of Mi and Mj

will most likely correspond to the correct solution. This process
will match all the features in the floating roof (not only the
semicircular double reflection), and can be easily implemented
by performing a cross correlation of these two binary images
for different displacements along the range axis (y). For this, a
small image patch containing just the corresponding storage tank
without any surroundings should be used. The corresponding
image region can be obtained by modifying (10) and (11) using
the tank location, radius, and height values estimated in the
previous step, as well as an uncertainty value u = 0. Combining
(20) with the limits for lr previously established in Section III, it
follows that the value of dij must be within the following range:
−lmax

r ≤ dij ≤ lmax
r . The maximum cross-correlation value ob-

tained when estimating dij can be denoted as wij , and its value
will be used at a later step.

The results obtained when applying this cross correlation to
the image pair from Fig. 9 can be seen in Fig. 10. The maximum
of this cross correlation can be clearly identified, and as expected
the estimated vertical displacement corresponds to the one which
can be manually measured.

If desired, the roof displacements can also be estimated with
subpixel accuracy. As described in Section III-A, the location of
each detected CS can be determined along the range axis with
subpixel accuracy. This can be exploited to compute a subpixel
shift, which can be added to the shift obtained from the cross
correlation (which has an accuracy of one pixel). During the
cross-correlation step, wij CSs have been matched between the
two images i and j for a displacement of dij pixels along range.
The distance between each of these CSs and the corresponding
pixel center can be determined separately for each image by
applying (7). For each one of the matched CSs, the difference

between the values obtained from the two images will give
an estimate of its subpixel displacement. An accurate estimate
of the subpixel displacement for the floating roof can be then
obtained by averaging all the estimated subpixel displacements
for the wij matched CSs.

For a time series with n images, the vertical displacement of
a given floating roof between each of the n− 1 consecutive
image pairs will provide all the required information on the
changes in the amount of oil stored inside the tank. However,
the described method can be used to estimate the roof’s vertical
displacement between each of the

(
n
2

)
= (n2 − n)/2 unique

image pairs in the series. The additional estimated values will
provide some redundant information, as the displacements from
multiple image pairs are related (e.g., the displacement between
the first and third images must be the sum of the displacements
between first and second images, and second and third images).
This relation can be formulated in a general way as

dij = dik + dkj . (21)

For convenience, we will assume that the displacements are
computed for the image pairs with j > i (the remainder image
pairs with j < i do not provide any additional information).
This redundant information can be exploited to obtain a more
robust and accurate estimate of the changes in oil storage, as the
displacement values estimated from each individual image pair
using cross correlation may contain small errors, and in some
rare cases even a few of these estimates may be significantly off.

These improved estimates of the vertical displacement of the
floating roof between each of the n− 1 consecutive image pairs
will be denoted as d′k, with k = 1, . . ., n− 1. Their values can be
obtained by solving an overdetermined linear equation system
with (n2 − n)/2 equations (one for each estimated dij) and n−
1 unknowns (the values of d′k to be estimated). To formulate this
linear system, each of the estimated dij must be expressed as a
linear combination of the unknowns, which can be done using
the following equation:

dij =

j−1∑
k=i

d′k. (22)

Such a overdetermined linear system can be solved by ap-
plying a method such as least squares. However, we propose to
use the Huber regressor, which is a robust regression method and
less sensitive to outliers than least squares. When performing this
regression, the maximum cross-correlation values wij obtained
when estimating each dij term can be used as weights, as
typically those estimates with lower cross-correlation values will
be less accurate.

Using this approach, the vertical displacements of a floating
roof (and therefore the changes in oil storage) can be estimated
with very high accuracy. The larger the number of SAR images
in the series, the more robust and accurate that these estimates
will become. It is important to note that the estimated values will
only be valid if the floating roof moved during the period covered
by the time series. However, this is not an issue, as the case in
which the floating roof does not move will also be accounted for
next, when estimating its initial position.
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D. Estimation of the Initial Position of the Floating Roof

Finally, in order to have an absolute measurement of the
amount of oil stored in a given tank with a floating roof at the
acquisition time of each image, the vertical position of the roof
in the first image must be determined. If the floating roof moved
at some point during the period covered by the time series,
its vertical displacements have already been estimated in the
previous step, and therefore only its initial position is missing.
If the roof did not move, the displacements estimated in the
previous step will be invalid, but the initial position of the floating
roof will be all of the information that is required anyway. Here,
a simple decision rule will be established to determine whether
a floating roof has moved or not, and a method to estimate its
initial position will be described for both of these scenarios.

If many CSs in the image patch containing a storage tank
moved, this will imply that its floating roof has very likely
moved. The weights computed in the previous step when es-
timating the vertical displacements of the roof provide a good
indication for this: Each weight wij quantifies the maximum
number of moving CSs matching between the corresponding
image pair. The average of all these weights, denoted as wavg,
can be used as a simple metric to quantify the number of CSs
which could potentially correspond to a moving roof.

If the floating roof did not move, there will be very few CSs
which moved, and the value ofwavg will be low. Additionally, the
floating roof (and therefore its semicircular double reflection)
will be present in the binary image S which shows the CSs
which remained static. Therefore, if many static CSs match a
semicircle toward far range, it will indicate that the roof did
not move. To obtain the number of static CSs which match this
semicircle, the method previously described in Section III-D can
be used. Rather than applying this method to the CSs detected
in a single image, in this case it should be applied to the static
CSs inS. Now, the function with the cross-correlation values for
each layover l can be denoted as fs(l), and the layover lrs for
which the highest number of static CSs match such a semicircle
can be obtained using (16).

The values of wavg and fs(lrs) can now be compared: If
fs(lrs) > wavg the floating roof is assumed to have remained
static, and its layover will be given by lrs , which can be converted
into the corresponding height using (4). On the other hand, if
wavg ≥ fs(lrs) the roof is assumed to have moved. The vertical
displacements of the floating roof have been obtained in the
previous step, but its initial position still needs to be determined.

The method described in Section III-D can be applied to any
of the n images showing the CSs which moved, denoted as
Mi (with i = 1, . . ., n), to estimate the position of the floating
roof at the corresponding acquisition time. The initial position
of the roof could therefore be simply estimated using the first
image (M1). However, a more accurate and robust estimation
is possible by jointly using all of these n images; because
the displacements of the roof are known, the initial position
can be obtained from each of these n images by substracting
the displacements accordingly. If we denote as fmi

(l) (with
i = 1, . . ., n) the functions with the cross-correlation values
obtained from each of thenMi images, these can be combined to

estimate the layover lr1 due to the initial position of the floating
roof

lr1 = arg max
l∈[0,lmax

r ]

n∑
i=1

fmi
(l − d′1i). (23)

Here, d′1i denotes the vertical displacement of the floating roof
between the first image and image i, which can be computed as

d′1i =

{
0 if i = 1∑i−1

k=1 d
′
k if i > 1.

(24)

When evaluating fmi
(l − d′1i) in (23), it is important to note

that the functions fmi
(l) have been computed using cross cor-

relation only inside the valid interval l ∈ [0, lmax
r ], and will have

a value of 0 outside of this interval.
Finally, the amount of oil stored inside the tank can then be

computed for each of the images in the series. If the floating roof
did not move, it will have a constant layover value lrs . On the
other hand, if it moved its layover for any given image i in the
series can be expressed as: lri = lr1 + d′1i. In both cases, these
layover values must be converted into the corresponding heights,
and the volume of oil stored can then be computed using (9).

E. Classification of Storage Tank Type

In Section III-E a method was introduced to automatically
determine whether a given storage tank has a floating or a fixed
roof. This method uses a machine learning classifier trained with
three features obtained when estimating the dimensions of a
storage tank from a single SAR image. These three features
represent the number of CSs which match the two detected
semicircular double reflections toward near range (present in
both types of tanks), and the one toward far range (present only
in tanks with a floating roof).

When using a SAR time series the classification approach
will be similar, but the available temporal information can now
also be used to achieve a better classification performance. If
a floating roof moves at some point during the time series, the
corresponding CSs will move as well, whereas on a fixed roof all
or most of the CSs will remain static. Therefore, the value ofwavg

(defined in Section IV-D) will allow to very easily identify tanks
with a floating roof if their roofs move at some point during the
time series. If a floating roof did not move, the value of wavg will
be low, but the value of fs(lrs) (also defined in Section IV-D)
can be used instead. The maximum of these two values can
therefore be used as a feature for the classifier, for which a high
value will indicate the presence of a floating roof, and a low
value a fixed roof. Finally, similarly to the single image case,
the number of static CSs matching the double reflections at the
bottom and the top of a storage tank, given by h(xb, yb, rt) and
h(xb, yb − lt, rt), will also be used as the two final features.
For these two last features, a small difference with the single
image case is that now the Hough accumulator h(x, y, r) was
computed using only the CSs which remain static during the
series. In summary, when estimating oil storage using a time
series, the following 3-D feature vector v can be generated for
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each storage tank

v = (max (wavg, fs(lrs)), h(xb, yb, rt), h(xb, yb − lt, rt)).
(25)

As in the single image case, the use of a small number of
features will imply that just a few training samples suffice to train
an accurate classifier. In Section V-C, the performance of the
classification using a time series will be evaluated and compared
to the case in which a single image is available.

V. RESULTS

To evaluate the performance of the methods presented in this
article, a dataset consisting of three TerraSAR-X repeat-pass
images of the port of Rotterdam will be used. These three images
have been acquired on July 23, August 3, and August 14, 2017;
using the staring spotlight imaging mode (with a resolution of
58 cm in slant range and 23 cm in azimuth) and with an incidence
angle of 48.1◦. The imaged scene contains 167 oil storage tanks
of different sizes, among which there are tanks with floating and
fixed roofs. The relevant parameters of each of these storage
tanks were obtained by applying the two methods introduced in
Sections III and IV, using the first image and the complete time
series as inputs, respectively. Unfortunately, no ground truth data
regarding the sizes of these storage tanks or the amount of oil
stored in them was available. However, the same measurement
principle applied here (using the semicircular double reflections
as described in Section II) has also been applied and validated
in [15], where the authors manually selected several image points
on these double reflections and compared the dimensions derived
from these points with those provided by the company operating
the oil tanks. Therefore, if the semicircular double reflections are
accurately detected by the method proposed in this article, it will
imply that the estimated dimensions should be accurate.

As explained in Section III-B, the initial detection of these
storage tanks in the imaged scene is out of the scope of this
article, as several works dealing with this topic have already been
published. The approximate locations of these tanks were instead
automatically obtained using OpenStreetMap data. In addition
to their locations, the approximate radius of each tank, which is
not needed by the proposed methods but can be used if available,
was also extracted from the OpenStreetMap vector data. Then,
the resulting GIS data were cleaned by automatically removing
those tanks which were either partially outside of the bounds of
the imaged scene or too small to be considered of interest. In
this case, the few tanks with a radius smaller than 10 m were
considered too small and removed from the data, as their size
is negligible compared to the many larger tanks with radii up
to 50 m, and at those very small sizes the proposed method is
more prone to making errors. Finally, in order to evaluate the
performance of the proposed method free from the influence of
errors in the OpenStreetMap data, the OpenStreetMap data were
verified by visually comparing it to the SAR images in a GIS
software, and a couple of storage tanks which were present in
OpenStreetMap but not in the used SAR images were manually
removed.

In the following parts of this section, the accuracy of the
obtained results will be analyzed. First, the estimation of the

TABLE I
RESULTS OF THE VISUAL ACCURACY ASSESSMENT

dimensions of the oil storage tanks will be evaluated both qualita-
tively (by performing a visual accuracy assessment) and quanti-
tatively (by comparing the obtained values with those obtained in
manual measurements). Then, the performance of the proposed
classification approach to distinguish between tanks with a fixed
and a floating roof will be evaluated and compared for different
classifiers and different amounts of training data. Finally, a short
overview of the method’s runtimes will be provided.

A. Visual Accuracy Assessment

Initially, due to the large amount of oil storage tanks in
the scene and the lack of ground truth data, visual accuracy
assessment will be performed. For this, the detected semicircular
double reflections are drawn over the SAR amplitude image.
Only half of each detected semicircle will be drawn, as this
makes it easier to determine whether it accurately matches
the actual semicircular double reflection on the SAR image.
The resulting images are then analyzed by visual inspection
to determine the number of tanks for which all the double
reflections have been correctly detected, as this will imply that
all the parameters have been correctly estimated. The results of
this visual accuracy assessment are summarized in Table I.

In this table, results are shown separately for tanks with a
fixed and a floating roof, in order to assess whether the method
performs better for a specific type. Additionally, results obtained
using a single image and the complete time series are compared.
Both of these methods were applied twice: Once without any
prior information about the radius of each storage tank (i.e.,
radius can have any value between 10 and 50 m), and once using
the approximate radius value r̂t obtained from OpenStreetMap
to limit the possible radius values to a smaller interval given by
r̂t ± 5 m.

These results show that all the variants of the proposed method
perform very well for storage tanks with a floating roof (which,
as previously mentioned, represent the most relevant use case),
with all parameters being correctly estimated for 91.66% to
96.87% of the tanks depending on the method variant. For
tanks with a fixed roof the percentage of tanks for which all
parameters are correctly estimated is lower, especially for some
of the method variants, with this percentage being only 76.05%
when using a single image and no prior information about the
tank radius, but increasing up to 91.54% when using a time
series and the approximate radius value from OpenStreetMap.
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Fig. 11. Visualization of the results for many oil tanks of different sizes for a single date, demonstrating the method’s performance. Only half of each semicircle
is drawn to make the comparison to the SAR amplitude image easier. The ten highlighted tanks will be used for a quantitative accuracy analysis.

A possible explanation for the lower performance with tanks
with fixed roofs is that their SAR signatures have fewer CSs
which can be used for the detection of the semicircular double
reflections. Additionally, for this particular scene, the tanks with
a fixed roof are mostly of smaller sizes, which further reduces
the number of CSs detected in them.

It can also be clearly seen how the use of a time series instead
of a single image consistently improves the results for both types
of tanks, increasing the number of tanks for which all parameters
are correctly estimated. The biggest improvement is obtained for
tanks with a fixed roof and when the approximate radius of each
tank is a priori unknown, which is the most challenging case.

Finally, Table I also shows how, if available, using an approx-
imate value for the radius of each tank also improves the results,
especially for tanks with a fixed roof. This prior knowledge about
the tank radii eliminates most of the errors caused by the custom
Hough transform detecting semicircles of the wrong radius.

The results obtained using the time series and the approximate
radius value from OpenStreetMap can be visualized in Fig. 11
for a subset of the imaged scene which contains over 50 storage
tanks. In it, it can be seen how the semicircular double reflections
have been correctly detected for all but one of the storage tanks.
This tank has a floating roof and is located toward the bottom
left of the image, and the double reflection at its bottom (shown
in blue) was wrongly detected at a false position. This implies
that the maximum capacity and the amount of oil stored in
that particular tank will be wrongly estimated. However, the
changes in the amount of oil storage will be correctly estimated
anyway, as the radius and the vertical positions of the floating

roof were correctly estimated. While Fig. 11 only shows the
results obtained for the first image in the time series, the vertical
location of the floating roofs was correctly detected for all the
storage tanks in all three images. This illustrates an additional
advantage of using a time series: The relative changes in the
amount of oil stored in tanks with a floating roof will almost
always be correctly estimated, even if there are errors when
estimating the exact amount of oil or their maximum capacity.
This is due to the fact that the roof displacements are estimated
in a very robust way, and independently from the detection of
the semicircular double reflection of the floating roof.

B. Quantitative Accuracy Analysis

After the qualitative evaluation of the obtained results via
visual analysis, a more detailed analysis of the accuracy achieved
will be performed for 10 of the storage tanks shown in Fig. 11
(those enclosed by white rectangles and labeled with the corre-
sponding numbers). Tanks 1 to 5 have a floating roof, whereas
tanks 6 to 10 have a fixed roof, and all of them have different
sizes. As no ground truth data are available regarding the di-
mensions of these storage tanks or the amount of oil stored in
them, this accuracy analysis will be performed by comparing the
dimensions automatically estimated by the proposed methods
(using a single image and a time series) with those obtained
from manual measurements. These manual measurements will
be performed as described in [15], as this measurement principle
has been validated. For this comparison the use of approximate
radius information from OpenStreetMap will not play any role,
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TABLE II
RESULTS FOR THE ESTIMATION OF THE TANK SIZE

as it only reduces the number of tanks for which the method does
not work properly by setting a tighter limit for the possible values
of a tank’s radius, and it does not have any effect in the accuracy
of the estimated values for the cases in which the method works
properly.

Table II shows the comparison for the tank radius rt and
height ht (both given in meters). Here, small differences can
be seen between the results obtained from a single image and
those obtained from the time series, but it is unclear whether
one of these methods is more accurate than the other. The
reason for this is that both methods apply a Hough transform
in a very similar way for estimating these two parameters.
Additionally, the results obtained from these two methods differ
slightly from those obtained from manual measurements, which
are performed simply by selecting a couple of image points,
and therefore they are not necessarily more accurate. However,
except for some small differences, all the estimations from the
different methods seem to agree. To put these differences into
perspective, an error of one pixel will translate into an error
of 0.68 m in the estimation of ht, and of 0.32 m (which is the
corresponding square pixel size on the ground) in rt. Therefore,
most of these differences between the different methods are in
the order of one to a couple of pixels, with these differences
being often slightly larger for the estimated radius than for the
height.

In addition to the radius and height of each tank, for the tanks
1 to 5 the vertical position of its floating roof at the time of each
image acquisition must be estimated. When applying the method
to a single image (the first one in the series) only the initial
height of the floating roof hr1 was estimated. When applying the
method to the entire time series, and in the manual measurements
performed for comparison, the height of the floating roof was
estimated for all three images. The obtained results can be
seen in Table III. Again, the results obtained from the manual
measurements are not necessarily more accurate, but they serve
as useful reference for this comparison in the absence of ground
truth data. In this table, some significant differences can be
observed across the different estimates for the initial height of
the floating roofs. On the other hand, the vertical displacements
of the floating roof in between consecutive images (i.e., the
difference between hri+1

and hri ) estimated with the proposed

TABLE III
RESULTS FOR THE ESTIMATION OF THE FLOATING ROOF HEIGHT

method agree very well with the manual measurements. The
main cause of these differences in the initial height is actually
the difference in the previously estimated radius rt (shown in
Table II). For the used incidence angle, an error of 1 m in rt will
induce an error of 2.23 m in hr1 . This is caused by the fact that
the semicircular reflection of the floating roof appears toward
far range, whereas the two reflections at the outer tank structure
appear toward near-range. Therefore, this is not a particular issue
of the proposed method, but it will be common to all the methods
employing SAR images.

In conclusion, the estimates for rt, ht, and hr1 appear to agree
between the proposed method (both using a single image and
a time series) and the manual measurements, but with small
differences in the range of one to a couple of pixels. On the other
hand, the vertical displacements of the floating roof between
consecutive images seem to be estimated much more accurately.
This implies that the relative changes in the amount of oil stored
in a tank with a floating roof will be estimated very accurately,
whereas absolute measurements of the amount of oil stored in it
will be slightly less accurate. This also applies to the estimated
maximum capacity, both for tanks with fixed and floating roofs.
The accuracy of these absolute estimates could potentially be
improved by exploiting the fact that storage tanks often have
standard sizes, rounding the estimates for rt and ht to the closest
values corresponding to a standard size. This would in turn also
remove the errors induced in the estimation of hr1 due to an
inaccurate radius.

C. Classification Performance

To evaluate the performance of the proposed classification
approach to distinguish between tanks with a fixed and a floating
roof, a dataset had to be first generated by assigning the appro-
priate label to each of the storage tanks, as this information was
not available in the used OpenStreetMap data. These labels were
manually assigned by visualizing each storage tank in the SAR
images, resulting in a dataset with 167 samples which will then
be split into training and test data.

For each of the storage tanks in this dataset the corresponding
features were computed from both a single image and the time
series, as described in Sections III-E and IV-E, respectively. The
classification results using these two different sets of features
(obtained from a single image and a time series) were com-
pared for different amounts of training data and two different
classifiers: An SVM and a random forest. To purely evaluate the
classification without the influence of the errors occurred during
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Fig. 12. Comparison of the classification performance using the features
extracted from a single image and a time series for two different classifiers
and different amounts of training data.

the previous steps, the few tanks for which the estimation of the
tank dimensions did not work properly (i.e., those listed in Table I
as wrong) were removed from the dataset.

In order to analyze the effect that the amount of training
data has in the classification results, both the SVM and random
forest classifiers were trained multiple times from scratch using
training datasets of different sizes (with 10, 25, 50, 75, and
100 samples). Each time the training samples were selected
randomly while keeping an equal split of tanks with floating
and fixed roofs, and the remainder of the dataset was used as
test data. To minimize the influence that the selection of the
training samples has in the results, this process was repeated
100 times for each case, and the F1 score of the corresponding
100 trained classifiers was averaged, obtaining an average F1

score for each number of training samples. The results obtained
for both classifiers and both sets of input features (obtained
from a single image and from the time series) can be seen in
Fig. 12. As expected, due to the use of just three simple but very
informative features (both when using a single image as well as
the time series) the two classifiers perform very well even with
small training datasets, obtaining average F1 scores above 0.9
with just 10 training samples. The best classification results are
consistently obtained for all the different amounts of training
data when using the input features obtained from the time series
and a random forest classifier, which reaches an averageF1 score
of 0.97 with 100 training samples. When using the input features
obtained from a single image, the SVM classifier performs
slightly better than the random forest, reaching an average F1

score of 0.95 with 100 training samples.

D. Runtime Analysis

The proposed method could potentially be applied to monitor
the amount of oil stored in many oil refineries, each with a large
number of storage tanks, regularly every few days. Here a brief
analysis of the runtime of the proposed method will be provided,
to give an outlook on how the processing time scales up with
the number of SAR images and/or number of storage tanks to
be monitored. This processing time will be analyzed separately
for two separate stages of the proposed method: Preprocessing

(which involves the detection of CSs in the SAR images, as well
as change detection when using a time series), and information
extraction (which involves the automatic estimation of all the
relevant parameters for each storage tank).

For the preprocessing stage the runtime will depend on the
number of SAR images and their sizes. When using a single SAR
image the preprocessing involves just the CS detection which,
for one of the used TerraSAR-X images with 9014 × 18847
pixels, takes 2 min and 49 s on a Intel i7-8665 U laptop CPU
(with 4 cores) and 32 GB of RAM. When using a time series the
preprocessing also involves coregistration and coherent change
detection in addition to the CS detection. For the series of three
TerraSAR-X images used in this article, this takes a total of 10
min and 48 s (or 3 min and 36 s per image) on that same hardware.
In both cases, the preprocessing algorithm was implemented in
Python, using Numpy compiled with Intel MKL. In conclusion,
the preprocessing stage appears to be fast enough that many
SAR images could be processed in a reasonable time, even when
running on consumer hardware. If required, faster preprocessing
could be achieved by simply using a more powerful CPU or by
implementing the algorithms on a GPU.

Regarding the information extraction stage, its runtime will
mainly depend on the number of storage tanks in the imaged
scene, as the processing will be performed separately for each
storage tank using just a small image patch around it. As with
the preprocessing stage, the code was implemented in Python
using Numpy, and it was tested on the same hardware. When
using a single SAR image and the generic interval for the tank
radius (10 – 50 m), the runtime was 27 min and 18 s for the
167 storage tanks in the imaged scene, or 9.80 s per storage
tank. If the approximate radius r̂t for each tank (obtained from
OpenStreetMap) is used to define a tighter interval for the radius
(r̂t ± 5), the runtime becomes much faster: 2 min and 54 s in
total, or 1.04 s per tank. The reason for this large difference in
speed is that increasing the interval for the radius increases the
computation time of the Hough transform (which is the most
time-consuming step), and it also makes the size of the image
patch surrounding each tank larger, which further increases the
runtime. When using a time series, the information extraction
stage runs faster than when using a single image, even if multiple
images are being processed at once. The reason for this is that
the computation of the Hough transform becomes faster, as
only the CSs which remain static are taken into account. For
the generic radius interval, the information extraction from the
three TerraSAR-X images takes 19 min and 50 s, or 6.12 s per
tank. If the approximate radius from OpenStreetMap is used, the
processing takes just 2 min and 30 s, or 0.89 s per tank.

It is important to note that when using a time series, the whole
processing does not need to be repeated each time that a new
image is acquired. For the preprocessing stage, the new image
can be simply coregistered and added to the existing image stack,
and the change detection results can be updated including the
coherence of the new image pair and the CSs detected in this new
image. Regarding the information extraction stage, the Hough
transform does not need to be computed again, as the location,
radius and height of the storage tanks will not change. Instead,
only the displacements of the floating roof and its initial position
can be updated taking into account the new image.
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VI. CONCLUSION

The monitoring of oil storage has become a popular ap-
plication of high-resolution SAR and optical remote sensing
data, with multiple methods presented in the literature for the
detection of oil storage tanks and the estimation of their relevant
dimensions. Unlike the methods employing optical images, the
methods using SAR images can ensure regular observations
with optimal accuracy, as they are not affected by external
factors (e.g., sun and clouds). In this article, a method has been
introduced for the monitoring of oil storage tanks using one
or more high-resolution SAR images. The proposed method has
significant advantages with respect to the state of the art, mainly:
It works with both tanks with fixed and floating roofs and can
automatically distinguish them, it can fully automatically extract
all their relevant parameters by exploiting their complete geome-
try (rather than just using a few select image points), and if a time
series is available all the observations can be processed jointly to
obtain more robust and accurate estimates of all the parameters
(and especially of the vertical displacements of floating roofs).
This method has been applied to three TerraSAR-X images of
the port of Rotterdam containing 167 storage tanks of different
sizes and types.

Before all the relevant parameters of a storage tank can be
estimated, its approximate location in the image should be
known. This information was obtained from OpenStreetMap
data, as the predetection of the storage tanks is outside of the
scope of this article. Alternatively, this information could also be
extracted from the available imagery using any of the methods
available in the literature, many of which have been listed in
Section III-B.

An analysis of the obtained results has shown that as expected,
when the proposed method is applied to a time series, the
exploitation of the available temporal information increases
the robustness of the method, reducing the number of tanks
for which the method provides wrong results, especially for
tanks with a fixed roof and/or smaller sizes. Additionally, for
tanks with a floating roof, the use of a time series has another
advantage: The vertical displacements of the floating roof (which
are of great interest as they give the relative changes in the
amount of oil stored) can be estimated much more accurately
(even with subpixel accuracy) and robustly than when multiple
images are processed individually.

The results have also shown that if available, the use of some
information regarding the approximate radius of each tank is
of advantage, as this reduces the size of the interval for the
possible radius values, which leads to fewer errors and also
greatly improves the runtime. In our case these approximate
radius values were obtained from OpenStreetMap, but these
could also be obtained from the available imagery by some of
the methods listed for the predetection step. Alternatively, rather
than than trying the many possible radius values covering a given
interval, only a few specific values for the radius could be used,
as most storage tanks have standard sizes.

When using a time series and the approximate radius infor-
mation, the method performed very well, correctly fitting all the
semicircular double reflections for 158 of the 167 storage tanks

in the imaged scene, with errors in 3 of the 96 tanks with a
floating roof, and 6 of the 71 tanks with a fixed roof. Overall, the
method appears to perform better for tanks with a floating roof,
which represent the most interesting use case, as the amount
of oil stored in a given tank can only be determined if it has a
floating roof.

A good performance in the classification of storage tanks
(i.e., whether they have a fixed or a floating roof) has also been
demonstrated, achieving average F1 scores above 0.9 with as
little as 10 training samples. Here, the use of a time series also
slightly improves the classification results, especially with a
larger training dataset, achieving an average F1 score of 0.97
with 100 training samples. An analysis of the method’s runtime
has also been performed, showing that the method runs fast
enough even on a standard laptop, making the processing of
a large amount of SAR images containing lots of storage tanks
feasible.

Further work should involve a more rigorous verification of
the accuracy achievable by the proposed method. For this ground
truth data should be obtained for several storage tanks (including
their dimensions and the amount of oil stored in them at different
times), and SAR images of the same scene should be acquired
at these same times. If during this validation a bias were to be
found in some of the estimates (e.g., such as the tank height being
very likely slightly underestimated as previously mentioned in
Section II-A), the ground truth data could also potentially allow
to derive some correction factors to compensate for this bias.
Additionally, the potential of combining SAR images acquired
with different imaging geometries (e.g., different orbits and/or
incidence angles) could also be investigated. While the proposed
method can already be applied separately to multiple images or
time series acquired with different geometries to achieve more
frequent observations, two such images could also be exploited
jointly to improve the accuracy of the estimates for each tank’s
radius and height. Such improved estimates could be achieved
by fitting the two semicircular double reflections of the outer
tank structure jointly using both images, adding in this way an
additional geometric constraint.
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