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Preface 

In times of global challenges, such as climate change, the transformation of mobility, and an 

ongoing demographic change, production engineering is crucial for the sustainable advance-

ment of our industrial society. The impact of manufacturing companies on the environment and 

society is highly dependent on the equipment and resources employed, the production pro-

cesses applied, and the established manufacturing organization. The company's full potential 

for corporate success can only be taken advantage of by optimizing the interaction between 

humans, operational structures, and technologies. The greatest attention must be paid to be-

coming as resource-saving, efficient, and resilient as possible to operate flexibly in the volatile 

production environment. 

Remaining competitive while balancing the varying and often conflicting priorities of sustaina-

bility, complexity, cost, time, and quality requires constant thought, adaptation, and the devel-

opment of new manufacturing structures. Thus, there is an essential need to reduce the com-

plexity of products, manufacturing processes, and systems. Yet, at the same time, it is also 

vital to gain a better understanding and command of these aspects. 

The research activities at the Institute for Machine Tools and Industrial Management (iwb) aim 

to continuously improve product development and manufacturing planning systems, manufac-

turing processes, and production facilities. A company's organizational, manufacturing, and 

work structures, as well as the underlying systems for order processing, are developed under 

strict consideration of employee-related requirements and sustainability issues. However, the 

use of computer-aided and artificial intelligence-based methods and the necessary increasing 

degree of automation must not lead to inflexible and rigid work organization structures. Thus, 

questions concerning the optimal integration of ecological and social aspects in all planning 

and development processes are of utmost importance. 

The volumes published in this book series reflect and report the results from the research 

conducted at iwb. Research areas covered span from the design and development of manu-

facturing systems to the application of technologies in manufacturing and assembly. The man-

agement and operation of manufacturing systems, quality assurance, availability, and auton-

omy are overarching topics affecting all areas of our research. In this series, the latest results 

and insights from our application-oriented research are published, and it is intended to improve 

knowledge transfer between academia and a wide industrial sector. 

 

Rüdiger Daub    Gunther Reinhart    Michael Zäh
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Abstract 

Condition monitoring has the potential to increase the operating time and availability of indus-

trial robot gears. In this dissertation, a reference architecture for such a condition-monitoring 

system is designed and evaluated based on different datasets of accelerated wear tests. The 

reference architecture allows the automated detection of different defects of industrial robot 

gearboxes and has the potential to make the development process of a condition-monitoring 

system for industrial robot gearboxes more efficient.  

 

Condition Monitoring besitzt das Potential die Lebensdauer und Verfügbarkeit von Industriero-

botergetrieben zu erhöhen. Im Rahmen dieser Dissertation wird eine Referenzarchitektur für 

ein solches Condition-Monitoring-System entworfen und anhand von verschiedenen Daten-

sätzen von beschleunigten Verschleißtests evaluiert. Die Referenzarchitektur ermöglicht die 

automatisierte Detektion von unterschiedlichen Schäden bei Industrierobotergetrieben und be-

sitzt so das Potential den Entwicklungsprozess eines Condition-Monitoring-Systems für Indust-

rierobotergetriebe effizienter zu gestalten.
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1 Introduction 

<Solving climate change would be the most amazing thing humanity has ever done= (JUSTIN 

ROWLATT 2021). 

This quote from Bill Gates shows on the one hand, the great potential our civilization could 

unleash in the coming decades; on the other hand, it emphasizes the challenges that society 

has faced. Transforming energy systems, mobility behavior, or the way goods are produced 

are only some aspects of this globally needed change (BUNDESMINISTERIUM FÜR UMWELT, NA-

TURSCHUTZ UND NUKLEARE SICHERHEI 2019). In the manufacturing sector, the reduction of en-

ergy consumption, the circular economy, and the increased lifetime of assets are enablers for 

this transformation (CADEZ & CZERNY 2016).  

1.1 Motivation 

The prolongation of the useful lifetimes of machines can be based on suitable maintenance 

strategies. With the advent of Industrie 4.0 3 the fourth industrial revolution 3 technologies 

such as machine connectivity, fast processing of large datasets, and artificial intelligence to 

support decisions, condition monitoring (CM) strategies allow the triggering of maintenance 

actions based on the machine state shortly before failure (DALENOGARE ET AL. 2018). Hence, 

the premature exchange of an asset based on a predetermined maintenance schedule can be 

avoided, and the lifetime of the asset can be increased.  

As well as these long-term benefits, condition monitoring also increases the availability of as-

sets by avoiding unexpected downtimes due to failures (DIN DEUTSCHES INSTITUT FÜR 

NORMUNG E. V 2018). Such unexpected downtimes are caused, for example, by the faults of 

industrial robots (IRs), the workhorses of high-wage countries such as Germany. More pre-

cisely, gear faults usually lead to the replacement of the robot in a production line (NENTWICH 

& REINHART 2021c). Hence, the design of a CM system for these components would have the 

potential to improve the productivity and lifetime of these assets. 

However, the design of such systems is often hindered by the lack of the necessary data, 

expert knowledge, or a business case (MULDERS & HAARMAN 2018). Additionally, the growing 

number of published CM approaches increases the potential solution space for the CM system. 

In Chapter 3, it is pointed out that many of these publications do not meet industry require-

ments. These approaches require data from defective robots that are difficult to acquire. More-

over, they do not consider the transient velocities and temperature fluctuations of robot gears. 

Since the development of a CM system for IR gears cannot be based on existing approaches, 
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the implementation of such a system is an iterative and time-consuming process, which re-

duces the profitability of the system. A reduction of time and effort is needed, to improve this 

situation. 

1.2 Objective 

Given the situation described in Section 1.1, the objective of this dissertation is as follows: 

To increase the efficiency in the development process of condition-monitoring systems for in-

dustrial robot gears. 

In this context, efficiency relates to reducing timely efforts 3 and hence cost 3 within the devel-

opment process compared to a reference scenario. The definition of the condition-monitoring 

system (CMS) development process is given in Section 2.2.2. To achieve this objective, two 

main approaches to increase efficiency are considered. Firstly, iterations within the develop-

ment process shall be reduced. Secondly, the time for data acquisition required for a success-

ful operation of the CM system shall be decreased. The two levers are realized by designing 

a CM reference architecture (RA) for IR gears. A RA is a template for developing a particular 

solution (ISO/IEC 2021).This architecture requires little data and is particularly designed for 

the characteristics of robot operations, such as gear temperature fluctuations and transient 

velocities. The components of the architecture can be used directly in the development process 

and thus reduce iterations and the time for data acquisition. 

1.3 Methods and Structure of the Dissertation 

To achieve the objective of this work, this dissertation follows the design research methodology 

(BLESSING & CHAKRABARTI 2009), which also defines the structure of this work. The objective 

of this methodology is to improve the rigor of research projects and therefore increase the 

applicability of research outcomes to practice (BLESSING & CHAKRABARTI 2009, p. 9). In gen-

eral, a design research methodology project consists of four steps. First, from a global motiva-

tion, a research gap is identified. Second, a descriptive study is performed to gain a compre-

hensive understanding of the research problem by means of literature analysis, experiments, 

or data analysis. Third, a solution model is built based on the findings of the descriptive study 

in a prescriptive study. Fourth, another descriptive study is performed to validate the outcome 

of the prescriptive study (BLESSING & CHAKRABARTI 2009, p. 15 - 17).  

In this dissertation, the general topic is presented in Chapter 1, and the most relevant funda-

mentals of this work are introduced in Chapter 2 as part of the research clarification. The state 
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of the art is summarized and critically discussed in Chapter 3 as part of the first descriptive 

study. The publications related to this dissertation are then presented in Chapter 4. They focus 

on the different aspects of the CM RA for IR gears and consist of prescriptive and descriptive 

elements. They can therefore be classified as part of the prescriptive or the second descriptive 

study. Hence, the overall approach can be classified as a research project of type 6, as de-

scribed in BLESSING & CHAKRABARTI (2009, p. 33). This type of project consists of a review-

based research clarification and first descriptive study and a comprehensive prescriptive and 

second descriptive study. The contribution of this dissertation is discussed in Chapter 5, and a 

summary and outlook are given in Chapter 6. The structure of the dissertation and the classi-

fication of its modules in the different processes are summarized in Figure 1. 

 

 

Figure 1: Structure of the dissertation 
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2 Fundamentals 

This chapter provides the basic theoretical concepts upon which this dissertation is based. It 

discusses IRs in Section 2.1. As these systems deteriorate over time, Section 2.2 focuses on 

maintenance. The topic of machine learning is covered in Section 2.3, since it is of importance 

for the maintenance strategy considered in this work. Next, two relevant types of machine 

learning models, trend- and anomaly-detection models, are discussed in Sections 2.4 and 2.5. 

2.1 Industrial Robots 

According to DIN EN ISO 10218-1, IRs are automatically controlled, freely programmable, 

multi-purpose manipulators that can be programmed in three or more axes and which are used 

in mobile or stationary automation technologies (DEUTSCHES INSTITUT FÜR NORMUNG E. 

V 2012). Within this dissertation, only six-axis articulated robots with a payload over 200 kg 

are considered, as these robots have long exchange times in the case of a gear failure due to 

their dimensions and weight. 

2.1.1 Structure and Working Principle 

Six-axis articulated robots consist of six axes that are connected in series by rotational joints 

to enable movements within a spherical working space. An example of the structure of a six-

axis articulated robot is shown on the left side of Figure 2. Each joint consists of an electric 

motor that enables the movement of the axis by transmitting torque via a gear. The motors, 

which are mostly brushless direct current motors, are controlled by the robot controller, which 

plans the robot movements according to the user commands or robot programs (SICILIANO & 

KHATIB 2008, p. 79 - 82). These movements, if not defined otherwise, are usually characterized 

by steep acceleration and deceleration ramps and phases of stationary velocity. To cope with 

these characteristics and with other requirements such as low space requirements and trans-

mission ratios, mostly cycloidal drives are used in the robot payload class over 200 kg (PHAM 

& AHN 2018). These gears, also known as rotate vector (RV) reducers, transmit the motor9s 

torque in two stages. The motor pinion drives three planetary wheels. Their shafts are mounted 

eccentrically in two cycloidal discs. The movement of the cycloidal discs enables the robot axis 

movement. The working principle of these gears is explained on the right side of Figure 2. 
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Figure 2: Mechanical structure of an industrial robot following KUKA (2021, p. 38) and NAB-

TESCO (2022, p. 10) 

In practice, the gears are exposed to varying temperatures due to the robot9s varying utilization. 

These different temperatures also influence the friction inside the gear (CARVALHO BITTEN-

COURT 2014) and the damping behavior of the gears (JAGADISH & RAVIKUMAR 2013, SHU ET 

AL. 2020). Figure 3 exemplifies the changing temperatures of a robot gear operating in a car 

body plant for over two months. Temperature variations in a range of 30 Kelvin can be ob-

served. 

 

Figure 3: Temperature fluctuations of an industrial robot gear 

2.1.2 Faults of Cycloidal Gears 

Cycloidal gears can show different defects due to overloading, unsuitable lubrication or aging. 

Defects can be considered from two points of view. From a maintenance point of view, a robot 
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has a defect if it cannot fulfill its production task sufficiently. This could be due to the blockage 

of the gear, broken parts, or an increased number of error messages caused by the robot 

controller when the torque is not transmitted as expected by the controller (DANIELSON & 

SCHMUCK 2017, NENTWICH & REINHART 2021a). These error messages stop the automatic 

working mode of the robot and hence make maintenance necessary. From a tribological point 

of view, defects can be differentiated by the main cycloidal gear components: shafts, bearings, 

and gears. In the following, the different defects of these parts are summarized. 

The INTERNATIONAL STANDARDIZATION ORGANIZATION (2017) describes different failure modes 

of bearings that can lead to different defects. Overall, six failure modes can be distinguished. 

Rolling contact fatigue is a failure mode caused by periodic stresses between the rolling 

element and the raceways of a bearing. It can be differentiated into surface and subsurface 

initiated fatigue. The latter causes microcracks under the components9 surface that propagate 

to the surface and then lead to spalling. The former is based on plastic deformation of the 

components9 surface due to unsuitable lubrication or particles that are pressed between the 

components9 surfaces. 

The second failure mode is wear, which can be categorized into abrasive wear and adhesive 

wear. Abrasive wear is the surface removal of components due to sliding between the compo-

nents in the presence of hard particles. Adhesive wear appears due to frictional heat and de-

scribes the transfer of material between component surfaces. The heat first leads to fusing of 

the surfaces. This bond is then destroyed by the unwinding of the surfaces and material is 

thereby removed. 

Corrosion is another failure mode and is based on chemical reactions on metal surfaces. 

Corrosion can be caused by contact with moisture that creates rust on the component surface 

that will eventually lead to pits and spalling. Another cause is friction that leads to the oxidation 

of the metal surface and creates rust powder on the mating component surfaces. 

Currents can also cause bearing defects. This electrical erosion can be caused by voltage 

between the bearing ring and the rolling element that leads to short high-current flows. They 

cause small pits in the rolling element or the bearing ring runway. Constant current flowing 

through the bearing causes very small, shallow crates to form close together. 

Plastic deformation occurs if the components9 material yield strength is exceeded. This can 

be caused, for example, by high shock loads while the bearing is stationary, which can lead to 

indentations on the component surfaces. Such indentations can also be caused by particles 

that are over-rolled. 

Cracks and fractures represent the last failure mode. Cracks appear when the tensile 

strength of the components9 materials is locally exceeded. The propagation of a crack through 
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a component leading to a complete separation of a portion of the component is defined as a 

fracture. Cracks can be caused by excessive loads. Another cause is fatigue of the material, 

which is based on repeated excessive bending, tension, or torsional loads. Finally, frictional 

heating can cause high residual tensile stresses or a re-hardening of steel components, which 

will eventually lead to cracks. Figure 4 presents examples of different bearing defects. 

 

Figure 4: Bearing defects following INTERNATIONAL STANDARDIZATION ORGANIZATION (2017) 

Similar failure modes exist for gear teeth. A detailed description of these failure modes can be 

found in INTERNATIONAL STANDARDIZATION ORGANIZATION (1995). In this dissertation, faults of 

IR gears are considered. In the accelerated wear tests that were performed as a part of this 

work and that are described in NENTWICH & DAUB (2022), combinations of the faults described 

above could be observed. 

2.2 Maintenance 

In the following sections, different maintenance strategies and their applicability for different 

scenarios are explained. Subsequently, a specific strategy 3 condition-based maintenance 3 

is described in Section 2.2.2. 

2.2.1 Maintenance Strategies 

To cope with the defects described above, different maintenance strategies can be applied. 

According to SCHENK (2010, p. 26 - 34), four strategies exist, as presented below. 

In a reactive maintenance strategy, maintenance is performed after a defect occurs. This 

minimizes the upfront planning effort but requires the storage of spare parts and leads to un-

expected downtimes of the affected production line. 

In contrast, in a preventive maintenance strategy, maintenance is performed in regular time 

intervals to avoid defects. In this strategy, the length of downtimes can be reduced compared 
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to a reactive maintenance scenario, and spare parts can be ordered based on the maintenance 

intervals. However, it is possible that parts are exchanged that would not have failed soon. 

Hence, this strategy can incur unnecessary costs of early part exchanges (RYLL & 

FREUND 2010, p. 28 - 29). Furthermore, planned downtimes occur more frequently compared 

to a reactive maintenance strategy. 

To address these deficiencies, condition-based maintenance assesses the condition of com-

ponents by collecting and analyzing data. Different sensor systems can be used for the data 

collection. The suitability of the sensor system depends on the components. Vibration, noise, 

current, temperature, and oil analysis sensors are used for gear-condition monitoring (KOLE-

RUS & WASSERMANN 2017, p. 1). The information from this sensor data can then be used to 

determine the condition of the system and trigger a maintenance action before a fault occurs. 

In theory, this would maximize the components9 lifetime and avoid unexpected failures. This 

maintenance strategy, however, incurs additional costs for sensors and data analysis software. 

Predictive maintenance advances the principle of CM by using the collected data to predict 

the future condition of the asset. These predictions can then be used to identify the points of 

failure of the asset in the future and schedule maintenance action accordingly (TINGA & 

LOENDERSLOOT 2019). Predictive models can be based on two different principles. Either they 

are based on a physical model of the asset, which incorporates the wear mechanisms of the 

asset and models the wear progress correctly, or they are purely data driven (LEI ET AL. 2018). 

In the latter case, data that correlate with the wear progress must be collected for many similar 

assets and faults. On the one hand, this maintenance approach would ideally reduce down-

times and allow the integration of maintenance planning in production planning. On the other 

hand, the implementation of a reliable predictive model requires either deep physical 

knowledge about the failure modes and wear progress of the asset or large amounts of sensor 

data related to the observed defects of the asset. 

As described above, these maintenance strategies have different benefits and drawbacks. 

Hence, the question arises which maintenance strategy should be used for which scenario. To 

make this decision, ideally a cost-benefit analysis of the different strategies is performed. A 

simpler approach is suggested by LEE ET AL. (2009) and depicted in Figure 5. In this approach, 

the maintenance strategy for a component is selected by the component9s failure probability 

and the downtime related to the component9s failure. Components with low failure probability 

and low related downtimes should be maintained reactively. Components with a high failure 

probability and low related downtimes would be maintained with a preventive strategy. A con-

dition-based or predictive maintenance strategy would be applied for components with low 

failure probability and long downtimes. Components with high failure probability and down-

times should have already been avoided in the product development. 
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Figure 5: Maintenance strategies according to LEE ET AL. (2009) 

In NENTWICH & REINHART (2021c), we found that robot gears have low defect probabilities and 

long related downtimes based on historic data and expert interviews. This is one reason why 

a CM approach is pursued in this dissertation. At the core of a condition-monitoring mainte-

nance strategy is the CMS, which observes the wear state of a machine. In the next chapter, 

the fundamentals of CMSs are explained. 

2.2.2 Condition-Monitoring Systems 

The implementation of a CM strategy consists of two tasks. A CMS must be designed and 

integrated into production, and the implications of the CMS must be considered in the produc-

tion9s maintenance processes. A CMS is a system that acquires and processes data that indi-

cate the state of a machine over time (INTERNATIONAL STANDARDIZATION ORGANISATION 2012, 

p. 1). Designing a CMS is a three-step approach, which is depicted in Figure 6 (DIN 

DEUTSCHES INSTITUT FÜR NORMUNG E. V 2018). 

 

Figure 6: Condition-monitoring system development process following DIN DEUTSCHES INSTI-

TUT FÜR NORMUNG E. V (2018) 

First, a suitable data-acquisition system must be designed. This includes the selection of suit-

able sensors, the definition of measurement routines, and software to collect and store the raw 

Reactive 
maintenancePr

ob
ab

ilit
y 

of
 fa

ilu
re

Average downtime 

Condition-based 
maintenance

Should be avoided 
at the design 

stage

Preventive 
maintenance



Fundamentals 

11 

sensor data for further processing (LEE ET AL. 2014). In the context of this dissertation, a meas-

urement routine describes the state of the asset during the measurement (in the case of an IR, 

this relates to the trajectory the robot executes) and how often a measurement is performed. 

Subsequently, the collected raw data must be further processed. This processing can include 

different tasks, such as selecting defined time frames of the measurements, filtering of the data 

to reduce noise, evaluating the quality of the measurement, and deriving one or several health 

indicators (HIs). An HI is an indicator of the health state of the asset. A change in the health 

state of the asset ideally also induces a change in the HI value. Numerous approaches exist 

based on statistics, signal analysis, or machine learning to calculate such HIs (LEI ET AL. 2018). 

Finally, these HIs must be monitored for trends and anomalies. These can be evidence for 

defects and can be used to trigger a maintenance action (PHAM ET AL. 2006, p. 110). These 

three steps are discussed in detail below. 

Data acquisition 

In data acquisition, the central question to be answered is that of which sensor to select. Mul-

tiple options exist for gear CM. Since different machine faults have different physical effects, 

different sensor systems can be used to measure these effects and hence detect faults. Fig-

ure 7 shows the frequency of different data sources used in publications that were analyzed in 

the literature review in NENTWICH & REINHART (2021c). 

 

Figure 7: Data sources used for gear condition-based maintenance following NENTWICH & 

REINHART (2021c) 

Acceleration sensors attached to the gear cap are used most frequently. These sensors ideally 

capture vibrations of the gear that occur at certain frequencies depending on the rotational 

speed of the gear and the geometry of the faulty component, such as a bearing. In theory, 

these frequencies can be calculated as shown in Formula 1 for faults at the inner ring of a 
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bearing (GIRDHAR & SCHEFFER 2004, p. 112). Similar formulas exist for other components, 

such as pinions. 

ýÿýý ý2 7 ÿ 7 1 ýÿ 7 cos ÿ  (1) 

In Formula 1, ýÿýý is the ball passing frequency at the inner ring of a bearing with ý  roller 

elements, a diameter ý , a pitch diameter ÿ , and a contact angle ÿ that spins at a rotational 

speed of ÿ.  

The calculation of these frequencies requires knowledge about the exact geometries of the 

gear, which is often not available. Furthermore, these frequencies can deviate in reality be-

cause of measurement noise and interferences such as vibrations in the environment 

(GIRDHAR & SCHEFFER 2004, p. 115). 

The same principle can be used with motor current signals. The vibrations induce torques into 

the system, which can be traced back through the drive train to the motor. These torque 

changes can lead to motor current changes, which can then be measured (KAR & MO-

HANTY 2006). Another principle that can be used for CM with motor currents is the change of 

friction in the gear due to wear. BITTENCOURT ET AL. (2012) showed that the friction in a robot 

gear increases with wear. These changes can be calculated from measurements of the motor 

currents during defined robot movements. 

These two data sources are also considered in this dissertation. For a more detailed explana-

tion about the fault principles that are used in oil or noise analysis, please refer to MOBLEY 

(2002a) and MOBLEY (2002b). 

The signals acquired from acceleration or current sensors are usually collected for equidistant 

time steps and can be considered as time series (BROCKWELL & DAVIS 2016, p. 1). Time series 

can have different characteristics, including a constant or varying mean value. In the latter 

case, the time series shows a trending behavior. If these trends occur in repeating time inter-

vals, they are called periodicities. Furthermore, time series can have random variations, which 

are referred to as noise (BROCKWELL & DAVIS 2016, p. 12). 

The time series from acceleration or current sensors of rotatory machinery such as gears can 

be considered as the superposition of many periodic time series that relate to the characteristic 

gear component frequencies as described above (GIRDHAR & SCHEFFER 2004). To capture the 

signals at certain frequencies, the sensor system must have certain characteristics. First, its 

sampling frequency must be at least twice the maximum frequency of interest (SHAN-

NON 1949). Moreover, the sensor9s frequency range must include this maximum frequency 

(BRANDT 2011, p. 151 - 152).  
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Health indicator determination 

As described above, the overall objective of the data transformation step is to derive meaning-

ful HIs that correlate with the health state of the robot gear. For this, the collected sensor signal 

can be analyzed in different domains (ALLEN & MILLS 2003, p. 56). The signal is captured in 

the time domain. This means that its amplitude values are collected at discrete points in time. 

The left side of Figure 8 shows a synthetically created signal in the time domain. Closer in-

spection shows that the signal appears to follow a sine function with noise. These data can 

also be analyzed in the frequency domain, where it becomes clearer that the signal consists 

of a sine function with a defined amplitude, as shown in the spectrum on the right side of Figure 

8. 

 

Figure 8: Signal in time and frequency domain 

To transform the signal in the frequency domain, the discrete Fourier transform is used, which 

is described in Formula 2 (COOLEY & TUKEY 1965, BRANDT 2011, p. 180): 

ÿ ý ÿ ÿ /  (2) 

where ÿ  is the Fourier-transformed signal at frequency ý; ý ÿ  is the signal at time step ÿ; ÿ 
is a complex number; and ý is the number of samples of the signal. 

As ÿ  is a complex number, the absolute value of ÿ  is calculated to derive an amplitude 

spectrum value (TAN & JIANG 2013, p. 97). If a gear operates at a constant, known velocity and 

the geometries of the gear components are known, the amplitudes of the characteristic gear 

component frequencies can be monitored for changes, which can then be an indicator of a 

defect, as described, for example, in Formula 1 (GIRDHAR & SCHEFFER 2004, p. 112). If the 

gear operates at varying velocities, the frequencies of the gear components and the captured 
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signal change. This leads to side bands in the spectra, which hinder the analysis of specific 

frequency amplitudes (BRANDT 2011, p. 269 - 271). This is exemplified for a signal with varying 

frequencies on the right side of Figure 9. 

 

Figure 9: Transient signal in time and frequency domains 

To cope with varying velocities or non-stationary signals, the time signal can also be trans-

formed to the time-frequency domain. In this domain, the signal can be observed as a spec-

trogram. The spectrogram of the non-stationary signal is depicted in Figure 10. Here, magni-

tudes at different frequencies related to different component vibrations can be monitored. 

 

Figure 10: Spectrograms with a large window size (left image) and a small window size (right 

image) 
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To derive a spectrogram, the short-time Fourier transform (STFT) ÿ ý, ý  in Formula 3 must 

be calculated from the time signal ý ÿ . Here, the discrete Fourier transform is applied to small 

time windows of the signal, which can then be considered almost stationary (ALLEN 1977). 

ÿ ý, ý ý ÿ 7 ý ÿ ÿ 7 ÿ / (3) 

To extract these small time windows, the signal is multiplied with a window function ý at time 

position ÿ. Again, the absolute values or the squared values of the STFT are calculated to 

derive an energy or power spectrogram. The choice of the window length influences the time 

and frequency resolution of the spectrogram. Longer window lengths lead to a higher fre-

quency-resolution and a lower time-resolution, and vice versa (BRANDT 2011, p. 264 - 265). 

This is illustrated in Figure 10 for the signal from Figure 9, which changes its frequency at a 

certain point in time. In the left image in Figure 10, it is clearer which frequencies the signal is 

composed of. Here, a longer time window is used. In the right image in Figure 10, shorter time 

intervals are shown. In this case, a shorter time window was used. In the use case of CM, 

longer time windows can be used to detect magnitude changes in frequency ranges of interest, 

such as the characteristic gear frequencies. If these frequencies are unknown, a medium-sized 

time window can be used to achieve a compromise between time- and frequency-resolution. 

The window-size selection process is usually driven by expert knowledge. 

As can also be seen in Figure 10, the noise of the time signal blurs the spectrogram image. To 

reduce this high-frequency noise, low-pass filters can be used. These filters can be applied to 

the time signal and reduce the frequency content of the signal above a cut-off frequency. Filters 

exhibit different damping behaviors based on filter type and order. In this context, damping 

relates to the reduction of magnitudes of the signal content in certain frequency ranges. The 

filter order describes how often the basic filter is applied to the time signal. For a more detailed 

description of how these filters are calculated, please refer to BRANDT (2011, p. 42 - 50). 

Another measure to reduce noise in a spectrogram is the Z-score (ALTMAN 1968). The Z-score 

can be calculated for a signal. For this, the mean ý� and the standard deviation ÿ of the signal 

or population are calculated. For each signal value or each sample of the population ý, the Z-

score can be calculated as shown in Formula 4. This principle was originally introduced in 

statistics and is also a common preprocessing step in machine learning. 

ý ý ý�ÿ (4) 

Based on these preprocessed data, HIs can be derived per measurement in the different signal 

domains. These HIs can describe the energy of the signal (in a certain frequency range) or 

describe statistical characteristics of the signal. The energy of a signal can refer to the squared 
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magnitudes of the signal or the integral of the squared magnitudes in a certain frequency range 

(BOUDRAA & SALZENSTEIN 2016, p. 209). As there exists an enormous number of HIs for differ-

ent applications, no holistic overview of these HIs can be given in this dissertation. NENTWICH 

& REINHART (2021b) or VEEY ET AL. (2005) can serve as good entry points for a more detailed 

analysis of this subject. 

Over time, multiple measurements will be made for an asset, and an HI time series can be 

analyzed to decide whether the asset 3 in this work, the IR gear 3 is defective or healthy. In 

summary, time series on two different time scales are considered in this dissertation. A meas-

urement is a time series that lasts seconds and is sampled at high frequencies (e.g., several 

kHz). HIs are calculated per measurement time series. HI values from several measurements 

form another time series, which might include data of several years. One time step in these 

time series corresponds to hours or days. 

Ideally, the time series of these HIs shows a monotonous course over time with a low standard 

deviation. In this case, higher values of the HIs can be easily related to faults. To assess this 

behavior, different figures of merit can be used, such as monotonicity or robustness (LEE ET 

AL. 2014). Another possibility is to fit basic functions, such as a linear or quadratic polynomial 

or an exponential function, on the time series and calculate the R² measure of the fit (NENTWICH 

& REINHART 2021a). The R² measure quantifies the distance of the fitted function to the data 

points of the time series relative to the time series variance. It can be calculated as shown in 

Formula 5 (WRIGHT 1921): 

ý 1 3 ý ý ²3 ý ý ² (5) 

where ý  is a value of the HI time series with length ý; ý  is the estimated value of the fitted 

function at position ÿ; and ý  is the mean value of the HI time series. The principle of the R² 

measure is exemplified in Figure 11. The orange linear fit of the blue HI time series results in 

an R² value of 0.81. The R² measure is defined to be in the value range 0 to 1, where a value 

of 1 describes a perfect fit. Such a perfect fit would refer to a monotonous time series with low 

noise, as would be desired for an ideal HI. Since this is often not the case, fault detection 

models are required to detect patterns in the time series that could be related to faults such as 

trends or anomalies.  
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Figure 11: Example time series with linear fitted function (with arbitrary units) 

Model selection 

LEE ET AL. (2014) distinguish between physics-based and data-driven models. For the former, 

detailed knowledge about the wear processes must be available (see e.g. THÜMMEL ET AL. 

(2015)), which is not the case for the application considered in this dissertation. For the latter, 

anomaly-detection and trend-detection models can be used. With increasing wear, usually 

trends and anomalies appear in the HI time series (AIVALIOTIS ET AL. 2021, TANDON & 

PAREY 2006, SKF 2017, p. 10). The detection of trends or anomalies can be used as a decision 

basis for maintenance actions. As the supervision of the time series for several robot gears is 

usually costly, trends and anomalies should ideally be detected automatically. Machine learn-

ing, or more precisely trend- and anomaly-detection models, are suitable for this task. Hence, 

these three topics will be presented in the next sections. 

2.3 Machine Learning 

A machine learning (ML) model can be considered as a system in which features serve as 

input and the labels are the model9s output. Features and labels can be scalars, vectors, ma-

trices, or tensors (HASTIE ET AL. 2009, p. 1 - 2). The combination of both features and labels is 

referred to as a dataset in this work. In mathematical terms, a machine learning model esti-

mates a function, as presented in Formula 6: ÿ ÿ ý, ý (6) 

where ÿ is a label; ÿ is the machine learning model; and ý is a set of features. In a training 

phase, a training dataset is used to estimate the parameters ý of ÿ to predict the labels cor-

rectly. Then, in a testing phase, the trained model with fixed parameters ý is evaluated with 
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testing data regarding different figures of merit. Some of these figures are described in Sec-

tion 2.3.2. Furthermore, there are different ways to determine the parameters of this function 

depending on the model category and specific type (HASTIE ET AL. 2009, p. 2).  

2.3.1 Categories of Machine Learning 

Different classification schemes for machine learning models exist. One classification scheme 

differentiates supervised and unsupervised models (BISHOP 2009, p. 3). If a set of features and 

known labels of these features are used to determine the model9s parameters, the model can 

be classified as a supervised model. In this category, regression and classification models can 

be distinguished based on the characteristics of the labels. Either the labels are on a continu-

ous scale, in which case the model can be classified as a regression model, or the labels are 

on a discrete scale (such as two categories), in which case the model can be defined as a 

classification model (BISHOP 2009, p. 3). In contrast, in unsupervised machine learning, no 

labels are used to train the model. The model learns only certain characteristics of the features, 

which can then be used to cluster data or reproduce similar data (BISHOP 2009, p. 3). 

Another common problem is the lack of data for certain classes in a classification problem 

(YANG ET AL. 2021). In the application of CM, it is time-consuming to acquire data from faulty 

robots because of their long lifetimes. To overcome this challenge, models from the category 

of one-class classification can be used. In this case, only data from one class are required to 

train the model. Considering the CM application, this means that only data from functional 

robots are used. During the training, the model learns the characteristics of these functional 

data. Afterwards, the model can determine if a sample belongs to the class it was trained with 

(MOYA & HUSH 1996). 

2.3.2 Evaluation of Machine Learning Models 

Different possibilities exist for assessing how well the model9s parameters were estimated for 

its specific task. For one-class classification models that distinguish samples from two classes 

3 the positive and negative class 3 the true positive rate (ÿÿý) and false positive rate (ýÿý) 

are important figures of merit to describe the model performance. The ÿÿý can be calculated 

for a test dataset based on Formula 7 and the ýÿý based on Formula 8 (YERUSHALMY 1947): 

  

ÿÿý ÿÿÿÿ ýý (7) 
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ýÿý ýÿýÿ ÿÿ (8) 

where ÿÿ are positive samples that are classified correctly; ýý are the positive samples that 

are classified as negative samples; and ýÿ are negative samples that are classified as positive. 

For many one-class classification models, a trade-off exists between the ÿÿý and ýÿý de-

pending on the model parameters. Either a model is conservative and shows a low ýÿý at the 

cost of a decreased ÿÿý or a model is liberal, having a high ÿÿý in combination with an in-

creased ýÿý(FAWCETT 2006). The principle of the different rates is shown in Figure 12. 

 

Figure 12: Relation between different figures of merit and classified data 

Receiver operator characteristic (ROC) curves are used to evaluate this trade-off. A ROC curve 

displays the ÿÿý and ýÿý for different model parameter combinations. A model parameter is, 

for instance, a parameter that characterizes the model and influences its training process. Ide-

ally, a model parameter combination shows a ÿÿý of 1 and a ýÿý of 0, which represents a 

model that identifies all positive values correctly while not causing any false alarms. In contrast, 

an entry in the ROC curve on the angle bisector of the diagram refers to a model parameter 

combination of a <guessing= model. Here, both rates are 0.5, which means that the model 

randomly decides if an anomaly is present or not (EMMERICH 1967). The principle of a ROC 

curve is presented in Figure 13 and illustrated in the following example: The ROC curve values 

could be derived from a model that identifies abnormal vibration measurements of a robot by 

a simple threshold rule. If the maximum measured vibration exceeds a set threshold, a meas-

urement is classified as abnormal. The threshold defines the model parameter combination. If 

this threshold is low, it is likely to detect all actual abnormal measurements and obtain a high ÿÿý. However, many normal measurements will also be classified as abnormal leading to a 

high ýÿý. This is illustrated in Figure13 in case A. This case would mark one point in the ROC 

curve. If the threshold is now increased, it is likely that the ýÿý will decrease and the ÿÿý will 

decrease slightly leading to a new point in the ROC curve, e.g. as case B in Figure 13. By 

increasing this threshold in multiple steps, multiple points in the ROC curve can be determined.  
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Figure 13: Principle of a receiver operator characteristic curve 

To summarize the information of a ROC curve, the area under the curve (AUC) value can be 

calculated. To do so, the entries of the ROC curve are linearly interpolated, and the integral 

under this curve is calculated. A higher AUC value usually refers to a model with higher per-

formance (SWETS 1979). However, even models with lower AUC values can show the ideal 

behavior of a ÿÿý value of 1 and an ýÿý value of 0. As a model is used in production with only 

one parameter set (e.g. one threshold for the vibration), always multiple figures of merit such 

as the AUC and the ÿÿý should be used to evaluate model performance. ROC curves can 

also be determined for trend-detection models, which are considered in the next section. 
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2.4 Trend-Detection Models 

In this section, the term trend is first defined. Subsequently, different trend-detection models 

are categorized, and the most relevant model for this dissertation 3 the Cox-Stuart test 3 is 

presented in detail. In the context of this work, a trend describes the basic direction of a time 

series, which is independent from stochastic deviations (SCHNECK 2015, p. 711). A time series 

with a trend is also called non-stationary and has no fixed average value (ALBERS 2009, p. 

396).  

2.4.1 Trend-Detection Model Categories 

There are different trend-detection approaches for different purposes. Some methods detect 

whether a trend is present in a time series; other approaches focus on the visualization of 

trends in data. Another purpose is to detect change points. Change points are steps in a time 

series where an increasing trend changes into a decreasing trend or vice versa (SHARMA ET 

AL. 2016).  

Methods for trend detection are based on various principles. Statistical tests determine 

whether a trend is present in a time series. For this, the Mann-Kendall test, the Cox-Stuart test, 

or the Wilcoxon-Mann-Whitney test can be used (MANN 1945, COX & STUART 1955, WIL-

COXON 1945). Trends can also be detected by clustering the data points of a time series and 

comparing the slope of the cluster centers with defined thresholds (MELEK ET AL. 2005). Alter-

natively, they can be detected by fitting functions on the data or segments of the data and 

comparing the fit of these functions on the data quantified by figures of merit such as the R² to 

thresholds (NENTWICH & REINHART 2021a). 

These function fits can also be used for trend visualization. Filters can be used to reduce 

noise in a time series and thus also visualize trends (NIEMINEN ET AL. 1989). Finally, methods 

exist to identify change points. 

In IR gear CM, it is necessary to detect whether trends are present in the HI time series, since 

a trend can indicate a defect (AIVALIOTIS ET AL. 2021, TANDON & PAREY 2006, SKF 2017, p. 

10). This means that statistical trend tests are potentially suitable for this application. Methods 

based on function fitting and comparing these fits9 goodness with thresholds could also be 

applied. Finally, cluster fitting is potentially applicable for trend detection for IR gear CM. In 

NENTWICH & REINHART (2021a), which will also be presented in Section 4.2.4, it is shown that 

the Cox-Stuart test is the most suitable test for this purpose. Thus, this test will be presented 

in more detail below. 
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2.4.2 The Cox-Stuart Test 

The Cox-Stuart test is a non-parametric trend test (COX & STUART 1955). In this context, non-

parametric means that the distribution of the time series does not have to be known. The test 

is used to accept or reject the null hypothesis that no trend is present in a dataset. In principle, 

this test consists of four steps. Firstly, data pairs from data points in the first and last third of 

the time series are created. Secondly, the differences between these data pairs are calculated, 

and the occurrence of the signs of these differences, which can be positive, negative, or zero, 

is counted. Thirdly, a test statistic is calculated based on the largest number of occurrences 

and the number of data points of the time series. Finally, the p-value for the test statistic is 

derived and compared to a desired confidence level. Formalized, the maximal occurrence 

value of a sign ÿ  can be calculated according to Formula 9; the test statistic ý  is then cal-

culated by Formula 10 and the p-value derived by Formula 11. 

ÿ max · sgn x ý ÿ , ÿ 1,0,1/
(9) 

where · is the Dirac operator, sgn is the sign function, and ý  is a sample of the time series 

with the length ý at position ÿ. 

ý |ÿ | ý6ý12 (10) 

ý ÿ ÿ |ý | , ÿ ~ ý 0,1 (11) 

In Formula 11, ÿ describes a probability and ÿ a normal probability distribution ý with mean 0 

and standard deviation 1. Finally, the calculated p-value is compared with a significance level. 

A significance level expresses the required certainty level of the trend detection as a probabil-

ity. If the p-value is smaller than the significance level, the null hypothesis is rejected and the 

presence of a trend can be assumed. To apply the test, only the required significance level 

must be defined. A smaller significance level corresponds to a higher probability that a trend 

is present. This principle is exemplified in Figure 14. The Cox-Stuart test is applied with differ-

ent significance intervals. A lower significance level results in a later detection of the trend, 

when it is clearer that a trend is present in the time series. 
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Figure 14: Cox-Stuart test with different significance levels (in arbitrary units) 

Figure 14 shows an outlier around time step 135. Such anomalies can be detected by anomaly-

detection models, which are discussed in the next section. 

2.5 Anomaly-Detection Models 

In this section, after anomalies are defined, an overview is given of different types of anomaly-

detection models for time series. The most relevant anomaly-detection models for this work 3 

the long short-term memory neural network and the local outlier factor 3 are then explained. 

According to HAWKINS (1980, p. 1), an anomaly or outlier is <an observation which deviates so 

much from other observations as to arouse suspicions that it was generated by a different 

mechanism.= 

Anomalies can be differentiated by type. In the context of a time series, anomalies include 

point, collective and contextual types (CHANDOLA ET AL. 2009, p. 7 - 8). Point anomalies are 

individual data points that deviate significantly from the time series. Collective anomalies are 

multiple data points whose occurrence together form an anomaly. Contextual anomalies are 

data points whose occurrence is rare in a given context (e.g., high outdoor temperature values 

measured in winter). In Figure 15, the different types of anomalies are exemplified. 
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Figure 15: Time series with different types of anomaly 

Assuming that the periodic behavior of the time series is known, the rightmost anomaly in 

Figure 15 can be classified as a contextual anomaly or as a point anomaly. Lower values would 

usually be expected at this position of the periodicity. The contextual anomaly could also con-

sist of multiple data points. Often, contextual anomalies are more difficult to detect with simple 

rules. In the example above, the point and collective anomalies could be detected by defining 

a threshold around 0.1. No false positives would occur. If the same approach would be used 

for the contextual anomaly, a very small threshold would have to be used leading to a high and 

undesired false positive rate. 

In the context of this thesis, anomalies are defined as the positive class for the data classifica-

tion scheme presented in Figure 12. Normal data are considered samples of the negative 

class. 

The algorithms used to automatically detect these anomalies in time series are referred to as 

anomaly-detection models in this dissertation. If a gear defect occurs, such models can be 

used to detect the anomalies in the HI time series automatically. This reduces the manual 

monitoring required in the CM system. 

2.5.1 Categories of Anomaly-Detection Models 

In Section 2.2.2 on page 12, the different characteristics of time series were introduced. In the 

introduction to Section 2.5, it was shown that there are different types of anomalies. The choice 

of an anomaly-detection model depends on these characteristics and the anomaly types pre-

sent. Different types of anomaly-detection models and different classification schemes for 

these models (PIMENTEL ET AL. 2014, CHANDOLA ET AL. 2009, AGGARWAL 2017, WANG ET 

AL. 2019) exist. This dissertation follows the classification scheme presented by PIMENTEL ET 

AL. (2014). It suggests distinguishing between probabilistic, distance-based, reconstruction-
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based, domain-based and information-theoretic approaches. An overview of these classes is 

given below. 

Probabilistic approaches evaluate the probability of a data point belonging to a certain data 

distribution. If this probability is lower than a defined threshold, the data point is an anomaly.  

Distance-based approaches calculate the distance of a data point to certain neighbor data 

points or to clusters of neighbor data points. This distance measure can be the Euclidean 

distance, for example. If the distance lies above a defined threshold, the data point is marked 

as an anomaly. 

Reconstruction-based approaches are regression models that are fitted on the historic data 

of the considered time series. The regression model is then used to predict the next steps of 

the time series. These predictions are then compared with the actual next steps of the time 

series. If the distance between the prediction and the actual value exceeds a certain threshold, 

an anomaly is assumed. 

Domain-based approaches create borders in higher-dimensional spaces and evaluate 

whether a data point lies within or without these border lines. If the data point lies outside the 

border lines, it is an anomaly. 

Finally, information-theoretic approaches calculate the information content of the time se-

ries based on statistical measures for the whole time series and subsets in which certain data 

points are excluded. If the exclusion leads to a severe drop in information content, the excluded 

data point is anomalous.  

2.5.2 Long Short-Term Memory Neural Networks 

In the context of this dissertation, a reconstruction-based anomaly-detection model based on 

long short-term memory neural networks (LSTMs) (HOCHREITER & SCHMIDHUBER 1997) has 

shown itself to be particularly suited. It is used to predict the next step of the HI time series of 

a robot axis. The comparison of these predictions with the actual values of the time series 

allows the identification of anomalies. For this, the LSTM is used as a regression model, as 

described in Formula 12, in which ý is the maximum step back of the HI time series considered 

for the prediction. ý ÿ ÿ ý , ý & , ý (12) 

The regression function is approximated by the neural network, which consists of layers of 

interconnected neurons. The working principle of a neuron is depicted in Figure 16 and is 

called forward pass.  
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Figure 16: Principle of a neuron according to SKANSI (2018, p. 62) 

A neuron sums up weighted input values, which can be, for example, data points of a time 

series. This sum is used as the argument for an activation function. The function value of this 

argument is the output of the neuron. The output ÿ depends only on the input vector and the 

weights.  

In an LSTM, neurons are replaced by cells, and the output of a cell depends not only on the 

input and weights, but also on an internal state of the cell ý  represented by a vector. Further-

more, cells consist of three parts, namely input gates, output gates, and forget gates, which 

are themselves neuron layers. These allow the networks to relate important data points in time 

series with large time lags in between. In detail, when an LSTM cell is presented with an input 

vector, the former cell state ý  and the input vector (ý , ý & , ý  are fed into the forget 

gate layer to determine which part of the cell state should be forgotten. Furthermore, the input 

vector is fed into the input gate layer to define which new information should be stored in the 

cell state and which information should be altered in the cell state. Finally, they are also fed 

into the output gate layer, whose output is used together with the altered cell state to calculate 

the new output of the LSTM cell. Hereby, the calculation of the output value does not only 

depend on the current input values but also on the internal state of the cell. That state can 

store information about data passed through the cell multiple previous time steps ago. The 

concept of an LSTM cell is shown in Figure 17. To determine the weights of the gates of each 

cell and layer, training algorithms such as gradient descent can be applied (RUMELHART ET 

AL. 1986). The required training data are HI time series from time periods where no defects 

occurred.  
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Figure 17: Principle of a long short-term memory cell following HOCHREITER & SCHMIDHUBER 

(1997) 

Ideally, the LSTM would capture the characteristics of these time series and hence would be 

able to predict time steps for HI data from functional robot gears with low errors, the so-called 

reconstruction error. In contrast, this error should be large for anomalies, as they deviate from 

the characteristics of the time series. The distribution of these reconstruction errors can be 

modeled with a normal distribution. The reconstruction errors of anomalies would have a low 

likelihood of belonging to this distribution. This concept is depicted for an example time series 

in Figure 18. The blue time series represents artificial HI data, which is reconstructed by the 

LSTM model. The error between the reconstruction increases in magnitude if anomalies ap-

pear. In this way, the anomalies can be classified. Defining a threshold for this likelihood there-

fore represents the last step during the setup of the anomaly-detection model (NENTWICH & 

REINHART 2021a). 

 

 

Figure 18: Example time series with reconstructed values and anomalies detected by a long 

short-term memory model 
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2.5.3 Local Outlier Factor 

The local outlier factor (LOF) is another distance-based anomaly-detection model (BREUNIG ET 

AL. 2000). The principle of this algorithm is to compare the density of several data points in a 

certain area. If the density of data points around one specific data point is very low compared 

to the density around other data points, it is considered an outlier. The algorithm is divided into 

four steps. First, the ÿ-distance A  to the i-nearest neighbor of a data point ý is calculated, 

where i is an integer number usually smaller 20. Second, the number of data points |ý ý | 
that are within this distance is calculated for each data point. Here, ý ý  is the set of data 

points that are within the i-distance. Then, the local reachability density ýÿý ý  is calculated 

for each point according to Formula 13: 

ýÿý ý  13 i-distance A|ý ý |* (13) 

Small values refer to data points that are distant from a cluster of neighbor data points. Finally, 

this value is compared to the values of neighbor data points by calculating the LOF value ÿÿý ý  according to Formula 14: 

ÿÿý ý 3 ýÿý ý*|ý ý | 7 ýÿý ý (14) 

A value larger than 1 indicates that the density of data points around the specific data point is 

lower compared to its neighbors. If this is the case, the data point can be assumed to be an 

outlier. The principle of the LOF algorithm is shown in Figure 19 for i equals 2. 

 

Figure 19: Principle of the local outlier factor algorithm 
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In Figure 19, the data points A, B, and C are located close to each other, resulting in high ýÿý  

values and ÿÿý  values around 1, as the density is lower in the area of these data points. The 

data point D is further away, which results in a lower ýÿý  value and a ÿÿý  value larger than 1. 

2.6 Summary of the Fundamentals 

In Section 2.1, IRs and their gear faults were introduced. Multiple types of fault exist for different 

gear components. These faults can be detected in a CM-based maintenance scenario before 

they cause unexpected downtimes using sensor data that correlate with the occurrence of the 

faults. In Section 2.2, it was pointed out that acceleration sensor data and current data are 

commonly used for gear CM. Time series data from one sensor measurement are transformed 

to HIs by means of signal analysis and statistical methods. As robots usually exhibit a transient 

velocity behavior, an analysis of the sensor data in the time-frequency domain offers the po-

tential to obtain information about the vibration of different gear components (compare p. 13 

and 14). An HI time series can be created by calculating such HIs for several measurements. 

This time series can then be examined for trends and anomalies to support a maintenance 

decision. To automate these analyses, unsupervised machine learning models for trend de-

tection, such as the Cox-Stuart test, and one-class classification models for anomaly detection, 

such as an LSTM, can be used. These fundamentals also allow the focus of the analysis of 

the state of the art to be set, as presented in the next chapter. 
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3 State of the Art 

In this chapter, the applied literature review methodology is presented in Section 3.1 The state 

of the art is then summarized in Section 3.2, and an initial conclusion is drawn. Next, suitable 

approaches for CM of IR gears are presented in Section 3.3. This summary is limited to ap-

proaches focusing on time-frequency analysis or methods based on one-class classification, 

since time-frequency analysis has the best capabilities to cope with the transient velocity be-

havior of robots, and one-class classification approaches require no data from faulty robots, 

which are hard to acquire. Finally, the research gap addressed in this dissertation is defined in 

Section 3.4. 

3.1 Review Method 

An initial literature review was performed in 2020 following the methodology of WEBSTER & 

WATSON (2002) using Google Scholar, which queries various databases such as Scopus and 

Web of Science. After an initial screening, it was decided to use the following search terms for 

the structured review: 

÷ industrial robot condition monitoring 

÷ industrial robot health management 

÷ predictive maintenance industrial robot 

The screening showed that these search terms also cover publications in related areas such 

as methods for gear condition monitoring. Subsequently, a Google Scholar search alert was 

set up with the same search terms. This search alert captured new publications related to the 

search terms, and the alerts were sent to the user via email. In January 2022, all the received 

search alerts were analyzed to create a comprehensive literature overview. For this, the titles 

and abstracts of approximately 6,500 publications were screened. Forty-five publications were 

included in the final analysis of the state of the art. The literature review in this dissertation is 

limited to IR applications. For a more comprehensive review of HIs or models for fault classifi-

cation for gears related to this work, please refer to NENTWICH & REINHART (2021a) or 

NENTWICH & REINHART (2021b). 



State of the Art 

32 

3.2 Research Overview 

This section gives an overview of the literature found by the method described in Section 3.1. 

The literature is classified into the following categories: the data-acquisition system considered 

in the publication, the faults that were investigated, the method used for HI determination, and 

the type of the applied model. 

The final literature review consisted of 45 publications. An overview of these publications is 

given in Appendix 8.6. Over 75 % of these publications were published between 2019 and 

2022. 80 % focus on six-axis articulated robots, and the remainder focuses on parallel and 

SCARA robots or experiments in gear test beds. 

Figure 20 shows the sources used for data acquisition in these publications. It shows a similar 

distribution of data sources for IR CM compared to gear CM as presented in Figure 6. As stated 

in Chapter 2, two measurement principles are most prominent. Vibrations are captured using 

acceleration sensors or acoustic-emission sensors. Alternatively, torques or currents are 

measured to capture these vibrations or friction changes. Additionally, some approaches com-

bine multiple data sources. None of the publications evaluates the suitability of different data 

sources for the robot gear CM task. 

 

Figure 20: Data sources used for condition monitoring of robots 

Figure 21 presents the components that were investigated in the publications. The review 

shows that many publications do not explore actual faults. For example, GOLIBAGH MAHYARI & 

LOCHER (2021) present an approach for anomaly detection for IRs based on torque data and 

validate their approach based on robot data in which an anomaly is present. However, they 

did not investigate whether the anomaly is related to a component fault. In addition to this 

category of publication, 13 publications address faults of the RV reducer, which is also the 

focus of this work. This finding aligns with the issue stated in Section 1.1. Even though the 

number of publications related to IR CM increases, the transferability of the approaches to 
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industry is hindered due to a lack of a relevance in practice. Publications that do not consider 

actual faults are unlikely to contribute to a higher transferability. 

 

Figure 21: Faults considered in condition monitoring publications 

For HI determination, most publications (20) consider HIs from the time domain. The use of 

raw data or HIs from the frequency domain or the time-frequency domain is less popular than 

the use of data from the time domain, as shown in Figure 22. Only a small number of publica-

tions focus on approaches based on time-frequency analysis. In practice, the transient velocity 

behavior of IRs in industry can hinder the applicability of non-time-frequency approaches be-

cause of sidebands that appear in the frequency domain and limited analysis possibilities in 

the time domain. 

 

Figure 22: Health indicator types used in publications 
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In terms of modeling, mostly supervised models are used, as shown in Figure 23. Moreover, 

some publications use no models or one-class classification models. Publications presenting 

no models focus, for example, only on a method for HI determination. Again, many of the 

approaches cannot reasonably be transferred to industrial use. Methods based on supervised 

machine learning require data from faulty robots, which are hard to acquire in industry and 

which inherently limits the application in a CM scenario. The publications that do not provide a 

model require manual supervision of HI data, which is not feasible for large robot fleets. 

 

Figure 23: Machine learning model types used in publications 

This overview shows that many research approaches are used to solve problems with a limited 

reference to real-world applications, as they do not consider actual faults, disregard the tran-

sient velocity behavior of IRs, or assume the availability of data from faulty robots that is hard 

to acquire. Furthermore, only a few publications that consider actual faults evaluate their ap-

proaches for different type of faults. 

3.3 Selected Research Approaches 

In this section, the research approaches with a higher potential transferability into practice are 

considered. These are publications that focus on one-class classification models and HIs in 

the time-frequency domain. More comprehensive literature reviews that consider the different 

steps of CM can be found in the state of the art or fundamentals section of the publications in 

Appendix 8.2 3 8.4. 

3.3.1 Approaches Based on Time-Frequency Domain Health Indicators 

BYNUM & LATTANZI (2021) use spectrograms based on the STFT in combination with convolu-

tional neural networks to segment the motions of robots based on acoustic sensor data. The 
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method is exemplified using a SCARA robot. The motions are subsequently clustered by the 

k-means algorithm. However, the spectrograms are not used for fault detection. The motion 

segmentation represents only one potential data-preprocessing step for CM. 

JABER (2017) and JABER & BICKER (2016) present an approach for fault detection based on 

acceleration sensor data. Time domain HIs such as the standard deviation of the signal are 

used in combination with statistical control charts. A statistical control chart provides thresholds 

based on the standard deviation of the considered HI. If these thresholds are exceeded, a fault 

is assumed. Subsequently, the faults are classified based on a wavelet transform of the sig-

nals, which provides good time and frequency resolution by design. Finally, a neural network 

is used to classify different artificially introduced faults. The approach was validated using a 

SCARA robot that had screw backlash, partly removed gear teeth, or pits on a bearing ring 

runway. 

LIU ET AL. (2016) present a method in that the STFT spectrogram of acceleration sensors is 

used to detect the speed of a robot gear. This speed information is then used to calculate an 

order-tracking spectrum of acoustic sensor data. The fault-related frequencies in this spectrum 

are monitored. This concept was validated for a six-axis articulated robot that had a fault on 

an outer race of a bearing of the RV reducer. 

Another fault-detection method based on acceleration sensor data is presented in WANG ET 

AL. (2021). The Hilbert-Huang transform is used to transform the sensor data to the time-fre-

quency domain. The energy of the enveloped signal of each intrinsic mode function 3 the out-

put of the Hilbert-Huang transform 3 is then calculated. These energies are used in a decision 

tree to classify faults. The approach was tested successfully for a SCARA robot with loose 

screws and one with an unstable base as fault modes. 

YUN ET AL. (2021) describe a method for anomaly detection based on autoencoders. STFT 

spectrograms from acoustic sensors are used as an input for this neural network architecture. 

The autoencoder is trained to reproduce these spectrograms. For each reproduced spectro-

gram, a similarity measure to the actual spectrogram is calculated based on a reconstruction 

error. If this reconstruction error exceeds a defined threshold, an anomaly is assumed. The 

approach was tested for a six-axis articulated robot. Anomalies were introduced by attaching 

different weights to the end effector. 

ZHANG ET AL. (2019) use the wavelet transform from acoustic sensor data as input for a hidden 

Markov model. This model is used to derive energy and kurtosis values for the different gear 

teeth of an RV reducer. These values are subsequently compared to differentiate levels of gear 

backlash visually. No classification or anomaly-detection model is presented. The method was 

tested with a RV reducer test bench. 
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ZHI ET AL. (2021) present an approach for fault classification of harmonic drives. They use filter 

techniques and the wavelet transform for data preprocessing. A neural network based on con-

volutional layers and long short-term memory layers is proposed to differentiate the faults. The 

approach was validated for various faults of the harmonic drive, such as wave generator mis-

alignment and broken parts of a gear bearing. A test bench was used for data acquisition. 

In contrast to the publications above, CHENG ET AL. (2019) present a fault-classification ap-

proach based on motor current data. The measurement data are first filtered and segmented 

into the different robot movements and then transformed to the time-frequency domain with 

the Hilbert-Huang transform and the STFT. Then, the difference between the minimum and 

the maximum value is calculated for the intrinsic mode functions, and the signal-to-noise ratio 

is calculated for the STFT spectrograms. These HIs are then used to fit a Gaussian mixture 

model. This model can then be used to calculate the probability that a measurement is abnor-

mal. The approach was validated with a six-axis articulated robot with a degreased gear. 

Finally, GOLIBAGH MAHYARI & LOCHER (2021) present an approach based on torque, position, 

and speed data. These data are transformed to STFT spectrograms, and a principal compo-

nent analysis is performed to reduce these matrices to a vector. Subsequently, a transfer learn-

ing algorithm is applied to align data from different working conditions. An anomaly score is 

derived based on the Euclidean distance. The approach was tested on data from a six-axis 

articulated robot. It was shown that the changes in the anomaly score due to varying working 

conditions were reduced and that an anomaly was detected in two experiments. However, the 

anomaly was not further described. 

3.3.2 Approaches Based on One-Class Classification 

An approach to detect wear in a robot gear based on motor current data is presented by BIT-

TENCOURT ET AL. (2012). The Kullbach-Leibler divergence between the kernel density estima-

tors of the torques from functional robot gears is compared to measurements over a longer 

period. Increasing wear leads to an increase in the Kullbach-Leibler divergence. Thresholds 

for this index are used for fault detection. The approach was validated in an accelerated wear 

test of a six-axis articulated robot. 

Gear friction values, estimated inertia, and mass of the axes serve as input for an autoencoder 

in the method presented by FATHI ET AL. (2021). The reconstruction error of the autoencoder 

in combination with a defined threshold is used for anomaly detection. Additionally, the pro-

gress of the retrieved HI is predicted by a Gaussian process model. Anomalies were introduced 

by artificial noise in the raw sensor signals. The approach was validated for different move-

ments of a parallel robot. 
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HSU ET AL. (2021) present a method for fault detection and diagnosis based on current, en-

coder, and acceleration sensor data. A principal component analysis is applied on the differ-

ence between commanded current and measured current, the difference between commanded 

encoder positions and actual positions, and the raw vibration data to reduce the dimension of 

the raw data. The principal components 3 the outcome of the principal component analysis 3 

are subsequently monitored with a statistical control chart. If an anomaly occurs, the reason 

for the anomaly can be derived by a classification model based on a support vector machine. 

The models were tested with data from a six-axis articulated robot with increased friction or a 

loose belt in the drive train. 

PANGIONE ET AL. (2021) evaluated an anomaly-detection model based on the raw sensor data 

of robot position, velocity, currents, and torque. The raw sensor data are used to train a varia-

tional autoencoder. Anomalies were introduced artificially by changing signal values or swap-

ping value ranges, and different time window lengths of the input data were tested for seven-

axis articulated robots. 

In TAHA ET AL.9s (2021) approach, the deviation of the tool center point of a six-axis articulated 

robot is predicted based on measured position, velocity, current, acceleration and torque data. 

An LSTM model is used for this task. Subsequently, the difference between the measured and 

predicted tool center point position is used in a regression adjustment multivariate to detect 

anomalies.  

Furthermore, YUN ET AL. (2021), GOLIBAGH MAHYARI & LOCHER (2021), and JABER (2017) pre-

sent one-class classification approaches that are described in detail in Section 3.3.1. 

3.4 Discussion of the State of the Art 

The state of the art presented in the previous sections offers a variety of approaches for de-

tecting faults in IRs. Ideally, such an approach would fulfill various criteria: 

÷ It would handle the transient velocity behavior of IRs by observing the sensor data 

in the time-frequency domain or time domain. 

÷ The desired concept would be based on one-class classification, since acquiring data 
from faulty robots is costly. 

÷ The approach should be evaluated in near real-world conditions. This means 

o that different faults should be detectable and 

o the approach copes with the temperature fluctuations of the robot gears. 



State of the Art 

38 

In Section 3.2, however, it was shown that only a few approaches rely on the combination of 

these desired characteristics. In detail, 35 publications build up on HIs from the time domain, 

the time-frequency domain, or raw data. These approaches could potentially cope with the 

transient velocity behavior. Only eight of these methods, however, use a one-class classifica-

tion approach. Such an approach is required to avoid the data acquisition from defective ro-

bots, which is time- and resource-consuming. Furthermore, only three of the eight concepts 

consider actual faults, which reduces the potential applicability of the approaches in industry. 

Two of these three publications, BITTENCOURT ET AL. (2012) and HSU ET AL. (2021), consider 

only anomalies such as increased friction, which might be induced by wear but also by tem-

perature variations. Finally, JABER (2017) validates his anomaly-detection approach only for 

different levels of backlash. Other faults, such as those presented in Section 2.1.2, are not 

evaluated. This analysis is summarized in Figure 24. 

 

Figure 24: Publications considering relevant aspects of industrial robot gear condition monitor-

ing 

This dissertation addresses this research gap. The CM RA for IR gears should be capable of 

coping with the transient velocity behavior of IRs and gear temperature fluctuations, it should 

rely on a small amount of data from only functional robots, and it should be evaluated in near 

real-world conditions.  
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4 Reference Architecture for Condition Monitoring of In-

dustrial Robot Gears 

After the research clarification and the first literature-based descriptive study conducted in 

Chapters 2 and 3, this chapter focuses on the RA. First, an overview of the architecture is 

given, and then the publications on which the architecture builds are summarized. In the design 

research methodology, this chapter presents the prescriptive and second descriptive study. 

4.1 Overview of the Reference Architecture 

The RA9s structure follows the development steps of a CM system as presented in Section 

2.2.2. It consists of a data-acquisition module, an HI-determination module, and a model-se-

lection module. These modules provide concrete suggestions for the design of the systems 

and methodologies to derive such a design. 

More precisely, the data-acquisition module answers the questions of which measurement 

trajectory should be used for data collection, which sensor type should be chosen, and how 

many measurements should be collected to estimate the health state of a robot at a certain 

confidence level. In detail, it suggests using a robot trajectory with isolated axis movements in 

large axis angle areas. Acceleration sensors are suggested as the most suitable type of sensor 

for data acquisition, and a statistical formula is provided that allows the calculation of the num-

ber of required measurements in a given time period. 

The HI-determination module is based on the findings of the data-acquisition module and 

suggests a new HI for the specific requirements of IR gear CM. These requirements include 

fluctuating gear temperatures, a variety of related defects, and the mostly transient velocity 

behavior of IRs. Moreover, the module provides methods for selecting an HI that fulfills these 

requirements. This HI is based on spectrograms and the principle of Z-scores. 

Finally, the model-selection module enables the automatic CM of IR gears by identifying a 

trend- and anomaly-detection model suitable for the characteristics of the HI time series that 

was defined in the data-transformation module. The Cox-Stuart test is suggested as a trend-

detection model and an LSTM or LOF are proposed for anomaly detection. The whole RA is 

summarized in Figure 25. 
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Figure 25: Overview of the reference architecture 

4.2 Related Publications 

The RA9s modules are described in detail in different publications. The publications relating to 

the data-acquisition module are presented in Sections 4.2.1 and 4.2.2. The data-transfor-

mation module is discussed in Section 4.2.3. The modeling module is explained in Section 

4.2.4. The whole system is analyzed in a cost-benefit analysis in the publication presented in 
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Section 4.2.5. The contribution of each author to the regarding publication can be found in 

Appendix 8.7. 

4.2.1 Towards Data Acquisition for Predictive Maintenance of Industrial 

Robots 

Authors Conference/journal 

Corbinian Nentwich, Gunther Reinhart 

CIRP Conference on Manufacturing Sys-

tems 2021 

In this publication, a methodology is suggested for determining how to design a suitable data-

acquisition system for IR CM and predictive maintenance. This methodology consists of six 

steps, as shown in Figure 26. 

 

Figure 26: Method for data-acquisition system design 

First, historic fault data should be analyzed to determine the fault frequency of the robot com-

ponents. Such data are often available in the maintenance departments of manufacturing com-
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severity of the faults should be discussed with the maintenance department. The severity is 

characterized by the fault related downtimes and downtime costs. Components with defects 

causing long downtimes should be in the focus of a CM approach.  

Third, the failure modes of these components and suitable sensor types for the CM task should 

be identified. For this, we suggest an approach based on a literature review. We suggest using 

the sensor systems that are used most frequently in the literature for the CM task. In Section 

4.2.2, this approach is extended by a method based on accelerated wear tests to identify a 

suitable sensor system.  

Fourth, different robot movements must be compared based on information about the critical 

components and the sensor system, expert knowledge to select a measurement trajectory. For 

this, the method of the pairwise comparison can be used. This comparison allows the evalua-

tion of robot trajectories in two categories: their economic efficiency and potential data quality. 

For each category, a questionnaire was designed and discussed with experts from the mainte-

nance crew of a car body plant, a robot manufacturer, and a CM company. One criterion from 

the economic efficiency category is the effort required to integrate the measurement into the 

production operation. One criterion from the potential data quality category is whether the data 

acquired for one axis are influenced by movements from other robot axes. 

Given a suitable sensor system and robot trajectory, the number of required measurements 

can be determined based on a statistical formula. A measurement corresponds to the record-

ing of data during the execution of the measurement trajectory. To apply this formula, the data-

acquisition system must be set up and a set of initial measurements must be taken. Based on 

these measurements, a suitable HI can be calculated. Such a health indicator is for example 

described in Section 4.2.3. For the time series of the HI of these reference measurements, a 

standard deviation ÿ can be calculated. By defining an allowed error ÿ of the time series of the 

HI, a desired confidence level ÿ, and the corresponding ÿ-value, the number of required meas-

urements ÿ can be calculated using Formula 15 (HÄRDLE ET AL. 2015, p. 306): 

ÿ ÿ 7 ÿÿ (15) 

We applied the whole methodology presented in Figure 26 to six-axis articulated robots and 

found that gears are responsible for the longest and thus most critical robot defects. We con-

ducted a literature review of gear components and failure modes and used sensor systems to 

create a literature graph connecting publications with components, their failures, and the sen-

sors used for CM. Based on this review, we suggest using acceleration sensors and motor 

current data for CM data acquisition, since they are used most frequently in the literature. 
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Next, we compared four trajectories for data acquisition that vary in the angle areas of the axes 

and their velocity profiles. The first trajectory is the production trajectory, which represents the 

movements that the robot performs during its production task. These are usually characterized 

by the combined movements of several axes in different angle areas and by different velocities. 

The second trajectory is defined by isolated movements in large angle areas. It is performed 

during the robot9s idle times. The third trajectory combines movements of several axes in small 

angle areas. The fourth trajectory consists of a quick deceleration of the robot arm. During or 

after this procedure, the swing-out behavior of the robot is observed. The evaluation of the 

trajectories with the method of the pairwise comparison and the survey data lead to two find-

ings. The production trajectory has the highest economic efficiency, and the measurement 

trajectory with the isolated movements has the highest potential data quality. The trajectories 

are shown in Figure 27. 

 

Figure 27: Different conceptional measurement trajectories 

Finally, we provided a proof of concept for Formula 15. We applied it to HI data from an accel-

erated wear test of an IR, where 10 samples in a 24 hour time window were required to reach 

a 95 % confidence interval at a given error range. In a testing interval, 90 % of the data lay 

within the defined error range. 

In summary, this publication contributes to the RA by suggesting the use of a measurement 

trajectory in large angle areas, by recommending that data be acquired with acceleration or 
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current sensors, and by proposing a formula to determine the required number of measure-

ments in a certain time interval. The full manuscript of the publication can be found in Appen-

dix 8.1. 

4.2.2 Data Source Comparison for Condition Monitoring of Industrial 

Robot Gears 

Authors Conference/journal 

Corbinian Nentwich, Rüdiger Daub 

CIRP Conference on Manufacturing Sys-

tems 2022 

The publication presented in Section 4.2.1 suggests using acceleration or current sensors for 

data acquisition of IR gear CM based on the findings of a literature review. In this publication, 

the suitability of both sensor systems is evaluated based on data from four accelerated wear 

tests. Furthermore, the sampling frequency required to capture all characteristic component 

frequencies during one measurement, as discussed in Section 2.2.2, is investigated. The ex-

periments were performed with different robots with a payload larger than 200 kg, a robot tra-

jectory with an isolated movement of one axis, and different sensor systems. The experiments 

were of different durations, as they were stopped due to the occurrence of defects. The 

metadata of the experiments (exp.) are summarized in Table 1. 

Table 1: Accelerated wear tests of industrial robots (Vibration: Vib., Current: Cur.) 

 
Sampling fre-

quency in kHz 

Number of 

measurements 

Length in 

months 

STFT window 

length in samples 

Reason for 

failure 

Exp. 1 
Vib.: 20 

Cur.: 2 

Vib.: 1726 

Cur.: 485 
3 256 

Worn out mo-

tor pinions 

Exp. 2 
Vib.: 24 

Cur.: 1 

Vib.: 680 

Cur.: 680 
3 512 

Drastically in-

creased noise 

level 

Exp. 3 Vib.: 10 Vib: 2440 12 256 

Increased 

number of con-

troller errors 

Exp. 4 Vib.: 20 Vib: 914 3 256 

Blocked gear 

due to broken 

roller bearing 
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Two analyses were carried out to determine a suitable sensor system and its required fre-

quency range. We calculated a suitable HI 3 called Z-score 3 for the comparison of the suita-

bility of the sensor systems. This HI will be described in detail in the next section. Then, the HI 

time series were evaluated in terms of existing trends and the occurrence of anomalies. For 

the analysis of the required sampling range, we additionally applied low-pass filters on the raw 

sensor data to simulate sensor systems with a lower sampling frequency. Next, the HIs were 

calculated based on these downsampled raw data, and the HI time series were analyzed for 

trends and the time points when anomalies become prominent. Furthermore, the fluctuations 

of the HI time series were characterized with the signal-to-noise ratio. The overall analysis flow 

is summarized in Figure 28. 

 

Figure 28: Analysis flow for data source and sampling frequency comparison 

The analysis showed that, in both data sources, trends and anomalies are present more than 

one week before the end of the experiments during two accelerated wear tests. Both experi-

ments were stopped because of defects in the robot gears. The HI time series of Experiment 2 

is summarized in Figure 29. A clear increase around measurement 600 is visible. This meas-

urement was taken two weeks before the end of the experiment due to a gear pinion fault. 

The analysis of the required sampling rates showed that, even at lower sampling frequencies 

down to 250 Hz, anomalies and trends can be identified in the HI time series of all four accel-

erated wear tests. Furthermore, in three of the four experiments, higher sampling frequencies 

were correlated to a higher signal-to-noise ratio. 

Based on these findings, both data sources (acceleration sensors and current sensors) would 

be potentially suitable for the CM task. However, the collection of current data through the 

robot controller sensor system is cumbersome due to proprietary software and limited access 

to sensor data. Hence, we suggest using acceleration sensor data for robust data acquisition 

that can even be implemented for heterogeneous robot fleets. 
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Figure 29: Comparison of data sources for an accelerated wear test 

Regarding the required sampling frequency of the sensor system, we suggest using sensors 

with a sampling frequency that is high enough to capture all characteristic frequencies of the 

robot gear and as low as possible to reduce the sensor cost. We provide a formula (For-

mula 16) to calculate the minimum frequency ÿ  based on the robot axis speed ÿ  

and the transmission ratio of the axis9 gear ÿ  . ÿ  ÿ 7 ÿ 7 ÿ 7 2 7 ÿ (16) 

This formula takes into account that the sampling frequency must be at least two times the 

required frequency due to the Nyquist criterion. It considers up to the ÿ  harmonic (multi-

tude) of this frequency, as faults can also change the amplitudes of vibrations at these har-

monics, and it allows the analysis of frequencies at a multiple of ÿ  of the input gear speed. 

This number relates to the maximum turning speed of robot gear components in relation to the 

input gear speed, as discussed in DANIELSON & SCHMUCK (2017, p. 50). 

The contribution of this publication is the suggestion to use acceleration sensors for data ac-

quisition to handle the CM of heterogeneous robot fleets. The full manuscript of the publication 

can be found in Appendix 8.2. 
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4.2.3 A Method for Health Indicator Evaluation for Condition Monitoring 

of Industrial Robot Gears 

Authors Conference/journal 

Corbinian Nentwich, Gunther Reinhart MDPI Robotics 

The HI shown in Figure 29 was developed in the course of the work of this publication. The 

purpose of this research was to identify an HI capable of handling the operating characteristics 

of IRs. As shown in Table 1, different defects occur within IR gears. Furthermore, the temper-

atures in the robot gears vary depending on the utilization of the robots. These variations in-

duce fluctuations in HIs. Moreover, for the HI selection, the transient velocity behavior of IRs 

must be considered. Hence, an ideal HI would be able to detect different defects, exhibit low 

temperature sensitivity, and be able to deal with the mostly transient velocity behavior of IRs. 

The designed HI is based on STFT spectrograms ýýÿý ÿ, ý  as discussed in Section 2.2.2. 

This allows a differentiated analysis of a signal collected from a transient system. Defects be-

come prominent in a spectrogram by increased amplitudes in certain characteristic frequency 

bands or in certain time intervals. Moreover, such changes can also be caused by temperature 

fluctuations of the gears. To decrease the influence of the temperature fluctuations, a Z-score 

matrix is calculated for the spectrogram ýýÿý ÿ, ý  following Formula 17: ý ÿ, ý | , , ,, , | (17) 

The mean ýýÿý ÿ, ý ,  and the standard deviation ýýÿý ÿ, ý ,  are calculated based 

on reference measurements. These measurements must be taken for a range of gear temper-

atures to capture the typical variance induced by these temperature fluctuations and while the 

robot is still functional. This would typically be done at the beginning of the operating time of 

the robot. 

To aggregate ý ÿ, ý  to a single HI value ý , the average of this matrix is calculated as 

shown in Formula 18: 

ý 10.5ÿÿ ý ÿ, ý.
(18) 

where ÿ is the length of the measurement and ÿ is the sampling frequency, which is reduced 

by a factor of 0.5 because of the Nyquist theorem. 

To evaluate the potential of this HI, a four-step approach was followed. First, a literature review 

was conducted regarding HIs for gears. Second, potentially suitable HIs were evaluated in 

terms of their capability to detect different faults. Third, the temperature sensitivity of the most 
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promising HIs was analyzed. Finally, the HIs with low temperature sensitivity were applied to 

data from two accelerated wear tests of IR gears. The last three steps of this process will be 

discussed in detail below.  

The time series of all HIs identified in the literature review was calculated for the FEMTO da-

taset (NECTOUX ET AL. 2012). This dataset consists of acceleration sensor measurements from 

accelerated wear tests from 16 identical bearings. The experiments were run until a defect 

occurred. Different defects occurred for the 16 bearings. After calculating the HI values, differ-

ent functions that show a monotonous behavior were fitted on the HI time series. These were 

exponential or sigmoid functions and second order polynomials. The R² measure was calcu-

lated for each of the fits and displayed as box plots. HIs with a high mean R² measure and a 

low variance were considered for the next step of the analysis. These HIs9 time series show 

an overall ideal behavior, as they can be modeled with basic functions to a high extent (high 

mean R²) and also for different defects (low variance of R²). Seven HIs showed this behavior. 

In the measurement time series, the root mean square (RMS), the peak value, the peak-to-

peak value, the standard deviation, and the Z-score HI presented in this section showed good 

performance. 

Data from an experiment with an IR were used to analyze the temperature sensitivity of these 

HIs. Acceleration sensor data were captured for isolated axis movements at different gear 

temperatures. In total, four acceleration sensors were attached to the gear caps of axes 1 to 

4. As the gears of axes 5 and 6 are located closely to the gear of axis 4 in the robot9s wrist, no 

additional sensors were used for these axes. The HIs were calculated for the measurements, 

and the absolute change in percentage of the HI for measurements at low and high gear tem-

peratures was determined. The proposed Z-score HI and the root mean square HI showed the 

lowest sensitivity. The result of this analysis is shown in Figure 30. The reason for the low 

temperature sensitivity of the Z-score HI can be explained by its design. Fluctuations in the 

measured vibrations due to temperature changes lead to increased standard deviations of the 

spectrograms at certain positions in time and frequency. In the Z-score matrix, these influences 

are reduced by dividing the spectrogram values by these standard deviations. As the influ-

ences are reduced for all Z-score matrix entries, this influence is also decreased in the aver-

aged value of all Z-score-matrix entries, which is the Z-score HI. 
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Figure 30: Temperature sensitivity of health indicators 

In the last step, these HIs were analyzed using data from two accelerated wear tests. These 

experiments are Experiments 3 and 4 described in Table 1. At the time of publishing, experi-

ment 1 and 2 were still ongoing and it was not predictable if these experiments would provide 

any failure data. Therefore, the analysis was only performed for experiment 3 and 4. The Z-

score showed a smaller fluctuation and a better trend behavior than the root mean square. The 

HI time series for Experiment 3 is shown in Figure 31. 

 

Figure 31: Comparison of health indicator time series 

In context of the RA, this publication provides the HI that should be used for IR gear CM. The 

HI copes with the transient velocity of the robot gears and their temperature fluctuations. Ad-

ditionally, it is capable of detecting different faults. The full manuscript of the publication can 

be found in Appendix 8.3. 
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4.2.4 A Combined Anomaly and Trend Detection System for Industrial 

Robot Gear Condition Monitoring 

Authors Conference/journal 

Corbinian Nentwich, Gunther Reinhart MDPI Applied Science 

To implement a CM system for a robot fleet, anomalies and trends such as those presented in 

Figure 31 must be detected automatically, since manual monitoring cannot be performed for 

large robot fleets. This automatic detection can be achieved with an appropriate anomaly- and 

trend-detection model. The purpose of this publication was to identify such models. 

Potentially suitable models were identified in a literature review. Different representative prob-

abilistic models, domain-based models, distance-based models, and reconstruction-based 

models were considered for anomaly detection. Models based on statistical tests and slope-

based models were evaluated for the trend-detection task. 

The models were first evaluated using synthetic data. These data comprised simulated time 

series ý ý  with the same characteristics as real-world Z-score HI time series. The time series 

were modeled according to Formula 19: ý ý ý ý ý ý ý ý ý ý (19) 

An example for this super positioned time series is given in Figure 32, which shows a sine-

shaped periodicity combined with a low noise level, different kinds of anomaly, and a trend 

starting at measurement 500. 

 

Figure 32: Example of a synthetic time series with periodicities, anomalies, and trend 

In general, different methods were used to model noise ý ý  and periodicities ý ý . For noise modeling, normal-distributed and uniform-distributed noise was ap-

plied. Periodicities were introduced on the basis of a sine function and a hand-crafted function 
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representing temperature fluctuations in a three-shift working production plant with reduced 

utilization of the robots at night. Anomalies ý ý  with different amplitudes, positions, 

and lengths were added to the signal. Trends ý ý  were modeled by linear and quadratic 

polynomials with varying slope. In total, 32 time series comprising over 8,700 time steps and 

including at least 40 anomalies were used for model training and evaluation. The time series 

were split into two datasets. Dataset 1 included 16 of these time series with low noise and low 

amplitudes of the periodicities; dataset 2 held the other time series with higher noise and peri-

odicities. 

The models were evaluated using both datasets. A ROC curve per model per dataset was 

created for different parameters of the models. The AUC values of the ROC curves per model 

were then calculated. For anomaly detection, a reconstruction-based LSTM model, a distance-

based LOF model, and a distance-based standard deviation model had the highest overall 

AUC values. For trend detection, two test-based models, the Cox-Stuart test and the Mann-

Kendall test, showed the overall highest AUC values.  

The models with high average AUC values for both datasets were subsequently applied to the 

Z-score HI time series of two accelerated wear tests (Experiments 3 and 4 in Table 1). Both 

trend-detection models were capable of detecting the trends, and the Cox-Stuart test is less 

sensitive than the Mann-Kendall test to outliers. It is thus suggested to use the Cox-Stuart test 

in a CM system. Moreover, both the LSTM model and the LOF model could detect the anom-

alies at low false positive rates. Figure 33 shows the HI time series and the anomalies detected 

by the LSTM model in Experiment 3. 

 

Figure 33: Detected anomalies in a health indicator time series 
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It is suggested to run both the trend-detection (the Cox-Stuart test) and anomaly-detection (the 

LSTM or the LOF) models in parallel for CM. If a trend is detected by the model over a defined 

time frame, a warning is presented to the maintenance crew. If an anomaly is detected over a 

defined time frame, an alert is presented to the maintenance crew to inspect the affected gear. 

In relation to the RA, the suggested combined trend- and anomaly-detection model increases 

the automation level of the CM system. By using these models, the HI time series of several 

robot axes of a robot fleet do not have to be monitored manually, and the maintenance depart-

ments is alerted only when trends or anomalies occur. Furthermore, these models require little 

or no training data. The full manuscript of the publication can be found in Appendix 8.4. 

4.2.5 Cost-Benefit Analysis of Industrial Robot Gear Condition Monitor-

ing 

Authors Conference/journal 

Corbinian Nentwich, Rüdiger Daub 

CIRP Conference on Manufacturing Sys-

tems 2022 

In this publication, the economic efficiency of CM for IR gears is evaluated based on a cost-

benefit analysis. A cost model was defined and parameterized, and different scenarios were 

analyzed. The cost model includes depreciation costs of the robots and the CM equipment, 

running costs of the CM equipment, downtime costs, and development costs of the system on 

a yearly basis and per robot. These costs are summed up to give a total yearly cost per mainte-

nance scenario. The total costs for CM scenarios are summarized in Formula 20: ÿ , ÿ ÿ , ÿ ÿ (20) 

The costs for preventive maintenance scenarios do not include depreciation costs for CM 

equipment and are calculated according to Formula 21: ÿ , ÿ ÿ ÿ (21) 

In these formulas, ÿ  are the running costs of the system, ÿ ,  are the depreciation 

costs of the CM system, ÿ  are the downtime costs, and ÿ  are the depreciation costs 

of the robot. 

The development costs are based on estimates for the development time of the system without 

the use of the RA. The model was parameterized based on historic data such as the failure 

rates of IR gears, market research, costs for sensors systems, and surveys that were used, 

for example, to determine the development times of the CM system. Model parameters that 

could not be estimated with confidence were incorporated as sensitivities in the model. The 
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parameterized model was then used to compare different maintenance scenarios. A CM sce-

nario was compared to a purely preventive maintenance scenario for two different robot 

runtimes 3 7 and 14 years. Preventive maintenance scenarios have no additional running costs 

and lower depreciation costs, since no CM equipment is used. However, more defects occur 

that cause downtime costs in comparison to a CM scenario. These costs increase with the 

runtime of the robots while the depreciation costs decrease. 

The analyses show that CM is only economically efficient in the 14-year-runtime scenario. 

Assuming an increasing failure rate over the runtime of the robot, the break-even point for the 

CM scenario is reached between year 7 and year 8 of the runtime. Furthermore, the biggest 

potential for cost savings in the CM scenario is the development costs of the CM system. In 

the examined cost model, it is assumed that the whole CM system must still be designed. In 

Figure 34, the cost components of the different scenarios are summarized. The <Ref 7=- and 

<Ref 14=-scenario represent scenarios where a preventive maintenance strategy is applied for 

a robot runtime 7 or 14 years. A vibration-sensor-based condition monitoring strategy is used 

in the <Vib 7=- and <Vib 14=-senario for a robot operating time of 7 or 14 years. 

 

Figure 34: Cost comparison of maintenance scenarios 

Investigations beyond this publication showed that if the data-transformation and modeling 

component of the presented RA were used and the development time for these modules thus 

saved, the overall development costs could be reduced by approximately 50 %, and hence the 

overall yearly maintenance cost could be reduced by 6 %. In this way, the efficiency of the 
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development process of IR gear CM systems could be improved. Furthermore, inventory costs 

for spare parts could be reduced in a CM scenario. This was not quantified in the publication. 

The full manuscript of the publication can be found in Appendix 8.5. 
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5 Discussion and contribution to the state of the art 

As stated in Section 3.4, no approach exists for IR gear CM based on one-class classification 

and an HI from the time-frequency domain that has low temperature sensitivity and that is 

evaluated in near real-world conditions. This research gap is addressed in Section 4 of this 

dissertation by presenting a RA. In this section, we discuss this contribution based on three 

classification schemes. In Section 5.1, the novelty of the contribution is summarized. Section 

5.2 examines the contribution to different research domains. The transferability of the RA to 

applications beyond six-axis IRs is discussed in Section 5.3. 

5.1 Novelty of the Reference Architecture 

To describe the novelty of the suggested approach, the different modules of the RA 3 the data-

acquisition module, the HI-determination module, and the model-selection module 3 must be 

considered separately. 

No clear description exists for a robot gear CM data-acquisition system (compare Figure 25 

on the left side). Such a description would answer the questions of which sensor system to 

choose, how many measurements to take, and which robot trajectory to perform during data 

collection. The data-acquisition module of the RA considers these questions. Based on exper-

iments and expert knowledge, acceleration sensors are suggested for use in combination with 

long and isolated movements of the robot axes. To determine the number of required meas-

urements, a statistical formula can be used (compare Formula 15). The whole module is pre-

sented in Section 4.2.1 and 4.2.2. 

For HI determination (compare Figure 25 in the middle), no HI has been suggested in the 

literature that copes with the transient velocity behavior, the temperature fluctuations, and the 

varying faults of the robot gears. Hence, an HI based on STFT spectrograms and Z-scores is 

provided in the RA that overcomes these challenges. This HI is presented in Section 4.2.3 

Finally, many models for automatic fault detection are built on data from faulty robots that are 

difficult to acquire. In the context of model selection (compare Figure 25 on the right side), 

the RA offers a combined trend- and anomaly-detection model that operates with little training 

data and allows the automatic identification of trends and anomalies that can support mainte-

nance decisions. Such a combination of models has so far not been presented in the literature. 
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5.2 Contribution to Different Research Domains 

Another way of thinking about this dissertation9s contribution to research is to consider the 

different research domains this dissertation builds upon. These are the areas of robotics, CM, 

signal analysis, and machine learning. 

In the area of robotics, the RA adds a new 3 and from the author9s perspective, industry ori-

ented 3 approach to CM of six-axis articulated robot gears. According to the literature review 

in Chapter 3 and to the best knowledge of the author, no approach exists in this domain that 

is based on a combination of anomaly and trend detection as well as the HI that was suggested 

in this dissertation. Similarly, the RA can be considered a new approach to the CM of gears 

that takes into account transient velocities and temperature fluctuations and requires little data 

to implement. 

For signal analysis, a new approach to detect fault signatures in vibration signals is presented 

based on the spectrograms and the Z-score. Both spectrograms and Z-scores can be consid-

ered fundamentals in this research domain. To the best of the author9s knowledge, however, 

the combination of the two methods to reduce temperature fluctuations in an HI has not been 

considered previously. 

Finally, the application of the LSTM or LOF model for anomaly detection and the use of the 

Cox-Stuart test for trend detection in the context of IR gear CM provides a new use case for 

these machine learning models, which can be considered a contribution to the machine learn-

ing research domain. 

5.3 Transferability of the Reference Architecture 

To understand the transferability of the presented approach, the three RA modules must be 

discussed individually. The data-acquisition module (Figure 25 on the left side) suggests 

using a robot trajectory with isolated axis movements, acceleration sensors for data collection, 

and a statistical formula to determine the number of required measurements in a given period. 

A trajectory of isolated axis movements could also be used for other robot types and compo-

nents to reduce the influence from components that are not to be monitored. To the best of the 

author9s knowledge, acceleration sensors can also be used for other gear types, as they follow 

the same fault principles and hence also cause vibrations. To detect faults in the electric drives 

of robots, the use of currents or torques might be more suitable. The statistical formula could 

be applied in other CM scenarios, not only for other components in robots, but also for other 

rotatory equipment. Its only boundary condition is a normally distributed HI time series. 
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The HI-determination module (Figure 25 in the middle) provides an HI based on spectro-

grams and Z-scores. This HI can also be used to detect defects of other gears, as they exhibit 

the same fault principles. These faults will change the amplitudes in the spectrogram in differ-

ent frequency or time ranges, which will lead to an increase in the presented HI. Moreover, in 

NENTWICH & DAUB (2022), a motor fault could be detected based on current data and the HI. 

The only boundary condition of this HI is that the gear in question must perform the same 

movements for every measurement. Additionally, isolated movements of axes must be used 

as described in the data-acquisition module. 

Finally, the model-selection module (Figure 25 on the right side) suggests models for trend 

and anomaly detection in HI time series. These could also be used for the CM of other com-

ponents if the HI time series of these components possess similar noise and periodicities as 

the data that the anomaly- and trend-detection models were evaluated on. 

More generally, the RA can easily be deployed to industry. The source code of the anomaly-

and trend-detection model and the code to calculate the spectrogram based Z-score have 

been published and can easily be integrated into CM systems (NENTWICH 2021). This can re-

duce the development time of CM systems by up to 50 %, as discussed in Section 4.2.5. 
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6 Conclusion 

The dissertation is first summarized in Section 6.1, and an outlook is given in Section 6.2. 

6.1 Summary 

The motivation for the condition monitoring of industrial robot gears was set out in Chapter 1 

by describing its potential to increase the usage time and availability of industrial robots and 

thus save costs. As the development of such a system is costly, the objective of this work was 

to increase the efficiency of the development process of a condition monitoring system by 

delivering a reference architecture (RA) that can be used for the development of CM-systems. 

The structure of the dissertation, based on the design research methodology, was then pre-

sented. 

In Chapter 2, the fundamentals of this work were described. These focus on the structure and 

faults of industrial robots and maintenance with a focus on condition monitoring. The process 

for the design of a CM system was introduced. First, a suitable data acquisition system must 

be selected that captures data correlating with the robot9s health state. Second, these data 

must be transformed in meaningful health indicators. Finally, models must be selected that 

support the maintenance planning. Furthermore, the topic of machine learning, especially 

anomaly- and trend-detection models, was explained. 

Next, the state of the art of industrial robot condition monitoring was presented and analyzed 

in Chapter 3. After describing the used literature review methodology, an overview of the state 

of the art was given and selected approaches based on time-frequency domain health indica-

tors or one-class classification were presented. A research gap was then defined. To the best 

of the author9s knowledge, no approach exists for condition monitoring of industrial robot gears 

that can cope with varying faults, the transient velocity behavior, and the temperature fluctua-

tions of robot gears and that relies on small amounts of data for parameterization. Developing 

a suitable condition monitoring system would take a long time and reduce the profitability of 

such a system. 

In Chapter 4, a reference architecture for industrial robot gear condition monitoring was pre-

sented that fulfills these requirements. This reference architecture can be used by practitioners 

to accelerate the development time of such a condition monitoring system. Five publications 

were presented. Two of the publications describe a data-acquisition system (compare Figure 

25 on the left side) based on measurements collected with acceleration sensors during isolated 

and long axis movements. In the field of health indicator determination (compare Figure 25 
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in the middle), one publication describes a health indicator that can be determined based on 

these measurements. The health indicator can detect multiple faults, copes with the transient 

velocity behavior by means of spectrograms, and has a low temperature sensitivity. In the area 

of model selection (compare Figure 25 on the right side), another publication suggests a 

combined anomaly- and trend-detection system based on a long short-term memory neural 

network or the local outlier factor and the Cox-Stuart test to automate the monitoring of the 

health indicator time series. These models can be implemented only using data from functional 

robots. Hence, these models can be set up quickly in operating manufacturing systems. 

The last publication considers the economic efficiency of a condition-monitoring system for 

industrial robot gears. It is pointed out that the benefits of a condition-monitoring system in-

crease with longer robot runtimes and that the most effective way to reduce CM costs is to 

reduce the development costs of the condition-monitoring system, which is realized by the 

reference architecture. 

Finally, the contribution of the reference architecture to the state of the art is discussed in 

Chapter 5. The contribution is considered from different point of views. The novelty of the ap-

proach, the contribution to different research domains, and the transferability of the RA are 

analyzed. 

6.2 Outlook 

The reference architecture partly paves the way to a more sustainable use of industrial robots. 

CM systems based on the reference architecture could be used to increase the usage time of 

industrial robots, since faults can be detected before critical downtimes occur. Nevertheless, 

there are several steps that could be taken to improve the reference architecture and work 

towards the vision of a more sustainable use of industrial robots on different time scales.  

From a short-term perspective, the reference architecture could be used for a CM system that 

is implemented for a large robot fleet. In this way, larger amounts of data could be gathered to 

test the robustness of the proposed architecture in an industry setting. The gathered data could 

also be used to implement models to predict defects of industrial robots. Furthermore, the 

reference architecture could be extended to other components of industrial robots, such as 

electric drives. 

From a long-term perspective, new business models could be investigated for industrial robots. 

If a robust CM system for large robot fleets and their components existed, a pay-per-use model 

could be provided by robot manufacturers instead of a pay-per-product model. In this way, the 

overall number of manufactured robots could be decreased, which could reduce the cost struc-

ture of the robot manufacturers and also increase the sustainability of industrial robots. 
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Abstract 

In today9s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 

Keywords: Assembly; Design method; Family identification

1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today9s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Keywords: Industrial robot; Predictive Maintenance; Data Acquisition 

1. Introduction 

Industrial robots are an important component of highly 

automated production systems due to their versatility, 

precision and speed [1]. However, the breakdown of a robot 

leads to increased costs and reduced productivity. To prevent 

such downtimes, predictive maintenance (PdM) can be used 

to forecast robot failures and plan maintenance actions 

within production breaks [2]. This maintenance strategy 

thereby relies on Prognostics and Health Management 

Models (PHM-models), which capture the robot9s present 

wear state and extrapolate it into the future [3]. These 

regression and classification models are either physics-based 

or mainly data-based [4]. For the latter, data has to be 

collected for the different wear conditions of the robot and a 

correlation between this data and the wear state must exist. 

For this, the data is often transformed into a so-called health 

indicator (HI), which represents the health state of the 

monitored machine by means of statistics or signal analysis. 

A wide range of sensor systems is available for the task of 

data acquisition such as acceleration sensors, temperature 

sensors, current sensors and oil analysis sensors [4]. To setup 

a reliable PHM-model, sensors must be used that can detect 

the defects occurring in the industrial robot, and robot 

trajectories have to be used for the measurements that make 

the defects prominent in the data. However, up to now, it has 

not been clear what severe faults occur in industrial robots 

and hence which sensor systems and robot trajectories to use 

could not be clearly argued. This motivates the contribution 

of our publication: We present a methodology to define a 

data acquisition strategy in PHM-approaches for articulated 

robots. By applying this methodology, we further 

" describe the relationships between fault-prone robot 

parts, their defects and suitable sensor systems as an 

ontology based on historic and literature data, 

" evaluate sensor systems, which are suitable for the 

described defects based on literature data, 

" evaluate different conceptional robot trajectories to 

capture the current robot9s wear state based on 

technical and economic characteristics, and 

" propose a method to calculate the number of 

measurements that must be taken to estimate the wear 

state with a certain confidence interval. 

Hence, the remainder of the publication is structured in 

the following sections: In the state of the art section, we 

summarise existing PHM-frameworks and PHM-approaches 

for industrial robots. We thereby highlight the remaining 

research potential that motivates our paper. Afterwards, we 
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Abstract 

Predictive Maintenance of industrial robots offers the potential to increase productivity and cut costs in highly automated production systems. 

The success of such maintenance strategies is highly dependent on the data acquisition strategy used to monitor the robot9s health state. In this 

publication, we first describe a methodology for deriving a suitable data acquisition strategy. Second, we apply this methodology to shape a 

data acquisition strategy for articulated robots. This strategy defines the robot components for which data is acquired, the robot trajectories used 

for the data acquisition and the frequency that measurements are taken. To conclude, we discuss the methodology9s limitations. 
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propose the new methodology. Subsequently, we apply the 

methodology to articulated six-axis robots. Then, we 

evaluate our methodology in the discussion section. Finally, 

we sum up our results and give an outlook in the conclusion 

section. 

2. State of the art 

As the number of specific PHM-approaches has increased 

drastically in recent years, many authors have suggested 

PHM-frameworks to give practitioners guidelines to 

implement their own PHM-models. [5] describes a 

framework based on ISO 13374, which consists of six steps. 

These are data acquisition, data manipulation, state 

detection, health assessment, prognostics assessment and 

advisory generation. The focus of the framework lies in the 

description of the health and prognostics assessment with a 

neural network. Similarly, many frameworks emphasise the 

step of raw sensor data transformation or model creation, 

which is used to classify current or predict future asset health 

states: [6] suggests a framework focusing on a long short 

term memory neural network. [7] describes a generalised 

framework focusing on statistical feature extraction and data-

driven modelling. [8] proposes a framework focusing on 

feature extraction using autoencoders and modelling based 

on feedforward neural networks. [9] presents a more holistic 

approach considering different machine parts, the process of 

information collection regarding these parts and a PHM-

framework consisting of six steps. Here, data acquisition and 

pre-processing are followed by feature extraction, fault 

diagnosis and prognosis, and finally a cost and benefit 

analysis. However, none of these approaches illuminates the 

question, which sensors should be used for the data 

acquisition step.  

[10] proposes a PHM-methodology that considers this 

question employing hazard analysis where the selection of 

sensors is based on expert knowledge, which is used to 

identify the machine9s fault-sensitive components. Then, 

they select physical machine parameters that change because 

of a component9s fault propagation. Finally, they choose 

suitable sensors for these parameters. [11] suggests a 

sophisticated method for sensor selection, which is also 

based on expert knowledge. Here, failure modes and effects 

analysis is used to identify system fault modes and sensible 

fault signatures. Subsequently, a risk assessment for these 

faults is conducted and sensor candidates are compiled along 

with their response characteristics and variance due to 

environmental noise. By using this sensor information, as 

well as a physical model of the system and a diagnostic 

model to determine the health state, a figure of merit can be 

calculated for each sensor candidate. Using a genetic 

algorithm, different sensors are combined, and their figures 

of merit determined to derive an optimal sensor combination. 

Another concept to address the issue of sensor selection is 

sensor fusion. Here, multiple sensors are used in parallel and 

their data is combined within the health assessment model 

[12]. [13] focuses on the integration of the sensor system 

design into the mechanical system design for embedded 

PHM-systems. Nevertheless, these four publications do not 

offer a tool to decide how many measurements are needed to 

determine the current system health state with confidence. 

The frequency of required measurements is described 

qualitatively in [14] dependent on the observed signal 

changes. If the measured signal remains in the same 

magnitude range, the measurement periods stay constant; if 

changes in the magnitudes are present, the frequency of 

measurements should be increased to verify trends or 

determine outliers. Another approach to determine the 

measurement periods is presented by [15] based on the 

probabilistic modelling of wear progress. This model is then 

used in a cost comparison calculation. Here, they try to find 

the break-even between costs that appear as a result of faults 

that were not detected because not enough measurements had 

been taken, and costs caused by taking too many 

measurements. The number of measurements that are 

required for this break-even is recommended for use in the 

PHM-system. 

Besides the determination of suitable sensor systems and 

the number of measurements for a confident health 

estimation in a period of time, the robot trajectory used for 

the data acquisition has to be considered, since the chosen 

trajectory influences the measured sensor data. An ideal 

trajectory would provide data that has little noise and a high 

information content regarding the robot9s health state. After 

considering the recent publications in the field of PHM-

models for industrial robots, three literature clusters can be 

determined. In the first cluster, repetitive trajectories are used 

for data acquisition, which are not described further [16319]. 

In the second cluster, trajectories are used to determine 

backlash or friction in the robot joints, which set conditions 

for the dynamics of the trajectory [20, 21]. In the third 

cluster, the trajectory is not explained at all [22, 23].  

In summary, the state of the art relies mostly on expert 

knowledge to define the sensor system for PHM-models. The 

period between measurements is described qualitatively or 

by modelling the wear progress statistically, which can be 

error-prone, especially in the context of complex systems 

such as industrial robots. Finally, the robot trajectories used 

for PHM data acquisition have not been evaluated up to now. 

This motivates the suggested new integrated methodology 

for data acquisition, which will be presented in detail in the 

next section. 

3. Methodology 

In contrast to the state of the art, we propose a 

methodology that allows data source selection based on 

historic and literature data, trajectory selection based on 

expert knowledge, and measurement period selection based 

on simple statistics. The methodology is divided into six 

steps that are illustrated in Figure 1.  

First, we determine fault sensitive robot parts based on 

historic fault data from a production plant. In particular, we 

use a log of the maintenance department stating every fault 

that occurred in the factory, the associated timestamp and the 

taken maintenance action. By clustering this data by robot 

parts, the fault frequency of each component can be derived. 
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Figure 1. Methodology for the design of a data acquisition system. 

Second, we validate this data with expert interviews to 

verify the economic severity of the faults. The objective in 

this step is to evaluate the maintenance time needed to 

replace the error-prone parts. Part faults with high 

replacement times lead to longer downtimes with higher 

related maintenance costs. Hence, these parts should be 

focused on in a predictive maintenance strategy. 

Third, we derive typical faults for these parts based on 

literature data, as well as suitable sensors to trace these faults. 

For this, we follow the procedure for a literature review 

proposed by [24]. We summarise the data about parts, faults 

and sensors in a graph-based ontology. This graph consists 

of entities of different node classes representing robot 

components, faults, data sources and publications. They are 

connected by entities of different edge classes, which are 

described in Table 1. 

Table 1. Node and edge classes 
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In the fourth step, edges connecting each data source with 

publications are counted. In this way, the usage frequency for 

each data source can be determined. We suggest using the 

sensor systems most frequently used in literature for the 

considered faults in the data acquisition system. 

In the fifth step, we evaluate four different conceptional 

robot trajectories based on multiple criteria and a pairwise 

comparison taking into account the selected sensor systems. 

As this evaluation is based on expert knowledge, the results 

can vary depending on the persons performing the 

comparison and the production system under consideration. 

Thus, it is recommended to complete this evaluation for 

every production system individually and with several 

experts to obtain reliable results. The characteristics of these 

trajectories are explained in Figure 2. The first trajectory is 

defined by the movements the robot usually performs in 

production. During the second trajectory, the robot performs 

an isolated movement with one axis in a large angle range. 

This movement is executed for all axes. During the third 

trajectory, the robot makes a combined movement with all 

axes in a small angle range (less than 10°). For the fourth 

trajectory, the robot is decelerated abruptly by using the 

mechanical brakes of each axis. The measurement starts with 

this deceleration and captures the swing-out behaviour of the 

robot. These four trajectories are compared using criteria that 

can be divided into two sections. Section one covers the 

criteria for the economic efficiency of the trajectory. We 

consider in detail the required effort to integrate the 

trajectory into an existing production environment and the 

loss of production time while performing the measurement 

trajectory. Moreover, we evaluate the time needed for 

software and hardware changes to integrate the measurement 

procedure into the robot control. Section two covers the 

potential data quality for predictive maintenance. One 

criterion from this section is, how heavily the movements of 

the other robot axes influence the measurement data from 

one specific axis. We also compare the trajectories for their 

capability to measure data, which can be used to diagnose 

faults on specific components such as bearings. Finally, we 

evaluate the influence of changes in the production trajectory 

on measurement data. Please refer to [25] for the full 

evaluation.  

 

Figure 2. Potential measurement trajectories 

After selecting the trajectory with the highest evaluation 

score, we estimate the number of measurements, which are 

necessary for estimating the robot9s health condition reliably 
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in the last step. Within this publication, we assume that the 

HI to monitor the robot9s health state has already been 

chosen as there exist numerous approaches to select HIs for 

industrial robots [16, 17, 19]. It is calculated from the data of 

one measurement performed with the chosen trajectory. The 

HI must be normally distributed in a timeframe, where the 

health state is unlikely to change. Given these conditions, the 

number of required measurements ÿ to estimate the average 

HI with a confidence interval û, an observed variance of the 

HI ÿ and an allowed error ÿ can be calculated by formula 1. 

Here, ÿ  describes the ÿ -score for the chosen confidence 

interval û [26]. ÿ = (ÿ7ÿÿ )2 (1) 

To calculate n, the allowed error and the desired confidence 

interval must be set. The variance in the HI can be sample-

based. Therefore, we suggest collecting the HI data during 

the setup of the PdM-system for one week and one 

measurement per hour. 

4. Results 

To evaluate the described methodology, we applied it on 

articulated six axis robots. The findings of this application 

are presented in this section. Figure 3 shows the results of the 

initial data analysis for data collected in a car manufacturing 

plant over six years. The components with the highest fault 

frequency are electrical components (e.g. the robot drive 

controllers and the motors). Discussing these results with the 

plant9s maintenance experts showed that the most severe 

faults are gear faults as they can lead to the time-intensive 

exchange of a robot during production, causing high 

economic losses, while faults induced by the servo 

controllers and power supplies can be fixed quickly by 

exchanging the whole robot control. Hence, we focused the 

literature review on publications related to gear faults. 

 

 

Figure 3. Frequency of faults in industrial robots 

The result of this literature review is summarised partly in 

the graph depicted in Figure 4 for 60 publications, which 

were relevant for our application. The metadata of the 

publications are available in [27]. Based on this graph, we 

analysed the frequency of use for different data sources as 

shown in Figure 5 by counting the outgoing edges for each 

data source node. According to these results, we suggest 

using both accelerometers and motor currents as potential 

suitable data sources for PdM for industrial robots. In the 

next step, we evaluated the different trajectories and 

validated the results with further expert interviews. 

 

Figure 4. Part of the literature graph 

 

Figure 5. Usage frequency of data sources for PdM 

As can be seen in Figure 6, the production trajectory shows 

the highest economic efficiency. However, it also shows the 

lowest potential data quality. The criteria from this section 

are best met by the measurement trajectory with large angle 

ranges and isolated movements of each axis. We validated 

this result with 6 experts from the robot development and 

condition monitoring domain in the form of expert 

interviews. As no trajectory shows the highest evaluation 

score in both sections, it must be carefully evaluated, which 

trajectory will be used. If it is possible from a technical and 

organisational point of view, we recommend to use the 

trajectory with long isolated movements. Otherwise, the 

production trajectory should be used. 

 

 

Figure 6. Results of the trajectory evaluation 

Finally, we applied the last step of our methodology to 

determine the number of measurements required for a 

confident estimation of a robot9s health state. For this, we 

acquired vibration data with an acceleration sensor attached 

axially to the case of the gear of the second joint of a six-axis 

articulated robot of type KUKA KR 210. The sensor sampled 

data with a frequency of 26 kHz. One measurement lasted 

2.6 s. The raw data of one measurement is depicted in Figure 
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7. Measurements were executed every hour for 56 days as 

part of a long-term test. During the measurement, the robot 

performed an isolated movement of the second axis in a 90° 

range of motion. The remaining time, the robot performed a 

complex trajectory with varying angular speeds to accelerate 

its wear. We chose the root mean square (RMS) as the feature 

to track the robot9s health state. From the gathered data, we 

calculated the RMS for each measurement based on û 

samples per measurement and the measurement value per 

sample ûÿ according to formula 2. 

ûûû = :1û3 ûÿ2ûÿ  (2) 

The RMS was chosen exemplarily as a feature since it is used 

frequently for condition monitoring of machinery. Based on 

the averaged variance of these RMS values per day in the 

first week of the measurements, a confidence interval of 95% 

and an allowed error of 0.05 m/s², the required number of 

measurements equalled 10. To validate this result, we 

considered 58 sets of 10 random measurements in a 24h time 

window, calculated the mean RMS of these measurements 

and verified, whether this mean lies within the range of the 

24h mean and the allowed error. This approach showed that 

90 % of the measurements were inside the defined error 

range. The used data is also depicted in Figure 8. The data 

shown in blue are the original RMS values. The data depicted 

in orange are the estimated data based on three samples in a 

24h time window. The green and red line define the 95 % 

confidence interval of the 24h mean for an error of 0.05. 

Most of the original data lies in this interval. Only some high 

value peaks lie outside (around 10% of the measurements). 

The used data set is available upon request due to 

confidentiality reasons. 

 

 

Figure 7: Raw acceleration signal of one measurement 

 

Figure 8. RMS measurements with confidence interval and rolling mean 

5. Discussion 

The main objective of the presented methodology is to select 

suitable sensors, trajectories and the number of 

measurements for the HI determination at an early design 

stage of a predictive maintenance system for industrial 

robots. However, some remarks remain considering the step 

of sensor selection and the methodology as a whole. 

Taking a closer look at the step of sensor selection, we 

point out that the frequency of usage in literature for each 

sensor system as a decision criterion can mislead. Based on 

this approach not only the sensor best fitted for the 

monitoring task could be selected. The reasons why a 

specific sensor system was chosen in a publication could also 

be that this sensor system was already present or was more 

affordable. Hence, sensor systems with a low suitability 

could have a high frequency of usage in literature. 

Regarding the methodology in general, we have to clarify 

that the generated knowledge is only valid for one considered 

production system and the experts providing detailed 

information about this system. Hence, our presented results 

might not hold true for another production system e.g. in the 

electronics industry.  

Furthermore, the methodology should be applied 

repeatedly, when the PHM-system operates. While the 

system is running, data is produced continuously on a large 

scale. This data can be used to advance the applied sensor 

setup, trajectories, and the number of measurements. For 

instance, if a high percentage of faults can be detected with 

the integrated current sensors, it might be possible to avoid 

external acceleration sensors. In this way, the overall costs of 

the PHM-system can be reduced. Furthermore, data could be 

acquired using not only the measurement trajectory but also 

the production trajectory. Thus, a parallel PHM-system could 

be built up based on this trajectory. If it is possible to derive 

reliable HIs and models for the PHM-system based on the 

production trajectory, it might be possible to create a system, 

that reliably classifies and predicts faults and is economically 

efficient, too. This is of particular importance, as in many 

production setups it might not be possible to perform non-

value-adding measurement trajectories. Regarding the 

number of required measurements, the variance of the chosen 

HIs should be reevaluated on a regular basis. If this variance 

changes, it might be necessary to increase the number of 

measurements to estimate the HIs mean accurately. 

6. Summary and outlook 

In this publication, we presented a methodology for the 

setup of data acquisition for predictive maintenance of 

industrial robots. This methodology is based on literature, 

historic data, expert knowledge and statistics. It gives an 

overview of fault-prone components of six axis articulated 

robots operating in an automotive plant, which are the 

electronic components such as the power supply and motors, 

as well as the robot gears, and the data sources that are 

suitable to detect such faults. Vibration and motor current 

analysis is most frequently used for this purpose. To gather 

the required data, we evaluated different robot trajectories 
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qualitatively. We suggest using either the production 

trajectory to achieve a high economic efficiency or a 

measurement trajectory with isolated axis movements and 

large angle ranges for the measurements to collect high-

quality data. Finally, we suggest using the method proposed 

in [26] to determine the number of required measurements in 

a timeframe to estimate the robot9s health state with 

confidence. 

In future research, we plan to find out whether a 

significant difference in the fault detection rate of PHM-

models for industrial robot gears can be measured based on 

either vibration or current data. 
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Abstract 

In today9s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 

Keywords: Assembly; Design method; Family identification

1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today9s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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1. Introduction 

The productivity of industrial robots is reduced by 

unexpected downtimes, which can be caused by gear defects 

[1]. To overcome this problem, condition monitoring (CM) 

can be used to trigger maintenance actions before a failure 

can occur. A four-step approach can be followed for 

implementing a CM system. First, data that correlates with 

the development of defects must be collected. Second, this 

data must be transformed into meaningful health indicators 

(HI), which represent the health state of the system. Third, 

these HI data have to be used to detect anomalies or trends, 

classify data from damaged robots or predict the occurrence 

of defects with suitable data or model driven approaches [2]. 

In earlier publications, we presented a suitable data 

acquisition system for the CM of industrial robot gears [1]. 

We suggested a data transformation approach to derive an 

appropriate HI for each robot axis in [3] and described a 

robust combined anomaly and trend detection model in [4]. 

However, in the field of data acquisition some questions 

remain unanswered for this application. In this publication, 

we intend to address the questions of, 

" which data source, vibration data or current data, 

should be used for data acquisition and 

" which frequency range must be considered during 

data collection to provide HI time series that display 

defects sufficiently. 

Hence, we present the state of the art regarding these 

research questions in Section 2 and clarify the research gap 

that we are addressing. Subsequently, in Section 3 we 

describe the methodology that was followed to compare data 

sources and the considered frequency ranges. Afterwards, we 

present the results of multiple accelerated wear tests of 

industrial robots in Section 4 that were executed with 

different data sources and frequency bands. These results are 

discussed in Section 5 and summarized in Section 6, which 

also provides an outlook for further research topics. 

2. State of the Art 

In the following, an overview of publications is given that 

compare different data sources for robot or gear CM. 

Additionally, the sampling rates used for data acquisition in 
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Abstract 
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these publications will be summarized as higher sampling 

frequencies allow the analysis of higher frequency ranges. 

Vibration and current data were compared for a two-stage 

gearbox in [5]. Sampling rates of up to 50 kHz were used for 

measurements lasting up to 36 seconds for different speeds 

and loads. Twenty-four measurements were performed per 

unique gear condition. Defects were induced by drilling 

holes of varying diameters in the outer ring of the shaft 

bearing. Then 882 features from the time- and frequency-

domains were derived for the vibration measurements and 

used with a support vector machine to classify the 

measurements. Here, two cases were investigated. In the first 

experiment, the support vector machine only had to 

distinguish defective measurements from healthy ones, 

which was possible with 100% accuracy. In the second 

experiment, the different drilled diameters should be 

differentiated. This was possible with recall values above 

97%. Additionally, the current data was analyzed based on 

wavelet analysis. Here, only the defect signals with the two 

larger diameters could be differentiated from the normal 

signals. 

Different signal processing techniques for current and 

vibration data for the CM of multi-stage gears were 

compared in [6]. The authors use characteristic frequencies 

in the vibration signal spectra and wavelet techniques for the 

current data for defect detection. Data was acquired at 

different loads, with a sampling frequency of up to 20 kHz 

and a measurement length of up to 2 seconds. They conclude 

that both data sources can be used for the CM task. 

A comparison of vibration and current data for the fault 

detection of a multi-stage gear is conducted in [7]. Defects, 

such as one or two missing gear teeth, were induced 

artificially. Measurement data was acquired at different 

loads, a measurement time of 2 s and measurement 

frequencies up to 20 kHz. They compare the non-defect 

signals with the defect signals based on the Kolmogorov-

Smirnov test. This test is used to determine whether two data 

sets have the same probability distribution. Based on this test, 

it was shown that with motor current data the defect 

measurements can be distinguished from the healthy 

measurements at all load levels. Vibration measurements of 

healthy and faulty gears cannot be distinguished at low loads. 

Another multi-stage gear CM approach was investigated 

in [8]. Here, samples were taken at a sampling rate of 10 kHz 

and a measurement time of 0.430.8 seconds. Different 

scenarios regarding load and removed teeth were 

investigated. The data are analyzed in the time-frequency 

domain with the short-time Fourier transform and the 

discrete wavelet transform. The analysis shows that the 

defects alter the spectrograms of the different data sources in 

different ways, but the effect of the defects is visible for both 

data sources and data processing methods.  

A methodology for current based CM of gears based on 

the synchronous signal averaging method is presented in [9]. 

The authors compare their method to vibration data 

measurements for the case of a defective gear tooth. The 

defect consisted of artificially introduced pitting at the output 

gear of a two-stage gear. Data was sampled at 4.44 kHz for 

the current sensors and 10 kHz for the vibration data. Thirty 

samples were taken for different load levels and a 

measurement time of 26.88 s. Results indicate that both data 

sources show differences between defective and healthy 

measurements. Variations due to the different loads exist. 

Vibration and current data were evaluated based on 

measurements lasting one second at a sampling rate of 8 kHz 

for a test rig including an automotive gear in [10]. Different 

loads and defect conditions were investigated. Simple 

statistical features were derived for the vibration data and 

motor current signature specific features were calculated 

from these measurements. Subsequently, two classifiers 3 an 

artificial neural network and a support vector machine 3 were 

trained and used to classify the measurements. The 

classification accuracies are the highest for the current data, 

followed by slightly lower values for the vibration data, 

depending on the defect and operating condition of the gear. 

The detection of pitting defects with different severities in 

terms of number and size of pits was investigated in [11]. 

Data were acquired at a two-stage gear test bed. Current data 

were collected at 25 kHz, vibration data were sampled at 

50 kHz for a time of 10 seconds per measurement. Different 

load and speed scenarios were considered. Twenty features 

from the time domain were derived from the raw data, such 

as the RMS or the log energy entropy. Subsequently, these 

features were used in a classifier to distinguish defect 

measurements from healthy measurements. Here, the 

classifier based on the vibration data showed higher accuracy 

values compared to the model based on current data. 

Vibration data was sampled at 3 kHz and current data at 

4 kHz for a two-stage gear box in [12]. Experiments were 

performed at different speed levels and for different gear 

wear levels. Additionally, a pitting defect in a bearing was 

artificially introduced. Clear differences in the spectra of the 

vibration data could be observed for the different defects. 

The sidebands of the characteristic frequencies increased 

with increasing velocity, which makes defect detection more 

challenging. Similarly, the power spectral density was 

derived for the current data and differences for the various 

defects were visible for the higher velocity levels. No visible 

change was observed at the lowest speed level, which was 

5 Hz. We presented a more comprehensive literature review 

regarding gear CM in [1]. For this publication, we analyzed 

how often certain sampling frequencies and sensor types are 

used in the literature network graph presented in [1]. The 

result of this analysis is presented in the histogram in 

Figure 1. Sampling frequencies higher than 10 kHz are used 

most often for vibration-based CM. Sampling frequencies of 

10 kHz or lower are most frequently used for current-based 

approaches. Summarizing the presented publications, two 

observations can be made. First, the suitability of the 

different data sources depends on the data transformation 

steps used and the individual system, which is monitored. 

Second, various sampling frequencies and mostly high ones 

are used for the experiments. To the best of our knowledge, 

neither a comparison of data sources for industrial robot gear 
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CM exists, nor an analysis of which sampling frequencies 

and sensor bandwidth are required for this application.  

3. Methodology 

To address the research gap defined above, we analyzed 

data from different accelerated wear tests of industrial robots. 

In the following, the experiments will first be presented. 

Afterwards, we will describe the analysis process applied to 

the data. The four accelerated wear tests were performed 

with different six-axis articulated robots with a payload 

greater than 200 kg and cycloidal gears in the considered 

axes at their second or third axis. The summary data of all 

experiments is presented in Table 1. The sampling 

frequencies of the experiments varied due to restrictions of 

the measurement systems. 

The first experiment was performed with an ABB-

6640 235/2.55. Here, the wear was increased by degreasing 

the robot gear at axis 3 and adding abrasive additives into the 

gear box. The experiment lasted 3 months and during this 

time 1726 measurements were collected for isolated 

movements of the third axis from the vibration sensor and 

485 from the current sensor. Vibration sensor data were 

sampled at 20 kHz and current sensor data at 2 kHz. The 

experiment stopped when the motor pins were worn out and 

hence were no longer able to drive the gear. The second 

experiment was performed with a KUKA KR 510 R3060. 

Similar to the first experiment, the robot gear at axis 3 was 

degreased and abrasive additives were added. The 680 

current and vibration measurements were recorded in 3 

months for isolated movements of the third axis. The 

experiment was stopped after the noise level increased to a 

level at which a defect could be clearly assumed acoustically. 

The third experiment was performed with an ABB 6600-

255/2.55. Data were sampled at 10 kHz, captured with a 

vibration sensor attached to the second axis gear cap while 

the robot made isolated movements of the second axis. Over 

2290 measurements were collected in over 12 months. The 

experiment was stopped due to the high number of error 

messages issued by the robot controller. More information 

regarding this experiment can be found in [13, 14]. The 

fourth experiment was performed with an ABB 7600-

340/2.8. Vibration data were sampled with 20 kHz at a 

similar position at the gear cap. The robot performed isolated 

movements with this axis. Over 920 measurements were 

collected in over 3 months. One measurement contains the 

information of one movement. The experiment stopped since 

a broken part of a roller bearing blocked the gear of the 

second axis and the robot was unable to move this axis 

anymore. This experiment is described in more detail in [3]. 

All experiments were performed in isolated test beds to 

reduce influences that could occur in a production 

environment. 

In total, two analyses were performed regarding the 

suitability of data sources and the frequency ranges that 

contain defect-related information. This knowledge can then 

be used to select suitable sensors regarding type, sampling 

frequency and frequency range. The sampling frequency 

must be twice the required defect related frequency [15] and 

the sensor must have a bandwidth up to this frequency. We 

performed the latter analysis only for acceleration sensors, 

since the current sensors are normally built-in features of the 

robot controllers. The characteristics of these sensors are 

defined by the robot manufacturers and hence cannot be 

influenced.  

We analyzed only the data from experiment 1 and 2 

regarding the suitability of different data sources, since no 

current data were available for experiment 3 and 4. For this, 

we calculated a HI, which is described in [3] and further 

below, for the raw data from both data acquisition systems 

for both experiments. 

Table 1: Overview of experiments (exp.), Abbreviations: Vibration (Vib.), 

Current (Cur.) 

 Sampling 

frequency 

in kHz 

Number of 

measure-

ments 

Length 

in 

months 

STFT 

window 

length 

Reason for 

failure 

Exp. 

1 

Vib.: 20  

Cur.: 2  

Vib.: 1726 

Cur.:  485 

3  256 Worn out 

motor 

pinions 

Exp. 

2 

Vib.: 24  

Cur.: 1  

Vib.: 680 

Cur.: 680 

3  512 Drastically 

increased 

noise level 

Exp. 

3 

10   12 256 Increased 

number of 

controller 

errors  

Exp. 

4 

20  914 3  256 Blocked 

gear due to 

broken 

roller 

bearing 

Subsequently, we compared the HI time series of the two 

data sources regarding different criteria. We analyzed 

whether anomalies appear earlier in one of the data sources9 

HI time series and whether trends are more prominent in one 

data source. For the second analysis, we analyzed the 

vibration data from all experiments in different frequency 

ranges. For this, we applied low-pass filters on the 

measurements9 raw data at different cut-off frequencies in 

 
Figure 1: Usage of data sources for presented publications in 

(Nentwich & Reinhart, 2021c) 
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the range of 250 to 2500 Hz to remove the signal content of 

higher frequencies. A 10th order infinite impulse response 

Chebyshev Type II filter was used for this because of its good 

damping behavior. In this way, high frequency range 

information is blurred. If this information would be fault 

related no anomalies or trends should be visible in the Z-

score time series anymore. Then, we derived the same HI as 

for the data source analysis from the down-sampled data. 

This HI represents the raw data of one measurement as a 

single number. For this, the spectrogram of the short-time 

Fourier transform (STFT) ûûûû(ÿ, û)ûûûû  for each 

measurement is first calculated. Here, ÿ is a time step and û 

a frequency step in the STFT-spectrogram. The STFT-

window lengths are presented in Table 1. A Hamming 

window function was used for the STFT transform as this 

showed good time-frequency resolution in preliminary 

studies related to [3]. For a reference quantity of 

measurements, the mean ûûûû(ÿ, û)ûÿû,ÿûÿ and standard 

deviation values ûûûû(ÿ, û)ûÿû,ÿûÿ  for each entry in the 

STFT matrices over all reference measurements are 

calculated. Based on the ûûûû(ÿ, û)ûÿû,ÿûÿ  and the ûûûû(ÿ, û)ûÿû,ÿûÿ  matrix, a Z-score matrix û(ÿ, û) can be 

calculated for each new measurement according to Formula 

1. û(ÿ, û) = | ûûûû(ÿ,û)ÿÿÿÿ  2 ûûûû(ÿ,û)ÿÿÿ,ÿÿÿûûûû(ÿ,û)ÿûû,ÿÿÿ |  (1) 

The HI value is determined by averaging all entries of the 

Z-score matrix and is called in the following Z-score. Please 

refer to [3] for more detailed information regarding this HI. 

Afterwards, we analyzed the Z-score time series visually and 

using the signal to noise ratio, ûÿû. This common figure of 

merit used in signal analysis describes the information 

content of a signal and can be calculated as shown in Formula 

2. ûÿû = ûûûû(ÿ(ÿ))ûÿû(ÿ(ÿ))     (2) 

Here, ÿûÿÿ(û(û))  describes the average value of a time 

series û(û) and ûûû(û(û)) the standard deviation of a time 

series. For this analysis, we considered the first 30 percent of 

each data set to avoid influences of trends of the Z-score time 

series on ûÿû . Finally, we summarized observations that 

could be found in all data sets. The process of the two 

analyses is summarized in Figure 6. 

4. Results 

In the following, we will first evaluate data from 

experiment 1 and 2 to compare the suitability of different 

data sources. Afterwards, we will compare vibration data 

from all experiments with different frequency bands. The Z-

score time series from experiment 1 are shown in Figure 2. 

An initial increase in the Z-score is already visible around 

measurement 210 for the current data and around 

measurement 250 for the vibration data. The early increase 

of the current data was due to a motor defect in the form of a 

short circuit caused by overheating of the motor. The  

increase of the vibration data or the decrease of the current 

data around measurement 250 is related to the exchange of 

the broken motor. This defect was not detected by the 

 
Figure 2: Comparison of data sources in Experiment 1 (data normalized) 

 
Figure 3: Comparison of data sources in Experiment 2 (data normalized) 

 
Figure 4: Comparison of normalized vibration-based Z-score time series 

and different frequency ranges in experiment 1 

 
Figure 5: Comparison of normalized vibration-based Z-score time series 

and different frequency ranges in experiment 2 

                

 

   

   

   

   

          

       

                  

 
  
 
 
  

          

 

   

   

   

   

          

       

                  

 
  
 
 
  

         

 

   

   

   

   

 
      

      

       

       

                  

 
  
 
 
  

          

 

   

   

   

   

 
      

      

       

       

                  

 
  
 
 
  

 

Figure 6: Analysis process 
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vibration data. Changes in the end of the experiment are 

visible around measurement 430 in the vibration data and in 

the current data around measurement 450. This equals a time 

difference of roughly 24 hours. At this stage, it can be 

assumed that the gear defect was already present and 

growing. An accurate analysis of the gear defect state was 

not possible since it is not possible to disassemble the gear 

without destroying it.  

The Z-score time series of vibration and current data of 

experiment 2 are shown in Figure 3. Changes in the time 

series are visible at the end of the experiment before the 

experiment was ended. These changes are visible around 

measurement 550 in the vibration data and around 

measurement 580 in the current data. In this experiment an 

alarm would have been triggered approximately 24 hours 

earlier using vibration data compared to using current data. 

Another characteristic of the vibration data is that it shows a 

small trend in the beginning of the experiment up to 

measurement 200. This trend is more prominent in the 

vibration data compared to the current data. In the end of the 

experiment, the HI values of the vibration data decrease to a 

plateau. The values of the current data remain more 

constantly on a high level. 

The results of the frequency range experiments are 

depicted in Figures 4,5 and 7-9. The various lines in the 

images represent the time series of the Z-score derived from 

the differently down-sampled raw vibration data. We 

compared all time series for one data set with each other to 

find common patterns between the data sets. Four similar 

characteristics could be observed for all four experiments. 

With increasing frequency range, the noise level of the Z-

score time series is reduced in experiments 133. This is also 

shown in Figure 9. It indicates the signal to noise ratios for 

the different experiments and cut-off frequencies. Increased 

cut-off frequencies lead to an increased signal to noise ratio. 

Furthermore, depending on the cut-off frequency used, 

different parts of the Z-score time series become more 

prominent. This means that they have higher amplitudes 

within a given time range. This can be observed, for example, 

in Figure 5 around measurement 380 or in Figure 7 around 

measurement 1000. An explanation for this observation 

could be that different parts of the gear, such as the bearings 

or the gear teeth, stimulate vibrations at different frequencies 

depending on the gear speed. The third observation is that 

even at a low cut-off frequency of 250 Hz, clear changes in 

the HI time series are visible before the gear defect. These 

changes become more visible with increasing cut-off 

frequencies. These observations are also summarized in 

Table 2. An interactive version of Figures 338 can be found 

in [16]. 

5. Discussion 

In this section we will first elaborate on the findings of the 

data source comparison experiments. Afterwards, we will 

discuss the indications given by the frequency range analysis. 

In experiment 1, data from both sources could detect the gear 

defect in the end of the experiment. The gear defect was 

detected in the same 24-hour window for both data sources. 

Furthermore, only in the current HI data a motor defect could 

be detected. In experiment 2 the gear defect was detected 24 

hours earlier by the vibration HI  

 
Figure 7: Comparison of normalized vibration-based Z-score time series 

and different frequency ranges in experiment 3 

 
Figure 8: Comparison of normalized vibration-based Z-score time series 

and different frequency ranges in experiment 4 

 
Figure 9: Signal to noise ratios of different experiments and sampling 

frequencies 

Table 2: Observations of the frequency experiment (yes: Y, no: N) 

 Observation Experiment 

1 2 3 4 

Higher cut-off frequencies 

reduce noise. 

Y Y Y N 

Different cut-off frequencies 

lead to prominence of different 

signal parts. 

Y Y Y Y 

Changes are prominent before 

the defect occurs above 250 Hz 

Y Y Y Y 

Higher cut-off frequencies  up 

to 1000 Hz increase the 

changes in the health indicator 

due to wear. 

Y N Y Y 
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data compared to the current HI data. Thus, both systems 

qualify for the CM task. Based on these findings, no clear 

recommendation can be given on which data source to use 

from our point of view. However, there are several other 

criteria that must be considered for the selection. A CM 

system for robot gears must be scalable to heterogenous 

robot fleets. Using current data requires the availability of 

data connectors, which must be provided by the various robot 

manufacturers. This issue could be overcome by using 

external vibration sensors attached to the robots. However, 

in the vibration data scenario, additional costs are created for 

the sensor purchase. These costs can be reduced by 

narrowing down the fleet size of robots to be monitored. The 

CM system should be used only for robots that are either 

positioned at bottlenecks of the production system or that are 

highly stressed by their production task. Another argument 

against a vibration-based system could be the inability of the 

motor defect detection in experiment 1. Discussions with the 

maintenance department of a car manufacturing plant 

showed that these defects do not cause long downtimes, since 

in most cases motors can be exchanged quickly [1]. 

Therefore, these faults are not critical and thus are not 

considered in the proposed CM system. Therefore, we 

suggest using a vibration-data based CM system as it can 

detect gear defects and can be implemented faster compared 

to a current-data based system. 

The second analysis regarding the required frequency range 

showed that changes in the HI time series are already present 

at low cut-off frequencies in the case of a gear defect. 

Moreover, the Z-score noise level is reduced at higher cut-

off frequencies, and from a theoretical point of view a 

specific frequency range is necessary to capture the 

vibrations from the various gear components. These 

vibration frequencies depend on the components9 speed and 

thus the robot speed and the gear transmission ratios [17]. 

Summarizing, a sampling frequency and frequency range 

should be chosen that is as low as possible to reduce sensor 

cost and as high as necessary to ensure capturing the 

vibrations of all gear components. A minimum required 

sampling frequency could be derived based on the electric 

drive speed which can be calculated with the robot speed ûÿÿÿÿÿ  and the gear transmission rate ÿÿÿÿÿÿ ûûûÿ . In the 

following, an estimation of the required sampling frequency 

based on robot data sheet information and state of the art 

knowledge on robot gear transmission rates will be 

performed according to Formula 3. ÿûûûûûûûû =  ûÿÿÿÿÿ 7 ÿÿÿÿÿÿ ûûûÿ 7 ÿûûÿ 7 ÿ/ûÿû 7 2      (3) 

Here, we rely on the calculations that the maximum 

component speed within a robot gear correlates with a 

constant ÿûûÿ  [13]. To capture a signal at a specific 

frequency, the sampling frequency must be two times this 

frequency [15]. Furthermore, defect related information can 

not only be represented in a component9s frequency, but also 

at its harmonics ÿ/ûÿû  (multiples) [17]. The required 

frequency range of the sensor is then half ÿûûûûûûûû . 

Assuming a maximum robot speed of 90 °/s and a gear ratio 

of 268 for the third axis of the robot used in experiment 4, 

setting ÿûûÿ  22 times the electric drive speed [13] and ÿ/ûÿû equal 3, this would require a sampling frequency of 

8.844 kHz to capture all component frequencies and 

harmonics reliably at maximum robot speed. Formula 3 can 

be used in practice to estimate the minimum required sensor 

sampling resolution. 

6. Conclusion 

Experiments for comparing different data sources and 

required frequency ranges for industrial robot gear condition 

monitoring were conducted in this work. The raw sensor data 

was transformed to a HI based on the short-time Fourier 

transform and the principle of Z-scores. The experiments 

showed that both vibration and current sensor data, are 

capable to detect robot gear defects. Based on practical 

implementation challenges, we suggest using vibration data 

in a condition monitoring system. The experiments also 

showed that the defects could be detected considering low 

cut-off frequencies. However, to be sure to collect potential 

vibrations of all components, we propose a formula to 

estimate the minimum required sampling frequency and 

frequency range. Future research could concentrate on 

further experiments to validate these findings. 

Acknowledgements 

We express our gratitude to the Bavarian Ministry of 

Economic Affairs, Regional Development and Energy for 

the funding of our research in the grant IUK-1809-0008 

IUK597/003). 

 

References 

[1] Nentwich, C., Reinhart, G., 2021. Towards Data Acquisition for Predictive Maintenance of 
Industrial Robots. Procedia CIRP. 

[2] ISO, 2002. DIN ISO 13373-1:2002-07, Zustandsüberwachung und -diagnostik von Maschinen- 
Schwingungs-Zustandsüberwachung- Teil 1: Allgemeine Anleitungen (ISO 13373-1:2002). Beuth 

Verlag GmbH, Berlin. 

[3] Nentwich, C., Reinhart, G., 2021. A Method for Health Indicator Evaluation for Condition 
Monitoring of Industrial Robot Gears. Robotics 10, p. 80. 

[4] Nentwich, C., Reinhart, G., 2021. A Combined Anomaly and Trend Detection System for 

Industrial Robot Gear Condition Monitoring. Applied Sciences 11, p. 10403. 
[5] Bravo, I., Leturiondo, U., Arnaiz, A., Salgado, O., 2016. Fault diagnosis of rolling element 

bearings from current and vibration measurements. PHM Society European Conference, 3(1). 
[6] Kar, C., Mohanty, A.R., 2006. Monitoring gear vibrations through motor current signature analysis 

and wavelet transform. Mechanical Systems and Signal Processing 20, p. 158. 

[7] Kar, C., Mohanty, A.R., 2006. Multistage gearbox condition monitoring using motor current 
signature analysis and Kolmogorov3Smirnov test. Journal of Sound and Vibration 290, p. 337. 

[8] Kar, C., Mohanty, A.R., 2008. Vibration and current transient monitoring for gearbox fault 

detection using multiresolution Fourier transform. Journal of Sound and Vibration 311, p. 109. 
[9] Ottewill, J.R., Orkisz, M., 2013. Condition monitoring of gearboxes using synchronously averaged 

electric motor signals. Mechanical Systems and Signal Processing 38, p. 482. 
[10] Praveenkumar, T., Saimurugan, M., Ramachandran, K.I., 2017. Comparison of Vibration, Sound 

and Motor Current Signature Analysis for Detection of Gear Box Faults. International Journal of 

Prognostics and Health Management 8. 
[11] Sánchez, R.-V., Lucero, P., Vásquez, R.E., Cerrada, M. et al., 2018. A comparative feature 

analysis for gear pitting level classification by using acoustic emission, vibration and current 

signals. IFAC-PapersOnLine 51, p. 346. 
[12] Saucedo-Dorantes, J.J., Delgado-Prieto, M., Ortega-Redondo, J.A., Osornio-Rios, R.A. et al., 

2016. Multiple-Fault Detection Methodology Based on Vibration and Current Analysis Applied to 
Bearings in Induction Motors and Gearboxes on the Kinematic Chain. Shock and Vibration 2016, 

p. 1. 

[13] Danielson Hugo, Schmuck Benjamin, 2017. Robot Condition Monitoring: A first step in Condition 
Monitoring for robotic applications, Lulea. 

[14] Martin Karlsson, Fredrik Hörnqvist, 2018. Robot Condition Monitoring and Production 

Simulation, Lulea. 
[15] Shannon, C.E., 1949. Communication in the Presence of Noise. Proceedings of the IRE 37, p. 10. 

[16] Nentwich, C. Figures for data source and sampling frequency comparison. 
https://github.com/xorbey/datasourcecomparison. Accessed 1 December 2021. 

[17] Pham, D.T., Wang, L., Gao, R.X., 2006. Condition Monitoring and Control for Intelligent 

Manufacturing. Springer London, London. 



Appendix 

87 

 

 

 

 

 

 

 

 

 

 

 

8.3 A Method for Health Indicator Evaluation for Condition Moni-

toring of Industrial Robot Gears 

 



robotics

Article

A Method for Health Indicator Evaluation for Condition
Monitoring of Industrial Robot Gears

Corbinian Nentwich * and Gunther Reinhart

���������
�������

Citation: Nentwich, C.; Reinhart, G.

A Method for Health Indicator

Evaluation for Condition Monitoring

of Industrial Robot Gears. Robotics

2021, 10, 80. https://doi.org/

10.3390/robotics10020080

Academic Editor: Marco Ceccarelli

Received: 29 April 2021

Accepted: 7 June 2021

Published: 9 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute for Machine Tools and Industrial Management, Boltzmannstraße 15, 85747 Garching, Germany;

emeritus.reinhart@tum.de

* Correspondence: corbinian.nentwich@iwb.tum.de

Abstract: Condition monitoring of industrial robots has the potential to decrease downtimes in

highly automated production systems. In this context, we propose a new method to evaluate health

indicators for this application and suggest a new health indicator (HI) based on vibration data

measurements, Short-time Fourier transform and Z-scores. By executing the method, we find that

the proposed health indicator can detect varying faults better, has lower temperature sensitivity and

works better in instationary velocity regimes compared to several state-of-the-art HIs. A discussion

of the validity of the results concludes our contribution.

Keywords: industrial robot; condition monitoring; health indicator

1. Introduction

Industrial robots are a fundamental part of highly automated production systems,
which can be found in the automotive or electronics industry [1]. Since they operate in
complex production cells and as a part of linear production lines, robot malfunctions lead
to long downtimes for repair or replacement and, hence, to increased costs. In particular,
robot gear faults are responsible for the longest downtimes because they often require the
replacement of the whole robot [2]. The condition monitoring (CM) of these gears offers
the potential to resolve this issue. CM is the monitoring of an asset’s health using sensor
data. The health state represents a wear reserve before a failure occurs. This health state
is quantified with a health indicator (HI). A significant monitored change in this health
indicator can be used as a decision-making aid in the planning of maintenance actions [3].

1.1. State-of-the-Art

In recent years, different HIs based on vibration data for several industrial robot
components, such as bearings, gears and motors, and their specific faults have been
investigated. Furthermore, several approaches to cope with instationary signals in CM
have been presented. The next two sections give a short overview of these topics followed
by a section stating the contribution of our publication.

1.1.1. Vibration-Based Robot Condition Monitoring

A fault detection method was developed in [4], which first uses a novel phase-based,
time-domain averaging method to remove the deterministic part of the vibration signal.
Subsequently, the root mean square (RMS) and power spectrum entropy of the remaining
residual signal are calculated as health indicators. A vibration signal based CM system
for SCARA robots was implemented in [5], which in the first step uses statistical HIs
of the time-domain signal to detect the occurrence of a defect and in the second step
uses an artificial neural network to diagnose the fault type. A three-layer architecture for
remote fault diagnosis of industrial robot gearboxes was proposed using vibration signals
in [6]. In the diagnosis layer, the authors present a performance evaluation approach
using a support vector machine (SVM), a remaining useful life prediction by a Markov
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model and a fault-type diagnosis based on a Bayesian network. The degenerative behavior
of an industrial robot gear was observed with vibration sensors by [7] as well as [8] in
accelerated wear tests. After pre-processing the signals using order tracking and spectral
auto-correlation, the characteristic fault frequencies were calculated and monitored by root
mean square analysis, which revealed a trend correlating with increasing wear. In addition
to the installation of accelerometers, other additional data sources were investigated in this
context. The acoustic emission technology was used to detect robot gearbox faults based
on the ball spinning and ball passing frequency of the bearings in [9]. The changes of the
RMS-HI and characteristic frequencies for functional and broken strain gears of industrial
robots were investigated in [10]. The classification and regression performance of different
data-driven models based on frequency-domain data and principal component analysis
for dimensionality reduction was evaluated in [11].

1.1.2. Time–Frequency-Based Health Indicators

In addition to vibration data based CM approaches for industrial robots, there also
exist several publications considering HIs from the time–frequency-domain. Here, ap-
proaches based on the Short-time Fourier transform (STFT), Wavelet transform (WT) or
Hilbert Huang transform (HHT) can be divided. STFT is used to derive two HIs named
Prominence and Compliance in [12] to detect bearing faults based on their characteristic
fault frequencies. A similarity measure between the STFT spectrograms based on standard
deviation and correlation is combined with a simple classifier in [13] to detect bearing
faults. The same objective was pursued in [14] by means of the marginal time integration
of STFTs. Bearing fault classification by means of non-negative matrix factorization or
convolutional neural networks and STFT was evaluated in [15,16].

In the field of WT, several approaches exist for different assets. CM of brushless DC
motors is investigated based on energies for characteristic frequencies based on both STFT
and WT in [17]. A decomposition rate is used in [18] for CM of electric drives based on WT.
RMS and Kurtosis are calculated for the WT coefficients for broken bar fault detection in
electric drives and combined with a neural network for fault classification in [19]. Bearing
fault classification was performed with an SVM based on WT in combination with singular
value decomposition for dimensionality reduction in [20]. The spectra of WT coefficients
were the basis for the calculation of statistical HIs and frequency specific energy values for
the CM of bearing faults in [21]. The similarities of continuous WT spectra are used as an HI
for bearing fault detection [22]. The permutation entropy derived from flexible analytical
wavelet transform was used as a feature for an SVM for bearing fault classification [23].
Impulse factor, Kurtosis and RMS based on WT coefficients were used for bearing fault
detection of helicopters [24]. Statistical features and Hoelder’s exponent were derived
from WT coefficients for milling tool health state monitoring. Here, the HIs were the input
for an SVM and Decision Tree classifier [25]. HIs were derived by a convolutional neural
network for milling tool condition monitoring based on the wavelet decomposition in [26].
Energies of WT coefficients were also used for detecting generator and gear faults in wind
turbines [27]. Different entropy-based and statistical features were used in [28] for gearbox
health monitoring in combination with an SVM. Energy and entropy values derived from
WT for characteristic frequencies are applied for gearbox condition monitoring in [29].

In [30], the Shannon entropy based on HHT was used for the CM of gears. HHT was
also used in [31] to derive HIs by an autoencoder based on the Marginal Hilbert Spectrum.
A component dependent frequency energy based on HHT was used as a label in [32] for a
CNN-based regression model trained on raw vibration time series data for bearing fault
detection. Different statistical and entropy-based HIs were calculated from the Intrinsic
mode functions (IMFs) derived by HHT in [33].

1.2. Contribution to the State-of-the-Art

However, none of these publications assess vibration data-based HIs’ ability to de-
tect faults in an industry-like industrial robot application setting. It is characterized by
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changing robot axes’ velocities, changing temperatures of the gears due to unbalanced
robot utilization and unknown robot gear fault types. This is why we present a new HI
for robot gear condition monitoring, which potentially copes with these characteristics.
Furthermore, we propose a method to evaluate the suitability of HIs for the task of robot
gear condition monitoring. We apply this method on the newly formulated HI and several
HIs from the state-of-the-art.

2. Materials and Methods

This section is divided in two parts. First, the newly developed HI is presented.
Afterwards, the methodologies to evaluate the HI’s performance and data sets used in this
context are explained.

2.1. Time–Frequency-Domain-Based Z-Score

The concept of the newly designed HI is based on two cornerstones. To deal with
instationary velocity regimes, which are found in robot applications due to the typical
movement patterns of a robot, the HI is based on time–frequency-domain data. Simultane-
ously, the HI must take into account a certain variance of this data due to environmental
changes such as temperature fluctuations. This is realized by the concept of Z-scores, a
common similarity measure from statistics [34]. The process to calculate the new HI is
depicted in Figure 1.

Figure 1. Process to derive the Z-score-based HI.

In detail, the new HI is based on high-frequency sampled acceleration sensor data.
Data from one measurement are transformed to a time–frequency-spectrogram by usage
of the STFT, which is calculated according to Equation (1). Here, τ and ω are time and
frequency indices, x(n) is the time series signal of the vibration signal at timestep n and w
is a windowing function with the length R.

spec(τ, ω) = |
∞

∑
n=−∞

x(n)w(n − τR)e−jωn| (1)

To set up the HI, a certain number of vibration signal spectrograms must be collected
for the robot to capture its signal signature in a healthy state with its stochastic variations.
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This takes place in an initialization phase. For this, initially, two measurements must be
collected. In this context, a measurement is defined as the collection of vibration data
over one single movement. Based on this data, the two spectrograms are calculated. To
determine whether this reference quantity of two spectrograms captures the stochastic
variation of the signal, the overall mean (Equation (2)) and standard deviation (Equation (3))
of the spectrograms are calculated.

spec(τ, ω)avg =
1

k

k

∑
i=0

spec(τ, ω)i (2)

stdspec, overall =
1

0.5FT

T

∑
τ=0

0.5F

∑
ω=0

√

∑
k
i=0(spec(τ, ω)i − spec(τ, ω)avg)2

k
(3)

In these formulas, k describes the number of measurements in the reference quantity.
T is the time length of each measurement, F is the sampling frequency and spec(τ, ω)avg is
the average value of spec(τ, ω) over measurements 0 to k. Afterwards, one measurement
is added to the reference quantity at a time, and again avgspec,overall and stdspec,overall are
calculated. Plotting these standard deviations over the number of measurements in the
reference quantity usually first shows an increase in stdspec,overall and then a saturation as
can be seen in Figure 2. If this saturation is reached, the reference quantity can sufficiently
represent the stochastic behavior of the signal signature. In the shown example, this
saturation is reached after 5 measurements.
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Figure 2. Saturation of the standard deviation in the time–frequency spectrograms.

After the initialization, an HI can be determined based on a newly collected measure-
ment. For this, the measurement’s spectrogram overall Z-score is determined according to
Equation (4) .

HImeas =
1

0.5FT

T

∑
τ=0

0.5F

∑
ω=0

|
spec(τ, ω)meas − spec(τ, ω)avg,re f

spec(τ, ω)std,re f
| (4)

In this context, spec(τ, ω)avg,re f and spec(τ, ω)std,re f are the mean value and the stan-
dard deviation of spec(τ, ω) for all measurements in the reference quantity. In Figure 3, the
STFT and Z-score spectrograms of exemplary vibration measurements from a healthy and
a faulty robot gear are depicted. The Z-score-based spectrogram of the faulty measurement
shows more prominent changes compared to the STFT-based spectrogram.
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Figure 3. Comparison of STFT and Z-score spectrograms from healthy and faulty robot gear measurements.

2.2. Hi Evaluation Method

To compare the ability of the newly designed HI to cope with industrial robot applica-
tion characteristics, we followed a three step approach. First of all, we investigated how
well the designed HI can detect different kinds of faults in comparison to HIs from the
state-of-the-art. Second, we investigated the temperature sensitivity of HIs from the state-
of-the-art meeting this criterion and our HI. Third, we investigated the trend behavior of
HIs showing a low temperature sensitivity on data from two accelerated wear tests. These
three steps are now described more precisely. The overall process of our investigations is
also described in Figure 4.

Figure 4. Overall process of the evaluation method.

2.2.1. Varying Fault Detection Analysis

We used the FEMTO data set, which is described in detail in [35], to select HIs capable
of detecting different faults. The data set is available in [36]. This data set provides run
to failure vibration data from 16 identical bearings and for different faults and working
conditions defined by the applied load and the rotational speed. The acceleration sensor
sampled data with 25.6 kHz, one measurement has a length of 0.1 s and measurements were
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taken in equidistant timesteps of 10 s for all bearings. The test run for one bearing ended
when the signal from the acceleration sensor exceeded 20 g. Therefore, different numbers
of measurements are available per bearing ranging from 230 to 2803. We calculated
the HIs summarized in Table 1 for all measurements of one sensor. These HIs were
derived from several review papers regarding gearbox and bearing CM [37–40] and the
publications mentioned in Section 1. Therefore, the HI calculation was based either on the
raw acceleration signal, an enveloped signal as described in [41] or the residual signal as
suggested by [4]. Additionally, the newly designed HI presented in Section 2 was calculated
for the measurements based on the raw signals.

Table 1. Calculated HIs.

HI Name HI Abbreviation HI Source

Crest Factor CrF [40]
Dominant Frequency DomF [37]
Impulse Factor ImpF [38]
Kurtosis Kurt [39]
Margin Factor MarF [38]
Mean Mean [40]
Median Med [40]
Median Frequency MedF [37]
Peak Peak [39]
Peak to Peak PtP [39]
Root Mean Square RMS [39]
Skewness Skew [40]
Spectral Centroid SpC [37]
Spectral Flux SpF [37]
Spectral Rollover SpRO [37]
Spectral Entropy SpE [4]
Standard Deviation Std [39]
Discrete Wavelet RMS DWTRMS [19]
Discrete Wavelet Impulse Factor DWTImpF [19]
Discrete Wavelet Kurtosis DWTKurt [19,38]
Discrete Wavelet Entropy DWTEntr [4,19]
Discrete Wavelet Decomposition Rate DecompRate [18]
Hilbert Huang Entropy HHTEntr [30]
Intrinsic Mode Function RMS IMFRMS [33]
Intrinsice Mode Function Impulse Factor IMFImpF [33]
Intrinsic Mode Function Kurtosis IMFKurt [33]
Intrinsic Mode Function Entropy IMFEntr [33]
Time Domain Integral TDI [14]
Z-score Z-score -

To detect whether these HIs are sensitive to multiple faults, different techniques can
be applied. In addition to filter techniques, ensemble, wrapper and embedded methods
exist [42]. However, the latter three techniques combine classification or regression models
with HIs for their evaluation. Hence, this evaluation is always dependent on the used
models. Thus, we chose to use filter methods for the evaluation. Here, different figures of
merit for regression and classification tasks can be applied, such as trendability, robustness,
monotony or discriminance [42]. To combine these different performance indicators, we
fitted different basic functions on the HIs calculated for the last 20 percent of measurements
per bearing. These functions were first and second degree polynoms, exponential and
sigmoid functions. For each of the fits, we calculated the R² value. This means that we
received four R² values per HI and bearing. High R² values of these fits correlate with a
high trendability, monotony, robustness and discriminance, which are desirable for HIs. To
evaluate whether an HI can detect several damages, we considered only the best R² value
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per HI and bearing. We plotted the statistics of these 16 remaining R² values per HI as a
boxplot. Suitable HIs should show high R² values with low variance.

2.2.2. Temperature Sensitivity Analysis

HIs showing this behavior were analyzed regarding their temperature sensitivity. For
this purpose, we acquired vibration data from an industrial robot test rig. This test rig
consists of a KUKA KR510 industrial robot with an attached load of 365 kg. We attached
acceleration sensors close to the gearboxes as shown in Figure 5 on the right side. These
sensors have a sampling rate of 26 kHz. The acceleration direction of the sensors was
orthogonal to their contact area. For data acquisition, the robot performed a trajectory
where each joint was moved individually at different speeds in an angle area of 10°,
as described in Figure 6, and for different gear temperatures in the range of 25 °C and
60 °C and 5 °C steps. One measurement per axis lasted 8 s. The gear temperature was
measured at the gearbox cap with an infrared thermometer. For each temperature step, four
measurements were made. For each measurement at each temperature step, the remaining
HIs were calculated. To determine the temperature sensitivity, we divided the average
HI values calculated from measurements at the highest gear temperatures by the values
calculated from measurements at the lowest temperature. HIs with a high sensitivity were
eliminated for the last step.

Figure 5. Robot test beds.
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Figure 6. Measurement trajectory for the temperature sensitivity analysis.

2.2.3. Accelerated Wear Test Analysis

Here, we calculated the remaining HIs for measurements from two data sets from
accelerated robot wear tests to see how these HIs perform in a more industry like setting
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and how they cope with instationary velocity behavior. The first data set was collected
during a time range of approximately one year with an ABB robot of type RB 6600-255/2.55.
During the data acquisition, the robot performed an isolated movement of the second axis
in an angle area of 150° for each measurement. Vibration data were only acquired with
a sensor attached axially at the robot axis 2 gearbox. At the end of the experiment, the
gearbox was dismantled and faults on the bearings and the shafts of the gear were found.
A total of 2290 measurements, equally distributed over time, were taken for our analysis
from this data set. One measurement lasted 1.6 s and the sampling rate was 10 kHz. More
detailed information about this experiment can be found in [7,8]. The second data set
was derived from another experiment. Here, the second axis of an ABB IRB 7600-340/2.8
was moved in an angle area of 80° continuously over the time frame of three months.
The vibration sensor attached to the gearbox cap of axis 2 sampled with 20 kHz and one
measurement lasted 2.15 s. The measurement setup is presented on the left side in Figure 5.
The experiment ended after a roller element of a bearing had cracked and had blocked the
gear. In this time range, 920 vibration measurements were taken in total in equidistant
time steps. The faults, which occurred in both experiments, can be seen in Figure 7. In both
experiments, environmental conditions such as load and trajectory were kept constant.
Fluctuations of the temperature were kept at a minimum due to the constant movements
of the robots. In this way, signal changes are likely to be correlated to increasing wear.

Figure 7. Faults in the accelerated wear tests, lower image following [7].

3. Results

This section is divided in three parts. First, the results from the varying fault detection
experiments are shown. Secondly, the results from the temperature sensitivity analysis are
presented. Finally, the application of the HIs on the two accelerated wear tests is described.

3.1. Varying Fault Detection Analysis

From the 16 bearing experiments, the HIs presented in Table 1 were calculated. We
used the first 100 measurements per bearing as the reference quantity for the Z-score-HI
and set R to 128. Figure 8 shows the R² values for a selection of different HIs as a box
plot. The R² statistics for all HIs can be found in Appendix A. The abbreviations of the
HIs are explained in Table 1. The PtP-, Peak-, RMS-, Std- and Z-score-HI show the highest
R² values on average. They also show the lowest variance between the different bearings.
This means that these HIs detect different faults most reliably. Other HIs show also high
trend values but only for some of the bearings. HIs derived from the frequency-domain
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(DomF, SpC, SpE, SpF, SpRO) perform worse compared to HIs from the time-domain. The
preprocessing steps of enveloping the signal or calculating the residual signal do not affect
the HI trend behavior significantly, which can be seen in Tables A1–A3. The TDI-, and
DWTRMS-HI for specific frequency bands also show high average values with changing
variance (see Table A4). If these HIs would be used for robot gear condition monitoring,
the progress of all frequency band specific HIs would have to be tracked as different faults
stimulate changes in different frequency bands.
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Figure 8. R² values for different HIs and bearings from the FEMTO data set based on raw signals.

3.2. Temperature Sensitivity Analysis

Based on this result, we conducted the temperature sensitivity analysis for the PtP-,
Peak-, RMS-, Std-, TDI-, DWTRMS- and Z-score-HI. Here, we used one measurement per
temperature step as the reference quantity for the Z-score-HI and set R to 128. Figure 9
shows the change of the HIs per axis in percent for the PtP-, Peak-, RMS-, Std- and
Z-score-HI. The RMS- and Z-score-HI show the lowest temperature sensitivity overall.
Figure 10 shows the results for the DWTRMS-HIs. Here, high sensitivities for different
detail coefficient DWTRMS-HIs exist. Figure A1 shows the temperature sensitivity of the
TDI-HIs of different frequency bands. Here, a similar result can be seen compared to the
DWTRMS-HIs. The data of Figures 10 and A1 can also be found in Tables A5 and A6. In
general, the data from axis 4 show the highest temperature sensitivity for all HIs. The
comparably higher sensitivity of the HI values derived from data at axis 4 can be related to
the robot trajectory. During the trajectory, the robot arm was stretched out, which leads to
greater elasticity at the position of the sensor at axis 4. This can cause increased vibrations,
which are magnified under changing temperature influences. Given the results of the
temperature sensitivity analysis, we analyzed the data sets from the accelerated wear tests
with only the RMS- and the Z-score-HI. The other HIs were excluded due to their high
temperature sensitivity. Even though some frequency band specific DWTRMS-HIs and
TDI-HIs show low sensitivity, they were excluded as robot gear faults do not have to
stimulate these frequency bands with low sensitivity.
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Figure 9. Temperature sensitivity for different HIs and robot axes.
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Figure 10. Temperature sensitivity for different DWTRMS-HIs and robot axes.

3.3. Accelerated Wear Tests Analysis

In this analysis, we used the first 100 measurements as the reference quantity for the
Z-score-HI and set R to 256. For smoothing, we applied a rolling average with a window
length of 15 on both HI series. The progress of the HIs in the accelerated wear test of the
ABB IRB 7600 is shown in Figure 11. Both HIs show a plateau with increased values at the
end of the experiment. It can be assumed that, at this point in time, faults have already
been present. Here, the increased HI values over a longer time period could have been
used as a decision criterion for maintenance actions.



Robotics 2021, 10, 80 11 of 20

0 200 400 600 800

0

1

2

3

4

5

6

0 200 400 600 800

0

2

4

6

8

10

12

14 Z-score
RMS

Measurement number Measurement number

H
I 

va
lu

e

Z-score RMS in m/s²

Figure 11. Z-score-HI and RMS-HI for the IRB 7600 experiment.

The measurements at the very end show decreased values again. We assume that this
decrease is correlated to a part of the bearing roller. In the end of the experiment, one of
the roller elements showed a large pit. During the measurements showing the higher HI
values this detached part of the roller element could have been still slightly fixed at the
roller element and thus could have caused high vibration. After full detachment, this noise
level decreased again. For the measurements before the plateau, the RMS-HI shows higher
fluctuations compared to the Z-score-HI. For instance, the RMS-HI shows a first high peak
around measurement 100. Such peaks could lead to false alarms in a condition monitoring
scenario and should be avoided.

The progress of the HIs in the other accelerated wear test performed with the ABB
IRB 6600 is shown in Figure 12. Here, the Z-score-HI shows a trending behavior and
the RMS shows a stationary progress. Both HIs show a high increase during the last
measurements. In this experiment, the trending behavior of the Z-score could have been
a criterion to execute maintenance actions. This information is not present in the RMS-
progress. Based on the fact that the Z-score showed a better trend behavior in the ABB IRB
6600 experiment and less noisy behavior in the ABB IRB 7600 experiment, we suggest the
use of the Z-score-HI for the condition monitoring of robot gears.
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Figure 12. Z-score-HI and RMS-HI for the IRB 6600 experiment.
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4. Discussion

The discussion is divided in four parts. First, some remarks regarding our designed
HI are given. Afterwards, three parts make up the Results subsections.

To derive the spectrograms required for the Z-score-HI, the length of the window
function must be defined. High values for R result in a high frequency resolution and low
values in a high time resolution. For the individual experiments, we chose window lengths
that lead to a good compromise between time and frequency resolution by inspecting
spectrograms created with different window lengths. We chose window lengths that lead
to spectrograms appearing the least noisy in a visual inspection. In an industrial setting, an
automated approach should be developed for this dependent on the robot’s trajectory and
the used sensor.

The motivation to use the FEMTO data set to investigate HI performance was to assess
HIs’ capability to detect multiple faults. Within a robot gearbox, which are mostly RV
reducers, not only bearings but also the gear teeth can have faults. Such faults are not
taken into account by our analysis explicitly. However, the bearing faults present in the
FEMTO data set, e.g., pitting, are similar to typical gear teeth or shaft damage from a signal
analysis point of view. Damage from all components modulate the acceleration signals
at a specific frequency and its sidebands. Exactly this capability to track such changes in
the signal was investigated in our analysis. There also exist HIs that track energy changes
at the specific component fault frequencies. Such HIs were excluded from our analysis
because expert knowledge about the geometric characteristics of the gears, e.g., the bearing
diameters or the number of roller elements, is required to calculate these HIs. This expert
knowledge is usually not available to industrial robot users. We also excluded HIs that
could be derived automatically from machine learning models, such as autoencoders, as
the physical interpretation of these HIs is difficult and hence a transferability between
different robot systems is questionable from our point of view.

Regarding the results of the temperature sensitivity analysis, it must be pointed out
that the results are valid only for the chosen robot trajectory. As the dynamic behavior of
the robot changes within its working space, this analysis should be performed individually
for trajectories and robot systems. However, from a theoretical point of view, the Z-score-HI
possesses the ability to cope with these temperature fluctuations independently of the
trajectory. Temperature variations lead to variance in the STFT spectrograms. This variance
is taken into account in the spec(τ, ω)avg,re f and spec(τ, ω)std,re f during the initialization
phase. Hence, Z-score-HIs derived from measurements from functional robot gears and
different temperatures will show only little differences in the Z-score-HI value. This
becomes more clear considering Figure 13. Here, the STFT and Z-score spectrograms from
two vibration measurements of the temperature sensitivity experiment are shown. On the
left side, the spectrograms from a cold gear measurement are depicted. On the right side,
the spectrograms from a warm gear measurement are shown. Differences are visible in
the STFT spectrograms around seconds 1 and 2. No differences are visible in the Z-score
spectrograms. The scales of the STFT spectrograms reach from −5 to 0 and the scales of the
Z-score spectrograms from 0 to 1.5. Hence, the relative changes of the STFT spectrograms
are bigger compared to the Z-score spectrograms. In this example, the total relative change
in energy in the STFT spectrogram is 9.15 percent, whereas the total relative change in the
Z-score spectrogram is just 1.63 percent.

Finally, the results from the accelerated wear tests show noisy progress over time.
This hinders a simple or automated detection of faults in a condition monitoring behavior.
To establish an automated CM system, a suitable trend detection in combination with
an outlier detection system must be set up. A trend detection system could identify HI
progress shown as in Figure 12, whereas an outlier detection system could detect progress
as depicted in Figure 11. The development of such a system also marks the outlook of our
future work.
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Figure 13. Spectrograms from cold and warm gear measurements.

5. Conclusions

Condition monitoring of robot gears has the potential to decrease production system
downtimes. The state-of-the-art provides many health indicators to track the health state
of gears. We analyzed these health indicators regarding specific requirements rising from
typical industrial robot applications. These requirements are the ability to detect different
faults, low temperature sensitivity and the capability to deal with instationary velocity
behavior. Additionally, we suggested a new health indicator based on STFT spectrograms
and Z-scores that can cope with these requirements. Our analysis showed that the RMS
health indicator and our suggested health indicator meet the defined requirements the best.
Data from accelerated wear tests show that for an automatic condition monitoring system
a combination of a trend detection and an outlier detection system that can deal with a
noisy signal is required.
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Appendix A

Table A1. R² statistics for HIs derived from the normal signal.

CrF DomF ImpF Kurt MarF Mean Med MedF Peak PtP RMS Skew SpC SpE SpF SpRO Std Z-Score

Mean 0.231 0.354 0.287 0.336 0.296 0.034 0.063 0.467 0.822 0.844 0.887 0.242 0.599 0.488 0.514 0.491 0.887 0.934
Std 0.246 0.351 0.289 0.334 0.298 0.076 0.147 0.311 0.173 0.145 0.215 0.289 0.298 0.281 0.225 0.322 0.215 0.080
Min 0.005 0.013 0.007 0.004 0.006 0.003 0.007 0.024 0.259 0.397 0.082 0.004 0.025 0.067 0.135 0.035 0.082 0.644
Max 0.706 0.998 0.764 0.869 0.773 0.323 0.618 0.941 0.987 0.985 0.990 0.888 0.944 0.971 0.900 0.984 0.990 0.983

Table A2. R² statistics for HIs derived from the enveloped signal.

CrF DomF ImpF Kurt MarF Mean Med MedF Peak PtP RMS Skew SpC SpE SpF SpRO Std

Mean 0.215 0.139 0.284 0.299 0.296 0.776 0.819 0.496 0.816 0.816 0.872 0.275 0.605 0.464 0.462 0.514 0.898
Std 0.229 0.248 0.283 0.328 0.291 0.296 0.248 0.318 0.178 0.178 0.227 0.303 0.286 0.298 0.276 0.309 0.131
Min 0.005 0.001 0.006 0.001 0.005 0.010 0.014 0.023 0.246 0.246 0.074 0.008 0.046 0.013 0.012 0.007 0.427
Max 0.635 0.997 0.741 0.919 0.766 0.977 0.983 0.981 0.988 0.988 0.989 0.905 0.939 0.978 0.901 0.987 0.987

Table A3. R² statistics for HIs derived from the residual signal as suggestet by [4].

CrF DomF ImpF Kurt MarF Mean Med MedF Peak PtP RMS Skew SpC SpF SpRO Std SpE

Mean 0.329 0.423 0.348 0.365 0.355 0.032 0.088 0.608 0.847 0.859 0.884 0.237 0.701 0.609 0.605 0.884 0.534
Std 0.270 0.348 0.303 0.337 0.312 0.089 0.187 0.292 0.178 0.153 0.221 0.319 0.196 0.202 0.213 0.221 0.316
Min 0.010 0.021 0.003 0.007 0.018 0.001 0.001 0.016 0.211 0.328 0.082 0.003 0.425 0.147 0.132 0.083 0.023
Max 0.802 0.992 0.828 0.858 0.830 0.374 0.671 0.988 0.987 0.987 0.990 0.943 0.959 0.930 0.977 0.990 0.969



Robotics 2021, 10, 80 15 of 20

Table A4. R² statistics for HIs derived from the time–frequency-domain. DWT-, IMF-, and TDI-

based HIs were calculated for different frequency bands. The frequency bands are encoded in the

abbreviation of the HI name. Large numbers correspond to high frequency bands for TDI-HIs and

low frequency bands for DWT- and IMF-HIs.

Mean Std Min Max

DWTRMS5 0.891 0.207 0.099 0.990
DWTRMS4 0.889 0.223 0.032 0.988
TDI33 0.882 0.087 0.583 0.965
DWTRMS6 0.882 0.216 0.117 0.991
TDI43 0.871 0.156 0.296 0.983
IMFRMS2 0.869 0.227 0.014 0.991
TDI36 0.867 0.203 0.095 0.976
TDI14 0.865 0.154 0.327 0.970
TDI35 0.864 0.202 0.096 0.981
TDI22 0.862 0.196 0.135 0.963
TDI34 0.861 0.197 0.114 0.974
TDI23 0.860 0.181 0.200 0.961
TDI21 0.859 0.197 0.147 0.971
DWTRMS3 0.859 0.245 0.019 0.998
TDI37 0.857 0.208 0.072 0.969
TDI39 0.853 0.221 0.017 0.975
TDI15 0.847 0.218 0.035 0.982
IMFRMS1 0.845 0.210 0.091 0.978
TDI44 0.844 0.223 0.004 0.984
TDI13 0.842 0.224 0.015 0.975
TDI12 0.841 0.218 0.022 0.969
TDI40 0.840 0.215 0.072 0.969
TDI24 0.837 0.223 0.027 0.954
TDI41 0.836 0.221 0.061 0.970
TDI16 0.833 0.228 0.022 0.969
TDI42 0.830 0.221 0.072 0.964
TDI18 0.830 0.237 0.044 0.976
TDI10 0.830 0.214 0.025 0.966
TDI5 0.827 0.273 0.032 0.995
TDI6 0.825 0.263 0.015 0.983
TDI8 0.825 0.206 0.051 0.948
TDI9 0.824 0.209 0.047 0.954
TDI4 0.823 0.273 0.151 0.995
TDI45 0.820 0.220 0.013 0.986
TDI20 0.818 0.277 0.066 0.963
TDI38 0.816 0.259 0.038 0.972
TDI32 0.815 0.272 0.090 0.968
TDI46 0.813 0.218 0.023 0.987
TDI7 0.813 0.264 0.008 0.973
TDI47 0.812 0.217 0.013 0.988
TDI11 0.812 0.251 0.017 0.966
TDI17 0.808 0.293 0.005 0.967
DWTRMS2 0.804 0.297 0.101 0.981
IMFRMS3 0.803 0.243 0.025 0.961
TDI3 0.803 0.290 0.148 0.987
TDI49 0.792 0.215 0.018 0.990
TDI19 0.782 0.304 0.026 0.959
TDI28 0.782 0.270 0.014 0.960
TDI50 0.780 0.216 0.026 0.989
TDI52 0.770 0.216 0.025 0.989
TDI30 0.769 0.293 0.049 0.964
TDI25 0.769 0.290 0.025 0.966
TDI53 0.767 0.215 0.025 0.989
TDI54 0.766 0.215 0.025 0.990
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Table A4. Cont.

Mean Std Min Max

TDI48 0.765 0.252 0.024 0.988
TDI55 0.765 0.215 0.028 0.989
TDI58 0.762 0.215 0.026 0.990
TDI57 0.761 0.216 0.028 0.989
TDI60 0.756 0.222 0.028 0.989
TDI31 0.747 0.312 0.073 0.971
TDI51 0.747 0.253 0.022 0.989
TDI29 0.744 0.297 0.032 0.961
TDI2 0.744 0.319 0.069 0.977
DWTRMS1 0.740 0.306 0.026 0.978
TDI27 0.739 0.292 0.027 0.954
TDI63 0.736 0.253 0.028 0.989
TDI62 0.736 0.254 0.026 0.990
TDI59 0.735 0.254 0.024 0.990
TDI56 0.735 0.254 0.023 0.989
TDI61 0.734 0.254 0.024 0.989
TDI64 0.732 0.254 0.024 0.989
TDI26 0.712 0.342 0.043 0.964
IMFRMS4 0.665 0.335 0.035 0.985
HHTentr 0.646 0.317 0.021 0.982
TDI1 0.588 0.313 0.011 0.937
IMFRMS5 0.567 0.313 0.016 0.934
IMFRMS6 0.460 0.223 0.110 0.829
DecompRate 0.458 0.292 0.075 0.974
DWTKurt5 0.383 0.296 0.014 0.821
DWTKurt2 0.381 0.318 0.007 0.815
DWTEntr6 0.380 0.319 0.017 0.991
DWTImpF2 0.377 0.308 0.005 0.806
DWTKurt4 0.361 0.315 0.007 0.851
DWTKurt6 0.353 0.330 0.003 0.860
DWTImpF6 0.327 0.280 0.001 0.796
DWTImpF5 0.326 0.274 0.001 0.766
IMFRMS7 0.326 0.271 0.026 0.863
TDI0 0.325 0.246 0.037 0.906
DWTImpF3 0.325 0.260 0.017 0.701
IMFKurt1 0.320 0.314 0.009 0.816
DWTKurt3 0.319 0.296 0.007 0.827
DWTImpF4 0.302 0.273 0.004 0.748
IMFImpF1 0.288 0.280 0.009 0.838
IMFKurt3 0.287 0.288 0.017 0.843
IMFKurt4 0.286 0.222 0.024 0.677
DWTKurt1 0.282 0.217 0.012 0.722
IMFImpF4 0.277 0.202 0.014 0.601
IMFKurt2 0.263 0.274 0.010 0.689
IMFEntr2 0.254 0.265 0.012 0.867
DWTEntr5 0.254 0.291 0.001 0.989
DWTImpF1 0.251 0.213 0.006 0.660
IMFImpF3 0.242 0.253 0.016 0.761
IMFEntr1 0.232 0.280 0.009 0.944
IMFImpF2 0.224 0.185 0.011 0.602
IMFEntr3 0.207 0.269 0.013 0.888
IMFKurt5 0.184 0.215 0.007 0.822
IMFRMS8 0.181 0.238 0.000 0.682
IMFImpF5 0.164 0.187 0.007 0.693
IMFEntr4 0.153 0.138 0.005 0.524
DWTEntr4 0.136 0.235 0.005 0.969
IMFImpF6 0.121 0.118 0.010 0.377
IMFKurt6 0.121 0.125 0.010 0.428
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Table A4. Cont.

Mean Std Min Max

IMFEntr6 0.105 0.102 0.009 0.393
DWTEntr3 0.101 0.187 0.003 0.783
IMFEntr5 0.095 0.095 0.002 0.367
IMFEntr7 0.089 0.092 0.003 0.276
DWTEntr2 0.062 0.111 0.001 0.417
IMFImpF7 0.048 0.039 0.002 0.134
IMFKurt7 0.042 0.033 0.002 0.106
IMFEntr8 0.032 0.111 0.000 0.461
DWTEntr1 0.031 0.034 0.003 0.141
IMFImpF8 0.026 0.028 0.000 0.078
IMFKurt8 0.021 0.031 0.000 0.114
IMFRMS9 0.000 0.000 0.000 0.000
IMFKurt9 0.000 0.000 0.000 0.000
IMFImpF9 0.000 0.000 0.000 0.000
IMFEntr9 0.000 0.000 0.000 0.000
IMFRMS10 0.000 0.000 0.000 0.000
IMFImpF10 0.000 0.000 0.000 0.000
IMFKurt10 0.000 0.000 0.000 0.000
IMFEntr10 0.000 0.000 0.000 0.000
IMFRMS11 0.000 NaN 0.000 0.000
IMFImpF11 0.000 NaN 0.000 0.000
IMFKurt11 0.000 NaN 0.000 0.000
IMFEntr11 0.000 NaN 0.000 0.000

Table A5. Temperature sensitivity of the different DWTRMS-HIs.

1 2 3 4

DWTRMS1 4.944734 41.833250 13.225817 27.640727
DWTRMS2 9.431779 61.784386 20.966405 52.444752
DWTRMS3 11.100870 67.906341 17.372290 64.555873
DWTRMS4 16.176322 88.064015 19.294715 82.614996
DWTRMS5 13.631686 87.439763 17.451681 90.271799
DWTRMS6 10.015797 70.887870 19.141733 93.391435

Table A6. Temperature sensitivity of the different TDI-HIs.

Axis 1 Axis 2 Axis 3 Axis 4

TDI0 7.887680 3.623626 4.032428 9.856386
TDI1 7.345230 13.780192 1.419329 15.104011
TDI2 5.702217 46.387687 23.876372 24.639909
TDI3 6.721355 47.590460 22.691756 42.390072
TDI4 10.873829 59.621503 24.158641 38.671919
TDI5 13.127752 74.783219 17.398075 54.988992
TDI6 14.670516 59.576255 12.953424 75.739203
TDI7 18.161779 57.596831 17.545132 65.254182
TDI8 15.090433 70.501830 11.004508 68.946535
TDI9 19.130819 94.756567 10.267873 63.083458
TDI10 19.817337 140.434648 22.212611 48.494003
TDI11 31.037879 152.473705 28.134321 75.366125
TDI12 33.675873 93.057559 18.953184 98.385403
TDI13 26.250892 79.866002 17.152706 92.669107
TDI14 11.635896 58.286933 24.510069 86.809206
TDI15 23.377379 46.907903 16.496553 72.502066
TDI16 30.064213 55.243855 11.119799 59.119520
TDI17 21.268743 64.332588 7.938803 79.776374
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Table A6. Cont.

Axis 1 Axis 2 Axis 3 Axis 4

TDI18 9.808639 52.933143 4.197856 87.106639
TDI19 3.420408 57.102301 3.507140 94.175140
TDI20 0.062629 58.697728 5.538016 107.584154
TDI21 17.433815 60.093605 12.872000 112.916761
TDI22 23.980438 65.038102 9.486835 164.461250
TDI23 23.749318 91.055389 11.379480 152.353906
TDI24 11.483126 109.842746 21.619409 121.442989
TDI25 6.596706 85.653753 23.250270 111.067700
TDI26 16.057350 68.794132 20.724566 88.922105
TDI27 16.557670 68.373539 18.973086 114.047417
TDI28 19.372075 65.937430 13.256130 140.639806
TDI29 22.613427 68.081118 27.002980 129.175849
TDI30 15.441241 68.255349 31.219217 111.829705
TDI31 4.729546 68.353458 28.824115 116.071704
TDI32 1.112630 69.440683 18.666493 104.393062
TDI33 3.010018 66.107354 13.594603 104.544706
TDI34 6.223136 49.771212 14.597765 135.411471
TDI35 10.119042 33.536590 4.257545 167.094574
TDI36 0.777079 33.963467 0.393118 158.518025
TDI37 0.893584 47.211867 18.367647 110.996278
TDI38 8.789406 39.550853 33.938136 55.254421
TDI39 18.286551 4.903817 23.615781 35.301715
TDI40 28.767525 34.224059 6.485524 47.061077
TDI41 21.670495 39.728416 9.696093 33.227046
TDI42 4.437817 59.765908 18.549288 79.919517
TDI43 0.147523 52.939389 19.848252 83.294446
TDI44 0.446057 53.539446 19.351326 79.595920
TDI45 0.657082 52.356513 19.032092 77.824663
TDI46 0.199947 55.873800 19.528656 75.827413
TDI47 1.388775 57.010168 19.014225 76.394986
TDI48 2.097117 57.774286 18.889822 76.077127
TDI49 3.164926 58.959065 18.696796 75.814731
TDI50 3.851514 59.592621 18.410404 75.719379
TDI51 4.577587 60.339446 18.308180 75.543086
TDI52 5.160258 60.877095 18.211340 75.458546
TDI53 5.659315 61.365144 18.069126 75.348426
TDI54 6.077128 61.761218 17.976632 75.218693
TDI55 6.436426 62.077612 17.945549 75.121278
TDI56 6.763257 62.361230 17.851473 75.050770
TDI57 7.080730 62.591447 17.781367 74.975471
TDI58 7.369667 62.781646 17.783673 74.880725
TDI59 7.622924 62.946830 17.710259 74.853578
TDI60 7.828532 63.078384 17.670637 74.815067
TDI61 7.974544 63.177746 17.693925 74.733074
TDI62 8.072173 63.259698 17.636933 74.758740
TDI63 8.128858 63.308959 17.623715 74.750804
TDI64 8.147158 63.322210 17.664456 74.689287
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Figure A1. Temperature sensitivity for the different TDI-HIs and robot axes.

References

1. Krockenberger, O. Industrial Robots for the Automotive Industry. Sae Tech. Pap. Ser. 1996. [CrossRef]

2. Lee, J.; Wu, F.; Zhao, W.; Ghaffari, M.; Liao, L.; Siegel, D. Prognostics and health management design for rotary machinery

systems—Reviews, methodology and applications. Mech. Syst. Signal Process. 2014, 42, 314–334. [CrossRef]

3. ISO. DIN ISO 17359:2018-05, Zustandsüberwachung und -Diagnostik von Maschinen—Allgemeine Anleitungen (ISO_17359:2018);

Beuth Verlag GmbH: Berlin, Germany, 2018. [CrossRef]

4. Kim, Y.; Park, J.; Na, K.; Yuan, H.; Youn, B.D.; Kang, C.S. Phase-based time domain averaging (PTDA) for fault detection of a

gearbox in an industrial robot using vibration signals. Mech. Syst. Signal Process. 2020, 138, 106544. [CrossRef]

5. Jaber, A.A. Design of an Intelligent Embedded System for Condition Monitoring of an Industrial Robot; Springer Theses, Recognizing

Outstanding Ph.D. Research; Springer International Publishing: Cham, Switzerland, 2017. [CrossRef]

6. Zhi, H.; Yangi-Shang . Remote performance evaluation, life prediction and fault diagnosis of RV reducer for industrial robot. J.

Physics: Conf. Ser. 2020, 1676, 012212. [CrossRef]

7. Hugo, D.; Benjamin, S. Robot Condition Monitoring: A first Step in Condition Monitoring for Robotic Applications. Master’s

Thesis, Lulea University of Technology, Lulea, Sweden, 2017.

8. Karlsson, M.; Hörnqvist, F. Robot Condition Monitoring and Production Simulation. Master’s Thesis, Lulea University of

Technology, Lulea, Sweden, 2018.

9. Liu, X.; Wu, X.; Liu, C.; Liu, T. Research on condition monitoring of speed reducer of industrial robot with acoustic emission.

Trans. Can. Soc. Mech. Eng. 2016, 40, 1041–1049. [CrossRef]

10. Sun, H.; Zhang, J. Health Monitoring of Strain Wave Gear on Industrial Robots. In Proceedings of the 2019 IEEE 8th Data Driven

Control and Learning Systems Conference (DDCLS), Dali, China, 24–27 May 2019.

11. Nentwich, C.; Junker, S.; Reinhart, G. Data-driven Models for Fault Classification and Prediction of Industrial Robots. Procedia

CIRP 2020, 93, 1055–1060. [CrossRef]

12. Jahagirdar, A.C.; Gupta, K.K. Cumulative Distribution Sharpness Profiling Based Bearing Fault Diagnosis Framework Under

Variable Speed Conditions. IEEE Sensors J. 2021. [CrossRef]

13. Attoui, I.; Boutasseta, N.; Fergani, N. Novel Machinery Monitoring Strategy Based on Time–Frequency Domain Similarity

Measurement With Limited Labeled Data. IEEE Trans. Instrum. Meas. 2021, 70, 1–8. [CrossRef]

14. Cocconcelli, M.; Zimroz, R.; Rubini, R.; Bartelmus, W. STFT Based Approach for Ball Bearing Fault Detection in a Varying Speed

Motor. In Condition Monitoring of Machinery in Non-Stationary Operations; Fakhfakh, T., Bartelmus, W., Chaari, F., Zimroz, R.,

Haddar, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 34, pp. 41–50. [CrossRef]

15. Gao, H.; Liang, L.; Chen, X.; Xu, G. Feature extraction and recognition for rolling element bearing fault utilizing short-time

Fourier transform and non-negative matrix factorization. Chin. J. Mech. Eng. 2015, 28, 96–105. [CrossRef]

http://doi.org/10.4271/962393
http://dx.doi.org/10.1016/j.ymssp.2013.06.004
http://dx.doi.org/10.31030/2838751
http://dx.doi.org/10.1016/j.ymssp.2019.106544
http://dx.doi.org/10.1007/978-3-319-44932-6
http://dx.doi.org/10.1088/1742-6596/1676/1/012212
http://dx.doi.org/10.1139/tcsme-2016-0086
http://dx.doi.org/10.1016/j.procir.2020.04.126
http://dx.doi.org/10.1109/JSEN.2021.3072368
http://dx.doi.org/10.1109/TIM.2020.3011874
http://dx.doi.org/10.1007/978-3-642-28768-8-5
http://dx.doi.org/10.3901/CJME.2014.1103.166


Robotics 2021, 10, 80 20 of 20

16. Jian, B.L.; Su, X.Y.; Yau, H.T. Bearing Fault Diagnosis Based on Chaotic Dynamic Errors in Key Components. IEEE Access 2021,

9, 53509–53517. [CrossRef]

17. Vippala, S.R.; Bhat, S.; Reddy, A.A. Condition Monitoring of BLDC Motor Using Short Time Fourier Transform. In Proceedings

of the 2021 IEEE Second International Conference on Control, Measurement and Instrumentation (CMI), Kolkata, India, 8–10

January 2021, pp. 110–115. [CrossRef]

18. Veerendra, A.S.; Mohamed, M.R.; Punya Sekhar, C. A novel fault—Detection methodology of proposed reduced switch MLI fed

induction motor drive using discrete wavelet transforms. Int. Trans. Electr. Energy Syst. 2021, 31. [CrossRef]

19. Defdaf, M.; Berrabah, F.; Chebabhi, A.; Cherif, B.D.E. A new transform discrete wavelet technique based on artificial neural

network for induction motor broken rotor bar faults diagnosis. Int. Trans. Electr. Energy Syst. 2021, 31. [CrossRef]

20. Zhu, H.; He, Z.; Wei, J.; Wang, J.; Zhou, H. Bearing Fault Feature Extraction and Fault Diagnosis Method Based on Feature Fusion.

Sensors 2021, 21, 2524. [CrossRef]

21. Kotsanidis, K.; Benardos, P. Rolling element bearings fault classification based on feature extraction from acceleration data and

artificial neural networks. Iop Conf. Ser. Mater. Sci. Eng. 2021, 1037, 012008. [CrossRef]

22. Skariah, A.; Pradeep, R.; Rejith, R.; Bijudas, C.R. Health monitoring of rolling element bearings using improved wavelet cross

spectrum technique and support vector machines. Tribol. Int. 2021, 154, 106650. [CrossRef]

23. Sharma, S.; Tiwari, S.K.; Singh, S. Integrated approach based on flexible analytical wavelet transform and permutation entropy

for fault detection in rotary machines. Measurement 2021, 169, 108389. [CrossRef]

24. Elasha, F.; Li, X.; Mba, D.; Ogundare, A.; Ojolo, S. A Novel Condition Indicator for Bearing Fault Detection Within Helicopter

Transmission. J. Vib. Eng. Technol. 2021, 9, 215–224. [CrossRef]

25. Mohanraj, T.; Yerchuru, J.; Krishnan, H.; Nithin Aravind, R.S.; Yameni, R. Development of tool condition monitoring system

in end milling process using wavelet features and Hoelder’s exponent with machine learning algorithms. Measurement 2021,

173, 108671. [CrossRef]

26. Duan, J.; Duan, J.; Zhou, H.; Zhan, X.; Li, T.; Shi, T. Multi-frequency-band deep CNN model for tool wear prediction. Meas. Sci.

Technol. 2021, 32, 065009. [CrossRef]

27. Gómez, M.J.; Marklund, P.; Strombergsson, D.; Castejón, C.; García-Prada, J.C. Analysis of Vibration Signals of Drivetrain Failures

in Wind Turbines for Condition Monitoring. Exp. Tech. 2021, 45, 1–12. [CrossRef]

28. Suresh, S.; Naidu, V.P.S. Gearbox Health Condition Monitoring Using DWT Features. In Proceedings of the 6th National

Symposium on Rotor Dynamics, Bangalore, India, 2–3 July 2019; Rao, J.S., Arun Kumar, V., Jana, S., Eds.; Springer: Singapore,

2021; Volume 329, pp. 361–374.

29. de Sena, A.P.C.; de Freitas, I.S.; Filho, A.C.L.; Sobrinho, C.A.N. Fuzzy diagnostics for gearbox failures based on induction motor

current and wavelet entropy. J. Braz. Soc. Mech. Sci. Eng. 2021, 43. [CrossRef]

30. Yu, D.; Yang, Y.; Cheng, J. Application of time—Frequency entropy method based on Hilbert-Huang transform to gear fault

diagnosis. Measurement 2007, 40, 823–830. [CrossRef]

31. Mao, W.; He, J.; Zuo, M.J. Predicting Remaining Useful Life of Rolling Bearings Based on Deep Feature Representation and

Transfer Learning. IEEE Trans. Instrum. Meas. 2020, 69, 1594–1608. [CrossRef]

32. Cheng, C.; Ma, G.; Zhang, Y.; Sun, M.; Teng, F.; Ding, H.; Yuan, Y. A Deep Learning-Based Remaining Useful Life Prediction

Approach for Bearings. IEEE/ASME Trans. Mechatron. 2020, 25, 1243–1254. [CrossRef]

33. Thakker, H.T.; Dave, V.; Vakharia, V.; Singh, S. Fault Diagnosis of Ball Bearing Using Hilbert Huang Transform and LASSO

Feature Ranking Technique. Iop Conf. Ser. Mater. Sci. Eng. 2020, 841, 012006. [CrossRef]

34. Larsen, R.J.; Marx, M.L. An Introduction to Mathematical Statistics and Its Applications, 3rd ed.; Prentice Hall: Upper Saddle River,

NJ, USA, 2001.

35. Nectoux, P.; Gouriveau, R.; Medjaher, K.; Ramasso, E.; Chebel-Morello, B.; Zerhouni, N.; Varnier, C. PRONOSTIA: An

experimental platform for bearings accelerated degradation tests. In Proceedings of the IEEE International Conference on

Prognostics and Health Management, PHM’12, Denver, CO, USA, 23–27 September 2012.

36. Nectoux, P.; Gouriveau, R.; Medjaher, K.; Ramasso, E.; Chebel-Morello, B.; Zerhouni, N.; Varnier, C. PHM IEEE 2012 Data

Challenge Data Set. Available online: https://github.com/wkzs111/phm-ieee-2012-data-challenge-dataset (accessed on

19 May 2021).

37. Arun, P.; Lincon, S.A.; Prabhakaran, N. Detection and Characterization of Bearing Faults from the Frequency Domain Features of

Vibration. IETE J. Res. 2018, 64, 634–647. [CrossRef]

38. Caesarendra, W.; Tjahjowidodo, T. A Review of Feature Extraction Methods in Vibration-Based Condition Monitoring and Its

Application for Degradation Trend Estimation of Low-Speed Slew Bearing. Machines 2017, 5, 21. [CrossRef]

39. Vecer, P.; Kreidl, M.; Smid, R. Condition Indicators for Gearbox Condition Monitoring Systems. Acta Polytech. 2005, 45, 35–42.

[CrossRef]

40. Zhu, J.; Nostrand, T.; Spiegel, C.; Morton, B. Survey of condition indicators for condition monitoring systems. In Proceedings of the

Annual Conference of the Prognostics and Health Management Society 2014, Fort Worth, TX, USA, 27 September–3 October 2014.

41. Geropp, B. Envelope Analysis—A Signal Analysis Technique for Early Detection and Isolation of Machine Faults. IFAC Proc. Vol.

1997, 30, 977–981. [CrossRef]

42. Lei, Y.; Li, N.; Guo, L.; Li, N.; Yan, T.; Lin, J. Machinery health prognostics: A systematic review from data acquisition to RUL

prediction. Mech. Syst. Signal Process. 2018, 104, 799–834. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2021.3069566
http://dx.doi.org/10.1109/CMI50323.2021.9362938
http://dx.doi.org/10.1002/2050-7038.12820
http://dx.doi.org/10.1002/2050-7038.12807
http://dx.doi.org/10.3390/s21072524
http://dx.doi.org/10.1088/1757-899X/1037/1/012008
http://dx.doi.org/10.1016/j.triboint.2020.106650
http://dx.doi.org/10.1016/j.measurement.2020.108389
http://dx.doi.org/10.1007/s42417-020-00220-7
http://dx.doi.org/10.1016/j.measurement.2020.108671
http://dx.doi.org/10.1088/1361-6501/abb7a0
http://dx.doi.org/10.1007/s40799-020-00387-4
http://dx.doi.org/10.1007/s40430-021-02964-z
http://dx.doi.org/10.1016/j.measurement.2007.03.004
http://dx.doi.org/10.1109/TIM.2019.2917735
http://dx.doi.org/10.1109/TMECH.2020.2971503
http://dx.doi.org/10.1088/1757-899X/841/1/012006
https://github.com/wkzs111/phm-ieee-2012-data-challenge-dataset
http://dx.doi.org/10.1080/03772063.2017.1369369
http://dx.doi.org/10.3390/machines5040021
http://dx.doi.org/10.14311/782
http://dx.doi.org/10.1016/S1474-6670(17)42527-4
http://dx.doi.org/10.1016/j.ymssp.2017.11.016


Appendix 

108 

 

 

 

 

 

 

 

 

 

 

 

8.4 A Combined Anomaly and Trend Detection System for Indus-

trial Robot Gear Condition Monitoring 

 



applied  
sciences

Article

A Combined Anomaly and Trend Detection System for
Industrial Robot Gear Condition Monitoring

Corbinian Nentwich * and Gunther Reinhart

���������
�������

Citation: Nentwich, C.; Reinhart, G.

A Combined Anomaly and Trend

Detection System for Industrial Robot

Gear Condition Monitoring. Appl. Sci.

2021, 11, 10403. https://doi.org/

10.3390/app112110403

Academic Editor:

Jasiulewicz-Kaczmarek Małgorzata

Received: 27 September 2021

Accepted: 3 November 2021

Published: 5 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute for Machine Tools and Industrial Management, Technical University Munich, 85747 Garching, Germany;

emeritus.reinhart@tum.de

* Correspondence: corbinian.nentwich@iwb.tum.de

Abstract: Conditions monitoring of industrial robot gears has the potential to increase the productiv-

ity of highly automated production systems. The huge amount of health indicators needed to monitor

multiple gears of multiple robots requires an automated system for anomaly and trend detection.

In this publication, such a system is presented and suitable anomaly detection and trend detection

methods for the system are selected based on synthetic and real world industrial application data.

A statistical test, namely the Cox-Stuart test, appears to be the most suitable approach for trend

detection and the local outlier factor algorithm or the long short-term neural network performs

best for anomaly detection in the application of industrial robot gear condition monitoring in the

presented experiments.

Keywords: condition monitoring; industrial robots; anomaly detection; trend detection

1. Introduction

Currently, industrial robots are the workhorses of highly automated production sys-
tems [1]. A challenge to the productivity of such systems remain faults of industrial robot
gears as they can cause extended downtimes. Condition monitoring (CM) of the gears
can be a measure for countering this issue. CM describes a maintenance strategy in which
sensor data is used to determine the health state of a robot gear. For this, sensor data
is transformed into health indicators that correlate with the gear’s health state. Critical
monitored values within the time series of the health indicators form the decision criterion
for a maintenance action [2]. Usually, there are many industrial robots operating in a
production system and the health state of each of the axes must be monitored. Hence,
manual monitoring is not feasible and an automated system is required. Such a system
must be able to detect anomalies and trends in the health indicator data reliably. Anomalies
in the data can be related to faults that occur abruptly (e.g., breaking of a gear tooth) and
trends can be an indicator for increasing wear [3]. The occurrence of such events should be
presented to the maintenance crew while showing only few false alarms. To the best of our
knowledge, such a combined system does not yet exist for industrial robot gear condition
monitoring. Hence, the contribution of our publication is threefold. Firstly, a combined
anomaly and trend detection system (CATS) for industrial robot gear CM and secondly a
method for selecting suitable anomaly detection (AD) and trend detection (TD) models
for this defined application are presented. Thirdly, the suitability of different AD and TD
models for the defined use case is evaluated by applying the method. Thus, the remainder
of this publication is structured as follows: in Sections 1.1 and 1.2 an overview of industrial
robot CM systems, AD and TD models is given and the addressed research gap is refined.
In Section 2, CATS and the AD and TD model evaluation method is described. In Section 3,
the method is applied to state-of-the-art AD and TD models and suitable models for CATS
are selected. In Section 4, the limitations of the presented approach are discussed. In doing
so, the outlook discussed in Section 5 is derived, which also includes a summary of our

Appl. Sci. 2021, 11, 10403. https://doi.org/10.3390/app112110403 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8845-9999
https://doi.org/10.3390/app112110403
https://doi.org/10.3390/app112110403
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112110403
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112110403?type=check_update&version=1


Appl. Sci. 2021, 11, 10403 2 of 20

contribution. Through the remainder of this publication the term application refers to the
condition monitoring of industrial robot gears.

1.1. State of the Art

In this section, first supervised and unsupervised approaches for robot condition
monitoring are presented. As this research area does not present the fields of anomaly
detection and trend detection models completely, a broader overview of these research
fields is given subsequently. Finally, the state of the art is summarised and the research gap
is presented that we are addressing.

1.1.1. Industrial Robot Condition Monitoring

Different approaches for the CM of industrial robots exist in the literature. These
can be classified by the type of model used, i.e., supervised or unsupervised machine
learning models or the raw data used, which are mainly acceleration sensor data or robot
controller data.

In the field of supervised models and robot controller data, several models such as
XGBoost and different neural networks based on both joint specific data such as speed and
torque and operational specific data (e.g., number of emergency stops) were compared
from a fleet of 6000 robots. A maximum AUC value (area under the curve) of 0.87 could
be achieved for a neural network model for fault detection in axis 2 [4]. A similar model
comparison for logistic regression, support vector machines, random forests and ensemble
stacking was performed in [5]. Here, angle, angle speed, acceleration and torque data were
used from 26 robots to classify gear faults. The best AUC value of 0.77 was reached by the
random forest classifier. Fault detection for loose gear belts was performed with a decision
tree, a gradient booster and a random forest and statistical features derived from current
data. Here, the random forest performed best with F1-scores around 0.9 [6].

In the section of unsupervised models and robot controller data, a kernel density
estimator was used to detect faults based on motor angle, angle velocity and torque in
combination with the Kullbach-Leibler divergence. Data from accelerated wear tests show
a clear increase in the health indicator [7]. In another publication, the transferability
of models was investigated for a combination of principle component analysis and Q-
residuals. Anomalies were assumed if the distance measure was above a set threshold.
The study shows that the use of the differences between measured and set quantities such
as torques as raw data perform best in terms of transferability. In this context, transferability
describes the training of the model based on the data of only one robot and then also using
this model for other robots [8]. A model based on the deviations of a dynamic equation
of a robot relative to actual measurements of the robot is combined with Hotelling’s T²
test statistic to determine robot faults [9]. A sliding-window convolutional variational
autoencoder was used to detect anomalies in pick-and-place operations of a robot simulated
by little strikes on the robot. The method outperforms benchmark models with an F1-score
of 0.89 [10]. A long short-term memory neural network was successfully used to detect
anomalies within the grinding process of an industrial robot based on speed, position and
torque data. Anomalies were generated by applying a force to the robot hand during the
process [11].

Turning to supervised learning approaches based on acceleration sensor data, multiple
methods are worthy of note. A sparse autoencoder was trained with data from an attitude
sensor (collecting acceleration and velocity signals at 100 Hz) attached to the tool centre
point of the robot. The sensor collected data from normal behaviour and different fault
conditions such as pitting and broken teeth of a gear. The classification results showed
accuracy values of 90 percent [12]. Wavelet-based features in combination with a neural
network were used to classify backlash faults for a six axis industrial robot [13]. Multiple
supervised models such as a support vector machine, neural networks, gaussian processes
and random forests were combined with different dimensionality reduction methods based
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on data from acceleration sensors attached to the gear caps for gear fault classification.
The SVM and GP showed the best performance with accuracy values over 91 percent [14].

In the area of unsupervised models and acceleration sensor data, a gaussian mixture
model was used based on health indicators derived from time and the time-frequency
domain to differentiate measurements from a degreased robot from normal measurements
of the robot. Classification performances over 94 percent for recall and precision values
were achieved [15]. Time domain and frequency domain features derived from a residual
signal were used in combination with thresholding for gear fault detection for different test
trajectories [16]. A one-class generative adversarial autoencoder was used for the detection
of artificially introduced faults in a robot gear in [17]. Classification accuracies of 97 percent
were achieved for the identification of different faults.

1.1.2. Anomaly Detection Models

The state of the art provides various anomaly detection models for point, collective
and contextual anomalies of uni- and multivariate time series and spatial data. One
possibility for clustering such models is presented in [18]. Here, anomaly or novelty
detection methods are structured in probabilistic, distance-based, reconstruction-based,
domain-based and information theoretic approaches. For a detailed review of anomaly
detection methods, refer to [18] or more recently to [19]. Below, only those approaches
that are considered in the method evaluation of our publication are presented. Different
approaches from the above mentioned classification scheme are compared. From the field
of probabilistic models, a kernel density estimator (KDE) based on the values of the time
series [20] is used. This model fits a non-parametric probability density function on the
data. By calculating the probability that a sample (one step of a time series) belongs to
this density and by comparing this value with a threshold, anomalies can be determined.
Furthermore, a gaussian process (GP) for one-class classification is used, which works
based on a similar principle [21]. From the field of distance based approaches, the local
outlier factor (LOF) [22], the isolation forest (IF) [23] and the DBSCAN algorithm [24] are
used. LOF is based on determining the density of data points and detects anomalies as
data points with few close neighbors. IF is based on multiple tree classifiers for one-class
classifcation. DBSCAN is a clustering algorithm that determines anomalies based on their
distance to reachable points from cluster core points. Multiple representatives from the
reconstruction-based model class are used. An autoregressive (AR) [25] and autoregressive
moving average model (ARMA) [26] are applied and compared with a convolutional
and a long short-term neural network [27,28]. All four models are used as regression
models between the past time steps of the signals and a time step of the signal in the
future. The deviations between these predictions and the actual progress of the signal
are then compared with a threshold. If the deviation exceeds the threshold, an anomaly
can be assumed. Furthermore, the one class support vector machines (OCSVM) [29] as a
domain-based model is included for the comparison. This model builds a domain of inliers
based on support vectors and the border data points of this domain. Data points outside
this border line are classified as anomalies. As a simplistic baseline model, an approach is
considered where a data point is compared to a multiple of the standard deviation of the
reference data (abbreviated STD). If this distance exceeds a defined threshold, an anomaly
is assumed.

1.1.3. Trend Detection Models

In the context of this publication a trend is defined as the gradual change in future
events from past data in a time series [30]. Trend detection can be differentiated from
remaining useful life (RUL) estimation by several aspects. In contrast to RUL estimation,
trend detection methods do not extrapolate existing time series into the future. Furthermore,
no thresholds for the extrapolated time series are defined which describe the end of lifetime
of an asset. Trend detection methods have different purposes. It is possible to differentiate
between models for change point detection, trend description and identification of trend
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presence in a time series. For the considered application, a model is required that answers
the question of whether a trend is present. This is why the remainder of this subsection
focuses on the field of trend presence identification. Here, various statistical tests exist.
The Mann-Kendall test (MK) is a sign test based on pairs of all samples of a time series and
their predecessors [31] to detect trends. The Cox-Stuart (CS) test uses a reduced amount of
data pairs for a sign test [32] to achieve the same objective. The Wilcoxon-Mann-Whitney
trend test builds a test statistic based on the signs of the slopes between samples and the
rank sums of the samples with an increasing and decreasing slope [33] for this purpose.
The Durbin-Watson test checks for auto-correlation in the residuals of a regression fit. If the
residuals do not show autocorrelation, a trend can be assumed [34]. Furthermore, slope
based approaches in combination with thresholds exist. The most simple approach from
this field is to fit a linear or quadratic function to the time series data, calculate the slope of
this function and compare it with a threshold. This model will be named linear regression
model, short LR, for the rest of the publication. If the slope exceeds the threshold value,
a trend can be assumed. A more complex approach for trend detection is based on the
clustering of a time series. In a first step, a clustering algorithm (e.g., Fuzzy-K-Means) is
used to detect clusters within the time series. Then, the slope between the cluster centres is
determined. Finally, the slope values of the cluster centres are compared with a threshold
to decide, whether a trend exists [35]. The last approach for trend detection presented
in this section is based on the comparison of the time series’ moving average with its
overall mean (moving average model, short MA). In a first step, these two quantities are
calculated. Afterwards, the time series’ standard deviation multiplied by a factor is added
to the overall mean to determine a threshold. Then, it is determined, whether the moving
average of the signal rises above this threshold for a defined time window. If this is the case,
it can be assumed that a trend is present in the signal. The principle behind this method is
also illustrated in Figure 1.
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Figure 1. Example for the trend detection method using moving averages.

1.2. Considered Research Gap

In the field of industrial robot gear condition monitoring no combined AD and TD
model has been presented up to now to the best of our knowledge. Therefore, the research
objective of this publication is to present such a system. For the detailed design of this
system, a suitable AD and TD model must be chosen. As no comparison of AD and
TD models for univariate time series of HIs derived from acceleration sensors has been
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performed up to date, a method to select suitable AD and TD models for the application of
industrial robot gear condition monitoring is formulated. Afterwards, it is applied to choose
models for the presented combined system. In the context of the framework presented
in [36], we address the question of algorithm selection for the inference task. By doing so,
we support the transfer of state of the art AI models into practice and reduce the effort of
model selection for practitioners. The identification of suitable data acquisition systems or
the selection of features is not considered in this publication. This is e.g., considered in [3].
Therefore, the presented work builds up on assumptions derived from this publication.
These assumptions are summarized in Section 2.1.1. Furthermore, we limit our research
frame to the field of six-axis articulated robots as we can not provide comprehensive
experiments for other asset classes and hence validate our approach for such assets.

2. Materials and Methods

In this section, firstly CATS is described. Subsequently, the method for selecting
suitable AD and TD models for CATS is described.

2.1. Combined Anomaly and Trend Detection Model

The objective of CATS is the reliable detection of trends and anomalies in industrial
robot gear health indicator data. In the following, the assumptions that the system is based
on, are defined. Then, the system itself is presented.

2.1.1. System Assumptions

The presented model builds upon certain assumptions. Data ingested in the system
must be collected from a setup with a constant robot trajectory and load. The system
analyses only univariate time series data of one health indicator per axis derived from
acceleration sensor data. A suitable HI is described for example in [3]. The HI exhibits
stationary behaviour when the robot axis is in a healthy state. The considered time series
can be subject to trends xtrend(t), seasonality xseasonality(t), noise xnoise(t) and anomalies
xanomaly(t) . Noise can be caused by changing environmental conditions or sensor effects.
Trends can occur due to wear. Trends due to sensor drifts are prevented by the sensor
setup or suitable data preprocessing (e.g., high pass filtering of the raw data). Seasonality
can occur due to changing temperatures of the gears. These temperature changes lead to
variations in the HI (for example, see [37]). These temperature changes result from varying
utilisation in the production system. They could be caused for instance by a three shift
working model with reduced utilisation during night shift. Summarising, this time series
can be expressed as in Equation (1).

x(t) = xtrend(t) + xseasonality(t) + xnoise(t) + xanomaly(t) (1)

2.1.2. System Design

The objective of the presented system is to evaluate whether xanomaly(t) 6= 0 or
xtrend(t) 6= 0. For this, an anomaly detection model and a trend detection model are
deployed in parallel. The detection of an anomaly in a defined number of sequential
measurements leads to the recommendation of immediate maintenance actions. The detec-
tion of trends in the data of a defined number of a sequential measurements leads to the
proposal of maintenance actions in the near future. The working principle of the system
is summarized in Figure 2. The design of the system addresses different aspects of the
industrial robot gear condition monitoring use case. Faults, whose manifestation but not
the underlying fault mechanism progress (e.g., tracking of the growth of a crack in a gear
tooth) can be tracked with HIs, will cause point or collective anomalies. The AD model
will be used for the detection of such faults. Other faults, whose progress can be tracked
(e.g., increasing wear), will cause trends in the HI. These trends will be detected by the
trend detection model.
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Figure 2. Overview of the condition monitoring system.

2.2. Method for Anomaly and Trend Detection Model Selection

In this section, the overall model evaluation method is proposed. Then, more detailed
information is given about the generation of synthetic data and the model evaluation criteria.

2.2.1. Overall Method and Selected Models

To select suitable AD and TD models for the presented system a three step approach
was followed to ensure that the most suitable models are chosen. Firstly, potential models
were identified in the literature. Secondly, these models were applied on synthetic data
meeting defined characteristics of the considered application and evaluated in respect of
different quality criteria to reduce the solution space. Thirdly, the best performing models
were evaluated using real world data taken from accelerated wear tests of industrial robots.
The overall selection process is summarised in Figure 3. In the following, these steps are
explained in detail.

Figure 3. Overview of the model evaluation method.
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As described in Section 1.1, a large number of AD and TD models exist. Hence,
a holistic comparison of existing approaches is not feasible. Therefore, models from the
classes as described in [18] were chosen for the AD model comparison. In detail, the models
listed in Table 1 were used. The models are explained in detail above in Section 1.1.2. For TD
model comparison, the MK test, the CS test as well as the LR and MA based approaches
described in Section 1.1.3 were chosen. The implementation of the models is described in
an open source repository [38].

Table 1. Models considered.

Anomaly Detection Model Anomaly Detection Model Type Reference

CNN Reconstruction based [28]
LSTM Reconstruction based [27]

AR Reconstruction based [25]
ARMA Reconstruction based [26]

KDE Probabilistic [20]
GP Probabilistic [21]

OCSVM Domain based [29]
IF Distance based [23]

DBSCAN Distance based [24]
LOF Distance based [22]
STD Distance based [-]

Trend detection model Trend detection model type Reference

MK Statistical test [31]
CS Statistical test [32]
LR Slope based [-]
MA Slope based [-]

2.2.2. Synthetic Data Generation

For the model comparison based on synthetic data, a data generator was implemented
to create time series as described in Equation (1). Different trend, noise, seasonality and
anomaly functions were considered. In detail, linear and quadratic trend functions were
implemented. White noise and uniform noise with different variances or ranges were used
as noise functions. Sine functions and a hand crafted function as described in Equation (2)
were applied for seasonality. Here, t is the current time step, which would relate to the
length of one hour of the time series and a is the magnifier factor, which is further described
in Table 2. An example of this function is depicted in Figure 4 on the upper right side.

f (x) =











(t%24)× a/4 if (t%24) ≤ 4

1, if 4 < (t%24) ≤ 20
24−(t%24)

4 × a otherwise

(2)

For the anomaly function, a uniform distribution was used to define the anomaly posi-
tions. Different lengths for collective and different amplitudes for both collective and point
anomalies were applied. To derive reasonable parameter ranges, certain realistic assump-
tions were made. A time series consists of 8736 samples representing 24 measurements per
day for one year. The range of the trend functions’ slopes should allow a doubling of the HI
value in no less than one week and no more than half a year. Noise and seasonality should
as a minimum result in a deviation of the time series by the factor 0.3 and as a maximum
by the factor 9 from the mean of the signal. These assumptions were based on collected HI
data from industrial robots in a car manufacturing plant. Due to confidentiality reasons,
this data can not be published. The different functions, their parameters, the range of the
parameters used and underlying assumptions for the parameter range choice are specified
in Table 2. In the first three months of the time series no anomaly or trend occurs. In the
last nine months anomalies may occur. Figure 4 shows a typical synthetic time series.
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Table 2. Overview of used parameter ranges for the synthetic time series.

Signal Parameter Type
Parameter Values

Synthetic Data Set 1 Synthetic Data Set 2

xtrend(t)

Trend type
Linear

Quadratic

Trend slope

Linear:
0.012

Linear:

4.58 × 10−4

Quadratic:
7.09 × 10−5

Quadratic:
1.05 × 10−7

xseasonality(t)

Seasonality type
Sine

Production cycle (Formula 2)

Amplitudes a
Sine: 0.15 Sine: 3

Production
cycle: 1.1

Production
cycle: 2

xnoise(t)

Noise type
Uniform noise

White noise

Noise parameters

Uniform noise
range: 0.15

Uniform noise
range: 1

White noise mean: 0
White noise
standard deviation:
0.03

White noise mean: 0
White noise
standard deviation:
0.8

xanomaly(t)

Anomaly types
Point anomaly

Collective anomaly

Anomaly parameters
Amplitude: 2 Amplitude: 1.1

Collective anomaly lengths:
20 measurements

Collective anomaly
lengths: 5 measurements

Based on this parameter range, over 26 million unique time series could be modeled.
To reduce the computational effort, two reduced data sets were created. The first data
set (synthetic data set 1) was used for an initial screening of the models’ performance.
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It consisted of time series with low noise, trends with a high slope, and large anomaly
magnitude values and lengths. Furthermore, a second data set (synthetic data set 2) with
more difficult conditions for the detection of trends and anomalies was generated. Here,
time series with high noise, low trend slopes, and low anomaly magnitudes and lengths
were calculated. In each time series 40 anomalies were present. Each created time series
was analysed by each model to detect trends and anomalies. In total, 16 unique time series
were analysed per data set.

2.2.3. Model Evaluation

To measure the models’ performance, the ROC curves (receiver operating characteristic
curves) for different parameter choices of the models were determined. This means
that different model parameters were varied and the True Positive Rate (TPR) and False
Positive Rates (FPR) of the models for the synthetic data were determined. More precisely,
the models were presented with slices of the time series and had to determine, whether
trends or anomalies were present in the time series. For the trend detection task, these
slices were increased in size per time series with a window size of 1008 samples and an
initial size of 2016 samples. This is equivalent to 24 measurements per day for a length
of 12 weeks for the initial window. For the anomaly detection, the first 168 values were
used to train the models. This is equivalent to 24 measurements per day for one week.
The models were then tested on time series with a length of 6720 samples. The parameters
that were varied for the different models are summarized in Table A1. The most robust
models with high TPR and low FPR and high average AUC values (area under the curve)
were then applied to data sets from accelerated robot gear wear tests. A data set, which
is based on an accelerated wear test with an ABB IRB 6600-255/2.55, was used to test
the trend detection models (Accelerated wear test 1). The experiment caused different
faults in the robot gear of the second axis. In total, 2425 measurements over a time span of
roughly one year were used from the experiment; these were acquired with an acceleration
sensor at the robot gear cap. From this data the HI described in [3] was derived. For more
information regarding the experiment, see [39,40]. The same data set and another data set,
which was acquired during another accelerated wear test with an ABB IRB 7600-340/2.8,
to test the anomaly detection models (Accelerated wear test 2). Here, 920 measurements
were acquired over three months at the second axis gear cap with an acceleration sensor,
and the same HI was calculated and various gear faults were subsequently detected in the
second axis gear. As no obvious trend could be seen in this data set, it was just used for the
AD model evaluation.

More information regarding this experiment is given in [3]. Figure 5 presents the
various faults of both accelerated wear tests. For analyzing these data sets, the models’
parameters were chosen that yielded the best compromise in TPR and FPR during the
experiments with the synthetic data. In a real world setup, other parameter sets could be
more reasonable in respect of the trade-off between false alarms and undetected faults.
A method of how to choose the best parameters given the maintenance circumstances of
an individual robot is discussed in Section 4. Based on the results of the accelerated wear
test experiments, a suggestion of which models to use for trend and anomaly detection in
the CM system is made. The detailed model evaluation method based on synthetic data is
depicted in Figure 6.
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Figure 5. Overview of the faults of the accelerated wear tests following [3,39].

Figure 6. Overview of the model evaluation method.

3. Results

In the following, the presented method from the last section is applied to the AD and
TD models listed in Table 1. First, the results for the TD models are shown, then the results
of the AD models.

3.1. Trend Detection Model Comparison

Here, first the evaluation of the TD models based on synthetic data are presented.
Subsequently, the results based on the accelerated wear test are analysed.
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3.1.1. Evaluation Based on Synthetic Data

Figure 7 shows the ROC curve derived from the synthetic data set 1 and the model
parameters described in Table A1. Ideally, the plots would show a dot in the upper left
corner for a model. Such a dot would refer to a perfect classifier. This means that the
model has a TPR of 1 and FPR of 0. Such a model would detect all trends and trigger no
false alarms. The LR model and the MA model achieve these perfect classification results.
The variation of parameters of the CS model does not influence the model performance and
the MK model shows high TPR values only at the expense of an increased false positive
rate. The results of synthetic data set 2 with the same model parameters are shown in
Figure 8. Here, the CS model shows the best performance as a parameter combination
exists where no false alarms are triggered and all trends are detected. It is followed by
the MK model, which also yields a performance where all trends are detected and the
FPR is small. The LR and the MA models achieve high TPR values only at the expense of
increased FPR. The AUC values of the models for both data sets are presented in Table A2.
Based on these results, it was decided to apply the CS and the MK model to the accelerated
wear tests as they performed best on the more difficult data (synthetic data set 2) and based
on their average AUC values.
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Figure 7. Trend detection model comparison based on the synthetic data set 1.
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Figure 8. Trend detection model comparison based on the synthetic data set 2.
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3.1.2. Evaluation on Accelerated Wear Test Data

The data from the accelerated wear test was analysed using the two chosen models.
The results are depicted in Figure 9. The blue line shows the health indicator values,
the dots indicate the models’ decision of whether a trend is present in the time window of
the last 504 samples (which equals a time frame of 2.5 months) while the horizontal yellow
line shows, when more then 50 percent of the last 504 decisions were positive.

In such a case, a maintenance action should be planned. It can be seen that both
models show similar behaviour for the beginning of the data set where they both detect a
trend in the data after the initialisation phase of the first 504 measurements. The outlier
at measurement 1000 leads to the rejection of the hypothesis that a trend is present for
the following measurements in the MK model. It can be assumed that the CS model
interprets the outlier correctly so that even for the following measurements a trend is
detected. Both models detect the more stationary behaviour of the time series at its end.
As the CS model handles the outlier around measurement 1000 better compared to the MK
model, it is suggested to use the CS model in CATS. In this experiment, the confidence
level parameters from the ROC curve of synthetic data set 2 were chosen for the models
that yielded the highest TPR values with the lowest FPR at the same time.
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Figure 9. Results of the trend detection models based on accelerated wear test data.

3.2. Anomaly Detection Model Comparison

The presentation of the results of the AD model comparison follows the same scheme
as Section 3.1.

3.2.1. Evaluation Based on Synthetic Data

The ROC curves of different models for the synthetic data set 1 are shown in Figure 10.
Again, as described in Section 3.1.1 the plot would ideally show dots for the models at
the upper left corner. Most of the models show good results except the OCSVM for which
parameter combinations exist that yield poor classification performance. This means that
all models are capable of identifying anomalies reliably and with a low false alarm rate in
the case of high anomaly amplitudes and low noise level. In contrast, the models’ overall
performance regarding the synthetic data set 2 is rather poor. Figure 11 summarises the
ROC curves for this data set. No perfect classifier was found for all models and the distance
of the models’ ROC curves to the upper left corner is large. Here, it can be concluded that
the models struggle to detect anomalies at high noise levels and low anomaly amplitudes.
This fact will also be discussed in Section 4. The AUC values for all models and both data
sets are provided in Table A3. The individual ROC curves of all models for bothd data sets
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are presented in Figures A1 and A2. The best overall performance show the LSTM, STD
and LOF models based on their average AUC values. Hence, it was decided to use the
LSTM, STD and the LOF model on the accelerated wear test data.
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Figure 10. Results of the anomaly detection models based on synthetic data set 1.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
AR
ARMA
DBSCAN
LOF
CNN
LSTM
IF
OCSVM
GP
KDE
STD

ROC curves of synthetic data set 2

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

Figure 11. Results of the anomaly detection models based on synthetic data set 2.

3.2.2. Evaluation on Accelerated Wear Test Data

The results of applying the LSTM, STD and LOF models to the data from the accel-
erated wear test 1 are depicted in Figure 12. For this, all models were trained based on
the first 500 measurements with model parameters of the ROC curves that yielded the
best compromise between high TPR and low FPR values. It can be seen that all models
correctly identify the anomalies at the end of the time series. The LOF model detects the
outlier around measurement 1000 as an anomaly. Given a maintenance action decision
criterion of 10 detected anomalies in the last 24 measurements, maintenance actions would
have been triggered at the end of the data set for all models and a false alarm would
have been triggered around measurement 1000 for the LOF model and for many more
time ranges for the STD model. The AD models’ behaviour on the second data set are
summarized in a similar manner in Figure 13. In this scenario, the models were trained
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using the first 200 measurements with the same model parameters. It can be seen that the
LSTM model and the STD model detect more anomalies than the LOF model along the time
series. The apparent anomaly at the end of the time series is detected by all models.The
LSTM triggers two false alarms around measurement 300. The STD model triggers many
false alarms. Summarising, the STD shows more false alarms compared to other models.
The LOF and LSTM model detect only the apparent anomalies with a low false alarm rate.
Hence, it is suggested that either the LOF model or LSTM model is used in CATS as the
AD model.
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Figure 12. Results of selected anomaly detection models for accelerated wear test 1.
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Figure 13. Results of selected anomaly detection models for accelerated wear test 2.

4. Discussion

The presented results highlight some interesting aspects that will be discussed in
this section. We will justify our initial choice of models and highlight some aspects of the
models’ performance on the synthetic data. Then, we will explain the models’ parameter
choice and end with organisational thoughts regarding the integration of CATS in a real
world production site.
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As emphasised in Section 1.1.2, a comprehensive comparison of AD and TD models
is not feasible due to the high variety of existing models. Our motivation for selecting
models from different categories as presented in [18] was to test how their underlying
detection mechanisms cope with the different characteristics of time series. The fact that
AD and TD models were found that detect the trends and anomalies in the accelerated wear
test data reliably, strengthens the argument that the comparison of the selected models
is sufficient for the application. From our point of view, the results of the AD model
comparison based on synthetic data set 2 clearly highlights the limitations of anomaly
detection models in general. High noise levels in the data make it difficult for such models
to detect anomalies. Figure 14 shows a typical time series of this data set. Even as a human
operator, it is difficult to identify the anomalies. However, from our experience, such
extreme noise does not appear in the HI time series as shown in Figure 9 or Figure 13 for
the accelerated wear tests. When deploying AD or TD models in real world applications,
suitable model parameters must be chosen. For this, from our point of view, the parameters
have to be configured for the individual robot considering the common trade-off between
false alarms (higher FPR) and undetected faults (lower TPR). If no ideal anomaly or trend
detection model can be used considering the ROC curves, this trade-off can be tackled by
considering a maintenance score for an individual robot. This maintenance score can be
influenced for example by the position of the robot in the production systems in respect
of the distance to buffers or the effort required to exchange the robot. Other criteria
could be the required calibration effort after the replacement or the response time of the
maintenance team if a replacement is required. For robots with a higher maintenance score,
model parameters with high TPR and higher FPR should be chosen. For robots with a lower
maintenance score, model parameters with lower TPR and low FPR should be selected.
This principle is also depicted in Figure 15. The reconfiguration of such models might
also be required if the FPR or TPR do not meet the expected behaviour over time. Finally,
the implications that the formulated assumptions in Section 2.1.1 yield must be discussed.
To meet these assumptions, two aspects must be considered in a real world application.
First of all, a measurement trajectory must be used for data acquisition so that the HI data
is comparable and has a low noise level. Secondly, CATS must be extended by mechanisms
to ensure that anomalies or trends in the HI data are only due to wear and not changing
environmental conditions, new robot programs or faulty data acquisition systems.
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Figure 14. Example of a noisy time series from synthetic data set 2.
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Figure 15. Selection of model parameters based on a maintenance score.

5. Conclusions

A combined anomaly detection and trend detection system for the condition monitor-
ing of industrial robot gears has been presented. To select suitable models for these tasks,
a method in which models are evaluated based on synthetic and accelerated wear test data
was formulated. The synthetic data consists of time series with noise, cyclic behaviour,
trends and anomalies based on realistic assumptions that were gathered from industry
data. The accelerated wear test data was collected during two experiments with six-axis
industrial robots, which provoked multiple gear faults and exhibited both trends and
anomalies. By applying the presented method, it was found that the Cox-Stuart test is most
suitable for trend detection and the local outlier factor algorithm or the long short-term
neural network are capable of detecting the anomalies in the accelerated wear test data.
For future research, we believe that the considerations in Section 4 regarding the extensions
of CATS with functionalities to detect reasons for false alarms such as robot program
changes or the change of the robot tool and the automatic reconfiguration of models in
case of too many false alarms are the most important topics for enabling the automated
condition monitoring of industrial robot gears in industry.
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Appendix A. Model Parameters for ROC Curves

Table A1. Considered Models.

Model Parameter Range

MK Confidence interval 0.9–0.999 in variablestep sizes
CS Confidence interval 0.9–0.999 in variable step sizes
LR Slope threshold 0–1 in variable step sizes

MA
Amplifier min: 0.5, max: 0.8, step: 0.1
Length above threshold min: 24, max: 72, step: 2
Moving Average Window 0.04×(dataset length)–0.18×(dataset length)

ARMA
Autoregression lags min: 1, max: 9, step: 2
Moving average lags min: 0.2, max: 1, step: 0.2
Anomaly threshold min: 0.01, max: 0.1, step: 0.02

AR
Autoregression lags min: 0.2, max: 1, step: 0.2
Anomaly threshold min: 0.01, max: 0.1, step: 0.02

CNN
Training epochs 10, 20, 50
Anomaly threshold 0.1, 0.2, 0.3, 0.4, 0.5, 0.9, 0.95, 0.98, 0.99, 0.999

LSTM
Training epochs 10, 20, 50
Anomaly threshold 0.1, 0.2, 0.3, 0.4, 0.5, 0.9, 0.95, 0.98, 0.99, 0.999

DBSCAN
Epsilon min: 0.1, max: 1.3, step: 0.2
Minimal number of samples 13, 21, 34, 55, 89, 144, 233, 377

GP
Anomaly threshold 0.7, 0.8, 0.9, 0.95

Kernel upper bound
0.0001, 0.0005, 0.001, 0.002, 0.003, 0.005,
0.008, 0.013, 0.021, 0.034, 0.055, 0.089,
0.144, 0.233, 0.377, 0.61, 0.987

IF
Number of estimators 50, 100, 200
Contamination 0.01, 0.02, 0.03, 0.05, 0.08, 0.13, 0.21, 0.34

LOF
Number of neighbors 5, 10, 20, 30, 50, 80
Contamination 0.001, 0.01, 0.02, 0.03, 0.05, 0.08, 0.13, 0.21, 0.34, 0.5

OCSVM
Kernel ’rbf, sigmoid
Nu 0.01, 0.02, 0.03, 0.05, 0.08, 0.13, 0.21, 0.34

KDE
Bandwidth 0.2, 0.3, 0.5, 0.8, 1.3, 2.1, 3.4, 5.5
Anomaly threshold 0.75, 0.9, 0.95, 0.99

Appendix B. AUC Tables

Table A2. Overview of the AUC values of the trend detection models.

Synthetic Data Set 1 Synthetic Data Set 2

Cox Stuart 0.750000 0.968750
Crossing Averages Model 1.000000 0.679688
Linear Regression 0.984375 0.707031
Mann Kendall 0.732422 0.861328
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Table A3. Overview of the AUC values of the anomaly detection models.

Synthetic Data Set 1 Synthetic Data Set 2

AR 0.998641 0.550152
ARMA 0.999713 0.553447
CNN 0.955253 0.596032
DBSCAN 1.000000 0.553332
GP 0.716030 0.591000
IF 0.706679 0.580334
KDE 0.584487 0.499234
LOF 0.999880 0.550426
LSTM 0.995874 0.612189
OCSVM 0.656618 0.542888
STD 0.999951 0.576333

Appendix C. Individual ROC Curves
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Figure A1. Results of the anomaly detection models based on synthetic data set 1.
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Figure A2. Results of the anomaly detection models based on synthetic data set 2.
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Abstract 

In today9s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today9s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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1. Introduction 

Highly automated production lines are the backbone of 

many industries such as the automotive or electronics 

production sector [1]. Industrial robots (IR) are an integral 

part of such lines, and any downtimes cause a productivity 

loss that needs to be minimized. Condition monitoring (CM) 

of robots9 gears is one measure to achieve this objective [23

5]. This maintenance strategy uses sensor data to determine 

a robot9s health state and to trigger maintenance decisions 

before failures occur. A condition monitoring system 

consists of a data acquisition, a data transformation and a 

modeling module that provides decision support for 

determining the time of a maintenance action [6]. A data 

acquisition system based on vibration sensor data and 

measurement trajectories was proposed in [7]. The 

transformation of measurements acquired with this system 

into meaningful health indicators by means of short-time 

Fourier transform and Z-scores was presented in [8]. Finally, 

a system for supporting automated maintenance decisions 

based on anomaly and trend detection was described in [9] 

as a suitable modeling module. To deploy such a system in a 

production environment, it must be ensured that the system 

adds value to the company9s venture. This is why we present 

a customized cost model to compare the economic efficiency 

of CM with preventive maintenance in the context of IR 

gears. We parameterize this model with historic data as well 

as data taken from surveys and market research. Finally, we 

use the parameterized model to conduct a sensitivity analysis 

for various cost parameters and thus determine scenarios in 

which CM for IR gears is economically efficient. In the 

remainder of this publication, we first present the state of the 

art regarding cost-benefit analysis (CBA) of CM and refine 

the addressed research gap in Section 2. In Section 3, we 

present our cost model, as well as the method for the 

parameterization of the model and the approach for the 

sensitivity analysis. In Section 4, we present the results of the 

sensitivity analysis. A discussion of these results is given in 

Section 5. We conclude our work in Section 6, where we also 

give an outlook to future initiatives in this research field. 

2. State of the art 

Quantifying the potential benefits of a CM system and 

justifying the investment in the required technologies is a 

considerable challenge [10]. Therefore, various approaches 
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and cost models have been proposed in the literature, which 

differ in the cost factors they consider, the evaluation metrics 

used, and the ways in which they handle uncertainty. 

Besides, some publications aim to provide more general 

concepts, while other approaches are tailored to specific use 

cases. 

A comprehensive overview of cost factors, cost calculation 

approaches and decision making relating to the investment in 

a CM system is presented in [10]. 

[11] suggests a general holistic four-step framework for 

conducting a CBA of CM systems, which starts by 

identifying the most critical components in terms of 

availability and reliability of the monitored manufacturing 

system. In the second step, different types of failure and 

applicable monitoring concepts are specified, and 

development and implementation costs are calculated. 

Subsequently, the benefits of different scenarios are 

estimated, and the knowledge gained is iteratively 

incorporated into the design of the CM system in step three. 

Finally, the concepts are evaluated using suitable metrics, 

such as the return on investment (ROI). Since making 

assumptions for cost parameters is a significant challenge 

and, at the same time, the quality of the result depends on the 

quality of the assumptions made, the use of a multivariate 

trade space analysis was proposed by [12]. A mathematical 

cost model was introduced in [13] for comparing the net 

revenue of machines using different maintenance strategies 

by considering fundamental cost factors such as initial 

investments, labor costs and breakdown costs. Aiming for a 

more appropriate cost equation, the approach was extended 

by considering the specific failure rates of individual 

components along with a proportional repair rate [14]. 

Another generally applicable approach for a CBA of CM 

systems is developed in [15]. Uncertainties and non-

monetary benefits are modelled using fuzzy logic concepts. 

The fuzzy systems enable the investigation of different 

sensitivities regarding the benefit and risk associated with a 

CM investment, and they can also be used for optimizing the 

technical design of the CM system as shown in the case 

study. 

Similar cost models have also been proposed in [16, 17], 

including use-case relevant cost parameters such as energy 

tax, energy consumption and secondary quality losses. A 

specific cost model is presented that takes into account the 

trade-off between detection rates and false alarm rates of 

anomaly detection models and considers different costs for 

these scenarios [18]. A decision-support system is provided 

to enable practitioners to determine the level of model 

performance they require for their application. Finally, a case 

study is presented from the process industry. 

A model that considers such cost factors as safety and 

environmental costs is presented in [19] in the context of the 

maintenance systems of a fusion reactor and evaluated for 

different failure rates of the system. It was emphasized that 

CM not only offers economic benefits but can also be of 

value with regard to safety and regulatory issues. 

[20] determined the break-even point between life cycle 

cost savings from CM and the required level of failure 

detection effectiveness. To do this, they modelled system-

wide failure probabilities as a time-variant non-

homogeneous Poisson process. Using this failure 

distribution, the detectability level required for the 

economical use of a CM system is derived by comparing the 

necessary investments and savings. Additionally, an 

extension of the model to multiple CM systems and failure 

modes is introduced, resulting in multidimensional break-

even surfaces. Similarly, [21] uses a life cycle cost model 

supplemented by a maintenance planning model to determine 

the optimum prognostic distance and a Monte Carlo 

simulation for analyzing the ROI of CM systems. A model 

for deriving the optimal maintenance cost based on a linear 

and stochastically distributed wear model is described in 

[22]. The impact of fleet data refinement on maintenance 

costs is analyzed based on a specific cost model in [23] and 

applied in a case study focusing on pulp dryers. 

Industry-specific models were presented, for instance for 

wind turbines or milling machines as well as in the context 

of industrial robots. To investigate the economic benefits of 

CM systems in wind power systems, [24] uses a life cycle 

cost model, in which the replacement densities of individual 

components are estimated as Weibull distributions. The 

sensitivity to different Weibull parameters is analyzed by 

averaging the resulting life cycle cost distribution. In 

addition, a stochastic risk analysis was conducted by building 

sets of failure scenarios using Monte Carlo simulation. The 

net present value of CM for wind turbines was calculated 

under consideration of different cost factors, such as 

logistical costs, failure costs and monitoring system costs. A 

simulation model based on Monte Carlo Markov chains was 

used to evaluate various sensitivity scenarios for wind 

turbine CM. Altered parameters were the distance to shore or 

the number of wind turbines per farm [25]. 

A cost model for milling machine CM based on survey data 

is presented in [26]. 

In the context of industrial robots, [27] analyze the cost 

structures of on-site and remote maintenance and provide a 

model for calculating the cost-effectiveness of the 

maintenance strategy, which can be used as a decision-

making support for practitioners. 

The literature review shows that there are already a 

variety of mathematical cost models, which can be used for 

the economic evaluation and justification of CM systems. 

Generalized cost models make it possible to estimate the 

economic benefit of CM systems [15] but often neglect 

application-specific factors or the possible technical solution 

space. In [17], for example, the analysis of CM of energy-

intensive induction motors is supplemented with domain-

specific cost parameters. The field of industrial robots is 

characterized by their integration into interlinked and 

clocked production lines. No CBA for different maintenance 

scenarios for industrial robots could be identified in the 

existing research, which considers either these aspects or the 

technical solution approaches for CM. The case studies in the 

literature also reveal that CBA is usually limited by 

insufficient information as well as uncertainties regarding 

individual cost factors. When conducting a CBA, 

application-specific risks and uncertainties need to be 

identified and outlined using a suitable method such as a 
ÿÿÿ,ûûûûû
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sensitivity analysis. In the following sections, we therefore 

present an application specific cost model for industrial robot 

gear CM and parameterize it with realistic data taken from 

different sources. 

3. Methodology 

In the following, we first present the assumptions on which 

the model is based before presenting the cost model itself. 

Then, the model parameterization and analysis processes are 

described. The overall objective of the presented work is the 

cost comparison of preventive and condition based 

maintenance for different robot runtimes. The overall 

method flow is depicted in Figure 1. 

3.1. Model assumptions 

The model is based on certain assumptions, which are 

presented in this section. We assume that CM is 

economically efficient if it is the maintenance strategy that 

yields the lowest costs per robot per year. In addition to the 

CM strategy, in which inspections and maintenance are 

executed periodically as well as on the basis of detected 

anomalies, we consider a preventive maintenance strategy, in 

which inspections and maintenance are executed only 

periodically. We assume that acceleration sensors are used 

for data acquisition in the CM scenario as suggested in [7]. 

We also assume that the sensors are portable and can thus be 

used for multiple robots, since the robots9 health state does 

usually not change abruptly. Furthermore, a condition 

monitoring system is implemented as presented in [8] and 

[9]. Finally, we assume that the usage of CM can extend the 

useful lifetime of an industrial robot. In the following, we 

describe the cost models for the two strategies. 

3.2. Model design 

The cost model for the CM maintenance strategy is based on 

the yearly costs per robot ÿÿÿ,ûûûûû as calculated by Formula 

1. 

 ÿÿÿ,ûûûûû = ÿûûÿ + ÿÿÿÿÿÿÿÿ + ÿûûûÿûÿûû       (1) 

They are based on depreciation costs ÿûûÿ , running costs ÿÿÿÿÿÿÿÿ  of the CM system and robot downtime costs ÿûûûÿûÿûû . The depreciation cost ÿûûÿ  is the sum of the 

depreciation costs of the robot investment, the condition 

monitoring system hardware and installation, and the 

development of the CM software (Formula 2). These costs 

are calculated by Formulae 3 3 5. They are based on the 

investment costs per robot ÿÿÿÿûÿû,   ÿ , the CM system ÿÿÿÿûÿû,   ÿÿ and the CM software ÿÿÿÿûÿû,   ÿÿÿ. The latter is 

calculated by estimating the development time of the CM 

software and the associated personnel costs of the 

development. The depreciation costs depend on the usage 

times ûÿÿÿÿû,   ûof the system û in years and the number of 

robots ÿÿ,   ÿÿÿûÿû,   û for which one system can be used. 
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The ongoing costs ÿÿÿÿÿÿÿÿ  are the operating costs of the 

CM hardware and software. They are based on personnel 

costs ÿÿ,ÿÿ , ÿÿ,   CMs  and inspection times ûÿ,   ÿÿ , ûÿ,   CMs 

needed for both systems and the operating costs of the CM 

software ÿÿ,   CMs (Formula 6). 

 ÿÿÿÿÿÿÿÿ = ÿÿ,ÿÿ 7 ûÿ,   ÿÿ +  ÿÿ,   CMs 7 ûÿ,   ÿÿÿ + ÿÿ,   CMs (6) 

 

Finally, the downtime costs ÿûûûÿûÿûû are calculated using 

Formula 7.  

 ÿûûûÿûÿûû = (1 2 ûÿ) 7 ÿÿ 7 ÿû,ÿ + ÿÿ 7 ÿû,ÿ      (7) 

 

In this formula, we consider the costs caused by gear faults 

and motor faults. Gear faults are the most critical faults as 

they cause long downtimes, motor faults are the most 

frequent faults that appear. The CM system will only detect 

gear faults, hence, the costs caused by gear faults are reduced 

depending on the failure detection rate of the CM system. 

The detection rate of gear faults ûÿ is estimated by testing 

the CM model. The fault frequencies per year ÿÿ  for gears 

and ÿÿ for motors can be derived from historical data such 

as maintenance protocols. The downtime costs ÿû,ÿ and ÿû,ÿ 

per incident depend on the average duration of the downtime 

and the structure of the production system. This is expert 

knowledge which we assume is available in the maintenance 

department.  

Formula 8 can be used to calculate the costs ÿûûû,ûûûûû of the 

preventive maintenance strategy. 

 ÿûûû,ûûûûû = ÿÿÿÿÿÿû,   ÿÿÿÿûûÿÿÿÿÿ,   ÿÿÿÿû +  ÿÿ 7 ÿû,ÿ +  ÿÿ 7 ÿû,ÿ       (8) 

 

Cost model

creation

Model 

parameteriazation

Scenario analysis

Depreciation cost

Condition Monitoring 

Prev. Maintenance

Running cost

Downtime cost

Historic data Failure detection rates

Failure rates

Failure costs

Hardware cost

Inspection cost

Software cost

Market research

Model sensitivities

14 years runtime

7 years runtime

Figure 1: Overall method flow 
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If ÿûûû,ûûûûû is bigger than ÿÿÿ,ûûûûû, it is economically 

beneficial to introduce a CM system. 

3.3. Parameterization Process 

Various methods were used to estimate the parameters of the 

cost model. We conducted market research to derive the 

running costs of the software, the initial robot investment, the 

spare part costs and the personnel costs for both the data 

acquisition system and the CM software inspection. We used 

information from an interview conducted with experts from 

Fluke to determine the sensor depreciation time and the 

maintenance time for the CM system. We used a survey to 

determine the development time for the CM model, the 

depreciation time of this model and the maintenance time 

required for the CM model. In this survey, we gave 24 

experts information regarding the different software modules 

required for data acquisition, data transformation and 

modeling of the CM system. The experts9 task was then to 

estimate the time required to develop the described software 

modules. We derived the total development time by totaling 

the average answer values for these questions. We consider 

the number of robots in the production system and the failure 

detection rate as sensitivities in our model. We used historic 

data to model the failure rates and costs of the gear and motor 

faults. In a second scenario, we model the gear failure rates 

with a Weibull distribution for a cost analysis over time. This 

is a common approach to model the time-dependent fault 

probability of assets [24]. In this two-parameter Weibull 

distribution, we assumed that 90 percent of a robot fleet has 

a gear failure after an operating time of 10 to 14 years. The 

failure time is evenly distributed over this time frame. The 

scale parameter ³ and shape parameter ³ were derived 

according to the methodology presented in [28]. Formula 9 

describes the cumulative probability density function used. 

This formula describes the probability whether a robots will 

have a failure until the year t [29]. 

 û(û) = 1 2 ÿ2(ûû)û , û g 0    (9) 

 

All parameters, their sources and their values or value ranges 

are presented in Table 1. 

3.4. Analysis process 

We used the parameterized model to calculate the overall 

cost per year per robot for a baseline scenario and for 

different values of the sensitivities of our model for a runtime 

of seven years. The baseline scenario is modeled by the 

parameters in Table 1, the two different maintenance 

strategies and two robot runtimes of seven and 14 years. This 

allowed the identification of parameter sets in which CM is 

economically efficient. Additionally, we analyzed the costs 

using a failure rate following an exponential Weibull 

distribution to simulate increasing failure rates over the 

Table 1: Parameters of the cost model 

Parameter Name Source Value / 

Value range 

Price of data acquisition 

system ÿÿÿÿûÿû,   ÿÿ per 

scenario 

Market 

research 

2500 ¬ 

Sensor depreciation time ûÿÿÿÿû,   ÿÿ 

Interview 

manufacturer 

20 years 

Number of robots ÿÿ   Model 

sensitivity 

200 

Number of robots per data 

acquisition system ÿÿ,ÿÿÿûÿû ÿÿ 

Assumption 10 

Yearly time for data 

acquisition system inspection ûÿÿÿÿ,   ÿÿ 

Survey 24 h 

Yearly time for CM software 

inspection ûÿÿÿÿ,   ÿÿÿ 

Survey 160 h 

Personnel cost ÿÿ,ÿÿ or ÿÿ,   ÿÿÿ 

Market 

research 

62,5 ¬/h 

Running cost of software per 

scenario ÿÿ,   ÿÿÿ 

Market 

research 

2000 ¬ 

Software development time  Survey 4800 h 

Software development cost ÿÿÿÿûÿû,   ÿÿÿ 

Survey * 

developer 

costs 

384,000 ¬ 

Software depreciation time ûÿÿÿÿû,   CMs 

Assumption Scenario 

runtime 

Failure rate of motors ÿÿ Historic data 

for 7 years, 

assumption 

for 14 years 

0.1 for 7 

years, 0.15 

for 14 years 

Failure cost of motor ÿû,ÿ Historic data 2000 ¬ 

Failure rate of gears ÿÿ  Historic data 

for 7 years, 

assumption 

for 14 years 

0.003 for 7 

years, 0.006 

for 14 years 

Failure detection rate of gears ûÿ 

Sensitivity 0.95 

Failure cost of gear ÿû,ÿ Historic data 120,000 ¬ 

Investment cost of robot ÿÿÿÿûÿû,   ÿ 

 Confidential 

Depreciation time of robot ûÿÿÿÿû,   ÿ 

Interview 

manufacturer 

7 or 14 

Shape parameter of Weibull 

distribution 

Assumption 9.428 

Form parameter of Weibull 

distribution 

Assumption 11.72 

 

Table 2: Analysed scenarios 

Scenario 

name 

Scenario maintenance type Scenario 

time span 

Ref 7 Preventive maintenance 7 

Ref 14 Preventive maintenance 14 

Vib 7 CBM 7 

Vib 14 CBM 14 
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ÿûûû,ûûûûû ÿÿÿ,ûûûûû

³ ³

û(û) = 1 2 ÿ2(ûû)û , û g 0

ÿÿÿÿûÿû,   ÿÿ
ûÿÿÿÿû,   ÿÿ ÿÿ  

ÿÿ,ÿÿÿûÿû ÿÿ
ûÿÿÿÿ,   ÿÿ ûÿÿÿÿ,   ÿÿÿÿÿ,ÿÿÿÿ,   ÿÿÿ ÿÿ,   ÿÿÿ
ÿÿÿÿûÿû,   ÿÿÿ
ûÿÿÿÿû,   CMs ÿÿ

ÿû,ÿÿÿ

ûÿ ÿû,ÿÿÿÿÿûÿû,   ÿûÿÿÿÿû,   ÿ

increasing lifetime of the robots. The results are presented in 

the next section. The scenario names are presented in Table 

2. 

4. Results 

Figure 2 shows the average yearly costs for the different 

scenarios. As the depreciation time increases, the yearly 

depreciation costs decrease. Likewise, the downtime costs 

increase as the failure rates increase. This increase in 

downtime costs makes the condition monitoring scenario 

more cost efficient over a lifetime of 14 years. The CM 

system engineering costs in the seven-year scenario would 

be the biggest lever to render the maintenance scenario cost 

efficient in the seven-year scenario. In this case, the software 

development time would have to be reduced by 70 %.  

Figure 3 summarizes the sensitivity analysis in terms of 

the number of robots in the scenario and the failure rate of 

the robots. The heatmap shows the relative costs of scenario 

Vib 7 to scenario Ref 7. The borderline in the heatmap 

separates economically efficient scenarios from inefficient 

ones. The variation of the number of robots considered by 80 

results in a cost difference of 5%. The variation of the failure 

rates in the range from 0 to 0.006 leads to a cost change of 

19%. An increasing failure rate or an increasing number of 

robots has a positive effect on the economic viability of the 

scenario. 

Figure 4 presents the sensitivity analysis of the number of 

robots and the failure detection rate. By varying the failure 

detection rate in the range of 0.85 to 1 a cost change of 1 % 

can be observed. Even assuming a perfect classification 

model that can detect all faults, no economically efficient 

scenario could be found for this range of robots and the 

remaining parameter values of scenarios Ref 7 and Vib 7. 

Increasing failure detection rates and increasing numbers of 

robots decrease the overall yearly cost per robot. 

As the failure rate shows the highest sensitivity, we 

analyzed one more scenario in which it is not assumed to be 

constant but follows a Weibull distribution. The yearly costs 

per robot assuming changing failure rates per year are shown 

in Figure 5. Here, increasing costs can be seen with the rising 

failure rates modeled by the Weibull distribution. These cost 

developments are dampened by the CM system in scenarios 

Vib 7 and Vib 14. Furthermore, the break-even points of the 

scenarios are visible. The break-even point is reached after 

seven years. This validates the results shown in Figure 2, 

where both scenarios are approximately equally efficient for 

the seven-years scenario and the CM scenario is more 

efficient for the 14-year scenario. 

5. Discussion 

In our analysis, we chose to exclude certain costs that could 

be used in more sophisticated future models. In the 

following, we will discuss these cost parameters and why 

we decided to exclude them. We will then elaborate on the 

implications that the CM scenarios9 cost structure yield. 
One factor that was not included in the model are the costs 

induced by false alarms of the CM model. These false alarms 

would trigger a maintenance action (e.g., exchange of a 

gear), even though the component is still functional and thus 

causing unnecessary costs. To include this cost factor, expert 

knowledge about the number of anomalies detected by the 

CM system would be required, along with the number of 

premature gear exchanges in a preventive maintenance 

 

Figure 2: Average yearly costs for maintenance scenarios 

 

Figure 3: Sensitivity analysis of failure rate and fleet size 

 

Figure 4: Sensitivity analysis of failure detection rate and fleet size 

 

Figure 5: Yearly costs per maintenance scenario assuming a Weibull 

distributed failure rate 
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scenario to obtain a fair comparison. As neither of these 

numbers were available to us, we assumed that the costs due 

to premature gear exchanges are equal in all scenarios. 

Hence, this cost factor can be neglected, as we are comparing 

different scenarios with each other. If this cost factor would 

be included, the costs for the CM scenario would increase. 

Furthermore, we did not include spare part costs savings due 

to the smaller number of exchanges and the reduced storage 

time due to unavailable data regarding spare parts and 

storage cost. These factors would reduce the cost of the CM 

scenario. Finally, we did not include potential personnel 

savings within the CM scenario, based on more efficient 

usage of the maintenance department9s personnel capacity. 

This would also reduce the cost of the CM scenario. 

This could be possible because of the improved planning 

security. However, such capacity usage improvements are 

hard to model, as the maintenance personnel have many 

different tasks in addition to the alert-triggered maintenance 

actions. The cost model presented has two levers for 

reducing the cost of a CM-based maintenance scenario. 

Firstly, the development costs represent the largest factor that 

may be reduced. To do this, either the system could be used 

for more robots, to distribute the costs over a larger fleet or 

the reference system and open-source code as presented in 

[7], [8] and [9] could be used to reduce the development time. 

The second lever are the hardware costs related to the CM 

system. These costs could be reduced by sharing sensor 

systems between robots and collecting data for each specific 

robot periodically rather than continuously. 

6. Conclusion 

This work presented a cost model for evaluating the cost 

efficiency of industrial robot gear condition monitoring. The 

cost model considers depreciation costs of the robot and the 

condition monitoring system, running cost of the condition 

monitoring system and downtime costs. The model was 

parameterized based on historic, survey and market research 

data. It was then used to compare different maintenance 

scenarios, namely preventive and condition-based 

maintenance over a seven-year and a 14-year time horizon. 

In this analysis, condition-based maintenance was cost 

efficient in a 14-year time horizon. The failure rate represents 

the highest sensitivity in the parameterized model described 

and the break-even point is reached after eight years. Future 

work could include the integration of further cost factors, 

such as the costs of false alarms in the model. 
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8.6 Literature overview 

Title Year Sensor 
Compo-

nent 
Robot 
type 

Time 
series 

Time 
do-
main 

Fre-
quency 
domain 

Time fre-
quency 
domain 

Raw 
sig-
nals 

Super-
vised 
learning 

One-class 
classifica-
tion 

No 
model 

Robot Condition 
Monitoring 2017 

2017 
Accelera-
tion sensor 

RV reducer Six axis Yes   x         x 

A study on rotate 
vector reducer per-
formance degrada-
tion based on Acous-
tic sensor emission 
techniques 

2019 
Acoustic 
sensor 

RV reducer Test bed no x           x 

Combining convolu-
tional neural net-
works with unsuper-
vised learning for 
Acoustic sensor 
monitoring of robotic 
manufacturing facili-
ties 

2021 
Acoustic 
sensor 

  Scara No     x   x     

Fault Diagnosis 
Method for Industrial 
Robots based on Di-
mension Reduction 
and Random Forest 

2021 
Accelera-
tion sensor 

Loose 
screws, 
tight syn-
chronous 
belt 

Parallel No x x     x     



Appendix 

137 

Multi-joint Industrial 
Robot Fault Identifi-
cation using Deep 
Sparse Auto-En-
coder Network with 
Attitude Data 

2020 
Accelera-
tion sensor 

RV reducer Six axis No       x x     

Design of an Intelli-
gent Embedded Sys-
tem for Condition 
Monitoring of an In-
dustrial Robot 

2017 
Accelera-
tion sensor 

Spur gear Six axis No x   x   x x   

Industrial Robot 
Backlash Fault Diag-
nosis Based on Dis-
crete Wavelet Trans-
form and Artificial 
Neural Network 

2017 
Accelera-
tion sensor 

Spur gear Six axis No     x   x     

Study of the Usage 
Life for a Robotic 
Arm Based on Re-
ducer Diagnosis 

2020 
Accelera-
tion sensor 

Harmonic 
drive 

Six axis No x x     x     

Phase-based time 
domain averaging 
(PTDA) for fault de-
tection of a gearbox 
in an industrial robot 
using vibration sig-
nals 

2020 
Accelera-
tion sensor 

RV reducer Six axis No x x         x 
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Research on condi-
tion monitoring of 
speed reducer of in-
dustrial robot with 
acoustic emission 

2016 
Acoustic 
sensor 

RV reducer Six axis No   x x       x 

Attitude data-based 
deep hybrid learning 
architecture for intel-
ligent fault diagnosis 
of multi-joint indus-
trial robots 

2021 
Accelera-
tion sensor 

RV reducer Six axis No       x x     

Robot Condition 
Monitoring and Pro-
duction Simulation 

2018 
Accelera-
tion sensor 

RV reducer Six axis Yes   x         x 

Health Monitoring of 
Strain Wave Gear on 
Industrial Robots 

2019 
Accelera-
tion sen-
sor, current 

Harmonic 
drive 

Six axis No x x         x 

Methodology for the 
vibration measure-
ment and evaluation 
on the industrial ro-
bot Kuka 

2014 
Accelera-
tion sensor 

Base plate Six axis No   x         x 

Research on SCARA 
Robot Fault Diagno-
sis Based on Hilbert-
Huang Transform 
and Decision Tree 

2021 
Accelera-
tion sensor 

Loose 
screws, un-
stable base 

Scara No     x   x     
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Fault diagnosis for 
industrial robots 
based on a com-
bined approach of 
manifold learning, 
treelet transform and 
Naive Bayes 

2020 
Accelera-
tion sensor 

Overload, 
backlash 

Parallel         x x     

Fault Detection of 
Harmonic Drive Us-
ing Multiscale Con-
volutional Neural 
Network 

2021 
Accelera-
tion sensor 

Harmonic 
drive 

Six axis         x x     

Fault Diagnosis of 
Harmonic Drive With 
Imbalanced Data Us-
ing Generative Ad-
versarial Network 

2021 
Accelera-
tion sensor 

No actual 
fault 

Six axis     x     x     

Fault Diagnosis of 
Rotation Vector Re-
ducer for Industrial 
Robot Based on a 
Convolutional Neural 
Network 

2021 
Accelera-
tion sensor 

RV reducer Six axis     x     x     

Autoencoder-based 
anomaly detection of 
industrial robot arm 
using stethoscope 
based internal sound 
sensor 

2021 
Acoustic 
sensor 

No actual 
fault 

Six axis       x     x   
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Industrial Robot Ro-
tate Vector Reducer 
Fault Detection 
Based on Hidden 
Markov Models 

2019 
Acoustic 
sensor 

Different 
level of 
backlash 

Test bed       x       x 

Fault detection of the 
harmonic reducer 
based on CNN-
LSTM with a novel 
denoising algorithm 

2021 
Accelera-
tion sensor 

Harmonic 
drive 

Test bed       x   x     

Neural Network-
Based Model for 
Classification of 
Faults During Opera-
tion of a Robotic Ma-
nipulator 

2021 Torque 
No actual 
fault 

Scara No       x x     

Degradation curves 
integration in phys-
ics-based models: 
Towards the predic-
tive maintenance of 
industrial robots 

2021 Torque Wear Six axis Yes x       x     

A Data-driven 
Method for Monitor-
ing Systems that Op-
erate Repetitively -
Applications to Wear 
Monitoring in an In-
dustrial Robot Joint1 

2012 Torque Wear Six axis yes x         x   
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Data analytics for 
predictive mainte-
nance of industrial 
robots 

2017 Current 
No actual 
fault 

Six axis No x       x     

Modeling and Diag-
nosis of Friction and 
Wear in Industrial 
Robots 

2014 Torque Wear Six axis yes x           x 

High-Accuracy Un-
supervised Fault De-
tection of Industrial 
Robots Using Cur-
rent Signal Analysis 

2019 Current RV reducer Six axis no     x   x     

Failure detection in 
robotic arms using 
statistical modeling, 
machine learning 
and hybrid gradient 
boosting 

2019 
Torque, dy-
namics and 
other 

No actual 
fault 

Six axis no x       x     

Wireless monitoring 
of power consump-
tion for industrial ro-
bot during a pick and 
place task for predic-
tive maintenance 

2021 
Power con-
sumption 

No actual 
fault 

Six axis no x           x 
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Predictive Mainte-
nance: An Autoen-
coder Anomaly-
Based Approach for 
a 3 DoF Delta Robot 

2021 
Torque, dy-
namics 

No actual 
fault 

Parallel         x x x   

Robust Predictive 
Maintenance for Ro-
botics via Unsuper-
vised Transfer 
Learning 

2021 
Torque, dy-
namics 

No actual 
fault 

Six axis yes     x     x   

Robot Predictive 
Maintenance Method 
Based on Program-
Position Cycle 

2021 Current 

Load bal-
ancer fail-
ure, shaft 
break 

Six axis yes x           x 

Intelligent Fault De-
tection, Diagnosis 
and Health Evalua-
tion for Industrial Ro-
bots 

2021 
Accelera-
tion sen-
sor, current 

Increased 
friction, 
loos belt 

Six axis no x       x x   

Compound Fault Di-
agnosis of Industrial 
Robot Based on Im-
proved Multi-label 
One-Dimensional 
Convolutional Neural 
Network 

2021 
Torque, 
current, dy-
namics 

Different 
faults of 
modules 
(Drive, con-
trol, etc) 

Six axis no       x x     

GAN-based Data 
Augmentation Strat-
egy for Sensor 
Anomaly Detection 
in Industrial Robots 

2021 Current 
No actual 
fault 

Six axis yes       x x     
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Multi-axis Industrial 
Robot Fault Diagno-
sis Model Based on 
Improved One-Di-
mensional Convolu-
tional Neural Net-
work 

2021 
Torque, 
current, dy-
namics 

No actual 
fault 

Six axis no       x x     

A deep transferable 
motion-adaptive fault 
detection method for 
industrial robots us-
ing a residual-convo-
lutional neural net-
work 

2021 Torque 
No actual 
fault 

Six axis no x       x     

Variational AutoEn-
coder to Identify 
Anomalous Data in 
Robots 

2021 
Torque, 
current, dy-
namics 

No actual 
fault 

Six axis no       x   x   

Data-driven gearbox 
failure detection in 
industrial robots 

2019 
Torque, dy-
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A simulation based 
approach to detect 
wear in industrial ro-
bots 

2015 
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Wear Six axis yes x           x 

Training data selec-
tion criteria for de-
tecting failures in in-
dustrial robots 
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Detection and Moni-
toring for Anomalies 
and Degradation of a 
Robotic Arm Using 
Machine Learning 

2021 
Torque, 
current, dy-
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No actual 
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Motion-Adaptive 
Few-Shot Fault De-
tection Method of In-
dustrial Robot Gear-
boxes via Residual 
Convolutional Neural 
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Health Index Con-
struction and Re-
maining Useful Life 
Prediction of Me-
chanical Axis Based 
on Action Cycle Sim-
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8.8 Table of student theses 

In the context of this dissertation, the student work listed below was carried out at the Institute 

for Machine Tools and Industrial Management (iwb) of the Technical University of Munich 
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Entwicklung von Prognosemodellen basierend auf Methoden 
des maschinellen Lernens für die prädiktive Instandhaltung von 
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KI für die Ressourcenallokation in selbst-organisierenden, de-

zentralen Produktionssystemen Yevheniya Vytruchenko 
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