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Abstract: The wound healing process is much more complex than just the four phases of hemostasis,
inflammation, proliferation, and maturation. Three-dimensional (3D) scaffolds made of biopolymers
or ECM molecules using bioprinting can be used to promote the wound healing process, especially
for complex 3D tissue lesions like chronic wounds. Here, a 3D-printed mold has been designed
to produce customizable collagen type-I sheets containing human umbilical vein endothelial cells
(HUVECs) and adipose stromal cells (ASCs) for the first time. In these 3D collagen sheets, the cellular
activity leads to a restructuring of the collagen matrix. The upregulation of the growth factors Serpin
E1 and TIMP-1 could be demonstrated in the 3D scaffolds with ACSs and HUVECs in co-culture.
Both growth factors play a key role in the wound healing process. The capillary-like tube formation
of HUVECs treated with supernatant from the collagen sheets revealed the secretion of angiogenic
growth factors. Altogether, this demonstrates that collagen type I combined with the co-cultivation
of HUVECs and ACSs has the potential to accelerate the process of angiogenesis and, thereby, might
promote wound healing.

Keywords: regenerative medicine; tissue engineering; tissues and organs; biomaterials; 3D biomimetic
scaffolds; cell–biomaterial interface; wound healing; 3D collagen sheet; human umbilical vein endothelial
cells (HUVECs); adipose stromal cells (ASCs)

1. Introduction

About 1% of the European population is affected by chronic wounds [1]. Chronic
wounds are the result of an inadequate tissue repair process, leading to reduced quality of
life, a high risk of infection, and increased treatment costs. Nowadays, it is well understood
that wound healing is much more complex than just the four phases of hemostasis, inflam-
mation, proliferation, and maturation [2]. It is a complex and well-orchestrated interplay of
reactions and interactions between different cell types and mediators, e.g., growth factors,
growth factor inhibitors, enzymes, as well as extracellular matrix (ECM) components [3].

Angiogenesis, the formation of new blood vessels, is a crucial step in the wound
healing process, involving the chemotactic response of endothelial cells to macrophage-
derived factors produced in the wound space [4–6]. During wound healing, the sprouting
of angiogenic capillaries into the fibrin and fibronectin-rich wound clot occurs and, within
a few days, organizes into a microvascular network [7]. It has been shown that there is a
dynamic interaction between endothelial cells, angiogenic cytokines, such as FGF, VEGF,
TGF-β, angiopoietin, and enzymes like mast cell tryptase and the ECM environment [8].
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However, while TGF-β promotes angiogenesis in vivo, it inhibits cell growth and the
proliferation of endothelial cell monolayers in vitro [9]. It has been shown that FGF-β plays
an important role in angiogenesis during the first three days of wound repair, whereas
VEGF has a crucial influence on angiogenesis from day four to seven during granulation
tissue formation [10]. In addition to endothelial cells and angiogenic factors, the specific 3D
ECM in the wound plays a key role in the wound healing process [11]. During the repair
process, the ECM undergoes rapid changes and reformation as the fibrin clot is replaced by
fibronectin and hyaluronan, followed by the substitution with collagen type I and III [11].
These changes are highly organized and tightly regulated both spatially and temporally [7].

For complex 3D tissue lesions such as chronic wounds, 3D scaffolds colonized with
cells that stimulate cell adhesion, proliferation, and differentiation, guide migration, and
eventually promote vascularization constitute a promising therapeutic approach [12–15].
In the early 1970s, it was suggested that with the support of new biocompatible materials,
cells could be held in place in a synthetic scaffold structure, promote the synthesis of new
ECM, and thereby accelerate the wound healing process [16].

3D scaffolds can be produced, for example, by traditional or additive manufacturing
processes (e.g., selective laser sintering or 3D printing) [17]. After the preparation of
the 3D scaffolds, the matrices are loaded with cells [18]. Conversely, bioinks containing
cells embedded in a biocompatible hydrogel can be directly 3D-printed [19,20]. Because
of the simultaneous processing of cells and biomaterials (e.g., ECM molecules), such
constructs can be directly converted into tissue-like structures, and the maturation time can
be minimized. However, many ECM molecules, such as e.g., collagen I, do not readily allow
direct bioprinting due to their slow sol–gel transition and poor mechanical stability [21,22].
As an alternative, a temporal support structure that serves as a mold can be 3D-printed,
and afterward, a biocompatible material containing cells and ECM molecules can be cast
into the 3D-printed mold. Due to the 3D-printing process of the mold, the tissue construct
can be designed to fit the wound of the patient after the mold is removed.

Human umbilical vein endothelial cells (HUVECs) undergo capillary-like tube for-
mation when plated on a substrate [23,24]. Rocha and colleagues demonstrated that the
assembly of vascular-like structures by HUVECs was improved in the presence of adipose
stromal cells (ASCs), which shows the ability of these cells to reorganize the vascular
milieu. The analysis of neuroregulatory factors showed that the co-cultivation of these
cells upregulated the secretion of several neurotrophic factors relevant to trauma-related
injuries [25].

The aim of this study was to generate a 3D collagen type-I scaffold with the potential
to stimulate angiogenesis and wound healing. Therefore, for the first time, a 3D collagen
scaffold was designed, which contained HUVECs and ASCs in co-culture. Through cell ac-
tivity, the collagen matrix was largely reorganized from random fiber arrangement after six
days of incubation to an aligned structure on day 19. To determine the angiogenic potential
of the 3D scaffold, the obtained supernatant was evaluated using a 2D tube formation assay
of HUVECs on a matrigel. Understanding the interaction between HUVECs, ASCs, and
the collagen matrix during wound angiogenesis, particularly how the angiogenic growth
factors affect the growth of the endothelial cells, is the basis for constructing customizable
cell-laden collagen scaffolds. This could lead to future applications in the treatment of
chronic wounds.

2. Materials and Methods
2.1. Cultivation of Human Umbilical Vein Endothelial Cells (HUVECs)

Human umbilical vein endothelial cells (HUVECs) (#C-12203, PromoCell GmbH,
Heidelberg, Germany) were cultivated in Endothelial Cell Growth Medium 2 (PromoCell
GmbH, Heidelberg, Germany) supplemented with 1% (v/v) antibiotic/antimycotic solution
(Capricorn Scientific GmbH, Ebsdorfergrund, Germany) in a controlled atmosphere of
95% humidity, 5% CO2 at 37 ◦C. Cell viability and a number of cells were analyzed with
the Casy TT Counter (Omni Life Science GmbH & Co. KG, Bremen, Germany).
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2.2. Cultivation of Adipose Stromal Cells (ASCs)

Human adipose stroma cells (ASCs) (#PT-5006, Lonza Group Ltd., Basel, Switzerland)
were cultivated in StemMACS™ MSC Expansion Media (Miltenyi Biotec, Bergisch Glad-
bach, Germany) supplemented with 1% (v/v) antibiotic/antimycotic solution (Capricorn
Scientific GmbH, Ebsdorfergrund, Germany) in a controlled atmosphere of 95% humidity,
5% CO2 at 37 ◦C. Cell viability and a number of cells were analyzed with the CASY TT
Counter (Omni Life Science GmbH & Co. KG, Bremen, Germany).

2.3. Analysis of Proliferation of 2D Co-Culture of ASCs and HUVECs

For cell proliferation analysis, 10,000 cells/cm2, either a co-culture of ASCs and HU-
VECs ratio 1:1 or only HUVECs were seeded on treated 24-well plates (TCP, Nunc, Thermo
Fisher Scientific, Waltham, MA, USA) and cultivated for 19 days in a controlled atmosphere
of 95% humidity, 5% CO2 at 37 ◦C. Every 2–3 days, the cells were washed twice with
phosphate-buffered saline (PBS, Sigma Aldrich, Burghausen, Germany) and incubated with
10% (v/v) resazurin sodium salt (Sigma-Aldrich, St. Louis, MO, USA) in Endothelial Cell
Growth Medium 2 (PromoCell GmbH, Heidelberg, Germany) supplemented with 1% (v/v)
antibiotic/antimycotic solution (Capricorn Scientific GmbH, Ebsdorfergrund, Germany) for
2 h. Cell proliferation was quantified by measuring the fluorescence intensity of resorufin
(λex 530 nm; λem 590 nm) using a plate reader (Mithras LB940 Berthold). The relative
fluorescence is given in relative fluorescence units (rfu).

2.4. 3D Cell Culture in Collagen Sheets

For 3D cell culture experiments in engineered sheets, collagen type I was prepared
according to the manufacturer’s protocol (L 7213, Biochrom AG, Berlin, Germany). Each
collagen sheet consisted of a 115 µL collagen type-I solution laden with 20,000 cells, either
a co-culture of ASCs and HUVECs every 10,000 cells or 20,000 HUVECs cells.

2.5. Preparation of 3D Collagen Sheets Using CAD and 3D-Printing

The bracket and the base plate for collagen sheet fixation and the casting mold to
cast the cell-laden collagen hydrogel in, were designed in SolidWorks (Dassault Systemes
Solidworks Corp., Waltham, MA, USA). The dimensions of the bracket and the base plate,
and the customizable casted collagen sheets are shown in Figure 1.

The support structure was fabricated using a fused deposition modeling Ultimaker
3 3D printer (Geldermalsen, The Netherlands) and a standard PLA thermoplast filament.
(0.25 mm nozzle diameter, 0.1 mm layer thickness, 100% infill density, and 9 mm/s print
speed). The baseplate was placed in a 35 mm standard lab Petri dish with magnets for
adjustment. Afterward, the first layers of Pluronic F127 (0.33 g/mL) (Sigma Aldrich,
Burghausen, Germany) were printed on a customized multi-purpose bioprinting platform
directly into the Petri dish in the middle of the baseplate. The bracket was inserted in the
middle of the baseplate, and the second layers of the pluronic sacrificial ink were printed
on the bracket. The Pluronic casting mold was stored at 4 ◦C overnight. Collagen type I
and the incorporated cells (ASCs and HUVECs) were cast into the mold and incubated
for 2 h at 37 ◦C. The incubation times of the collagen sheets below 2 h resulted in very
fragile sheets since collagen fibrillogenesis was not finished. Endothelial Cell Growth
Medium 2 supplemented with 1% (v/v) antibiotic/antimycotic solution (PromoCell GmbH,
Heidelberg, Germany) was used to dissolve pluronic at 37 ◦C overnight. Afterward, the
media and pluronic were removed gently, and 8 mL of fresh cell culture media was added.
To avoid potential damage to the engineered tissue, the cell culture media was only changed
after the color change of the media and in combination with the cell culture supernatant
sampling. For a period of 19 days, the supernatant was collected for further analysis and
stored at −80 ◦C every 5–6 days. Afterward, the media was replaced with 8 mL of fresh
media per Petri dish. Based on the size and shape of the baseplate, bracket, and casting
mold customized collagen sheets can be produced.
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Figure 1. Scaffold design of collagen sheets. (a) Bracket design which was printed out of PLA 
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cultivation and imaging (dimensions in mm); (c) cast collagen sheet attached to the bracket after the 
removal of the casting mold; (d) example for a customized scale-up of casted collagen sheet attached 
to PLA bracket and baseplate in Dulbecco’s Modified Eagle’s Medium. 
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Figure 1. Scaffold design of collagen sheets. (a) Bracket design which was printed out of PLA
(dimensions in mm); (b) baseplate made out of PLA for fixing the bracket’s position during cultivation
and imaging (dimensions in mm); (c) cast collagen sheet attached to the bracket after the removal of
the casting mold; (d) example for a customized scale-up of casted collagen sheet attached to PLA
bracket and baseplate in Dulbecco’s Modified Eagle’s Medium.

2.6. Scanning Electron Microscopy (SEM)

SEM was performed using a JSM 6390 (JEOL, Tokyo, Japan) with a high-tension
voltage of 10 kV. The samples were washed once with PBS and then fixed in 3% (v/v)
glutaraldehyde at 4 ◦C for 2 days to analyze the collagen sheets. Afterward, the samples
were washed again with PBS and dehydrated with ethanol 50%, 70%, 80%, 99% (v/v) for
30 min each step. The ethanol 99% (v/v) evaporated overnight, and the samples were
sputtered with gold (BAL-TEC SCD 005) by vacuum evaporation for 40 s at 40 mA, 8 nm.

2.7. Sample Preparation for Atomic Force Microscopy (AFM)

To analyze the fibrous structure of the collagen sheets and the influence of the cell
lines on the restructuring, the 3D collagen sheets were washed twice with PBS, then fixed
4 h at room temperature with 1.85% paraformaldehyde containing 10 µL/mL NaOH and
40 mg/mL sucrose. Afterward, the samples were washed three times with PBS and then
incubated at 4 ◦C in 30% (w/w) sucrose. After 20 h, the samples were frozen in Tissue-Tek
O.C.T. Compound (Sakura Finetek Germany GmbH, Staufen im Breisgau, Germany) using
liquid nitrogen. The embedded collagen sheets were then mounted on a sample holder in
such a way that the sheets could be sectioned parallel to the x–y plane defined by the sheets.
As described previously [26], prior to every cut, adhesive tape was stuck to the sample,
and 50 µm thick sections were sliced using a cryostat (Leica CM 1950, Leica Mikrosysteme
Vertrieb GmbH, Wentzler, Germany). The sections on the adhesive tape were placed on
frozen glass slides, on which double-sided adhesive tape had been placed beforehand,
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with the sheet section facing upwards. Sections were stored up to one day at −20 ◦C until
investigation with the AFM.

2.8. AFM Measurements

The sections of the collagen sheets with the incorporated cells were thawed at room
temperature directly before AFM measurements, which were carried out with a NanoWiz-
ard I (JPK Instruments, Berlin, Germany), as described previously [26–29]. In brief: Using
an inverse optical microscope (Axiovert 200, Carl Zeiss MicroImaging GmbH, Munich,
Germany), the silicon nitride cantilever (MLCT, Bruker, Bremen, Germany) with a nominal
spring constant of 0.03 N/m and a four-sided pyramidal tip with a nominal radius of 20 nm
was positioned at the area of interest. Images of different dimensions were recorded using
contact mode imaging in the air near the initial mounting position, as well as at the center
of the collagen sheets. Afterward, a droplet of standard phosphate-buffered saline (PBS,
Dulbecco L1825, Biochrom GmbH, Berlin, Germany) was added to the section, and the
collagen sheet was allowed to rehydrate for about 10 min. Indentation-type AFM (IT-AFM)
measurements were then carried out in the same areas where the images were recorded
before, each within a 30 µm × 30 µm grid containing at least 32 × 32 force–indentation
curves. Two different sections were analyzed for every sheet (between 50 µm and 200 µm
apart). For IT-AFM measurements, the same cantilevers were used as for AFM imaging.
The optical lever sensitivity and actual spring constant of each cantilever were determined
in triplicate using the thermal noise method in PBS and on a clean glass surface after each
IT-AFM experiment [30].

2.9. AFM Data Analyses

AFM images were analyzed using JPK data analysis software (JPK Instruments, Berlin,
Germany). The stiffness (Young’s modulus) of the collagen sheets was determined at each
indentation position with a lab-made MATLAB application (Version R2018a, MathWorks,
Inc., Natick, MA, USA) using the individually determined optical lever sensitivity and
cantilever spring constant. The application automatically corrected for offset and tilt of the
baseline and determined the contact point of each IT-AFM force curve [31]. Subsequently,
a modified Hertz model for a four-sided pyramidal indenter, with a Poisson’s ratio of
0.5 and a tip half-opening angle to the edge of 17.5◦, was fitted to the indentation part of
the curves [29,32]. The whole indentation curve, including the contact point but omitting
the first 500 nm, was fitted to extract the Young’s modulus at each position on the sheets.
Force curves and fits were manually inspected and discarded if the quality of the curve
did not allow for a reliable fit. Stiffness (Young’s modulus) distributions were plotted,
and Gaussian distributions were fitted to them using IGOR Pro 8.03 (WaveMetrics, Inc.,
Portland, OR, USA).

2.10. Angiogenesis Array

For a screening of angiogenesis-related proteins, a Proteome Profiler Human Angio-
genesis Array Kit (ARY007, R&D Systems Inc., Minneapolis, MN, USA) was used according
to the datasheet, and pictures of the plot were taken with ChemiDoc Imaging System
(Bio-Rad Laboratories Inc., Hercules, CA, USA). A volume analysis of the plot was per-
formed with Image Lab 6.0 (Bio-Rad Laboratories Inc., Hercules, CA, USA). As a control,
Endothelial Cell Growth Medium 2 (PromoCell GmbH, Heidelberg, Germany) was used.
The data was analyzed using ANOVA one-way analysis of variance.

2.11. Tube Formation Assay

To evaluate the angiogenic potential of the samples, a tube formation assay was
performed. A matrigel (reduced in growth factors; 354230, BD Biosciences; Olen, Belgium)
was thawed on ice overnight, and pipette tips and angiogenesis slides (81506, ibidi GmbH,
Gräfelfing, Germany) were precooled at 4 ◦C. An amount of 10 µL of matrigel was pipetted
in every well of angiogenesis µ-slides and incubated for 1 h at 37 ◦C. HUVECs were
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cultured and counted as already described. Cells were resuspended in basal endothelial cell
growth medium 2 without growth factors (PromoCell GmbH, Heidelberg, Germany), and
10,000 cells/well were added to the matrigel. Then, 40 µL of the supernatant, obtained from
cell culture experiments in 3D collagen sheets, were added to each well. Endothelial Cell
Growth Medium 2 (PromoCell GmbH, Heidelberg, Germany) served as positive control,
and AIM V™ serum-free medium (12055091, Thermo Fisher Scientific, Waltham, MA,
USA) served as a negative control. It was mixed gently and incubated in a controlled
atmosphere of 95% humidity, 5% CO2 at 37 ◦C for 4 h. Afterward, two light microscope
images were taken per well with Zeiss Axiovert 25 (Zeiss AG, Oberkochen, Germany) and
angiogenic potential was analyzed with the software Wimasis (Onimagin Technologies
SCA, Cardoba, Spain).

3. Results
3.1. Proliferation of 2D Co-Culture of ASCs and HUVECs

To analyze the viability of the cell lines, especially in co-cultivation, 10,000 cells/cm2

of human umbilical vein endothelial cells (HUVECs) alone as well as adipose stromal cells
(ASCs) and HUVECs (ratio 1:1) in co-culture were cultivated over 19 days in a 24-well
plate. Every 2–3 days, the cells were washed and then incubated with resazurin sodium
salt for 2 h. The cell proliferation of both cell lines was analyzed using a resazurin sodium
salt assay. Resazurin is a blue fluorogenic dye used as a redox indicator in cell viability
and proliferation assays. The blue dye is irreversibly reduced by enzymes in viable cells
to generate the red-fluorescent product, resorufin, which exhibits an emission maximum
at ~595 nm and can be detected by fluorescence spectroscopy. The cell proliferation was
quantified by measuring the fluorescence intensity of resorufin (Figure 2) [33].
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Figure 2. Cell proliferation of 2D cell cultures (HUVECs alone and HUVECs and ASCs in co-
cultivation) was monitored by resazurin sodium salt assay. The relative fluorescence (rfu) of the cell
cultures was analyzed over 19 days. Timepoint 0 represents the day of cell seeding. At this time
point, no resazurin assay was performed and, therefore, the rfu is 0.

Over 19 days, the relative fluorescence of ASCs and HUVECs in co-culture and HU-
VECs alone increased, and therefore, cell viability over time could be confirmed. HUVECs
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alone showed a relative fluorescence of 1,400,000 rfu, whereas HUVECs in co-cultivation
with ASCs indicated a relative fluorescence of 800,000 rfu at 19 days. The increased rel-
ative fluorescence of HUVECs alone can be explained due to the small cell diameter of
HUVECs in comparison to ASCs. Therefore, the total cell number and the resulting derived
proliferation rate are higher. Nevertheless, the cultivation of HUVECs in the presence of
ASCs showed proliferation and an increased relative fluorescence over time. The light
microscopic analysis demonstrated that both cell lines had their typical cell morphology
over time.

3.2. Restructuring of Collagen Sheets with HUVECs and ASCs Using Scanning Electron
Microscopy (SEM)

To analyze the effect of both cell types on collagen fiber arrangement in 3D scaffolds,
collagen sheets either laden with HUVECs or with ASCs and HUVECs were fabricated and
cultivated for 19 days. The surfaces of these collagen sheets were examined by SEM after
6 and 19 days of incubation (Figure 3).
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Figure 3. SEM images of collagen sheets seeded with different cell lines. (a) HUVECs and ASCs after
six days of cultivation; (b) HUVECs after six days of cultivation; (c) HUVECs and ASCs after 19 days
of cultivation; (d) HUVECs after 19 days of cultivation. Arrows: collagen fiber alignment. Circle:
non-oriented collagen fibers.

During the incubation period of 19 days, all of the cell types restructured the collagen
matrix of the sheets. After six days of incubation, most collagen fibers are still randomly
oriented, and only a few fibers are aligned and oriented parallel to each other in both cell
cultures (Figure 3a,b). After 19 days of incubation, the collagen structures with HUVECs
alone as well as in co-culture have changed and showed large areas of uniform fiber
orientation, as shown in Figure 3c,d (white arrows indicate fiber orientation), coexisting
with smaller areas, where the collagen fibers were not yet aligned (Figure 3d, white circle).
Both cell cultures were able to restructure and superficially align the collagen fibers parallel
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to each other between day 6 and day 19. In addition, in the overview images (data not
shown), all collagen sheets exhibited a shrinkage perpendicular to the axis defined by the
anchoring points (as an example shown in Figure 1c). The shrinkage of the sheets is more
distinct with the HUVECs in combination with the ASCs.

3.3. Atomic Force Microscopy (AFM) of Collagen Sheets

To further analyze the structure inside the cell-laden collagen sheets and correlate it
to its biomechanics, cryo-sections of the collagen sheets were prepared after 19 days of
incubation, and AFM measurements were carried out on the thawed cryo-sections. First,
contact mode AFM imaging in the air was performed to investigate the sheet structure,
including the collagen fiber orientation and the ultra-structure of the collagen fibers. To
correlate the observed structural features to the biomechanical properties of the cell-laden
collagen sheets, indentation type AFM measurements (IT-AFM) were carried out on selected
areas of the rehydrated cryo-sections in a second step (see Section 2 for details of sample
preparation for AFM-imaging and IT-AFM). Figure 4 summarizes representative AFM
results of a cryo-sectioned collagen sheet containing a co-culture of ASCs and HUVECs.
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Figure 4. AFM measurement of cryo-sections from 3D collagen sheets laden with a co-culture of
ASCs and HUVECs after 19 days of incubation. (a) Young’s modulus distribution in a region of
aligned collagen fibers; (b) bright-field optical microscopy image, showing the collagen sheet (grey
background), the AFM cantilever (dark triangle), and the region where the 100 µm × 100 µm overview
image displayed below (e) was recorded; (c) Young’s modulus distribution in a region of randomly
oriented collagen fibers; (d) contact mode AFM image (height image) in the region of aligned collagen
fibers; (e) 100 µm × 100 µm AFM overview image (cantilever deflection image); (f) AFM image in
the region of randomly oriented collagen fibers (height image). White arrows: aligned collagen fibers,
black arrow: random fiber orientation.

In the center of the top row (Figure 4b), a bright-field optical microscopy image shows
the collagen sheet (grey background), the AFM cantilever (dark triangle), and the region,
where a first 100 µm × 100 µm AFM overview image was recorded (red square). The image
below (Figure 4e) shows the corresponding 100 µm × 100 µm AFM overview image. This
overview image exhibits large areas of highly ordered parallel collagen fibers (left and
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central part of the image, white arrows), as well as smaller areas showing random collagen
orientation (right part of the image, black arrow). A 5 µm × 5 µm close-up (Figure 4d) of
the upper left part of Figure 4e (red square on the right side) indeed reveals homogeneously
oriented, highly parallel collagen fibers. In the areas of this close-up, even the 67 nm
D-band structure of the collagen fibers becomes visible if the contrast of the color table
is enhanced (see Figure S1a in the Supplementary Materials). A 5 µm × 5 µm close-up
(Figure 4f) of the upper right part of Figure 4e (red square on the left side) shows randomly
oriented collagen fibers with a broad range of fiber diameters and fibrillar substructures.
Here, no clear D-band structure is detectable.

Interestingly, the Young’s modulus distribution recorded in the region with parallel
collagen orientation Figure 4a) peaks at an almost 16× higher value (123.4 kPa) than
the Young’s modulus distribution recorded in the area with random collagen orientation
(7.8 kPa) (Figure 4c). Note that the absolute Young’s modulus values do not represent
the values of the native collagen sheets, as the sheets were fixed with PFA before cryo-
sectioning (see Section 2 for details). However, the Young’s modulus differences observed
between the two areas reflect the underlying structural differences in the two different
areas of ordered and randomly oriented collagen fibers.

Figure 5 summarizes the AFM results of a representative cryo-section obtained from a
HUVEC-containing collagen sheet.
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Figure 5. AFM measurement of cryo-sections from collagen sheets laden with HUVECs after 19 days
of incubation. (a) Young’s modulus distribution in a region of aligned collagen fibers; (b) bright-field
optical microscopy image, showing the collagen sheet (grey background), the AFM cantilever (dark
triangle), and the region where the 100 µm × 100 µm overview image displayed below (e) was
recorded; (c) Young’s modulus distribution in a region of randomly oriented collagen fibers; (d) con-
tact mode AFM image (height image) in the region of aligned collagen fibers; (e) 100 µm × 100 µm
AFM overview image (cantilever deflection image); (f) AFM image in the region of randomly ori-
ented collagen fibers (height image). White arrow: aligned collagen fibers, black arrow: random
fiber orientation.

The center of the top row (Figure 5b) again shows a bright-field optical microscopy
image of the collagen sheet (grey background), the position of the AFM cantilever (dark
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triangle), and the region where a first 100 µm × 100 µm AFM overview image was recorded
(red square). The image below (Figure 5e) shows the 100 µm × 100 µm AFM overview
image of the cell-laden sheet. This overview image again exhibits areas of highly ordered
parallel collagen fibers (lower part of the image, white arrows), as well as areas showing
random collagen orientation (central and upper part of the image, black arrow). The
5 µm × 5 µm close-up (Figure 5d) of the lower left part of Figure 5e (red square on the
lower left side) again shows homogeneously oriented, highly parallel collagen fibers. Here,
the 67 nm D-band structure is again visible if the contrast of the color table is enhanced
(data not shown). The 5 µm × 5 µm close-up (Figure 5f) of the upper right part of Figure 5e
(red square on the upper right side) shows randomly oriented collagen fibers with various
fiber diameters and no detectable D-band structure. The Young’s modulus distribution
in the region with parallel collagen orientation (Figure 5a) peaks at an almost 10× higher
value (153.9 kPa) than the Young’s modulus distribution (Figure 5c) in the area with random
collagen orientation (16.0 kPa), reflecting the structural differences in the chosen areas.

3.4. Angiogenic Potential of the 3D Collagen Sheets

An angiogenic array and a tube formation assay were performed to analyze the
angiogenic potential of the cell-laden 3D collagen sheets.

3.4.1. Angiogenic Array of the Cell Culture Supernatant Collected from Cell-Laden 3D
Collagen Sheets

For profiling angiogenesis-related factors, the supernatants of cell-laden collagen
sheets were collected on day 6 and day 19 and analyzed using the proteome profiler human
angiogenesis array kit. An overview of the results of this array is shown in Figure 6.
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Figure 6. Expression of selected angiogenic factors in cell-laden collagen sheets. Cell culture super-
natants were collected after 6 and 19 days of cultivation and analyzed using the Proteome Profiler
Human Angiogenesis Array Kit for potential growth factors. As a control, Endothelial Cell Growth
Medium 2 (containing angiogenic growth factors) was used to validate the assay. The * shows the
significant difference between the values. Therefore, the data were analyzed using one-way Analysis
of Variance (ANOVA). Probability values (***) p < 0.001 were considered the most significant.
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Serpin F1 and urokinase-type plasminogen activator (uPA) showed only a slight
difference between HUVECs and the co-culture of ASCs and HUVECs after 6 days and a
further slight increase at day 19. However, after 6 days, Serpin E1, TIMP 1, and TSP-1 are
the most significantly upregulated in the co-culture of ASCs and HUVECs in comparison
to HUVECs alone and the control. After 19 days of the co-culture, Serpin E1 and TIMP-1
showed an additional increase compared to day 6. As a control, Endothelial Cell Growth
Medium 2 was used and always showed the lowest level of growth factors. However,
TSP-1 is downregulated between days 6 and 19 in the collagen sheets containing ASCs
and HUVECs.

3.4.2. HUVECs Tube Formation Assay of the Cell Culture Supernatant Obtained from
Co-Culture Experiments

The 2D tube formation assay with HUVECs enables a statement about the angiogenic
potential of the collected cell culture supernatant from the collagen sheets. Therefore, the
cell culture supernatant obtained from the previous experiments with co-cultured HUVECs
and ASCs, as well as HUVECs alone in 3D collagen sheets, was incubated with HUVECs
(10,000 cells/well) seeded on matrigel (with reduced growth factors) on angiogenesis slides.
Endothelial Cell Growth Medium 2 was used as positive control and AIM V serum-free
medium as a negative control. The representative bright-field microscopy images are
shown in Figure 7.

HUVECs treated in the tube formation assay with the supernatant of HUVECs and
ASCs co-cultured in the collagen sheets over 6 and 19 days, respectively, showed a remark-
able tube formation (Figure 7a,c). Here, the cells arranged themselves in such a way that
more closed tubes and more branching points occurred in comparison to HUVECs treated
with the supernatant of HUVECs alone (Figure 7a–d). The treatment with HUVEC and
ASC supernatant (19 days) was comparable to the positive control, where the HUVECs
were treated with Endothelial Cell Growth Medium 2 (Figure 7e), whereas the negative
control with serum-free medium indicated a reduced tube formation (Figure 7f). The
supernatant obtained from the cultivation of HUVECs alone in collagen sheets induced
less tube formation compared to the co-cultivation (Figure 7a–d).

To quantify the tube formation assay, the area covered by tubes (Figure 8a), the total
number of branching points of the tubes (Figure 8b), and the total number of the formed
tubes per well (Figure 8c) were determined using the image analysis software Wimasis.

Figure 8 shows that the supernatants, which were obtained from collagen sheets laden
with HUVECs and ASCs as well as supernatants from sheets laden with HUVECs alone,
cause a comparable tube formation effect in the 2D tube formation assay: HUVECs treated
with supernatant from co-culture sheets containing ASCs and HUVECs, show a slightly
higher covered area (Figure 8a) at day 6 and day 12 than HUVECs treated with supernatant
obtained from only-HUVEC-laden sheets (covered area of approximately 35%). The number
of branching points (Figure 8b) and the total number of tubes (Figure 8c) induced in the
tube formation assay are nearly identical for both supernatants on day 6 and day 12. On
day 19, the values of all the indicators for tube formation fall to the level of the negative
control for supernatants from HUVEC-laden sheets, while the tube formation potential of
supernatants obtained from co-cultures remains the same (Figure 8). These investigations
indicate a comparable angiogenic potential of supernatants obtained from 3D collagen
sheets laden with co-cultures of ACS and HUVECs and supernatants from HUVEC-laden
sheets until day 12. On day 19, this potential is reduced in supernatants obtained from the
HUVEC-laden sheet, whereas it remains unchanged in supernatant from co-cultures. Note
that the changes in the values shown in Figure 8 are not statistically significant.
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Figure 7. Bright-field microscopy images of the HUVECs tube formation assay after 4 h of incubation
with supernatants obtained from the cultivation of different cell-laden 3D collagen sheets. (a) Treated
with supernatant from 3D construct laden with HUVECs and ASCs after six days of cultivation;
(b) Treated with supernatant from 3D HUVECs construct after six days of cultivation; (c) Treated
with supernatant from 3D HUVECs and ASCs construct after 19 days of cultivation; (d) Treated with
supernatant from 3D HUVECs construct after 19 days of cultivation; (e) positive control cultivated in
Endothelial Cell Growth Medium 2 containing angiogenic growth factors; (f) negative control using
AIM V cytokine and serum-free medium for incubation.
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Figure 8. Quantitative analysis of the tube formation assay. (a) Cell-covered area per well; (b) total
number of branching points per well; (c) total number of tubes per well. The cell culture supernatants
were collected after different time points (days 6, 12, and 19) to investigate their angiogenic potential.
Error bars indicate the standard deviation.

4. Discussion

The wound healing process is a complex interplay between different cell lines and
mediators such as growth factors and cytokines as well as ECM components [8]. For the
regeneration of complex 3D tissues, such as chronic wounds, 3D scaffolds colonized with
cells that facilitate the infiltration of cells as well as enable cell adhesion, migration, and
proliferation show significant potential [12,13]. The synthesis of new ECM components is
promoted, and finally, the wound healing process is accelerated.

In this study, customizable collagen type I sheets containing a co-culture of HUVECs
and ASCs were fabricated and evaluated for their potential to stimulate angiogenesis. For
the production of the collagen sheets, 3D-printed Pluronic molds, as well as 3D-printed
base layers and brackets made of PLA, have been used as templates. Due to the 3D printing
of the molds, these constructs can be easily adapted to the wound geometry of the patient.

The 3D ECM plays a key role in the wound healing process. The major components
of the ECM are fiber-forming proteins, such as collagens, elastin, fibronectin, laminin,
glycoproteins, proteoglycan, and glycosaminoglycans [34]. Among these ingredients, col-
lagen is the most abundant, forming large fibrillar structures and providing mechanical
stability [35]. Together with other ECM proteins and proteoglycans, it forms a complex
3D matrix [36]. This matrix supports cells and newly forming blood vessels [37,38]. In the
wound healing process, especially in chronic wounds, the role of collagen is important
due to its chemotactic ability [39]. It attracts fibroblasts and keratinocytes to the wound,
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leading to the deposition of new collagen in the wound and angiogenesis and reepithe-
lialization [40,41]. Collagen is biodegradable, biocompatible, and can be easily gained
and modified [42]. Therefore, a 3D in vitro approach made of collagen was established to
improve the angiogenic environment for blood vessel-forming cells. Furthermore, the 3D
scaffold should provide an environment where cells can survive, migrate and proliferate.

Ramanathan et al. showed that NIH 3T3 fibroblasts and human keratinocytes (HaCaT)
assisted in excellent cell adhesion and proliferation in a 3D collagen scaffold. The colla-
gen was combined with a bioactive extract to reduce the infection at the wound site [43].
Recently, it has also been demonstrated that human fibroblasts show normal cell growth
within wound dressings based on collagen and essential oil functionalized ZnO nanoparti-
cles [44]. In our study, HUVECs and ASCs were incorporated into the 3D collagen sheets
to demonstrate the interaction between both cell lines and the secretion of angiogenic
growth factors. ASCs secrete various angiogenic cytokines and growth factors and may be
used to promote vascularization and growth of tissues and accelerate the wound healing
processes [45]. In 2020, Rocha et al. demonstrated a synergistic effect of ASCs and HUVECs
in a gellan gum hydrogel with a high potential for treating spinal cord injuries. HUVECs
had only the ability to form vascular-like structures in the presence of ASCs [25].

In the current study, it was demonstrated that HUVECs could also proliferate in the
presence of ASCs over 19 days. In the process of wound healing, the ECM undergoes
rapid changes, e.g., the fibrin clot is replaced by fibronectin and hyaluronan, followed by
the substitution of collagen type I and III. Therefore, the collagen matrix is permanently
reorganized [46]. The restructuring of the originally randomly oriented casted collagen into
a highly structured collagen matrix with highly oriented collagen fibrils in large areas of the
sheets could be demonstrated in our in vitro approach, using both SEM and AFM. While
the SEM micrographs (Figure 3) focus on the collagen micro-structure at the outer surface
of the cell-laden collagen sheets and highlight changes observed between days 6 and 19 of
cultivation, the AFM micrographs of cryo-sections of the sheets (Figures 4 and 5) display
their internal structure. The AFM micrographs also provide access to the ultra-structure of
the sheets, exhibiting the well-known 67 nm D-band structure along the collagen fibrils [47].
In addition, the indentation measurements carried out with the AFM (summarized in
Figures 4a,c and 5a,c) allow for the correlation of the differences observed in the collagen
structure and orientation to the nanomechanical properties of the sheets. As expected, the
Young’s modulus is significantly higher in the structured and oriented areas of the collagen
sheets [26].

Using the angiogenesis array, the impact of ASCs on HUVECs through the upreg-
ulation and the secretion of growth factors, like Serpin E1, TIMP-1, and TSP-1, could
be demonstrated. Serpins participate in almost all stages of wound repair, where they
regulate coagulation, fibrinolysis as well as inflammation [48]. At the same time, the
TSP-1 was downregulated over time in the co-culture supernatant. In addition, the TSP-1
concentration was determined using an Enzyme-linked immunosorbent assay (ELISA).
The concentration was found to be below the detection limit of the used EILSA kit (Sup-
plementary Materials). TSP-1 directly inhibits angiogenesis by effecting endothelial cell
proliferation, migration, and survival [49]. The most critical step in the wound healing
process is the supply of the newly formed tissue with oxygen and essential nutrients. There-
fore, angiogenesis, i.e., the formation of new blood vessels in the wound, is mandatory.
The angiogenic potential can be analyzed by a tube formation assay, where capillary-like
structures are formed by endothelial cells in response to the presence of angiogenic growth
factors [50]. In our study, the tube formation assay confirmed the angiogenic potential of
the collagen sheets containing HUVECs and ASCs. Whereas the endothelial cells treated
with supernatant from collagen sheets containing HUVECs alone for 19 days demonstrated
a decreased cell-covered area and the total number of branching points as well as a reduced
total number of tubes. Therefore, the released growth factors of ASCs showed a positive
effect on the capillary-like tube formation of HUVECs.
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Altogether, the designed, customizable 3D collagen sheets containing HUVECs and
ASCs in co-cultivation are encouraging, and, in future investigations, these cell-laden
collagen sheets might be used as a potential treatment for chronic wounds to improve the
wound healing process.

5. Conclusions

Cell-laden collagen type I hydrogels could be cast into 3D sheets and cultivated over
19 days. Both embedded cell lines, adipose stromal cells (ASCs) and human umbilical
vein endothelial cells (HUVECs), were able to survive and proliferate in the engineered
collagen scaffolds. It could be demonstrated that both cell lines can lead to a reorganization
and restructuring of the collagen fibers of the scaffold. There is an interaction between
collagen, one of the main components of the extracellular matrix, ASCs, and HUVECs, and
the growth factors can act as mediators for wound healing processes. Over 19 days, the
ASCs released different growth factors (e.g., Serpin E1 and F1, TIMP-1 and uPA). These
growth factors enhanced the tube formation of the HUVECs and thereby showed a high
potential for angiogenesis, a critical step in the wound healing process. The customizable
collagen sheets affect cell behavior and enhance angiogenesis. In addition, they can be
adapted to the wound of the patient. This in vitro model has potential for angiogenesis
but needs further optimization in vitro; a forthcoming in vivo evaluation will provide
additional information.
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