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Abstract: In this study, three digital, site-specific, yield-mapping methods for winter wheat were
examined, and their precision was evaluated. The crop yields of heterogeneous fields at three
locations were determined on a site-specific basis using a yield-recording system composed of a
combine harvester and algorithms based on reflection measurements made via satellites, as well as a
tractor-mounted sensor. As a reference, the yield was determined with a plot harvester (ground truth
data). The precision of the three methods was evaluated via statistical indicators (mean, median,
minimum, maximum, and standard deviation) and correlation analyses between the yield of the
ground truth data and the respective method. The results show a yield variation of 4.5–10.9 t ha−1

in the trial fields. The yield of the plot harvester was strongly correlated with the yield estimate
from the sensor data (R2 = 0.71–0.75), it was moderately correlated with the yield estimate from the
satellite data (R2 = 0.53–0.68), and it ranged from strongly to weakly correlated with the yield map
of the combine harvester (R2 = 0.30–0.72). The absolute yield can be estimated using sensor data.
Slight deviations (<10%) in the absolute yield are observed with the combine harvester, and there are
clear deviations (±48%) when using the satellite data. The study shows differences in the precision
and accuracy of the investigated methods. Further research and optimization are urgently needed to
determine the exactness of the individual methods.

Keywords: management zones; yield variability; site-specific farming; winter wheat; sensor data;
remote sensing

1. Introduction

Yield is the most important target criterion in crop production [1]. The crop yield
determines the resource efficiency (nitrogen efficiency and energy efficiency) [2,3], envi-
ronmental impact [4,5], and profitability of crop production [6,7]. The literature shows
enormous differences in yields among fields in different soil and/or climatic areas around
the world [8,9]. Various studies on the yield of winter wheat show a variation of 6.3 to
12.9 t ha−1 in southern Germany [5], 3.8 to 6.9 t ha−1 in eastern Germany [10], and 0.6 to
4.9 t ha−1 in the wheatbelt of Western Australia [11]. The crop yield depends on numerous
overlapping influencing factors (genetic potential of the variety, fertilization, crop protec-
tion, and yield potentials of the soil and climate) [12–14]. The major reasons for these strong
yield fluctuations are the differences in the yield potential of the soil, the topography, and
the complex interactions with the climate and weather [15–17]. Soil properties such as soil
texture, available water capacity, humus content, nutrient content, and pH vary at very
small scales, leading to yield variations [5,18,19]. This results in small-scale fluctuating
nutrient balances and nutrient stocks in soil, resulting in high emissions and nitrate losses
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in areas with low yield potential and overfertilization [5,20]. Nitrate loss into groundwater
is a major problem [21]. Therefore, systems that are adapted to small-scale yield variations
in crop management and fertilization will be required in the future. Site-specific land man-
agement, especially site-specific nitrogen fertilization, is promising [22–25]. This method
can reduce the N surplus while increasing the N efficiency [4,5,26,27]. A prerequisite for
the successful use of these digital methods is the delineation of management zones. Various
parameters, such as yield maps (combine harvester data and hand sampling), biomass
maps (satellite data), and soil parameters (available nitrogen, soil organic carbon, pH,
available potassium, and bulk density), can be used to define the management zones of a
field [28,29]. These parameters can be determined using different modern technologies such
as multi- or hyperspectral measurements by sensors, drones or satellites, and georeferenced
soil sampling.

Yield maps are one of the most important data sources for the delineation of man-
agement zones for site-specific fertilization; they can be supplemented with current crop
measurements (e.g., nitrogen uptake with sensors or satellites) [1,30–32]. Recording the rela-
tive yield variability and absolute yield is important for precise site-specific fertilization [33].
A prerequisite for the development and use of yield maps is the availability of georefer-
enced yield data, which can be determined using various digital technologies [30,34,35].
Yield maps that are modeled based on these technologies may tend to over- or underesti-
mate yield [36]. Additionally, there are various methods of filtering yield data based on the
presence of outliers. Filter functions based on yield limits, moisture limits, travel distance,
and yield surges are often used for this [37].

In this study, three different site-specific yield-mapping methods (sensor, satellite,
and combine harvester) for winter wheat were investigated to evaluate their precision
and suitability as a data basis for the delineation of yield and management zones for site-
specific land management. For this purpose, plot trials were conducted in 2018, 2020, and
2021 at three different locations in southern Germany. The trials analyzed the precision
of individual methods when mapping the harvested yield in the partial area, which is
important to ensure the accuracy of the yield maps generated by these methods. The
following aspects were investigated: (a) how accurately can the relative yield variation in
the field be identified by the methods, and (b) how accurately can the methods estimate the
absolute yield. In the trial plots, the yield was determined using a plot combine harvester
(ground truth data) and digital georeferenced methods (sensor, satellite, and combine
harvester). Correlation analyses that were determined using different methods evaluated
the relationships among. Based on the results, the tested methods’ accuracy, precision, and
suitability as the data basis for the delineation of management zones are evaluated.

2. Materials and Methods
2.1. Site and Weather Conditions

Three fields were selected for the study: in 2018, a field at the Dürnast Research Station
(48◦40′66′′ N 11◦69′49′′ E), 3 km west of Freising (485 m a. s. l.), was selected, and in
2020 and 2021, experiments were conducted in two fields of the Makofen Research Farm
(48◦81′55′′ N 12◦74′31′′ E), 15 km southeast of Straubing (320 m a. s. l.) (Figure 1). The trial
field in Dürnast consists of medium-quality soil with hilly relief. The trial fields in Makofen
are flat and characterized by very fertile loess soil. This classification is based on the soil
fertility index [38]. Table 1 shows the most important soil parameters of the trial fields.

An overview of temperature and precipitation at the trial sites is provided in Table 2.
The 20-year mean annual precipitation is 789 mm, and the mean annual temperature is 8.7
◦C at the Dürnast Research Station (Table 2). At the Makofen Research Farm, the 20-year
mean annual precipitation is 781 mm, and the mean annual temperature is 9.5 ◦C (Table 2).
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Figure 1. Trial sites.

Table 1. Soil data—Dürnast Research Station and Makofen.

Property Unit Field A Field B Field C

Soil classification Cambisol Cambisol Cambisol
Soil type Silty loam Silty loam Silty loam

Soil fertility index * 55–60 75–85 70–80
Sand (0–30 cm) % 40.5 6.0 6.9
Silt (0–30 cm) % 39.5 70.1 69.4

Clay (0–30 cm) % 20.0 23.9 23.7
Available water capacity (in 10 cm) Vol.% 17.0 24.0 23.2

Soil organic carbon content (0–30 cm) % DM 1.4 1.2 1.4
Soil total nitrogen content (0–30 cm) % DM 0.13 0.14 0.12

Plant available phosphorus content (0–30 cm) mg (100 g)−1 13.7 14.8 17.9
Plant available potassium content (0–30 cm) mg (100 g)−1 15.2 17.7 18.4

pH (0–30 cm) 6.2 6.5 6.9

* The soil fertility index is a quantitative assessment of soil fertility given in integers in a range of 0–100, with 100
representing the most fertile soil in Germany [38].

2.2. Crop Management

In 2018, the Reform winter wheat variety was grown on the trial field after grain corn.
In 2020 and 2021, the Meister variety was grown on trial fields after sugar beet. In all trial
years, the seedbed preparation was performed with plow and rotary harrow. Sowing, plant
protection, and fertilization were uniformly conducted on the trial fields. Fertilization was
conducted according to the fertilizer ordinance. Plant protection was conducted according
to the infestation situation. Table 3 shows the crop management.
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Table 2. Mean temperature and precipitation—Dürnast Research Station and Makofen.

Unit January to
March April to June July to

September
October to
December Year

2000–2020 Dürnast
Temperature x ◦C 1.1 13.2 16.8 3.8 8.7
Precipitation ∑ mm 151 257 236 145 789

2018 Dürnast
Temperature x ◦C 1.3 15.7 18.0 5.7 10.2
Precipitation∑ mm 143 218 209 158 728

2000–2020 Makofen
Temperature x ◦C 1.4 14.4 17.3 4.7 9.5
Precipitation ∑ mm 170 209 230 172 781

2020 Makofen
Temperature x ◦C 3.7 13.9 18.3 5.1 10.3
Precipitation ∑ mm 149 189 176 141 655

2021 Makofen
Temperature x ◦C 1.8 13.1 17.3 4.4 9.2
Precipitation ∑ mm 129 268 250 165 812

Table 3. Crop management of the trial fields.

Field Treatment Unit Amount Product Date

A Sowing kg/ha−1 158 Reform 26 October 2017
A First N fertilization kg/ha−1 58 Inno Fert Star 4 April 2018
A Second N fertilization kg/ha−1 59 CAN 8 May 2018
A Third N fertilization kg/ha−1 50 CAN 29 May 2018
A N fertilization, total kg/ha−1 167
A Plant protection L/ha−1 0.8 CCC 720 14 April 2018
A Plant protection kg/ha−1 0.22 Broadway 14 April 2018
A Plant protection L/ha−1 2.0/0.075 Adexar/Karate 26 May 2018

B Sowing kg/ha−1 156 Meister 27 October 2019
B First N fertilization kg/ha−1 60 ASN 28 March 2020
B Second N fertilization kg/ha−1 80 CAN 30 April 2020
B Third N fertilization kg/ha−1 40 CAN 20 May 2020
B N fertilization, total kg/ha−1 180
B Plant protection kg/ha−1 0.05/0.07 Biathlon, Concert 7 April 2020
B Plant protection L/ha−1 0.5 CCC 720 7 April 2020
B Plant protection L/ha−1 1.25/0.075 Capalo/Karate 16 May 2020
B Plant protection L/ha−1 2.0 Osiris 13 June 2020

C Sowing kg/ha−1 205 Meister 10 November 2020
C First N fertilization kg/ha−1 78 ASN 4 March 2021
C Second N fertilization kg/ha−1 54 CAN 8 May 2021
C Third N fertilization kg/ha−1 40 CAN 4 June 2021
C N fertilization, total kg/ha−1 172
C Plant protection kg/ha−1 0.13 Broadway 22 April 2021
C Plant protection L/ha−1 0.25/0.5 Pixxaro/CCC 720 22 April 2021
C Plant protection L/ha−1 1.0/0.3 Revystar/Flexity 20 May 2021
C Plant protection L/ha−1 1.0/0.075 Ascra Xpro/Karate 11 June 2021

2.3. Experimental Design

The trial fields were divided into a grid of 15 m × 30 m plots. The outer 25 m of
the trial fields were not included in the data analysis to avoid evaluating data from areas
that did not belong to the field. This is important for methods based on satellite data in a
10 × 10 m grid to exclude measurement errors along the field edges [39]. The experimental
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setup was the same for all three experimental years, and only the number of plots differed
(2018: n = 93; 2020: n = 106; 2021: n = 150) due to the different field sizes over the years.
Figure 2 shows the experimental setup in 2020.

Figure 2. Experimental setup (Field B, 2020).

2.4. Methods of Determining Yield

The wheat yield per plot was determined using the following methods:

• Plot harvester (ground truth data) [40];
• Combine harvester with yield mapping (mass flow sensor) [34];
• Process of Radiation, Mass, and Energy Transfer (PROMET) plant growth model based

on satellite data (Sentinel-2) [41];
• Algorithm based on reflection measurements using a tractor-mounted multispectral

sensor [42,43].

The winter wheat yield was determined with the plot harvester and the combine
harvester with yield mapping (mass flow sensor) in the trial years on harvest dates of
27 July 2018, 30 July 2020, and 10 August 2021. A New Holland CX 8050 was used in 2018,
and a John Deere S780 was used in 2020 and 2021 to map yields with a combine harvester.
The PROMET estimate data were made available by the developer Vista GmbH. Depending
on the availability, the PROMET plant growth model used satellite data shortly before the
harvest date to estimate the yield [36]. Based on satellite data, the PROMET plant growth
model calculated the yield considering further data [36]. The PROMET model requires four
groups of model inputs that affect the spatial simulation of crop yield:

• Agricultural management (sowing date, fertilization events, harvest date);
• Crop specifications (variety, photoperiod sensitivity, assimilation rate);
• Dynamic environmental driver variables (temperature, precipitation, radiation, wind);
• Static environmental parameters (location, terrain, and soil properties) [36].
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The reflection measurement for the algorithm by Maidl et al. [42] was conducted in
the BBCH 65 growth stage. Based on this measurement, the REIP 700 vegetation index was
calculated, and the algorithms used to estimate the yield were based on this index [42].

2.5. Data Processing

Considering the corresponding methodology, different digital methods were used to
determine the yield for the entire field. Yield maps were generated based on point data.
Next, these point data were visualized using geoinformation system software, ArcGIS [44],
and assigned to the digitized plots via their coordinates. Data points on or outside the
plot edges were eliminated. Depending on the method, the recorded yield data varied in
terms of the spatial resolution and distribution in the plots. The plot combine harvester
and combine harvester were driven immediately next to each other throughout the plot.
Figure 3 shows the structure and data distribution of a plot in detail. The mean was
calculated using all available yield values per plot. Thus, the yield per plot in t ha−1 was
determined for each method for further analysis.

Figure 3. Structure and data distribution in the plot.

2.6. Descriptive Statistics

The mean, median, minimum, maximum, and standard deviation were calculated for
each method using R.

2.7. Correlation Analysis

Correlation analyses based on the yield per plot in t ha−1 determined the relationships
between the yield values of the tested digital methods and the ground truth data. The coeffi-
cients of determination (R2) were classified as very strong (R2 > 0.9), strong (0.9 > R2 > 0.7),
moderate (0.7 > R2 > 0.5), weak (0.5 > R2 > 0.3), or very weak (R2 < 0.3) [45].

3. Results
3.1. Spatial Variation in the Wheat Yield in 2018 (Field A)

Different site-specific yield mapping methods in 2018 led to different results for the
yield distribution pattern, yield variation, and mean wheat yield in Field A (Figure 4,
Table 4). The wheat yield, as determined by the plot harvester, varied between 6.1 and
10.9 t ha−1. The wheat yield measured by the mass flow sensor of the combine harvester
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(6.1–10.9 t ha−1) and the yield estimation made using algorithms based on sensor data
(6.1–10.4 t ha−1) also varied, quite similarly to the ground truth data. The yield estimate
made by the PROMET plant growth model based on satellite data (3.1–5.6 t ha−1) was also
characterized by variability, but the yield variation of this method was not as great as those
with the other methods, and a significantly lower yield level was noticeable (Figure 4). The
mean wheat yield in field A, determined with the plot harvester, was 8.1 t ha−1, exactly
corresponding to the sensor data yield; furthermore, when determined by the mass flow
sensor of the combine harvester it was higher at 8.8 t ha−1 and when based on the satellite
data it was lower at 4.2 t ha−1. This resulted in a deviation of +9% in the mean wheat yield
of the combine harvester (mass flow sensor) and −48% when based on the satellite data
compared to the ground truth data.

Figure 4. Yield maps 2018, Field A. Yield determined from the plot harvester, sensor data, satellite
data, and combine harvester.

3.2. Spatial Variation in the Wheat Yield in 2020 (Field B)

The yields in 2020, determined using different digital methods, led to similar overall
results. In contrast to 2018, the yield variability was significantly lower in 2020 (Figure 5,
Table 4). The yield variation based on satellite data (8.3–10.1 t ha−1) and determined by the
mass flow sensor of the combine harvester (8.4–10.2 t ha−1) corresponded to the ground
truth data (8.4–10.1 t ha−1). The yield estimate based on the sensor data showed a slightly
higher yield variability (6.8–10.4 t ha−1). However, the yield distribution pattern matched
the ground truth data well (Figure 5). The mean wheat yield of the ground truth data for
field B was 9.3 t ha−1 and corresponded with the yields based on the sensor and satellite
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data, while that determined by the mass flow sensor of the combine harvester (9.8 t ha −1)
was slightly higher. Overall, the deviations in the mean wheat yields were small (<5%).

Table 4. Descriptive statistics of the yield data in t ha−1 analyzed in this study.

Variable n Year Field Unit Mean Median Minimum Maximum Standard
Deviation Skewness

Plot harvester 93 2018 A t ha−1 8.1 8.0 6.1 10.9 1.1 0.42
Sensor data 93 2018 A t ha−1 8.1 8.1 6.1 10.4 1.0 0.18

Satellite data 93 2018 A t ha−1 4.2 4.3 3.1 5.6 0.7 0.08
Combine harvester 93 2018 A t ha−1 8.8 8.9 6.1 10.9 1.1 −0.11

Plot harvester 106 2020 B t ha−1 9.3 9.3 8.4 10.1 0.2 0.2
Sensor data 106 2020 B t ha−1 9.4 9.3 6.8 10.4 0.9 −0.4

Satellite data 106 2020 B t ha−1 9.3 9.3 8.3 10.1 0.3 −0.74
Combine harvester 106 2020 B t ha−1 9.8 9.8 8.4 10.2 0.2 −2.7

Plot harvester 150 2021 C t ha−1 5.9 5.9 4.5 7.5 0.5 0.35
Sensor data 150 2021 C t ha−1 5.9 6.0 4.4 7.2 0.5 −0.61

Satellite data 150 2021 C t ha−1 8.5 8.6 7.2 9.6 0.5 −0.34
Combine harvester 150 2021 C t ha−1 5.7 5.7 3.7 7.8 0.7 0.13

Figure 5. Yield maps 2020, Field B. Yield determined from the plot harvester, sensor data, satellite
data, and combine harvester.
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3.3. Spatial Variation in the Wheat Yield in 2021 (Field C)

In 2021, there were differences in the results of various digital methods (Figure 6,
Table 4). As in 2018, the yields determined using satellite data with the PROMET model
clearly differed from the results of the other yield-mapping systems. However, the yields
based on the satellite data were much higher in 2021 and much lower than the results of the
other measurement systems in 2018 (Figures 4 and 6). The yields of the combine harvester
(3.7–7.8 t ha−1) and the sensor data (4.4–7.2 t ha−1) were very similar to the ground truth
data (4.5–7.5 t ha−1) in terms of yield variation and distribution pattern. The yield estimate
based on the satellite data (7.2–9.6 t ha−1) showed less yield variation at a significantly
higher yield level (Figure 6), resulting in a deviation of +44% in the mean wheat yield of
the satellite data (8.5 t ha−1) compared to the ground truth data (5.9 t ha−1) in field C. The
mean wheat yields of the combine harvester and sensor data corresponded to the ground
truth data.

Figure 6. Yield maps 2021, Field C. Yield determined from the plot harvester, sensor data, satellite
data, and combine harvester.
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3.4. Correlation between Variables

Table 5 shows the coefficients of determination (R2) of the linear and polynomial rela-
tionships (second degree) of the wheat yields, determined using various digital methods.

Table 5. Coefficients of determination (R2): yield data for 2018 (n = 93), 2020 (n = 106), and 2021
(n = 150).

R2 Sensor
2018

Satellite
2018

Combine
2018

Sensor
2020

Satellite
2020

Combine
2020

Sensor
2021

Satellite
2021

Combine
2021

Plot harvester (linear) 2018 0.74 0.68 0.69
Plot harvester (polynomial) 2018 0.75 0.68 0.69

Plot harvester (linear) 2020 0.69 0.51 0.25
Plot harvester (polynomial) 2020 0.71 0.53 0.30

Plot harvester (linear) 2021 0.67 0.54 0.72
Plot harvester (polynomial) 2021 0.71 0.56 0.72

3.4.1. Field A (2018)

In 2018, the correlation analysis showed a strong relationship between the ground
truth data and the yield estimate from the sensor data (R2 = 0.75). The yield estimate from
the satellite data (R2 = 0.68) and the yield map from the combine harvester (R2 = 0.69) were
moderately correlated with the ground truth data.

3.4.2. Field B (2020)

In 2020, the correlations between the yield data of the tested methods were very
different. As in the previous year, there was a strong relationship between the ground truth
data and the yield estimate based on sensor data (R2 = 0.71). The yield estimates from the
satellite data and ground truth data showed a moderate correlation (R2 = 0.53), while that
from the combine harvester only weakly correlated with the ground truth data (R2 = 0.30)
(Table 5).

3.4.3. Field C (2021)

In 2021, all the methods resulted in moderate or strong relationships. Strong cor-
relations were determined between the ground truth data and the yield data from the
combine harvester (R2 = 0.72) as well as the sensor data (R2 = 0.71). The correlation between
the ground truth data and the estimate from the satellite data (R2 = 0.56) was moderate
(Figure 7 and Table 5).
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Figure 7. The linear relationships between the yields of ground truth data (plot harvester) and
combine harvester (above) as well as satellite data (below) in field C in 2021.

4. Discussion
4.1. Discussion of the Methods

In this study, three different site-specific yield-mapping methods for winter wheat
were tested on heterogeneous fields at three locations in southern Germany. The precision
of the methods was tested by comparing the statistical indicators (mean, median, mini-
mum, maximum, and standard deviation), mapping the yield distribution patterns and
investigating the correlative relationships. The aim was to identify the yield distribution
patterns and analyze the absolute wheat yields.

4.1.1. Site Selection

The yield variability results were particularly influenced by the heterogeneity of
the trial fields [46,47]. In homogeneous fields, a lower yield variation was expected;
therefore, these fields were not suitable for a comparison of the methods [5,48]. As a
result, heterogeneous fields were selected for this investigation. The heterogeneity was
assessed based on soil properties, biomass maps, and the expertise of the farm managers.
The expertise of the farm managers was a suitable basis for assessing the heterogeneity
of a field [49]. Furthermore, the literature shows that small-scale variations in the soil
parameters and yield are characteristic of the study region [50].
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4.1.2. Ground Truth Data

The yield data were determined using various digital methods. Suitable ground truth
data (yield measurements) were crucial in evaluating the various digital yield-mapping
methods so that the modeled data could be compared with the measured data [5]. Therefore,
in this study, all plots were harvested by a plot harvester with a weighing system [40].
The plot harvester facilitated the determination of the correct wheat yield per plot and the
evaluation of the yield maps determined using digital methods. The plot harvester and
combine harvester could not harvest the same area, resulting in minor deviations in their
measured values. They drove next to each other through the plots. However, the variance
in the difference decreases with the distance between two measurement points, which is
the basis for the geostatistical methods (kriging interpolation) used in many studies on
yield variability [5,51–53]. Therefore, this approach provided ground truth data with very
high measurement accuracy.

Since the use of a plot harvester is labor-intensive and can hardly be implemented
for large fields, similar studies compared the modeled yield data with the yield map data
from a combine harvester [1,32,54]. However, this requires high precision when mapping
yields with a combine harvester. Investigations showed considerable uncertainties in
mapping yields using a combine harvester due to various error sources. Sensor errors,
operating errors, errors due to operating conditions, and data processing were the most
common causes of uncertainty [34,55,56]. In particular, constantly changing operating
conditions during harvest, different measurement systems, and principles for combine
harvesters from different manufacturers and, sometimes, missing or inaccurate calibration
led to uncertainties in the combine harvester data [57–59]. Despite further development
of the yield-mapping systems in combine harvesters, the fluctuation in the correlations
between the ground truth data and the combine harvester data from R2 = 0.30 to 0.72
showed clear differences in the precision of the combine harvester data in this study. In a
study by Hülsbergen et al. [60], the combine harvester data from individual fields were
strongly correlated with ground truth data (plot harvester and biomass samples), while
this correlation was weak in other fields. Therefore, the ground truth data from the plot
harvester were of immense importance to the evaluation of various methods in this study.
Alternatively, georeferenced biomass samples can also provide ground truth data. However,
the measurement effort is a limiting factor. Mittermayer et al. [5] collected 50 biomass
samples in a 13.1 ha area in his investigations, determined the yield with a laboratory
thresher, and conducted data analysis using geostatistical methods.

4.2. Discussion of the Results

The yield variation in the three trial years (2018: 6.1 to 10.9 t ha−1, 2020: 8.4 to
10.1 t ha−1, and 2021: 4.5 to 7.5 t ha−1) was clear. By analyzing several fields and research
years, the optimal conditions to evaluate the precision of various digital yield-mapping
methods were given. Several scientific studies addressed the mapping of the yield variabil-
ity of winter wheat, but most of these studies only used one method [10,23,32,36,52]. Only
a few studies compared ground truth data with data from different digital systems.

4.2.1. Sensor Data

The yield estimate based on multispectral sensor data, the REIP vegetation index,
and a crop-specific yield algorithm [42] provided high-precision yield maps in all three
years (2018: R2 = 0.75, 2020: R2 = 0.71, and 2021: R2 = 0.71). In addition, this method
showed only minor deviations in the yield variation and the mean wheat yield of max.
±1%. Hauser et al. [10] also compared plot harvester data with sensor data and achieved
similar results (R2 = 0.70). Kaivosoja et al. [54] compared sensor data with combine
harvester data and found a strong correlation (R2 = 0.82). These results confirm the potential
of continuously generating very precise yield data from sensor data. The prerequisites
for obtaining high yield-mapping accuracy using this method are multispectral sensors
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with high measurement accuracy, suitable vegetation indices, and scientific-based yield
algorithms [42,61,62].

4.2.2. Combine Harvester

The yield data of the combine harvester (mass flow sensor) provided yield maps of at
least moderate or good quality in 2018 and 2021 (2018: R2 = 0.69 and 2021: R2 = 0.72). In
2020, however, the combine harvester data were only weakly correlated with the ground
truth data (R2 = 0.30). A maximum deviation in the yield variation and the mean wheat
yield of ±9% showed that the bad correlation in 2020 was mainly due to an incorrect
mapping of the yield distribution pattern. A New Holland combine harvester was used in
2018, while a John Deere combine harvester was used in 2020 and 2021. All three combine
harvesters determined the yield using a mass flow sensor. However, the John Deere
combine was equipped with “active yield” in 2021, which means that the mass flow sensor
in the grain elevator was continuously calibrated using load cells installed in the grain
tank [63]. This possibly led to a considerable improvement in the precision of the combine
harvester data between 2020 and 2021, as all other conditions (driver, calibration, model,
working width, etc.) were identical for both years. These results confirmed the conclusions
of previous studies of the uncertainties in combine harvester data [34,55–57]. The central
causes of uncertainties, such as calibration and automatic cutting width detection, can be
improved through further developments by the manufacturer. Operating errors can be
avoided through intensive driver training. Varying environmental influences and operating
conditions, such as different material moisture levels, soiling of the sensors by crop residues,
abrupt changes in speed, or grain plants lying on the ground will limit the accuracy of
combine harvester data in the future [58,59]. However, the strong correlations in some cases
show the combine harvesters’ potential for mapping yields and their spatial variability.

4.2.3. Satellite Data

The yield maps of the PROMET plant growth model, based on satellite data, depict
the yield distribution pattern moderately in all three years (2018: R2 = 0.68, 2020: R2 = 0.53,
and 2021 R2 = 0.56). The method achieved a maximum deviation of ±48% in the yield
variation and the mean wheat yield. Since the relative yield distribution pattern was identi-
fied at least moderately in all three trial years, these significant deviations resulted from
underestimating (2018) and overestimating (2021) the absolute yield. In both years, weather
extremes were observed. In 2018, the weather was hotter and drier than average; in 2021,
the weather was colder and wetter than average. In addition to satellite data, the PROMET
plant growth model requires various groups of model inputs that affect the spatial simu-
lation of plant development, such as agricultural management (sowing date, fertilization
events, harvest date, etc.), crop specifications (variety, photoperiod sensitivity, assimilation
rate, etc.), dynamic environmental driver variables (temperature, precipitation, radiation,
wind, etc.), and static environmental parameters (location, terrain, and soil properties) [36].
The model may react too strongly to weather data, which means that the model can no
longer model reliable absolute yield data in years with extreme meteorological conditions.
In this context, Hank et al. [36] also found tendencies to overestimate yields in extreme
weather conditions. However, further studies are necessary to assess this assumption
and the precision of satellite data-based methods in more detail [5,24,64]. Hank et al. [36]
also compared the modeled yield data of the PROMET plant growth model with combine
harvester data, finding a strong correlation (R2 = 0.82). Toscano et al. [59] correlated Sentinel
2 and Landsat 8 satellite data with yield data from hand samples and combine harvesters
and found correlations varying from moderate to strong (R2 = 0.54–0.74). Zhao et al. [32]
also compared Sentinel 2 satellite data with combine harvester data and found a stronger
correlation (R2 = 0.76). These results confirm the potential to derive yield zones with
satellite data. However, the absolute yield can deviate for data modeled with PROMET
based on satellite data, leading to crop management problems. For example, in the case
of yield maps for fertilization, the absolute yield is important; otherwise, the crop would
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be fertilized incorrectly. Therefore, further investigations are urgently needed to reduce
deviations, such as those conducted in 2018 and 2021.

5. Conclusions

Yield maps are one of the most important sources of data for the delineation of
management zones for site-specific land management. Therefore, precise yield maps are
required to derive high-quality management zones. The results of this study show that
the yield maps from the sensor data are best suited to delineate management zones. The
yield maps of the combine harvester in 2018 and 2021 are also quite suitable, unlike those
from 2020. This can lead to faulty management zones. Incorrect management zones
result in inefficient crop management, thus causing environmental pollution. Therefore,
further investigations are needed to optimize and develop yield-mapping systems for
combine harvesters. The aim should be to generate yield maps with consistent quality,
using modern combine harvesters to collect high-quality data easily and inexpensively
during harvest. The results of the satellite data depict the relative yield distribution patterns
as being moderate over all trial years and are, therefore, suitable for the creation of relative
biomass maps. However, due to the deviations in the absolute yields, these results are only
suitable for yield potential maps to a limited extent, and further research is required to
improve the results. Overall, each method shows enormous potential to generate yield
maps. Nevertheless, there are individual problems that urgently need further investigation
to improve the precision of all methods.
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