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An Analysis of Distributional Shifts in Automated
Driving Functions in Highway Scenarios

Oliver De Candido, Xinyang Li, and Wolfgang Utschick

Abstract—We investigate the distributional shifts between
datasets which pose a challenge to validate safety critical driv-
ing functions which incorporate Machine Learning (ML)-based
algorithms. First, we describe the possible distributional shifts
which can occur in highway driving datasets. Following this, we
analyze—both qualitatively and quantitatively—the distribu-
tional shifts between two publicly available, and widely used,
highway driving datasets. We demonstrate that a safety critical
driving function, e.g., a lane change maneuver prediction,
trained on one dataset will not generalize as expected to the
other dataset in the presence of these distributional shifts. This
highlights the impact which distributional shifts can have on
safety critical driving functions. We suggest that an analysis of
the datasets used to train ML-based algorithms incorporated
in safety critical driving functions plays an important role in
building a safety-argument for validation.

I. Introduction and Motivation
Machine Learning (ML)-based algorithms are becoming

ever more popular to solve the wide-range of challenges
which Autonomous Vehicles (AVs) may face. They have
the ability to learn representations from a few examples,
alleviating the burden of manually modelling every possi-
ble scenario an AV might encounter. However, this lack of
explicit specification makes the validation of driving func-
tions which incorporate ML-based algorithms challenging.
It has been shown that the current functional safety
standards, e.g., the ISO 26262 standard, are not directly
applicable when ML-based algorithms are incorporated in
the driving function [1]. To this end, a safety-argument
can be created to validate the driving functions which
incorporate ML-based algorithms, see, e.g., [2; 3].

In this paper, we analyze the data used to train ML-
based driving functions. An analysis of the data should
be one part in the overarching safety-argument since
this is an important aspect of ML-based algorithms to
validate. If the data which an ML algorithm is trained on
does not contain generalizable features, then the driving
functions which incorporate this ML-based algorithm may
not perform as expected. A related challenge is the possible
miss-match between the distribution of the training data
and the distribution of the test data or the distribution
of the real-world data during deployment. This mismatch
between distributions is known as a distributional shift.
Examples of the different types of distributional shifts will
be introduced in Section II.
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We consider the case where a safety critical driving
function is learned via supervised ML algorithms. We
analyze two publicly available highway driving datasets:
the highD dataset [4] and the Next Generation SIMulation
(NGSIM) dataset [5; 6]. Numerous publications propose
ML-based driving algorithms and demonstrate them using
these datasets, see, e.g., [7] and references therein. Our
analysis indicates that there are significant distributional
shifts between these datasets.

Following this analysis, we consider the effect of these
distributional shifts on a safety critical driving function.
The driving function we consider is a lane change maneu-
ver prediction, which will be introduced in Section III-B.
We train various ML-based algorithms to solve this prob-
lem. Ultimately, we show that they all suffer under the
distributional shift, i.e., when the models are trained on
one dataset and tested on the other dataset, there is a drop
in performance (between 36% and 40% in accuracy). This
highlights the importance of considering distributional
shifts when building a safety-argument for validation.

Amodei et al. [8] were the first to summarize the
challenge of robustifying real-world ML systems to dis-
tributional shifts. In the context of ML-based algorithms
in AVs, the authors of [9; 10] were the first to discuss
the challenge of distributional shifts. However, in these
publications, the authors only state the hypothetical
challenge of dealing with distributional shifts [9]. Here,
we take this one step further, and explicitly discuss and
analyse the types of distributional shifts which can occur
in highway driving scenarios.

Due to the abundance of image data and the relative
ease with which researchers can collect new datasets,
distributional shifts between image datasets have been
more thoroughly studied. Torralba and Efros [11] study
the implicit biases which image datasets contain, which
is a closely related problem to distributional shifts. They
show that a classifier can easily classify which dataset
images with the same class label belong to. Moreover,
they show that when training an ML algorithm on one
dataset and testing on another, the performance drops by
roughly 48%. This happens despite the fact that each of
the standard image datasets claims to be representative.

Recht et al. [12] show that ML-based algorithms trained
on a popular benchmark image dataset cannot generalize
onto a novel test dataset. The authors create a new dataset
by following the same pre-processing steps used to collect
the original dataset. They show that all of the state-of-the-



art ML-based classification algorithms perform 10% worse
in terms of accuracy on this new dataset. This indicates
that there is a distributional shift between the original
and the newly created datasets.

Recently, Koh et al. [13] introduce seven new datasets
with real-world distributional shifts to train and to test
ML algorithms on. Additionally, the Shifts dataset [14]
was introduced with the same motivation; it also contains
vehicle motion prediction data. These datasets were cre-
ated with domain experts to represent true distributional
shifts which can occur during deployment.

In this paper, we analyse the distributional shifts which
can occur in realistic highway driving data. This analysis,
to the best of our knowledge, has not been done before.
We identify and quantify the distributional shifts, and
show the effect they have on ML-based safety critical
automated driving functions. This analysis can be used
as one statement in the overall safety-argument.

II. Distributional Shifts in Highway Driving Data
A distributional shift or dataset shift [15] describes

the phenomenon when the distribution of the data which
were used to train the ML algorithms does not match
that of the test data. Moreover, the data are assumed to
be independent and identically distributed (i.i.d.), which
generally does not hold in the real-world.

In supervised ML tasks, we train the algorithms on a
training dataset S =

{
(X(i), y(i))

}N

i=1
, where the inputs

X ∈ X and labels y ∈ Y are i.i.d. samples of an unknown
joint distribution, p(X, y). Then, we test on a test dataset.
In general, a distributional shift describes the case where
pA(X, y) 6= pB(X, y), where pA and pB are the unknown
joint distributions of two datasets SA and SB .

A. Covariate Shift
This form of shift occurs when the covariate distribu-

tion p(X), e.g., the distribution of the velocities, differs
between datasets, but the posterior distribution p(y|X)
remains the same [16]. In highway driving data, this can
be observed when recording data at different locations, or
in countries where the driving rules and drivers’ behavior
might differ. For example, the average driving velocity on
a German highway will be higher than on a US highway;
or the traffic density on different highway sections might
differ. A covariate shift can lead to the ML algorithm to fit
the training data well, but the model can be misspecified
on the test data. One can use importance sampling to
reweigh the samples’ contribution to the estimation error
and compensate for a covariate shift [16].

B. Prior Probability Shift
A prior probability shift occurs when the prior distri-

bution p(y), e.g., the probability of a lane change, differs
but the likelihood, p(X|y), remains the same [15]. Since
the prior probability is usually estimated on one dataset,
this estimate might not be valid for other datasets.

For example, when extracting driving maneuvers from a
highway dataset, there are far more samples with the label
“lane keeping” than there are with the label “lane change”;
moreover the label “emergency stop” is rare. Thus, it
is possible to use a priori knowledge of the problem at
hand to estimate which prior probabilities are more or
less likely. Since we are trying to predict the label y, it
is unsurprising that this form of distributional shift will
affect the performance of an ML algorithm.

C. Concept Shift
A concept shift, or concept drift [17], can be defined as

the case where either the posterior distribution p(y|X),
e.g., the probability of a lane change for a given scenario,
or the likelihood p(X|y), e.g., the probability that a
given scenario describes a lane change, differs between
datasets [18]. Such a shift can result from a change
in the causal relationship between the input data and
the corresponding labels. In highway driving data, this
form of shift can easily occur. For example, since the
implicit driving rules are baked into highway driving
datasets certain driving maneuvers will occur in different
datasets, e.g., on German highways, vehicles should not
overtake on the right-hand side, making the probability
for this maneuver low. This is the most difficult form of
distributional shift for ML algorithms to deal with [19].

D. Sources of Distributional Shifts
1) Sample Selection Bias: This can occur whenever

data are collected in the real-world under self-imposed
constraints. Thus, the data which are collected might not
accurately represent the true underlying distribution [15].
In highway driving datasets a sample selection bias could
occur due to, e.g., the time of collection (during rush-
hour), the location on the highway (just after an on-ramp),
or the weather (filming during bad weather). Additionally,
since datasets are usually collected by different teams, the
post-processing techniques can differ.

2) Imbalanced Dataset: In multi-class classification
tasks, one class could be rarer than others. To over-
come this, researchers can randomly sub-sample the over-
represented classes and artificially “balance” the dataset
such that each class is represented by the same number
of samples. In highway driving, lane changes are much
rarer than lane keeping maneuvers, so researchers balance
datasets before training ML algorithms on them. This is
a sample selection bias with a known selection bias.

3) Domain Shift: As defined in [15], this occurs when
the interpretation of the measurements, e.g., the mea-
surement units, varies for different datasets. For example,
highway driving datasets can be collected by teams in
countries which use the metric measurement units, e.g.,
kilometers, whereas other teams might use the imperial
measurement units, e.g., miles. This can be compensated
for by mapping the representations from one measurement
unit to another. Another example could be recording a



Covariate Unit Description
vlat. m/s Lateral velocity
vlong. m/s Longitudinal velocity
dahead m Dist. to vehicle ahead in the current lane
dbehind m Dist. to vehicle behind in the current lane
dl, ahead m Dist. to vehicle ahead in the left lane
dl, behind m Dist. to vehicle behind in the left lane
dr, ahead m Dist. to vehicle ahead in the right lane
dr, behind m Dist. to vehicle behind in the right lane

TABLE I: The tracked covariates for each vehicle.

highway scenario from a bird’s-eye view or from a vehicle
driving in traffic—depending on the vantage point the
same scenario can have various interpretations, e.g., due
to occlusions.

4) Source Component Shift: This occurs when the data
are sampled from a number of different sources, e.g.,
sensors, or if different sub-populations are measured. For
example, the type of camera used to record highway
driving data can affect the dataset. Different vehicles
will also show different covariate distributions, e.g., trucks
drive slower than cars. Here, the source of measurement
directly causes different covariates and targets to be
captured in the datasets [15].

III. Problem Formulation
A. Datasets

We investigate the distributional shifts between two
publicly available, and widely used, realistic highway
driving datasets. The first dataset was collected by the
NGSIM program on US highways. The researchers filmed
the trajectories of vehicles for a period of time on both
the I-80 freeway [6] and the US highway 101 [5]. These
datasets were recorded from multiple cameras fixed on
top of skyscrapers close to the highways. In total, 1.5
hours of driving data were collected; they include a few
hundred lane changes each. Since both datasets were
collected within the scope of the same project, we combine
them into a single NGSIM dataset. The second dataset
is summarized in the highD dataset [4]. These data were
recorded by flying a drone above various German highway
segments. Similar to the NGSIM dataset, the recordings
from different locations are combined into a single dataset.
In total, more than 16 hours of highway driving data were
collected which contain thousands of lane changes.

We extract covariates of each tracked vehicle from both
dataset (see Tab. I). If a tracked vehicle is in the outer
most left (or right) lane, the lateral distance to vehicles to
the left (or right) of this vehicle is set to zero since there
are no vehicles further left (or right) than it. Since the
NGSIM dataset is recorded in imperial units, we convert
all measurements into metric units for easier comparison.
This can be noted as an example of a domain shift
(cf. Subsec. II-D3). Furthermore, the NGSIM dataset is
recorded at a sampling rate of 10 Hz, whereas the highD
dataset is recorded at a sampling rate of 25 Hz. Thus,

Left Right Keep Total

highD (unbalanced) 2274 2587 33822 38683
(5.88%) (6.69%) (87.43%) (100%)

highD (balanced) 2274 2274 2274 6822

NGSIM (unbalanced) 1555 500 59382 61437
(2.53%) (0.81%) (96.66%) (100%)

NGSIM (balanced) 500 500 500 1500

TABLE II: The number of lane change (left and right)
and lane keeping (keep) scenarios in each dataset, before
and after dataset balancing.

we sub-sample the highD dataset to have comparable
datasets. This is an example of a source component shift
(cf. Subsec. II-D4).

In the end, we summarize the tracked covariates in a
multi-variate time series signal

X = [x[1],x[2], . . . ,x[N ]] ∈ RΓ×N , (1)

where at each time-stamp n ∈ {1, . . . , N}, we
summarize the Γ covariates in a vector x[n] =
[x1[n], x2[n], . . . , xΓ[n]]

T ∈ RΓ. We take scenarios where
each vehicle is tracked for at least N time-stamps, and
the event, i.e., the lane change, we want to classify occurs
within this time duration. In our experiments, we consider
8 s prior to the lane change, i.e., N = 80.

B. Lane Change Maneuver Prediction
We predict if surrounding vehicles are going to change

lanes on a highway, i.e., we track the vehicles surrounding
the ego vehicle over time (see (1)), and we label each
scenario with the label y ∈ Y = {−1, 0,+1}, representing
left lane changes, lane keeping, and right lane changes, re-
spectively. The label corresponds to the driving maneuver
which occurs at time-stamp N , i.e., for lane changes the
center of mass of the vehicle crosses the lane marking at
time-stamp N . Furthermore, we assume a fixed prediction
horizon of 2 s (20 time-stamps), i.e., the classifiers are
trained on inputs with N ′ = N−20 time-stamps to predict
the driving maneuver which occurs in 2 s.

In the end, the training dataset is summarized as

Sl =
{
(X(1), y(1)), . . . , (X(Ml), y(Ml))

}
, (2)

where each input is a multi-variate time-series datum X ∈
RΓ×N ′ and each class label is y ∈ Y. In our simulations,
we consider an input of N ′ = 60 time-stamps. The index
l represents either the highD or the NGSIM dataset; Ml

is the number of samples in dataset l.
Since both datasets have a different number of lane-

change and lane keeping scenarios, it is important that we
perform dataset balancing to train the ML-based classifiers
(cf. Subsec. II-D2). We uniformly random sample scenarios
from each class to ensure that the number of samples per
class is equal. The total number of scenarios before and
after dataset balancing can be seen in Tab. II. There are
many more lane keeping scenarios than lane changes before
re-balancing the datasets. This imbalance is unsurprising
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(a) Average covariate values for all driving maneuvers.
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(b) Average covariate values for the left lane changes.

Fig. 1: Qualitative analysis of the datasets by visualizing the average covariate values at each time-stamp for each
dataset. The shaded areas represent one standard deviation away from the mean.

since lane changes are relatively rare driving maneuvers
when compared to lane keeping.

IV. Detecting Distributional Shifts in Highway Data

A. Qualitative Analysis

First, we plot the average value of each covariate from
the datasets introduced in Subsec. III-A. In Fig. 1a, we
plot the average covariate value at each time-stamp–
this represents the average covariate distribution for each
covariate at each time-stamp. We observe that the average
longitudinal velocity (upper right sub-plot) is much higher
in the highD dataset. This can be expected, since this
dataset was collected on a German highway. Moreover, we
observe that the distances (lower six sub-plots) to other
vehicles is much smaller in the NGSIM dataset, which
implies that the traffic density is higher. The average trend
of some of the signals is also different between the two
datasets, e.g., the covariate dr, ahead grows on average in
the highD dataset and stays relatively constant in the
NGSIM dataset. This could be explained by different
driving styles between the two countries. The variance
of the covariates in the highD dataset is also larger
than in the NGSIM dataset. This could affect an ML-
based algorithm trained on this dataset. Thus, we can

qualitatively conclude that there is a covariate shift (cf.
Subsec. II-A) between the highD and the NGSIM dataset.

Another qualitative analysis is to visualize the like-
lihood distribution for the different driving maneuvers.
To this end, we plot the average value of the covariates
corresponding to a left lane change from both datasets
in Fig. 1b, i.e., the mean of p(X|{y = −1}). We observe
that the average lateral velocity for left lane changes is
almost identical for both datasets. However, the means
of the other covariates differ significantly, especially the
longitudinal velocity. We can see that the trend of the
distance covariates is different between the datasets. This
qualitative analysis indicates that there is also a concept
shift (cf. Subsec. II-C) between the two datasets. Similar
conclusions can be drawn when investigating the distribu-
tion of the other driving maneuvers.

B. Quantitative Analysis
Next, we employ a two-sample statistical hypothesis test

to verify whether or not the samples in two datasets orig-
inate from the same underlying probability distribution.

1) Statistical Hypothesis Tests: Suppose we have two
datasets, SA = {x1, . . . ,xM} and SB = {x′

1, . . . ,x
′
M ′}

where the samples x ∼ P and x′ ∼ Q are i.i.d. sampled
from the probability distributions P and Q, respectively.



We assume x,x′ ∈ X . We are interested in distinguishing
between two hypotheses: the null hypothesis, H0 : P = Q,
and the alternative hypothesis, HA : P 6= Q. To this end,
a test statistic T : XM×XM ′ → R is constructed based on
the samples in both datasets. To deal with the situation
where the distribution of the test statistic is unknown,
we use the bootstrapping method [20], i.e., we uniformly
resample the union of the datasets SA ∪ SB without
replacement, to estimate the empirical distribution of the
test statistic under the null hypothesis H0.

After deriving the test statistic, we can calculate a
p-value of the test statistic to estimate the statistical
significance. This is the probability of the two-sample
test returning a test statistic as large as the test statistic
calculated on the datasets SA and SB (before bootstrap
resampling) when H0 is true. Thus, the null hypothesis is
rejected if the p-value lies under a pre-defined significance
value α and accepted otherwise; α is usually set to 0.01.

2) Kernel Test Statistic: A popular choice of a non-
parametric test statistic used for two-sample tests is based
on the Maximum Mean Discrepancy (MMD) measure,
see, e.g., [21] for more details. To define the MMD, we
first define a positive definite kernel k : X × X → R in
a Reproducing Kernel Hilbert Space (RKHS) H, where
k(x,x′) = 〈φ(x), φ(x′)〉H with a corresponding feature
mapping φ ∈ H. The MMD measure between two proba-
bility distributions can be defined as [21, Lemma 4],

MMD2(P,Q) = ‖µP − µQ‖2H, (3)
with the mean embedding of the distribution P/Q defined
as µP/Q ∈ H. Thus, the MMD measure compares all
moments of the distributions in the RKHS. The MMD
measure is equal to 0 if and only if P = Q [21, Lemma 5].

If we have two datasets SA and SB whose samples are
assumed to be drawn from P and Q, respectively, we can
state an unbiased empirical estimate of the squared MMD
measure as

M̂MD
2
(SA,SB) = − 2

MM ′

M∑

i=1

M ′∑

j=1

k(xi,x
′
j) (4)

+
1

M(M − 1)

M∑

i=1
j 6=i

k(xi,xj) +
1

M ′(M ′ − 1)

M ′∑

i=1
j 6=i

k(x′
i,x

′
j).

In our experiments, we employ the Gaussian kernel,
k(x,x′) = exp(−γ‖x − x′‖22), where x,x′ ∈ X , and
the bandwidth parameter γ = 1/(Dσ2) with the input
dimension D and where we use σ2 as the variance of all
samples in the datasets SA and SB .

3) Classifier Two-Sample Test: Alternatively, we can
train a neural network to detect whether the samples
come from the same distribution–we use the Classifier
Two-Sample Test (C2ST) [22]. First, we create a training
dataset D by taking an equal number of samples from
both datasets, i.e.,

D = {(xi, yi = 1)}MD
i=1 ∪ {(x′

j , yj = 0)}MD
j=1, (5)

MMD-Test [p-value] TC2ST [Acc. %]
ShighD vs SNGSIM 0.0005 92.17%

Skeep
highD vs Skeep

NGSIM 0.0005 88.00%
Sleft

highD vs Sleft
NGSIM 0.0005 96.50%

Sright
highD vs Sright

NGSIM 0.0005 96.00%

(a) Hypothesis tests which reject the null hypothesis, indicating
that there is a covariate shift and concept shifts. All MMD-test
p-values are < 0.01 and TC2ST accuracies are > 85%.

MMD-Test [p-value] TC2ST [Acc. %]
ShighD vs ShighD 0.5570 47.69%
Sleft

highD vs Sleft
highD 0.5625 46.59%

Sright
highD vs Sright

highD 0.3240 47.69%
Skeep

highD vs Skeep
highD 0.4300 48.13%

SNGSIM vs SNGSIM 0.5655 52.67%
Sleft

NGSIM vs Sleft
NGSIM 0.2535 50.00%

Sright
NGSIM vs Sright

NGSIM 0.6955 55.00%
Skeep

NGSIM vs Skeep
NGSIM 0.5440 49.00%

(b) Hypothesis tests which accept the null hypothesis, indicat-
ing no distributional shifts. All MMD-test p-values are > 0.01
and TC2ST accuracies are around 50%.

TABLE III: Results indicating a distributional shift be-
tween the NGSIM dataset and the highD dataset; no
distributional shift was detected within either dataset.

where the samples x ∈ SA and x′ ∈ SB , and we take
MD ≤ min(M,M ′). Furthermore, we split the dataset D
into Dtrain and Dtest, with MD,train and MD,test samples,
respectively

Thus, we train a classification function g : X → [0, 1],
which approximates the posterior distribution p(yk =
1|x), when employing a sigmoid activation function at
the output of the classifier.

A hypothesis test can now be performed by analyzing
the accuracy of the classifier on the test dataset, i.e.,

TC2ST =
1

MD,test

MD,test∑

k=1

I(round(g(xk)) = yk), (6)

with the indicator function I. The test statis-
tic TC2ST is Gaussian distributed with TC2ST ∼
N (1/2, 1/(4MD,test)) [22]. Thus, the null hypothesis is
accepted when the test statistic TC2ST (the accuracy of the
classifier) is around 50% and rejected when a pre-defined
threshold is exceeded, e.g., TC2ST ≥ 85%.

4) Quantitative Results: We estimate the p-value of the
statistical test based on the MMD test statistic by re-
sampling the datasets 2000 times. The C2ST results are
depicted as the classification accuracy on Dtest. The C2ST
network architecture is taken from [23, Sec. 2.2.2], with
one output neuron.

We observe in Tab. IIIa that both the statistical
hypothesis tests based on the MMD test statistic and the
C2ST reject the null hypothesis for the whole dataset. The
null hypothesis is rejected because the estimated p-value



is lower than a threshold α = 0.01 for the test based on
the MMD statistic, and the accuracy of the C2ST is larger
than 85%. The bottom three rows indicate that there is a
concept shift (cf. Section II-C) between the two datasets
for all driving maneuvers.

In Tab. IIIb, we show the results of the statistical
hypothesis tests with samples only from one dataset, i.e.,
we split each dataset into two disjoint sets, and test
whether the two sub-sets come from the same distribution.
We observe that the hypothesis tests indicate that samples
from within each dataset stem from the same distribution.
Moreover, the driving maneuvers within each dataset also
come from the same underlying distribution. These results
indicate that combining the two NGSIM datasets into one
dataset, as done in this analysis, was meaningful.

V. Effects of Distributional Shifts on Learned Models
A. Simulation Setup

We train ML-based classifiers to perform the lane
change maneuver prediction task (cf. Section III-B). In
total, we train three models: (i) a Recurrent Neural
Network (RNN)-based algorithm with Long Term Short
Term Memory (LSTM) cells as proposed by [24]; (ii) an
RNN-based algorithm with Gated Recurrent Unit (GRU)
cells as proposed by [25]; and (iii) a Convolutional Neural
Network (CNN)-based algorithm with 1-D filters due
to CNNs’ good performance in time-series classification
tasks, see, e.g., [23; 26]. We use the LSTM [24] and the
GRU [25] architectures as proposed in the publications.
The CNN architecture is taken from [23, Sec. 2.2.2].

We use the the cross entropy loss as a training loss,

L(Θ) = −
Mtrain,l∑

m=1

K∑

k=1

tmk ln(zLk ), (7)

where Θ are the network parameters, the one-hot-encoded
true label tmk ∈ {0, 1} for all of the training data from
dataset l with a total of Mtrain,l samples, and the output
class probabilities zLk defined as the output of the ML
algorithm after the softmax activation function.

We split both balanced datasets into disjoint sets.
We separate the highD dataset with a 80%/20%-split
of the total number of samples for training and testing,
respectively. The whole NGSIM dataset is used for testing
the trained ML algorithms. Thus, we create the datasets
ShighD, train, ShighD, test, and SNGSIM, test, respectively.

We train each algorithm using 5-fold cross-
validation [27, Ch. 7.2]. Thus, we obtain 5 different
classifiers for each model type. We train each algorithm
for 50 training epochs using the Adam optimizer [28]
with mini-batches of size 32 and an initial learning rate of
β = 0.001. The algorithms are trained using ShighD, train.

B. Effect on Classifier Performance
To visualize the effect which the distributional shifts

have on trained ML algorithms, we plot the accuracy of
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Fig. 2: The accuracy of the learned ML algorithms, trained
on ShighD, train, and tested on both test sets. All models
perform better on the distribution they were trained on.

each classifier (we have 5 classifiers per model type) on
the test sets from both datasets. This visualization method
was introduced in [12].

We observe in Fig. 2 that the accuracy on ShighD, test is
strictly larger than on SNGSIM, test. All ML models achieve
an accuracy of over 90% on the ShighD, test. However,
on SNGSIM, test, the models achieve an accuracy below
65%. We observe that the performance of the CNN-based
classifiers drop by an average of 38%. The performance of
the LSTM-based and the GRU-based classifiers dropped
by an average of between 36% and 40%. This significant
drop in classification performance highlights the problem
of distributional shifts on safety critical driving functions.

The line labeled “Ideal” in Fig. 2 shows the ideal
transferability between two datasets if there was no
distributional shift. Moreover, the “Lin. Fit” line shows
a linear function fit through the accuracy pairs. Its slope
is ≈ 0.70. This indicates that for every percentage point
of accuracy improvement on highD, the model will gain
less than one percentage point on NGSIM.

VI. Conclusions
Motivated by the challenge of validating ML-based

algorithms in safety critical driving functions, we turn
our attention to the data which is used to train these
driving functions. First, we recapitulate the different
types of distributional shifts which can occur in highway
driving data, and we discuss when these shifts may occur.
Subsequently, we demonstrate that a distributional shift
exists between two widely used, public highway driving
datasets. We provide both a qualitative and a quantitative
analysis of the distributional shifts between the datasets.
Furthermore, we show that these shifts impact the perfor-
mance of ML-based algorithms trained on the datasets.

We argue that an initial step in creating a safety-
argument to validate ML-based driving functions is to
analyze the distribution of the data which is used to
train them. Using the analysis proposed in this paper,



an engineer can begin to investigate the distributional
shifts between various training and test datasets. If a
distributional shift is detected, the challenge remains to
detect when a vehicle leaves the distribution it was trained
on, or to robustify the ML-based algorithm against such
distributional shifts. Thus, to extend this research, one
could investigate out-of-distribution detection, continual
learning methods, or transfer learning methods.
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