
Received March 8, 2021, accepted March 26, 2021, date of publication April 8, 2021, date of current version April 21, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3071809

Automated Online Experiment-Driven
Adaptation–Mechanics and Cost Aspects
ILIAS GEROSTATHOPOULOS 1, FRANTIŠEK PLÁŠIL 2, CHRISTIAN PREHOFER3,4,
JANEK THOMAS 5, AND BERND BISCHL5
1Department of Computer Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
2Department of Distributed and Dependable Systems, Charles University in Prague, 116 36 Prague, Czech Republic
3DENSO Automotive Germany, 85386 Munich, Germany
4Department of Informatics, Technical University of Munich, 80333 Munich, Germany
5Department of Informatics, Ludwig Maximilian University of Munich, 80539 Munich, Germany

Corresponding author: Ilias Gerostathopoulos (i.g.gerostathopoulos@vu.nl)

This work was supported in part by the German Federal Ministry of Education and Research (BMBF) under Grant 01IS18036A, in part by
the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology through the Center for Analytics-Data-Applications
(ADA-Center) within the framework of BAYERN DIGITAL II, and in part by the ECSEL Joint Undertaking (JU) under Agreement 783221.

ABSTRACT As modern software-intensive systems become larger, more complex, and more customizable,
it is desirable to optimize their functionality by runtime adaptations. However, in most cases it is infeasible to
fullymodel and predict their behavior in advance, which is a classical requirement of runtime self-adaptation.
To address this problem, we propose their self-adaptation based on a sequence of online experiments carried
out in a production environment. The key idea is to evaluate each experiment by data analysis and determine
the next potential experiment via an optimization strategy. The feasibility of the approach is illustrated on
a use case devoted to online self-adaptation of traffic navigation where Bayesian optimization, grid search,
and local search are employed as the optimization strategies. Furthermore, the cost of the experiments is
discussed and three key cost components are examined—time cost, adaptation cost, and endurability cost.

INDEX TERMS Experimentation, optimization, self-adaptation.

I. INTRODUCTION
Large software-intensive systems (LSIS) are becoming more
dynamic, adaptive, and data-driven. An example is a smart
grid, for which, contrary to the classical power grid, no clear
models of consumption and production are available. This is
mostly due to the need of high flexibility in distributed energy
production and consumption.

With this in mind, we focus on LSIS that need to change
their architecture or configuration at runtime in order to
adapt to changes in their environment. The objective of such
adaptation is to optimize the LSIS’s functionality with respect
to a specific goal. Adaptation typically assumes the existence
of models that describe the behavior of the system and its
environment and allow for exploring the (potentially large)
space of adaptation options to select from. Nevertheless, a
common problem in LSIS is the lack of accurate, efficient,
and up-to-date models that can be used in the process of self-
adaptation. For instance, in order to optimize the capacity
of a highway, a model connecting the average speed and

The associate editor coordinating the review of this manuscript and

approving it for publication was Bijoy Chand Chand Chatterjee .

traffic density to adaptation actions such as setting dynamic
speed limits or opening and closing extra lanes, would be
needed. Typically, this would be a coarse-grained, empirically
constructed model. In this context, it is a challenge to tailor
such a model to the specifics of a particular LSIS and keep it
continuously updated in face of changes in the environment
(consider, e.g., a highway close to a city busy with commuters
and one with detours in a hilly remote area).

Instead of creating such models, we propose to self-adapt
LSIS to meet an optimization goal at runtime via automated
online experiment-driven adaptation (AOEDA). We build on
large-scale experiments employing A/B testing used by many
organizations including Microsoft [1], [2], Google [3], and
Uber [4] to evaluate different functionality variants of their
systems. AOEDA is a novel approach to optimize a system
on-the-fly by evaluating variants of system parameters set-
tings – system configurations. More general than A/B testing,
AOEDA (i) is initiated by the system itself (not by its oper-
ators), and (ii) aims at the dynamic (online) identification of
an optimal configuration and its activation. Similar to A/B
testing, AOEDA employs experimentation upon production
systems with real users, where the cost of experimentation is

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 58079

https://orcid.org/0000-0001-9333-7101
https://orcid.org/0000-0003-1910-8989
https://orcid.org/0000-0003-4511-6245
https://orcid.org/0000-0002-9363-9289


I. Gerostathopoulos et al.: AOEDA–Mechanics and Cost Aspects

an important factor, potential negative user reactions included
(e.g. dropping the use of a system service). In particular,
we identify three key components of experimentation cost:
(i) Cost related to the time needed for an optimization round
of the LSIS in question (time cost); (ii) cost of applying a
new configuration to the LSIS (adaptation cost); (iii) cost
related to the user dissatisfaction potentially caused by a new
configuration (endurability cost).

In this paper, we describe the main ingredients of AOEDA,
focus on the three essential components of experimentation
cost, showcase the related trade-offs in the use of different
optimization strategies, and discuss our insights on the use of
runtime optimization/adaptation via online experimentation.

The rest of the paper is organized as follows. Sec. II
presents the use case that will be used for motivating and
illustrating AOEDA. Sec. III describes the basic concepts and
challenges of AOEDA, whilst Sec. IV elaborates on three
optimization strategies that can be used with AOEDA. Sec. V
demonstrates the different cost aspects of our approach on the
use case and Sec. VI discusses key learnings from applying
AOEDA and recommended best practices. Finally, Sec. VII
discusses other approaches focusing on cost aspects, and the
concluding Sec. VIII summarizes the contribution.

II. USE CASE: TRAFFIC NAVIGATION
As a simple LSIS use case, we consider CrowdNav [5]—a
navigation service used by cars to help optimize their routing
from an origin to a destination in a street network. The
optimization goal is to reduce the average trip time by smartly
dispensing the street traffic, even though this may lead to
forcing some cars to take sub-optimal routes.

The navigation service runs the Dijkstra algorithm to deter-
mine the routes with the smallest sum of routing weights (we
could also have used other graph search algorithms such as
RRT [6]). The weights are assigned to streets according to
map information (statically) and traffic intensity (dynami-
cally). The weight of a street is proportional (i) to its length
and inversely proportional to the maximal speed allowed in it,
and (ii) to the average time to pass through the street (a proxy
for traffic intensity), based on data reported by cars.

CrowdNav features a number of system parameters that
can be changed at runtime and control the evaluation of rout-
ing weights. For example, one system parameter controls the
importance of map information while another one of traffic
intensity. To set appropriate values of the system parameters
(configurations), the impact of their particular selection on
the optimization goal needs to be modeled. Notice that such
a model would be specific to the situation at hand: an appro-
priate configuration when many cars are in operation does
not have to work in the case of few cars. Similarly, the model
would depend on the actual status of the street network, day
of the week, behavior of drivers, etc.

To optimize CrowdNav (our production system) function-
ality at runtime, we use, in an iterative way, a series of online
experiments that yield a proposition of a new configuration,
which is then applied, and its effect is measured by car trip

TABLE 1. CrowdNav parameters.

durations and drivers’ convenience. This assumes determin-
ing the value domain for each system parameter and setting
an initial configuration (Table 1). The default values and
ranges for each parameter were set based on the experience
of performing past experiments with CrowdNav [7].

For simplicity, we focus in this paper on optimizingCrowd-
Nav by tuning only two of its system parameters. The first one
is ‘‘route randomization’’ which controls the amount of noise
that is introduced to the routing weight. Its range is 0 to 0.3; in
simple terms, a value of 0.1means that there is a possible 10%
increase or decrease of routing weight. Larger values lead
to more diverse routes for the same origin-destination pairs,
which helps avoid bottlenecks. On the other hand, high values
may add some less-optimal routes due to added noise. The
second system parameter is the ‘‘data freshness threshold’’
that determines the acceptable level of staleness in traffic
data. Consider the case of a number of cars that need to move
in a peak time from an area A (e.g., a residential zone) to
area B (e.g., downtown). If all of them are given the same
route, congestion might occur; nevertheless, too much ran-
domization could yield several suboptimal routes. Similarly,
the threshold of data freshness influences the efficiency of the
routing process.

CrowdNav is bundled with a microscopic traffic simulator
(SUMO [8]) that allows simulation of different car trips in
realistic environments. For instance, to perform the demon-
stration and evaluation in Sec. V, we deployed 500 cars in the
city of Eichstädt in Germany.

III. AOEDA KEY CONCEPTS
A. MAIN IDEA
AOEDA is based on the following key assumptions:

1. The LSIS features a configuration space (a set of its
configurations) that can be explored at runtime by its
adaptation interface.

2. The LSIS can be adapted online by choosing and apply-
ing a new configuration.

58080 VOLUME 9, 2021



I. Gerostathopoulos et al.: AOEDA–Mechanics and Cost Aspects

FIGURE 1. High-level illustration of AOEDA.

3. The LSIS provides runtime data on its behavior—system
outputs—which allow quantifying the effect of applying
a particular configuration.

4. There is an Adaptation Manager that collects the system
outputs, processes and analyses them, and periodically
performs a series (pursuit) of online experiments by
choosing and applying specific configurations to the
LSIS with the goal to optimize its functionality.

Figure 1 shows the main idea of AOEDA. Essentially,
AOEDA follows the principles and phases of MAPE-K
loop, a classical approach to self-adaptation [9]. Concretely,
the LSIS features a number of system parameters, includ-
ing those characterizing the context (environment) of LSIS,
which are continuously monitored and analyzed to trigger
a pursuit (plan) and finally applied (execute) as the optimal
configuration found in the pursuit. The inner MAPE-K loop
in Figure 1 executes an experiment as a pursuit’s step, moni-
tors and analyzes its results, and plans the next experiment
to run in the pursuit. The analysis phase involves obtain-
ing multiple readings of system outputs. In a similar vein,
the outer MAPE-K loop in Figure 1, controls the execution of
the pursuit; specifically, its termination is determined either
bymeeting an optimization goal or by exceeding a predefined
number of experiments.

When the pursuit finishes, the (sub-)optimal configuration
found is applied to the LSIS (the execute phase of the outer
loop) and saved in the Knowledge base, so that this configu-
ration can be reused if the LSIS resides in the same situation
in the future.

In CrowdNav, the system outputs are trip overheads and
driver complaints. For each trip, the overhead is calculated
by dividing the actual trip duration by its theoretical duration
assuming no other traffic is present and cars move always
at the maximum permitted speed. Practically, trip overheads

range from 1 to 30.1 An experiment in CrowdNav applies a
new configuration and monitors the system outputs. It ter-
minates after 5000 samples of trip overhead are collected.
A pursuit consists of potentially many such experiments and
is triggered by monitoring a single system (context) param-
eter — the number of cars. Whenever this number reaches
a certain threshold, a new pursuit is triggered. The goal of
a pursuit in CrowdNav is to identify a minimum or close to
minimum median trip overhead. The pursuit ends by alter-
natively (a) meeting the optimization criterion ‘‘median(trip
overhead) < 1.2’’, or reaching a configuration that cannot be
improved any further (local optimum is found), (b) reaching
the pursuit budget (maximum number of experiments).

B. CHALLENGES
In essence, AOEDA performs pursuits that change config-
urations at runtime and measure the effect of the changes,
for different environments or contexts. In this setting, a basic
challenge is to select the best optimization strategy to drive
the pursuit. This depends on many factors including the
nature of system inputs (e.g. discrete or continuous), the size
and shape of the configuration space, the potential necessity
to find the global optimum, the time budget available for the
pursuit, and the tolerance levels of users. Clearly, no strategy
is optimal in all cases, as also indicated by the ‘‘no free lunch’’
theorems for optimization [10].

The above challenge is exacerbated when the comparison
of the optimization strategies and the selection of the optimal
one for a certain environment is learned once versus contin-
uously. In the latter case, mechanisms have to be in place
for switching strategies at runtime and assessing their effec-
tiveness in an automated way, as discussed in our previous
work [11].

Anyhow, an overarching challenge in AOEDA is that all
its phases have to be performed in a real-world setting,
i.e. after the system has been deployed to production. This
is different to the testbeds where optimization algorithms
(e.g. numeral optimization, genetic algorithms) are typically
benchmarked [12]–[14] and creates the extra requirement of
handling the different types of cost components associated
with AOEDA, described below (Sect. III.C).

C. EXPERIMENTATION COST
Compared to other adaptive systems, we argue that costs
of experimentation need to be considered differently for
AOEDA. As mentioned before, a pursuit is associated with
three key components of experimentation cost, which are
neither system parameters nor system outputs, but a property
of the optimization strategy:

1. Time cost. This is related to both the size of config-
uration (sub)space to be explored and the number of
experiments in a pursuit. Obviously, the higher the size

1Trip overhead of 1 means that its duration was equal to its theoretical
duration.

VOLUME 9, 2021 58081



I. Gerostathopoulos et al.: AOEDA–Mechanics and Cost Aspects

of configuration space and the number of experiments,
the higher the time cost.

2. Adaptation cost. Every time an experiment starts,
the LSIS is adapted eventually. This cost component
is proportional to the computational complexity of the
required adaptation actions. As an example, consider
applying to CrowdNav new router settings. Here the
adaptation cost is given by the burn-in time needed to
ensure that these settings have been picked up by all cars.

3. Endurability cost. This is the cost of running config-
urations which lead to user dissatisfaction [15], which
we call harmful configurations. Clearly, different users
will have different sources of dissatisfaction: longer trip
times, more fuel consumption, less driving comfort, etc.
The probability of inducing endurability cost, as well
as its magnitude is difficult to predict; controlling the
magnitude of this cost amounts to controlling the risk of
online experimentation [7].

The significance of each experimentation cost component
depends on a particular LSIS. When optimizing a web ser-
vice, the time cost or adaptation cost do exist but they are
often not significant. On the contrary, endurability cost is
important due to potential loss of user engagement. In a
similar vein, when optimizing a routing request issued by an
ambulance responding an accident, the time cost is primar-
ily important, since the optimization needs to take just few
seconds, or at most a minute, to be relevant.

IV. OPTIMIZATION STRATEGIES
Different optimization methods can be used to drive a pursuit
in AOEDA, i.e. to select the series of online experiments to
be performed to optimize the system. The optimization we
consider takes the form of finding the minimum of a response
y = f (x1, x2, . . . , xn)+ ε where f is the (unknown) response
function, x1, x2, . . . , xn are the input parameters (independent
variables, set specifically in each experiment) and ε is the
statistical error representing other sources of variability not
accounted by f .

The parameters x1, x2, . . . , xn are elements of the domain
X1, X2, . . . ,Xn forming a configuration space CS. The
response function f with its domain CS and the statistical
error ε determine the potential values of y – a response
surface RS. Since f is unknown in general, RS is typically
approximated, e.g., by a surrogate model, or even (in discrete
settings) fragments of it are created on the fly. A variety of
methods for creating such an approximation are known. They
are commonly based on carrying out experiments. Designing
experiments basically means to determine for which parts of
CS the response surface RS is to be approximated. An exper-
iment involves traversing the approximated parts of RS (this
process is called search) with the aim to find a domain point
yielding an optimal value of y.
Some methods specify/design all experiments before the

pursuit starts; others do so on the fly. Each method has dif-
ferent effect on reducing a particular cost component, while

potentially increasing others. We illustrate this trade-off by
optimizing CrowdNav via the three methods listed below.
These have been chosen (no only) since each of them inher-
ently aims at reducing one out of the three cost components.

1) Grid search over the configuration space (factorial
design)—mainly reduces adaptation cost;

2) Sequential model-based optimization (SMBO), also
referred to as Bayesian optimization— mainly reduces
time cost;

3) Local search starting from a predefined configuration—
mainly reduces endurability cost.

A. GRID SEARCH
Grid search systematically goes through all the possible con-
figurations of a discretized configuration space CS. It starts
from the configuration at an edge of CS and changes config-
uration by increasing one parameter xi value at a time. Using
design-of-experiments (DoE) terminology [16], this method
corresponds to full factorial design. Here, all experiments
(configurations to be tested) are designed (specified) a priori.
The results of grid search can be analyzed with factorial
ANOVA to determine which of the parameters x1, x2, . . . , xn
or combinations of them affect the response. The results can
also be used for fitting a first- or second-order polynomial
model that approximates the response surface RS [17]. Since
grid search always slightly modifies a single parameter xi, the
search only makes small moves in the configuration space,
resulting likely in low adaptation cost.

B. SMBO
In each experiment, SMBO builds a surrogate model (e.g.
Gaussian process, decision tree) of the response surface RS
and chooses the next experiment—the next configuration to
try out [18], [19]. To choose the next experiment, SMBO
uses an acquisition function that balances exploration with
exploitation: it tries to find a globally optimal configuration
with the least number of experiments by exploring less visited
regions in CS and exploiting the learned knowledge by eval-
uating close-to-known good configurations. Since the focus
is to converge fast, SMBO inherently reduces the time cost of
experimentation. However, adaptation and endurability costs
may be compromised due to jumps in CS.

C. LOCAL SEARCH
Local search is a simple method, inspired by Evolutionary
Operation by Box [20], that aims at finding a better con-
figuration (local optimum) in a neighborhood in CS. Local
search starts from evaluating a starting configuration (current
one), tries out all the neighboring configurations and moves
to the configuration that performs best, and, of course, better
than the current configuration. If no such neighbor exists,
the search terminates. The bottom line is that local search
does not aim at a globally optimal configuration. Since it
incrementally improves the system output by making only
small modifications at a time, it does not bring high risk of

58082 VOLUME 9, 2021



I. Gerostathopoulos et al.: AOEDA–Mechanics and Cost Aspects

FIGURE 2. Comparison of the three pursuit strategies on CrowdNav. Darker areas of the response surface indicate lower median values (better) of
trip overheads.

running harmful configurations; so there is a good chance that
it does not worsen the endurability cost.

V. CONCEPT EVALUATION
The goal of this section is to demonstrate AOEDA and to
compare the different optimization strategies and their effect
on the different cost components. In particular, we evaluate
the applicability of AOEDA in the optimization of the traf-
fic navigation use case introduced in Section II. Since we
aim at showcasing the different cost components, we benefit
from the flexibility of the simulator bundled with Crowd-

Nav, as other self-adaptation approaches did in their evalu-
ations [21]–[23].

In CrowdNav we simulated random trips of 500 cars in the
city of Eichstädt, Germany. In case of a high trip overhead
(higher than 2.5), a driver complaint was issued with some
probability (we used 50%). The output of an experiment was
the median of trip overheads of 5000 trips and the number
of complaints issued in the meantime. Such a large number
of recorded overheads resulted in a median value that was
rather stable and did not suffer from measurements errors
(outliers, etc.). The simulation results reported in the rest of

VOLUME 9, 2021 58083



I. Gerostathopoulos et al.: AOEDA–Mechanics and Cost Aspects

this section serve for demonstration of the different cost types
and informal comparison of the pursuit strategies.

Recall from Sec. II that we consider configuration of
two parameters: ‘‘route randomization’’ and ‘‘data freshness
threshold’’. The latter controls the length of the time window
for which traffic data is considered relevant in the routing
process. In Figure 2, the configuration of each experiment
(represented as a point) along with the median of trip over-
head per experiment is depicted. In particular, Figure 2.a
shows the pursuit using the SMBO strategy with Gaussian
processes as the surrogate model, 3.b using grid search, and
3.c using local search. For each of these subfigures, the first,
last, and best configuration are marked in black, white, and
green, respectively. Furthermore, each pursuit yielded a dif-
ferent optimal configuration and value of cost components as
described below. Recall that a cost component in our case is
neither a system parameter nor a system output, but a property
of the optimization strategy.

A. OPTIMAL CONFIGURATIONS
In the case of both the SMBO and grid search, the pursuit
stopped when it exhausted its budget (20 experiments for
SMBO, 63 for grid search), whereas local search terminated
not being able to find better local optimum in neighboring
configurations. Among the pursuit strategies, grid search
yielded the optimal configuration. At the same time, SMBO
yielded the second-best optimal configuration (a local opti-
mum), whereas local search was less efficient. Although the
three strategies yielded different results, all of them have
matched our intuition that some route randomization boosts
the routing efficiency, whereas more randomization hinders
it.

B. TIME COST
SMBO is faster in finding a good configuration than grid
search: with a pursuit budget of 20 experiments, SMBO
reports a local optimum that is close to the best-known opti-
mum reported by grid search. However, grid search needs a
much higher pursuit budget of 63 experiments. Finally, local
search needs a low pursuit budget of 13 experiments.

C. ADAPTATION COST
On the other side, grid search and local search carry out only
small changes in CS (low adaptation cost), whereas SMBO
occasionally exhibits big jumps in the configuration space.
Given that

adaptation cost =

∑
experiments

cost of a single experiment

and the cost of a single experiment in CrowdNav is always
a small constant, the big jumps in CS do not lead to higher
adaptation cost in case of SMBO.

D. ENDURABILITY COST
A harmful configuration leading to higher trip durations
will also yield more user complaints—and thus increase the

endurability cost. In case of SMBO, this can happen due
to the fact that the pursuit will explore less visited regions
of CS. We measured the number of issued complaints and
found out that in the case of grid search 15,405 complaints
were reported in total (average complaints-to-trips ratio:
4.89%), compared to only 4,176 complaints in total in case
of SMBO (average complaints-to-trips ratio: 4.17%). This is
of course related to the less experiments (20) performed for
SMBOcompared to grid search (63).When using local search
by starting from a configuration of ‘‘route randomization’’
of 0.1 and ‘‘data freshness threshold’’ of 400 (Figure 2.c.),
3,226 complaints were reported in total (average complaints-
to-trips ratio: 4.61%). Although the total number of com-
plaints was less than in the case of SMBO, we note that
the efficiency of local search highly depends on the initial
configuration. A main goal of the evaluation was to illustrate
the trade-offs between different cost factors for production
settings, where adaptation cost and endurability cost can be
very significant.

In adaptive systems research (including our earlier work),
extensive evaluations of the effect of the different strategies
on the optimization objective and the cost components con-
firm the above observation. For instance, in [11] we compared
the effectiveness of Bayesian optimization with two variants
of genetic algorithms on optimizing CrowdNav at runtime.
In [7], we combined Bayesian optimization with factorial
design (grid search), A/B testing and binomial testing (for
detecting harmful configurations). In [24], we performed
experiments in a microservice-based production environment
to collect data with the goal of continuous optimizing
services deployment in an edge-cloud scenario. Finally,
in [25] we used Bayesian optimization in combination
with reinforcement learning to optimize machine learning
pipelines.

VI. DISCUSSION OF KEY LEARNINGS
In this section, we summarize the lessons we have
learned when applying AOEDA to CrowdNav and dis-
cuss our recommendations when applying AOEDA in
general.

A. LESSONS LEARNED
1) TRADE-OFFS BETWEEN DIFFERENT PURSUITS AND COST
COMPONENTS
need to be considered for each case. Local search can be
good in reducing endurability cost if a good starting point
is chosen and a good or best local optimum can be found.
Grid search is exhaustive and slow, but has minimal cost for
adaptation in each step. Both Grid and local search work
best if the configuration space is continuous, without sharp
peaks. SMBO explores the RS more widely and can detect
more local optima (and the global optimum at best). Still,
any application of SMBO needs to consider all the three cost
components, and especially the endurability cost as it makes
bigger jumps in the configuration space.

58084 VOLUME 9, 2021



I. Gerostathopoulos et al.: AOEDA–Mechanics and Cost Aspects

2) EXPERIMENTATION COST DEPENDS ON THE
APPLICATION
As we showcased in Sec. IIIC, one needs to account for the
different cost components associated with the choice of a
pursuit strategy. However, cost is also associated with the tar-
get LSIS itself: For instance, applying AOEDA in optimizing
a car-sharing system by modifying the position of some of
the available cars will most probably have higher adaptation
cost than changing the values of CrowdNav parameters, since
moving cars around comes with additional effort. A good
idea before starting to optimize an LSIS is to first estimate
the size of all cost components. Time cost can be estimated
by looking at the variance of system outputs, with higher
variance pointing to longer experiments and higher time cost.
Adaptation cost may be estimated offline by calculating the
cost of each potential experiment. Finally, endurability cost is
hard to estimate offline; small-scale pre-experiments should
be used here to gauge the amount of endurability cost that can
be expected.

B. RECOMMENDATIONS
1) HARMFUL EXPERIMENTS SHOULD BE ABORTED EARLY
Time and endurability costs’ evaluation can be used not only
for assessing different optimization strategies, but also for
aborting an experiment if it incurs a high time and/or endura-
bility cost. This is analogous to the abortion criteria used in
A/B testing for stopping an online experiment before many
users are exposed to a harmful configuration [26].

2) LARGE CONFIGURATIONS SPACES SHOULD BE PRUNED
OFFLINE
In order to reduce the time cost of a pursuit strategy, CS may
have to be pruned offline to reduce the number or range of
parameters considered in the pursuit. One way to achieve this
is to learn (offline) which parameters have the strongest effect
on the system output and use them to form the CS considered
in the pursuit [22].

3) HUMANS IN THE LOOP
Ideally, AOEDA should be performed in complete autonomy
in which continuous monitoring of the LSIS is used for
triggering a pursuit when the current system configuration is
considered suboptimal with respect to the runtime situation
(e.g. high traffic in the city). Nevertheless, when automated
pursuit triggering is difficult to achieve, humans can be in the
loop to possibly trigger new pursuits. Indeed, automating the
triggering of new pursuits is an important subject of our future
work.

VII. COST ASPECTS IN SELF-ADAPTIVE AND ONLINE
EXPERIMENTATION APPROACHES
Our new approach for online experimentation integrates
adaptation, search and optimization, and experimentation for
systems with a larger configuration space, where no suitable
model of the system and environment exists. As there is a
vast body of related work, we compare AOEDA to different
related approaches in detail below.

The main goal of self-adaptive systems is adaptation
in response to changes in their internal state and their
operating environment [27], [28]. Considerable research
efforts focus on finding the most suitable new configura-
tion [27], [29] based on a model (e.g. a Markov decision
process). In AOEDA, we use adaptation to explore the con-
figuration space by experiments without such a model. Thus,
we have to consider the cost of several adaptation steps, which
leads to our novel cost classification. The notion of cost that
appears in the self-adaptive literature mainly focuses on the
utility or suitability of a single target configuration, compared
to others in a model. Also, other works consider cost in the
context of monitoring, e.g. [30].

In the area of adaptive systems, approaches exist that
employ online planning to find the best adaptation actions
at runtime [22], [31]. A number of algorithms have been
employed to this end: Hill climbing has been used to imple-
ment a search-based feedback loop [32]; genetic program-
ming and genetic algorithms (including NSGA-II and novelty
search) have been advocated as part of the vision of genetic
improvement for adaptive software engineering [33] and used
in determining optimal configurations [11], [23], [34]–[36];
finally, multi-armed bandits [37] and Bayesian optimiza-
tion [7], [11] have been employed for online planning in
self-adaptive systems.

Although the emphasis in these works is on the quality
of the found solution, the time needed to find such solution
is also evaluated and reported, as, e.g., in [21], [23], [36].
Elapsed time is indeed related to our time cost; however,
we emphasize that in our approach, runtime experiments are
performedwith the system itself, not with amodel of it. In this
setting, model-less approaches using multi-criteria optimiza-
tion have also reported time costs as a significant factor, but
do not mention adaptation or endurability costs [11]. For
specific applications of adaptive systems, the adaptation cost
is considered, e.g. in [38], [39] the effort to start up virtual
machines is relevant for adaptation.

In the recent literature on online experimentation [1], the
focus is on improving connected software applications. Here,
endurability cost is emphasized over adaptation or time cost,
since there is a high risk in user exposure to suboptimal
functionality [40], [41]. Online experimentation is a general-
ization of A/B testing [26] and, in this line, typically a discrete
set of options is considered, not the exploration of a search
space with possibly continuous variables.

In summary, a main contribution of our new AOEDA
approach is the cost classification suitable for experiment-
driven adaptation in AOEDA. We show how to use differ-
ent multi-criteria optimization strategies in this cost model,
including incremental optimization based on Gaussian Pro-
cesses.

VIII. CONCLUSION
In this paper, we presented our new approach for auto-
mated online experiment-driven adaptation (AOEDA). This
integrates concepts of optimization, experimentation and

VOLUME 9, 2021 58085



I. Gerostathopoulos et al.: AOEDA–Mechanics and Cost Aspects

adaptation for systems with a larger configuration space,
where no suitable model of the system and environment
exists. To overcome the problem of missing model, we used
online experimentation as in A/B testing, but for larger con-
figuration spaces where A/B testing does not scale. Further-
more, we argued that cost needs to be considered differently
for AOEDA. In this line, we presented a novel classification
of the different cost factors which are most relevant for
AOEDA, and showed the connection to related approaches
in self-adaptive systems and online experimentation. Based
on a use case of traffic management, we compared different
options for controlling the online experiments with different
cost focus and drew several learnings for AOEDA.

REFERENCES
[1] R. Kohavi, T. Crook, R. Longbotham, B. Frasca, R. Henne, J. L. Ferres,

and T. Melamed, ‘‘Online experimentation at microsoft,’’ in Proc. Data
Mining Case Stud. Pract. Prize III, vol. 11, 2009, p. 29. Accessed:
Jun. 21, 2017. [Online]. Available: http://www.appliedaisystems.com/
papers/DMCS2009_Workshopproceedings4.pdf#page=11

[2] S. Gupta, L. Ulanova, S. Bhardwaj, P. Dmitriev, P. Raff, and A. Fabijan,
‘‘The anatomy of a large-scale experimentation platform,’’ in Proc. ICSA,
Apr. 2018, pp. 1–109.

[3] D. Tang, A. Agarwal, D. O’Brien, and M. Meyer, ‘‘Overlapping exper-
iment infrastructure: More, better, faster experimentation,’’ in Proc.
SigKDD, 2010, pp. 17–26. Accessed: Jun. 13, 2017. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1835810

[4] (Nov. 1, 2019). Uber Experimentation Platform. [Online]. Available:
https://eng.uber.com/tag/experimentation/

[5] S. Schmid, I. Gerostathopoulos, C. Prehofer, and T. Bures, ‘‘Self-
adaptation based on big data analytics: Amodel problem and tool,’’ inProc.
SEAMS, May 2017, pp. 102–108.

[6] S. LaValle, ‘‘Rapidly-exploring random trees: A new tool for path plan-
ning,’’ Dept. Comput. Sci., Iowa State Univ., Ames, IA, USA, Oct. 1998,
p. 98. Accessed: Feb. 15, 2021. [Online]. Available: http://cs.brown.
edu/courses/cs1951r/assignments/motionplanning/rrtpaper.pdf

[7] I. Gerostathopoulos, C. Prehofer, and T. Bures, ‘‘Adapting a system
with noisy outputs with statistical guarantees,’’ in Proc. SEAMS, 2018,
pp. 58–68.

[8] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, ‘‘Recent develop-
ment and applications of SUMO—Simulation of urban mobility,’’ Int. J.
Adv. Syst. Meas., vol. 5, nos. 3–4, pp. 128–138, Dec. 2012.

[9] J. O. Kephart and D. M. Chess, ‘‘The vision of autonomic computing,’’
Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003.

[10] D. H.Wolpert andW. G. Macready, ‘‘No free lunch theorems for optimiza-
tion,’’ IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82, Apr. 1997, doi:
10.1109/4235.585893.

[11] E. M. Fredericks, I. Gerostathopoulos, C. Krupitzer, and T. Vogel,
‘‘Planning as optimization: Dynamically discovering optimal configu-
rations for runtime situations,’’ in Proc. IEEE 13th Int. Conf. Self-
Adaptive Self-Organizing Syst. (SASO), Jun. 2019, pp. 1–10, doi:
10.1109/SASO.2019.00010.

[12] N. R. Herbst, S. Kounev, A. Weber, and H. Groenda, ‘‘BUNGEE: An elas-
ticity benchmark for self-adaptive IaaS cloud environments,’’ in Proc.
IEEE/ACM 10th Int. Symp. Softw. Eng. Adapt. Self-Manag. Syst., Florence,
Italy, May 2015, pp. 46–56, doi: 10.1109/SEAMS.2015.23.

[13] B. Bischl, J. Richter, J. Bossek, D. Horn, J. Thomas, and M. Lang,
‘‘MlrMBO: Amodular framework for model-based optimization of expen-
sive black-box functions,’’ 2017, arXiv:1703.03373. [Online]. Available:
http://arxiv.org/abs/1703.03373

[14] B. Bischl, O. Mersmann, H. Trautmann, and M. Preuß, ‘‘Algorithm selec-
tion based on exploratory landscape analysis and cost-sensitive learn-
ing,’’ in Proc. 14th Int. Conf. Genet. Evol. Comput. Conf. (GECCO),
Philadelphia, PA, USA, 2012, p. 313, doi: 10.1145/2330163.2330209.

[15] I. Gerostathopoulos, C. Prehofer, L. Bulej, T. Bures, V. Horky, and P. Tuma,
‘‘Cost-aware stage-based experimentation: Challenges and emerging
results,’’ in Proc. ICSA, 2018, pp. 72–75.

[16] S. Ghosh and C. R. Rao, Eds.,Handbook of Statistics 13: Design and Anal-
ysis of Experiments, 1st ed. Amsterdam, The Netherlands: North-Holland,
1996.

[17] D. Baş and İ. H. Boyacı, ‘‘Modeling and optimization I: Usability of
response surface methodology,’’ J. Food Eng., vol. 78, no. 3, pp. 836–845,
Feb. 2007, doi: 10.1016/j.jfoodeng.2005.11.024.

[18] D. R. Jones, M. Schonlau, and W. J. Welch, ‘‘Efficient global optimiza-
tion of expensive black-box functions,’’ J. Glob. Optim., vol. 13, no. 4,
pp. 455–492, Dec. 1998, doi: 10.1023/A:1008306431147.

[19] P. I. Frazier, ‘‘A tutorial on Bayesian optimization,’’ Jul. 2018,
arXiv:1807.02811. Accessed: May 19, 2019. [Online]. Available:
http://arxiv.org/abs/1807.02811

[20] G. E. P. Box and N. R. Draper, Evolutionary Operation: A Statistical
Method for Process Improvement. New York, NY, USA: Wiley, 1998.

[21] T. Chen, K. Li, R. Bahsoon, and X. Yao, ‘‘FEMOSAA: Feature-guided
and knee-driven multi-objective optimization for self-adaptive software,’’
ACM Trans. Softw. Eng. Methodol., vol. 27, no. 2, pp. 1–50, Jul. 2018, doi:
10.1145/3204459.

[22] P. Jamshidi, J. Cámara, B. Schmerl, C. Kästner, and D. Garlan,
‘‘Machine learning meets quantitative planning: Enabling self-
adaptation in autonomous robots,’’ in Proc. SEAMS, May 2019,
pp. 39–50. Accessed: Sep. 13, 2019. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3341527.3341534

[23] C. Kinneer, Z. Coker, J. Wang, D. Garlan, and C. L. Goues, ‘‘Managing
uncertainty in self-adaptive systemswith plan reuse and stochastic search,’’
in Proc. 13th Int. Conf. Softw. Eng. Adapt. Self-Manag. Syst. (SEAMS),
Gothenburg, Sweden, 2018, pp. 40–50, doi: 10.1145/3194133.3194145.

[24] L. Bulej, T. Bureš, A. Filandr, P. Hnětynka, I. Hnětynková, J. Pacovský,
G. Sandor, and I. Gerostathopoulos, ‘‘Managing latency in edge–cloud
environment,’’ J. Syst. Softw., vol. 172, Feb. 2021, Art. no. 110872, doi:
10.1016/j.jss.2020.110872.

[25] X. Sun, J. Lin, and B. Bischl, ‘‘ReinBo: Machine learning pipeline con-
ditional hierarchy search and configuration with Bayesian optimization
embedded reinforcement learning,’’ in Machine Learning and Knowledge
Discovery in Databases. Cham, Switzerland: Springer, 2020, pp. 68–84,
doi: 10.1007/978-3-030-43823-4_7.

[26] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne, ‘‘Con-
trolled experiments on the Web: Survey and practical guide,’’ Data
Mining Knowl. Discovery, vol. 18, no. 1, pp. 140–181, Feb. 2009, doi:
10.1007/s10618-008-0114-1.

[27] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker,
‘‘A survey on engineering approaches for self-adaptive systems,’’
Pervasive Mobile Comput., vol. 17, pp. 184–206, Feb. 2015, doi:
10.1016/j.pmcj.2014.09.009.

[28] B. H. C. Cheng et al., ‘‘Software engineering for self-adaptive systems:
A research roadmap,’’ in Software Engineering for Self-Adaptive Systems.
Berlin, Germany: Springer, 2009, pp. 1–26.

[29] K. Angelopoulos, A. V. Papadopoulos, and J. Mylopoulos, ‘‘Adaptive
predictive control for software systems,’’ inProc. 1st Int.WorkshopControl
Theory Softw. Eng., New York, NY, USA, Aug. 2015, pp. 17–21, doi:
10.1145/2804337.2804340.

[30] E. Zavala, ‘‘Towards adaptive monitoring services for self-
adaptive software systems,’’ in Service-Oriented Computing. Cham,
Switzerland: Springer, 2018, pp. 357–362, doi: 10.1007/978-3-319-
91764-1_31.

[31] T. Zhao, ‘‘The generation and evolution of adaptation rules in requirements
driven self-adaptive systems,’’ in Proc. IEEE 24th Int. Requirements Eng.
Conf. (RE), Sep. 2016, pp. 456–461, doi: 10.1109/RE.2016.18.

[32] P. Zoghi, M. Shtern, and M. Litoiu, ‘‘Designing search based adaptive
systems: A quantitative approach,’’ in Proc. 9th Int. Symp. Softw. Eng.
Adapt. Self-Manag. Syst., 2014, pp. 7–16.

[33] M. Harman, Y. Jia, W. B. Langdon, J. Petke, I. H. Moghadam, S. Yoo,
and F. Wu, ‘‘Genetic improvement for adaptive software engineering
(keynote),’’ in Proc. 9th Int. Symp. Softw. Eng. Adapt. Self-Manag. Syst.,
Hyderabad, India, Jun. 2014, pp. 1–4, doi: 10.1145/2593929.2600116.

[34] Z. Coker, D. Garlan, and C. L. Goues, ‘‘SASS: Self-adaptation using
stochastic search,’’ in Proc. IEEE/ACM 10th Int. Symp. Softw. Eng.
Adapt. Self-Manag. Syst., Florence, Italy, May 2015, pp. 168–174, doi:
10.1109/SEAMS.2015.16.

[35] G. G. Pascual, M. Pinto, and L. Fuentes, ‘‘Run-time adaptation of mobile
applications using genetic algorithms,’’ in Proc. 8th Int. Symp. Softw.
Eng. Adapt. Self-Manag. Syst. (SEAMS), May 2013, pp. 73–82, doi:
10.1109/SEAMS.2013.6595494.

58086 VOLUME 9, 2021

http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1109/SASO.2019.00010
http://dx.doi.org/10.1109/SEAMS.2015.23
http://dx.doi.org/10.1145/2330163.2330209
http://dx.doi.org/10.1016/j.jfoodeng.2005.11.024
http://dx.doi.org/10.1023/A:1008306431147
http://dx.doi.org/10.1145/3204459
http://dx.doi.org/10.1145/3194133.3194145
http://dx.doi.org/10.1016/j.jss.2020.110872
http://dx.doi.org/10.1007/978-3-030-43823-4_7
http://dx.doi.org/10.1007/s10618-008-0114-1
http://dx.doi.org/10.1016/j.pmcj.2014.09.009
http://dx.doi.org/10.1145/2804337.2804340
http://dx.doi.org/10.1007/978-3-319-91764-1_31
http://dx.doi.org/10.1007/978-3-319-91764-1_31
http://dx.doi.org/10.1109/RE.2016.18
http://dx.doi.org/10.1145/2593929.2600116
http://dx.doi.org/10.1109/SEAMS.2015.16
http://dx.doi.org/10.1109/SEAMS.2013.6595494


I. Gerostathopoulos et al.: AOEDA–Mechanics and Cost Aspects

[36] S. Y. Shin, S. Nejati,M. Sabetzadeh, L. C. Briand, C. Arora, and F. Zimmer,
‘‘Dynamic adaptation of software-defined networks for IoT systems:
A search-based approach,’’ in Proc. SEAMS, 2020, p. 12.

[37] B. Porter and R. R. Filho, ‘‘Distributed emergent software: Assembling,
perceiving and learning systems at scale,’’ in Proc. SASO, 2019, p. 10.

[38] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, andG. Jiang, ‘‘Power
and performance management of virtualized computing environments via
lookahead control,’’ in Proc. Int. Conf. Autonomic Comput., Jun. 2008,
pp. 3–12, doi: 10.1109/ICAC.2008.31.

[39] Q. Zhang, Q. Zhu, M. F. Zhani, and R. Boutaba, ‘‘Dynamic ser-
vice placement in geographically distributed clouds,’’ in Proc. IEEE
32nd Int. Conf. Distrib. Comput. Syst., Jun. 2012, pp. 526–535, doi:
10.1109/ICDCS.2012.74.

[40] R. Kohavi, D. Tang, and Y. Xu, Trustworthy Online Controlled Experi-
ments: A Practical Guide to A/B Testing. Cambridge, U.K.: Cambridge
Univ. Press, 2020.

[41] Y. Xu, W. Duan, and S. Huang, ‘‘SQR: Balancing speed, quality and risk
in online experiments,’’ in Proc. 24th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, NewYork, NY, USA, Jul. 2018, pp. 895–904, doi:
10.1145/3219819.3219875.

ILIAS GEROSTATHOPOULOS received the
Ph.D. degree in computer science from the Depart-
ment of Distributed and Dependable Systems,
Faculty of Mathematics and Physics, Charles
University, Prague. He was as a Postdoctoral
Researcher with the Department of Informatics,
Technical University ofMunich. He is currently an
Assistant Professor of computer science with Vrije
Universiteit Amsterdam, The Netherlands. His
research interests include software engineering,

software architecture, and self-adaptive systems.

FRANTIŠEK PLÁŠIL is currently a Professor of
software engineering with the Department of Dis-
tributed and Dependable Systems (D3S), Charles
University, Prague. In the course of his carrier,
he held visiting positions in USA at the Univer-
sity of Denver, Wayne State University, and the
University of New Hampshire, and in Austria at
the University of Linz. In his research, he focuses
on component-based software architectures, and
also on allocation of formal methods in software

systems. He has led several D3S research teams in a number of research
projects, such as ITEA OSMOSE, ITEA OSIRIS, EU FP7 Q-ImPrESS,
and ASCENS. He has coauthored over 100 refereed articles in international
journals and proceedings of international conferences. He also served on
the program committees of numerous international conferences and editorial
boards of several international journals.

CHRISTIAN PREHOFER received the M.S.
degree from the University of Illinois at
Urbana-Champaign and the Ph.D. and Habilitation
degrees in computer science from TU München,
in 1995 and 2000, respectively. He is currently
the Director of DENSO Germany and a Lecturer
with TU München. Before this, he was leading
research groups at fortiss and Fraunhofer. He was
also acting as a Professor in computer science with
LMU München and Chang’an University. Before

2009, he held different management and research positions in the mobile
communication industry. He is the author of more than 150 publications and
34 granted patents.

JANEK THOMAS received the Ph.D. degree
from theWorking Group Computational Statistics,
Ludwig Maximilian University (LMU), Munich,
in April 2019, with a focus on automated machine
learning and gradient boosting. He is currently
the Group Leader of the Fraunhofer IIS Group
AutoML&XAI funded by the Ada Lovelace Cen-
ter. The group is closely connected to the Working
Group Computational Statistics and the Chair of
Database Systems and Data Mining, LMU. He did

research internships at the Microsoft Cloud and Information Services Lab
and H2O.ai, during his Ph.D.

BERND BISCHL received the Ph.D. degree from
the Department of Statistics, TU Dortmund, Ger-
many, in 2013. He is currently a Professor of sta-
tistical learning and data science with the Depart-
ment of Statistics, Ludwig Maximilian University
of Munich. He works on data science, machine
learning, and computational statistics.

VOLUME 9, 2021 58087

http://dx.doi.org/10.1109/ICAC.2008.31
http://dx.doi.org/10.1109/ICDCS.2012.74
http://dx.doi.org/10.1145/3219819.3219875

