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Abstract

Allowing robots to handle and solve complex tasks in arbitrary environments forms a promis-
ing goal for research, industry and eventually global society. Recalling the advances and
impressive performance that robots possess within current application areas, such as indus-
trial assembly or lab environments, the question arises, why the number of these applications
is still comparably low. As long as the number of possible environment states is small, the
applications do not diverge drastically from the characteristic of their core application areas
as stated above. Unfortunately, real-world applications rarely meet this requirement, so there
is still a lot of research to be done to close the gap between the lab and the open world. Thus,
a key-challenge is given by the handling of imperfect knowledge and the perception of the
environment.

This work therefore specifically addresses the question of how to improve the ability of artifi-
cial agents to interact in domains where model knowledge is insufficient or it is not possible
to obtain an accurate model. As this research question contains an infinite amount of sub-
challenges to be solved due the complexity of robotic systems, the research conducted in
this thesis splits across three particular sub-fields of robotic applications: The interaction of
humans and robots, which has been established under the term human-robot collaboration
(HRC), the interaction of multiple – but individual – autonomous agents under the aspect
of multi-agent reinforcement learning (MARL) and eventually the ability of robots to manip-
ulate unknown objects with imperfect perception of the environment.

In the context of HRC this thesis proposes novel concepts to incorporate insights from cogni-
tive science into autonomous decision making by robots for applications where a human and
a robot are required to perform a joint task. Specifically, novel methods are presented that
model the human performance as partially observable states that are estimated online to ob-
tain team-optimal action assignments for the interactive HRC-process. In addition, concepts
from interactive game-theory are incorporated into the action selection method, which unlike
related work, allows team-optimal strategies to be found while taking human decision-making
ability into account. In contrast to existing work, the proposed methods allow for the direct
incorporation of human objectives rather than modeling humans as stochastic black boxes
or optimal automata. The proposed methods are evaluated in human-robot studies, which
highlight the improvements of the proposed methods in terms of comprehensibility of the
selected strategies to the human subjects. Overall, the methods presented form the basis for
improving natural and seamless interaction between humans and robots, enabling the use of
robots outside of the usually caged environments.

The challenge of solving a task jointly with a fleet of artificial agents holds the possibility
of improving the scaling of robotic applications through the insights gathered. Special em-
phasis is placed on learning new tasks and challenges more quickly and efficiently. In this
context, this area has mostly been approached from the machine-learning community by re-
gressing a joint task solely from data, where recent finding on deep-reinforcement learning
has drastically boosted development and progress in recent years. In control-theory on the
other hand, the majority of approaches imposes strong model and system assumptions to
achieve workable results. Motivated by the fact, that hierarchical learning has allowed to
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Abstract

embed model knowledge or controllers, this thesis explores novel methods on how to ob-
tain a hierarchical MARL-framework. This framework aims to all artificial agents to exploit
(partial) knowledge about the internal system-dynamics, without adding further constraints
on the environment. Therefore, a decentralized learning scheme is presented and evaluated
against the state-of-the-art. Eventually, this part of the thesis introduces a novel hierarchical
MARL-approach that provides the potential on transitioning from pure model-free end-to-end
learning to a hybrid model-free and model-based method.

The final part of this thesis analyses the challenge of manipulation tasks, where the perception
of the environment is imprecise. Specifically, three sub-applications are evaluated: how can
a robot refine knowledge about an unknown object in the presence of inaccurate visual prior
assumptions by collecting only haptic measurements? How can a robot autonomously grasp
fragile objects if neither the robot’s control modalities provide an interface to directly compen-
sate interaction wrenches, e.g., an impedance controller, nor is a correct goal-pose specified.
The final question analyzed in this thesis is how to regress the optimal task parameterization
of a task to be learned from just a handful of data trials. To answer the first question, a
novel state estimation is proposed that incorporates insights from Bayesian filter theory, as
commonly applied in robot navigation or observer design, but depends only on the acquisition
of haptic data. The presented method is evaluated within a simulated environment, where
physical interaction data is collected and the material properties can be specifically adjusted
by the operator. In the second question, a novel gripping strategy is proposed, which can be
applied to industrial robots in order to allow complaint end-effector-pose correction without
the explicit need for additional force-torque sensors. Eventually, we propose a novel learning
system for an industrial robot that learns tasks from only a handful of samples. This method
extends existing work by proposing not only to graphically describe the objective to be learned
to obtain a reduced parameter-space of the original problem, but also to specifically model
the constraints, i.e., feasible state-space of the parameters, in order to directly account for the
failure of the task. Both these approaches are finally evaluated on experimental lab evidence,
where the collected data underlines the improved performance compared to the baseline so-
lutions and existing methods. Thus, the presented methods allow robots to improve their
capabilities of manipulating unknown objects when perception suffers from imprecision.

In summary, this thesis contains a broad collection of novel techniques that improve the
capabilities and skills of robots, laying the foundation for future robotic applications. Since
research in itself is something that will never be finished, this thesis concludes with a brief
outlook on future research questions and aspects.
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Zusammenfassung

Die Fähigkeit von Robotern, komplexe Aufgaben in beliebigen Umgebungen zu bewältigen
und zu lösen, ist ein vielversprechendes Ziel für Forschung, Industrie und schließlich die
Gesellschaft. In Anbetracht der Fortschritte und der beeindruckenden Leistung, die Roboter in
Anwendungsbereichen wie z.B. in der industriellen Montage oder in Laborumgebungen erzie-
len, stellt sich die Frage, warum die Zahl dieser Anwendungen noch vergleichsweise gering
ist. Solange die Zahl der möglichen Zustände der Umwelt gering ist, weichen die Anwen-
dungen nicht drastisch von der oben genannten Charakteristik ihrer Kernanwendungsbere-
iche ab. Leider erfüllen reale Anwendungen diese Anforderung nur sehr selten, so dass noch
viel Forschungsarbeit geleistet werden muss, um die Lücke zwischen Labor und tatsächlicher
Endanwendung zu schließen. Eine Schlüsselherausforderung dabei ist der Umgang mit un-
vollständigem Wissen sowie mit Ungenauigkeiten in der Wahrnehmung der Umgebung.

Diese Arbeit befasst sich daher speziell mit der Frage, wie die Fähigkeiten künstlicher Agen-
ten zur Interaktion in Anwendungsbereichen verbessert werden können, in denen das Mo-
dellwissen unzureichend ist oder es nicht möglich ist, ein präzises Modell zu entwerfen. Da
diese Forschungsfrage aufgrund der Komplexität von Robotersystemen unzählige Teilprobleme
beinhaltet, die es zu lösen gilt, verteilt sich die Forschung in dieser Arbeit auf drei spezielle
Teilbereiche von Roboteranwendungen: die Interaktion von Menschen und Robotern, die sich
unter dem Begriff der Mensch-Roboter-Kollaboration (MRK) etabliert hat, die Interaktion
mehrerer - jedoch individueller - autonomer Agenten unter dem Aspekt des bestärkenden
Lernens für Multi-Agenten-Systeme (MARL) und schließlich die Fähigkeit von Robotern, un-
bekannte Objekte unter ungenauer Wahrnehmung der Umgebung zu manipulieren.

Im Kontext der MRK werden in dieser Arbeit neuartige Konzepte vorgeschlagen, um Erkennt-
nisse aus der Kognitionswissenschaft in die autonome Entscheidungsfindung von Robotern für
Anwendungen einzubeziehen, bei denen ein Mensch und ein Roboter eine gemeinsame Aufgabe
zu bewältigen haben. Konkret werden neuartige Methoden vorgestellt, die die menschliche
Leistung als teilweise beobachtbare Zustände modellieren, die online geschätzt werden, um
eine teamoptimale Aktionszuweisung für den interaktiven MRK-Prozess zu erhalten. Darüber
hinaus werden Konzepte aus der interaktiven Spieltheorie in die Handlungsauswahlmethode
integriert, die es im Gegensatz zu verwandten Arbeiten erlaubt, teamoptimale Strategien zu
finden und dabei die menschliche Entscheidungsfähigkeit zu berücksichtigen. Im Gegensatz zu
bestehenden Arbeiten ermöglichen die vorgeschlagenen Methoden den direkten Einbezug men-
schlicher Ziele, anstatt den Menschen als stochastische Blackbox oder optimalen Automaten
zu modellieren. Die vorgeschlagenen Methoden werden in Mensch-Roboter-Studien evaluiert,
die die Verbesserungen der vorgeschlagenen Methoden in Bezug auf die Verständlichkeit der
ausgewählten Strategien für die menschlichen Probanden unterstreichen. Insgesamt bilden
die vorgestellten Methoden die Grundlage für die Verbesserung der natürlichen und nahtlosen
Interaktion zwischen Menschen und Robotern, die den Einsatz von Robotern außerhalb der
üblichen Labor- oder Käfigumgebungen ermöglicht.

Die Herausforderung, eine Aufgabe gemeinsam mit einer Vielzahl künstlicher Agenten zu
lösen, birgt die Möglichkeit, Roboteranwendungen hinsichtlich der Skalierbarkeit durch die
dezentral gesammelten Erkenntnisse zu verbessern. Dabei wird besonderer Wert darauf
gelegt, neue Aufgaben und Herausforderungen schneller und effizienter zu erlernen. Dieser
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Zusammenfassung

Forschungsbereich wurde in erster Linie im Bereich von MARL behandelt, indem eine gemein-
same Aufgabe ausschließlich aus gesammelten Daten erlernt wird, wobei die jüngsten Erken-
ntnisse im Bereich des Deep Reinforcement Learning die Entwicklung und den Fortschritt
in den letzten Jahren dramatisch vorangetrieben haben. In der Regelungstechnik hingegen
setzt die Mehrheit der Ansätze starke Modell- und Systemannahmen voraus, um praktik-
able Ergebnisse zu erzielen. Motiviert durch die Tatsache, dass im Gegensatz zum direk-
ten End-zu-End Lernen das hierarchische Lernen erlaubt, vorhandenes Modellwissen in den
Lernzprozess mit einzubeziehen, erforscht diese Arbeit neuartige Methoden, um ein hierarchis-
ches Multi-Agenten-System für das Bestärkende Lernen zu erhalten. Dies soll es künstlichen
Agenten ermöglichen, (partielles) Wissen über die interne Systemdynamik auszunutzen, ohne
dabei zusätzliche Einschränkungen bezüglich der Umgebung vorauszusetzen. Daher wird ein
dezentrales Lernverfahren vorgestellt und gegen den aktuellen Stand der Technik evaluiert.
Schließlich wird darauf aufbauend ein neuartiges hierarchisches MARL-Verfahren vorgestellt,
das eine Möglichkeit zum Übergang vom rein modellfreien Lernen zum hybriden Lernen,
bestehend aus modellfreiem und modellbasiertem Lernen, bietet.

Der letzte Teil dieser Arbeit analysiert die Herausforderung von Manipulationsaufgaben,
bei denen die Wahrnehmung der Umgebung ungenau ist. Konkret werden drei Teilanwen-
dungen evaluiert: Wie kann ein Roboter das Wissen über ein unbekanntes Objekt bei un-
genauen visuellen Vorannahmen verfeinern, indem er ausschließlich haptische Messungen
sammelt? Wie kann ein Roboter zerbrechliche Objekte autonom greifen, wenn weder die
Steuerungsmodalitäten des Roboters eine Schnittstelle bieten, um Interaktionsfehler direkt
zu kompensieren, z.B. einen Impedanzregler, noch eine korrekte Zielposition vorgegeben ist.
Die letzte Frage, die in dieser Arbeit analysiert wird, ist die Schätzung der optimalen Auf-
gabenparametrisierung einer zu lernenden Aufgabe aus lediglich einer Handvoll von Daten.
Zur Beantwortung der ersten Frage wird eine neuartige Zustandsschätzung vorgeschlagen, die
Erkenntnisse aus der Bayes-Filter-Theorie berücksichtigt, wie sie üblicherweise in der Roboter-
navigation oder im Beobachterentwurf angewandt wird, aber nur von der Erfassung haptischer
Daten abhängt. Die vorgestellte Methode wird in einer simulierten Umgebung evaluiert, in
der physikalische Interaktionsdaten gesammelt werden und die Materialeigenschaften durch
den Bediener gezielt eingestellt werden können. In der zweiten Frage wird eine neuartige
Greifstrategie entworfen, die auf Industrierobotern angewandt werden kann, um eine Korrek-
tur der Endeffektor-Lage zu ermöglichen, ohne dass zusätzliche Kraft-Drehmoment-Sensoren
zwingend erforderlich sind. Schließlich wird ein neuartiges Lernsystem für einen Industriero-
boter eingeführt, der Aufgaben nur aus einer Handvoll von Beispielen lernt. Diese Methode
erweitert bestehende Arbeiten, indem sie nicht nur vorsieht, das zu erlernende Ziel grafisch zu
beschreiben, um so nicht nur einen reduzierten Parameterraum des ursprünglichen Problems
zu erhalten, sondern auch den zulässigen Zustandsraum der Parameter spezifisch zu model-
lieren, um so das Scheitern der Aufgabe direkt zu berücksichtigen. Beide Ansätze werden ab-
schließend anhand von Laborversuchen evaluiert, wobei die gesammelten Daten die verbesserte
Leistung im Vergleich zu den Basislösungen oder bestehenden Methoden verdeutlichen. Die
vorgestellten Methoden ermöglichen es Robotern daher, ihre Fähigkeiten zur Manipulation
unbekannter Objekte zu verbessern, wenn die Wahrnehmung unter Ungenauigkeit leidet.

Zusammenfassend enthält diese Arbeit eine breite Sammlung neuer Methoden, welche die Fer-
tigkeiten und Fähigkeiten von Robotern verbessern und damit die Grundlage für zukünftige
Roboteranwendungen schaffen. Da Forschung an sich nichts darstellt, was jemals zu Ende
gedacht werden kann, schließt diese Arbeit mit einem kurzen Ausblick auf zukünftige For-
schungsfragen und -aspekte.
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1
Introduction

Over the last decades, robotic systems have become a core-component of a broad range of
applications. While robots have become a standard component of industrial assembly halls
ever since the third industrial revolution, the application range has been increasing ever since.
As robots are able to be exposed to harmful conditions, where humans could not survive
without proper equipment or tools, these applications have already exceeded the limits of our
hemisphere (Yoshida and Wilcox, 2008). Eventually, plenty of research has been done in order
to allow robots to support our everyday-life (Broekens et al., 2009, Kachouie et al., 2014).
Nonetheless, the application of robot systems is directly dependent on the ability of robotic
systems to cope with unforeseen systems and environments. While tremendous progress has
been outlined in well-defined lab-environments, and even industrial robots perform tasks ac-
curately in a repetitive, yet reliable, manner, the transition to generic tasks and full autonomy
are still far from production readiness. Specifically, this performance and reliability is directly
bound to the strong assumption on acting in well-defined environments, where environment
perception uncertainties can be neglected.

Within generic practical applications it is merely impossible to guarantee for such an assump-
tion without explicitly accounting for every possible scenario. Unfortunately, robotic systems
are further constrained by computational and storage budgets as well as the cognitive limits
of experts who were to define all these scenarios. Thus, the only reasonable path to follow is
to allow robots to account for uncertainties and equip robots with proper methods to handle
the stochasticity of nature during interaction with the environment.

Eventually, the sources, models and effects of uncertainty in complex systems such as robotic
applications are almost infinite. Starting from the rudimentary perception-cognition-action-
loop from Thrun et al. (2005) as broadly applied in robotic systems, the cognitive process
of robotic systems is defined as a closed-loop where the sensory inputs perceived from the
environments are directly subject to the actions taken by the autonomous agents. Thus, in
order to properly interact with uncertain environments a robot system has to use appropriate
representations – i.e., models – of the environment.

Therefore, this thesis tackles three main application areas in modeling the environment for
autonomous agents: the interaction of a human and a robot, which has been established
as human-robot interaction (HRI) and human-robot collaboration (HRC) in research, the
interaction with other autonomous agents – usually denoted as multi-agent systems and the
manipulation of unknown objects.

With these specific sub-applications in mind, we outline the dedicated research content and
the derived research questions that are analyzed in the remainder of this thesis in the following
subsections.
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1 Introduction

1.1 Dyadic Human-Robot Collaboration

The idea of humans and robots coexisting is directly embedded in the history of robots. In
particular, the first usage of the term robot by Karel Capek in 1921 introduced robots as
human-like machines (Harkins, 1962). Similarly, the first appearance of robots in the movie
Metropolis in 1927 introduced a robot as the Maschinenmensch (Hall, 2021), namely the
machine-human. While the pop-culture has mainly established robots as a threatening ma-
chine, researchers have started to investigate the safe interaction of humans and robots ever
since the 1950s. Early approaches have focused on theoretical concepts such as the Turing-
test (French, 2000) or Asimov’s Laws (Asimov, 1941). In contrast, the majority of robots
have been applied as advanced machines in industrial production halls, until the robot Shakey
was built as the first mobile robot that could reason about its surroundings in 1970 (Kuipers
et al., 2017). A few decades later, the term HRC rose interest in research as a special sub-
class of HRI, which involves general interaction (Bauer et al., 2008, Grosz, 1996). In contrast,
HRC describes the phenomena of humans and robots forming a team and thus combining
their (often) complementary skill-set in order to accomplish a common task. This directly
imposes a multitude of cognitive challenges that an artificial agent – often denoted as cobot in
literature (Peshkin et al., 2001) – has to face. Besides the general challenges an autonomous
agent has to solve, such as perceiving and estimating a proper model of the current environ-
ment given the various – but noisy – sensor readings, robots need to understand the human
coworker and adjust the interaction process accordingly. For brevity, we omit further insights
on recent research advances in the area of HRC in this chapter and forward the interested
reader to Chapter 2, which closes this gap. Concisely spoken, the focus of this part of the
thesis is the development of novel methods to obtain optimal action-assignments for the hu-
man and robot coworkers while accomplishing a joint task. This involves research aspects of
autonomous planning, human-aware motion planning, human behavior modeling as well as
decision-making concepts that range from stochastic Markov-models to game-theory. Within
this general research area, the following research questions are evaluated.

Research Questions

How can robots estimate and track human suboptimal behavior within HRC? In
the context of HRC the majority of research focuses on learning a task or skill from human
input or behavior. Nonetheless, human behavior is also subject to sub-optimality, especially
if a task is subject from repetitive routines. For such tasks, robots have been proven to
be reliable and high-performant. In the context of HRC, there may exist parts of a joint
task, where a robot can profit from these advantages. This eventually results in the research
questions, on how a robot can model task ambiguity that a human may be a cognitive burden
for the human, while tracking the human state-of-mind w.r.t. this task ambiguity throughout
the interaction. Eventually, a suitable decision framework is needed that allows a robot to
distinguish between efficient execution and supportive behavior whenever the human coworker
is in need of such.

How can mutually interactive game-theory be applied for autonomous decision-
making on robotic systems within HRC? While a majority of research has focused
on modeling the human system as either a static or stochastic black-box system, the direct
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1.2 Multi-Agent Systems

question arises, if it were beneficial to account for human decisiveness when selecting an action
during the interaction with a human coworker. This involves the question on finding suitable
objectives that describe human behavior. Given these objectives, the core question is given
by finding the optimal policy for the autonomous agent that does not only optimize over the
internal objective of the robotic agent, but also over the objective of the human counterpart.

How can robots account for incorrect models during the interaction with humans?
This question builds upon the former that by obtaining a team-optimal policy for the human-
robot team, the policy directly relies on the accuracy of the underlying objective for the
human and robot, i.e., the applied interaction-model. Thus, the final question evaluated
within this part of the thesis is given by the issue of evaluating and handling sub-optimal
human performance, while the term sub-optimal directly relates to or depends on the current
interaction-model.

These research questions are evaluated from a conceptual and application point of view
in Part I. A fine-grained overview of the individual chapters is provided in Section 1.5.

1.2 Multi-Agent Systems

The concept of multi-agent systems has risen interest within robotics, control theory, machine
learning and economics for many years. Plenty of this research builds upon early theoret-
ical concepts that were established on mathematical models that in return are motivated
from cognitive science. In economics, the monetary flow has been analyzed as multi-agent
systems by applying e.g., graphical games (Kearns, 2007). Within control-theory (CT) the
main focus is set on stabilizing multi-agent behavior or system states (Lewis et al., 2013, Ma
et al., 2017). In robotics most approaches have focused on finding optimal routing strate-
gies for artificial agents (Hausman et al., 2015) or solving decentralized partially observable
problems (Dibangoye et al., 2016). Eventually, the machine-learning community has seen a
tremendous rise of interest in the aspect of multi-agent reinforcement learning (MARL), which
intends to extend the results from single-agent reinforcement learning (RL) to the multi-agent
domain. As a result, plenty of researchers proposed novel concepts on how to improve the
performance of data-driven multi-agent learning. In contrast to the current trend in this area,
this thesis proposes a novel schematic for MARL by introducing hierarchical learning and
proposing to explicitly differentiate between internal agent states and external observations.
While the actual incorporation of model-based controllers or model-based RL into MARL is
beyond the scope of this work, the presented results fulfill the main requirements to further
improve MARL by incorporating findings from other fields, such as robotics or CT. In short,
this part of the thesis tackles the following research questions.

Research Questions

How can reinforcement learning in multi-agent systems be embedded into a hier-
archical framework without relying on overly restrictive assumptions such as fully
synchronous decisions and centralized learning? Within recent MARL-research, the
majority of approaches has applied decentralized execution with centralized learning. This
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becomes non-trivial if a hierarchical system acts temporarily relaxed as the collected experi-
ence is prone to act asynchronously. As this directly contradicts the Markov-assumption of
higher level actors, this part of the thesis evaluates a novel MARL-framework that allows for
a decentralized execution and learning.

How can the effect of hierarchical performance be evaluated against joint task
performance? Within a hierarchical framework an agent is usually asked to achieve an
intermediate sub-goal in order to achieve a common sub-goal. While current approaches
usually average these rewards by a joint – and often centralized – critic, this thesis evaluates
new schemes on how to explicitly differentiate between joint rewards and internal agent costs.
As this scheme is applied throughout a variety of robotic applications, this thesis evaluates
the applicability within MARL-systems.

How can basic model-knowledge about the individual agent-dynamics be embed-
ded into model-free MARL without adding overly restrictive model and system
assumptions? Within MARL, the majority of approaches has focused on learning policies
in a purely model-free manner. Even though some approaches have used model-knowledge
during training, these models are most often solely used to train a parametric policy – most
often a deep-neural network – from them. Therefore, this thesis evaluates the possibility of
differentiating between agent-based and external observations in order to generate a hierar-
chical MARL-framework, that allows future work to directly incorporate model-knowledge
during exploration or learning as needed.

These research questions are evaluated from a conceptual point of view using a simulated
multi-agent environment to benchmark the performance of the proposed methods against
recent state-of-the-art in Part II. A short summary in relation to the rest of this thesis and
preliminary work is provided in Section 1.5.

1.3 Manipulation of Unknown Objects

Handling unknown environments has been a key-challenge for autonomous agents that has
raised interest from CT, computer-vision, machine learning and information-theory. Within
CT the majority of research has focused on allowing a stable interaction with unknown en-
vironments, e.g., the unknown shape of an object. In the context of computer-vision and
machine learning the major focus is on detecting suitable features that can be mapped to the
goal-space of a robot system to eventually solve the manipulation task. Famous examples for
this are e.g., visual servoing (Espiau et al., 1992) or the peg-in-hole (Bruyninckx et al., 1995)
task. In order to account for a stochastic environment, plenty of research has been outlined
to improve robotic skill-sets using concepts from information-theory (Thrun et al., 2005). As
the cognitive process within robotic systems is usually designed as a complex system, the
handling of manipulation tasks in unknown environments is increasingly solved by means of
end-to-end learning (Silver et al., 2017). Here, the suitable control-modalities or policies – as
a direct mapping of visual sensor-data to robot control inputs – are directly regressed from
tremendous amounts of data.
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Even though these approaches have reached promising results, this thesis proposes alterna-
tive novel methods and instead explicitly incorporates model-knowledge as far as possible.
Given the remaining uncertainties and model-insufficiencies, the representation of the envi-
ronment needs to be refined from data. Eventually, this thesis also proposes novel concepts
to apply a suitable control-strategy to accomplish manipulation tasks within partially ob-
servable domains. In order to manipulate unknown environments, a suitable robot controller
is crucial. While plenty of research has resulted in various control-designs that are capable
to compensate for unknown environments, such as hybrid force-position-control (Khatib and
Burdick, 1986), force-control (Zeng and Hemami, 1997), impedance-control (Hogan, 1984), or
computed torque (Middletone and Goodwin, 1986), industrial robots usually do not allow to
command the required control-inputs to the robot. While for a high-frequent joint-velocity or
joint-position control-interface, concepts such as admittance-control (Seraji, 1994) is a suit-
able alternative, this thesis explicitly focuses on proposing novel concepts for industrial robot
platforms that do not possess such interfaces. In particular, this part of the thesis depicts
three research questions that are motivated from specific robot-applications, which we outline
below.

Research Questions

How can robots refine their model knowledge about the characteristics of un-
known objects if there is no vision data or insufficient vision data available?
While tremendous progress has been outlined in visual perception of unknown environments
(Dellaert and Kaess, 2017, Elfes, 1989), these works usually limit the sensory data-input of
robotic systems to contact-independent sensors such as cameras or depth-sensors. In contrast,
humans possess incredible cognitive skills in identifying and analyzing object properties by
only obtaining haptic cues. Thus, this evaluates this research question by composing a novel
method on how artificial agents can explore unknown objects by collecting haptic feedback in
the form of contact forces.

How can industrial robots execute sensitive grasping skills if neither the robot
hardware provides compliant control interfaces nor a force-torque-sensor is avail-
able to account for undesired interaction wrenches? Robot grasping in unknown
environments is another line of research that has risen broad interest over many decades. In
here, many approaches have focused on grasp synthesis (Bohg et al., 2014, Shimoga, 1996)
and gripper design (MacKenzie and Iberall, 1994), while especially recently data-driven con-
cepts such as from visual servoing (Pedersen et al., 2020) or grasping pose detection (Qian
et al., 2020) have become the most prominent line of research. In contrast to these works,
this thesis evaluates the question how an industrial robot, that usually does not allow for a
compensation of faulty perception of the environment, can be used to successfully grasp an
object by specifically evaluating the haptic sensory feedback obtained in the gripper fingers.

How can industrial robots efficiently learn compliant manipulation tasks within
reasonable time, i.e., only from a handful of experimental trials? When interacting
in unknown environments, robots are required to provide not only a suitable control-interface
that allows for contact-tooling skills, but also to regress unknown task parameters from col-
lected empirical evidence autonomously. Again, plenty of researchers apply purely data-driven
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controllers (Silver et al., 2017), which inherits the necessity of tremendous data to be collected.
As this is impractical for most real robot applications, this thesis proposes a novel concept
that first introduces suitable control-modalities for an industrial robot that allow for compli-
ant manipulation tasks, and secondly outlines a parameter-regression framework that can be
used to learn a manipulation task given only a handful of experimental samples.

These research questions are evaluated in Part III, where a special emphasis is laid upon
applying the proposed methods on industrial robots in order to increase the applicability and
skill-set of existing robot platforms for future applications. Before we present the detailed
outline of this thesis, we summarize the notation used for the remainder of this thesis.

1.4 Notation

A detailed list of the used acronyms, notation, symbols, indices and operators can be found
at the very end of this thesis – starting from page 167. Individual symbols and functions are
introduced in the remainder of this thesis and are unique. An exception is given by hyper-
parameters κ, thresholds ζ, as well as upper- and lower-bound limits lb and ub, which are
solely defined by their indices. Similarly, indexing variables i, j, k, and m,n are only used to
denote iterations or specific values of other containers.

In order to outline the notation or generic relations, we use an arbitrarily chosen placeholder
variable p. Given this placeholder variable as a scalar term, we denote vectors as p ∈ Rn and
matrices as P ∈ Rm×n .1 Explicit elements of matrices or vectors are denoted as [P](i,j),

while the transpose is denoted as P>,p>. We denote norms as ‖p‖i, i.e., ‖p‖2 represents the
euclidean norm. The identity vector and identity matrix are denoted as 1p and 1p×p, and
similarly as 0p and 0p×p as the zero vector and zero matrix.

A temporal sequence of vectors p over time is described as a trajectory ~p := (p1,p2, . . . ,pT ),
using the time-index convention pt, where t represents the time. The first-order time deriva-
tive is denoted as ṗ. In order to increase readability, the time indexing may be omitted and
every variable is expected to be denoted as pt. For these cases, the temporal successor and
predecessor are emphasized as p′ := pt+1 and p− := pt−1, where := expresses equal by def-
inition in the scope of this thesis. Similarly, the posterior as e.g., in Bayesian inference is
denoted as p

+
. In case an algorithm is run in a cyclic manner, the current iteration is indexed

as p[k].

If we refer to a member of containers such as sets, lists, vector, etc. we denote pi as a specific
scalar value of the former. In contrast to vectors, lists are only used within algorithms, while
we denote sets as p. For sets, we further denote the union as ∪, the intersection as ∩, the
set-equality as ≡, the difference as \ and the empty set as ∅. In order to represent the size
of vectors, we use |p|. If |p| is applied on sets, the cardinality is used. Eventually, we denote
hierarchical systems by denoting layer k as {k}p.

In the context of multi-agent settings, p is the scalar variant that is not assigned to any
specific agent. In contrast to that, p(i) represents a variable explicitly assigned to agent i,
while (p)i∈NA

denotes the joint team-analogue of said variable over all agents. For the sake of

brevity, (p)i∈NA
is most commonly denoted as p. Similarly, p(−i) wraps all elements of (p)i∈NA

1This convention does not hold for typed letters
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1.5 Thesis Outline and Summary of Research Contributions

except p(i) . Within dyadic HRC, p(H) expresses the variable being assigned to the human
and p(R) to the robot. State-spaces are denoted in calligraphic letters, e.g., the action-space
A := {A(H) ,A(R)}, with the exception of N p expressing a Gaussian distribution over p. In case
multiple variables need to be indexed identically, we denote this by wrapping the dedicated
variables in tuples, e.g., we simplify

(a, b, c)(−i) := a(−i) , b(−i) , c(−i) .

In the context of stochastic variables, we denote probability density functions (PDFs) as
P[p] and conditionally dependent PDFs as P[p1 | p2]. Similarly, Ep1∼ρ(p2)[] and Varp1∼ρ(p2)[]
symbolize the expectation and variance of random variable p1. This variable p1 follows a PDF
ρ(·), which depends on p2; and where (·) represents a blank input.

If p is used to optimize an objective, the optimal solution is denoted as p∗. Within regression
or empirical evaluations, for which the actual ground-truth is known, we denote the ground-
truth as p?. In case either the true optimum or ground-truth is estimated from collected
experience, i.e., evidence, we denote the estimate as p̂, the currently best performing sample
as p~ and the worst performing observed data sample as p�. If a function is approximated
by means of neural networks, we use †p to denote a target network.

For kinematic robot chains, we refer to the origin of the chain as base ba, the end-effector as
ee, and the tool as to. Coordinate transformation matrices are denoted as zT y and rotation

matrices as Rz
y, as a transformation / rotation from y to z. We denote Rϕ,Rθ and Rψ as the

rotation matrices around coordinate axes ex, ey and ez. Regarding translational notations,
bapeeto describes a vector p pointing from the end-effector to the tool, expressed in the base-
frame. If no explicit reference frame is provided, the variable is given w.r.t. ba for robotic
systems and w.r.t. the world-frame for generic settings.

Eventually, for Boolean values we denote True and False as > and ⊥, and denote a logical
AND as ∧ and a logical OR as ∨.

1.5 Thesis Outline and Summary of Research Contributions

As mentioned above, this thesis tackles three orthogonal research areas in the context of
robots interacting in partially observable domains, as depicted in Figure 1.1. As a result,
the following chapters are grouped into three individual and self-contained sub-parts. For
every chapter, a short abstract is added that summarizes the main content of each chapter
while also highlighting any possible pre-publications that may exist for the dedicated chapter.
In contrast, any chapter that misses such a reference contains a new contribution that has
not yet been published. To summarize the contributions of this thesis w.r.t. scientific pre-
publications, that have been collected within this thesis, a concise summary of the individual
parts closes this chapter.

First, the advances in interactive HRC are outlined in Part I, as visualized in the upper left
hand side of Figure 1.1. As this part contains a collection of individual methods, we first
outline the current state-of-the-art in HRC in detail in Chapter 2. Furthermore, Chapter 2
sketches the preliminaries of the presented methods in Part I. Following this, we outline the
scientific contributions in the context of dyadic interactive HRC along the subsequent chapters
in the presented order:
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E
E E

The Interactive Cobot

EE E

cobot

Dyadic HRC – Chapter 2, 3, 4, 5

EE E

cobot

EE E

R(2)

EE E

R(N)

MARL – Chapter 6

EE E

cobot

Advanced Manipulation of Unknown Objects – Chapter 7, 8, 9

Figure 1.1: Topological overview of the remainder of this thesis. Each box represents a sub-part of
the thesis and consists of the dedicated chapters as listed below the dedicated box. For each individual
part, the major source of uncertainty is highlighted by a noisy edge.

• a novel concept on incorporating legibility in the decision-making of robots within HRC
is outlined in Chapter 3, which has been published in Zhu et al. (2017).

• the first application of game-theory in HRC is outlined in Chapter 4, which builds upon
internal work (Stahl, 2016) and has been published in Gabler et al. (2017), Ozgur et al.
(2016).

• finally the findings from Chapter 3 and Chapter 4 are summarized by outlining an
extended interaction framework in Chapter 5. In detail, a conceptual framework for
interactive HRC is outlined that explicitly takes human decisiveness into account, and
bares potential for future extensions – such as task and motion planning.

Building upon the results on dyadic interactive HRC, the concepts of game-theory are trans-
ferred to the area of multi-agent interaction. Thus, the thesis enters the field of multi-agent
domains – i.e., the upper right hand side of Figure 1.1 – namely MARL in Part II. Within
this part, a novel hierarchical learning framework is proposed, that allows to combine model-
based with model-free RL by introducing a dynamics-aware hierarchy and representation of
the environment. The presented results have been motivated from the findings collected
in Part I and Ackermann et al. (2019), and extend preliminary results collected in internal
work (Ackermann, 2018, Krockenberger, 2019).

Followed by the analysis of (multiple) decisive individuals interacting with each-other, the
final part of this thesis outlines various – yet independent – aspects of robots interacting with
unknown environments or objects, as visualized in the bottom of Figure 1.1. As each chapter

8



1.5 Thesis Outline and Summary of Research Contributions

in Part III is independent of the others, regarding their application as well as the underlying
method, we omit a separate introduction and conclusion for this chapter and rather classify
this part as a collection of individual research projects. As a consequence, the summary and
conclusion of Part III is found in the overall conclusion of this thesis in Chapter 10. Briefly
summarized, the individual scientific contributions of the individual chapters in the area of
robots interacting in stochastic environments are given as:

• Chapter 7 proposes a novel method for geometric knowledge refinement from hap-
tic environment feedback. This method uses concepts from autonomous navigation,
namely simultaneous localization and mapping. The presented work builds upon inter-
nal work (Maier, 2019) and has been published in Gabler et al. (2020b) as well as Gabler
et al. (2020a).

• Chapter 8 outlines a novel grasping method, that is specifically tailored to industrial
robots, which usually miss the opportunity of compensating for misalignment in a force-
sensitive manner. The results have been published in Gabler et al. (2022b).

• Chapter 9 outlines the controller and the applied concepts on tuning the parameters
online by means of Bayesian optimization with unknown constraints in a sample-efficient
manner. The presented work is also available in Gabler et al. (2022a) and Gabler and
Wollherr (2022).

Beyond the contributions to the state-of-the art as outlined in this thesis, a collection of avail-
able software-modules has been generated, for which a detailed list is found in Appendix A.
Eventually, we close this thesis with a short summary of the results obtained within this thesis
followed by a brief outline on future research directions or projects in Chapter 10.
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Part I

Interactive Action-Selection within
Human-Robot Collaboration
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2
Preliminaries and Background

Chapter Abstract

This chapter outlines the research field evaluated within this part of the thesis, namely
the interactive decision-making for human-robot collaboration. After introducing the
general topic setting, the current state-of-the art in this field is sketched out in detail.
Given the presented work, the scientific contributions in this research field will be
outlined in the subsequent chapters.

Eventually, this chapter closes with introducing the fundamental methods used in the
remainder of this thesis-part: game-theory and autonomous planning.

While experts in the field may skip this chapter, our main motivation is to familiarize
the reader with the notation and the general problem setting before diving into the
insights of our research work.

13



2 Preliminaries and Background

Within this part of the thesis, a special emphasis is set on the decision-making during the
interaction of humans and robots. More precisely, this interaction is evaluated in the con-
text of pursuing a joint task, which has been established in literature under the umbrella
of human-robot collaboration (HRC) for industrial assembly (Bauer et al., 2008). Robots
are omnipresent in manufacturing halls across a wide range of applications, since the third
industrial revolution in the 1970s. Nevertheless, robots are still mostly limited to repetitive
tasks and manipulation is error-prone when dexterous tasks are involved. Full automation of
an assembly line may either not be possible or come with uneconomically high costs, partic-
ularly for small enterprises. The more plausible solution is to introduce HRC into industrial
assembly lines to mutually complement human and robot strengths instead.

For a successful collaboration, however, all agents involved have to plan, choose and execute
their actions considering the mutual interference of each action taken. The main challenge
when interacting with a human is that unlike robots, humans do not necessarily follow the
same sequence of actions even when a detailed plan is provided. Most state-of-the-art methods
simply adapt the actions of robots to human behavior. Nonetheless, an artificial agent should
be able to make use of human adaptivity or take this divergent behavior explicitly into account
within an HRC-decision-making framework. We propose that one should not only analyze
human behavior but also mutual interference among the human-robot team (HRT). Motivated
by this, the following main research hypotheses have been evaluated within this part of the
thesis:

• the actual human state is subject to partial observability. Within HRC it is thus benefi-
cial to carry out an estimate over the current human state of mind by means of Bayesian
beliefs. Using explicit transition models of the human state can thus improve human-
robot interaction (HRI) and provide new capabilities to robotic agents.

• within an interaction of humans and robots, it is beneficial to not only model or pre-
dict human behavior as dynamic systems or to consider the worst possible outcome of
an interaction. Instead, we propose that it is favorable to model humans as decisive
individuals who adjust their decisions to the behavior of the robot.

• humans are acting as decisive individuals, which can be expressed mathematically. Given
this, observed human behavior can be compared against expected human behavior to
eventually derive the likelihood of predicting human behavior correctly.

As these research hypotheses have been evaluated across a broad variety of research projects,
we continue with an extensive overview of the state-of-the art in HRC and HRI. Based on
this, we derive the exact sub-problems that are analyzed in detail in the upcoming chapters.
The main emphasis of this part is laid upon the autonomous decision-making – i.e., the
autonomous action-selection and task allocation among humans and robots. Nonetheless, the
interaction-model visualized in Figure 2.1 highlights that the obtained feedback from humans
is also subject to the actual execution of selected actions. Thus, the following literature review
recaps recent advancements along the individual components of this interaction scheme. Still,
it must be noted that this review does not cover the full range of research fields as prominent
research fields e.g., learning from demonstration (LfD) (Argall et al., 2009, Atkeson and Schaal,
1997, Ravichandar et al., 2020), geometrical reasoning (Chen et al., 2011, Garg et al., 2020)
or physical human-robot interaction (pHRI) (Ogenyi et al., 2021) are omitted. In addition,
crucial aspects such as safety in HRI require to cover aspects that exceed the aspects of this
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Figure 2.1: Simplified perception-cognition-action loop, cf. Thrun et al. (2005) for a generic HRC-
scenario. In here the robot needs to generate a suitable behavioral model of the human coworker, who
in return selects new actions based on previous robot behavior at each iteration.

literature review, cf. Lasota et al. (2017). Namely, we omit aspects of handling collisions and
refer to Haddadin et al. (2017), Zhang et al. (2020b) in this regard.

2.1 State-of-the-Art in Mutually Adaptive Human-Robot
Collaboration

The interaction in HRI can be categorized in three categories (Choudhury et al., 2019):

• myopic robot behavior – i.e., neglecting the influence of humans,

• interacting with a (stochastic) model – either manually designed or obtained from data,

• interaction with a decisive counterpart – using an internal cost-metric or objective.

While the former found broad application in early robot applications, research has spent most
effort on improving the latter two. As a result, research projects have found that humans favor
robots being adaptive (Lasota and Shah, 2015, Nikolaidis et al., 2017a) and supportive (Dragan
et al., 2015b) during collaboration. Eventually, some studies stated that the role of robots
should go beyond solely being adaptive companions (Schulz et al., 2018). We continue with
an insight into how these ideas have evolved in human behavior modelling.

2.1.1 Human Behavior Modelling

Early approaches in human behavior modeling within HRI such as human-motion prediction,
human-intention prediction or human-preference learning often model humans as stochastic
systems that can be identified from collected experience data (Koppula and Saxena, 2016).
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2 Preliminaries and Background

Using these models, a robot is then able to adjust its own action online, thus distinctly
improving the collaboration. Even though human-motion prediction is an imminent problem
in this field and closely related to subsequent work of this part of the thesis, we refer to the
detailed literature surveys (Aggarwal and Cai, 1999, Hiatt et al., 2017, Rudenko et al., 2020)
for further insights. The work conducted in this thesis also contributed to the publications
in Dinh et al. (2015), Ozgur et al. (2016) in this area, for which a subsequent publication has
been produced in the meantime (Oguz et al., 2018b), which also provides a solid overview over
said field. Some selective results on fitting stochastic parametric models for human motion
models are given as Gaussian mixture models by Mainprice et al. (2016) or probabilistic
motion primitives by Maeda et al. (2017). The evaluation of interaction dynamics proposed
by Jarrassé et al. (2012) highlighted that even within pHRI human behavior can be classified
based on the current interaction scenario.

Aside from human-motion prediction, additional work evaluated human decision-making. Pre-
liminary findings from psychology, such as Sebanz et al. (2006), Sebanz and Frith (2004),
indicate that predicting actions can be facilitated if all agents know the task and the collabo-
rative environment. Consequently, humans tend to interpret actions w.r.t. a given goal (Csi-
bra and Gergely, 2007, Gergely et al., 1995). This is facilitated by the theory of rational
actions (Gergely and Csibra, 2003) in the field of teleological reasoning (Csibra and Gergely,
2007) within cognitive science, where chosen actions pursue to achieve a common task. Early
approaches, such as a collaboration architecture of Schrempf et al. (2005) apply dynamic
Bayesian networks as a probabilistic approach to model human uncertainty and improve pre-
dictions by triggering task-specific reactions. On the other hand, Broz et al. (2013) provide
an HRI system based on time-state aggregated partially observable Markov decision processes
(POMDPs), such that robots must estimate the goals of human agents as hidden variables
from observations.

Eventually, selective research projects have incorporated the concept of theory of mind to
account for human cost-metrics. Initial models thus explicitly model human adaptation.
Thus, Nikolaidis et al. (2017a) modeled human adaptivity as a Bayesian belief and obtained
a robot policy by solving a mixed observable Markov decision process (MOMDP) (Ong et al.,
2010). The basic analysis of human rationality on the other hand has been discussed in
a collection of interesting theoretical work from human behavior studies in psychology and
economics. Similarly, Fridovich-Keil et al. (2020) added an uncertainty-metric in the current
human-cost metric to evaluate the confidence on predicted human behavior.

2.1.2 Human-Aware Motion Planning

Within human-aware motion planning, a key interest has been set on collision-avoidance,
which requires a reliable estimation of human behavior. For example, Kulic and Croft (2005,
2006, 2007) proposed collision-aware motion planners, where the effective inertia is adjusted
w.r.t. the distance between human and robot. Early approaches outlined collision avoidance by
means of cost-maps, cf. Sisbot et al. (2007) and Hoffman and Breazeal (2007), who proposed
co-navigation methods that incorporate human-aware safety metrics. This approach has also
been applied directly from point-cloud data by Flacco et al. (2015).

Rather than accounting for most likely human motion, another line of research in human-
aware motion planning lies in guaranteed safety. Thus, Pereira and Althoff (2018) proposed

16
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a safe motion-controller by applying reachability analysis for human kinematics.

Another area of motion planning research that omits the interaction is given by pure opti-
mization. In here the human behavior is directly optimized and optimal human behavior
is assumed. Wang et al. (2018) propose a simplified point-mass model to generate human
motion samples in combination with optimization over predefined objectives. In the aspect
of optimization-based motion planning, state-of-the-art motion planning algorithms such as
covariant Hamiltonian optimization for motion planning (Zucker et al., 2013), TrajOpt (Schul-
man et al., 2014), stochastic trajectory optimization for motion planning (Kalakrishnan et al.,
2011) or Gaussian process motion planner (Mukadam et al., 2018) have been applied to HRC
applications (Bari et al., 2021, Hayne et al., 2016, Oguz et al., 2017, Pellegrinelli et al.,
2016). Closely related, various optimization-based motion planning algorithms assume simple
dynamic systems to model human behavior, which eventually allows for dynamic obstacle
avoidance (Alonso-Mora et al., 2018). On the other hand, a reverse scheme has been applied,
where human collision avoidance behavior has been replicated on robotic manipulators, e.g.,
Oguz et al. (2018a).

While the approaches from above incorporate a human objective to be optimized, they neglect
the aspect of interaction and only partially incorporate the stochasticity. In contrast to that,
various approaches have focused on modeling human behavior as a stochastic – yet param-
eterized – system, that is identified from observed data. Famous examples are probabilistic
motion primitives (Paraschos et al., 2018), interaction primitives (Ewerton et al., 2015) or a
mixture of interaction primitives (Amor et al., 2014).

Eventually, the concept of theory of mind has been applied within motion-planning ap-
proaches, that intend to transfer information between humans and robots, such as legible
or predictable motion (Dragan et al., 2013, Dragan and Srinivasa, 2014). Extensions of the
work carried out within this thesis also allows to update human preferences from online feed-
back (Dinh et al., 2019).

2.1.3 Human-Centered Task Allocation and Planning

In the context of generating suitable decision-making algorithms for robots in HRC, the most
prominent line of research lies in interacting with a (stochastic) model. In here the ma-
jor challenge is given in predicting human decisions from (noisy) models, that a robot can
then react from. To plan actions in the presence of humans, Gombolay et al. (2015) and
Hawkins et al. (2014) outline promising methods of exploiting task knowledge in the pres-
ence of temporal uncertainty of human actions. Motivated from early results in multi-agent
interaction planning (Mausam and Weld, 2008), timing is the major source of uncertainty.
Alternative methods are given as timed Petri-nets (Chao and Thomaz, 2016) or Bayesian net-
works (Baraglia et al., 2017). In return, temporal aspects can also be included in the timing
of robot actions to communicate intentions (Zhou et al., 2017). Besides temporal uncertainty
Nikolaidis et al. (2015a) propose a method that is inspired by the way humans teach each
other new tasks. They use MOMDPs and cross-training to train the underlying reward func-
tion for an HRC-scenario that incorporates human preferences. Exceeding the aspect of time,
stochastic behavior models – such as human trust and fatigue – have been added to HRC
approaches using Petri-nets (Hu and Chen, 2017, Wu et al., 2017). Similarly, Petri-nets have
been proposed to cope with finding pareto-optimal allocations for multi-objective tasks (Feng
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et al., 2016). Emphasizing the importance of trust (Hoff and Bashir, 2015) has also encour-
aged to track the human trust as a Bayesian belief (Chen et al., 2018). In this context of
explicitly incorporating human uncertainty within an autonomous decision-framework, this
thesis has contributed to the community by the results outlined in Chapter 3.

Similar to human-aware motion-planning, a second line of research solves the task-allocation
problem for HRT by assuming a cost-metric for all agents and seeking towards the glob-
ally optimal team-policy. The approaches incorporate joint objectives in the form of cost-
maps (Mainprice et al., 2012, 2011) or individual objectives that are solved by means of mixed-
integer linear programs(Chen et al., 2014, Gombolay et al., 2018) or linear temporal logic (Guo
and Dimarogonas, 2017).

An additional challenge is given by finding a feasible task allocation among human(s) and
robot(s) for complex planning problems in the area of task and motion planning (TAMP).
Early approaches of TAMP (Lagriffoul et al., 2014) have focused on bridging early results from
the planning community achieved in the early 70s (Fikes and Nilsson, 1971) to the execution
level of robots. Even for the single agent systems, coping with perception uncertainty is a
key-challenge, often resolved by means of POMDPs (Kaelbling and Lozano-Pérez, 2013). Fur-
ther adding optimization objectives have improved early results (Hadfield-Menell et al., 2015,
2013, 2016a), such that Toussaint (2015) proposed the first end-to-end optimization TAMP
algorithm.

Building upon these results, human-aware planning frameworks have been developed. De
Silva et al. (2015) outline the hierarchical agent-based task planner (HATP), which has also
been integrated in full HRI frameworks (Pandey, 2012), in order to plan tasks jointly for
humans and robots such that actions can be easily allocated among them. A hierarchical
planning framework has been outlined by Darvish et al. (2021) that allowed for multiple task
sequences to be adopted online by means of hierarchical planning. An initial proposal for
an HRC top-down assembly planning architecture has been laid out by Johannsmeier and
Haddadin (2017). In their model the human is incorporated based on a predefined cost- and
performance metric which remains constant. Similar to the planning framework from Raessa
et al. (2020), human actions are assumed to be given as discrete action-set of deterministic
goal-poses. Introducing semi-Markov decision processes by Toussaint et al. (2016) in their
relational activity process (RAP) allows to combine optimizing over task objectives while
accounting for temporal uncertainty. Given this, this method was extended with relational
human preference models by Munzer et al. (2017). These methods explicitly assume to have
access to a well-defined human cost-metric – such as ergonomics (Busch et al., 2018) – but
neglect the influence between robot and human actions.

2.1.4 Game-Theory within Human-Robot Interaction

Game-theory describes the mathematical study of decisive individuals interacting with each
other. As robots are favored to act autonomously within everyday tasks even if humans are
involved, it becomes evident that HRC forms a game of human(s) and robot(s). While early
applications and formulations of game-theory have been developed for mathematics (Shapley,
1952) and economics, the first applications within robotics were multi-robot systems. In here,
concepts like the Bayesian game approximation algorithm, also defined as partially observ-
able Markov game (POMG) have been evaluated (Emery-Montemerlo, 2005). By modeling the
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reactive behavior of other agents as stochastic transition functions, POMGs have been replaced
by POMDPs (Kumar et al., 2015) or decentralized partially observable Markov decision pro-
cesses (DEC-POMDPs) (Amato et al., 2007, 2019, Dibangoye et al., 2016, Omidshafiei et al.,
2017) in order to achieve task-allocation for large teams of robots. Eventually, the concept of
multi-agent task allocation has been using POMGs, POMDPs or DEC-POMDPs is covered in-
tensively by the machine learning-community (Lanctot et al., 2017, Silver et al., 2016), which is
covered in detail in Part II. Within control-theory, differential game-theory is mainly applied
for robust control and decentralized control (Vamvoudakis and Lewis, 2011, Vamvoudakis
et al., 2012). In here, robustness against disturbances (Jiao et al., 2016) or finding a stable
team-consensus are the major objectives (Zhang et al., 2017). These approaches require full
observability and controllability, which contradicts an application in HRC. Nonetheless, Li
et al. (2015, 2016) proposed a human-robot interaction game as an application of differential
game-theory in pHRI.

Similar to the concept of inverse reinforcement learning for human behavior modeling, the
concept of inverse game-theory has been introduced, where inverse-equilibria (Waugh et al.,
2011) for inverse games (Kuleshov and Schrijvers, 2015) are regressed from observations. In
a dyadic context this is outlined as a cooperative inverse reinforcement learning by Hadfield-
Menell et al. (2016b). The authors also outlined that it is non-trivial to design a suitable
reward function by hand for interactive tasks (Hadfield-Menell et al., 2017a,b) and thus even-
tually proposed a factored POMDP solution for the cooperative inverse reinforcement learning
problem (Malik et al., 2018).

The major field of robotic applications using game-theory are autonomous driving and mobile
robotics. Within urban navigation, Turnwald et al. (2016) analyze the behavior of humans in
interactive urban navigation from a game-theoretic perspective and state that the decisions
of humans can be depicted as the pareto-optimal equilibrium of an interactive navigation-
game. These findings have eventually been validated on empirical subject-experiments in
Turnwald and Wollherr (2019). An early application in autonomous driving has been outlined
by Bahram et al. (2015), who model autonomous driving on a crowded highway as a game
against nature, in which an autonomous car plays a game against player nature, i.e., traf-
fic, thus retrieving its driving trajectory as a result. Closely related to this, Sadigh et al.
(2016a) propose a best-response policy approximation to ease up scaling, while also learning
human-cost functions via inverse reinforcement learning. Recent concepts apply the concept
of Stackelberg-equilibria and extensive-form games. Li et al. (2018a) apply a k-level decision
framework where levels zero to two are evaluated and actually reflect the models proposed
in Choudhury et al. (2019). Fisac et al. (2019) proposed a hierarchical game-theoretic plan-
ning framework for autonomous driving that exploited the concept of Stackelberg-equilibria
for a strategic maneuver planner in combination with low-level controller that applied a sim-
plified model predictive control.

The work presented in Chapter 4 – and in Gabler et al. (2017), Ozgur et al. (2016) – was the
first application of game-theory within online decision-making for robotic manipulation. This
idea has taken up by other researchers since then, e.g., Nikolaidis et al. (2017b) have applied
a game-theoretic interaction-scheme to communicate a common task to a human. Similar to
the experimental task of approach presented in Chapter 3, only the robot is fully aware of the
current task.
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2.2 Preliminaries

Before outlining the individual contributions collected within this thesis in the field of inter-
active HRC, this section outlines the preliminaries needed for the remainder of this thesis
part. First, the examined setting needs to be clarified in detail. As mentioned before, this
work aims in particular on well-defined environments, such as industrial HRC. Within these
applications, the human and robot are fully aware of the task and the necessary sub-steps to
achieve said task. In addition, the number of sub-steps is finite, such that the task can be
solved within a finite time, where minimizing the overall time is a core objective of the collab-
oration. Regarding the human coworker, we expect humans to act partially rational, i.e., that
on the one hand there exists an unknown cost-function for a human that allows to regress the
human behavior policy, and that said behavior policy is not contradicting the objectives of
the robot agent. Last but not least, we limit perception uncertainties of the environment to
the behavior of the human subject rather than object or obstacle uncertainties.

2.2.1 Game-Theory

Game-theory describes the theory of decisive individuals interacting with each other. The
basic representation of game-theory is defined as the normal-form game:

Definition 2.1: Normal-form game

Based on Shoham and Leyton-Brown (2008), a finite normal-form game is fully defined
by the following components:

• A =
{
A(1) ,A(2) , . . . ,A(NA)

}
is a finite set of NA agents.

• A =
{
A(1) ,A(2) , . . . ,A(NA)

}
is a collection of finite action-sets per agent i.

• π : S × A 7→ [0, 1]NA is a joint policy that maps the state to an action for each
agent.

• J =
(
J (1) ,J (2) , . . . ,J (NA)

)
are player-specific payoff functions

J (i)(a(i) | a(−i) , s) 7→ R ,

that map the current action-profile (a(i) , a(−i)) at s to a numeric value for each
i ∈ [1, NA].

A normal-form game can thus be represented by an NA-dimensional payoff-matrix. Within
the context of dyadic HRC, these components are given as NA = 2, A := {A(R) ,A(H)} and
A := {A(H) ,A(R)}. As a mathematical game can be designed for a variety of tasks, we introduce
some key-properties from Shoham and Leyton-Brown (2008) below, which are of particular
relevance for this thesis-part:

• Finite Games: A game of decisive individuals can be characterized as finite if and only
if in a finite set of players each player can only choose from a finite number of provided
actions.
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• Rational Players: In a game of rational players, the players are assumed to maximize
their (expected) payoff. This also implies that the player has access to a payoff value
for each available action and player.

• Perfect- and Complete-Information Games: In a complete-information game it is
assumed that the applied utility functions are known, but the moves of other players
are unknown. In perfect-information games everything is known.

• Zero-Sum Game: In a zero-sum game the sum of all players is always zero. As a
result, the payoff of one player is inversely coupled to the payoff of the opponent in a
dyadic setting.

• Cooperative Game: In a cooperative game, players are able to communicate between
each other or a selective sub-group of players.

Even though the term is not solely restricted to game-theory, the definition of the team-
decomposition is of importance within an interactive context.

Definition 2.2: Team Decomposition

Let A be the set of all available actions to accomplish a given task T for a fixed HRT.
If A(H) ≡ A(R) ≡ A holds, the HRT is said to be strictly homogeneous. In contrast to
that, the HRT is said to be strictly heterogeneous if A(H) ∩A(R) ≡ ∅ holds. The HRT is
defined as a heterogeneous HRT if A(H) ∩ A(R) 6≡ ∅ and A(H) 6≡ A(R) holds.

We continue with sketching common methods on solving games, i.e., how to obtain a suitable
team-policy.

2.2.2 Solving Games

Solutions for games are optimal strategies in which all agents maximize their payoff functional
under the influence of other players. This can be best explained from the concept of best-
response (br) and ε-best-response (ebr) policies.

Definition 2.3: (ε-)best-response policy

Given a joint policy π(−i) , an action a
(i)

j is called an ebr to π(−i) according to Shoham
and Leyton-Brown (2008) if and only if

J (i)

(
a

(i)

j

∣∣∣π(−i)

)
≥ J (i)

(
a

(i)

k

∣∣π(−i)
)
− εbr, ∀a(i)

k ∈ A(i) , k 6= j ,

i.e., J (i) cannot be increased by more than εbr by deviating from a
(i)

j . If εbr = 0, a(i)

j

is called a br.

Nash (1950) outlined a team-strategy that allows to converge an Markov game (MG) to a
stable br-strategy collection, called Nash-equilibrium (NE), which has also been extended to
ε-Nash-equilibriums (eNEs) as the analogue optimal ebr-strategy by Kearns (2007).
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Definition 2.4: (ε-)Nash-equilibrium

According to Nash (1950), an action profile πNE is a NE if and only if

J (i)(πNE) ≥ J (i)
(
a

(i)

k

∣∣π(−i)
)
, ∀a(i)

k ∈ A(i) , a(i)

k /∈ πNE, ∀i ∈ N ∧ i ∈ [1, NA] , (2.1)

i.e., each player’s action is a br to joint policy πNE.
Analogously to that, Kearns (2007) stated that an action profile π

NEεbr is an eNE if
and only if

∃ εbr > 0, s.t.J (i)(π
NEεbr ) ≥ J (i)

(
a

(i)

k

∣∣π(−i)
)
− εbr,

∀a(i)

k ∈ A(i) , a(i)

k /∈ π
NEεbr , ∀i ∈ N ∧ i ∈ [1, NA]

, (2.2)

i.e., each player’s action is an ebr to joint policy π
NEεbr .

Nash (1951) further states that for any game there exists an NE in the space of mixed
strategies. By applying Definition 2.1 to pure, i.e., deterministic strategies or policies π,
there is no guarantee that a NE exists for every game. Nonetheless, as stated by Kearns
(2007), there exists an εbr such that an eNE in the space of pure strategies can be found,
such that no player is able to improve its expected payoff by more than εbr by deviating from
π

NEεbr .

While the concepts of NE describes a convergence for decision-problems, where all agents are
acting identically, the concept of Stackelberg-equilibria introduces a leader-follower schematic
at each decision-step.

Definition 2.5: Stackelberg-equilibrium

According to Breton et al. (1988), the global br-policy of NEs is simplified by analyzing
the response-behavior of agents, if the leader reveals the action-choice. Thus, for each
action of the leader, denoted as a(j) = a(leader) , a Stackelberg-equilibrium is given as

J (i)(πSE) ≥ J (i)
(
a

(i)

k

∣∣ a(leader)
)
, ∀a(i)

k ∈ A(i) , a(i)

k /∈ πSE,

∀i ∈ N ∩ i ∈ [1, NA] ∩ A(i) 6= A(leader)
, (2.3)

i.e., each agent responds with its br-policy.

Eventually, the concept of pareto-optimality describes a joint policy that focuses on team-
optimality rather than on consensus stability. The definition of pareto-optimality builds upon
the idea of pareto-dominance.

Definition 2.6: Pareto-dominance

According to Shoham and Leyton-Brown (2008), pareto-dominance of an action profile
is defined as

F pareto(πj , πk) :=

{
> if J (i)

(
πj
)
≥ J (i)(πk) ∀A(i) ∈ A

⊥ ∃ i, j, k : J (i)
(
πj
)
< J (i)(πk)

. (2.4)
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Given this, the concept of pareto-optimality can be defined to obtain a team-optimal strategy
within a multi-player game.

Definition 2.7: Pareto-optimality and pareto-dominance

Given the definition of pareto-dominance from Definition 2.6, a pareto-optimal action
profile is formally defined as

F pareto
dom (πj) :=

{
⊥ ∃ k : F pareto(πj , πk)

> else
. (2.5)

2.2.3 Environment Model and High-Level Planning

In the following chapters, the term high-level planning is reappearing. As the definitions
of terms like task, action or skill varies across literature and research field, we outline the
concept of agent-centered planning as applied in the scope of this thesis. The presented
concept is closely related to the RAP of Toussaint et al. (2016) and the HATP of De Silva
et al. (2015). The RAP allows for concurrent actions – denoted as activities, i.e., to include
temporal duration models for each action during planning, while the HATP solely applies
action-primitives using first-order-logic (FOL). In the stochastic planning domain, concepts
such as relational Markov processes (Dzeroski et al., 2001) and games (Finzi and Lukasiewicz,
2004) rely on a FOL-representation of the environment state. Thus, we denote the main
components of logic programming 1:

• An entity, or a constant, is a generic object or an agent within the planning domain,
denoted as E.

• A variable is a placeholder for an entity.

• A term is either an entity or a variable.

• A predicate is a FOL symbol that represents relations or conditions of arbitrarily many
entities.

• An atom represents either a term or a predicate applied on a tuple of terms in the form
po
(
pt1, p

t
2, . . . , p

t
n

)
← >/⊥ with Boolean value, where po is a predicate, and each pt a

term.

• A fluent represents a generalized version of an atom, which allows non-Boolean values
to be incorporated.

• conjunctions represent sets of atoms and/or fluents.

• formulas are conjunctions of fluents or atoms, that can contain free variables.

• grounds are terms, formulas, etc. without free variables.

1We follow the Prolog notation, i.e., predicate symbols and constants begin with lower case, whereas capital
letters express variables.
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l1 l2 l3 l4

b1 b2E
E E

r1

h1

Figure 2.2: This figure shows a toy example for an HRC-planning problem: a collaborative blocksworld
domain, cf. Nau et al. (2004). In here the knowledge base K(s) is used to drive an initial state to a
desired goal state, each of which consists of a set of logical grounds.

Based on these definitions, the task-progress of an HRC scenario consisting of multiple entities
can be represented as relational planning states in the form of logic formula groundings. In
addition to logic atomic formulas, fluents contain non-boolean values, e.g., the weight of an
object, to meet the requirement of continuous or categorical random variables. In the context
of hierarchical planning, a Planning Problem2 is then defined as K := (G, s0, D), where G are
predefined goal states, s0 is the initial state and D describes the Planning Domain. The later

is defined as D :=
(
Pprim, M

)
, where Pprim is a collection of primitive actions and M contain

abstract methods (Nau et al., 2004). These abstract operators both consist of relational condi-
tions given as formulas, called preconditions and effects. The first one regulates if the operator
is applicable at a given relation state, while the later contains the eventual modification of
said relational state of the environment, when the operator is applied. The difference of these
operators is given by their actual content. While we refer to Lloyd (1987), for further insights
into logic computation, we visualize such a planning problem on a toy example. As pictured in
the Hierarchical Task Planning frame of Figure 2.2, we outline a dyadic pick-and-place HRC-
scenario, denoted as collaborative blocksworld in related work (Munzer et al. (2017), Natara-
jan et al. (2011)). The domain entities consist of agents r1,h1, blocks b1,b2 and locations
l1,l2,l3,l4. By further defining super types, e.g in here agent-r1,h1, place-block,location,
the typed atoms on(block,place),holds(agent,block) and fluent weight(block)3 can be used
to describe the initial state s0 depicted in Figure 2.2 as

s0 = { blue(b3), blue(b4), on(b1,l1), on(b2,l2), weight(b1)=1.3, weight(b2)=2.5 } .

All atoms not listed in the state are assumed to have value ⊥ and unlisted variables and fluents
are assumed to not exist. While a state has to be grounded, a goal state can also be provided
as a set of relational formulas, e.g., for the example of Figure 2.2 the goal can be described
as on(A,l4), weight(A)>1.0. This goal subsumes all states in which either b1 or b2 are on
l4. The domain is given by the method put(b-block,p-place) and the activities/primitive
pick(a-agent,b-block) and place(a-agent,b-block,p-place) with a duration of two time
steps each. The solution is then either put(b3,b1) or put(b4,b1), each of which resulting in
the activity-sequence pick→place.

2In the context of this thesis, the knowledge base symbolizes the planning problem of a task T.
3Note that units are neglected in this toy-example to improve readability.
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3
Legible Action Selection

in Human-Robot Collaboration

Chapter Abstract

This chapter focuses on the autonomous decision problem, where a robot interacts with
a human-coworker that may have imperfect knowledge about the task that needs to
be executed. As the robot has access to the actual task being pursued, a robot should
choose its actions in such a manner, that these actions help the human coworker to
identify the current task without the need of using explicit verbal or textual communi-
cation.

Thus, we formalize such problems in interactive assembly tasks as hidden goal Markov
decision processes (HGMDPs) to enable the symbiosis of human intention recognition
and robot intention expression. In order to avoid the prohibitive computational re-
quirements, we provide a myopic heuristic along with a feature-based state abstraction
method for assembly tasks to approximate the solution of the resulting HGMDP.

Eventually we evaluate the presented method in a user study with human subjects
in a round-based LEGO assembly. In here, we compare our method against a purely
efficient manner, that seeks to achieve the task in a minimum amount of time rather
than seeking for supportive actions for the human collaborators. The collected empirical
data support our claim that taking supportive actions help humans to identify correct
tasks while also decreasing the overall error-rate of the human-robot team.

Remark: A majority of this chapter was
previously published in Zhu et al. (2017).
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3.1 Introduction

As sketched out in Chapter 2, there exists a high demand for human-robot collaboration
(HRC)-applications. Introducing flexible robots into assembly lines and everyday activities
brings in a broad variety of challenges to the application and eventually to the robotic systems.
However, wherever there are such flexible applications available, the task description may also
suffer from ambiguity of individual sub-tasks. For such scenarios it is not only the robot system
that needs to cope with new challenges, but also the imperfect memory of humans. Thus, the
robot needs to make its intention clear to the human, ideally without verbal communication,
as installing communication modules for the robots can as well be uneconomic.

For example, consider an assembly robot that is limited to a set of nonverbal actions, how
should it behave to tell the human collaborator which task to carry out? More specifically,
given a partially accomplished task and the observed actions of the human collaborator, how
can the robot make its next actions intent-expressive, or legible? To answer this question, we
shortly recapitulate how human beings interpret actions of other agents.

Research in psychology suggests that human beings tend to interpret actions as goal-directed
(Csibra and Gergely, 2007, Gergely et al., 1995), i.e., humans attribute goals to other agents,
including robots (Kamewari et al., 2005), as the causes of their actions. One assumption of
action understanding, known as teleological reasoning (Csibra and Gergely, 2007), is based
on the principle of rational action (Gergely and Csibra, 2003), which states that actions
have the purpose to realize goal-states by the most efficient means available. This suggests
a formulation of action understanding as inverse planning or inverse reinforcement learning
(Abbeel and Ng, 2004, Hadfield-Menell et al., 2016b, Ziebart et al., 2008), where efficiency is
defined as maximizing the reward or minimizing the cost the agent receives in the environment.
Taking a probabilistic perspective, Baker et al. (2009) proposed a framework based on Markov
decision processes (MDPs) for action understanding and use Bayesian inference to compute
the posterior probability of a goal, conditioned on observed actions and the environment.

Based on these research results, legibility as a property of actions can be characterized. Dragan
et al. (2013), Dragan and Srinivasa (2013) define a legible motion as one that enables an
observer to quickly and confidently infer the correct goal. They point out that while legibility
and predictability sometimes can be correlated, they are not the same. A predictable motion
is formalized as motion that matches the human collaborator’s expectation given a goal. That
is, it is efficient with respect to the given cost or reward function for the goal, but a legible
motion can be and is usually inefficient. Stulp et al. (2015) show that legible motions can also
be generated using policy improvement through black-box optimization (Stulp and Sigaud,
2012), a model-free reinforcement learning approach, without knowing the underlying cost
functions. They improve the robot’s motion through direct trial-and-error interactions with
humans to decrease the time the humans need to infer the correct goal.

Contribution and Outline

In this chapter, we extend the notion of legibility to multi-step human-robot cooperative
assembly tasks where the assembly process is viewed as a sequential decision-making problem
similar to the ones studied in Hoffman and Breazeal (2007) and Nikolaidis et al. (2015b). The
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robot is required to establish a legible policy – a mapping from system states to actions –
such that the human collaborator can infer the unknown task goal correctly from the partially
built object as early as possible without verbal communication. We will refer to this as the
nonverbal legible assembly problem in later discussion.

In contrast to motion planning, the trajectory of assembly tasks is the building process of
the object, which is modeled in a discrete state space and affected not only by the robot but
also by the human collaborator. Therefore, it is necessary for the robot to infer the human
collaborator’s expectation of the task goal and adjust its policy accordingly. As legible actions
can be inefficient, we argue that employing legible policies only when the human collaborator
has a wrong expectation of the task goal, can avoid unnecessary inefficiency. Moreover,
inference of the human collaborator’s expectation of the task goal is beneficial especially in
scenarios where multiple goals are present, as disambiguating multiple goals simultaneously
can be hard. A more practical strategy is to compute the probability distribution over the
human collaborator’s expectation of the task goal and then choose the legible policy such that
only the wrong goal expectation with the highest probability is deviated from.

The contribution of this chapter is to unify human intention recognition and robot intention
expression in one framework by modeling the nonverbal legible assembly problem as a hid-
den goal Markov decision process (HGMDP), a special class of partially observable Markov
decision processes (POMDPs) (Fern et al., 2014), where the goal is the only partially observ-
able state variable. On the basis of the underlying task-related cost, or reward, we construct
a special form of reward function that promotes legibility, drawing analogy from previous
work (Dragan et al., 2013, Dragan and Srinivasa, 2013). The robot then maximizes the total
reward of legibility it collects during the assembly process.

As solving a finite-horizon HGMDP is PSPACE-complete even for deterministic dynam-
ics (Fern et al., 2014), another contribution of this chapter is to propose a myopic heuristic:
we first learn legible policies offline in reduced fully observable MDPs, and then estimate
the current human collaborator’s expectation of the goal online through belief updates in
the original HGMDP and adjust the robot’s policy accordingly. In addition, we introduce a
systematic way of state abstraction for assembly tasks to further limit the size of the state
space.

In the remainder of this chapter, we first illustrate in more detail the proposed framework
in Section 3.2 and the state abstraction method in Section 3.3. Then, we describe the human
subject experiment and analyze the results in Section 3.4. Finally, we conclude this chapter
in Section 3.5.

3.2 Nonverbal Legible Assembly Problem

We consider a nonverbal legible assembly problem in which the robot, R, has full knowledge of
the task goal, while the human, H, does not. Moreover, R does not observe H’s expectation of
the goal directly; rather, it only knows a set of possible goals of H and has to infer it from H’s
actions during the assembly process. R maintains a probability distribution over the possible
goal expectations of H and exploits this information to make the actual goal clear to H through
its actions without verbal communication.
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3 Legible Action Selection in HRC

3.2.1 Model Overview

Formally, we model the problem as an HGMDP. Using a factored representation similar to Ong
et al. (2010), we define it as a tuple

(
X ,Y,P[y0],A(R) ,A(H) ,O,T X ,T Y ,R (R) ,R (H) ,R leg, γ, y

?
)
:

• X is a finite set of fully observable task states x ∈ X .

• Y is a finite set of partially observable states y ∈ Y representing the goal expectation of
H, whose prior distribution P[y0] is given.

• A(R) is a set of actions for R and A(H) is a set of actions for H that can be observed by R,
i.e., the set of observations O = A(H) .

• T X (x, y, a(R) , x′ ) = P[x′ |x, y, a(R) ] and T Y(x, y, a(R) , x′ , y′ ) = P[y′ | x, y, a(R) , x′ ] are fac-
tored transition probability functions of the system.

• R (R)(x, y, a(R)) and R (H)(x, y, a(H)) denote the reward respectively for R and H taking the
action a(R) or a(H) in state {x, y}.

• γ is a temporal decay weight that balances long-term versus immediate rewards.

• y? ∈ Y denotes the actual task goal which is known beforehand only to R and which H

and R have to achieve.

A transition in this HGMDP proceeds as follows:

1. given a system state {x, y} ∈ X × Y, R makes an action a(R) ∈ A(R) , resulting in an
intermediate task state x‘ .

2. H makes an action a(H) ∈ A(H) according to a stochastic policy

π(H)(x‘ , y, a(H)) = P[a(H) | x‘ , y] 7→ [0, 1] ,

and this leads to the next state {x′ , y′}. It has to be noted that in general x‘ 6= x′ holds.

We assume that the transition of task states is deterministic with respect to the actions a(R)

and a(H) . As a result, the stochasticity in the transition solely stems from H’s policy.

In modeling the system, we only look at the states where R needs to make a decision; the
intermediate states and the effect of H’s actions are implicitly modeled in the transition prob-
abilities of the system; hence H is modeled as part of the environment. For simplicity of
notation, it is assumed that the task state x′ also encodes the preceding human action a(H) .

Now, R is required to maximize a special form of reward R leg promoting legibility in the
dynamics defined above. The total reward is discounted in time by the factor γ to give less
weight to rewards collected in the future. To formally define R leg, we first introduce two
intrinsic reward functions of the task to characterize rational or efficient actions.

This reward is composed of a high-level reward that promotes similarity towards the goal y
and a low-level physical reward associated with the specific action. Hence, actions can have
different rewards due to their energy consumption, difficulty, or safety, even if they have the
same impact on the similarity towards the task goal.
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x

y

o

x′

y′

o′

a(R)

Figure 3.1: The HGMDP system structure as a DBN. Shaded nodes are partially observable.

3.2.2 Reward of Legibility

Actions with high rewards defined above are greedily efficient; however, we want R also to take
inefficient actions that can make the actual goal clear when H has a wrong goal expectation.
To do that, we derive a reward function of legibility R leg for R from the principle of rational
action, i.e., H interprets R’s action by assuming R is acting efficiently towards the task goal

P[a(R) | x, y] ∝ exp
(
κ(R)

ratR (R)(x, y, a(R))
)
, (3.1)

where κrat is a parameter that H assumes how strictly R follows the principle of rational
action.

Note that the policy for R assumed above by H is only optimal in one step; for R to achieve
maximal accumulated reward till the termination, the corresponding POMDP must be solved.
However, it is highly unlikely that H would have such computational capacity; therefore, we
assume that it only considers a greedily efficient policy for R.

We assume that H does not infer the unknown goal from the whole trajectory at every time
step; rather, it infers only based on the current state-action pair and tends to believe what it
already believes, which is known as belief perseverance (Anderson and Ross, 1980) or cognitive
inertia (Hodgkinson, 1997) in cognitive science. Thus, the system can be represented as
a dynamic Bayesian network (DBN) as depicted in Figure 3.1.

Given the actual task goal y?, R should choose an action a(R) in state {x, y} that increases
the probability P[y? | x, y, a(R) ] while decreasing P[y′ | x, y, a(R) ], ∀y′ 6= y?, yielding a reward
function of the form

R leg(x, y, a(R)) = P[y? | x, y, a(R) ]− κpnlty

∑
y′∈Y\{y?}

P[y′ | x, y, a(R) ] , (3.2)

where κpnlty is a tuning parameter that determines how much a wrong expectation should be
penalized.

Considering the effect of cognitive inertia that H tends to believe y′ more if y′ = y, we define

P[y′ | x, y, a(R) ] ∝

{
κbcnstP[y′ | x, a(R) ] if y = y′

1−κbcnst
|Y|−1 P[y′ | x, a(R) ] otherwise

, (3.3)
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where 1
|Y| 6 κbcnst 6 1 denotes a coefficient indicating how much the human sticks to its

previous belief. The probabilities above are computed using Bayes’ theorem

P[y′ | x, a(R) ] ∝ P[a(R) | x, y′ ]P[y′ | x] . (3.4)

3.2.3 Goal Inference

The goal inference in HGMDP is achieved by updating the distribution of y at each transition
according to

by
′ ∝ O (x′ , y′ , a(R) , o)

∑
y

T X ,Y(x, y, a(R) , x′ , y′ )by , (3.5)

where

T X ,Y(x, y, a(R) , x′ , y′ ) = T X (x, y, a(R) , x′ )T Y(x, y, a(R) , x′ , y′ ) , (3.6)

and O (x′ , y′ , a(R) , o) = P[o | x′ , y′ , a(R) ] is the probability of observing o in state {x′ , y′} after
R taking action a(R) in state {x, y}.

Recall that we encode the preceding human action in x′ ; hence, the observation function
O (x′ , y′ , a(R) , o) is deterministic

O (x′ , y′ , a(R) , o) = P[o | x′ , y′ , a(R) ] =

{
1, if o = a(H)

0, otherwise
. (3.7)

It can be easily seen from the DBN that x′ and y′ are conditionally independent given x, y, a(R) .
Thus, we obtain the transition probability

T Y(x, y, a(R) , x′ , y′ ) = P[y′ | x, y, a(R) ] . (3.8)

Furthermore, we assume that H always acts greedily efficiently according to its goal expecta-
tion

π(H)(x, y, a(H)) ∝ exp
(
κ(H)

ratR (H)(x, y, a(H))
)
, (3.9)

where κ(H)

rat is a parameter that controls how strictly H follows the principle of rational action.

Since the uncertainty of the task state transition comes only from H, the transition probability
is simply

T X (x, y, a(R) , x′ ) = P[x′ | x, y, a(R) ] = π(H)(x‘ , y, a(H)) , (3.10)

where x‘ is the intermediate state reached by R taking action a(R) in state {x, y} and x′ by H

taking action a(H) in state {x‘ , y}.
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3.2.4 Myopic Heuristic

An optimal legible policy πleg(x, by, a(R)) 7→ [0, 1] selects actions for R to achieve the maximal
accumulated reward of legibility. Unfortunately, solving HGMDPs is PSPACE-complete even
for deterministic dynamics. Therefore, we will not seek exact solutions of this HGMDP;
rather, we employ a myopic heuristic to approximate the legible policies. To that end, we first
learn the optimal legible policy under each wrong goal expectation of the human collaborator
and then switch between those policies according to the current belief state by of the original
HGMDP.

When H has a fixed wrong goal expectation yi 6= y?, the HGMDP is reduced to an MDP,
i.e., the tuple

(
X ,Y i,A(R) ,A(H) ,T i,R leg, γ

)
, where Y i = {y?, yi} and

T i = P[x′ , y′ | x, y, a(R) ] =

{
π(H)(x‘ , yi, a(H)) if y′ = yi

0 else
, (3.11)

where x‘ is the intermediate task state reached by executing a(H) in state x.

In defining the reward of legibility, we still assume that H will virtually change its mind despite
our assumption of fixed wrong goal expectation

R leg,i(x, yi, a(R)) = P[y? | x, yi, a(R) ]− κpnltyP[yi | x, yi, a(R) ] . (3.12)

We apply a standard Q-learning (Watkins and Dayan, 1992) algorithm to solve the MDP
associated with each possible wrong goal expectation. An episode of Q-learning terminates
when the probability P[y? | x, a(R) ] exceeds a threshold ζQ or the actual goal is achieved. Thus,
we obtain a legible policy πleg(x, yi, a(R)) for each wrong goal expectation yi.

Recall that the distribution of y can be updated by (3.5) at each time step, which allows us
to adjust the policy accordingly. A simple heuristic can be obtained as

πleg(x, by, a
(R)) = πleg

(
x, arg max

y∈Y\{y?}
by, a

(R)

)
. (3.13)

That is, R acts under the assumption that H’s expectation of the task goal is the one with the
highest probability. For general POMDPs, such heuristics suffer from poor performance if the
uncertainty is high in the belief state (Aberdeen, 2003), as the robot will not actively take
information gathering actions on the hidden states. To alleviate this, some algorithms (Melo
and Ribeiro, 2006, Sadigh et al., 2016b) incorporate entropy information in the reward struc-
ture to encourage the POMDP-agent to take actions that decrease the entropy of the belief
state. However, our problem involves a special case that the legible actions are in fact in-
formation gathering in the sense that they increase the probability of the actual goal being
inferred by H.

As legible actions can be inefficient, we let the robot switch to the greedily efficient policy
once the probability assigned to the actual goal reaches a certain threshold, so as to prevent
unnecessarily inefficient actions.
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3.3 Feature-Based State Abstraction

In order to alleviate the effect of curse of dimensionality (Bellman, 1957), we provide a feature-
based state abstraction method for assembly tasks. An assembly task can be seen as a
combination of objects at the corresponding positions. We call a correct object-position
pair a component t and represent an assembly task T as a set of its components, i.e., T =
{t1, t2, . . .}. In a nonverbal legible assembly problem, the human collaborator is faced with
multiple possible tasks {T1,T2, . . .}, from which we obtain the set of all task components

t :=
⋃|T|
i=1 Ti. For each component ti, we can find the set of tasks to which it belongs Tprnt,i :=

{Tj |ti ∈ Tj}, to which we refer as parents of ti. It is not hard to see that different components
can have the same parents, i.e., Tprnt,i = Tprnt,j , i 6= j. We define an equivalence relation for
such components

Fequ(ti, tj) :=

{
> if Tprnt,i = Tprnt,j

⊥ else
. (3.14)

Thus, a partition tpart of t can then be obtained as

tpart =
{
ti|Fequ(ti, tj) 7→ > i 6= j,∀ti, tj ∈ tpart

}
. (3.15)

As this set can be obtained for all available sub-tasks, we can rewrite this formulation as

tpart =
{
Tsub,i|i ∈

{
1, 2, 3, ...|tpart|

}}
, (3.16)

where Tsub denotes the subtasks for i ∈ {1, 2, 3, ..., |π|}.

Given an arbitrary task state x ∈ X and its corresponding ongoing task Tx as a set of the
components built in state x, we count the number of built components for each subtask and
represent the task state with these numbers. Formally, we define the following features

Φi : x 7→
∣∣Tsub,i ∩ Tx

∣∣, (3.17)

where x ∈ X and i ∈
{

1, 2, 3, . . . ,
∣∣tpart

∣∣}.

Recall that we define a component as a correct object-position pair. Hence, a missing com-
ponent can result either from a wrong object or a wrong position besides solely vacancy. We
call such wrong object-position pairs errors and denote the number of errors by an extra
feature Φerr. Here we assume that the number of errors is bounded by a maximal value uberr.

Together, the task state can be aggregated to R|tsub|+1 by mapping the state x to the feature
vector

x 7→


Φerr,
Φ1,
Φ2,

...
Φ|π|

 =: Φ . (3.18)

From the abstract task state, a corresponding abstraction for actions follows naturally: when
adding a new object, i.e., a component, this component belongs to a subtask according to the
factorization outlined above. Thus, all features are increased for this specific action, while
removing an object would decrease the feature counts. In case the action expresses an error,
the features remain unchanged and the error-counter is updated.
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3.4 Experiments

Figure 3.2: HRC LEGO - assembly scenario with the goal being unknown to the human collaborator.
Participants are asked to give their belief over the possible task goals via the sliding bar on the projected
GUI.

3.4 Experiments

In this section we evaluate the proposed HGMDP in a real HRC-scenario based on an exem-
plary dyadic pick-and-place experiment with 10 individual subjects (µage = 26.47; µbkgd = 2.3
on a three point Likert scale ranging from no to professional robotics background).

3.4.1 Experimental Setup

We designed two pick-and-place scenarios in which three different tasks with overlapping
subtasks according to (3.16) are given, as depicted in Figure 3.3.

The experimental setup depicted in Figure 3.3b was characterized by having distinct, over-
lapping and shared subtasks, whereas in the task scenario shown in Figure 3.3a no task had a
distinct subtask. Each run was assembled by dyads in a round-based manner with the robot
acting first. In order to collect consequent user feedback, a graphical user-interface (GUI) was
projected upon the workspace from top as shown in Figure 3.2, which was used to obtain the
human action a(H) and self-evaluated belief y over the task goals.

As solely asking for accomplishing the goal would result in barely any difference between the
different policies mentioned above, the dyads were asked to assemble the given shape most
efficiently, i.e., with the minimum overall travel-distance. This allows the investigation on
our claim that a robot can deviate from the efficient policy to decrease the uncertainty of the
human collaborator’s belief over the task goals.
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(a) (b)

Figure 3.3: Visualization of three pick-and-place goals for the two task scenarios. The subtasks Tsub,i

for state abstraction are visualized by color.

We compared three robot decision-making modes:

• efficient policy (E) In this mode the robot was acting purely efficiently, regardless of the
human collaborator’s belief, thus assembling the closest component at every step.

• HGMDP-based policy (L) In this mode the HGMDP was applied as outlined in Sec-
tion 3.2.

• partially HGMDP-based policy with feedback (LF) In this mode the HGMDP was par-
tially applied. In contrast to L, the user-feedback replaced the HGMDP belief estima-
tion.

3.4.2 Experimental Procedure

Upon arrival, all participants signed an informed consent form and were surveyed about their
background. After this, the experimental setup was explained to the subjects in the form of
written text, experimental trials as well as training examples until the subject agreed upon
continuation.

Each participant conducted 18 experimental runs such that each decision-making mode was
performed 6 times and each scenario 9 times in no particular order. At the end of every
assembly task, the participants were asked to answer the questionnaire shown in Table 3.1 in
a five point Likert scale. Additionally, the subjects were asked to rate their belief of the task
goals after each robot’s action via the GUI from Figure 3.2.

Q1 The robot was acting efficiently.

Q2 The robot adapted the strategy when I was in doubt about the task.

Q3 The robot reacted when I made errors.

Q4 The choice of actions of the robot was helpful.

Table 3.1: Questionnaire
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Figure 3.4: Answers for each question are grouped by three different modes: L, E and LF. The upper
and lower boundaries of the box represent the interquartile range. Whiskers above and below the box
indicate the maximum and minimum value of the data. The median is marked by a black dot.

3.4.3 Hypotheses

We propose the following 4 hypotheses (Hyps) upon designing our algorithm to point out the
performance and potential:

Hyp1 - Participants will agree more strongly that the robot’s actions are helpful and efficient
in mode L or LF compared to E. We claim that the efficiency and helpfulness of the robot’s
actions perceived by the human collaborator is improved by the robot acting efficiently when
possible and only selecting legible but inefficient actions when the human collaborator’s false
belief requires it.

Hyp2 - Participants will agree more strongly that the robot’s actions are responsive in mode
L or LF compared to E. We claim that the proposed framework allows the robot to adjust its
policy according to the inferred goal expectation of the human collaborator, leading to more
responsive actions.

Hyp3 - Participants’ belief over the goal will converge faster to the correct goal in mode L or
LF compared to E. We claim that the legible policies applied by our framework enable the
participants to infer the actual task goal more quickly.

Hyp4 - The overall error rate will be lower in mode L or LF compared to E. We claim that
an early intervention due to the legible policies helps the human collaborator recover from a
wrong belief, thus resulting in lower error rates.

3.4.4 Measures and Analysis

The results of the participant surveys are reported in Figure 3.4. A Friedman’s test for
overall comparison was conducted for each question, where the robot decision-making mode
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Figure 3.5: Mean and standard deviation of the quantitative measures for L, E and LF.

is the treatment factor in which we are interested and the task scenario is the blocking factor
whose effects need to be taken into account but are not of interest. Post-hoc analysis with
Wilcoxon signed-rank tests was conducted with a Bonferroni correction applied, resulting in
a significance level set at p < 0.017. The p-values are summarized in Table 3.2.

With a statistically significant difference, the participants agreed more strongly that the
robot’s actions were efficient and helpful in mode L or LF, compared to E (Q1 and Q4).
This supports Hyp1. Interestingly, we observed a higher variance of the answers for Q1
between the subjects in mode E. We attribute this to the possible different definitions of
efficiency of the participants. While the robot’s actions in mode E were efficient in terms
of travel-distance, they failed to convey the robot’s intention clearly and thus resulted in
more steps on average to complete the task, which might be perceived as inefficient by some
participants.

Furthermore, the participants agreed more strongly that the robot responded when they were
in doubt of the task or made errors in mode L or LF, compared to E (Q2 and Q3). This
supports Hyp2 and suggests that the proposed framework was able to estimate the human
collaborator’s belief and adjust its policy accordingly. The performance perceived by the
participants seems comparable between the mode L and LF, however. To support this claim,
an equivalence test is required in future work.

In order to further evaluate the performance of the proposed framework and the hypotheses
mentioned above, we also consider the following quantitative measures.

Overall
Questions

Comparison
L vs E L vs LF E vs LF

Q1 0.0009 0.0013 0.8591 0.0004

Q2 < 0.0001 < 0.0001 0.2789 0.0002

Q3 < 0.0001 < 0.0001 0.5525 < 0.0001

Q4 < 0.0001 < 0.0001 0.8552 < 0.0001

Table 3.2: Subjective evaluation. Each cell holds p-values for overall & pairwise comparison. Statis-
tically significant values are highlighted in bold.
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3.5 Conclusion

• Task completion steps The total number of steps required by the human-robot team to
complete the task is measured for all decision-making modes.

• Error rate As a direct measure of a false belief of the human collaborator, the number
of errors during the tasks is divided by the number of the task completion steps. We
remove the cases across all decision-making modes where the participants guessed the
actual goal correctly and thus made no errors.

• Belief settling proportion During the experiment, the participants were asked to give
their belief over the task goals after every robot action. We count the steps from the
task completion where the human continuously has a correct goal expectation, i.e., the
probability assigned to the actual goal is higher than 0.5, and divide it by the total steps
of the task and refer to it as the belief settling proportion.
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Figure 3.6: Mean and standard deviation for the
belief settling proportion for L, E and LF.

The quantitative measures show that com-
pared to working with the robot in mode E,
when the participants were working with the
robot in mode L or LF, they had a larger be-
lief settling proportion (Figure 3.6) and lower
error rates (Figure 3.5a) on average, support-
ing our hypotheses Hyp3 and Hyp4. As
shown in Figure 3.5b, the participants also
completed the task within fewer steps during
the task on average in mode L or LF com-
pared to E. Moreover, we observed that the
variance of the task completion steps between
the subjects was lower in mode L or LF, com-
pared to E. This can result through the fact
that while participants made more errors in
mode E when they had a wrong goal expecta-
tion, there was a certain chance that they guessed the goal correctly from the beginning and
thus completed the task within very few steps. As this can happen in the other two modes as
well, a lower variance of the task completion steps further suggests that the decisions made
by the robot in mode L and LF were more helpful in reducing the potential errors when the
human collaborator had a wrong expectation of the task goal, as shown in Figure 3.5a.

3.5 Conclusion

In this chapter we extend the concept of legibility in motion planning to the domain of sequen-
tial decision-making where continuous trajectories are replaced by discrete action-sequences.
With one of the major challenges being the human actions as part of the system trajectory,
we propose a framework based on HGMDPs in which the human collaborator’s expectation
of the task goal forms the partially observable variable. As solving the resulting HGMDP
is PSPACE-complete, policies in reduced fully observable MDPs are obtained offline, and
selected according to the online human belief estimation in the original HGMDP.

We evaluated our algorithm through dyadic pick-and-place experiments. In this scenario,
the robot deviates from the spatially efficient policy to make the actual task goal more clear
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3 Legible Action Selection in HRC

according to the estimated human belief. The experimental results confirm the proposed
hypotheses with empirical measurements as well as subjective feedback.

Although our general framework is not limited to a specific task setup, the state abstraction
method is only applicable for certain assembly scenarios where the potential tasks can be
decomposed into object-position pairs. The belief estimation in the HGMDP could be further
improved by incorporating richer observations such as eye gaze and hand gestures. Moreover,
as the current algorithm only takes into account the selection of abstract actions, future work
may consider the integration of legible motion planning into the execution of those abstract
actions.
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4
Adaptive Action Selection in
Human-Robot Collaboration

using Game Theory

Chapter Abstract

This chapter focuses on the task allocation among human(s) and robot(s) within collab-
orative tasks. Specifically, a framework based on game theory is presented that allows
robots to choose appropriate actions with respect to the action of human coworkers
when collaborating in close proximity. The proposed framework models human-robot
collaboration (HRC) scenarios as iterative games and selects action-strategies for the
human-robot team (HRT) by finding a suitable equilibrium of these games.

In contrast to most common approaches, our proposed HRC-game treats the decision-
making behavior equally for all agents involved. Therefore, the concept of game theory
is applied to evaluate the mutual interference of all actions on the HRT to obtain
pareto-optimal Nash-equilibriums, i.e., team-optimal action-allocations.

The general framework of the proposed HRC-game is applied on an interactive pick-
and-place scenario in close proximity. This exemplary HRC-game is tested in a lab-
experiment with 30 human subjects. In this task a Kuka robot and a human coworker
are asked to jointly assemble toy-bricks in close proximity, where our approach is com-
pared to a non-adaptive baseline method. The experimental measurements and statis-
tically significant improvements in the subjective feedback underline the potential that
our proposed HRC-game allows to achieve towards an improved collaborative behavior
for robotic applications.

Remark: A majority of this chapter was previously
published in Gabler et al. (2017) and builds

upon internal project work (Stahl, 2016).
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4 Adaptive Action Selection in HRC using Game Theory

4.1 Introduction

As mentioned in Chapter 2, industrial automation has revolutionized manufacturing over the
last decades and established robots in industrial assembly across a wide range of applications.
Nevertheless, robots are limited to repetitive tasks and are error-prone when dexterous tasks
are involved. As a full automation of an assembly line may not be possible or linked with
uneconomic high costs in development and research, the more plausible solution is to introduce
human-robot collaboration (HRC) into industrial assembly lines to combine human and robot
strengths instead.

However, this combination requires both parties to be collaborative. An efficient collaboration
requires all agents involved to choose their actions with respect to the mutual interference of
each action taken, especially when working in a shared but confined workspace. As outlined
in Section 2.2.3, we evaluate actions as action-primitives, such as pick(robot, obj), where
agent robot picks up object obj.

While humans adapt easily to new tasks and coworkers, a fully autonomous and flexible robot
is still far from reality. The main challenge when interacting with a human is that unlike
robots, humans do not always follow the same sequence of actions even when a detailed plan
is provided. The scenario in Figure 4.1 gives an example of the challenges a shared workspace
bears for all agents involved. The more confined a workspace, the harder the challenge of
choosing not only the right path but also the best action to reduce mutual disturbance.

Figure 4.1: Exemplary illustration of an interactive action-selection process given multiple actions
for a human and a robot to choose from. In this pick-and-place scenario the action-space corresponds
to a set of reference trajectories across the workspace.

Therefore, it is important to analyze the mutual interference of each action. Thereby, the
sequence of actions can be adapted on-the-fly w.r.t. the human coworkers, unlike classic robot
planning in which a robot follows a predetermined sequence of actions. As it was outlined
by Lewkowicz et al. (2013), humans predict other humans’ actions through mental imagery.
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Consequently, our framework is based on virtually evaluating the impact of single actions on
other team members and vice-versa. Game theory models general decision problems from the
perspective of equal and decisive individuals that consider the mutual interference amongst
each other. In contrast to most other approaches, the reaction of the human is directly in-
corporated in the decision-process. Therefore, we propose an autonomous decision framework
by applying the concept of game theory to an iterative action-selection algorithm applicable
to actual dyadic HRC-scenarios.

An overview about related work in Section 4.2 demonstrates that the autonomous action-
selection in an HRC-scenario has not yet been successfully tackled from a game-theoretic
perspective. Therefore, the general representation of an HRC-scenario as an interactive game
is proposed in Section 4.3. The application of this generic game on an initial HRC-pick-
and place scenario is outlined in Section 4.4. In contrast to the related work, the proposed
HRC-game model is additionally evaluated in a real HRC-assembly-scenario in Section 4.5,
as depicted in Figure 4.1. The last section concludes this chapter.

4.2 Related Work

When working in close proximity with robots, previous research projects have found that
humans favor robots being adaptive (Lasota and Shah, 2015) and supportive (Dragan et al.,
2015a) during collaboration. In order to achieve such a behavior, a lot of research has been
conducted concerning autonomous planning of action-sequences within HRC over the last
years.

In order to plan actions in the presence of humans, Gombolay et al. (2015) and Hawkins et al.
(2014) outline promising methods of exploiting task knowledge in the presence of temporal
uncertainty of human actions. Besides temporal uncertainty Nikolaidis et al. (2015a) use a
Mixed Observability Markov Model and cross-training to train the reward function for an
HRC-scenario that incorporates human preferences. Another focus is laid upon the incorpo-
ration of human motions in order to generate adaptive robot motions respectively. Mainprice
and Berenson (2013) use a learned database of Gaussian mixture models (GMMs) to evaluate
an executed human motion online. Maeda et al. (2017) and Lioutikov et al. (2017) outline
an approach of using probabilistic motion primitives that combines prediction and control of
the robot into one framework such that the robot’s actions are learned in correlation with a
human motion.

Even though all of these approaches improve the collaboration and interpretation of the human
coworker distinctly, the action selection is narrowed down to an adaption w.r.t. a predicted
yet given human action. In contrast to that, we propose an interactive human-robot decision
framework based on game theory, thus taking into account the mutual influence of multiple
actions for all agents involved.

Game theory has found a wide range of applications in multi-robot-systems (Emery-Montemerlo,
2005). Lately, game theory has also found its way to HRC scenarios. A general framework
to classify and tackle different interaction types within joint manipulation has been proposed
by Jarrassé et al. (2012). Similar to the approach of Li et al. (2015), physical human-robot
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4 Adaptive Action Selection in HRC using Game Theory

interaction (pHRI) is outlined as a differential game which depicts a multi-agent optimal con-
trol problem with a limited time-horizon that is therefore restricted to immediate dynamic
adaptations and fails in reflecting long-term action goals.

First realizations of game theory in an human-robot interaction (HRI) scenario have been
depicted by Bahram et al. (2015) and Turnwald et al. (2016). Bahram et al. (2015) propose a
framework that models autonomous driving on a crowded highway as ”game against nature”
in which an autonomous car plays a game against player ”nature”, i.e., traffic, thus retrieving
its driving trajectory as a result. Even though their approach is closely related to ours, their
framework limits the players’ payoff evaluation to the model of collision probabilities, thus
limiting their method to evasive path planning. The same holds for Turnwald et al. (2016)
who analyze the behavior of humans in interactive urban navigation from a game theoretic
perspective and state that the decisions of humans can be depicted as the pareto-optimal
equilibrium of an interactive navigation-game.

We propose an HRC-game model that depicts the decision process for an human-robot team
(HRT) and outline a pick-and-place scenario as a first specified HRC-game scenario to high-
light its potential in online use-cases. The framework can be used with various human motion
prediction methods as analyzed by Ozgur et al. (2016). In contrast to Ozgur et al. (2016),
this chapter provides a detailed outline about the decision framework in use. In difference
to the approaches mentioned above, the presented approach sticks out in terms of reflecting
multiple actions on an abstracted level rather than only adapting the motion towards a fixed
goal-point. Additionally, an outline is given on how the proposed model is applied on a real
robot system to show its functionality in HRC scenarios.

4.3 Human Robot Collaborative Manipulation as a Game

In this section an overview of our proposed HRC-game model and the assumptions it is built
upon are given. Besides pointing out the core parts of our framework, it is explained how the
team-strategy and robot action are obtained in an online collaboration scenario.

The proposed framework focuses on the interaction scenario of NA agents collaborating in
close proximity within a shared workspace. The main focus is set on the allocation of action-
primitives which require an agent to perform reaching motions across the workspace. As a
result, the action-selection needs to evaluate the evolution of each action-primitive across the
workspace. In the following, a general way of including the dynamics of each action-primitive
of such an HRC-scenario into a game theoretic framework is proposed.

4.3.1 Interactive Action Selection Strategy

We propose to model the interactive action-selection problem from a game-theoretic perspec-
tive, that explicitly takes human performance objectives into account. Futhermore, we claim
that the order of actions taken should not be fixed for generic HRC-scenarios. Therefore, the
HRC-game is modeled in the Normal Form according to the ccording to Definition 2.1 which
allows a simultaneous action-selection for all agents. The resulting action-selection game for
dyadic HRC is depicted in the schmatic HRC-decision framework in Figure 4.2. In particular,
a dyadic normal-form game constists of:
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Figure 4.2: Overview of the proposed HRC-game decision framework

• A := {H, R} as the human and robot players.

• A := {a(H) , a(R)} is a finite set of total actions for H and R. According to Figure 4.2 finite
action-sets a(H) , a(R) can be obtained by applying the knowledge base K on the current
state s.

• π := {π(R)(s, a(R)) 7→ {0, 1}, π(H)(s, a(H)) 7→ {0, 1}}, as a joint dyadic policy.

• J := {J (H)(s, a(H) , a(R) , s′ ) 7→ R,J (R)(s, a(R) , a(H) , s′ ) 7→ R} are individual payoff-functions
that map the available action-sets and state-transition to a numeric value for H and R.

Furthermore, the normal-form game is characterized by the following properties:

Finite Game: Within a joint manipulation scenario, especially a dyadic setup, the composi-
tion of team-members A is known beforehand and thus finite. Furthermore, the current task
T and thus the planning-problem K result in finite action-primitive sets for all agents at any
state. Therefore, the interaction scenario forms a finite game according to Section 2.2.2.

Rational Players: According to Section 2.2.2 we assume that each player tries to maximize
their (expected) utility throughout the game. Specifically, they are expected to minimize their
energy consumption and the likeliness of risky situations, i.e., collisions.

Complete Information: The applied utility functions are assumed to be known before-
hand by all players whereas the chosen actions are not. This results in a game of complete
information according to Section 2.2.2.

Non-Constant-Sum: Within a joint manipulation scenario, the agents are expected to
work to a common goal, which contradicts the definition of a zero-sum game according to
Section 2.2.2.
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Non-Cooperative: In the HRC-game each player is modeled as an independent individual
that performs the actions without communicating with other agents before choosing an action.
This implies that our method is not restricted to robotic setups that allow verbal or visual
communication. This results in a non-cooperative game according to Section 2.2.2.

4.3.2 Definition of Applied Utility Functions

In order to evaluate the total action set A, the utility functions J have to be mapped to each
a(i) and each A(i) respectively. Closely related to the definitions in Rohrmüller (2011), the
player-specific payoff-metric

J (i)(s, π, s′ ) := r(s, s′ )− `(i)(s, π) ∈ R (4.1)

within the HRC-game is modeled as the difference of reward r and cost `(i) for each player A(i)

in our HRC-game. Rewards result from accomplishing actions or tasks along a given shared
plan, while costs are situation-aware penalty-functions which take the current dynamic state
s of the environment into account. Thus, the system is capable of a clear distinction between
semantic planning and situation-aware reaction.

The situation-aware costs are additionally separated into two main components, inspired by
the analysis of Turnwald et al. (2016):

Native Costs `(i)
nat := S(i) ×A(i) 7→ R are self-reflective costs, e.g., the effort an agent has

to spend.

Interactive Costs `(i)
int := S(i) ×A(i) ×A(−i) 7→ R result from the interference of multiple

agents’ actions, A(−i) may contain any subset of agents in {A \ A(i)}.

4.3.3 Solving the Human-Robot Collaboration-Game

According to the definitions of game theory (Shoham and Leyton-Brown, 2008) the Nash-
equilibrium (NE)

π(i)NE = argmax
a(i)∈A(i)

J (i) = argmax
a(j)∈A(j)

J (j) = π(j)NE, ∀A(j)

i 6=j
∈ A (4.2)

formulates a solution in which no player A(i) can improve its own pay-off by changing its
action as long as the other players do not deviate from the current action profile.

By definition, a game has at least one mixed NE according to Shoham and Leyton-Brown
(2008). In common payoff-games one often obtains not only single πNE but a set

{
πNE

1 , πNE
2 , . . .

}
of NEs for the underlying interaction scenario. In this case the team policy is chosen from
this policy-subset based on further evaluation:

π∗ ← arg max
k={1,2,...}

J (i)
(
πNE
k

)
, (4.3a)

π∗ ← arg max
k={1,2,...}

∑NA
i=1 J

(i)
(
πNE
k

)
, (4.3b)

π∗ ← F pareto
dom

k={1,2,...}

(
πNE
k

)
, (4.3c)
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thus finding either the NE that maximizes the payoff of a specific player (4.3a), the sum over
all players‘ payoffs (4.3b) or the fairest NE as the pareto-optimal (Shoham and Leyton-Brown,
2008) solution (4.3c) from the given set of NEs.

The strategy of the HRC-game framework is visualized at a fixed sample-point tk in Figure 4.2.
The game is iteratively replayed to adapt to unforeseen changes within the collaboration. A
higher-level planning module is used to obtain a limited action set A given the current progress
of the task T for each player to assign the rewards r(i)(s, s′ ) for each action primitive in the
payoff-generation for each action. In addition to that, the scene evaluation module generates
environment-aware cost-values `(s, a) for each action. Based on the resulting payoffs, the
abstracted HRC is evaluated as a normal-form game resulting in a NA × NA-payoff matrix.
The final policy is then obtained in a consecutive process, by first calculating all NE-candidates
πNE
k and then (4.3c) to obtain the fairest team-strategy π∗.

Based on the methods mentioned above, an interactive HRC-game setup is created, success-
fully applied to and tested on a robot platform. In the following section an insight is given into
how the schematic overview given in Figure 4.2 is applied onto a robot platform in detail.

4.4 Application on the Robot

Even though the application of game theory in human-machine interaction scenarios has
been analyzed before, the actual application on a real interaction scenario has not yet been
shown. Especially a close proximity scenario such as collaborative pick-and-place exceeds the
limitations of the methods proposed in previous approaches (Bahram et al., 2015, Turnwald
et al., 2016). Therefore, a two-player game of a pick-and-place task with one robot and one
human sharing a confined workspace is outlined in detail in this section.

4.4.1 Player-Specific Action Spaces

The semantic complexity for this initial game-realization is restricted on purpose to focus on
the evaluation of the environment-aware action-selection of the robot rather than its semantic
reasoning capabilities. Consequently, the semantic planning module returns either an equally
weighted set of (pick, obj)- or (place, obj)-action-primitives for which the preconditions
Cpre(s, tk) are fulfilled at tk.

Regarding a pick-and-place task, A is given as a set of goal-points
{
g1, g2, . . . , g|G|

}
each

of which is matched to a reference trajectory for all players A(i) . The purpose of the action-
selection framework is then to obtain the team-optimal primitive allocation amongst the team
A, thus minimizing the collision risks and effort for each agent involved.

4.4.2 Generation of Expected Trajectories

As the purpose of our framework is the allocation of optimal primitives among the HRT,
the obtained trajectories only serve as an estimation of the evolution of each action prim-
itive within the shared workspace. Therefore, a database of dynamic movement primitives
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(DMPs) (Ijspeert et al., 2013) in Cartesian coordinates is recorded for the robot:

sτ p̈ = αDMP(βDMP((pdes − p)− ṗ)) + Fshp ∈ R3 . (4.4)

Namely, these DMPs are used to obtain a characteristic shape via the excitation terms Fshp

and a scalable travel speed along the trajectory by alternating sτ for every pdes ∈ G(i) .

By applying this trajectory-matching method given the current set of goal-points G(i) from
the semantic planning module, a set of trajectories ~p (R) is obtained as A(R) .

The human motions on the other hand are estimated using a minimum-jerk model for reaching
motions towards all available goal-points as outlined in Dinh et al. (2015), resulting in ~p (H) as
A(H) for the human counterpart.

It has to be noted that the framework is not limited to these trajectory generation methods for
neither robots nor humans in particular and that they are not evaluated in terms of accuracy
within this chapter. Nevertheless, they clearly outline the application of the proposed HRC-
game.

4.4.3 Applied Utility Functions

As mentioned in Section 4.4.1, the emphasis of our initial framework is set on environment-
aware cost-evaluations similar to Hoffman and Breazeal (2007) propose. As a result, (4.1)
mainly depends on a linear combination of cost-functions.

Our cost-functions are designed as a set of heuristic measurements as an abstraction from
precise motion planning to evaluate the available reaching motions mapped on A.

Native Costs In particular, the native cost for player A(i) in a pick-and-place scenario is
proposed as a linear combination of three heuristic components

`(i)
nat = κtravel `(i)

travel + κreach `(i)
reach + κpref `(i)

pref . (4.5)

This term evaluates the travel effort `(i)
travel the action requires, a reachability cost `(i)

reach

for each player based on the position of the object, and a preference cost `(i)
pref to evalu-

ate the direction of the motion in relation to the corresponding goal-point. The weighting
terms κtravel, κreach, κpref serve as linear weights to strengthen the impact of single cost-terms
throughout the interaction.

1. The travel cost function

`(i)
travel = κlen

Tmax∫
tk

ẋ (i) dt + κtime

Tmax∫
tk

dt + κdst‖xdes
(i) − x (i)‖2 (4.6)

consists of the trajectory length from the current hand or tool center point (TCP)
x (i) at the current time step tk to the final time step Tmax, the travel-time difference
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from tk to Tmax, as well as the Euclidean distance between x (i) and the desired goal-
point xdes

(i) . The additional weighting terms κlen, κtime and κdst are used to include a
reliability-metric of estimated trajectories into our framework, such that∑

κp
p∈{len,time,dst}

= 1 (4.7)

is satisfied.

2. The limited range of each player is modeled as a Gaussian-shaped penalty-function

`(i)
reach =

∞ if d(i) > dmax

exp

(
κshp

(
d(i)−dmax
dmax

)2
)

else
, (4.8)

that respects the distance d(i) from the agents shoulder or base x
ba

(i) to xdes
(i) . The

maximum distance dmax signifies the range limit of each player. The decline of the
Gaussian shape factor κshp can be fit by exemplary human-human recordings.

3. Additionally, the preference cost for an agent to change the currently executed action
to an alternative one is introduced. Therefore, the angular difference

εang =

∣∣∣∣∣cos−1

(
〈xdes

(i) − x (i) , ẋ (i)〉∥∥xdes
(i) − x (i)

∥∥
2
‖ẋ (i)‖2

)∣∣∣∣∣ (4.9)

of the current hand/end-effector-velocity ẋ and a direct line from the end-effector to the
desired goal-point xdes

(i) , i.e., xdes
(i) − x (i) , at tk is obtained. We model a preference

heuristic cost-function

`(i)
pref =

{
0 if ‖ẋ (i)‖2 ≤ ζvel

εang ||ẋ (i) || else
(4.10)

as a simplification of motor-dynamic models such as the Minimum-Jerk-Model (Flash
and Hogan, 1985). This term prioritizes straight motions towards a goal over actions,
that require a distinct change of perpendicular velocities. As this function is sensitive
to measurement noise, a velocity-threshold ζvel is defined, such that small disturbances
in the velocity calculation do not affect the overall method.

Interactive Costs The interactive costs model the impact of multiple players executing
different actions at the same time. Within the given HRC-scenario, interactive costs evaluate
the collision risks of motions across the workspace. Therefore, a predefined number of Nspl

way-points with matching time samplings Tspl is sampled along each trajectory. For each
of these way-points the inverse kinematics are calculated for each player as shown in the
representative bird-eye view in Figure 4.3 for one player. As a result, the reference trajectory
shown in blue in Figure 4.3 is extended to Nlink trajectories spread over the virtual forearm
link with Nspl way-points each. For two actions being compared, pairwise distances between
the virtual human and robot forearm for all way-points of the reference trajectories hold the
basic information for the interactive costs. For most of the scenarios it is expedient to not only
compare equivalent sectors in temporal progress, but rather to cross-evaluate the temporal
shift of sampled pairs in both directions. Regarding the example in Figure 4.3, a temporal
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4 Adaptive Action Selection in HRC using Game Theory

Figure 4.3: Exemplary sketch of the trajectory-link sampling in the x − y-plane with the hand of a
player following the blue reference trajectory. Given Nspl = 4 way-points and Nlink = 9 samples along
the link obtained from the inverse-kinematics, the resulting sample points for the pairwise distance of
one player is shown orange.

shift by k = 1, i.e., tk = Tspl, would result in a shift of the way-points for 1 sample towards
the trajectories goal point.

In general, given a temporal shift of k time samples results in the minimum distance dtk
from the pairwise distances of the robot and human forearm-trajectories. Based on that, the
interaction-cost term,

`(i)
int,k =


`(i)

col if dt < lbd

FN (dtk) if lbd < dtk < ubd

0 else

, (4.11)

i.e., collision-cost is calculated. If dtk is smaller than a certain collision threshold lbd, which
is given by the dimensions of the hand of the player, a high collision penalty `(i)

col is applied.
For larger distances the cost-function follows a Gaussian-shaped transition FN (dtk) between
the collision threshold lbd and a threshold ubd, indicating unaffected movement.

In order to handle the temporal evolution of minimum distances along the human and robot
trajectories, (4.11) is extended by altering the temporal shift k. Therefore, a weighted sum
and the maximum - respecting single collisions - over the temporally shifted trajectories are
obtained:

`(i)
int,avg =

∑Nspl

k=1 κtemp,k`
(i)

int,k∑Nspl

k=1 κtemp,k

`(i)
int,max = max

k∈{1,2,...,Nspl}

(
κtemp,k`

(i)
int,k

) . (4.12)

The individual temporal weighting factor κtemp,k = (1 − κtemp)k with a constant decline
factor κtemp limits the impact of large temporal differences on the cost calculation. The
overall interaction cost value is obtained by

`(i)
int = max

(
`(i)

int,avg, `
(i)

int,max

)
, (4.13)
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as the maximum of temporally averaged cost values `(i)
int,avg and the maximum cost value

over all compared samples `(i)
int,max. This brings the advantage of being less sensitive to false

predictions by including the temporally increasing uncertainty of the estimated trajectories
which is especially critical when evaluating human trajectories.

4.5 Experimental Evaluation

Finally, we conducted an experiment in which two different realizations of the proposed action-
selection framework were compared to an a priori fixed policy. The main purpose of this
experiment is to point out the improvements of obtaining an adaptive action-selection online
by applying the HRC-game from Section 4.4 instead of following a predetermined policy within
assembly processes. In contrast to the related work from Section 4.2 in which the focus was
set on adapting the motion given a fixed policy, this experiment is designed to point out
the advantages of also changing the action-primitives on-the-fly. Therefore we applied the
following three behavior strategies:

• fixed behavior policy (Fixed) – where the robot follows a fixed policy chosen beforehand.

• spline game-policy (Spline) and line game-policy (Line) as two instances of the proposed
HRC-game that differ in the applied human-motion prediction.

The robot is controlled with a database of pre-learned DMPs throughout all runs to diminish
the influence of a trajectory generation module. Even though the Fixed method does not
reflect the human actions, an additional underlying obstacle avoidance as outlined in Dinh
et al. (2015) assures the safety of subjects throughout the experiments and creates an evasive
behavior of the robot rather than blindly crashing into the human subject. The method
applied uses an underlying compliance control altering the current executed motion as a
reaction to virtual repellent force. This force is excited by the human hand – which is tracked
by a motion capture system throughout the experiment – entering a predefined ball shaped
safety region. Within our experiments, the radius of this safety region was set to 2.5 cm
around the TCP of the robot.

The presented action-selection strategies differ in terms of integrating the human trajectory
estimation. In the Spline method a minimum-jerk-based trajectory prediction from Dinh
et al. (2015) and simple straight lines with trapezoidal velocity shapes for Line respectively
are used.

Q1 How would you grade the collaboration with the robot?

Q2 How would you grade the robot as a helpful coworker?

Q3 How would you grade the motion reaction of the robot?

Q4 How would you grade the action selection of the robot?

Table 4.1: Questionnaire
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4.5.1 Hypotheses

As an initial result to highlight the applicability of the proposed framework in HRC, the
following hypotheses are claimed:

Hyp1 - Participants prefer the robot’s action-selection when working in the Spline mode or
the Line mode over the decisions in Fixed mode. We assume that the cross-evaluation of
action-pairs in our framework enables the robot to choose actions pro-actively such that its
decisions will improve the collaboration.

Hyp2 - The decisions of the robot increase the safety for the human in Spline mode or the
Line mode, compared to the Fixed mode. By taking into account the effects of actions for
each player, our framework enables the robot to detect risks at an early stage and adapt its
decisions accordingly.

Hyp3 - The robot’s decisions adapt to the human and therefore decrease the overall completion
time in the Spline mode or the Line mode, compared to the Fixed mode. With the solution of
the proposed game being an NE the required effort of all players involved is minimized, which
decreases the overall assembly time.

4.5.2 Experimental Setup

In our experiment 30 persons were asked to assemble 16 bricks of four different colors in a
quadratic arrangement in cooperation with one Kuka-robot as depicted in Figure 4.1. The
human and the robot were sitting face-to-face acting simultaneously. The scenario was de-
signed in such a way that each pick-and-place sequence required the players to cross the shared
workspace, thus a pro-active action-selection is of importance. In addition, this scenario fits
our initial HRC-game outline as no action primitive can be favored over the other in terms of
its impact towards accomplishing the goal.

Assuming that the underlying compliance controller reacts as a safety fall-back solution, the
alteration of the executed motion is considered as a safety violation. Therefore, the integration
of the virtual repellent force was taken as a measurement of safety violations throughout the
experimental runs.

The human hand was tracked by six markers with eight motion capture cameras throughout
the experiment in order to provide enough tracking redundancy to assure no participant was
harmed.

The subjective perception of the collaboration with the human was evaluated based on a
short questionnaire after each run. The answers to the ordered questions from Table 4.1 are
mapped into a seven-point Likert-scale in which lower values depict negative feedback, and
positive feedback is represented by large values.

The order of the different modes tested throughout the experiment was randomized after
every full run to minimize the learning effect in the experimental evaluation results.
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Figure 4.4: Box-plot results of feedback to Table 4.1, where the median is shown as a black dot. Each
question had a seven-point Likert-scale which ranged from denoting the collaboration from disturbing
to helpful for Q1 and the evaluation of the robot as a colleague for Q2 from disturbing to equal team-
member. Q3 pointed out if the robot was from not at all to all the time reactive to the human coworker.
Q4 evaluated the action selection from very bad to very good.

4.5.3 Results and Discussion

The participants’ subjective feedback is depicted in Figure 4.4. It shows that the Spline
method outperforms the Fixed method in all investigated aspects.

In order to evaluate the statistical impact of the questionnaire, a post hoc analysis on a three-
way Friedman’s test was run. The statistically significant difference between the Spline /
Line and Fixed method depicted in Table 4.2 confirms hypothesis Hyp1.

In addition to the participants’ subjective feedback, the three runs are compared in terms of
human idle time, completion time and safety awareness. As mentioned before, the repellent
force of the underlying local obstacle avoidance was used as a measure of safety. As these
values strongly depend on each participant‘s behavior, each full run is normalized for each
individual, thus reflecting the relative change over the runs per participant. The results shown
in Figure 4.5 are given as the averaged relative measurement of all participants.

Overall Line vs Line vs Spline vs

Question Comparison Spline Fixed Fixed

Q1 0.0016 0.6670 0.0034 0.0014

Q2 0.0004 0.9324 0.0009 0.0005

Q3 0.0032 0.9327 0.0025 0.0052

Q4 0.0021 0.7709 0.0023 0.0030

Table 4.2: Evaluated questionnaire data. Each cell holds p-values for a three-way (overall comparison)
or pairwise Friedman’s test. Statistically significant values (p < 0.01) are shown in bold.
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Figure 4.5: Direct evaluation of the overall assembly time, the human idle time and the activation
of the repellent virtual force of the local obstacle avoidance around the TCP of the robot over all
experimental runs.

The results of the repellent force of the local obstacle avoidance in Figure 4.5 show signifi-
cant improvements by applying our framework in the outlined pick-and-place scenario due to
the ability of our framework to detect collisions at an early stage and to adapt the actions
accordingly. This result confirms hypothesis Hyp2.

Comparing the results of the overall assembly time, hypothesis Hyp3 can only be confirmed
for the Spline method due to the variance overlap of the results for the Line and Fixed meth-
ods.

However, the variance of the completion time is still distinctly high and the improvements of
human idle-time are not yet satisfying. The decreased human idle time during the Fixed runs
on the other hand mainly results from the humans evading the robot with the payoff of
increased overall assembly time.

Last but not least it has to be noted that the trajectory mapping of our initial HRC-game needs
further improvements for an increased overall system performance. As our framework mainly
obtains the allocation of action-primitives among the dyads, additional trajectory planning
has to be integrated. Nonetheless, the results of this initial HRC-game in which our framework
was tested without such an additional trajectory planner, holds as a proof-of-concept of the
method proposed in this chapter.

4.6 Conclusion

In this paper an HRC action selection algorithm based on game theory is proposed. The
general structure of a game in an HRC context is explained. The idea is furthermore outlined
on a manipulation scenario regarding the action selection in collaborative pick-and-place tasks.
An insight is given into how the action space is obtained and matched to a set of reference-
trajectories for the players involved. In addition to that, this initial model is tested in an
HRC-human user study. Based on the results obtained in the experiment, including the
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subjective feedback from the participants involved, the potential of the proposed framework
to improve HRC is shown.

While the results shown in this chapter hold as proof-of-concept of the general framework as
such, suggestions for future work are discussed in the next chapter.
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5
A Conceptual Design to Realize

Interactive Task-and-Motion-Planning
within Human-Robot Collaboration by

Means of Repeated Markov Games

Chapter Abstract

This chapter outlines a conceptual extension of the methods presented in the previous
chapters and also serves as a joint conclusion and outlook into future work that results
from the work presented in this thesis.

Specifically, we outline how the concept of normal form games can be extended to
generic Markov games (MGs) to meet the requirements of an interactive human-robot
collaboration-process. Thus, we outline how the concepts of a normal-form game can
be extended to depict a MG-analogue of the previously presented method. Given the
basics of MG, we outline how the joint planning problem of human(s) and robot(s) can
be fit into an autonomous decision-making framework and elaborate the necessity for
extending the action-selection method to joint motion-planning.

On the one hand, the motion planning problem cannot be simply ignored in order
to select team-optimal action assignments, on the other hand, there exist no suitable
motion planner that would allow the required features for such an interactive task
and motion planning (TAMP)-framework. As this is both subject-aggravated by not
having control over the human decisions and motions, while also having imprecise
human behavior models, we outline which requirements a conceptual game-theory-
inspired TAMP framework must fullfil, but also propose initial concepts how such a
method is achievable.

Eventually, we conclude this chapter and this part of the thesis by summarizing the
collected findings and sketching how future work can build upon the work presented in
this part.
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Given the empirical evidence and proposed methods from Chapter 3 and Chapter 4, this chap-
ter highlights a combination of the former and the latter to achieve interactive task and motion
planning (TAMP) for heterogeneous and homogeneous human-robot teams (HRTs). While
Markov-models such as Markov decision processes (MDPs) or partially observable Markov
decision processes (POMDPs) are powerful tools in modeling stochastic decision problems,
they can only treat human and robot agents jointly. To respect individual objectives at each
transition, iterative Markov games (MGs) have been established in literature that allow to
combine both approaches. As the presented extension builds upon this, we briefly sketch the
theoretical background and dedicated Bellmann equations below.

5.1 Modeling Sequential Decision-Making by Means of
Markov Games

In contrast to classical games, Markov games form the combination of MDPs and sequential
games, as stated by Shapley (1953). Within an MDP an agent can choose an action a ∈ A at
a state s ∈ S, that fully describes the environment, such that the environment transitions to
a new state according to the Markovian transition probability rate T = P[s′ | s, a]. At each
state, the agent obtains a reward r← J := A×S 7→ R. The solution of an MDP is given as
the optimal stationary Markovian policy π∗, that forms a mapping π := S ×A 7→ [0, 1]. The
policy π is called stationary, if it only depends on the state, but not time, i.e., π(sk, a, tk) =
π(sk, a, tj) 6= π(sj , a, tk),∀j 6= k. Furthermore, a policy is Markovian if and only if it solely

depends on the current state s. In contrast to MDPs, an MG is defined by the following
components

• S is a finite set of states s =
(
s(1) , s(2) , . . . , s(NA)

)
∈ S resembling the environment.

• A =
{
A(1) ,A(2) , . . . ,A(NA)

}
is a finite set of NA agents.

• A =
{
A(1) ,A(2) , . . . ,A(NA)

}
is collection of finite action-sets per agent i.

• π : S × A 7→ [0, 1]NA is a joint Markovian policy that maps the state to an action for
each agent.

• T = P[s′ | s, a] is the probability of reaching state s′ from s when drawing a joint action
a from π.

• J =
(
J (1) ,J (2) , . . . ,J (NA)

)
are player-specific payoff functions

J (i)(a(i) | a(−i) , s) 7→ R,

that map the current action-profile (a(i) , a(−i)) at s to a numeric value for each agent.

• γ ∈ [0, 1] is a discount factor, which weights the temporal impact of future versus
imminent payoffs.

Given the existence of a joint goal, one can further introduce the common goal space G ∈ S
as a subset of the state-space.
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Bellmann Equations for Markov Games

By defining the expected accumulated reward per agent on a strategic level

R (i) =

∫ ∞
t=0

γtEa(−i)

[
r
(
st, a

(i)

t , a
(−i)

t

)]
, (5.1)

one obtains the objective that each agent of the MG tries to maximize. By introducing the
state-value function

V(i)(s) = Ea(−i) [r(st, a(i)
t, a(−i)

t) + V(s(i) ′ )] , (5.2)

that approximates the optimal accumulated reward for each agent according to the recursive
Bellmann equation (5.2). The state-value function can also be defined by means of the state-
action-value function or Q-function

V(i)(s) = max
a(i)

Q(i)(s, a(i)) , (5.3)

which can be used to define the advantage function

A(i)(s, a(i)) = Q(i)(s, a(i))− V(i)(s) , (5.4)

that defines the expected payoff win or loss for each agent when choosing an action at state
s. Referring to the definition of ε-Nash-equilibrium (eNE), the advantage function for each
agent is bounded by A(i)(s, a(i)) ≥ −εbr.

5.2 Game-Theory Inspired Task and Motion Planning

As laid out in Section 2.1.3, multiple research projects have proposed TAMP-frameworks to
achieve optimal task allocation for HRT while also generating and executing suitable trajecto-
ries. In brief, the main challenges for a human-robot collaboration (HRC)-TAMP framework
are given as:

• find a feasible trajectory of high-level actions, that transition the current state s to the
goal-space G.

• allocate feasible actions among the HRT w.r.t. a predefined objective, e.g., runtime.

• account for temporal duration of concurrency during allocation.

• account for feasible and optimal trajectories in the generated planning setting.

• estimate the human behavior and adjust robot behavior.

In the scope of this work, plenty of effort was laid in including the interaction behavior of
humans and robots across all the domains stated above, to achieve an interactive TAMP
framework that allows to incorporate the concepts of MG. Specifically, this also involves to
account for suboptimal human behavior and imprecise human objective estimates. Introduc-
ing such a human response behavior imposes a stochastic behavior across multiple layers of
such a TAMP-framework. This quickly violates any Markovian assumption on a dedicated
higher-level planning model, such as the ones presented in Section 2.2.3. While early plan-
ning work was solely relying on first-order-logic or emphasized on stochastic representations
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of the environment, introducing temporal uncertainty, planning uncertainty and stochastic
trajectories to represent a human, requires the robot to either neglect all stochastic behavior
– resulting in existing work – or to regress an optimal policy from an unpredictable stochastic
black-box.

Nonetheless, there remain extensions and realizations of TAMP to account for interactive HRC.
As most approaches within TAMP still rely either on simulated environments (Hartmann
et al., 2020) or single-agent systems (Garrett et al., 2021), we propose that there is potential
room to extend the online execution of these methods by incorporating concepts from MGs.
It is well known that solving large-scale MGs is NP-hard. They scale exponentially in action-
spaces and agents, while each transition depends on the policy of other agents, which in
return may eventually violate the underlying Markov-property. By the definition of HRC,
the individuals have a joint goal that needs to be reached. It is thus legitimate to assume
optimal behavior and neglecting mutual influences for the planning process. In contrast to
existing work, we propose that not only a valid plan should be obtained, but also the individ-
ual state-value (5.2) and state-action-value (5.3) for the human and robot. Depending on the
complexity of the problem, this may either be achieved by Q-learning (Watkins and Dayan,
1992), relational regression (Munzer et al., 2017) or even recent findings from multi-agent re-
inforcement learning, for which we provide a more detailed insight in Part II. Obtaining such
a baseline solution for a given task is preferably obtained offline, as proposed in related work
that proposed similar methods to our extension by explicitly accounting for suboptimal hu-
man behavior (Fisac et al., 2019, Fridovich-Keil et al., 2020, Malik et al., 2018). Thus, we
outline possible extensions, given the baseline solutions Q(R) , Q(H) and V obtained from simu-
lation. Similar to the relational activity process (RAP) (Toussaint et al., 2016), we assume
that the dedicated state-action functions contain the actions of the other agent(s) in their
dedicated state-description, i.e., that the objective of each agent is directly conditioned on
the action of the other agent.

5.2.1 Incorporate Human Preferences and Suboptimal Behavior

During the actual execution, a robot needs to take into account that the assumed human
objective as approximated by Q(H) diverges from the actual one. Thus, the fully observable
state-space1 is extended by two artificial states

X ← X ∪ {xrat, xpref} 7→ [0, 1]2 , (5.5)

where xrat denotes how rationally the human is following the current objective, while xpref

denotes how well the assumed human objective describes the actual human behavior. As
result xrat 7→ 1 and xpref 7→ 1 results in both agents following the assumed cost-metric. As
each human behaves differently, an online objective Qpref(s, a(H)) for H is introduced besides
the latter of the two partially observable states. This function evaluates additional human
preferences and may either be realized as a neural network if plenty of data can be collected
or may have been pre-recorded, relational preference learning (Munzer et al., 2017), visual
affordances (Koppula and Saxena, 2016) or a weighted convex-optimization function, for which
the weights need to be regressed (Oguz et al., 2018b).

1As stated in Chapter 2 this work neglects perceptual ambiguity, which would result in partial observability.
Given that this part of the thesis solely models humans as a source for stochastic system behavior, results
in a fully observable state-space.
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Given the extended state-space, we propose to model the online decision-making as a k-level
sequential game, with the robot taking the first initiative. Similar to Fridovich-Keil et al.
(2020), the TAMP-problem transforms into a two-level hierarchical system, where the upper
layer handles the strategic interaction of the artificial agents, whereas the lower layer executes
the action by means of trajectory optimization. Given collected evidence from cognitive
science (Baker et al., 2007), we propose to use a Boltzmann-distribution to approximate the
human policy on the strategic layer:

π̂(H)(s, a(H) | a(R)) ≈ 1

ν
exp(β(Q(H)(s, a(H) | a(R)) + Qpref(s, a(H)))) , (5.6)

using a normalizer ν to generate a probability density function over the state-space of the
human as the current policy, while β expresses the likelihood of the human following the
currently assumed objective metric.

5.2.2 Obtaining Robot Policies for an Online HRC-Process

Fridovich-Keil et al. (2020) proposed a Q-learning alternative to approximate the human re-
sponse as a Stackelberg-equilibrium, which is legitimate due to the simplicity of state-space
and system-dynamics within autonomous driving. Within HRC such a solution can be incor-
porated into existing TAMP approaches, to improve the estimates of Q(R) , Q(H) and V. Nonethe-
less, in our model, we propose a quantified representation of the artificial states {xrat, xpref},
where each quantified value maps to a dedicated β and human-preference Qpref(s, a(H)) func-
tion. Thus, given a sufficiently high value for β if xrat 7→ 1 and xpref 7→ 1 – i.e., a complete
rational agent – the Boltzmann-distribution converges to a dirac-impulse. Given this map-
ping, the strategic layer can be represented as a mixed observable Markov decision processes
(MOMDPs) similar to Chapter 3 by tracking a belief over the quantified values of human
behavior metrics.

Alternatively, we propose to approximate the stochastic robot policy by means of Monte-Carlo
tree search (MCTS) for the limited k-level extensive game. Given a limited computational
budget, we thus propose to run an MCTS algorithm, where the nodes contain states of the
environment that takes as inputs the current state s, robot cost objective Q(H)(s, a(R) | a(H))
human cost objective Q(H)(s, a(H) | a(R)), human rationality estimate xrat, human preference
estimate xpref , as well as the available computational budget Niter and the depth-level of
the k-level decision problem Nk. As Algorithm 5.1 is intended to be run iteratively, it also
returns and accepts the currently explored tree. Namely, before executing Algorithm 5.1,
the previously explored sub-tree can be reused by defining the node related to the current
state as the new root of the tree in Line 2. Similarly, the explored tree is returned once the
computational budget is used.

At the beginning of each run of Algorithm 5.1, the rationality, i.e., Boltzmann constant β
and current human preference is obtained from the current virtual state values xrat, xpref

in Lines 3 and 4, which are kept constant for the whole iteration to reduce the stochasticity
for the current decision-problem. Given this, the feasible action-set is obtained from the offline
agent-objectives Q(R) , Q(H) and V in Line 6. Again, we propose a dependency on the assumed
human rationality metric. By normalizing the state-action-function and value-function by
the maximum state-action-function value at the current state, the current advantage-function
is also normalized. Recalling the concept of eNE, instead of querying a knowledge base to
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Algorithm 5.1: Obtain an approximated solution for the strategic robot using a limited
computational budget and MCTS.

Input: s, Q(R)(s, a(R) | a(H)), Q(H)(s, a(H) | a(R)), xrat, xpref , Niter, Nk, V
Output: Robot Policy π(R) , V

1 Function GameEpisodeMCTS :
2 v0,V ← init(s,V) . initialize root node and tree

3 β ← initRational(xrat, xpref) . initialize rationality

4 Qpref ← initPreference(xpref) . initialize preference

5 for n = 0 to Niter do
// approximate human policy via (5.6)

6 A(R)

[n],A
(H)

[n] ← getActions(v0, xrat) . get action sets for H and R

7 π̂(H)(s, a(H) | a(R))← approxHumanPolicy
(
Q(H)(s, a(H) | a(R)), Qpref ,A(H)

[n]

)
8 a(R) ← arg max

A(R)
[n]

Eπ(H) [Q(R)(s, a(R) | a(H)), v0] . select greedy robot action

9 v1 ← stateTransition(s, a(R) , π̂(H)) . sample next state from π̂(H)

10 for k = 1 to Nk do
11 V ← V ∪ vk . add node to tree

12 vk+1 ← sample(vk) . simulate consecutive steps by sampling

13 updateTree(V) . update tree

14 π(H) ← getPolicy(V, xrat)

check for valid actions, it is possible to directly evaluate the advantage-function to obtain
feasible action-sets. By limiting feasible actions to hold A(i)(s, a(i)) ≥ −xrat, only candidates
for an eNE are drawn from the available actions. As a direct consequence, the size of the
actual action-space directly depends on the assumed rationality.

Nonetheless, as solely applying this limit may also result in proceeding cyclic or useless robot
actions, the tree is always checked against infeasible edges, i.e., robot actions, at the end
of the algorithm in Line 13, that includes applying the usual back-propagation of collected
objective data as well as pruning infeasible edges from the tree. Given the resulting action-
sets, the human responses are evaluated for all available robotic actions according to (5.6).
Implementation-wise it is thus preferable to introduce intermediate nodes after a robotic
action, from which the human response can be realized as a stochastic transition. It must
further be noted that once the human policy has been evaluated, the transition probability
remains unchanged, such that (5.6) is not required to be evaluated at every iteration. Given
the human response behavior, the robot action is assumed in a greedy manner, while also
accounting for the number of visits for each sample. Therefore, we propose to use upper
confidence bound applied to trees (UCT) as the utility to obtain the current robot action:

U (a(R)) := Q(R)(s, a(R) | ·)~ + κUCT

√
n

Ncnt(a
(R))

, (5.7)

where κUCT weighs the impact of exploration across the robot action-space, Q(R)(s, a(R) | ·)~
denotes the best observed robot objective, while n denotes the current iteration of Algo-
rithm 5.1 and Ncnt(a(R)) represents how often the dedicated robot action has been explored.
Given the dedicated action, the human action is sampled via (5.6) in Line 9. Depending on
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the strategic depth, the remaining steps are evaluated by drawing samples for the human and
robot policies in Line 12. During this sampling procedure, we propose to repeat the process
from Line 6 to Line 9 with a minor adjustment. Rather than applying a greedy-action using
the utility from (5.7), the expected Q(R)-values are collected from the approximated human
policy to obtain a Boltzmann-distribution with β = 1, from which samples can be drawn at
each iteration, once the node is added to the graph.

Eventually, the robot policy is returned to allow to generate suitable trajectories. At each
iteration, the observed cumulative objective for the robot is obtained and saved in the inter-
mediate robot action-nodes. These values are on the one hand used to calculate (5.7), but
also the final policy. Again, we incorporate the current rationality estimate to obtain the
robot policy. When interacting with a rational agent towards a joint goal, it is preferable to
seek for the possible optimum value, while the expected value is a preferable metric for the
interaction with a random, i.e., irrational human counterpart. Thus, the final robot policy
in Line 14 is obtained as

π(R)(s, a(R)) :=
1

ν
xratQ(R)(s, a(R) | ·)~ + (1− xrat)

1

Ncnt(a
(R))

∑
i=0

Ncnt(a
(R))Q(R)(s, a(R) | a(H)) . (5.8)

Given this policy, suitable robot trajectories can be obtained as we will briefly propose in Sec-
tion 5.2.4. The resulting policy on the other hand only solves the decision-problem on finding
the robot policy for a single action, i.e., assigning an action-primitive to the robot. In order
to solve the full manipulation task, a robot is thus required to execute the obtained policy
from Algorithm 5.1, observe the human performance in the meantime, update the virtual hu-
man performance states and rerun Algorithm 5.1 before the next allocation is needed. Before
outlining possibilities of executing the robot policy, we continue with the human performance
observation and how this impacts the applied human behavior states.

5.2.3 Updating Human States

In contrast to MOMDPs or POMDPs, our presented method does not model the human
metric states as partially observable states and instead keeps the values constant for each
iteration in Algorithm 5.1. This diminishes the need for a Markovian transition function. As
a linear Markovian update also may result in cyclic updates of the assumed human states,
which ultimately results in cyclic robot behavior, we instead propose to record the human
performance metric in a cyclic buffer D(H) . In here, all state, action tuples are stored, where the
actions of the human and robot are stored. This data can then be used to update the current
performance metric by applying the regression function that belongs to the current preference
metric. Assuming normalized preference-values, comparing the absolutes of the preference
values in D(H) before and after running the regression can then be used as a reliability metric
for the preference function, similar to the internal convergence of a parametric optimization
objective.

Given this updated preference-metric, the advantage-function for the human and the collected
data in D(H) can directly be calculated from (5.4). The assumed human rationality can then
simply be set to

x
′
rat := 1−

|D(H) |∑
i=0

A(H)
(
si, a

(H)

i , a
(R)

i

)
. (5.9)
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Further, we propose to initialize an empty buffer, such that divergent human impact during
early stages has a dedicated stronger impact, while later errors may also be just subject to
fatigue, which resembles partially rational behavior rather than unpredictable behavior. Sim-
ilarly, the size of D(H) needs to be limited as otherwise the system ignores human suboptimal
behavior at some stage. As this chapter only introduces conceptual work, this value needs to
be evaluated from empirical data and is thus left for future work.

5.2.4 Generate and Execute Robot Motions

Eventually, the obtained robot policy needs to be executed on the robot in the form of ob-
taining suitable trajectories. As the strategic layer assumes to have access to the optimal
allocation metrics from simulation, the optimal policies are usually expected to result in kine-
matically feasible solutions. Nonetheless, a major benefit of the proposed method lies in the
possibility of not only obtaining a valid discrete action-assignment, but rather a distribution
over possible actions, weighted by their expected objective. This allows to solve multiple tra-
jectory optimization problems, depending on the current robot action-space and the available
computational budget. As each of these motion planning problems can be solved indepen-
dently, the number of parallel runs can thus be run concurrently. We further propose that it
is beneficial to solve the resulting motion generation similar to Toussaint (2015) by modeling
each robot action-edge of the strategic layer as an underlying non-linear program. This may be
especially of interest, if iterative motion planners for HRC, such as Bari et al. (2021), are used.
Eventually, the incorporation of multi-modal trajectory optimization (Osa, 2020) as well as
ideas to account for the human objective gradient in the optimization problem (Sadigh et al.,
2016a) may further improve the overall performance of the proposed interaction concept.

5.3 Future Work

To conclude this part of the thesis, we briefly outline future work that results from the pre-
sented work and methods. First, the presented concept from this chapter – even though it
represents a novel concept – requires experimental evaluation and verification or even falsi-
fication given empirical data and subjective evaluations. Besides the work presented in this
chapter, this would also require designing a suitable motion planner that fits the requirements
of the proposed online-decision making algorithm. This implies the ability to produce fast
results, while also accounting for multiple solutions to e.g., reach a desired goal pose.

Furthermore, a solid cross-comparison is needed on which prior model is best to be used to
obtain the offline solutions for Q(R) , Q(H) and V. This implies not only a comparison in terms
of precisely predicting the value of the true optimum, but also the required computation time
to evaluate the dedicated functions. As these will be used in Algorithm 5.1, it is important
to reduce the computation time upon every call to allow for a thorough evaluation.

Eventually, the current approach still assumes full state-observability, which remains a chal-
lenging and often unjustified assumption for real-world applications. Thus, a major line of
research stemming from the presented work is the incorporation of accounting for uncertainty
in the states but also the observations, especially for the currently executed and previously
observed human actions. Recent research in classifying human actions produces reliable re-
sults, but even reliable estimators cannot guarantee absolute accuracy. If such imprecise
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estimates are used to extract the human policy and eventually the decisions for the robot,
this imprecision may have drastic consequences.

Similarly, this holds for the actual execution, where collision avoidance and human behavior
model strongly rely on accurate measurements. Thus, the major line of research in joint HRC
is given by guaranteeing safe interaction, even though data is solely obtained from noisy
sensors.
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6
Multi-Robot Hierarchical Actor-Critic

Chapter Abstract

Multi-agent systems are an interdisciplinary research field that describe the concept of
multiple decisive individual interacting with a usually partially observable environment.
Given the recent advances in single-agent reinforcement learning, the area of multi-
agent reinforcement learning (MARL) has gained tremendous interest within recent
years. Even though various research work has been proposed that allows artificial
agents to discover team-optimal policies, the majority of these approaches still rely on
pure end-to-end learning. It is well known that these approaches still suffer from the
necessity of big data in order to achieve useful results. If the agents are only rewarded
sparsely, this issue becomes inherently worse. On the other hand, aside of training a
policy from demonstrated data, there is rare potential on decoupling the multi-agent
interaction or even incorporate model-knowledge online.

Nonetheless, recent research has shown that hierarchical concepts allow to improve scal-
ing in sparse environments, but also provide the possibility of directly embedding model-
knowledge or robotic controllers. As these approaches are still limited to single-agent
applications, and the existing solutions mainly focus on fully synchronized settings, this
chapter outlines a novel actor-critic (AC)-approach that decouples the MARL-problem
into a set of agents modeling the other agents as responsive entities. We further propose
to estimate two separate critics per agent in order to distinguish between the joint task
reward and agent-based cost-metrics as commonly applied within multi-robot planning.

Finally, we outline how this AC-framework can be embedded into a hierarchical MARL-
approach as the decentralized learning allows for asynchronous decisions along hi-
erarchical layer-agents. Within the presented hierarchical reinforcement learning-
framework we further propose to impose structured observations for each agent, i.e.,
to explicitly distinguish between internal agent-states and environmental observations.
This allows to neglect the observations of other agents within the native critic due to
the conditional independence. This critic evaluates the objective of reaching a proposed
hierarchical sub-goal, which eventually improves the learning speed.

We evaluate our presented methods within a sparsely rewarded simulated multi-agent
environment. While our approach already outperforms the state-of-the art learners, we
close this chapter by outlining possible extensions that are expected to further improve
the overall performance and learning speed.

Remark: A majority of this chapter is also
available in Gabler and Wollherr (2023).
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6.1 Introduction

Based on the recent advances in robotics research over the last decades, automated robotic
systems have been established in our every-day life even beyond industrial applications. Mo-
tivated by the wide range of applications, that have been presented within well-defined en-
vironments such as labs or production halls, it is favorable to allow robots to easily learn
and adjust to new tasks without the need of re-programming them from scratch every time.
Thus, bridging concepts from machine learning (ML) and control-theory (CT) has been om-
nipresent in robotics research over the last couple of years and has brought up promising
results, especially for single-robot systems. In the context of reinforcement learning (RL) the
core motivation is to equip robots with the ability of simultaneously exploring and learning
unknown tasks. Building upon this, the concept of MARL has risen interest to improve scal-
ability by executing tasks by a fleet of robots rather than a single autonomous (centralized)
unit. In such settings it is desirable to handle each robot as an independent individual, such
that the overall system still provides a sufficient performance-level even when a single robot
may suffer from malfunction.

In this chapter we are focusing on MARL in the context of robotic systems, where a fixed
set of NA robots, which we denote as (artificial) agents in the remainder of this chapter,
interact with an unknown environment in order to solve a joint task. As the design of a
global reward-function itself is a challenging task that can doom the final performance of
an RL or optimization algorithm, it is favorable to design an algorithm that is capable to
obtain satisfactory results even in sparse reward environments. In contrast to most pure ML-
based approaches, we claim that it is further not favorable to treat robotic systems, and
thus also multi-agent systems as pure black-box systems that shall be solely learned from
data. As there exist no usable framework that allows for an appropriate usage of model-
based and model-free RL for multi-agent systems yet, this chapter evaluates the possibility
of outlining a hierarchical MARL-framework. In order to allow future research projects to
embed basic pre-knowledge about the individual agents, such a framework should allow a
fully decentralized execution and learning of the individual agents involved. Therefore, this
article evaluates on how to incorporate findings from applied robotic research and game-theory
into MARL to achieve a fully decentralized learning, that may eventually be embedded into
a hierarchical MARL.

In the remainder of this section we briefly sketch our contributions w.r.t. the state-of-the-art,
followed by a summary of the technical foundations of this chapter and the technical problem
in Section 6.2. The core concept of our proposed framework is outlined in Section 6.3. In order
to evaluate the presented method we summarize our simulation environment in Section 6.4
and present the results of our method against state-of-the-art MARL methods in Section 6.5.
Eventually, we propose promising extensions of our presented methods for future research
projects in Section 6.6 and conclude this chapter in Section 6.7.

6.1.1 Related Work

Even though early applications of RL on robotic systems have shown promising results (Kolter
and Ng, 2009, Ng et al., 2004), it was the success of outperforming humans in computer-games
via deep-RL (Mnih et al., 2015, Silver et al., 2016, Vinyals et al., 2019) without suffering
from catastrophic interference (McCloskey and Cohen, 1989) problems, that has opened the
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door for RL-applications within complex, real-world environments. Given the computational
power of modern graphics processing units (GPUs), policy gradients such as the stochas-
tic policy gradient from Sutton et al. (1999a) or deterministic policy gradient (DPG) from
Silver et al. (2014) have been realized via function approximators, such as neural networks
(NNs). A famous example is given as the deep deterministic policy gradient (DDPG) from
Lillicrap et al. (2016). DDPG has shown that deep RL can also be applied on continu-
ous action-spaces such that the applicability of RL within robotic systems has been boosted
drastically ever since. Even though further policy gradient (PG) methods have been de-
veloped in order to improve the variance sensitivity issue, such as trust region policy opti-
mization (Schulman et al., 2015a), proximal policy optimization (Schulman et al., 2017) or
maximum a-posteriori policy-optimization (Song et al., 2020), the majority of algorithms re-
lies on an AC-architecture, where an additional critic reduces the variance drastically, such
as the soft actor-critic (SAC) (Haarnoja et al., 2018). As an intense outline of advances in
single-agent RL is beyond the scope of this chapter, we forward the interested reader to avail-
able literature survey papers (Arulkumaran et al., 2017, Kaelbling et al., 1996, Kober et al.,
2013). Besides single-agent RL, the concepts of hierarchical reinforcement learning (HRL)
and MARL have found great interest over the last decades and are thus outlined separately
in the following.

6.1.1.1 Hierarchical Reinforcement Learning

HRL follows the intuitive principle of divide and rule to split up problems into relaxed sub-
problems. The concept of options as introduced by Sutton et al. (1999b) introduces hand-
crafted options as temporally abstracted versions of actions. As a manual selection of options
hinders the generalization of such approaches, Bacon et al. (2017) have introduced the option-
critic architecture that simultaneously learns intra-option policies, termination functions and
a policy over options without prior knowledge except the number of options to be learned. Al-
ternatively, identifying options from data has been proposed by Arulkumaran et al. (2016).

Besides option-based methods, Schaul et al. (2015) have introduced the concept of universal
value function approximation (UVFA), where promising sub-goals are identified. They pro-
pose to add current sub-goals to the input of the value-function to evaluate their value given
the current state. As outlined by Andrychowicz et al. (2017) UVFAs allow to embed hind-
sight experience replay (HER) in order to increase the learning speed by altering the sub-goals
in hindsight depending on the outcome of an episode. The hierarchical actor-critic (HAC)
from Levy et al. (2019) combines HER and DDPG in a hierarchical architecture. In HAC,
high-level actors or policies send sub-goals to the underlying policy and only the lowest layer
chooses primitive actions that are executed on the environment. Due to its hierarchical na-
ture it has an improved learning speed and allows application in sparse reward environments
where related approaches often fail due to numeric sparseness. Introducing goal-conditioned
observations also encouraged the research area on applying optimization and / or planning
on collected data (Eysenbach et al., 2019).

The extension to MARL has already proposed by Kulkarni et al. (2016) and Tang et al. (2018),
where concurrent HER for synchronous and asynchronous hierarchies was outlined, while Ryu
et al. (2020) introduced hierarchical abstractions by clustering agents into individual groups.
Similarly, the factorization of centralized critics via approaches like QMIX (Rashid et al.,
2018) or QTRAN (Son et al., 2019) use a hierarchical critic ensemble to improve scaling
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that is specifically tailored to multi-agent settings. This directly transitions to the current
state-of-the-art in (deep-)MARL.

6.1.1.2 (Deep) Multi-Agent Reinforcement Learning

Besides solving complex Markov decision process (MDP) problems, the decentralized exten-
sion of Markov game (MG) has gained attention in the context of MARL (Littman, 1994,
van der Wal, 1980). The naive approach of extending Q-Learning to a set of NA independent
learners (Tan, 1993) works well for small-scaled problems or selective applications. Similar
to deep RL, initial results on MARL have been found on discrete action-sets, such as the Dif-
ferentiable Inter-Agent Learning from Foerster et al. (2016) or explicit communication learning
in Havrylov and Titov (2017), Mordatch and Abbeel (2017). In general though, independent
learners violate the Markov assumption (Laurent et al., 2011).

Multi-agent deep deterministic policy gradient (MADDPG) is an extension of DDPG to
MARL (Lowe et al., 2017), that also applies an AC architecture. During training, a centralized
critic uses additional information about the other agents’ states and actions to approximate
the Q-function. Given this centralized critic, each agent updates a policy that is only condi-
tioned on the local observations of each agent. Thus, the actor only relies on local observations
during execution. MADDPG has achieved very robust results in simulated benchmark envi-
ronments (Mordatch and Abbeel, 2017) for cooperative and competitive scenarios. Various
extensions to MADDPG have been proposed. In Li et al. (2019), an extension to MADDPG
has been introduced that used the minimax concept of game-theory to make decisions under
uncertainty. The idea is to take the best action under the worst possible case.

As pointed out in Ackermann et al. (2019), the overestimation bias is also present in MARL.
Some initial works have proposed to bridge concepts from the single-agent domain (van Has-
selt, 2010) to MARL (Sun et al., 2020). Thus, SAC has been adjusted to the multi-agent
domain in Wei et al. (2018), for which further extensions have been outlined, e.g., Zhang
et al. (2020a) propose a Lyapunov-based penalty-term to the policy update, to stabilize the
policy gradient. As a centralized learning is inherently suffering from poor scaling, Iqbal and
Sha (2019) introduced attention-mechanisms in the multi-actor-attention-critic (MAAC). In
order to cope for large-scale MARL, Sheikh and Bölöni (2020) explicitly differentiate between
local and global reward metrics that each agent obtains from the environment.

In contrast to single-agent systems, the critic also suffers from the non-stationarity of the
policies of other agents. This initiated the research of explicitly modeling the learning behavior
of other agents, such as Foerster et al. (2018). Alternatively, Tian et al. (2019) proposed to
model the MARL problem as an inference problem, i.e., to estimate the most likely action of
the other agents and respond with the best-response (br).

As a full survey of MARL is beyond the scope of this chapter, we refer to Hernandez-Leal et al.
(2019, 2020), Nguyen et al. (2020), Yang and Wang (2020), Zhang et al. (2021a) for a more
detailed literature review. In order to illustrate the relevance of MARL from an application-
driven perspective, there exists a variety of recent examples such as logistics (Tang et al.,
2021), internet-of-things (Wu et al., 2021) or motion-planning for robots (He et al., 2021).
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6.1.2 Contribution

While the majority of ML research follows the trend of enabling robots to learn tasks in an end-
to-end manner, this chapter seeks towards leveraging this principle and proposes that existing
model knowledge should be used in the context of multi-agent robotic systems. Concepts such
as HRL have found great results in combining lower-level controllers or model knowledge in
order to improve the overall performance for robotic systems. Within MARL there only exist
rare applications of HRL, as the decoupled hierarchical actions often lead to asynchronous
behavior, which eventually violates the Markov assumption, that existing AC-approaches rely
upon.

Therefore, this thesis introduces a novel AC-method for MARL that allows to fully decouple
the learning among the agents, while achieving comparable performance to current state-of-
the art MARL-approaches. This approach models the other agent by modeling the reactions
of other agents to a selected action of each individual agent. This decision-theoretic principle
stems from Stackelberg-equilibria from game-theory and is tailored to non-zero sum games in
the scope of this chapter.

Our proposed method furthermore introduces another concept of multi-robot planning and
game-theory by explicitly differentiating between joint task rewards and agent-specific, i.e.,
native costs. Namely, each agent estimates the performance of the joint policy w.r.t. the
current task to be learned, but also a cost critic that evaluates the agent-specific cost.

Eventually, we propose a novel hierarchical AC-method that exploits the possibility of the br-
based model to act asynchronously. In addition, we claim that factored observation repre-
sentations are well-suited to boost the performance of MARL, but especially within HRL. In
detail, we claim that it is beneficial to differentiate between internal agent states and external
observations.

This allows to embed the presented br-ACs directly in the schematic of a hierarchical-AC. In
contrast to our br-AC, this model evaluates the cost-critic w.r.t. to a virtual sub-goal that
the agent is provided by an upper layer. By averaging the policy-gradient over the task and
the hierarchical cost, the agent learns to optimize over the task and to prioritize to reach the
current sub-goal.

As each agent acts independently, the presented method can directly exploit hierarchical
learning concepts such as HER, which usually requires full synchronicity across the applied
hierarchies.

As the presented framework opens a variety of further research that has been left blank
within MARL, our last contribution is given by a short outline on possible extensions, that
have a great potential to improve the performance of MARL.

6.2 Preliminaries

As the methods presented in this chapter build upon various findings from literature, we give
an insight into these methods. We continue with introducing MGs.
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a(1) ← π(s(1))
a(2) ← π(s(2))

a(N) ← π(s(N))

s(1) ′ , r(1)

s(2) ′ , r(2)
s(N) ′ , r(N)

Environment

E
E E

A(1)

E
E E

A(2)

. . .
E

E E

A(N)

Figure 6.1: Sketch of a general MARL problem, where NA agents interact with each other in an
unknown environment. Each agent has access to the individual state-observation s(i) , from which an
action a(i) using the current policy π(i) in such a manner that the expected individual return r(i) is
maximized.

6.2.1 Markov-Games

An MG is an extension of an MDP to the multi-agent domain, that is fully described by the

tuple (A,S,A,T ,R , γ), where NA agents A =
(
A(1) ,A(2) , . . . ,A(NA)

)
= (A)i∈NA

interact

with each other in a stochastic environment (Shapley, 1952, 1953) as shown in Figure 6.1.

The state s =
(
s(1) , s(2) , . . . , s(NA)

)
∈ S of the environment with state-space S is perceived as

individual state-observations s(i) for each agent. Due to the Markov-property, the dynamics of
an MG is given by each individual choosing an action a(i) ∈ A(i) ⊂ A out of an agent-specific
action-spaceA(i) , thus forming a joint action a that transitions s to s′ according to a transition
probability function T := P[s′ | s, a], and P[s′ | s, a] as the conditional probability for s′ given
s and a. The individual reward functions R = (R (i) : S(i) ×A(i) ×A(−i) × S(i) → R)i∈NA

map a transition from s to s′ given a, to a numeric value for each agent A(i) , denoted as
r(i) :=R (i)(s, a(i) , a(−i) , s′ ). Given this, each agent A(i) is following stochastic behavior policy
a(i) ∼ π(i)(s(i)) that intends to maximize the objective for each agent

J (i) :=
∞∑
t=0

γt
∫
A
π(at | st)

∫
S
T
(
st+1

∣∣ st, at) r(i)dst+1dat

=

∞∑
t=0

γtE
a(−i)∼π(−i)

(
s

(i)
t

)[∫
A
π
(
a

(i)

t

∣∣ s(i)

t

)
P[a(−i) ]

∫
S
T
(
st+1

∣∣ st, at)r(i)dst+1dat

] ,
(6.1)

where the hyperparameter γ ∈ (0, 1] is a temporal decay weight that scales short-term versus
long-term impact.

In order to solve (6.1), the state-value function

V
(i)
π (s) =

∞∑
t=0

Eat∼ρ(π),(st,st+1)∼ρ(T ,π)

[
γtr(i)

∣∣ s0

]
, (6.2)

state-action-function

Q
(i)
π (s, a) =r(i)(s, a) + γEs′∼ρ(T ,π)

[
V

(i)
π (s′ )

]
, (6.3)
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and advantage-function

A
(i)
π (s, a) =Q

(i)
π (s, a)− V

(i)
π (s) , (6.4)

have been introduced as the multi-agent version of the Bellmann-backup operator for MDPs
(Bellman, 1957). Given that the agents follow a fixed and optimal policy π∗, the dynamic
program-problem eventually solves (6.1) as the global optimum of the MG as shown by
Littman (1994). Given the optimal Qπ∗-function, the optimal policies for each agent can
be obtained as

π(i)(s)∗ ← arg max
π(i)

Q
(i)

π∗(s, a
(−i) , a)

∣∣∣
a←π(i) (s)

. (6.5)

As solving (6.5) requires each agent to follow an optimal policy, the definition of a best-
response policy is of importance in MGs.

Definition 6.1: best-response policy

Given a joint policy π(−i) for the neighboring agents of agent A(i) , a policy brπ(i) is
called an br to π(−i) if and only if

J (i)

(
bra(i) ← brπ(i)

∣∣∣π(−i)

)
≥ J (i)

(
a(i) 6= bra(i)

∣∣∣π(−i)

)
,

i.e., agent A(i) cannot improve the individual payoff-return J (i) by deviating from
brπ(i) (Shoham and Leyton-Brown, 2008).

Within an MG the optimal policy requires that the policies of the individual agents are a br to
the policies of the surrounding agents, leading to the definition of a Nash-equilibrium (NE).

Definition 6.2: Nash-equilibrium

According to Nash (1950), a policy NEπ :=
(

NEπ
)
i∈NA

is a NE if and only if each

agent following NEπ(i) ∈ NEπ results in each policy being a br-policy according to
Definition 6.1. Replacing the objectives J (i) by the state-action values Q(i) this requires

Q
(i)

NEπ(i) ,NEπ(−i) ≥ Q
(i)

π̃(i) ,NEπ(−i)

Q
(i)

NEπ(i) ,NEπ(−i) ≥ Q
(i)

NEπ(i) ,π̃(−i)

with π̃ 6= NEπ, ∀A(i) ∈ A,∀s ∈ S

,

to hold on the global state-space S.

Nonetheless, in real-world problems, neither π∗ nor the value-functions are known. In addition,
the environment is characterized by multiple learners, whose policies and thus actions vary
over time and cannot directly be controlled by an individual agent in an MG. Which results
in the problem formulation of this chapter.

6.2.2 Multi-Agent RL-problem

Given a set of agents (A)i∈NA
, that try to optimize their individual accumulated discounted

reward according to Section 6.2.1, an optimal policy for each agent has to be found, that
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fulfills:

• (π ← arg max Qπ)i∈NA
according to (6.5).

• The joint action a = (a← π∗)i∈NA
is an NE of the MG according to Definition 6.2.

We will continue with a short overview of RL methods that have been established as current
state-of-the-art methods within single-agent RL and MARL.

6.2.3 Policy Gradient Methods

Obtaining an optimal policy πΠ, parameterized by Π, has been tackled by generating PGs (Sut-
ton et al., 1999b), that estimate the stochastic gradient over Π of a policy the policy-loss
function as

∇ΠJ (πΠ) = Es∼π(s)

[ ∞∑
t=0

∇Π log πΠ(at | st) χt

]
, (6.6)

where χt may for example be the single agent version of (6.3) or (6.4), i.e., Qπ or Aπ. If one
can obtain the gradient ∇aχt directly, i.e., the action-space is continuous and the environment
is stationary, it is also possible to obtain the DPG from (6.6) as

∇ΠJ (πΠ) = Es∼D

[
∇ΠπΠ(a | s) ∇aχ|a←π(s)

]
, (6.7)

where the expectation is approximated by drawing samples from an experience replay buffer
D, that contains observed environment transitions. Exemplary DDPG uses χt := Qπ in order
to obtain the gradient of the state-action-value in (6.7). As it can be seen in (6.6) and (6.7),
PGs and DPGs are in general highly sensitive to the variance of χt. As a consequence, AC-
methods have been outlined that add a policy evaluation metric to the policy update of PG
methods.

6.2.4 Actor-Critic Methods

As the accumulated reward does in general suffer from high variance over repeated episodes,
AC-algorithms simultaneously estimate Aπ or Qπ alongside of the PGs in (6.6). Deep Q-
network presented by Mnih et al. (2015) use NNs as function approximators, thus approxi-
mating Qπ by QΘ and †QΘ, parametrized by Θ, where †Q denotes the target-net of Q. These
two function approximators are then used to learn Qπ via off-policy temporal-difference learn-
ing, which is obtained via iteratively minimizing the loss-function

L Q(Θ) :=E(s,a,r,s′ )∼D

[
1

2
(p− QΘ(s, a))2

]
with p =r(s, a, s′ ) + γ(1− d)†VΘ(s′ )

†VΘ(s′ ) =Ea′←π(s′ )

[
†QΘ(s′ , a′ )

] , (6.8)

where D is again a replay buffer that stores experienced transitions from the environment
during the exploration process. Each sample contains the state s, action a, next state s′ , as
well as the experienced reward r and termination flag d. The term (1 − d) thus ignores the
value of the successor-state in the Bellmann-backup operator in (6.3) at terminal states.
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The SAC (Haarnoja et al., 2018) is an extension of the general AC that approximates the
solution of (6.1) via a maximum entropy objective by introducing a soft-value function, thus
replacing (6.2) by

Vπ(s) := E(st,at,st+1)∼D

[ ∞∑
t=0

γtr(st, at, st+1) + αH(π(· | st))

]
, (6.9)

where H(·) denotes the policy entropy at a given state, and α is a temperature parameter
that weighs the impact of the entropy against the environment reward. In contrast to (6.2),
this objective explicitly encourages exploration in regions of high rewards, thus decreasing
the chance of converging to local minima. Further, two function approximators are used for
the critic as in twin delayed deep deterministic policy gradient (TD3), such that the target
value-function in (6.8) is obtained as

†VΘ(s′ ) = Ea′∼π(s′ )

[
min
j=1,2

†QΘ,j(s
′ , a′ )− α log πΠ(a′ | s′ )

]
, (6.10)

where a is obtained from π(s′ ), whereas s′ is drawn from D. In contrast to this, the actual
policy loss is obtained by applying the reparameterization trick

L π
SAC(Π) := Es∼D

min
j=1,2

†QΘ,j(s, fϕ(s, n))︸ ︷︷ ︸
χ

−α log πΠ(fϕ(s, n) | s)

 , (6.11)

that computes a deterministic function fϕ(s, n) that depends on the state s, policy parameters
Π and independent noise vector n drawn from a fixed distribution, e.g., mean-free Gaussian
noise. In contrast to e.g., DDPG, this parameterized policy is also squashed via a tanh
function to the bounds of the action space, thus resulting in valid samples that can be used
to generate a stochastic policy for the stochastic policy gradient update step.

6.2.5 Multi-Agent Actor-Critic Algorithms

The methods mentioned above have been recently extended to the multi-agent domain.
The MADDPG extends AC with DDPG by proposing the schematic of decentralized ex-
ecution in combination with centralized learning. As such, each A(i) learns an individual
(deterministic) policy π := S(i) × A(i) 7→ {0, 1}, while setting χt := Q(i)(s, a) in (6.7) that
has access to the observations s(i) , actions a(i) and policies of all agents such that (6.8) can
be directly applied on the multi-agent domain. This requires to have access to all policies
during learning in order to calculate the target values of (6.8). Similar approaches have been
proposed by MAAC and counterfactual multi-agent (COMA)-PG, that additionally incorpo-
rate a baseline value-function for the policy update and thus use the multi-agent advantage
function

χ := A(i)(s, a) = Q(i)(s, a(i) , a(−i))− Vb(s, a(−i)) (6.12)

for their policy loss declarations. The baseline Vb(s, a(−i)) estimates the value of a current
state and the opponents current actions, such that optimizing (6.12) leads to a best-response
action of agent A(i) according to Definition 6.1. While COMA inserts (6.12) into (6.6), MAAC
uses SAC, thus inserting (6.12) into (6.11). Furthermore, MAAC improves the centralized
critic by adding an attention-mechanism that explicitly learns, which parts of the observations
have an actual impact on the values of the critic.
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Figure 6.2: Exemplary step of a two-level hierarchical MARL-step where each low-level step represents
an interaction with the environment from Figure 6.1. For brevity, only selective nodes and edges are
labeled. In here, the upper layer acts synchronously, such that the observed transition would qualify
for centralized learning for all layers, which is emphasized via the dashed lines for the upper layer. Due
to the hierarchical structure, the agents of the upper layer access the environmental observations s to
obtain a higher level action. In contrast, the agents in the lower level rely on the current observation
and the latest sub-goal from the upper layer.

6.2.6 Hierarchical Actor-Critic

The HAC solves universal Markov decision processes (UMDPs), that extend MDPs by an
additional goal-space G the agent needs to reach from the current state or observation st.
In HAC, the observation s of an agent is thus explicitly extended by a goal g ∈ G, generated
from a K-level hierarchical policy set {{1}π, {2}π, . . . {K}π}. This set consists of hierarchically
decomposed sub-UMDPs, where {k} denotes the hierarchy-level the dedicated policy is learned
for. While the lowest layer k = 1 interacts with the environment, the goal-space of the highest
layer is equal to the original UMDP goal-space. The coupling for the intermediate layers is
given in the form of the action of an upper layer defining the goals of the lower layer. As a
consequence, {k}A = S holds for all upper layers k ≥ 2. Given that, UVFA and HER are
applied in order to generate a goal-conditioned policy for each layer. HER allows to alter
the observed data before storing it in D in the form of setting reached states by lower layer
policies as the actions of the upper layer and the goal of a current layer in hindsight. This has
shown to boost the learning speed for single agent domains with sparse reward metrics, where
pure sampling might fail to converge at all. As learning multiple coupled policies in parallel is
prone to suffer from non-stationarity, they apply subgoal-testing in the rollouts that prohibits
lower levels to draw exploration samples but rather follow their current policy metric in a
deterministic, i.e., greedy manner.

6.3 Technical Approach

In the context of this chapter, we seek to incorporate findings from MARL and HRL. In
the context of HRL for multi-agent systems, a key-challenge is given by handling asyn-
chronous decisions, which directly results in decentralized learning and execution. This contra-
dicts the paradigm of decentralized execution with centralized learning as commonly applied
within MARL (Lowe et al., 2017). In HRL, each layer is modeled as a MDP, where a step of
the higher layer consists of multiple steps of the layer below. For simplicity, we visualize this
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scheme based on a synchronized step for NA agents and a two-layered hierarchy in Figure 6.2.
As it can be seen from this figure, centralized learning would not only require synchronous
updates along all agents and layers, it also would require to know the current sub-goals of
each agent.

In order to leverage these constraints, we propose a novel decentralized MARL concept that
builds upon the concept of best-response-policies and separates joint rewards from internal
agent objectives.

6.3.1 Decentralized MARL Based on Stackelberg-equilibria

In order to achieve a decentralized model for MARL-problems, previous work has evaluated the
application of predicting the br-policy to the inferred action of an opponent (Tian et al., 2019)
or assume overly restrictive access to the environment feedback of other agents. The latter
is always fulfilled for centralized learning. In order to decouple the decentralized learning
procedure, we propose a similar idea to Tian et al. (2019) and instead reformulate their
inference-based policy by modeling the br-policy of other agents. In detail, we apply the
concept of Stackelberg-equilibria. A Stackelberg-equilibrium evaluates the br of an agent,
if the opponent has unveiled the current actions. Therefore, each agent regresses not only
a policy π(i)

Π := S(i) 7→ A(i) – parameterized by Π– that intends to optimize the player-
individual agent-objective, but also a br-policy π(−i)

br Ξ
:= S(i) ×A(i) 7→ A(−i) – parameterized

by Ξ– that represents the reactions of the other agent(s) at each step.

In addition to regressing the br-policy of the other agent, we further claim that it is beneficial
to distinguish between joint task rewards and individual / native cost-terms. In general, we
assume that the individual reward for a cooperative MARL-problem is given in the form of

J (i)(s, π, s′ ) = r(i)(s, π, s′ )− ˆ̀
nat

(i)
(s, π(i) , s′ ) ∈ R , (6.13)

i.e., as a joint or cooperative task-reward that depends on the joint action or policy, as well
as an interactive cost-component that only affects each player. While some existing work
assumes to directly have access to local and global rewards, i.e., to obtain r(s, π, s′ ) and
ˆ̀

nat
(i)

directly (Sheikh and Bölöni, 2020), we propose a model that only has access to the
agent-reward as well as the averaged joint task reward of all agents. Thus, the cost of the
agents needs to be estimated from this joint-reward at each transition. Thus, we apply

r(s, π, s′ )← r(i)(s(i) , a, s(i) ′ )

ˆ̀
nat

(i) ≈ min

−r(i)(s(i) , a, s(i) ′ ) +
1

NA

NA∑
j=1

r(j)(s(i) , a, s(i) ′ ), 0

 , (6.14)

and implicitly assume that an agent only receives individual penalties, i.e., no negative cost
values. Finally, our br-AC approach approximates:

• the (interactive) task critic Q
(i)

int := S(i) ×A 7→ R, that intends to maximize the accumu-
lated task reward.

• the (native) agent critic Q
(i)

nat := S(i) × A(i) 7→ R, that intends to minimize the agent-
specific cost or penalties.
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The agent-policy and critics can then be regressed by means of existing AC-methods, such
as SAC or TD3. In contrast to the default methods, an averaged gradient over the critics
above is required. As the cost needs to be minimized, the difference of the two critics provides
the final critic that is used for the policy gradient of the current actor. Eventually, the br-
policy needs to be updated as well. In contrast to the agent policy, the native critic is
independent of the br-policy. As we emphasize on cooperative MARL, the br-policies intend
to optimize the joint task-critic as well. Thus, the br-policy is given by obtaining the gradient
of the joint task critic w.r.t. the policy of the other agents, after applying the current agent-
policy. Denoting the cost-estimation from (6.14) as GetCost, a single update step for agent
i is sketched in Algorithm 6.1. The dedicated critic losses – denoted as CriticLoss and

Algorithm 6.1: Decentralized br-policy based MARL-update step for agent i. Due to
the decentralized learning, the update step can be run in a fully parallelized procedure.

1 Decentral update step for agent i:
2 (s, a(i) , a(−i) , r, d, s′ ) ∼ D(i) . sample agent experience batch

/* update (interactive) task critic Q
(i)

int := S(i) ×A 7→ R, cf. (6.8) or (6.10) */

3 a(i) ′ ← †π(s(i) ′ ) . get next action

4 a(−i) ′ ← †π(−i)

br (s(i) ′ | a(i) ′ ) . get best-response to next action

5 L
Q

(i)
int

← CriticLoss(s, a, r(i) , d, s′ , a′ )

/* update (native) agent critic Q
(i)

nat := S(i) ×A(i) 7→ R, cf. (6.8) or (6.10) */

6 ˆ̀
nat

(i) ← CostCriticUpdate(r) . estimate step-cost

7 L
Q

(i)
nat

← CriticLoss
(
s(i) , a(i) , ˆ̀nat

(i)
, d, s(i) ′ , a(i) ′

)
/* update agent policy (π(i) := S(i) 7→ A(i)) from critics, cf. (6.6), (6.7) or (6.11) */

8 J (π(−i)

br Ξ
) = E(s(i) ,a(−i))

[(
∇a(i)Q

(i)

int(s
(i) , a)−∇a(i)Q

(i)

nat(s
(i) , a(i))

)∣∣
a(i)←π(i)

Π(s(i))

]
/* update br-policy (π(−i)

br := S(i) ×A(i) 7→ A(−i)) from task-critic, cf. (6.7) */

9 J () = E(s(i) ,a(i))

[
∇a(−i)Q

(i)

int(s
(i) , a)

∣∣∣
a(−i)←π(−i)

br Ξ(s(i) ,a(i))

]

CostCriticUpdate in Algorithm 6.1 – are calculated by setting

pint =r(i)(s(i) , a, s(i) ′ ) + γ(1− d)

(
min
j=1,2

†Q(i)

int,j (s(i) ′ , a′ ) + pSAC

)
pnat =ˆ̀

nat
(i)

+ γ2(1− d)

(
min
j=1,2

†Q(i)

nat,j (s(i) , a(i) ′ )

)
a(i) ′ ←†π(i)

Π (s(i) ′ )

a(−i) ′ ←†π(−i)

br Ξ
(s(i) ′ , a(i) ′ )

pSAC =

{
−α log π(i)(a(i) ′ | s(i) ′ ) for an SAC model

0 else

, (6.15)

in (6.8). We explicitly do not apply SAC for the cost critic, as exploration should be em-
phasized on the task to be learned rather than exploring accumulated costs. Further cost-
feedbacks are usually experienced locally. Therefore, we increase the temporal decay effects
by squaring the decay-parameter for the cost-critic. Eventually, we distinguish between two
interaction schemes in order to model π(−i)

Π,br. First, the other agents can be modeled as an
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unknown black-box system, usually denoted as a game against nature within game-theory.
Thus, a single policy is tracked

π(−i)

br Ξ
:= S(i) ×A(i) 7→ (A)j∈−i , (6.16)

that models an interaction with the current agent and the responsive nature. Our second
approach uses a dyadic interaction scheme and models the br-policy of each agent to the
current agent individually

π(j)

br Ξ
:= S(i) ×A(i) 7→ A(j) . (6.17)

Both policies leverage the effect of mutual interaction among the other agents to diminish
the combinatorial explosion. Given this decentralized learning scheme, we now continue with
outlining a hierarchical MARL-framework.

6.3.2 Multi-Robot Hierarchical Actor Critic

Having outlined a decentralized MARL framework for flat hierarchies, we proposed to use
findings from HRL to improve scaling in environments with sparse rewards. Our extensions
for this hierarchies MARL framework rely on the a collection of assumptions, which is also
assumed in existing work (Levy et al., 2019):

• There exists an agent-specific state-space X (i) ∈ S(i) , and x(i) ∈ s(i) always holds. 1

• There exist deterministic mapping functions Fg := X (i) × {p}A(i) 7→ {p−1}G(i) ∈ X (i)

and Fg−1 := X (i) × {p−1}G(i) 7→ {p}A(i) , that map the actions of the upper layer to the
goal-space of the lower layer and vice-versa for each agent.

• There exists a deterministic evaluation-metric {p}S := {p}G × X (i) 7→ [0, 1], that evalu-
ates the achievement of a goal {p}g(i) given the current agent state X (i) .

This differs from the original assumption from Levy et al. (2019) by the fact, that we propose to
explicitly distinguish between the internal agent-state x(i) and the full environment observation
s(i) .

In fact, we claim that within multi-agent HRL it is specifically beneficial to distinguish between
internal and external observations. Therefore, we use structured observations as

s(i) := (x, ye, y(−i) )i∈NA
, (6.18)

where x(i) reflects the internal state of an agent, e.g., current position, velocity, etc., and
environmental observations y

(i)
e from A(i) ’s perspective, e.g., images or laser range data, as

well as observations of the other agents y
(i)

(−i) .

Given this representation, we propose a two-layered hierarchy, where the upper layer proposes
sub-goals to the lower layer agents. This lower-level is denoted as the environment-layer or
{e}p in the following, while the upper layer is denoted as the team-coordination-layer or {i}p.
On the lowest layer, we apply the br-policies from Section 6.3.1 using a dyadic interaction
scheme, where the individual components per agent are given as:

• the joint task critic Q
(i)

int (s(i) , a).

1The assumption of x(i) ∈ s(i) emphasizes that we do not expect full state-observability, and that the intrinsic
observations do not provide additional knowledge to the robotic agents.
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• the native hierarchical critic Q
(i)

nat

(
x(i) , y(i)

e , g(i)
)
.

• a goal-conditioned action-policy for the current agent π(i) (s(i) , g(i)).

• the dyadic br-policies
(
π(j)

(
(x, ye, y(−i) , a)i∈NA

))
j∈−i

.

As the individually agents are provided with a sub-task that is to be reached by the dedicated
agents alone, the hierarchical native critic preferably drops the dependency on the observation
of other agents. Namely, this native hierarchical critic evaluates the hierarchically imposed
rewards instead of estimating the current step-cost from the deviation w.r.t. the average
reward. As a result, the update-step of the lower layer follows Algorithm 6.1 but replaces the
difference in Line 9 by an average over the two critics. Furthermore, the native critic does not
only evaluate the environmental task-success d, but also if the update-step has accomplished
the current sub-goal. As the rest remains identical to Algorithm 6.1 and (6.15), we omit
repeating the same equations.

In contrast, the upper layer only tracks a single critic, as infeasible sub-goals are also resulting
in unpredictable task-performance. Unfortunately, the agents do not have access to the goal-
mapping of other agents, such that it is impossible to directly impose their policies or higher-
level actions in the critic within decentralized settings. Further, the upper layer usually suffers
from asynchronous decisions, which would require to add the decision-epochs to the state of
the critic to allow sampling from the experience buffer. Therefore, we propose to apply an
observation-oracle instead of a br-policy

{i}π(j)

br := (X × Yenv × Y (j) × {i}a)i∈NA
7→ Y (j) , (6.19)

i.e., instead of predicting the agent-action on the upper layer, the next observation is predicted.
In case, a (partially) centralized learning scheme is applied, this observation-oracle can also
be replaced with

{i}π(j)

br := (X × Yenv ×X (j) × {i}a)i∈NA
7→ X (j) , (6.20)

thus predicting the next internal state of agent j. These opponent models allow to use data
from an experience buffer independent of the higher-level policies or decision-epochs during
execution. As a result, the (interactive) task critic of the upper layers are regressed in one of
the following representations:

{i}Q
(i)

int := S(i) ×A(i) ×
(
Y (i)

(j)

)
j∈−i

7→ R (6.21)

{i}Q
(i)

int := s× a(i) ×
(
X (i)

(j)

)
j∈−i

7→ R (6.22)

Given these models, the overall hierarchical MARL-framework is summarized by the algo-
rithmic skeleton in Algorithm 6.2. For insights about HER, we refer to existing work (Levy
et al., 2019) but also to the listed extensions at the end of this chapter, cf. Section 6.6. At
the beginning of each update-step, the environment layer has to check for necessity of new
sub-goals, i.e., if the upper layer has to draw a new action. Selecting the layer-testing is
omitted for brevity, so we refer to Levy et al. (2019).
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Algorithm 6.2: Proposed hierarchical MARL algorithmic episode step. In here, the
model-parameters are expected to be initialized. Further, the function expects the follow-
ing inputs: the initial observation, a hierarchical replay buffer DHER.

Input: s0, DHER

1 for t = 0 to Teps do
2 ({e}g, {i}a← RequestGoal(s))i∈NA

. request new sub-goal as needed

3 (a← {e}π (s, g))i∈NA
. get environment action

4 s′ , r, d← EnvStep (a) . update environment

5 if d ∨ (g ∈ s′ )i∈NA
then

6 ApplyHER (DHER) . apply HER

7 if d then
8 break . stop exploration if task is done

9 DHER ← DHER ∪
(
s, a, g, r, d, s′

)
, s← s′ . add data to buffer and update state

10 for ntrain = 1 to Ntrain do
11 (TrainLayer ({e}D(i)))i∈NA

. update lower-level, cf. Algorithm 6.1

12 (TrainLayer ({i}D(i)))i∈NA
. update higher-level

While the lower layer is updated similarly to Algorithm 6.1 as stated in Line 11, the lower
layer critic update is given by calculating

p =
1

{i}Tmax

{i}Tmax∑
n=1

γ
{i}Tmax−nr(i)

(
st+n, at+n, st+n+1

)

+ (1− d)


0 if S (x(i) ′ ,Fg (x(i) , {i}a(i))) 7→ >
−(Tmax − n) if ∃ n : S (x(i)

t+n+1,Fg (x(i) , {i}a(i))) 7→ >
−Tmax else

+ γ(1− d)

(
min
k=1,2

{i}†Qint,k
(i)

(
s(i) ′ , {i}a(i) ′ ,

(
y

(i)

(j)

′
)
j∈−i

))
{i}a(i) ′ ← {i}†π(i)

Π (s(i) ′ )(
y′ ← {i}†π(j)

br Ξ
(s(i) ′ , {i}a(i) ′ )

)
j∈−i

, (6.23)

where {i}Tmax denotes the number of maximum sub-steps for a hierarchical transition, and
s′ := st+{i}Tmax

represents the observation of agent i after a hierarchical update step. The first
term averages the environmental reward, while the second adds the hierarchical penalty-term
depending on wether the lower layer could achieve the current action or respective sub-goal.
Eventually, the value-function is approximated via querying the current higher-level policy
and predicting the observations of the other agents.

To conclude the overall algorithm, the br-policies can again be learned by treating the state-
predictor or observation predictor as an additive policy to the current state, or simply applying
behavioral cloning. For the latter, it is beneficial to add exploration noise on the observed
agent-observations and evaluate the sampled data on the current critic. Instead of learning
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the exact behavior, the cloning is then to be obtained on the maximum, i.e., best performing
samples.

6.4 Materials and Methods

The proposed algorithm has been evaluated on the multi-agent particle environment (MPE)
that has been extended from previous work (Lowe et al., 2017, Mordatch and Abbeel, 2017) to
fit the scope of this chapter. The source code of the benchmark scenarios2 and the presented
work3 can be found online, while the hyper-parameters and further implementation details
leading to the results are listed in Appendix B.

In order to meet the assumptions stated in Section 6.3, the original simulation environment
has been adjusted such that the agents are able to differentiate between internal, external
agent-related and external environment-based observations. Thus, we introduce structured
observations for our adjusted version of the MPE. Further, the goal-mapping and evaluation
metrics stated in Section 6.3 have been handcrafted and embedded into the dedicated envi-
ronments similar to the original work from Levy et al. (2019). As claimed in Section 6.3 our
approach tackles cooperative multi-robot RL tasks, such that only environments with pure
continuous action-spaces have been tested. Before outlining the experimental findings col-
lected, we shortly highlight the adjustments that were added to the default gym-environment
and the MPE.

Structured Observations in the Multi-Agent Particle Environment

As stated in Section 6.3, the observation of each agent is obtained as s(i) :=
(
x(i) , y(i)

e , y
(i)

(−i)

)
.

The MPE is characterized by NA agents moving in a xy-planar surface by applying a force
on their body center. Thus, each agent is implemented as a point-mass, where the internal
state and action are defined as

x(i) :=


x(i)

y(i)

ẋ(i)

ẏ(i)

 a(i) :=

[
f (i)
x

f (i)
y

]
, (6.24)

where the action is a planar force4 actuated on the individual point-masses, which then follow
the linear point-mass dynamics

x(i) ′ :=


1 0 dt 0
0 1 0 dt
0 0 v 0
0 0 0 v



x(i)

y(i)

ẋ(i)

ẏ(i)

+


0 0
0 0
1
m 0
0 1

m

 a(i) , (6.25)

2Source code: https://gitlab.com/vg_tum/multi-agent-gym.git
3Source code: https://gitlab.com/vg_tum/mahac_rl.git
4Various implementations available online realize the action input as the difference of two positive force terms,

as this eases the comparison to discrete action spaces, where the result equals learning an optimal bang-bang
controller. As our framework explicitly highlights continuous applications, we kept this implementation for
the comparison to the state-of-the-art methods, but used the interfaces from (6.24) for our method.
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6.5 Results

using the mass of the entity m and a damping-term v ∈ [0, 1] in free-space. In case a particle
collides with an object or an agent, a simple point-mass collision is applied. Even though
the actual observation highly depends on the actual scenario or task to be solved, all our
implementations contain the internal agent-state in the observation of the agents.

As a result, the mapping-functions for the MPE are then given as:

{e}g(i) ← FgMPE (x(i) , {i}a(i)) =

[
1 0 0 0
0 1 0 0

]
x(i) + {i}a(i)

{i}a(i) ← Fg−1
MPE (x(i) , {e}g(i)) = {i}g(i) −

[
1 0 0 0
0 1 0 0

]
x(i)

, (6.26)

while the success-metric is simply given as

{i}S MPE (x(i) , {e}g(i)) :=

∥∥∥∥{e}g(i) −
[
1 0 0 0
0 1 0 0

]
x(i)

∥∥∥∥
2

≤ ζg,MPE . (6.27)

The threshold-parameter is thus given as another hyper-parameter that is listed in Ap-
pendix B.

As claimed in Section 6.3, our approach tackles cooperative multi-robot RL tasks, such that
only environments with pure continuous action-spaces have been tested. Besides cooperative
navigation, we evaluated our approaches on the cooperative collection task, in which NA agents
are asked to reach NA goal-locations. The reward-signal is provided sparsely:

r(i) ←
NA∑
k=0

{
0 if visited(gk) ∨ ∃j : ‖x(j) − gk‖2 ≤ ζg,MPE

−1 else
. (6.28)

In addition, each agent is penalized with a direct cost-value of −1 every time a collision with
the environment or another agent is encountered.

6.5 Results

In this section we evaluate the performance of our decentralized br-policy MARL-framework
within the simulation environment from Section 6.4. Within this environment, we evaluated
our algorithm against against state-of-the-art algorithms within MARL, namely MADDPG
and multi-agent soft actor-critic (MASAC).

Given our adjusted MPE benchmark environment, we ran a decentralized version of TD3 (Ack-
ermann et al., 2019) and the multi-agent version of Haarnoja (2018) for the joint critic in our
algorithm. Given the dyadic and game against nature variants, we use the following nota-
tions:

• The state-of-the-art algorithm are directly denoted as commonly known in literature,
i.e., MADDPG and MASAC.

• Our extension of TD3 is denoted as br-TD3-dyad/nature.

• Our extension of SAC is denoted as br-SAC-dyad/nature.
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Figure 6.3: Results of the decentralized br-based algorithms for the cooperative collection task using
sparse rewards. The figures present averaged rewards of all agents over 8 learning-runs per algorithm
and environment. The shaded areas highlight a confidence-interval (CI) of 70 %. The upper figure
shows the performance of the collection task with static goal-locations, whereas the environment on
the bottom samples new goal-locations upon every reset. The x-axis denotes the evaluation steps,
which are run after 10 exploration episodes to evaluate the current performance.

As stated above, our main emphasis is set on improving the performance in sparsely rewarded
environments, Further, we explicitly taylor our approach to continuous action-spaces in co-
operative sections. Therefore, we applied the cooperative collection task according to the
parameterization in Appendix B.

For brevity, we present the evaluation-performance of the individual algorithms based on the
average rewards of all agents in Figure 6.3. In here, the term evaluation refers to the agents
following their current policies in a greedy manner rather than drawing samples from it. The
collected results show a static – i.e., using fixed goal-locations – in the lower figure and a
non-static version in the upper one. In this environment three agents are updating their
policies over 5000 exploration episodes. As the evaluation is only run every tenth episode,
the number of evaluation steps is lower than the actual explorations. In addition, it has to
be mentioned that the averaged reward per evaluation run is logged, which in return strongly
depends on a randomly sampled starting state of the agent – and also the goal-locations in
the non-static environment. As a result, the collected data suffers from high noise, which is
reduced by smoothing the collected reward-values using a Savitzky-Golay filter (Savitzky and
Golay, 1964) and the implementation from Virtanen et al. (2020).
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As it can be seen, our algorithms outperform the current state-of-the-art algorithms in terms
of final performance but also in terms of convergence speed for both scenarios. Unsurprisingly,
our method performs best in static-environment that requires the agents to reach static goal
locations. In these scenarios, there is a direct relation between the agent states and the actual
value-functions, which leads to an improved learning rate.

static MADDPG MASAC br-TD3-d br-TD3-n br-SAC-d br-SAC-n

r(1) −2.92± 0.38 −2.95± 0.24 −2.54± 0.48 −2.55± 0.47 −2.6± 0.43 −2.64± 0.42
r(2) −2.94± 0.4 −2.96± 0.23 −2.54± 0.48 −2.57± 0.47 −2.6± 0.43 −2.64± 0.43
r(3) −2.99± 0.44 −2.95± 0.23 −2.54± 0.48 −2.55± 0.46 −2.61± 0.44 −2.64± 0.43
dev 3 0 35 31 12 10
dex 86 62 1121 901 256 246

r(1) ¢ −2.89± 0.46 −2.87± 0.3 −2.4± 0.51 −2.41± 0.51 −2.5± 0.52 −2.51± 0.53
r(2) ¢ −2.97± 0.5 −2.87± 0.3 −2.42± 0.51 −2.44± 0.52 −2.5± 0.52 −2.51± 0.53
r(3) ¢ −2.88± 0.44 −2.87± 0.3 −2.41± 0.51 −2.44± 0.52 −2.5± 0.52 −2.52± 0.53
dev ¢ 7 0 50 52 31 41
dex ¢ 289 68 1391 1284 554 481

Table 6.1: Detailed performance metrics for evaluated environments. Again the results of the static
environment are listed on the bottom. The best performing values are highlighted in bold. The values
show the averaged results with the optional standard-deviation appended by ±. The terms dyadic
and nature are abbreviated by their first letter for brevity. Similarly, the number of successful trials
success of the exploration and evaluation runs are denoted as dex and dev.

For a closer evaluation of our presented algorithms, the per-agent rewards-metrics are listed
in Table 6.1. Furthermore, the number of total successful trials per algorithm during explo-
ration and evaluation are listed. An exploration is not only run distinctly more often, it also
contains double the amount of steps per run. As a consequence, the number of successful
exploration runs is distinctly higher compared to the evaluation numbers.

Nonetheless, the collected numbers underline that our presented method outperforms current
state-of-the-art methods distinctly, not only in terms of averaged accumulated reward as
shown in Figure 6.3, but also for each individual agent involved. The performance increase
becomes evident by comparing the success rates of the algorithms, where MASAC even failed
completely to find a successful policy.

Comparing the overall results, the TD3-agents outperformed not only the state-of-the-art
methods, but also our SAC-variants. Furthermore, the dyadic setup resulted in improved
performance for all evaluation metrics compared to the game against nature schematic. This
confirms our initial statement that it is preferable to handle interactions individually, rather
than regressing interaction schemes fully from a NN.

Regarding the standard-deviations of our proposed methods, it also becomes evident that our
methods suffer from higher variance in the accumulated rewards. Even though this may seem
as a disadvantage of our approaches compared to the existing algorithms, it has to be kept
in mind that a successful episode usually distinctly differs from an unsuccessful episode, thus
directly resulting in an increased variance. Regarding the number of successful samples per
algorithm, this directly relates to the increased variance.

In summary, it can be stated that our presented algorithms outperform the existing methods
within our simulated environments and are thus valuable extensions that can be used within
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a hierarchical MARL-framework as outlined in Section 6.3.2. In order to further improve the
performance of such a hierarchical MARL-framework, we outline explicit extensions to the
presented methods in the following chapter to close this part of the thesis.

6.6 Possible Extensions

In this section, we elaborate possible extensions of the presented approach in order to increase
the applicability and further enhance the performance.

6.6.1 Applying Best-Response Policies on Competitive Environments

If the agents have access to all reward values during learning, an additional critic for the
objective of the other agent can be added to the presented algorithm. This results in applying
the gradient-step for the br-policy not only over the joint task critic for the current agent,
but also the agent-specific agent critic. If applying this metric, it is strongly recommended to
apply the dyadic interaction scheme from above, as our algorithm is restricted to optimizing
the average reward over all agents otherwise.

Another extension is given by modeling non-cooperative agent(s). In order to model this
procedure, it is best to condition non-cooperative agents on the joint team-policy of all coop-
erative agents, thus leading to the conditional interaction policy:

π(s) ≈ π(−i,−i)(s(i) | a(−i,i) , a(i))π(−i,i)(s(i) | a(i))π(i)(s(i)) , (6.29)

where the cooperative policy is denoted as π(−i,i)(s(i) | a(i)) and the non-cooperative policy is
denoted as π(−i,−i)(s(i) | a(−i,i) , a(i)). Alternatively, on-policy-based approaches, such as proxi-
mal policy optimization (PPO) or trust region policy optimization are worth an investigation
to model the behavior of other agents. In here, a direct approach is given by conditioning
the policy estimate on the average over all estimators. A more promising approach would be
given by averaging over all agent-advantages, and thus applying a gradient-step. This bares
the potential on stabilizing the estimated opponent models and thus the overall task-critic
updates, which eventually increases the likelihood of converging to the team-optimal policy.

6.6.2 Improving Convergence Behavior by Partially Centralized Learning

The presented method fully decouples learning by learning opponent models without apply-
ing centralized learning schemes. This is endangered to lead to divergent agent behavior and
thus converging to suboptimal team-behavior. Therefore, our current method could be fur-
ther enhanced by introducing centralized learning without adding restrictive full observability
assumptions. Rather than sharing the full observations, the individual opponent policy pre-
dictions can be shared during learning, such that the policy gradient can be conditioned on
the Kullback–Leibler (KL)-divergence of the predicted opponent policies

a(j) ← π(j)
Π,br (s(i) , a(i))

J
(
π(j)

Π,br

)
= Es(i) ,a(i)

∇a(−i)Q
(i)

int(s
(i) , a)

∣∣
a(j) −

1

NA − 2

NA∑
k=1,k 6=j,k 6=i

DKL (π(j) ||π(k) )

 . (6.30)
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6.6.3 Incorporating Model-Knowledge about Agent State-Dynamics

Eventually, the major advance of the presented hierarchical method lies in the ability in mix-
ing model-based with model-free RL. Especially in multi-agent systems, the overall learning
can be improved by incorporating knowledge about the individual agents, while learning a
state-predictor oracle of the other agents from data. The existing hierarchy allows to apply
safe state-space regions, in which the agents can explore for data-driven policies, cf. Zhou
et al. (2021). Alternatively, the presented framework can embed model-based controllers on
the lower level, and focus on proposing suitable task goals by the upper layer, which can be
regressed from data without the necessity of respecting the current layer test-mode. A major
benefit of this approach is then given by being able to directly impose constraints within
the selected controller. On the other hand, solely relying on a single controller may lead to
undesirable or overly restrictive behavior. Therefore, the investigation of obtaining suitable
controllers by decomposing a set of controllers from data (Sharma et al., 2020), but also to
improve their performance by advanced model predictors (Saxena et al., 2021) bares great
potential to improve the overall learning behavior. Similarly, control or model-based priors
may allow to further improve the performance rather than obtaining data from random ex-
ploration (Rana et al., 2021). Eventually, it is preferable to identify regions of the state-space
– or observation-space – in which it is not only safe to apply RL, but also where it is actu-
ally needed. As a consequence, rather than replacing well-established methods such as model
predictive control or iterative linear-quadratic regulator by data-driven policies, a classifier
that maps the accuracy of the dedicated models bares a distinctly higher potential towards
improving overall system performance. Regarding the hierarchical aspect, concepts such as
reachability analysis (Althoff, 2010) can be used to induce hierarchical rewards on infeasible
goal-states, but also to account for invalid sub-goals online. Thus eventually, the learning and
intense data-collection is only of relevance in the areas where the assumed dynamic models
differ from the experienced data.

6.6.3.1 Applying HER Based on Current Agent Performance Across Hierarchies

In contrast to existing work HER cannot only be applied by evaluating the current episode
or step reward, but also by directly evaluating the current advantage(s) at each step. A
promising approach is given by directly applying the generalized advantage estimator (GAE),
similar to PPO. In order to differentiate between team-average and agent-based rewards, we
recommend to regress two value-estimates of the current state:

Vint (s(i) , a(−i)) ≈
∞∑
t=t

1

NA

NA∑
j=1

r(j)
t

Vnat (s(i) , a(−i)) ≈
∞∑
t=t

r(i)
t

, (6.31)

which represents the multi-agent baseline performance as also proposed in Foerster et al.
(2018) and Iqbal and Sha (2019). As this value-estimate depends only on the current state,
it can be evaluated throughout the hierarchies to estimate the advantage of a (hierarchical)
action, using the (accumulated) GAE – cf. Schulman et al. (2015b). Recalling the the temporal
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difference (TD)-residual of the single-agent GAE

δTD := r (st, at, st+1) + γVπ (st+1)− Vπ (st) , (6.32)

it is straightforward to see, that by simply adding the observed state-action values from
the experience buffer, the agent can evaluate the advantage of each step w.r.t. the average
team effort and personal reward. Using a weighted average of the step-advantages along a
hierarchical step can then be used to directly account for environment-sensitive HER-rules:

• In case a lower layer step has a positive native advantage, map the next observation to
the current sub-goal.

• In case an averaged update step has a positive native and interactive advantage, adjust
the action of the upper layer such that the agent would have reached the dedicated
sub-goal.

6.7 Conclusion

Within this chapter we have proposed a novel MARL-framework that allows for decentralized
learning while also differentiating between agent-based native costs and joint task rewards.
Even though our method relies on estimates of the agent-based costs, it outperforms recent
state-of-the art methods in terms of convergence speed within sparsely rewarded environ-
ments.

As the presented framework allows for a fully decentralized execution and learning, this chap-
ter presented a hierarchical MARL-framework that allows each agent to regress the original
task-critic without increasing the state-space, but simultaneously estimating the objective of
reaching self-imposed sub-goals via a separate critic. Due to the decentralized execution and
learning principle, the proposed MARL-framework is not affected by asynchronous decisions
along the hierarchy. This allows each agent to specifically learn the task but also the hier-
archical nature, which usually distinctly improves learning performance in sparsely rewarded
environments.

Eventually, our method differs from existing MARL-methods by directly imposing structured
observations and thus to impose different learning schemes for internal agent-states and exter-
nal observations. This gives room for future research to impose minimal pre-knowledge, e.g.,
assuming knowledge about the individual dynamic models of the agent, while regressing the
evolution of the environment from data. Given the amount of conceptual extensions presented
in this chapter, we close this part of the thesis with a short outlook into future work.

Future Work

In order to conclude this part of the thesis, we shortly present directions for future work.
Starting from the possible extension that we have outlined within this chapter, the first line
of research is given by extending the presented method to competitive domains, i.e., zero-
sum games. Even though zero-sum games bare additional challenges on increased impact of
individual agent-policies, we propose a conceptual extension of our br-policies to a team-based
decision stage. In detail, the actions of the opponents are regressed by minimizing instead of
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maximizing the agent task critic. This encourages the agents to take behaviors, where the
vulnerability towards opponent policies is minimized.

Another line of research for future projects is the analysis of stabilizing the convergence be-
havior by sharing the predicted br-policies among the individual agent-models. Nonetheless,
the most promising line of research of the presented approach lies in the extension of the
hierarchical MARL-framework by explicitly incorporating available model knowledge and di-
minish the idea of pure model-free RL. In fact, the hierarchical structure of the proposed
learning-framework allows to directly impose available model-knowledge of the individual
agents and apply low-level controllers or primitive behavioral models. As a result, a suitable
control-policy can then either be found by proposing suitable goal-states to the lower level,
or by composing suitable control-policies by a set of controller candidates. As this frame-
work would still allow to embed a model-free policy as an alternative controller, the presented
method allows to bridge findings from control-theory to model-free RL.
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7
Haptic Object Identification for

Advanced Manipulation Skills

Chapter Abstract

This chapter focuses on the aspect of coping with unknown objects, namely with the
identification of the shape and material properties of objects in the environment of a
robot manipulator. Motivated from the concept how humans improve their visual prior
information by further exploiting their sensory and motoric abilities, the research field
of haptic perception evolves.

While recent research has focused on estimating either the geometry or material proper-
ties, this chapter strives to combine these aspects by outlining a probabilistic framework
that efficiently refines initial knowledge from visual sensors by generating a belief state
over the object shape while simultaneously regressing the material parameters. Specif-
ically, we present a grid-based and a shape-based exploration strategy, that both apply
the concepts of Bayesian-Filter theory in order to decrease the uncertainty by optimiz-
ing the expected information-gain at each step. Furthermore, the presented framework
is able to learn about the geometry as well as to distinguish areas of different mate-
rial types by applying unsupervised machine learning methods, namely density-based-
spatial-clustering for applications with noise to cluster individual materials.

We evaluate the presented haptic exploration framework within a simulated environ-
ment using a simplified robot, that allows to collect haptic feedback via a force-torque-
sensor. The collected data highlights the potential of the presented methods towards
enabling robots to autonomously explore unknown objects, yielding information about
shape and structure of the underlying object and thus, opening doors to robotic appli-
cations where environmental knowledge is limited.

Remark: A majority of this chapter was previously published in
Gabler et al. (2020b) and builds upon internal project work (Maier, 2019).
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7.1 Introduction

From research projects within well-defined lab environments to future applications in everyday
life and industry, future robot applications are favored to handle arbitrary objects without
requiring a perfect model of the environment. This skill is a key-requirement in order to
achieve long-term autonomy. As a result, object identification and knowledge acquisition are
crucial – yet important – assets for robots. While a rough estimation of the shape of an
object can be obtained from visual data, the exact material decomposition remains in general
unknown. Nonetheless, these material properties have a distinct effect on the selection of
the subsequent manipulation tasks, e.g., the choice of material-dependent cutting tools. In
order to allow robots to autonomously identify these object characteristics, one approach is to
mimic human behavior in applying haptic data acquisition methods, i.e., actively interacting
with the unknown object. This approach, known as tactile and haptic exploration, enables
robots to significantly increase and extend the results of visual object identification methods.
In contrast to recent research in haptics, this chapter presents an online inference algorithm
which is capable of acquiring information not only about the geometry but also about the
material parameters of an unknown object.

The remainder of this chapter is structured as follows: the next section outlines the mathemat-
ical problem tackled in this chapter, followed by an outline on how this chapter is positioned
compared to related work in Section 7.3. The concepts of the proposed grid-based and the
shape-based exploration strategies are sketched in Section 7.4. The idea of classifying in-
dividual components by their material types is shown in Section 7.5, whereas Section 7.6
outlines the evaluation of the proposed methods in a simulated environment. The summary
in Section 7.7 concludes this chapter.

7.2 Problem Formulation

The task of haptic object identification consists of two main challenges. First, the geometric
shape of an object, denoted as S in the context of this chapter, is in general unknown. Second,
the object is characterized by an undefined parameterization ξ, that describes the material
properties of an object, e.g., a material classifier that maps each component of S to a finite
set of materials. Given the state, control inputs and measurements of a robot as ~x0:t :=(
x

0
,x

1
, . . . ,x

t

)
, ~u0:t :=

(
u

0
,u

1
, . . . ,u

t

)
and ~z0:t :=

(
z

0
, z

1
, . . . , z

t

)
from time step 0 to

the current time step t, the problem is given by finding proper mapping functions

S← FS

(
~x0:t, ~u0:t, ~z0:t, ξ

)
, (7.1)

ξ ← Fprm

(
~x0:t, ~u0:t, ~z0:t, S

)
. (7.2)

Finding proper mappings FS and Fprm is non-trivial as they are in general dependent on each
other. Nonetheless, when analyzing the problem individually, one can relax these problems
and focus on finding these mappings for a fixed ξ or S. As a variety of promising methods
on solving these problems individually exists in literature, we continue with an overview of
related work.
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7.3 Related Work

Although vision has been established as the backbone of robotic perception, haptic information
acquisition has been used to understand or recognize shapes of objects for years (Allen and
Roberts, 1989). Navarro et al. (2012) present an approach for haptic object recognition based
on extracting key features of tactile and kinesthetic data using a clustering algorithm, where
a tactile sensor performs haptic sensation tasks using different robotic hands. Behbahani
et al. (2016, 2015) have introduced haptic simultaneous localization and mapping (SLAM)
into the field of haptic exploration, which is inspired by visual SLAM techniques (Durrant-
Whyte and Bailey, 2006) and occupancy grid methods (Elfes, 1989). Through adaption of the
FastSLAM (Montemerlo et al., 2002) algorithm, a novel method is proposed to iteratively learn
the shape of the surface of objects. The same approach is used to mimic haptic perceptual
algorithms from neuroscience in (Behbahani, 2016). Another method using haptic SLAM
is presented by Schaeffer and Okamura (2003), although their algorithms require knowledge
about the underlying object shape in advance. Further on, there are methods to detect
objects and especially edges of geometries through clever exploration strategies. Pezzementi
et al. (2011) extract features based on data from a tactile sensor array using methods inspired
by computer vision techniques. This concept is extended in Martinez-Hernandez et al. (2013)
by actively following contours based on tactile sensor data. Nonetheless, this approach heavily
relies on distinct edges and sharp angles in the contour of the object. Another approach is
represented in Hegazy and Denzler (2009), where range data and 2D images are combined
to a generic object recognition algorithm. These techniques succeed in solving the geometric
shape estimation task, but fail in providing any further information about the underlying
material decomposition.

The problem of finding a dedicated choice of control actions that can help to maximize
the accuracy of the available information is tackled by Bourgault et al. (2002), who use
an information-theoretic approach to select actions with a high information gain. Similarly
Julian et al. (2012) use sequential Bayesian filters to increase the information gain for a joint
state exploration task with multiple robotic agents.

Regarding the aspect of identifying material parameters based on haptic cues promising results
have been found in literature. Luo et al. (2017) provide a detailed review of tactile perception
using surface and texture-based information to find material properties and material types.
Friedl et al. (2016) identify textures using recurrent spiking neural networks. Decherchi et al.
(2011) classify material types using methods from computational intelligence from contact
forces. Xu et al. (2013) propose a classification algorithm based on texture and propose a
Bayesian exploration algorithm which seeks to minimize the uncertainty in the underlying
belief (Fishel and Loeb, 2012). These methods allow to distinguish between different material
properties, but fail to simultaneously refine shape estimation and material classification.

Contribution

In contrast to the state-of-the-art, this chapter outlines a haptic object identification frame-
work that allows to simultaneously refine the shape estimation and regress the underlying
material parameters as visualized in Figure 7.1. In order to obtain FS, we incorporate find-
ings from haptic SLAM (Behbahani et al., 2015). This encourages to maximize the information
gain at every step by applying concepts of Bayesian Filter theory (Thrun et al., 2005) in an
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Identification:
ξ ← ξ + Fprm

control update

measurement update

P
[
S
∣∣ zt,xt

]
, ~x0:t, ~u0:t, ~z0:t

ξ

Haptic
Exploration:
P
[
S
∣∣ z

t
,x

t

]

Figure 7.1: Proposed framework components. The haptic exploration iteratively decreases model
uncertainty, while the identification allows to batch-process a collection of data measurements in order
to refine the object parameters ξ.

iterative cycle of control and measurement updates. In order to decouple the simultaneous
parameter estimation problem, ξ is assumed to be fixed for Neps steps and only updated once
collective data batches of update steps have been obtained. In contrast to the cyclic nature
of Bayesian Filters, this module has access to a collection of data measures and can thus
run nonlinear regression techniques to regress the material parameters ξ. In the remainder
of this chapter, ξ describes the boundaries of a classifier that maps individual components
of an object to a set of available material types. Given this, Fprm is realized by applying
unsupervised clustering and model-fitting techniques. 1

7.4 Haptic Exploration

Before being able to extract information about the objects in the workspace, the robot has to
collect data through exploration. In order to gather this sensor data in an efficient manner, we
design a control flow for exploring our environment based on a grid-based and a shape-based
representation. Given initial data from e.g., computer vision, an initial belief can be obtained,
that can be iteratively updated.

7.4.1 Grid-Based Exploration

We incorporate the findings from Behbahani et al. (2015), where the belief of the geometry is
stored in an occupancy grid consisting of individual cells c ∈ S. We extend this to

GS =
(
S1, S2, . . . , SNmtrl

)
,

as an inference grid consisting of binary classifier layers Sti for Nmtrl material types, and an
occupancy grid for i = 0, where each grid Sti assigns a class-membership probability to each
cell c. However, in contrast to storing actual probability values in the grid as in Elfes (1989),
we use the log-odds-notation

P[c | z ,x ] ∝ exp Sti(c)

1 + exp Sti(c)

1The framework outlined in this chapter is not restricted to the presented identification method. Nonetheless,
this specific example serves as a proof of concept.
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Figure 7.2: Basis for utility and accessibility calculations in a 2D grid for two different goal cells,
shown in blue. The black arrows show the direct connection from ẋ to the goal cells, while the light

blue cells indicate the result of the line discretization and the content of the set
(
ct1, ct2, . . . , ctNcell

)
.

The gray numbers in the cells show the respective belief stored in one layer of the inference grid,
e.g., the occupancy layer St0.

from Behbahani (2016) to store the current belief of each cell and layer. With all layers
being binary classifiers both measurements and states can only take values in {0, 1}. As the
haptic exploration seeks to maximize the expected information gain, a utility metric needs
to be defined that encourages to maximize information gain upon choosing the next cell to
explore. We incorporate findings from Julian et al. (2012), that map the prior belief of a cell
to all possible measurements. Predicting the posterior given the current belief and models,
the utility of a cell c results in

U c(ci) =
1

Nmtrl

Nmtrl∑
i=1

∑
z∈{0,1}

∑
sc∈S

P
[
z

+
= z

∣∣∣ s]P[sc] ln

P
[
sc

∣∣∣ z+
= z

]
P[sc]

 , (7.3)

where z stands for the possible results of the measurement, which are again given as binary
mapping {0, 1} for all layers for a given cell in the inference grid, and sc iterates over the
possible state of cell c in the dedicated layer of the inference grid. In order to evaluate the
uncertainty over all classes, we finally average over all classes Nmtrl and obtain a utility score
for each cell in the inference grid. Given the prior belief P[sc] and the sensor model P[z | sc],
the probability P[sc | z ] can be directly inferred by Bayes’ law. However, there are cells with
a high utility which may be unreachable for the robot in realistic scenarios, e.g., the inside of
rigid bodies or geometries with cavities. Hence, we introduce an accessibility metric evaluating
how well cell c is accessible from the current pose of the robot xt, given a cell-trajectory as

visualized in Figure 7.2. Denoting the cell-trajectory as ~c :=
(
ct1, ct2, . . . , ctNcell

)
of length

Ncell, we exploit the log-odds-notation by accumulation of signs of the occupancy layer for
each cell:

U reach(ci) =


1

Ncell
if S0

t(ci) = 0 ∀ci ∈~c∥∥∥ 1
Ncell

∑
ci∈~c −sign(S0

t(ci))
∥∥∥

2
otherwise

, (7.4)

where the upper case simply avoids a reachability of 0 for all cells, if the occupancy grid is
empty for all cells evaluated. Hence, the final rank and thus the criteria for selecting the next
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exploration cell is obtained as

c∗ ← arg max
c∈

(
S1,S2,...,SN

mtrl

)U reach(c)U c(c) . (7.5)

A single exploration step is thus given by selecting cell c∗, approaching this cell, starting a
measurement by e.g., applying a force upon the object and updating the inference grid based
on the new measurement.

7.4.2 Shape-Based Exploration

A major drawback of the grid-based framework is that the resolution of the grid inevitably
leads to uncertainties due to the discretization of the grid. Therefore, we propose a second ex-
ploration approach which uses analytic shape representations of geometric primitives, namely
spheres, cylinders, boxes and planes. Provided initial data points from e.g., computer vision,
we fit initial models that generate a hypothesis for each model shape. As each model-fit is
conditionally independent from the others, each hypothesis forms a shape-particle RS

i. All
shape-particles denoted as RS form a Particle-Filter, where each particle is associated with a
belief, initialized by a uniform distribution over all particles.

In order to explore the environment efficiently, a utility metric is needed that minimizes
the uncertainty at each step, i.e., to distinguish between various shape candidates. This
selection boils down to finding the optimal contact point from a set of candidates pcnd :={
pcnd

1,p
cnd

2, . . . ,p
cnd

Ncnd

}
representing possible contact points on a surface of a shape-

particle. Similar to (7.3), the utility metric is based on Julian et al. (2012) and the concept
of mutual information (Elfes, 1995). We further assume a multivariate normal-distributed
sensor-model with covariance Σ , such that the utility results in

U S(p
cont,RS) =

∑
RS

i∈RS

∑
p

i
∈pcnd

N
(
p i
∣∣ p̂ i,Σ)P[RS

i

∣∣xt, zt

]
ln

(
N p

i

(
p̂ i,Σ

)
P
[
RS

i

∣∣xt, zt

]) , (7.6)

where P
[
RS

i

∣∣xt, zt

]
is the prior belief of shape Sj within the current particle filter, and p̂ i

denotes the expected contact point for shape Sjon the particular axis. This utility combines
the knowledge of the prior belief with the influence of expected measurements, and therefore
allows to estimate the expected impact of these measurements. The utility only depends
on prior belief of the shapes and the set of possible contact points pcont. The selection
of an optimal contact point forms the initiation of a single exploration step of the shape-
based strategy and is visualized in Figure 7.3 with three shape particles. In order to obtain
contact points and simultaneously explore the workspace, a set of intermediate positions x ‘

are sampled in the near vicinity of the robot xt. Each of these points is evaluated in parallel by
drawing a line to the closest point of each shape. Given these lines, the intersection points of
the remaining shapes and the connection lines as well as the closest point define the set pcont,

e.g.,
{
pcont

2,3,1,p
cont
2,3,2,p

cont
2,3,3

}
in Figure 7.3, from which the utility of testing the selected shape

hypothesis, given the sampled starting position, can be obtained. The algorithm then chooses
the intermediate starting position that returns the optimal expected utility. In contrast to
the grid-based strategy, not only a fixed goal point is chosen, but instead all possible contact
points along the selected line are sequentially checked until a measurement can be obtained
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Figure 7.3: Choice of next action with 3 shapes shown in 2D. The points x ‘
1 and x ‘

2 are randomly
sampled, each pcont

i,j depicts the possible contact points. On x ‘
1, the closest contact points pcont

1,j with

each shape are displayed through the dashed lines. For x ‘
2 on the right, the contact pcont

2,3 with the

cylinder shape is shown exemplarily with the respective pcont
2,3,·. The points pcont

2,3,1, pcont
2,3,2 and pcont

2,3,3 are

used to calculate the utility for the exploration axis x ‘
2 → pcont

2,3,3.

or a constraint is violated. The exploration step ends with updating the particle beliefs that
have been tested with a predefined update weight.

7.5 Object Identification

The object identification task is given by applying unsupervised machine-learning methods
to generate object classification thresholds or to fit the dedicated model parameters given the
collected data measurements.

Regarding the grid-based strategy, clustering algorithms such as K-Means and density-based-
spatial-clustering for applications with noise (DBSCAN) are suitable methods as the structure
of the inference grid is also bound to a finite number of material types. Thus, the identification
process can be used to update the decision boundaries for each inference layer. Furthermore,
the belief of the inference grid layers can be corrected using the collected measurement- and
state history.

The shape-based strategy is not solely limited to clustering the collected data but further
requires to reject and resample new particles to the filter. For this purpose, the estimation
error

εi =
1

Tmax

Tmax∑
t=0

∥∥zt − E
[
zt

∣∣RS
i,xt,ut

]∥∥
2

(7.7)

for each particle RS
i is obtained in order to determine which particles have a great discrep-

ancy between measured values zt and the corresponding expected values. Given the recorded
data, the least performant particles are removed from the filter. After deleting the inaccurate
particles, new shape parameterizations are sampled. In order to obtain proper samples, it
is favorable to partition the provided sensor data. Again unsupervised clustering algorithms
are a suitable choice here because no further knowledge over the properties of the underly-
ing data is required and the number of current geometric primitives is finite. This results
in a deterministic classification, meaning that each measurement is assigned with a class la-
bel. Having obtained these individual components, additional model-fits per cluster result
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Robot

Sensor

Figure 7.4: Simple 6-degree of freedoms robot with touch sensor attached at end-effector.

in new geometric primitive samples. By finally combining these geometric primitives into a
composition object a new particle is added to the filter.

7.6 Evaluation

The outlined algorithm is evaluated with an artificial robot explorer using a simulated envi-
ronment, namely the physics-engine multi-joint dynamics with contact (MuJoCo) (Todorov
et al., 2012). The robot is equipped with a force-torque sensor that allows to measure the
impact during collision. In order to focus on the exploration process, we directly explore
and control in Cartesian space. Thus, the pose of the robot x is controlled via a Cartesian
impedance controller:

uF = Kstif(xdes − x)−Kdmpẋ + F ext , (7.8)

where uF is the applied wrench command, xdes is the desired pose, ẋ the velocity, Kstif

and Kdmp describe the stiffness and damping matrices, and F ext describes an additional
feed-forward wrench command.

In order to test our methods against the challenges stated in Section 7.2, the robot is faced with
a set of unknown objects, which are composed of sub-components of different materials, which
differ in their stiffness values. MuJoCo (Todorov et al., 2012) handles all contacts between
objects as soft constraints in the dynamic system, which can be seen as a spring-damper
system, where one can set the stiffness κMuJoCo

stif and damping κMuJoCo
dmp . These stiffness-damping

values are artificial contact values used for simulation dynamics rather than physically realistic
values 2, such as Young’s modulus, that a robot can regress by obtaining measurements

2We refer to Todorov et al. (2012) for detailed information.
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resulting stiffness ξstif based on multiple measurement series.

zt =
(
xt,F t,∆p

)
, i.e., the magnitudes of force and displacement during contact at xt.

In order to assess the relationship between stiffness parameter κMuJoCo
stif of a MuJoCo object

model and the physical stiffness value ξstif =
F

∆p , we fixed the damping values to κMuJoCo
dmp = 1

for all simulations and performed several experiments with increasing parameter κMuJoCo
stif and

compared the resulting estimations with the numeric stiffness value ξstif =
F max

∆p
max

. Applying

linear regression, the material stiffness can be approximated as

ξ̂stif ← κstif,1κ
MuJoCo
stif + κstif,2 ≈ (0.13 κMuJoCo

stif + 152) N/m , (7.9)

as visualized in Figure 7.5. Even though the data is just an approximation of the actual
material property, it is sufficient to evaluate the capability of our method to differentiate
between materials and thus to identify the decomposition of an object.

We evaluate the algorithm on two artificial objects as visualized in Figure 7.6. The first
object – denoted as object A in the following – describes a composition of two box-shaped
components, where each component has a distinct material type, i.e., constant stiffness value.
The soft component – visualized in yellow – has a stiffness of ξMuJoCo

stif = 100, which represents
an actual stiffness of ξstif = 165 N/m. The second component – visualized in green – has a
stiffness value of ξMuJoCo

stif = 10000 or ξstif = 1452 N/m. In a similar manner, the second object
– denoted as object B in the following – consists of two cylinder-shaped objects, where the
soft (yellow) component is defined as ξMuJoCo

stif = 1000, i.e., ξstif = 282 N/m, while the stiff
component (green) is set to ξMuJoCo

stif = 8000, i.e., ξstif = 1192 N/m.

This results in a fixed number of material types Nmtrl = 2 for both scenarios. Further, the
interaction force and contact displacement are limited to F max = 3 N and ∆pmax = 8 mm for
object A and F max = 2.4 N and ∆pmax = 7 mm for object B.
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(a) Object A (b) Object B

Figure 7.6: Evaluation objects within MuJoCo. The box-shaped object on the left hand side is
denoted as object A, while the cylinder-shaped object is denoted as object B. In order to highlight the
experimental procedure, the explorer from Figure 7.4 is shown in Figure 7.6a. The exploration is run
in an episodic manner, where the explorer collects Nstep = 10 samples per episode. After each episode
the object identification according to Figure 7.1 and Section 7.5 is updated.

Recalling the iterative procedure from Figure 7.1, the exploration is run Nstep = 10 steps
for the grid-based approach and Nstep = 16 for the shape-based approach. This implies that
Nstep measurement samples are obtained before an update for the material type classification
is run.

7.6.1 Grid-Based Exploration

We employ a grid of 25 cells along ex, ey and ez using a resolution of 2 cm for each cell. The
grid-based algorithm is provided an initial surface estimation, that assigns initial values to
GS

0. However, the initial data only provides a belief for the first layer regarding the occupancy
of the grid, so all remaining layers are initialized without any prior knowledge. The clustering
results are shown in Figure 7.7 after Neps = 12 for object A and Neps = 20 for object B. The
different number of episodes emphasize the applied utility-metric from (7.3) that encourages
exploration with high-information gain w.r.t. current material-type parameters, i.e., taking
samples close to the class boarders first. As it can be seen for higher exploration runs of
object B the exploration is scattered across the accessible surface of the body compared to
the early samples for object A. The resulting material association for the data collected for
object A reaches an F1-score of 0.966 for yellow and 0.962 for green and is thus clustered into
two clearly distinguishable classes. Object B reaches a F1-score of only 0.834 for yellow and
0.667 for green, thus fails to assign samples to the correct material type. A major reason for
these false classifications lies in distorted measurements, which are likely to occur when the
contact angle between robot and surface is very small such that the applied force is nearly
parallel to the object surface. A major downside of the current grid-based approach is not
having access to the normal vector of the underlying geometry, thus approaching an object
at an inapt angle is more likely. Especially if the object is specifically curved, such as the
cylinders in object B.
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Figure 7.7: Classification of data measurements for the grid-based approach after Neps = 12 for object
A and Neps = 20 for object B, with Nstep = 10 each.
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Figure 7.8: Classification of data measurements for the shape-based approach after Neps = 4 episodes
with Nstep = 16 steps each.

7.6.2 Shape-Based Identification

In contrast to the grid-based approach, the object identification requires more exploration
steps before a clustering process can be initiated, as a model-fit such as the random sample
consenus algorithm requires at least 16 data points to fit the plane model with ξ ∈ R15

to provide proper data fittings. An initial particle set is drawn from 10 data points. The
results for object A and B are shown in Figure 7.8 after Neps = 4 episodes. While the F1-
score for object A is slightly less for yellow (0.952) compared to the grid-based approach, it
is significantly larger for green (0.987) and for object B for both yellow (0.963) and green
(0.987).

In contrast to the grid-based approach, which has been shown to be efficient for spatial object
refinement in previous work, the aspect of geometric shape refinement process is further
evaluated. Thus, we evaluate the evolution of the mean error µε,j over all particles and the
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Figure 7.9: Evolution of the estimation error of the particle filter over episodes j and their corre-
sponding values for object A on the left and object B on the right.

minimum error εmin,j of all particle errors according to (7.7) as shown in Figure 7.9. The
fact that the gap between the average estimation error and the best estimate is reducing
over time highlights the effect of rejecting false hypothesis candidates at every iteration.
Nonetheless, a slight increase is noticeable from episode 2 to episode 3 for object B, that shows
the possibility of drawing false candidates in the resampling process. Overall, the evaluation
of the error shows the potential of the shape-based algorithm on iteratively improving the
shape estimation.

7.6.3 Material Parameter Estimation Accuracy

While both methods successfully classify the objects in three out of four test-cases, we close
with evaluating the ability of directly estimating the material parameter, i.e., stiffness ξstif

?

in here. The results, obtained as the centers for each cluster, are summarized in Table 7.1
for both objects and approaches. It has to be noted that the data was evaluated as collected
without any outlier removal, which has a distinct impact on the stiffness estimation using the
grid-based method on object B.

For all components, the stiffness-estimation underestimates the actual values. Again, the small
forces upon small contact angles deteriorate these measurements. Besides this, empirical tests
have shown that the simulation yields inconsistent measurements if a contact is measured
directly on the edge of a geometry. As measurements at the edges are encouraged by the

Object Class ξMuJoCo
stif ξstif

? [N/m] ξ̂
GS

stif [N/m] ξ̂
RS

stif [N/m]

A Yellow 100 165 107.81 113.85
A Green 10000 1452 615.11 717.02
B Yellow 1000 282 164.75 104.54
B Green 8000 1192 397.34 947.15

Table 7.1: Estimated stiffness for both methods and objects. The last columns show the estimated

stiffness values ξ̂
GS

stif for the grid-based method and ξ̂
RS

stif for the shape-based approach.
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utility metrics in (7.3) and (7.6), we leave the investigations of this effect on future work, that
will include hardware applications.

7.7 Conclusion

This chapter presented two main methods that improve the capability of robots on identifying
and understanding unknown objects via haptic data acquisition. The first method extends
findings in the field of haptic SLAM by extending the basic method based on occupancy
grids to inference grids, that further allow to estimate the material type of the individual
components. The second method exploits the concept of particle filter and the assumption that
arbitrary objects can be represented as a composition of geometric primitives, by iteratively
rejecting and resampling new geometric primitive-decompositions as particles. Both these
algorithms are further extended by unsupervised machine-learning methods that allow them
to refine decision boundaries for individual class memberships. For the shape-based strategy it
is also outlined how explicit model fitting can be used to obtain reasonable particle samples.

The final framework is evaluated in a virtual environment, where unknown objects of different
material stiffness have to be explored. Both algorithms are evaluated against their classifica-
tion accuracy, where the grid-based algorithm is significantly outperformed by the shape-based
method. The presented results highlight that the methods outlined in this chapter are a help-
ful step towards enabling robots in coping with unknown objects and thus increasing their
field of applications in the future.

Future Work

Building upon the examples and results presented in this chapter, future work could explore
the usability and performance on real robot data recordings. Nonetheless, the presented
approach suffers from high sensitivity to data measurements. Especially, regarding a proper
measurement of displacement during contact with an unknown object is subject to sensor-
noise, -delays and discretization errors. Thus, future work should focus on improving the
accuracy in these measuring metrics first before applying the presented method on a real
robot platform. In contrast to that, the basic filter architecture is suitable to be extended by a
collection of individual data-driven components such as a product of experts or a connection of
multiple deep networks. The main motivation here is that such models are directly compatible
with current state-of-the-art vision classifiers or estimators. Unlike most commonly applying
pure end-to-end learning, the individual classifiers bare potential on approximating a belief
over material types or shapes, which can then be embedded in a similar framework to the one
presented in this chapter. Eventually it is also of importance to develop suitable controllers
for the robot hardware, to ensure contact stability and minimize encountered impacts. This is
of utmost importance as undesired penetration of unknown surfaces – especially if said surface
is stiff – may endanger to harm the hardware of robotic platforms.
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8
A Force-Sensitive Grasping Controller
Using Tactile Gripper Fingers and an
Industrial Position-Controlled Robot

Chapter Abstract

This chapter focuses on the aspect of grasping unknown objects with imperfect grasp-
ing pose estimations. Specifically, this chapter presents a novel grasping controller
that allows (industrial) robots to compensate for object goal pose uncertainties dur-
ing grasping by exploiting tactile feedback obtained from digital sensor arrays (DSAs)
equipped on the gripper fingers.

First, we outline how the alignment pose error during initial object contact can be
estimated from the current raw sensor readings. Given this alignment error estima-
tion, we then provide two grasping control modalities that specifically steer the robotic
configuration towards a suitable goal-pose by incrementally decreasing the alignment
error. Specifically, the presented grasping control modalities allow to either directly
compensate for interaction forces or to solve a constrained model predictive control
(MPC)-problem to minimize the estimated alignment error. While the former relies
on force-torque-sensor-data, the later assumes that the robot motion dynamics can be
locally linearized, such that the MPC can be solved online. Both modalities exploit
the structure of a hybrid control-interface given a Cartesian robot controller. The hy-
brid nature of the controller further allows to combine the presented grasping control
modalities along selective axes in a hybrid nature alike.

We evaluate the proposed grasping controller on a parallel two-finger gripper, that is
equipped with one DSA per finger, for which we also provide an extended ROS-driver
that allows to obtain DSA-data at communication rates above 5 Hz. In our experiments,
the presented method distinctly increases the success-rate and final grasping error-pose
compared to a compliant controller, that only minimizes interaction wrenches during
grasping. Specifically, a hybrid grasping strategy with compliance in translation in
combination with an MPC for the attitude achieves the highest success-rate.

Given the empirical evidence in combination with the ability of creating hybrid grasping
strategies along selective axes, the presented grasping controller does not only increase
the skill-set of industrial robots in the presence of uncertainty but also opens new re-
search paths towards applying stiff robots to handle fragile objects fully autonomously.

Remark: A majority of this chapter was
previously published in Gabler et al. (2022b).
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Figure 8.1: Adaptive grasping strategy using tactile sensor data to send hybrid control-strategies
along selective axes to an industrial robot via velocity-based or force-based grasping strategies.

8.1 Introduction

In the context of sensitive grasping, a robot is required to react in a compliant manner
in order to limit interaction wrenches between the robot gripper and the dedicated object.
Thus, a majority of approaches rely on compliant manipulators, fingers or tool-changers that
allow to directly adjust for unforeseen impacts, or seek for a sufficiently accurate perception
framework. Nonetheless, few examples allow an adaptation of the grasp when neither an
accurate perception nor a compliant robot platform is available. Thus, this chapter tackles
the issue of sensitive grasping for conventional industrial robot control interfaces – i.e., stiff
position-controlled manipulators – without relying on external camera or depth-sensor data.

In fact, we claim that it is beneficial to equip a robot with pressure-sensitive fingers using dig-
ital sensor arrays (DSAs). Using the spatial resolution of these DSAs rather than solely the
force observed on each finger motor or the force-torque (FT)-sensor directly, we outline how
a robot can estimate the alignment error during initial grasp trials.

In order to evaluate this approach empirically, we equip an industrial robot platform, a CO-
MAU Racer 5 0.80, with a two-finger parallel gripper – a WSG 50 – that provides a DSA
on each finger as shown in Figure 8.1. Besides extending the current robot operating system
(ROS) driver with DSA support, the contribution of this chapter proposes an efficient grip-
per alignment error estimation. Furthermore, we outline how a hybrid force-position control
architecture can be used to decrease the estimated alignment error, while keeping interaction
forces of the robot and the environment limited. The novel grasping controller is evaluated
on an exemplary disassembly scenario, the removal of a light-bulb within an emergency lamp,
where the exact pose is noisy and the grasp is executed solely relying on FT and DSA mea-
surements.

Below we sketch the contribution of this chapter in relation to related work. We proceed with
a mathematical formulation of the problem in Section 8.2 and outline the presented grasping
controller in Section 8.3. We conclude this chapter with an empirical evaluation in Section 8.4,
and an overall conclusion in Section 8.5.
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8.1 Introduction

8.1.1 Related Work

In the context of adaptive grasping, a variety of approaches have focused on developing novel
robot grasping grippers (Fan et al., 2018, Fox and III, 2020, Koustoumpardis and Aspra-
gathos, 2004, Krut, 2005, Ma et al., 2013, Mohammadi et al., 2017, Tiziani et al., 2017),
such as tendon-driven mechanics (Dollar et al., 2010) or low impedance fingers (Natale and
Torres-Jara, 2006), These hardware designs have shown great results in improving robot ca-
pabilities, yet these systems are often costly and are not as mechanically robust and broadly
available as off-the-shelf industrial grippers. Thus, the majority of related work focused on
increasing robotic capabilities using off-the-shelf grippers. In here, several approaches have
applied machine learning (ML)-techniques (Guo et al., 2016, 2017, Pinto and Gupta, 2016,
Stulp et al., 2011), where the environment is mainly perceived via a camera, but also force-
based approaches have been introduced (Dang and Allen, 2014, Merzic et al., 2019, Steffen
et al., 2007) that rely on tactile feedback. These approaches show great performance but
usually require tremendous amount of data. Similarly, planning-based methods have been
outlined for automated grasping. These decision-theoretic concepts range from partially ob-
servable Markov decision processes (Garg et al., 2019, Hsiao et al., 2007), heuristic planning
strategies (Hsiao et al., 2010, Leeper et al., 2010), visual servoing (Rusu et al., 2009, Sax-
ena et al., 2008), specialized sensors (Hsiao et al., 2009), or online object refinement and
adjustment (Dragiev et al., 2013). Regarding the aspect of tactile sensors, previous work has
outlined how grasping robustness can be improved by using tactile sensors (Bekiroglu et al.,
2011, Su et al., 2015), where the major emphasis is set on ML again or the environment is
assumed to be compliant. The application of tactile fingers range from six-axes force-torque
sensors (Eberman and Jr., 1994), stress rate sensors and acceleration sensors (Howe et al.,
1990), biomimetic tactile sensors with a weakly conductive fluid (Wettels et al., 2008) to op-
tical force measurements (Ward-Cherrier et al., 2018). The concept of DSA was proposed by
Romano et al. (2011) that shall mimic mechanoreceptive afferents in glabrous – i.e., non-hairy
– human skin (Johansson and Flanagan, 2009). A tactile sensor array unit that does not only
measure normal forces but also shear forces, was developed by Kis et al. (2006). As these
approaches have focused on detecting events, rather than controlling the motion of a robot
based on the DSA feedback, we focus on the concept of versatile manipulation with simple
grippers (Mason et al., 2012, 2009). Thus, we seek to improve robot grasping skill-sets by
deriving a grasping strategy exploiting the DSA readings.

8.1.2 Contribution

In this context the contribution of this chapter is given as:

1. outlining a novel grasping alignment error estimation based on tactile sensor readings
without relying on additional FT-data,

2. a publicly available ROS-driver implementation with support for the tactile WSG 50 DSA
fingers1 with a communication rate of up to 5.49 Hz during contact,

3. defining novel grasping strategies that exploit the current alignment error estimation
and drive a robot to the desired goal pose while limiting the interaction force between
robot and object.

1available at https://gitlab.com/VGab/ros-wsg-50
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8.2 Problem Formulation

Given the current robot configuration x in SE(3), defined by the current joint configuration
q ∈ Rn, where n denotes the degrees of freedom (DoF) of the manipulator, there exists a
desired pose toxdes w.r.t. to, that allows a robot to successfully grasp an object. This pose is
in general unknown to the robotic system.

In the context of this chapter, an industrial robot is required to align the pose of the end-
effector during initial grasping contact, i.e., when the gripper fingers initiate contact with an
object. We explicitly focus on situations, where the robot has no access to visual or point-
cloud data. Instead, the sensory input is limited to an external FT, i.e., F cur, as well as
tactile sensor-readings in the gripper-fingers of a parallel finger gripper, denoted as {0,1}D .
Thus, the problem of this chapter becomes twofold. First the end-effector pose error

toεt ← Festim

(
xt,

0Dt,
1Dt

)
(8.1)

needs to be estimated from sensor readings at a frequency that allows to obtain suitable
control commands online. Given this alignment error, the second problem is then given by
alternating the configuration of an industrial, i.e., solely position-controlled, robot

xt+1 ← Falign

(
xt,

toεt,F curt

)
, (8.2)

such that eventually x = xdes holds, and the interaction forces with the object remain lim-
ited.

8.3 Technical Approach

According to the problem from Section 8.2, our approach is outlined sequentially. First, we
show how the end-effector alignment error is estimated from tactile sensor-arrays. Given this,
we outline how the industrial robot in use is controlled and how the available control interfaces
are used to steer the robot to xdes.

8.3.1 Alignment Error Estimation Using Tactile Sensor Arrays

Pressure-sensitive DSAs allow a robot to record a discretized sensor-cell matrix reading of
an Nx × Ny sized array, i.e., leD ∈ NNx×Ny . Introducing frames le, ri for the left and

right DSA-fingers, as well as cell-sizes ∆x according to Figure 8.2, the center location lepij of

each cell-element [ leD ](i,j) can be expressed in the respective finger reference frame lepij =[
i∆x j∆y 0

]>
. As a result, the center of pressure (CoP) is obtained as

lepCoP,des :=

∫∫
lepx,y

leD (x, y) dx dy∫∫
leD (x, y) dx dy

≈
∑Nx

i=1

∑Ny

j=1
lepij [

leD ](i,j)∑Nx
i=1

∑Ny

j=1[ leD ](i,j)

. (8.3)
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[ riD ](1,1)

ex

ey ez

lepCoP,

lepCoP,des

∆x

∆y = ∆x

[ leD ](14,6)

Figure 8.2: DSA cell arrays with exemplary pressure data for leD . Colors encode the coordinate-
system axes ex, ey and ez. In here a toy-pressure distribution as a grey ellipsoid is shown, that

results in the colored pressure distribution. lepCoP,des is the center of the array and assumed to be

the desired CoP here, while lepCoP,des is obtained from (8.3).

The center of pressure is visualized in Figure 8.2 for a fictional pressure surface and reading.
Assuming that both fingers are in contact with an object, the unit-vector connecting the CoPs
of both fingers results in

riecur =
1

ν

 riT le
lepleCoP −

ripriCoP︸ ︷︷ ︸
ripriCoP,cur

, (8.4)

where ν is a normalizing constant, the middle of the connecting vector

topCoP,cntr = toT ri

(
ripleCoP +

1

2
ripriCoP,cur,

)
(8.5)

in the tool-frame of the robot. The transformation from ri to le is given as

leT ri =

Rϕ(π)

 0
wDSA

wgrpr


01×3 1

 , (8.6)

where the current opening width wgrpr of the gripper is the only time-variant value besides
wDSA = Ny∆y as the width of the tactile sensor array and the rotation matrix as a 180° flip

around riex . Similarly, the transformation from to to ri is given as

riT to =

Rθ

(
−π

2

)
1
2

 0
wDSA

wgrpr


01×3 1

 , (8.7)

with a rotation of−90° around y. In order to estimate the current alignment error, {le,ri}pCoP,des,

the desired location of each CoP is assumed to be known, such that riecur can be inferred.
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ecur

edes

wgrpr

wDSA

le

ri
to

Figure 8.3: Alignment error estimation visualization given the CoPs in each finger, connected by a
blue vector, while the green line denotes the vector connecting the desired CoPs. The centers of both
vectors and respective unit-vector are then used to estimate the alignment error according to (8.8).

Assuming that each CoP is located at the center of each finger, the relation for an exemplary
pressure distribution is shown in Figure 8.3. In this case, these CoPs are identical to (8.3)
if riD = 0Nx×Ny holds. Transforming the unit-vectors into the tool-frame, i.e., toep, with

p = {des, cur}, the alignment error is estimated as

toε :=

[
toεtrans
toεrot

]
, (8.8)

where toεtrans = topCoP,des −
topCoP,cntr , (8.9)

and the rotation error toεrot defines the rotation needed to align toecur to toedes. As there are
infinite solutions due to the symmetry of the unit-vectors around the y-axis, the y-axis can
be either obtained from matching the contours on both DSAs, or projected into the xy-plane

of to via toẽyp = [[ toep](y),
√

1.0− [ toep]
2
(y), 0.0]>. Using the direction of the unit-vectors as

the y-axis, the dedicated z-axis is obtained via the cross-product of toep and toẽy :

toεrot←FRPY

(
R
(

toecur,
toẽycur

, toecur ×
toẽycur

)>
R
(

toedes,
toẽydes

, toedes ×
toẽydes

)) , (8.10)

where FRPY denotes the mapping from rotation matrix to ϕ, θ, ψ in order zyx, and the indi-
vidual rotation matrices are constructed from their individual unit-axes. Finally, a special
case is given if only one finger establishes contact with the object. In such cases, the attitude
error is set to zero in (8.8), while (8.9) is replaced by an heuristic component

toεtrans:=


toT le

[
0 0 1

2wgrpr

]>
iff
∥∥ leD

∥∥
2
> 0

toT ri

[
0 0 1

2wgrpr

]>
iff
∥∥ riD

∥∥
2
> 0

03 else

. (8.11)
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8.3.2 Controller Design for Adaptive Grasping with an Industrial Robot

Having obtained the estimated alignment error as a Cartesian pose error in SE(3), the sub-
sequent problem according to Section 8.2 is given by deploying a suitable control strategy to
minimize this error. As most common grippers do not allow to control each finger separately,
the alignment control needs to be mainly handled by the robot manipulator, which is assumed
to be an industrial robot manipulator with a restricted control interface – i.e., controlling the
Cartesian pose of the robot end-effector. In order to achieve a sensitive aligment control, we
propose two control-strategies, which are schematically outlined in Figure 8.1: a compliant
force-based strategy that inorporates additional FT-sensor data readings, as well as a model
predictive control (MPC) that generates a constrained Cartesian velocity-profile. Defining the
control-command u as the Cartesian end-effector-velocity, we outline these strategies below,
followed by an insight about the actual implementation on the robot platform.

8.3.2.1 Force-Based Grasping Strategy

This grasping strategy allows a compliant robot behavior towards external Cartesian wrenches,
via a PI-control

ufrc
PI := Kfrc

P (F des − F ) +Kfrc
I F desi − F i, (8.12)

using positive semi-definite control-gain matrices Kfrc
P and Kfrc

I , as well as a sliding window of
size NI for numerical integration, to steer the interaction wrenches towards the desired value
F des. Assuming the object to be grasped is quasi-static, an alignment error during grasping
results in a non-zero wrench measurement, while the minimal interaction force is obtained
when the robot is aligned correctly w.r.t. the object. Thus, the desired Cartesian wrench is
set to F des = 06. In order to incorporate the alignment error from Section 8.3.1, the actual
command forwarded to the robot is obtained as

ufrc
p := S frc

Ru
frc

PI,p,with (8.13)

S frc
R :=

[
Rba

to diag(s1:3)Rto
ba 03×3

03×3 Rba
to diag(s3:6)Rto

ba

]
. (8.14)

A binary selection signal s is introduced w.r.t. to, that evaluates the alignment error against
a non-negative threshold ζalign:

sk :=

{
1 if

∥∥ toεk
∥∥

1
> ζalign

0 else
, (8.15)

which is usually set to 0. Nonetheless, ζalign can be adjusted as an additional hyperparameter
to diminish the sensitivity of the grasping controller to small alignment errors. Recalling
the integral term in (8.12), it has to be noted that this may lead to instability if contact dy-
namics are changing. However, (8.13)-(8.15) allow adjusting the integral-term during contact-
changing events. Therefore, not only the force-errors are stored in a sliding window to calculate
the I-term in (8.12), but also the dedicated selection-matrices S frc

R t
from (8.13) at each time

step t. If eventually the value of sk changes, all values of k are set to zero.

Given that the obtained alignment error stems from a pressure distribution along the sensor
cell arrays, minimizing the force-control error along the selected axes via the force-control
term in (8.18) eventually minimizes toεee and thus also baεee.
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Figure 8.4: Schematic overview of the proposed adaptive grasping controller. Colors encode the
velocity-based versus the force-based grasping strategy, while noisy blue boxes denote hardware com-
ponents. Desired values have been omitted for brevity.

8.3.2.2 Velocity-Based Grasping Strategy

The alternative strategy uses the velocity control interface and the estimated alignment error.
In contrast to the force-control, there is no feedback obtained from the environment within the
compliance controller, i.e., this strategy is also applicable on robots without FT-sensors and
in applications where there is no direct relation between force-data and the aligment error.
For this strategy, we exploit the fact that the velocity of the robot needs to be distinctly
constrained in order to prohibit high impacts. Using a sufficiently small time step δt, the
Cartesian robot motion-dynamics can be approximated as a linear point-mass toxt+1 ≈

toẋ+
toutδt, such that the alignment error can be decreased by solving the MPC-problem

min
to~u

t:Tmax

Tmax∑
t=0

toεt
>
Csys

toεt + u>tCinp
tout

s.t. toεt+1 = A toεt +B tout

− ẋmax ≤
tout ≤ ẋmax

, (8.16)

with the maximum impact velocity ẋmax as an upper constraint and A = 16×6,B = 16×6δt
due to the locally linearized model. Solving (8.16) obtains the desired end-effector velocity in
tool frame to, i.e., tout, which can then be transformed to ut and commanded to the robot.

8.3.2.3 Overall Controller Implementation

Given the proposed grasping strategies from above, we now outline how the full grasping
controller is implemented. The overall controller is sketched in Figure 8.4, where the upper
branch denotes the aligment error-estimatation from Section 8.3.1. On the bottom right-hand
side, the industrial robot platform – emphasized as a dashed box – is commanded via the
Cartesian end-effector-velocity-commands u , obtained by the grasping strategies from the
paragraphs above. While a Cartesian velocity-command can usually be achieved by any in-
dustrial robot, this chapter applies a COMAU robot that allows to send a Cartesian deviation
command relative to the current end-effector pose, such that the controlled system simplifies
to

xt+1 := xt + δx ≈ xt + uδt . (8.17)
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As the robot runs at a real-time-safe, constant update-rate δt, it is possible to design a hybrid
force-velocity controller, that sends

u := Svel
R

baẋeedes + S frc
RK

frc
P ε

F (8.18)

to the robot, where the selection-matrices are calculated via (8.14). Thus, the controller either
follows a Cartesian velocity-profile baẋeedes or force-profile F des via minimizing the force-error
εF from (8.12). This controller differs from classic hybrid force-position control by the fact
that disabling one control-modality does not directly result in switching to the alternative

modality. Instead if s
x
k = s

F
k = 0 holds, the robot enables stiff-position control, and keeps the

current position according to the internal control loop and (8.17). Nonetheless, for a correct

decoupling of the individual control policies, the selection matrices need to hold s
x
k s
F
k = 0.

Thus, by limiting each selection-element (8.15) to one specific grasping strategy, the control
outputs of the individual component can directly be inserted in (8.18). Transforming touv into
bauee,v and replacing the P-control in (8.18) by (8.13), we obtain the final control-architecture
from Figure 8.4.

Even though the method sketched above has been outlined explicitly for a parallel gripper,
i.e., an alignment error estimation from two DSAs, the presented method is not limited to
such setups. As both control-strategies in this chapter solely rely on the estimated alignment
error, they are not directly dependent on the number of fingers in use, as long as the number of
fingers may decrease the update rate of the alignment error. In general, these control-strategies
are expected to profit from an increased number of DSAs, given that the actual alignment
error estimation is directly correlated with the number of DSAs in use. The method presented
in Section 8.3.1 can be extended to multiple fingers, by evaluating the pressure distribution
and / or CoPs of each finger against a desired set-value. In fact, comparing the CoP of each
finger against the geometrical center of all CoPs, results in an alignment error per finger.
While minimizing the mean of these aligment errors replicates the procedure presented in this
chapter, having access to multiple CoP measurements allows to use more advanced methods,
such as weighted mean. As this is subject to empirical evaluation, we leave the evaluation of
these metrices for future work.

8.3.3 Implementation Details

Having outlined the general procedure above, we proceed with the implementation details for
the WSG 50 gripper-driver. The WSG 50 records a 12 bit encoded DSA-reading for each finger,
where Nx = 14 and Ny = 6. In order to transfer the sensor-readings from the sensor cells to
an external client, the gripper provides the possibility of transferring data via transmission
control protocol (TCP) over an ethernet connection. This controller is then capable of running
the controllers from Figure 8.4. Within the provided driver, the gripper acts as the server
that allows to adjust the feedback sent to the client w.r.t. on-demand flags send by the client.
Thus, the DSA reading can be stopped by the client if there is no contact to be expected,
which allows to increase the communication speed. Due to the 12 bit encoding, each cell
requires two bytes (2 B) to be sent. In order to increase communication rate during DSA read
outs, two modes are available:

• full DSA read with a message size of 14 · 6 · 2 B = 336 B.
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• CoP with approximated pressure surface from 21 B to 62 B in contact and 10 B without
contact.

The compact message, i.e., the CoP-mode, does not transfer the full DSA reading but calcu-
lates the CoPs directly on the gripper driver before sending it to the dedicated client via TCP.
As a pressure distribution may also be multi-variate, it is insufficient to solely transfer the CoP
to the client. Instead, the denominator of (8.3) is sent in combination with contour edge of
the pressure surface. The client can thus evaluate the current CoP alongside an equal discrete
distribution approximation by flattening the pressure equally over occupied cells. The static
body of the dynamic message is given as the total pressure sum as 32 bit integer and the 8 bit
integer to denote the number of occupied rows (5 B), where column and row refer to ex and
ey according to Figure 8.2, for both DSA-fingers, resulting in a minimum message size of
10 B. In case a contact is detected, the message is extended by the CoP (8 B), and a list of
three byte tuples containing the row-index as well as the dedicated minimum and maximum
column cell-index for each DSA-finger. Referring to the example from Figure 8.2, the addi-
tional information besides the CoP and pressure sum would be given as {2, 7, 9, 3, 7, 9, 4, 7, 8}.
We evaluate the effects on the overall communication rate in the next section empirically.

8.4 Experiment

In this section we evaluate the proposed grasping controller and gripper driver w.r.t. commu-
nication speed and functionality. We start with empirically validating and highlighting the
available communication modalities of the gripper driver.

8.4.1 Evaluating Communication Speed

In order to compare the different communication modes of the proposed gripper driver, the
gripper is tested on a benchmark setup as depicted in Figure 8.5a. Regarding the commu-
nication speed, Table 8.1 collects the averaged ROS update rates depending on the control
mode over 50 runs each. In order to evaluate the effects on the reaction capabilities of a
robot, we evaluated the detection time needed, if the gripper is set to a constant velocity
control with a fixed object in the middle of the fingers. Even though the communication rate
of the full-DSA reading is reduced according to Table 8.1 compared to the sparse read-out,
the detection time is only affected at very slow movements as can be seen by the averaged
contact detection-times µt,dtct in Figure 8.5b.

Control-mode µrate σrate µcont

full DSA read [Hz] 9.08 1.66 4.50
sparse DSA read [Hz] 9.62 1.25 5.49

Table 8.1: Average ROS-update rate in Hz of the gripper driver with enabled DSA-reading. Improved
results are highlighted in bold.
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Figure 8.5: Empirical comparison of the available control modes in terms of communication speed
and contact detection speed. The results are averaged over 50 runs per control mode, while the plot
show the mean and a confidence-interval (CI) of 95% for both modes.

8.4.2 Evaluation of Proposed Grasping Strategies

In order to highlight the functionality of the proposed controller, we evaluate the grasping
strategies on exemplary object grasping tasks. Recalling the main motivation of this chapter,
the robot has no access to visual or depth camera sensors and is asked to correctly grasp
the objects, given a noisy guess on the object goal poses. Thus, we compare the presented
control method against a pure compliant robot control, where the robot follows a compliant

force-control policy according to (8.18), with Kfrc
I = 06×6 and s

F
k = 1. The robot platform

is given as a COMAU Racer 5 0.80 as depicted in Figure 8.6. As our method does not
consider collision avoidance or plan for an optimal trajectory, the task is initiated in close
distance to the object. For the cross-comparison of the strategies in use, each grasping task
is implemented as a sequence of the following action-primitives:

1. approach pre-pose.

2. initiate gripper closure with closing speed vgrpr.

3. align gripper according to Section 8.3.

4. identify translation offset as center of orientation.

5. (optionally) tilt object and remove.
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Figure 8.6: Experimental evaluation setup. The figure on the left hand side shows the selected
objects to be grasped by the robot. For each object, the robot is provided with a noisy grasping
goal-pose. Being restricted to sensory inputs from the FT-sensor and DSAs, the robot is then asked
to align the gripper correctly w.r.t. the dedicated object. The right hand side shows the task of
removing an emergency lightbulb, on which we evaluate the grasping strategies from Section 8.3.2.1
and Section 8.3.2.2.

The closing speed of the gripper vgrpr is set to 10 mm/s, which also serves as the con-
trol constraint in (8.16). The proportional gains for the force-controller and the force-
based strategy (frc-based) grasping strategy are [Kfrc

P ]({x,y,z}) = 8 · 10−4 for translation and

[Kfrc
P ]({ϕ,θ,ψ}) = 2 · 10−3 for rotation. In addition, we set NI = 50 and Kfrc

I = 1 · 10−616×6

for the integral part from Figure 8.4. For the velocity-based strategy we applied Csys = 16×6

and Cinp = 1 · 10−416×6 and used Andersson et al. (2012),Wächter and Biegler (2006) and
Lucia et al. (2017) to solve (8.16). In order to not only neglect small estimation errors but
also allow the robot to detect a successful alignment procedure, the threshold in (8.15) is set
to ζalign = 1 · 10−2 rad and ζalign = 0.5 mm for the velocity- and frc-based grasping strategies
from Section 8.3.2, respectively.

As shown in Table 8.2, we empirically evaluated four variants of our proposed grasping con-
troller against the baseline method while grasping the objects from Figure 8.5a. The grasping
modes frc-based and velocity-based strategy (vel-based) solely forward the commands ob-
tained from Section 8.3.2.1 and Section 8.3.2.2, while hybrid-force-velocity strategy (hybrid-f-
v) and hybrid-velocity-force strategy (hybrid-v-f) apply a hybrid strategy along complemen-
tary Cartesian directions. In detail, hybrid-f-v follows the frc-based strategy in translation
and the velocity-based strategy for the rotation, while hybrid-v-f reverts this scheme. As
the presented methods rely on encountered interaction wrenches and/or sensor readings from
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the DSAs, which result from said interaction forces, the objects from Figure 8.6 were fixed
to the table in front of the robot. For each of these objects 10 starting poses were sampled
and evaluated against all methods given a fixed length of 2000 steps – using an update rate
of 100 Hz – for the actual grasping phase to allow for a fair cross-comparison. Recalling the
motivation from Section 8.2, Table 8.2 lists the averaged norm-values for the alignment error
of the grasping phase as well as the accumulated wrench per step. The last column denotes
the success-ratio over all runs, where a task is defined as successful if the final error is below
0.5. As our strategies are non-compliant if there is no contact or feedback obtained from
the gripper, the baseline method outperforms our approaches in terms of overall interaction
wrenches. Nonetheless, the baseline solution fails on solving the task and remains stuck at un-
acceptable final error residuals. Even though the velocity-based strategy performs best w.r.t.
the overall alignment error, this strategy still suffers from large interaction wrenches. Given
that the hybrid strategy performs best in terms of success-ratio, we propose that our method
is best to be applied by its’ hybrid nature. Adding feasible upper wrench constraints can thus
be used to apply the velocity-based control strategy if possible and switch to a compliant
control otherwise. We outline the evaluation of the interaction wrenches for both strategies
in more detail below.

8.4.2.1 Cross-Comparison of the Presented Grasping Strategies

In this section we explicitly compare the presented strategies from Section 8.3.2.1 and Sec-
tion 8.3.2.2 based on the removal of an emergency lightbulb as presented in the accompanied
media attachment. Except using another object for the grasping task, the experimental pro-
cedure is identical to Section 8.4.2. The resulting force-profiles in xy-plane of the robot as
well as the Cartesian torque in ψ are sketched in Figure 8.7. Due to the translational offset,
the robot encounters contact with the object on one finger, which results in an increased
force-peak for both strategies. While the MPC controller is tuned well, and adjusts the ve-
locity to the current closing speed of the gripper, the force remains limited in this stage.
In contrast, the compliant force-controller suffers from the induced temporal delay due to
the DSA-readings, which allows to compensate for the current force-error but results in an
error-residual while being dragged across the workspace by the lightbulb. In contrast, the
force-controller successfully steers the Cartesian wrench to zero and thus also compensates
the attitude error in ψ, while the MPC-controller focuses on the positional error. Even though

Object Pocket Ruler Hammer Electrical Drill Cooking Pan
Strategy µε µF µε µF µε µF µε µF Psuc

frc-based 1.576 12.34 2.118 18.93 0.526 17.92 0.797 10.36 41.17%
vel-based 1.216 54.98 1.484 55.62 0.376 60.25 0.615 28.79 77.58%
hybrid-v-f 1.567 64.02 2.039 20.68 0.576 25.73 0.832 10.21 22.54%
hybrid-f-v 1.597 16.56 1.936 45.38 0.323 48.77 0.627 22.05 84.17%
baseline 1.606 8.98 2.249 8.83 0.647 4.30 0.855 5.591 9.55%

Table 8.2: Cross-comparison of the proposed grasping controller against a force-control baseline on
four exemplary grasping tasks. The entries contain the averaged norm-values for the alignment error
and interaction wrench per step over 10 runs for each object and method, as well as the total success-
ratio. The best performing values are highlighted in bold.
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Figure 8.7: Cartesian wrench profiles for the lightbulb removal task averaged over 10 trials for the
vel-based and the frc-based strategies.

this error is minimized around this point, there remains a static error-residual in Cartesian
torque.

8.5 Conclusion

In this chapter we proposed a novel grasping control strategy tailored to industrial, i.e., stiff
position-controlled robot manipulators that exploits tactile feedback during contact with the
object. In contrast to most related work, we did not focus on the optimal grasping pose
detection from visual sensor-data, but rather the alignment correction that a robot encounters
during initial contact with the object. For such cases, we claim that a robot is able to
exploit the spatial distribution on pressure-sensitive sensor-readings on the gripper fingers.
Given such a pressure distribution, we propose to apply geometric reasoning by numerically
approximating the center of pressure (CoP) on each finger, such that the robot-pose can be
evaluated against the actually desired CoP. Given this estimated alignment error, this chapter
further outlined a novel grasping strategy that sends a Cartesian deviation command to the
robot and thus either compensates for interaction wrenches along selected axes, or follows
a constrained velocity-profile obtained from a model predictive control problem that uses
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a locally linearized alignment error model. In order to evaluate this approach, this chapter
provides an extended robot operating system (ROS)-driver for the WSG 50 finger gripper with
optional digital sensor array (DSA) reading. The driver was empirically validated and could
achieve a reliable communication rate of up to 5.49 Hz. In addition, the presented grasping
strategies have been evaluated on exemplary grasping tasks with unknown pose uncertainty.
Both approaches have shown promising results towards improving the skill-set of industrial
robots in the context of versatile grasping, even though the predicted goal poses were distinctly
incorrect.

Future Work

Given the proposed robot control and gripper-interface, there is also room for further applica-
tions and extensions. A suggestion for future research lies in the possibility of improving the
performance and success rate of the proposed grasping strategies. On the one hand side, the
controller parameterization may profit from being updated online. While the parameters have
been tuned manually in the scope of this chapter, updating these values online, e.g., by means
of adaptive control, is a promising path for future research to easily adopt the framework to
new and unforeseen scenarios and / or applications. Eventually, the presented approach could
profit from incorporating recent data-driven approaches for robotic grasping or manipulation.
Given the fact that the DSA-readings are closely related to the information obtained from a
camera image, fusing visual and haptic data bears great potential on improving the overall
success-rate and combine the advantages of these sensory inputs. A major benefit of such
an approach lies in the independence of the robot hardware in use, making it applicable to
arbitrary robot systems, without the need of installing force-sensitive compliant and often
costly manipulators.
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9
Bayesian Optimization with Unknown

Constraints in Graphical Skill-Models for
Compliant Manipulation Tasks

Using an Industrial Robot

Chapter Abstract

This chapter focuses on learning manipulation skills from episodic reinforcement learn-
ing (RL) in unknown environments using industrial robot platforms. These platforms
usually do not provide the required compliant control modalities to cope with unknown
environments, e.g., force-sensitive contact-tooling. his requires to design a suitable con-
troller, while also providing the ability os adapting the the controller parameters from
collected evidence online.
Thus, this chapter extends existing work on meta learning for graphical skill-formalisms.
First, we outline how a hybrid force-velocity-controller can be applied to an industrial
robot in order to design a graphical skill-formalism. This skill-formalism incorporates
available task knowledge and thus allows for online episodic RL.
In contrast to existing work, we further propose to extend this skill-formalism by es-
timating the success-probability of the task to be learned by means of factor graphs.
This method allows to assign samples to the individual factors, i.e., Gaussian processes
(GPs) more efficiently and thus allows to improve the learning performance especially
at early stages, where successful samples are usually only drawn in a sparse manner.
Finally, we propose suitable constraint GP-models and acquisition functions to obtain
new samples in order to optimize the information gain, while also accounting for the
success-probability of the task.
We outline a specific application example on the task of inserting the tip of a screw-
driver into a screwhead with an industrial robot, and evaluate our proposed extension
against the state-of-the-art. The collected data outlines that our method allows arti-
ficial agents to obtain feasible samples faster than existing approaches while achieving
a smaller regret value. This highlights the potential of our proposed work for future
robotic applications.

Remark: A majority of this chapter has been published in
Gabler et al. (2022a) and Gabler and Wollherr (2022).
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9.1 Introduction

Robotic manipulators have been established as a key-component within industrial assembly
lines for many years. However, applications of robotic systems beyond such well-defined and
usually caged environments remain challenging. Simply reversing the process, i.e., asking a
robot to disassemble a product that has been assembled by a robot manipulator in the past,
uncovers the shortcomings of currently available (industrial) robot manipulators: the impacts
of damage, temporal wear-offs or dirt most often diminish available model knowledge and thus
do not allow an accurate perception of the environment. Rather than relying on the well-
defined environment model, robot manipulators are required to account for this uncertainty
and thus find a suitable control strategy to interact with the object in a compliant manner.
While RL has found remarkable success in dealing with unknown environments, most of these
approaches rely on a tremendous amount of data, which is usually costly to obtain, cf. Levine
et al. (2016, 2015). In contrast, GPs allow acquiring data efficiently, but suffer from poor
scaling w.r.t. state-size and dimension. Previous work has proposed to exploit existing model-
and task-knowledge in order to reduce the parameter space from which a robot has to extract
a suitable control policy.

Nonetheless, these approaches have usually been applied on (partially) compliant robots,
where constraint violations, e.g., unforeseen contact impulses, can easily be compensated and
are thus neglected. In the context of this article instead, a non-compliant – i.e., position-
controlled – industrial robot is intended to solve manipulation tasks that require compliant
robot behavior, such as screwdriver insertion given a noisy goal location. Therefore, this arti-
cle outlines an episodic RL-scheme that uses Bayesian optimization with unknown constraints
(BOC) to account for unsafe exploration samples during learning. In order to apply the pro-
posed scheme on an industrial robot platform that does not provide the default interfaces for
compliant controllers, such as a hybrid Cartesian force-velocity, we outline a slightly modified
version of existing controllers. The resulting controller allows enabling force-/velocity profiles
along selective axes, while using a high frequent internal position-controller as an alterna-
tive fallback. The hybrid nature of this controller allows a direct application of a graphical
skill-formalism for meta learning in robotic manipulation from previous work. Thus, the
state-complexity can be reduced to a level where the advantages of GPs outweigh their scal-
ing deficiency. The core contribution of this article lies in the extension and adjustment
of BOC to the outlined graphical skill-formalism such that safety constraints can not only be
incorporated, but also directly added to the graphical skill-formalism. Specifically, we outline
how the underlying graph structure can be extended to directly account for safety constraints
and thus improve exploration behavior during early exploration stages, where a successful
episode is unlikely.

Before sketching our contribution against related work below, we briefly outline of the ter-
minology used in this chapter. Given the mathematical problem in Section 9.2, we shortly
sketch the methodical background of our work in Section 9.3 and outline the technical insights
of our approach in Section 9.4. Eventually, we outline a specific application example in Sec-
tion 9.5 and present our experimental results collected with an industrial robot manipulator
in Section 9.6 before concluding this chapter in Section 9.7.

124



9.1 Introduction

9.1.1 Terminology

This section summarizes the terminology of this chapter. For brevity, we only highlight
technical terms, which distinctly differ in their meaning across research fields.

• A (manipulation) task describes the challenge for a robot to reach a predefined goal-
state, closely related to the definitions from automated planning (Nau et al., 2004). As
this chapter focuses on episodic RL, the result of an episode is equal to the outcome of
a task.

• A manipulation primitive (MP) defines a sub-step of a task. In contrast to automated
planning, this chapter does not intend to plan a sequence of (feasible) MPs, but instead
focuses on the parameterization of a predefined sequence of MPs. In contrast to hierar-
chical planning, we omit further hierarchal decompositions – e.g., methods (Nau et al.,
2004) – such that a task can only realized as a sequence of primitives.

• Using such MPs in order to solve a manipulation task directly leads to the introduction
of the term of a skill. While a (robotic or manipulation) skill denotes the ability of a
robot to achieve a task, we explicitly use the term (graphical) skill-formalism to denote
a specific realization of sequential MPs to solve a manipulation task.

• Our approach seeks to increase the learning speed for episodic RL by limiting learning
to a reduced parameter-space, which we denote as meta learning as used in existing
work (Johannsmeier et al., 2019). It still has to be noted that this terminology is
different to common terminologies such as meta-RL(Frans et al., 2018).

• Within episodic RL, a robot is usually asked to find an optimal parameter sample or a
policy w.r.t. a numeric performance metric that is obtained at the end of a multi-step
episode. In the scope of this chapter, we specifically focus on the former, i.e., a robot is
asked to sample parameter values during the learning phase. Similarly to literature in
Bayesian optimization, we often denote this sampling-process as the acquisition of sam-
ples (Rasmussen and Williams, 2006). Eventually, the performance metric is obtained
at the very end of a successful trial episode.

9.1.2 Related Work

In the context of learning force-sensitive manipulation skills, a broad variety of research work
has been presented in the last decade. Profiting from compliant controllers that were designed
to mimic human motor skills (Vanderborght et al., 2013), the concept of adaptive robot skills
has found interest way beyond adaptive control design. Thus, this section outlines the state-
of-the-art across multiple research fields before setting the contribution of this chapter in
relation to these works.

9.1.2.1 Force-Adaptive Control for Unknown Surfaces or Objects

As covering all aspects of interacting with unknown surfaces, e.g., tactile sensing (Li et al.,
2018b), is beyond the scope of this chapter, we refer to existing surveys (Li et al., 2020) and
specifically summarize findings on learning force-adaptive manipulation skills.
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In this context, the peg-in-hole problem is one of the most covered research challenges. Early
work, such as Gullapalli et al. (1994, 1992) proposed to apply machine learning (ML), e.g., real-
valued RL to learn a stochastic policy fo the peg-in-hole task. The neural networks for the force
controllers were trained by conducting a search guided by evaluative performance feedback.

Besides ML, many approaches have applied learning from demonstration to obtain suitable
Cartesian space trajectories, cf. Nemec et al. (2013) or Kramberger et al. (2016) who adjust
dynamic movement primitives conditioned on environmental characteristics using online infer-
ence. While first attempts have focused on adjusting the position of the robot end-effector di-
rectly, recent approaches have also investigated the possibility of replicating demonstrated
motor-skills that also involve interaction wrenches (Cho et al., 2020) or compliant behavior
(Denǐsa et al., 2016, Petric et al., 2018).

Alternative work proposes adaptive controllers that adjust the gains of a Cartesian impedance
controller as well as the current desired trajectory based on the collected interaction dynamics.
Li et al. (2018c) for example evaluate observed error-dynamics, current pose, velocity and
excited wrenches.

Even though, these works have achieved great results for modern and industrial robot ma-
nipulators in their application fields, they do not allow robots to autonomously explore and
refine a task. While learning from demonstration always requires a demonstration to be given,
adaptive controllers assume to have access to a desired state or trajectory. In addition, the
majority of proposed controllers usually require high-frequent update rate on the robot joints,
cf. Scherzinger et al. (2019b), Stolt et al. (2015, 2012) which usually is only accessible for
the robot manufacturer. In contrast to this, we seek for a setup that can be deployed on
off-the-shelf industrial robot manipulators.

A few years ago, the idea of end-to-end learning via means of deep RL-techniques has been
studied thoroughly to combine the efforts of the former and the latter in a confined black-box
system. In these studies, the concept of controlling the gains is omitted and instead replaced
by a feed-forward torque policy that generates joint-torques from observed image data using a
deep neural network (NN). Levine et al. (2016, 2015) use guided policy search that leverages
the need for well-known models or demonstrations. Instead, the system learns contact-rich
manipulation skills and trajectories through time-varying linear models which are unified into
a single control policy. Devin et al. (2017) have tackled the issue of slow converging rates
due to the enormous amount of required data by introducing distributed learning, where
evidence is shared across robots, and the network structure allows to distinguish between
task-specific and robot-specific modules. These models are then trained by means of mix-
and-match modules, which can eventually solve new visual and non-visual tasks which were
not included in the training data. The issue of low precision has been improved by Inoue
et al. (2017), who evaluated the peg-in-hole task with a tight clearance.

Recently, the application of deep-RL has stepped back to use existing controllers and improve
their performance by applying deep-NNs in addition, e.g., Luo et al. (2019) proposed to learn
the interaction forces as Pfaffian constraints via a NN. Beltran-Hernandez et al. (2020) apply
an admittance controller for a stiff position-controlled robot in joint space and apply RL via
soft actor-critic (Haarnoja et al., 2018) to achieve a compliant robot behavior that successfully
learns a peg-in-hole task by adjusting the gains of the admittance controller. Similarly, the
feed-forward wrench for an insertion task is learned from human demonstrations (Scherzinger
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et al., 2019a) using NNs and a Cartesian admittance controller tailored to industrial plat-
forms (Scherzinger et al., 2017).

Aside of the aspect of meta-RL (Frans et al., 2018, Gupta et al., 2018), which investigates the
idea of bridging data generated in simulations to physical platforms, the performance benefits
and ability to learn almost arbitrarily complex tasks, existing methods for deep-RL still require
tremendous amount of experimental data to be collected to achieve reliable performance.

9.1.2.2 Robot Skill Learning On Reduced Parameter-Spaces

The size of required data is directly subject to the size of the parameter-space that needs to
be regressed. Thus, another promising line of research is given by decreasing the search space
and problem complexity.

Recent research has proposed to use available expert knowledge rather than learning a skill
from scratch. LaGrassa et al. (2020) propose to categorize the working space into regions
where model knowledge is sufficient and into unknown regions, where a policy is obtained
via deep RL. Johannsmeier et al. (2019) propose to incorporate expert knowledge in order
to reduce the search space for adaptive manipulation skills by introducing MPs. Based on
this, they showcase a peg-in-hole task where a robot adjusts the stiffness, and feed-forward
interaction wrenches of a Cartesian impedance controller by means of Bayesian optimization
(BO) and black-box optimization.

The application of such MPs also encouraged the application of deep-RL approaches. Zhang
et al. (2021b) propose two RL approaches based on the principle of MPs, where the policy
is represented by the feed-forward Cartesian wrench and the gains of a Cartesian impedance
controller. Mart́ın-Mart́ın et al. (2019) similarly propose to learn the controller selection and
parameterization during a peg-in-hole task. Hamaya et al. (2020) apply model-based RL
via GP on a peg-in-hole task for an industrial position-controlled robot by attaching a com-
pliant wrist to the robot end-effector, that compensates for perception inaccuracy. Mitsioni
et al. (2021) instead propose to learn the environment dynamics from a NN in order to apply
model predictive control, if the current state is classified as safe via a GP-classifier. Alt et al.
(2021) also apply NNs via differentiable shadow-programs that employ the parameterization
of robotic skills in the form of Cartesian poses and wrenches in order to achieve force-sensitive
manipulation skills, even on industrial robots. They include the success-probability in the
output of the NNs, in order to minimize the failure rate.

While these approaches have shown promising results by solely collecting experimental data
within reasonable time, neither of those approaches include interaction constraints – e.g.,
maximum contact wrenches – during the acquisition or evaluation of new data-samples, nor
allow the application of the presented results on an industrial platform without an additional
compensation unit. As for the former, the majority of research projects have applied BOC to
account for safety critical or unknown system constraints during learning, we continue with a
dedicated overview of research in this field.
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9.1.2.3 Bayesian Optimization with Unknown Constraints for Robotics

Within robotic applications BO has been promising to achieve online RL due to effective
acquisition of new samples (Calandra et al., 2016, Deisenroth et al., 2015), that is still used
within robotic research applications (Demir et al., 2021).

In the context of BOC safe RL methods have been proposed that estimate safe or feasible
regions of the parameter-space into account to allow for safe exploration, cf. Berkenkamp
et al. (2016a,b), Sui et al. (2015) or Baumann et al. (2021).

Similarly, Englert and Toussaint (2016) proposed the probability of improvement with a
boundary uncertainty criterion (PIBU) acquisition function that encourages exploration in
the boundaries of safe states. Their approach was further evaluated on generalizing small
demonstration data autonomously in Englert and Toussaint (2018) as well as on force-adaptive
manipulation tasks by Drieß et al. (2017). A similar acquisition function has been proposed
by Rakicevic and Kormushev (2019) even though they do not approximate the success as
a GP.

Approaches like Wang et al. (2021), who use GPs to regress the success of an atomic plan-
ning skill from data, have further shown that BOC is well suited to regress high-level, i.e.,
task-planning constraints from data. While they approximated this success-probability as a
constraint with a predefined lower bound 0, Marco et al. (2021) outlined a constraint-aware
robot learning method based on BOC that allows to improve sampling even if no successful
sample is available yet. Recent practical application examples of BOC are found in König
et al. (2020), Stenger et al. (2022), Yang et al. (2022).

While these approaches have achieved promising results within small-scale (robot) learning
problems, they suffer from poor scaling properties as GPs require to use the covariance matrix
for prediction and acquisition of new data-samples, and which grows exponentially in the
state-space of the underlying problem. While various work has focused on finding proper
approximation methods to leverage this problem, we propose that within a robotic context,
it is preferable to explicitly incorporate structural knowledge whenever possible. To conclude
this overview of the state-of-the-art, we shortly summarize the contribution of this chapter in
relation to the work stated above.

9.1.3 Contribution

This chapter introduces a novel episodic RL-scheme for compliant manipulation tasks tailored
to industrial robots. In order to allow for compliant manipulation tasks, the control interfaces
of an industrial robot are adjusted to follow a Cartesian hybrid force-velocity controller (Craig
and Raibert, 1979, Khatib and Burdick, 1986). By exploiting the hybrid nature of this con-
troller and available expert knowledge, a complex manipulation task can be reformulated
into graphical skill-formalisms – i.e., a sequence of simplified MPs — from existing work.
Eventually, we outline an extension of these graphical skill-formalisms by taking parameter
constraints and success-probabilities at each sub-step into account. This improves learning
especially at early stages and allows to refine the individual sub-steps of a robotic manipu-
lation task even when no successful episode could have been observed yet. Furthermore, we
define suitable BOC-models to estimate the success-probability of each MP as well as the
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overall task, as well as the outline of suitable acquisition functions that allow collecting data
efficiently during learning.

9.2 Problem Formulation

The mathematical problem tackled in this chapter is the optimization of an unknown objective
function J (ξ) w.r.t. meta parameter vector ξ subject to unknown constraints g

minJ (ξ) ξ ∈ Rm

s.t. gi(ξ) ≤ ci, ∀i ∈ [1, |c|]
, (9.1)

specifically tailored to robotic applications. In here, the objective J (ξ) describes the per-
formance metric of a task, while a finite set of constraints g(ξ) ≤ c defines a safe subset of
the meta parameter-space ξ. In the context of this chapter, this function mapping J (ξ), as
well as the constraints – i.e., g and c – are regressed from data by means of episodic RL.
In contrast to most RL-approaches, where the environment is assumed to be Markovian,
episodic RL needs to execute a multi-step exploration before obtaining a feedback, that can
be used to update the current model(s). In the scope of this chapter, an episode is given
as a manipulation task. which can be either evaluated in simulation or directly on a robot
platform. In the remainder of this chapter, we mainly focus on the direct application on the
latter. Similar to related work in this area (Marco et al., 2021), we assume that the feedback
of an episode is expected to be given in the form of

J spl, gspl, sspl ←

{
J (ξ), g(ξ), > iff gi(ξ) ≤ ci,∀i ∈ [1, |c|]
∞, ∞, ⊥ else

, (9.2)

as the current performance sample J spl, and the constraint and success-return vectors gspl, sspl ∈
R|c|. Therefore, a major challenge lies in handling episodes where infeasible / unsafe parame-
ters have been selected, and neither information about J nor the constraint metric is gained.
It is often costly to select and evaluate new samples within robotic applications. GP-regression
has shown great potential in ML and robotics, if only a handful of samples should be evaluated.
Thus,

J (ξ)← F̌ J
(
ξ
∣∣DJ ) ∼ N (µJ ,ΣJ )

gi(ξ) ≤ ci ← F̌ g i
(ξ | Dgi) ∼ N

(
µgi ,Σgi

)
∀i ∈ [1, |c|]

, (9.3)

approximate the objective J and constraints g i via GPs using collected empirical data DJ =
{ξ,J (ξ)} and Dgi = {ξ, (gi(ξ), {>,⊥})}. Finally, the optimal guess for (9.1) can be obtained

by minimizing the posterior of F̌ J (ξ):

ξ∗ ← arg min
ξ

EF̌ J

F̌ J (ξ)

|c|∏
i=1

P
[
F̌ g i

(ξ)
] , (9.4)

weighted by the success-probability of ξ given as the joint-probability over all constraints.
Thus, (9.4) does not only optimize the main task-objective, but also accounts for the prob-
ability of violating imposed constraints. This directly allows to optimize the performance of
an unknown manipulation task for robotic systems, while accounting for constraints, such as
limited interaction wrenches during contact-tooling.
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e1 e2 e|V|−1

Cpre Csuc

Cerr

v1 7→ X des v2 7→ X des
. . . v|V| 7→ X des

Recovery

Figure 9.1: Schematic skill-formalism for manipulation tasks as presented in Johannsmeier et al.
(2019). Each MP – i.e., node vi – defines the current set-values for the underlying controller, e.g.,
desired wrench or velocity, as well the current meta parameters that define the performance of the
skill, e.g., controller parameterization. Eventually, the Recovery node intends to steer the robot to the
initial state whenever an error occurs.

9.3 Preliminaries and Background

Before outlining our approach in detail, we give a brief introduction into the graphical skill-
formalisms from Johannsmeier et al. (2019) and the BOC approach from Marco et al. (2021)
and Englert and Toussaint (2016), which we use as a baseline comparison in our experimental
evaluation.

9.3.1 Meta Learning for Robotic Systems Using Graphical
Skill-Formalisms

Within robotic tasks, the hyper-parameter space is usually large due to the degrees of freedom
in SE(3) or the configuration space of the robot. Therefore, Johannsmeier et al. (2019)
proposed to model tasks in fine-grained Moore finite-state automaton (FSA), according to
the schematic shown in Figure 9.1. The vertices V of the FSA-graph G define MPs as atomic
primitive tasks. In these FSAs, the output alphabet is defined by the meta parameters ξ and
desired set-values, e.g., xdes, that are sent to the robot at each MP, denoted as the dedicated
space X des in Figure 9.1. Therefore, the more task-knowledge can be exploited for each MP,
the smaller the space of the resulting meta parameter per node.

Eventually, the manipulation skill is further defined by a set of constraints that define the
start- and end-constraints, as well as any time constraints that the robot shall never violate.
This brings in the benefit of exploiting available object knowledge, while also providing a
skill-formalism that is closely related to those of automated task planning (Nau et al., 2004).
In fact, these constraints are closely related to autonomous planning and first-order-logic,
where planning primitives are often described by a set of pre-conditions and effects. In the
context of concurrent planning, this is also extended to any time constraints, that must
not be violated while the task primitive is executed. This results in a skill-representation as
shown in Figure 9.1, where the task-constraints are defined as deterministic mapping functions
C := X 7→ {⊥,>}, which map the state-space of the robot to a Boolean return value. In
particular, individual manipulation skills are defined by:

• Initialization-constraints Cpre, or pre-conditions. They define the initialization of the
task. In general Cpre is given as a set of constraints, that only evaluates to >, if all
conditions evaluate to >, i.e., if s0 denotes the initial state of the robot, then c(s0) 7→
>,∀c ∈ Cpre has to hold.
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• Success-constraints Csuc, or termination-conditions. They evaluate if the manipulation
skill has been executed successfully. This terminates the overall FSA shown in Figure 9.1
and requires as well all conditions to evaluate to > i.e., if sTmax

denotes the final state
of the robot in the manipulation skill, then c(sTmax

) 7→ >, ∀c ∈ Csuc has to hold.

• Safety and performance constraints Cerr, or error conditions. They evaluate if the cur-
rent MP has violated any constraints, e.g., timeouts, accuracy violations that may exceed
information provided by a task planner. In contrast to Cpre and Csuc, the error constraint-
set Cerr evaluates to > if any condition is violated at any time, i.e., if st denotes the
state of the robot at any time during the manipulation skill, then ∃c ∈ Cerr : c(st) 7→ >
has to be fulfilled. Furthermore, the robot enters a recovery node, in which the robot
tries to reach the initial state to initiate a new trial-episode – as emphasized by the
dashed line in Figure 9.1.

In the context of the graphical skill-formalism from Johannsmeier et al. (2019), Cpre are
defined by the adjacency matrix of the graph and the success-constraint from the predecessor-
node, i.e., if a node raises the success-constraint, there is a unique successor-node, whose
precondition holds by design.

9.3.2 Bayesian Optimization with Unknown Constraints

Within BO an unknown function or system is regressed from data as a stochastic process.
A common model is a GP, which is defined as a collection of random variables, namely joint
normally distributed functions over any subset of these variables. They are fully described by
their second-order statistics, i.e., a prior mean and a covariance-kernel-function k(ξ, ξ ′ ), that
encodes prior function properties or assumptions.1 A key-benefit of stochastic processes is
their ability to draw samples efficiently. This strongly depends on the choice of the acquisition
function Faqu, which usually intends to maximize the information gain for the estimated pos-
terior yspl. Famous examples are the expected improvement (EI) and expected improvement
with constraints (EIC)

FaquEI(ξ,D) = Eyspl∼NJ (µ,σ | ξ)

[
max

(
yspl − J ~, 0

)]
, (9.5)

FaquEIC(ξ,D) = Eyspl∼NJ (µ,σ | ξ)

max
(
yspl − J ~, 0

) G∏
j=0

P
[
gj(ξ) ≤ cj

], (9.6)

where the probability of improvement (PI) is maximized

PIGP(J )(ξ) = Φ

µξGP(J ) − J
~
D

σ
ξ
GP(J )

 . (9.7)

In here Φ denotes the normal cumulative distribution function (CDF), while J ~
D represents

the best output sample in the data set D, which serves as the lower bound for the improvement.
The mean µ

ξ
GP(J ) and variance σ

ξ
GP(J ) are obtained as the posterior of the GP at new sample

candidates ξ. While modeling the task-performance via a GP is commonly applied in BOC,
regressing a discriminative success function is non-trivial. In Drieß et al. (2017), Englert and

1For more information about GPs and GP-classification, we refer to Rasmussen and Williams (2006).
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Toussaint (2016, 2018) GP-classification with a sigmoid-function to classify the output of a
latent GP is proposed. Given this, the authors propose a constrained sensitive acquisition
function, which they denote as PIBU

FaquPIBU(ξ,D) =

PIGP(J )(ξ) F̌ g (ξ) > 0

σ
GP(F̌ g )

(ξ) F̌ g (ξ) 7→ 0
, (9.8)

that uses the PI in admissible regions of the parameter-space, and the variance σ of the
latent GP in the boundary regions to encourage a safe exploration. They further use a
constant negative mean prior for the latent GP to limit sampling to the boundary regions of
the safe parameter-space. In contrast to this, Marco et al. (2021) propose to use a constraint-
aware GP-model that allows to use EIC, which they denote as Gaussian process for classified
regression (GPCR). GPCR allows updates even if no successful constraint sample has been
drawn yet, based on the environmental feedback in (9.2). Further, Marco et al. (2021) propose
to regress the constraint thresholds cj directly from data. Thus having Nspl ≤ |D| successful
samples, the likelihood is defined as

P[D | gj ] =

Nspl∏
j=0

F H(cj − gj)N
(
gj , σ

2
noise

) |D|∏
j=Nspl+1

F H(gj − c) , (9.9)

where F Hdenotes the Heaviside function. Using a zero-mean Gaussian prior, the posterior is
given as

P[g | D] = N (g |µn,Σn)

Nspl∏
i=0

F H(cj − gj)
|D|∏

j=Nspl+1

F H(gj − cj) ≈ N (g |µEP,ΣEP) , (9.10)

where the Gaussian distribution N (g |µn,Σn) is obtained by the multivariate Gaussian from
the observation noise and the observation samples. As the Heaviside functions in (9.10) do
not allow obtaining an analytic solution for (9.10), the authors propose to use a variational
approximation, namely expectation propagation (EP), such that the predictive distribution at
unobserved samples ξ ′ is obtained via a Gaussian distribution defined by mean and variance

µgj
(ξ ′ ) = kX(ξ ′ )>K−1µEP

σgj
(ξ ′ ) = k(ξ ′ , ξ ′ )− kX(ξ ′ )>K−1

(
1|D|×|D| −ΣEPK

−1
)
kX(ξ ′ )

, (9.11)

where X denotes observed parameter-samples in D. The success-probability is then given as

P[g(ξ) ≤ c(ξ ′ )] =

|c|∏
i=0

Φ

(
cj − µgj (ξ ′ )
σgj (ξ

′ )

)
. (9.12)

9.4 Technical Approach

In order to allow online RL to be applied from a handful of exploration samples, it is favorable
to exploit available knowledge and thus decrease the overall meta parameter-space of the
observed system. As mentioned before, we thus extend the concept of modeling robotic tasks
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as skill-graphs from Johannsmeier et al. (2019) to allow compliant manipulation tasks to
be tuned online. In contrast to preliminary work, we outline how a stiff position-controlled
industrial robot platform can be controlled in order to allow for compliant robot behavior.
Building upon this, we emphasize how a graphical skill-formalism can exploit the structure of
the presented controller, such that the controller parameters can be adjusted online. As crash
constraints are critical, if a stiff robot is asked to interact with unknown objects, we conclude
our technical contributions by not only outlining how the structure of the skill-graph can be
further exploited to simplify the BOC-RL algorithm, but also proposing suitable BOC-models
and acquisition functions in order to improve the overall learning performance.

9.4.1 Compliant Controller Design for an Industrial Robot

In the context of this chapter, we use a COMAU robot 2. While this robot prohibits the
control of the motor torques or impedance-based controller interfaces, it allows to control the
position of the end-effector x of the robot via an external client in the form of a Cartesian
deviation relative to the current end-effector pose, such that the controlled system simplifies
to

xt+1 := xt + δx ≈ xt + uẋ ,desδt . (9.13)

where δx forms the control command being sent to the robot. As the robot runs at a real-
time safe, constant update-rate δt, the Cartesian deviation command uẋ ,des can also be used
to command a feed-forward Cartesian velocity command to the robot. In order to achieve a
hybrid force-velocity control policy for the robot system, this feed-forward end-effector velocity
follows to a hybrid Cartesian force-velocity controller (Khatib and Burdick, 1986)

uẋ ,des :=Svel
R ẋeedes + S frc

RK
frc
P (F des − F )

=Svel
R ẋeemax + S frc

RK
frc
P (F des − F )

, (9.14)

where s 7→ [0, 1]6 is a scaling vector given the maximum end-effector velocity ẋmax and Kfrc
P is

a positive definite proportional control gain matrix. The selection matrices S frc
R and Svel

R

in (9.14) are given as

S frc
R :=

[
Rba

ct diag
(
sfrc

1:3

)
Rct

ba 03×3

03×3 Rba
ct diag

(
sfrc

3:6

)
Rct

ba

]
Svel

R :=

[
Rba

ct diag
(
svel

1:3

)
Rct

ba 03×3

03×3 Rba
ct diag

(
svel

3:6

)
Rct

ba

] , (9.15)

for position and force control.

Thus, a Cartesian velocity as well as the force-profile F can be followed along selective axes.
The presented controller differs from classic hybrid force-position control by the fact that
disabling the force-control along an axis does not directly result in position control. If svel

i =
sfrc
i = 0, the robot automatically holds the current position according to the internal control

loop and (9.13). Nonetheless, for a correct decoupling of the individual control policies, the
selection matrices need to hold svel

i sfrc
i = 0. The final control architecture, as visualized

in Figure 9.2, is well suited for a graphical skill-formalism from Johannsmeier et al. (2019),
as it can directly exploit hybrid policies along selective axes.

2The extension to arbitrary robots is subject to the internal robot control and dynamics. As the methods in
this chapter are dynamically independent, this extension is left for future work.
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uẋ ,des δx

F cur

Real-time
velocity control

Svel
RsẋTmax

S frc
R

Kfrc
P (F des − F )

s

F des

Robot

FT-sensor

Compliant Controller

Figure 9.2: Schematic overview of a hybrid force-velocity controller (Craig and Raibert, 1979, Khatib
and Burdick, 1986) using the Cartesian deviation control interface of an industrial COMAU robot.In
here, the selection matrices Svel

R and S frc
R activate velocity- and force-control modalities along se-

lective axes using a scaled feed-forward velocity profile sẋTmax
and a proportional force-controller with

gain-matrix Kfrc
P , Cartesian FT-readings F and the desired wrench F des. Eventually, the Cartesian

velocity is emulated on the COMAU robot by using the Cartesian deviation command interface δx .

9.4.2 Applying Bayesian Optimization with Unknown Constraints on
Graphical Skill-Representations

Even though a skill-graph can decrease the search space complexity, the resulting space may
still suffer from the curse of dimensionality. Furthermore, collecting data from actual ex-
periments is at risk of gathering various incomplete and thus useless data-samples. In the
context of episodic RL, one (successful) graph iteration represents a single episode. This re-
quires all steps to succeed for a useful return value. Thus, we outline how the BOC-problem
from Section 9.2 can be reformulated to exploit available model knowledge in this skill-graph
to improve sampling and learning. We assume that the feedback from (9.2) can be obtained
at each node of the skill-graph and that each parameter in ξ is bounded. Given a graphical
skill-representation as in Figure 9.1, represented by MP-nodes V and transitions E , the objec-
tive J can be decomposed into the sum of all nodes, while the dedicated constraints need to
be fulfilled at each step

J (ξ) :=
∑
v∈V
F̌ J v(ξv) ξv ∈ Rn, n ≤ m

s.t. gv(ξv) ≤ cv ∀v ∈ V.
. (9.16)

Thus, (9.4) results in

ξ∗ ← arg min
ξ

ΛVξ
∑
v∈V

EF̌ J
v

[
F̌ J

v
(ξv)

]
, (9.17)

where ΛVξ denotes the joint success-probability over all MP-nodes. While preliminary work (Jo-

hannsmeier et al., 2019) has shown that the application of the summation in (9.17) improves
learning speed and quality, we claim that it is furthermore beneficial to exploit the structure
of the MP-graph in order to regress ΛVξ and thus to design suitable acquisition functions from
it. Due to the structure of the graph and the underlying BOC-problem, the objective and
success-probability are conditionally independent. This allows to outline specific graph-based
representations for the success-probability of ΛVξ , which we outline below.
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9.4.2.1 Naive-Bayes Approach

In order to approximate ΛVξ from the underlying MP-graph, a commonly applicable solution
is given as a Naive-Bayes approach, i.e., assuming conditionally independence for all nodes.
This is usually valid due to the condition-checking within the MP-graph from Section 9.3.1.
Recalling the constraint in (9.16), the success-probability of each MP-node is subject to

Γv
ξ =

|g |∏
j=1

{
P
[
F̌ g

v

j
(ξv)

]
if active(g, j, v)

1 else
, (9.18)

where active(g, j, v) 7→ {>,⊥} encodes if the constraint is active in the current node or not.
This allows to directly encode the structure of the graph – i.e., available task-knowledge –
in the success-probability of each node. Given the sequential structure of an MP-graph, the
overall success-probability results in

ΛVξ =
∏
v∈V

Γv
ξ , (9.19)

while the success-probability of each intermediate node is obtained as the product of indi-
vidual terms Γv

ξ from the initial to the current node. In order to estimate ΛVξ from data, we
thus regress each active success-constraint per node as an individual GP. These GPs are in-
dependent and use the success or failure as well as the constraint-metric of the current subset
of the meta parameter at each MP node. This results in at most |V||g| GPs for the over-
all task. Nonetheless, the Naive-Bayes approach suffers from two disadvantages. First, the
success-function for the current node may depend on the full vector ξ instead of ξv in (9.18).
This contradicts the assumption of conditional independence and limits the applicability of
the Naive-Bayes approach to tasks, where not only the task but also the constraints can be
modeled individually for each MP. Given the structure of the MP-graph, namely the existence
of error-constraints at each transition, the Naive-Bayes approach is still applicable to a broad
variety of tasks, but may not allow adding constraints that affect the choice of parameters
across multiple MP-nodes. Second, in case an episode fails at a dedicated node, no labels can
be added to the subsequent nodes as each node is handled fully independently. While this
still allows to collect samples earlier during the learning stage, the number of samples needed
is expected to increase until successful samples can be obtained. In order to diminish these
effects, we propose to model the success-probability by a specialized factor graph in the next
section.

9.4.2.2 Modeling the Success-Function as a Factor Graph

Besides the Naive-Bayes approach it is also possible to directly impose the structural task-
knowledge that results from the graph-structure. Namely, we propose to model the overall
success-probability as a factor graph representationKschischang et al. (2001) for the task-
constraints , where the scalar elements of ξ form the variables, and the constraints from (9.1)
form the factors, cf. Figure 9.3.

Having obtained the general factor graph for a manipulation skill, this graph is fully described
by an adjacency matrix AG, where element [AG](i,j) 7→ 1 denotes an existing edge from i to
j. Within factor graphs an edge is only connecting a variable with a factor-node, such that
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 . . . v|V| 7→


X des|V|
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F̌ g 1
F̌ g 2

F̌ g |V|

ξ1 ξ2
ξ|ξ|

success-probability ΛVξ as a factor graph
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Figure 9.3: Graphical skill-formalism with an additional factor graph representation for the task
success-probability. The individual node-parameters ξv denote the meta parameters for each node,

while X desv denote the set-values and Sv denotes the selection-matrices S frc
R and Svel

R for the
controller from Figure 9.2. The factor graph denotes the overall task completion probability, while the
adjacency matrix AGi for each vertex defines the active sub-graph for each vertex, which define the
success-probability for the current node Γv

ξ . Again, the Recovery node intends to steer the robot to
the initial robot state whenever an error occurs in order to initiate a new episode.

it is sufficient to denote the adjacency matrix as AG ∈ R|ξ|×|c|. Therefore, columns denote
individual constraints, and the rows define the sub-set of ξ for each individual constraint.
Consequently, the success-probability results in

ΛVξ =

|c|∏
j=0

min

 |ξ|∑
i=0

[AG ](i,j), 1

P
[
F̌ g

c
(ξcj )

]
where [AG ](i,j) 7→ 1 ∀ξi ∈ ξcj . (9.20)

If for example, only the active success-constraint per MP-node is introduced and each con-
straint has the same input dimension, the Naive-Bayes approach is reconstructed. In contrast
to the Naive-Bayes approach each MP-constraint can depend on arbitrary subsets of ξ. In
order to fully exploit the structure of the MP-graph, we propose to embed the underlying
success-probability for each vertex in the skill-graph. This can be directly achieved by ex-
tending the current set-values commanded to the robot system by an MP-specific adjacency
matrix AGi. The success-constraint at each MP Γv

ξ can then by obtained by replacing AG

with AGi in (9.20). As a result, samples can be added to each constraint metric dependent on
the current progress within the MP-graph. Thus, if a skill fails at a specific node, the samples
obtained until said notes can be added to the data set as successful, while the samples for the
failed node can be assigned to the current and subsequent MPs success-estimators.

9.4.3 BOC-Model and Acquisition Function

Given the extended MP-graph, the objective of acquiring samples efficiently is again subject
to the choice of the acquisition function and underlying GP-model. Recalling Section 9.3.2,
a key-benefit of the method from Marco et al. (2021) is the ability to push the probability
mass above the current threshold estimate, which allows to gain more knowledge from failed
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samples. Nonetheless, this model relies on approximating the posterior due to nonlinear
components in (9.10). Instead, we propose to induce artificial data-points and fit GPs on this
artificial data set instead. The algorithmic skeleton is sketched in Algorithm 9.1, where we
again assume to have safe and failed data-samples in the data-buffer D for each constraint.

Algorithm 9.1: Induce artificial data-points to fit GP on data sets with failed samples

input : psafe, pfail, D, υ, κspl, ζspl

output: F̌ g i

1 ConstraintFit:

2 F̌ g
safe ← ParameterFit(ξsafe, gsafe) . fit valid constraint samples

/* estimate threshold for safe GP */

3 ξspl ∼ ξsafe + κsplN
(
0|ξ|, 1|ξ|×|ξ|

)
4 ĉi ← Φ−1(psafe)σ

safe
gi

(
ξspl

)
+ max

(
gsafe,µ

safe
gi

(
ξspl

))
5 ĝsafe

j,fail ← max
(
Φ−1(pfail), ζspl

)
σsafe
gi

(ξ fail) . approximate failed data (safe GP)

6 Dart ← {ξsafe, gsafe − ĉi} ∪
{
ξj,fail, ĝ

safe
j,fail

}
. generate artificial data set

7 F̌ g
fail ← ParameterFit(Dart) . fit artificial data set

8 ĝ fail
i,fail ← max

(
Φ−1(pfail), ζspl

)
σ fail
gi

(ξ fail) . approximate failed data (virtual GP)

9 ĝ i ← (1− υ)ĝsafe
j,fail + υĝ fail

j,fail . Polyak average approxmiated data

10 Dart ← {ξsafe, gsafe − ĉi} ∪
{
ξi,fail, ĝ i

}
. generate artificial data set

11 F̌ g i
← ParameterFit(Dart) . fit GP to artificial data set

We propose fitting a GP into the safe data set first. Given this safe distribution, we propose
to estimate the constraint-value ĉi. This can be achieved by evaluating the posterior at the
safe input samples and applying the inverse CDF and a predefined probability threshold psafe

that should be held for legal samples. As the variance is usually small in the near distance
of collected evidence, mean-free Gaussian noise is added on the existing samples. Taking
the maximum of the predictive mean and the collected samples from the safe data set, the
predictive variance can be used to calculate the value of the constraint from the inverse CDF.
Using the estimated constraint-value ĉi, the predictive variance at the infeasible data-samples
can be used to estimate the predictive mean-value that would result in a posterior infeasibility
probability threshold pfail. In this estimation, we treat zero as the decision threshold for the
current constraint-GP and limit the inverse CDF to a lower bound ζspl ∈ R+. As the safe
GP does not contain any data-sample within the unsafe parameter-space, the variance of the
posterior is expected to be large. Thus, we propose to apply a model-fit with the artificial data
set and repeat the process from above to obtain new virtual output values. As the decision
threshold is set to zero, the safe data-samples are shifted by the current constraint estimate.
Within our implementation, we also normalize the collected safe samples, but omitted this
in Algorithm 9.1 for brevity. The predictive posterior distribution of this artificial data set
will usually impose a conservative variance given the added data-sample support. Thus, the
final artificial value is obtained by a Polyak average of the two estimated posterior values.
Given this, another parameter fit returns the final constraint GP. In order to embed ambiguity
over unobserved parameters, the GPs use a zero-mean prior, which is equal to the constraint
threshold of the virtual GP. In case there is no feasible data set found, Algorithm 9.1 shortens.
Instead of fitting existing data, the constraint is explicitly setto zero and the artificial data
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is set to min(psafe, pfail). Eventually, a parameter fit is obtained to get an estimate of the
constraint GP. For the Naive-Bayes approach, each MP and for the factor graph approach
each factor are finally realized by a constrained GP according to Algorithm 9.1. Given the
structure of the factor graph and the dedicated skill, we propose to use a sequential form
of (9.6). For the Naive-Bayes approach this results in applying (9.6) at all nodes

FaquEIC,G(ξ,DG) = ΛVξ
∑
v∈V

Eyspl∼NJ v(µ,σ | ξv)
[
max

(
yspl − J v

~
D, 0

)
Γv
ξ

]
, (9.21)

and weigh the sum of acquisition functions by the overall success-probability to encourage
acquisition of samples that are expected to succeed in the overall task. Due to the linear
structure and the conditional independence of each node, Γv

ξ is directly obtained by F̌ g i
according to Algorithm 9.1 given that each node can be represented by a dedicated constraint-
metric. For the factor graph version, we do not assume conditional independence for the
success-probabilities. Instead, the adjacency-graph of each node is used to calculate Γv

ξ in

(9.21)

Γv
ξ =

|c|∏
i=1

{
F̌ g i

if ∃j ∈ [1, |ξ|] : [AGv](·,j) 7→ 1

1 else
, (9.22)

using F̌ g i
according to Algorithm 9.1. Eventually, the best sample estimate is given by

optimizing over the best-guess of each MP-objective estimate at each MP and setting all
samples with a success-probability below psafe to J �

D. Thus, the EI in (9.21) is replaced by
the objective of each node, and Γv

ξ is set to 1 for feasible estimates. For infeasible samples we
assume the worst observed objective for the current objective estimate, such that the optimal
parameter estimate is obtained as:

ξ∗ ← arg min
ξ

∑
v∈V

{
J v(ξv) if Γv

ξ ≥ psafe

J �
D else

. (9.23)

9.4.4 Exploit Conditional Dependencies for Collected Samples

The final BOC-algorithm for the proposed online RL approach is sketched in Algorithm 9.2.
In contrast to learning the full parameterization of the task, the sequential skill-graph receives
the additional feedback, which node was explored last in Line 4. This information is crucial
to assign samples correctly for the success- and constraint data-buffers in Line 7 and Line 6.
While the assignment for the MP-node objectives is straightforward, i.e., only valid samples for
explored nodes are assigned to the data sets, invalid samples may also be assigned even though
the related MP or constraint-factor has not yet been evaluated. The necessary condition for
a sample to be added to the dedicated data set is that at least one scalar component has to
be explored or visited. Due to the sequential procedure of the skill-graph, the mapping of the
last explored node vi to the dedicated data sets is deterministic and known beforehand. For
the factor graph representation, it is further possible to add artificial samples to the data set
if a conditional dependence exists. If a subsequent node contains scalar components that have
not yet been explored or visited, while other scalar components have been explored before a
failure is detected, artificial data can be added to the data set of said constraint GP. Thus,
the unexplored sample can be exchanged by drawing samples from a Sobol-sequence (Sobol’,
1967) or linearly distributed data. Using the adjacencies-matrices of the factor graph, the
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Algorithm 9.2: Overall BOC-algorithm

input : psafe, pfail, D, υ, κspl, ζspl, Neps

output: ξ̂
∗

1 Dv
F̌ J
← ∅ , Dv

F̌ g
← ∅ ∀v ∈ V . init data sets

2 for k = 1 to Neps do

3 ξspl ← FaquEIC,G(ξ,DG) . cf. Section 9.4.3

4 J splV , gspl, sspl, vi ← evaluate(ξspl) . evaluate sample

/* assign environment feedback to data sets */

5 for v ∈ V do

6 Dv
F̌ g
← AddConstraint

(
Dv
F̌ g

, gspl, sspl, vi

)
7 Dv

F̌ J
← AddObjective

(
Dv
F̌ J

,J splV , sspl, vi

)
8 F̌ J v

← ParameterFit

(
Dv
F̌ J

)
. fit objective-GP

/* apply Algorithm 9.1 for all constraints */

9 for k = 1 to |c| do

10 F̌ g i
← ConstraintFit

(
psafe, pfail,D, υ, κspl, ζspl

)
11 ξ̂

∗ ← arg min
ξ

∑
v∈V F̌ J

v
(ξv)F H

(
Γv
ξ(ξv) ≥ psafe

)
. get optimal parameter-guess

visited parameters can be obtained by diag
(
AGviAG

>
vi

)
≥ 1 for each MP and thus, for the

partially explored MP-graph as
∑vi

i=1 diag
(
AGviAG

>
vi

)
≥ 1. Similarly, the samples that can be

replaced by artificial samples are obtained asdiag
(
AGviAG

>
vi

)
−

vi∑
j=1

diag
(
AGvjAG

>
vj

) ≥ 1 . (9.24)

Before outlining an application example, we shortly outline the theoretical improvements of
our approach, i.e., the scaling w.r.t. size of the meta parameter space.

9.4.5 Complexity Analysis

In this section, we analyze the proposed method in terms of scaling w.r.t. size of the meta
parameter space. It has to be noted that we do not emphasize improving GP-scaling against
big-data, for which there is existing work (e.g., Ambikasaran et al. (2016)) available. For
brevity, we denote the dimension of the original learning problem as nξ , i.e., ξ ∈ Rnξ and
denote the largest dimension of all nodes within a graphical skill-formalism as mξ,G, i.e., ξi ∈
Rmξ,G .
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Definition 9.1: Valid MP-Graph

An MP-graph is a valid representation for (9.4), if the following constraints are given

• the graph has no absorbing nodes.

• there exists a finite path from the start- to the end-node

• the underlying objective can be represented by a convex composition of sub-
objectives

Definition 9.2: Feasible MP-Graph

An MP-graph is a feasible representation for (9.4), if the following constraints are given

• the meta parameter space for each node of the MP-graph is bounded by mξ,G < nξ

• the meta parameter space for all constraints is bounded by mξ,G < nξ

• the number of active constraints per node is bounded by |C|

Claim 9.1

Regressing a general robot task (9.1) as a stochastic representation (9.4) via GPs ac-

cording to Definition 9.2, the resulting complexity can be reduced from O
(
nξ

3
)

to

O
(

max(|C|, 1)|V|mξ,G3
)

by modeling the task as an MP-graph, using the Naive-Bayes

approach.

Proof. Recalling (9.16), the objective function of the algorithm scales linearly with the num-
bers of nodes within the graph. According to Definition 9.2, the meta parameter space of
each MP-node is bounded, thus

O(J ) = O
(
|V|mξ,G3

)
, (9.25)

This proves claim 9.1 if there are no success-constraints active, i.e., |C| = 0. In case there is
a success-constraint active, the upper bound of the complexity is defined by the complexity
of the success-probability as it may contain feasible and infeasible data-samples. For the
Naive-Bayes approach, |C| constraints have to be evaluated at |V| nodes via GPs, for which
the meta parameter space is bounded by mξ,G, thus resulting in an overall complexity of

O
(
|V||C|mξ,G3

)
.

Claim 9.2

Using the factor graph method and a task-representation as outlined in claim 9.1, the

complexity from O
(
nξ

3
)

can be reduced to O
(
|C|mξ,G3

)
if there are active constraints,

i.e., |C| ≥ 1.
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Proof. In contrast to the Naive-Bayes approach, the system complexity grows linearly w.r.t.
the number of constraints |C|. While the complexity follows (9.25), the success-probability for

|C| ≤ 1 and thus the overall system complexity results in O
(
|C|mξ,G3

)
.

Eventually, it has to be noted that adding artificial data adds data to the data sets of MP-
nodes or factors which decreases scaling behavior. Nonetheless, it has to be noted that adding
artificial data is not mandatory and intends to add support during early exploration when
data sets are usually small. Therefore, we omitted the possibility of adding artificial data in
the complexity analysis above.

9.5 Application Example - Screw Insertion

In this section, we outline an application example for the proposed manipulation learning
framework, that uses the proposed controller from Section 9.4.1: the insertion of a screwdriver
into a screw-head. Even though the environment suffers from high uncertainty, there exists
available pre-knowledge that can be incorporated to reduce the problem size and thus use a
skill-graph according to Section 9.4.2. While the previous sections have outlined the generic
modalities of our method, this section intends to present an application example, that is
eventually used to evaluate our approach. The main motivation of constructign a graphical
skill-formalism is the reduction of the actual search-space for the episodic RL task, i.e., the
dimension of the parameter-vector ξ. Therefore, we assume the following constraints to be
given:

• the screw is accessible by the robot end-effector, i.e., there exists a robot configuration
that does not result in a (self-)collision of the robot with any surrounding object when
the screwdriver is inserted. Furthermore, the robot configuration is singularity-free as
this would not allow using the underlying Cartesian robot controller reliably.

• in case the position of the screw-head is subject to uncertainty, the condition above
needs to be guaranteed for the full range of the uncertain region.3

• the robot is equipped with a screwdriver and the transformation from the screwdriver-
pin, i.e., control frame ct, to the robot end-effector, i.e., eeT ct is known.

• the type of screw matches the pin of the screwdriver of the robot.

Given these assumptions, motion planning or pose optimization against infeasible states or
collisions can be omitted in the following. Instead, the framework focuses on finding a correct
parameterization of the controller presented in Section 9.4.1. In approaches such as end-to-
end-learning the problem could be represented as an RL-problem, with sparse rewards that
penalize any constraint violations and add positive feedback for a successful task. While this
allows to learn such a skill from visual data on arbitrary robot platforms, first a supervised
learning method is required to classify task success or constraint violation, and infeasible
amount of data needs to be collected from experimental trial and error a supervised learning
method is required, which will violate feasible time-budgets. In contrast, directly applying

3This condition also includes, that a Cartesian path applied within this region will not result in a collision
of the robot or a singularity, since the actual control input is commanded directly in task- and not in
joint-space.
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Figure 9.4: Schematic screw insertion skill as an MP-graph. Each vertex shows the dedicated control-
direction, and thus the selection matrix from (9.14), where bold arrows represent force-control and thin
lines velocity control. Straight arrows in each MP denote translation w.r.t. axes ctex , ctey and ctez .
Circular arrows denote a rotation along the dedicated axis. Parametric nodes are highlighted by a
solid edge, while a bold edge denotes a hybrid control policy.

a GP-policy would result in extremely large data sets, which will in return affect the evaluation
or acquisition calculation. Thus, we propose to exploit the available expert knowledge and
construct a skill-graph formalism similar to Johannsmeier et al. (2019). First, the normal
vector n of the surface and the screw4 are approximately known from vision. Furthermore, we
assume that an expert has set the desired contact wrench-magnitudes beforehand. Similarly,
a designer has chosen a tilting angle for the robot end-effector to ease the contact tooling.

Given this, we outline the resulting skill-graph as visualized in Figure 9.4 from left to right. In
this skill-graph, we explicitly denote the output alphabet, i.e., the desired set-values per node
as well as the MP-parameters ξi. For the sake of brevity, only non-zero values are explicitly
mentioned, e.g., if not explicitly noted, all values of Svel

R and S frc
R are set to 0. The first

node v1 is non-parametric and describes the approach-MP, where the robot is asked to steer
the tip of the tool and hover above the surface. As obtaining a suitable trajectory is beyond
the scope of the presented method, we refer e.g., to Bari et al. (2021) for further insights. The
success of this node, thus advancing the graph to v2 is evaluated via

Csuc
v1

:= ‖xdes − xcur‖2 ≤ ζpos . (9.26)

The second node v2 – approach-surface – contains the first parametric node and describes the
motion of the robot towards the surface until contact with the environment is established.
Thus, a constant velocity along the negative surface-normal is applied, such that the set-values

4We set these normal-vectors as constant within this evaluation, but it is possible to update the normal-vectors
online if needed.

142



9.5 Application Example - Screw Insertion

for the robot-controller for this node are given as

X des =
{
ẋdes ← −sposvmaxn

}
ξ2 = spos

S frc
R = diag(0, 0, 1, 0, 0, 0)

. (9.27)

The success of this MP is given as an established contact with the environment, which is
defined as

Csuc
v2

:= µF > σF , (9.28)

where the variance σF denotes the approximated sensor-noise and µF the filtered force-torque

(FT)-sensor readings over a sliding window of fixed size NFT. This node further checks against
the maximum allowed contact force F max

Cerr
v2

:=
∣∣∣µF − σF ∣∣∣ ≥ |F max| , (9.29)

to raise a failure of the skill. The subsequent node v3 – force correction – corrects the
encountered force-impulse stemming from the contact at the end of the previous MP. Thus,
the controller switches from the feed-forward velocity command to force-control along the
normal-vector of the surface:

X des =

{
F des ← −F desn, [K

frc
P ](z)

}
ξ3 = [Kfrc

P ](z)

S
R
F des

= diag(0, 0, 1, 0, 0, 0)

. (9.30)

The success of this MP is evaluated by the accumulated force-error for a fixed window-size
Ncont:

Csuc
v3

:=

Ncont∑
i=1

(
F f

cur,t−1
− F des

)
n ≤ ζF , (9.31)

using only the force-measurement F f
cur of the wrench F . The error-constraint also checks

against the force-threshold in (9.29), but also evaluates

Cerr
v3

:= Cerr
v2
∧
(
µF − σF

)> [
n, 03

]
≥ 0.0 , (9.32)

to detect contact-loss with the environment as an error-constraint. During the next node v4 –
surface search – the robot steers along the surface of the object in order to detect the screw.
This implies a hybrid force-velocity profile, where the robot seeks to regulate the normal force
with the surface while following a velocity profile along the surface. Using a parameterized
velocity profile ẋdes,κxy

, the output of v4 is given as

X des =

{
ẋdes ← ẋdes,κxy

,F des ← −F desn, [K
frc
P ](z)

}
ξ4 =

{
κxy, [K

frc
P ](z)

}
S
R
xdes

= diag(1, 1, 0, 0, 0, 0)

S
R
F des

= diag(0, 0, 1, 0, 0, 0)

. (9.33)
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The success of this MP is evaluated via the force impulse encountered in the current motion
direction, i.e.,

ẋcur

‖ẋcur‖2

and the perpendicular torque.

Csuc
v4

:=

∣∣∣∣F f
cur

ẋcur

‖ẋcur‖2

∣∣∣∣+

∣∣∣∣F τ
cur

(
n × ẋcur

‖ẋcur‖2

)∣∣∣∣ ≥ ζ impls . (9.34)

For the error-constraint, this node applies (9.29), (9.32) and also checks against the robot
position

Cerr
v4

:= Cerr
v2
∧ Cerr

v3
∧
∥∥pcur − pv3

∥∥
2
≥ ζdspl , (9.35)

where pcur denotes the translational component of the tool-tip of the robot, while pv3
repre-

sents the tool-tip position at the end of node v3. The node v5 – alignment – is non-parametric
and optional. It denotes the alignment of the tool-tip to be perpendicular to the surface. Thus,
if the initial tilting angle is set to zero, this step is omitted. The success-constraint is identical
to v1, but the translation component is ignored. The final node v6 – insert – describes the
insertion MP, that applies a Cartesian wrench control. Thus, the MP is defined as

X des =

{
F des ← −F desn,diag

(
[Kfrc

P ](xy), [K
frc
P ](xy), [K

frc
P ](z), 0, 0, [K

frc
P ](ψ),

)}
ξ6 =

{
[Kfrc

P ](xy), [K
frc
P ](z), [K

frc
P ](ψ)

}
S
R
F des

= diag(1, 1, 1, 0, 0, 1)

. (9.36)

While the error-constraint is identical to v3 – i.e., Cerr
v6

:= Cerr
v3

– the success-constraint is
checked via comparing the displacement along the normal-vector

Csuc
v6

:=
∥∥(pcur − pv5

)(
13 − n

)∥∥
2
≥ ζdspl∧

((pcur − pv5
)n)>((pcur − pv5

)n) ≥ ζ insrt,min∧
((pcur − pv5

)n)>((pcur − pv5
)n) ≤ ζ insrt,max

, (9.37)

where pv5
again denotes the tool-tip position when the current node is initiated.

Having introduced the general MP-graph, we now outline how the success-constraint of the
overall skill can be derived as a factor graph for the outlined skill-graph. First, the Naive-Bayes
approach retrieves the success-constraint as the joint probability of

ΛVξ =
∏

i={2,3,4,6}

Γv
ξ(ξi) . (9.38)

This results in the factor graph from Figure 9.5a. For the factor graph representation, the
actual parameter-vector needs to be decomposed into the scalar components to obtain the
underlying factors. Thus, this strongly depends on the actual parameterization of v4 and
v6. As both nodes v2 and v3 are scalar parameters, we evaluate the presented approach by
introducing two further simplifications:

• the search pattern on the surface of the object is restricted to a constant velocity, where
the direction is set by an expert, while only the velocity needs to be adjusted to prevent
the robot to miss the screw. Thus, we replace κxy ← spos.

• for the force-controller the proportional gain is set equally for all translational compo-
nents x, y, z.
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Γv
ξ2

Γv
ξ3

Γv
ξ4

Γv
ξ6

ξ2 = spos ξ3 = [Kfrc
P ](z) ξ4 ξ6

(a) Naive-Bayes factor graph representation

Γv
ξ2

Γv
ξ3

Γv
ξ4

Γv
ξ6

spos [Kfrc
P ](xyz) [Kfrc

P ](ψ)

(b) Factor graph representation exploiting available task knowledge

Figure 9.5: Representation of the success probability of the unscrewing skill as factor graphs. In here,
the Naive-Bayes approach is also highlighted as a factor graph, while the actual factor graph exploits
available task knowledge to introduced conditional dependence and independence in the regression
problem that allows to add samples efficiently during learning.

As a result, the overall success-probability results in the factor graph from Figure 9.5b. The
according adjacency-matrices are then given as

AGv2 :=

1 0 0 0
0 0 0 0
0 0 0 0

 AGv3 :=

1 0 0 0
0 1 0 0
0 0 0 0


AGv4 :=

1 0 1 0
0 1 1 0
0 0 0 0

 AGv6 :=

0 0 0 0
0 1 0 1
0 0 0 1

 . (9.39)

Recalling Section 9.4.4, the graph-structure needs to be respected when assigning samples.
Failed trials at v2 can be added to the failure of v2 and v4, while failures at v3 and forward
can be added to all nodes. In addition, the factor graph from Figure 9.5b. allows to create
artificial data-samples for [Kfrc

P ](xyz) in Γv
ξ4

if a failure at v2 is detected and similarly to

generate samples for [Kfrc
P ](ψ) in Γv

ξ6
if a failure for v3 or v4 is encountered. Eventually,

the RL-problem for the unscrewing task results in regressing the parameter-vector ξ ∈ R3, as
well as ξ4 ∈ R2 and ξ6 ∈ R2 for the Naive-Bayes approach. Using the bounds from Table 9.1 a
normalized parameter-vector ξ 7→ [0, 1]3 can be incrementally evaluated using the acquisition
functions from Section 9.4.3 and existing work. We continue with comparing the improvements
of our method against existing work in the next section.
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9.6 Experimental Results

Given the exemplary MP-graph for the unscrewing task from Figure 9.4, a suitable controller
parameterization is regressed from data by setting the objective J as the negative overall
runtime. A parameterization is set as successful, if the full graph has been executed without
raising an error-flag. In addition, each node can be repeated up to five times in case a timeout
is encountered. The set-values chosen by a designer in our experimental recordings are listed
in Table 9.2, where the insertion force is set higher than the environment contact force to
enforce an insertion into the screw-head. In order to arrange for a fair comparison over the
presented algorithms, the start pose has been chosen identically for all algorithms and the
search-direction is set to the static straight line on the object surface as shown in Figure 9.4.
Similarly, the tilting angle is chosen to 2° for all approaches and is tilted perpendicular to
the motion direction along the object surface. Further, the constraint-thresholds are set to
ζpos = 0.1 mm in translation and ζrot = 0.1 rad in rotation. The variance of the FT-sensor has
been obtained before running the experiment from collected sensor-data and evaluated to 0.3 N
for the force-measurements and 0.2 N/m for the Cartesian torque-measurements. The window-
size NFT to evaluate the sensor-readings has been chosen to 50 using a reading-rate of 170 Hz.
Unfortunately, the presented force-controller from Section 9.4.1 suffers from noisy sensor-data
and thus misses a proper damping term that could stabilize an aggressive proportional gain
controller. To diminish the sensitivity to unstable controller behavior, an explored sample is
set to failed if the standard-deviation of the observed force signal during contact is above 2.5 N
using a sliding window of 1 s, with a sampling rate of 50 Hz, i.e., Ncont = 50 and ζF = 0.25 N.
In order to detect a contact-impulse during planar search, we set ζ impls = 5.0 N and allowed
a maximum search range of ζdspl = 25.0 mm. For the GP-models, we assumed a zero-mean

prior and used a Matern-Kernel 5
2 assuming a prior Gamma-distribution with concentration

of 3 and a rate of 6 for the length-scale and a concentration of 2 and a rate of 0.15 for
the variance of the kernel. For the related work, we initialized their models according to
their manuscripts (Englert and Toussaint, 2016, Marco et al., 2021). In order to allow for a
fair comparison of the proposed algorithms and existing work, a grid-search was recorded to
collect empirical evidence data-base and mapped to a normalized hyper-cube of ξ given the
parameter-bounds from Table 9.1.

Given this, each algorithm was run 25 times using Neps = 60 iteration-steps for each run. In
each run new samples were added to the dedicated data sets and the current optimum guess is
stored at each step. Using the collected empirical evidence as ground-truth, the best empirical

sample ξ∗ =
[
0.421 0.316 0.495

]>
is used to calculate the regret regret = J

(
ξ̂
∗)−J ?.

The averaged regrets over 25 trials per method are plotted in Figure 9.6, where the shaded area
highlights the CI of 70 %. The presented data underlines that our graphical representations

Parameter lower bound upper bound

‖ẋ‖2(spos) 1 mm/s 20 mm/s

[Kfrc
P ]({xyz}) 1e-5 1e-3

[Kfrc
P ](ψ) 1e-5 1e-3

Table 9.1: This table summarizes the unknown controller-parameters for the unscrewing skill given
the presented controller from Section 9.4.1.
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Figure 9.6: Regret evolution of the experimental screw-insertion task over the number of trials. The
data is averaged over 25 runs per algorithm, with the shaded areas denoting a confidence-interval (CI)
of 70 %.

allow acquiring feasible data distinctly faster compared to GPCR and PIBU. This improved
learning performance mainly stems from the decreased meta parameter space and the ability
to collect evidence of the individual factors rather than learning the full task.

This is further underlined by the evolution of successful samples that are collected by the
algorithms as visualized in Figure 9.7. Again, a CI of 70 % is added over the averaged temporal
evolution of the successful samples. It also has to be noted that this number is only increased
if all nodes of the proposed graphical structures receive a successful sample, i.e., the overall
exploration sample returns a successful sample. In this experiment, the Naive-Bayes approach
is able to collect new successful samples earlier than the factor graph version. Nonetheless,
the difference diminishes by the end of the 60 trials and the evolution of successful samples
equals out for both graphical approaches. Within our experimental evaluations, the GPCR-
method suffered from numerical instability after latest 60 iterations, while our approaches
were able to evaluate further trials. As samples above 60 do not allow for a fair comparison,
we omit the continuation of the plots. Still, we ran extended simulations for the proposed
graphical methods with 80 steps, and the evolution of the successful samples converged to
similar values for the final trial-episodes. While Figure 9.6, denotes the performance of the
evaluated methods, Figure 9.7. denotes how many safe samples are explored. Nonetheless,
Figure 9.6, only contains valid evaluations of the MPs or the tasks, as even if only a single MP
fails, the regret would return an infinite value. In order to compare our algorithms in terms of
safety awareness, the rates of estimating a valid optimal sample are listed for each algorithm
in Table 9.3. As it can be seen, the pure GP-classification within PIBU outperforms the
remaining methods distinctly. This effect mainly stems from the structure of the task, where
the approaching speed scaling is linearly increasing the objective, while the constraint is given

Parameter
∥∥∥F des,cont

∥∥∥
2

∥∥∥F des,insrt

∥∥∥
2

n
ẋdes

‖ẋdes‖2
Value 10.0 N 30.0 N

[
0 0 1

]> [
−0.71 0.71 0

]>
Table 9.2: Predefined parameters for the unscrewing skill. The value for

ẋ
des

‖ẋdes‖2
denotes the motion

direction that is to be followed during the search on the surface of this object.
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Figure 9.7: Number of safe samples for the experimental screw-insertion task over the number of
trials. The data is averaged over 25 runs per algorithm, with the shaded areas denoting a CI of 70 %.

as a strict upper threshold, that also represents the optimal value. With only a handful
samples, estimating the constraint rather than the classification labels remains numerically
challenging.

In contrast, the application of a pure classification GP may also be overly conservative and
being only provided with a small number of successful samples, the classification may not be
capable of returning a useful solution for the task to be learned. Besides receiving a distinctly
smaller regret, our approaches also converge closer to the actual optimum parameter samples.
This is visualized by the temporal evolution of the estimated optimal parameter samples
in Figure 9.8, where the shaded areas again denote a CI of 70 %. In contrast to related work,
our approaches quickly converge to a solution for ξ1 and ξ2, while ξ3 is only slowly converging
towards the optimal value. This delay stems from ξ3 being conditionally dependent on the
performance of the remaining data-samples. Even though the estimation of ξ3 also suffers
from higher variance compared to related work, our approaches distinctly outperform the
related work in this aspect. This underlines that our approaches do not result in suitable
parameter-estimation by chance but due to efficient data-acquisition.

Discussion

Having collected the experimental data, our approaches outperform existing work in terms of
data-efficiency and allows to obtain suitable results from only a handful of samples. Further-
more, our approaches apply standard GPs on smaller meta parameter spaces. Even though
our regression method requires multiple parameter fit for multiple nodes, each GP is condi-
tionally independent by definition within a factor graph. This allows for full parallelization,
even though we evaluated our method in a purely sequential manner.

GPCR PIBU Naive-Bayes Factor Graph

success-probabilities (in %) 29.1 53.7 29.7 23.6

Table 9.3: Rate of estimating a correct optimal sample. The best performing, i.e., highest success-
percentage is highlighted in bold.
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Figure 9.8: Temporal evolution of the estimated optimum parameter value, where the dashed lines
denote the upper bound for the parameter, while the lower dashed line in the bottom plot denotes the
dedicated lower bound. Shaded areas denote the CI of 70 %. The optimal values to be regressed from

data are ξ∗ =
[
0.421 0.316 0.495

]>
.

Nonetheless, the presented results also highlighted a particular downside of our method, which
is exposed by the small chance of drawing successful samples. While our method outperformed
existing work in drawing successful samples during exploration, this effect can be neglected
during exploitation. If the current estimate is to be applied on safety-critical applications,
the provided success-rate needs to be improved. While it has to be noted that neither GPCR
nor a classification GP can provide a safety-guarantee when drawing success-estimate, the
combination of our method with one of the formers allows to alleviate this issue. Thus, the
overall graph-success probability can be replaced by a product of experts, where the experts
are given as the individual success-models. Another possible solution is given by using a
negative prior mean similar to PIBU in the constraint-GP and evaluating the constraint-
metric by shifting the probability of the posterior. Using this, the search of the optimal value
is constrained to a tightened set of the parameter-space, which automatically results in an
increased probability to draw a correct sample.

Eventually, it has to be mentioned that the presented problem on regressing ξ1 is a special
case, while in general cases, where the optimum value is not in the near distance of the
success-constraint, our method reliably converges to the correct parameter-guess. Given the
overall improvements of our method that is evident in the collected experimental data and
the overall framework, it can be summarized, that our method improves existing methods on
regressing task-parameters for autonomous robots in a constraint-aware manner. Referring to
the ability of converging to correct values within a reasonable time and amount of data, make
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our application a reasonable method to be applied on future robot platforms and manipulation
tasks.

Finally, the question of whether either our factor graph or the Naive-Bayes approach is fa-
vorable needs discussion. Referring to the overall results, the performance of both methods
is comparably similar. This mainly stems from the fact that the first parameter and thus
the first sample is the most critical evaluation parameter of the task to be learned. As this
node is conditionally independent of the last parameter, the benefit of generating artificial
data-samples can only be applied rarely. Nonetheless, the preferable major advantage of the
factor graph is given by the ability to apply it to arbitrary tasks, and allows to regress con-
straints that have a different input-space than the current objective node. Given that both
approaches obtained almost identical performance results, the factor graph method forms the
generic representation and preferable method, whereas the Naive-Bayes version stands out by
its simplicity and simple adjustment to alternative models.

9.7 Conclusion

In this chapter we proposed an episodic RL-scheme that uses BOC to account for unsafe ex-
ploration samples during learning. In order to apply the proposed scheme online, we further
outlined a suitable control architecture for an industrial robot platform that uses a Carte-
sian displacement control interface at a comparably low update rate. The hybrid controller
interface is well suited to apply selective control-strategies along individual axes, which can
then be embedded into a graphical skill-formalism from previous work to reduce the required
parameter-space for the task to be learned.

In contrast to existing work, we further claimed that it is beneficial to not only exploit available
task-knowledge to decrease the parameter- or search-space for the current task, but also to
incorporate task-knowledge on regressing the failure constraints. For this reason, we proposed
a graphical skill-formalism for the overall success-probability as factor graphs. Here, we
proposed a pure Naive-Bayes method that regresses the failure of the overall task as the joint
probability of each node failing for a given sample. While this method improves the overall
sampling, it may hinder assigning failed samples to subsequent nodes, even though conditional
dependencies are well known beforehand. Thus, we further proposed to incorporate these
relations into a graphical skill-formalism for the success-probability, and thus improve scaling
behavior to eventually regress feasible samples. In addition, we proposed suitable acquisition
functions for the individual representations and proposed a novel conservative acquisition
method.

Finally, we outlined an application example for the proposed method as the screw insertion
task for an industrial robot, where the exact goal-pose is unknown and the controller param-
eterization of our proposed controller needs to be regressed from data.

Given the outlined screw insertion task, we compared our approaches against existing state-of-
the-art methods for BOC-based RL using an industrial robot manipulator in a lab-environment.
Given the collected experimental data, our method distinctly outperformed the state-of-the-
art in performance, which we have evaluated by the collected objective regret. Furthermore,
our method required distinctly smaller amount of data-samples and thus learning time and
steps compared to existing work. These results underline that it is preferable to not only
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incorporate available task-knowledge for the objective but also the constraints of robotic ma-
nipulation tasks during learning whenever possible in order to decrease the number of samples
needed.

Future Work

Building upon the data collected and the presented method, a promising path for future
research projects lies in combining our method with visual feedback. This may further allow
defining robust success- and error-constraints, as for example missing the screw-head or hole
remains unreliable solely from FT-data; especially if a constant velocity vector results in a
robot missing the screw-head completely. If such feedback is obtained, the presented method
would strongly benefit in learning advanced motion policies, i.e., comparing different search
patterns, e.g., spirals or straight-line patterns. Nonetheless, regressing the optimal search
pattern usually is preferably solved by visual servoing. In these scenarios, the interaction
does not rely on accurate FT-data and feedback control. Thus, this allows to collect data
within simulated environments and to apply recent results from machine learning, especially
meta-RL.

Eventually, future research should evaluate the possibility of self-evaluating models, i.e., ar-
tificial agents should be aware that some of the imposed model-knowledge may be subject to
false design. Thus, another line of research is given by designing new methods that allow not
only to exploit available task knowledge but also to evaluate the accuracy and discrepancy of
the assumed model against the empirical evidence.
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10
Conclusion

This thesis has aimed to investigate the challenge for autonomous robots to cope with the
stochasticity of the environment for real-world applications. Handling uncertainties and de-
creasing knowledge gaps is a key-challenge to bridge findings from well-defined lab-environments
towards practical applications, where the perception of the environment often is subject to
faulty sensors or missing model knowledge. As the sources of uncertainty for complex systems
such as robotic applications are beyond the scope of a single thesis and may remain an open
research field for many decades, this thesis has specifically focused on selected, yet utmost im-
portant, sub-areas of these challenges. In particular, a major emphasis was set on interacting
with humans in the close – yet well-defined – distance in the context of industrial assembly,
the interaction with autonomous agents and eventually manipulation tasks within unknown
or only partially defined environments.

10.1 Interactive Action-Selection within
Human-Robot Collaboration

In the first part of this thesis, we have evaluated the aspect of human behavior models and
interactive decision making in human-robot collaboration (HRC), where a team of one robot
and one human are required to perform a joint task. In here, we have evaluated the question
How can robots estimate and track human suboptimal behavior within HRC? by proposing
a mixed observability Markov-model that allows to depict the HRC-scenario as a collection
of fully observable representations by means of Markov decision processes (MDPs) given a
discretized realization of the partially observable states of the environment. Specifically, the
not observable state depicts the human belief of the joint task, as an exemplary use-case for the
suboptimal human behavior. Nonetheless, the presented method is not limited to this specific
use-case, as alternative human states such as trust or fatigue are directly applicable in the
presented framework. Similarly, we proposed to directly track suboptimal human behavior
into a human-robot decision making framework in our conceptual HRC task and motion
planning-framework. Given the collected experimental data, our methods allow robots to
account for suboptimal human behavior and thus to improve the decision-making online.

Besides evaluating the concept of human suboptimal behavior, we further evaluated the re-
search question How can mutually interactive game-theory be applied for autonomous decision-
making on robotic systems within HRC?. Specifically, we proposed to use normal form games
to model the action assignments in joint HRC-tasks. We have evaluated the efficiency and
increased performance of the presented method on exemplary human-robot pick-and-place
tasks within a lab environment. While this method can be straight-forwardly extended to
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arbitrary tasks, a major downside is given by the poor scaling of normal-form games to long-
term decision making, i.e., planning problems. In general tasks, the decision horizon requires
to evaluate more steps than solely a single step. Thus, we further outlined how our method
can be extended to a generic Markov game (MG), which allows for long-term decisions under
uncertainty and extending the concept of MDPs to the multi-agent domain.

As MGs suffer from poor scaling and do not allow to control the human policy, we outlined
how an approximated solution of the interactive HRC-MG can be obtained. We propose to
solve this by directly answering the third research question of this part, i.e., How can robots
account for incorrect models during the interaction with humans? Consequently, our concept
incorporates the idea of a mixed observable state-representation to model the interactive MG
as a collection of local MDPs that tracks human rationality as a metric on the model accuracy
of the human counterpart. Thus, the direct incorporation and discretization of the human
rationality represents a different evolution, i.e., state-transition for the MG, which can be
approximated by a local MDP instead of solving the full MG.

Summarizing the individual findings of this part of the thesis, our methods improve human
behavior models as well as the interactive decision-making of robots within HRC, and allow
for future applications of robots in a close distance of humans. Directly incorporating safety
aspects such as collision avoidance in the decision-making allows robots to improve the inter-
action safety. This is of utter importance to allow robot applications without the necessity of
safety fences such as cages or light-barriers.

10.2 Learning Behavior-Policies in Groups of Artificial Agents

In the second part of this thesis, we have focused on the research field of multi-agent systems,
specifically the area of multi-agent reinforcement learning (MARL). Specifically, we investi-
gated the research question: How can reinforcement learning (RL) of multi-agent systems be
embedded into a hierarchical framework without relying on overly restrictive assumptions such
as fully synchronous decisions and centralized learning? Thus, we proposed a novel decen-
tralized MARL-framework that embeds methods from game-theory and multi-robot systems.
This model allows to decentralize the interaction of the agents within MARL, while still
accounting for the behavior or other agents by modeling each agent as a best-response (br)-
policy, which eventually converges to a Stackelberg-equilibrium. Furthermore, our approach
explicitly differentiates between joint task rewards and native – or agent-specific – cost-terms.
Finally, we proposed a novel hierarchical MARL-approach, that builds upon the presented
method in order to provide a valid answer to our first research question.

Recalling our second research question: How can the effect of hierarchical performance be
evaluated against joint task performance?, the hierarchical concept directly exploits the ability
of our br-policy-based approach on differentiating between native costs and interactive task-
rewards. Namely within a hierarchical context, each agent is able to explicitly differentiate
between hierarchical – or artificial – sub-goals and the current interactive task reward.

Eventually, our hierarchical MARL-concept also introduces factored observations for each
agent. The main idea is to directly distinguish between internal agent-states and external
observations. This allows to directly distinguish between internal – most often known – agent
dynamics and external – mostly unknown – environment dynamics. This part of the thesis
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only closes with a theoretical concept on how to answer our last research question: How can
basic model-knowledge about the individual agent-dynamics be embedded into model-free MARL
without adding overly restrictive model and system assumptions?, Nonetheless, we present a
collection of possible extensions of our proposed methods, that bare great potential to answer
the stated research question within future work.

Given the empirical comparison of our br-based MARL approach against recent state-of-the-
art MARL-algorithms, it can be summarized that this thesis has presented valid answers to
the first and second research question of this part. Furthermore, the provided MARL-concept
serves as a valuable basis to tackle the remaining open research question(s). While a full
summary of future research will close this chapter and thesis, we proceed with a summary of
the research questions in Part III.

10.3 Advanced Manipulation Tasks with Unknown Objects

In the last part of this thesis, we have evaluated three individual research questions, that have
been motivated from actual robotic manipulation skills, that have not yet been achievable for
a robotic system by the beginning of this thesis. Given the collected results and methods, our
work extends the skill-set and performance of robots in unknown environments and allows for
future applications. In contrast to most common approaches, our methods are applicable to
industrial robots, which are already broadly established in production plants, thus opening
the door for advanced factory plants, where new tasks can be established faster while also
allowing for uncertainties in the perception of the robot surroundings.

The first research question analyzed in this part of the thesis was framed as: How can robots
refine their model knowledge about the characteristics of unknown objects if there is no vision
data or insufficient vision data available? In order to accomplish this research question, we
proposed a novel state-estimation framework, that applies concepts from Bayesian filter-theory
and thus allows a robot to regress not only the structure but also the material characteristics of
the unknown object from haptic sensor data. Specifically, our framework uses an incremental
Bayesian-filter that uses a prediction and correction update step to update the current esti-
mation of the geometric shape of the object, while also using unsupervised machine-learning
methods to cluster the obtained data measurements into dedicated groups of material types.
Given these clusters, a robot eventually is able to estimate the material characteristics of each
cluster to identify the underlying physical properties. This novel concept has been evaluated
in a simulation environment, where the material stiffness has been chosen as the distinct
material parameter. The collected data outlined the capability of our presented method on
regressing the shape of an object while also differentiating between different material types.
This allows robots to refine the received object knowledge when visual data may suffer from
imprecision or may not be accessible at all, which provides a usable answer to the stated re-
search question and thus opens the door for future robotic applications in handling unknown
devices.

Furthermore, we have evaluated the research question: How can industrial robots execute sen-
sitive grasping skills if neither the robot hardware provides compliant control interfaces nor
a force-torque (FT)-sensor is available to account for undesired interaction wrenches? For
this, we proposed a novel grasping controller, that allows for an application on industrial
robot platforms while still providing the ability to compliantly grasp objects. Specifically
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we propose a novel alignment error estimator, that uses the haptic sensor feedback of digital
sensor arrays (DSAs), that are equipped on the gripper fingers. Using this alignment error,
a hybrid controller is outlined that allows to command hybrid grasping strategies by either
following a model predictive control (MPC)-based velocity signal or to apply a Cartesian
wrench-controller to diminish the interaction wrenches. We empirically evaluated the pre-
sented grasping strategies in their pure forms as well as hybrid combinations of the former
and the latter against a pure compliant robot control. The presented controller allows to
attenuate the individual control policies along selective axes depending on the current estima-
tion error, thus distinctly improving the final pose error and therefore the overall success-rate
compared to the baseline method. In summary, our presented grasping controllers provide a
realistic and suitable answer to the stated research question and thus provide the basis for
future compliant grasping tasks for (industrial) robots.

Eventually, this part of the thesis evaluated a third research question: How can industrial
robots efficiently learn compliant manipulation tasks within a reasonable time, i.e., only from
a handful of experimental trials? This question imposes the challenge of designing a suitable
controller for an industrial robot, imposing an additional constraint on not allowing to com-
mand the joint-position or -velocities at suitable update rates. Thus, this thesis proposed a
hybrid Cartesian velocity-force controller that is applicable to compliant manipulation tasks.
Further, we outlined how the hybrid nature of the presented controller is well suited to di-
rectly impose a graphical representation of the manipulation skill from existing work, that
explicitly incorporates available task knowledge. In contrast to existing work, where the
emphasis was laid upon decreasing the parameter-space of the objective to be learned, our
method proposes to extend this graphical formalism on also regressing the task-constraints,
i.e., the feasible parameter-space. Besides proposing two novel graphical skill-formalism for
the success estimation of the manipulation task, we also proposed suitable Bayesian optimiza-
tion with unknown constraints (BOC)-models and acquisition functions, that allow to regress
the optimal task parameters within reasonable time given only a small number of evaluation
samples. We eventually introduced an application example that we also used to evaluate
the advances of our proposed method against existing work: the insertion of a screwdriver
in the screwhead. In here, we emphasized on regressing the optimal controller parameter-
ization while considering interaction wrench constraints. Our presented methods distinctly
outperformed existing work in terms of the number of samples that are required to obtain
feasible results, while also obtaining a distinctly improved regret and number of safe samples
during exploration. Given the collected data, the presented method is well suited to allow the
application of (industrial) robots on unknown manipulation tasks that may require the robot
to act compliantly. Overall, the presented method forms a useful and promising answer to
the stated research question and thus allows to further extend the application of (industrial)
robots for unknown manipulation tasks.

10.4 Recommendations for Future Research

Even though the presented work contains a collection of improvements and allow for novel
applications of robot systems, there are still limitations and open questions that require future
research.
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10.4 Recommendations for Future Research

In the aspect of HRC, the proposed concept from Chapter 5 requires proper empirical valida-
tion as well as the development of a suitable motion-planner that allows for the proposed
interaction-framework. In here, the concept proposed by Osa (2020) contains a promis-
ing concept as it allows to extract multiple solutions for a single optimization task. Their
method would also allow to regress multiple policies if the goal-pose contains free-parameters.
Nonetheless, their current motion planner suffers from slow convergence, such that incorpo-
rating their concepts in faster motion planners, e.g., (Bari et al., 2021, Mukadam et al., 2018).
Alternatively, sampling based methods usually allow to reuse the graph-structure to recover
alternative solutions quickly, such that methods as in Englert et al. (2021) may also serve as
a good start.

While game-theory has found already broad application in autonomous driving, the most
prominent line of research lies in machine learning, where concepts such as (Bai et al., 2019,
Geiger and Straehle, 2021, Ling et al., 2018) already proposed ideas on how artificial agents can
autonomously learn not only a policy but equilibria and thus directly encode game-dynamics
in the learning framework. In order to diminish the reliance on autonomous planning, and
thus rely on poor scaling for certain applications, the incorporation of these recent findings
within applications such as autonomous driving or interactive HRC might improve the current
state-of-the-art in said application areas.

In the context of MARL, research progress has reached an incredible production speed, such
that the proposed extensions below may already be outdated. Nonetheless, we briefly sketch
further lines of research in the context of MARL that are worth further investigation:

• meta-RL. In the context of meta-learning (Frans et al., 2018), advances from simula-
tion allows to be applied on physical platforms by regressing suitable representation-
similarities between the simulated and real environment observations. This area is a
promising line of research and by its nature closely related to the hierarchical frame-
work presented in this thesis. In here, a promising field of research lies in incorporating
constraints and safety metrics, which is a crucial aspect for real-world robotic applica-
tions.

• inverse cost and reward learning. In the context of MARL and RL, an alternative to
learning a policy directly is the idea of learning a convex objective that not only allows
to represent the task to be learned but also to apply differentiable controllers, such
as MPC or optimal control for the online execution. Thus a promising line of research
is to extend concepts such as Englert and Toussaint (2016) on the MARL-domain.

• combining data-driven controllers with deep-RL. Recently, data-driven control
methods (Bevanda et al., 2021, Kerz et al., 2021) have resulted in impressive results.
As their methods are well suited to cope for the unknown system-dynamics of MARL,
the extension of these methods to multi-agent-systems for either distributed control or
even as a combination of model-free and model-based RL is an interesting and promising
research path, that may eventually allow for improved scalability, while also guaranteeing
safe execution.

• impose robot controllers into hierarchical-MARL. The most promising line of re-
search of the presented method from Chapter 6 is closely related to the previous bullet-
point. Namely, the direct incorporation of model-knowledge into hierarchical reinforce-
ment learning, especially within multi-agent systems. In contrast to most approaches
from control-theory, future research needs to investigate conceptual approaches that
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10 Conclusion

only impose minor system-assumptions and constraints, e.g., only assume knowledge
about the internal agent dynamics. Still, results from single-agent RL has outlined how
advanced robot behavior can be extracted by composing policies from multiple low-level
controllers (Saxena et al., 2021, Sharma et al., 2020). On the other hand, a controller
may also provide suitable priors to achieve suitable results faster (Rana et al., 2021).

• limit RL policies to regions of need. Eventually, findings from safe-learning (Zhou
et al., 2021) bear great potential to improve (hierarchical) MARL. In contrast to only
identifying safe regions, it is also of interest to directly classify the regions of the state-
space, in which the existing model knowledge is insufficient, i.e., where RL is actually
needed.

• evaluate the applicability of end-to-end differentiable models. In order to
profit from powerful tools such as MPC and optimal control, the investigation of apply-
ing end-to-end differentiable MPC (Amos et al., 2018) bears great potential for future
research within the MARL-domain and beyond. Especially within multi-agent systems,
the (response-)behavior of other agents is best to be represented by deep neural net-
work. In order to exploit the full capabilities of optimization, future research needs to
investigate suitable solutions to apply e.g., MPC on such complex models in real time.

• incorporate stabilizing feedback-control in MARL: similarly to the above, inves-
tigating the possibility of embedding stabilizing feedback-controllers into data-driven
MARL-problem forms an interesting line of research, where a hierarchical framework
may profit from finding stable control-funnels during learning (Ames and Konidaris,
2019, Reist et al., 2016, Tedrake et al., 2010).

Given our presented results on haptic object identification, the presented methods need to
be applied and further elaborated on a physical platform to account for noisy sensor-output.
In here, it is important to apply a suitable controller, that allows to explicitly compensate
for interaction wrenches. A promising line of extensive research thus might be given by
combining adaptive controllers such as Li et al. (2018c) with a prior on the surface materials,
to directly account for the model-mismatch, which can be embedded in an extended Bayes-
Filter. Furthermore, incorporating recent findings of haptic-rendering (Mercado et al., 2021)
into such controllers is a promising field of research, that is worth to investigate. Eventually,
the usage of additional sensors and evaluation of multiple features during the classification is
of utter importance in order to obtain robust material classification, cf. Strese (2021).

In the aspect of adaptive grasping, the currently presented method only has access to the DSA
or FT-sensor-readings. This achieves useful results but may eventually profit from directly
extending the findings by data-driven grasping methods, that directly use vision data or depth
information. Future research should thus investigate the possibility of adding the obtained
sensor-readings into existing grasping pose detector methods to account for repositioning
online. In here, a major challenge is given by designing a suitable and precise physics engine
that simulates the behavior of DSAs-readings, to train the combined models by concepts
such as meta-RL (Frans et al., 2018). Alternatively, the behavior of the DSAs-sensors may
be regressed from data-recordings first, starting from existing physical interaction learning
work (de Avila Belbute-Peres et al., 2018). Eventually, the selection of control-strategies
may be extended by alternative control strategies, especially if the robot platform allows for
advanced controllers. In here, the concept of selecting control-strategies from data-exploration
is an interesting line of research, as for example proposed by Sharma et al. (2020).
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10.4 Recommendations for Future Research

Regarding the aspect of learning manipulation tasks from collected empirical data, the pre-
sented method is error-prone in the actual detection and classification of successful or failed
trials. Thus, future research should investigate the possibility of improving the system against
false-positive or false-negatives. Partially related to this, the concept of handling concurrent
data collection needs further investigation. This requires to allow robots to distinguish be-
tween useful and less useful data-evidence. Starting from work such as Umlauft et al. (2020)
may thus improve the proposed methods.

Having collected the various line of research projects that may follow this thesis, we want
to point to available open-software modules – further modules are listed in Appendix A and
Appendix B – that may ease the progress of future research projects1. Even though the
list may lack in completion, there exists useful simulation benchmark-environments Leurent
(2018)2, Panerati et al. (2021)3 Leibo et al. (2021)4 or Lenton et al. (2021)5, control-toolboxes
Sekiguchi (2018-2022)6, Amos et al. (2018)7, or Lucia et al. (2017)8, machine-learning baselines
Dhariwal et al. (2017)9, Achiam (2018)10, Delhaisse et al. (2019)11 or Moritz et al. (2018)12,
as eventually online-blogs (DeWolf, 2012–2022)13.

1Please not that these projects are subject to external maintenance and may thus be outdated at some point.
2https://github.com/eleurent/highway-env for autonomous driving.
3https://github.com/utiasDSL/gym-pybullet-drones for MARL using quadrotors.
4https://github.com/deepmind/meltingpot a benchmark-suite for MARL.
5https://github.com/unifyai/gym for optimization of fully differentiable systems.
6https://github.com/Shunichi09/PythonLinearNonlinearControl containing implementations for

(non)linear control.
7https://locuslab.github.io/mpc.pytorch/ a fast and differentiable MPC-solver for PyTorch.
8https://github.com/do-mpc/do-mpc comprehensive toolbox for robust MPC.
9https://github.com/openai/baselines.

10https://spinningup.openai.com/en/latest/.
11https://github.com/robotlearn/pyrobolearn.
12https://docs.ray.io/en/master/rllib/index.html.
13https://studywolf.wordpress.com/.
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A
Summary of Software Modules

The software modules produced within this thesis1 are available online, partially in public
and partially only upon request. The software is provided as is, without further warranty
or support. For further details, each module contains a dedicated license. For a brief and
concise overview, the list below sketches the individual software-modules and how they are
connected to the individual chapters of this thesis. First, this thesis resulted in the following
open-source modules2:

• https://gitlab.com/vgab/ros-wsg-50: contains the robot gripper-driver of the WSG
50 presented in Chapter 8, as applied in Part I and Part III.

• https://gitlab.com/vg_tum/relational-engine: contains a relational planning mod-
ule used in Chapter 4 and Chapter 5.

• https://gitlab.com/vg_tum/multi-agent-gym: contains a multi-agent simulation en-
vironment for multi-agent reinforcement learning (MARL)-methods, that has been used
to evaluate the approaches from Chapter 6.

• https://gitlab.com/vg_tum/mahac_rl: contains an implementation of the baseline
methods and the proposed method from Chapter 6.

• https://gitlab.com/vg_tum/sim-robots: contains a collection of robot kinematic
handlers / helpers that were used within Chapter 8 and Chapter 9.

• https://gitlab.com/vg_tum/graph-boc: contains an implementation of the baseline
methods and the proposed method from Chapter 9.

Furthermore, LATEXcontent to reproduce selective latest content of this thesis is available as

• https://gitlab.com/vg_tum/latex_styles: contains a collection of LATEX-utilities
used within this thesis.

• https://gitlab.com/vg_tum/dissaster: contains the LATEXsource-code to generate
this report and presentation slides.

• https://gitlab.com/vg_tum/graph-boc-article: contains the LATEXsource-code for
the manuscript from Gabler and Wollherr (2022).

• https://gitlab.com/vg_tum/compliant-grasper: contains videos, presentations and
LATEX-files for the content from Gabler et al. (2022b).

1Please refer to the dedicated repositories for a full list of contributors.
2Some of the modules listed below are subject to articles, which were still under review by the time of

submission. Therefore, the availability of the dedicated data directly depends on the publication status.
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A Summary of Software Modules

Beyond this, this thesis has distinctly contributed to the development of the following robot
operating system (ROS)-projects, which are available as repositories of the Technical Univer-
sity of Munich and Chair of Automatic Control Engineering. As these repositories are subject
to internal and thus ongoing research work, access can only be provided upon request:

• https://gitlab.lrz.de/lsr-itr-ros//kuka_lwr: contains an extension of the Kuka-
LWR 4+ ROS-driver from Bioengineering and Robotics Research Center ”E. Piaggio”
University of Pisa (2014), applied in Part I.

• https://gitlab.lrz.de/lsr-itr-ros/robot_parts: contains a collection of simula-
tion models and/or unified robot description formats of robot-components, applied in
in Part I and Part III.

• https://gitlab.lrz.de/lsr-itr-ros/ros_jr3: contains a ROS-driver of theJR3 -
force-torque (FT)-sensor, applied in Part I and Part III.

• https://gitlab.lrz.de/lsr-itr-ros/comau-data: robot programs and driver inter-
faces, necessary to run a COMAU Racer 5 robot setup, applied in Part III.

• https://gitlab.lrz.de/lsr-itr-ros/comau-experimental: modified and extended ROS-
driver, as developed within the HR-Recycler project, applied in Part III.

• https://gitlab.lrz.de/hr_recycler/sim_robots: contains an extended version of
the public-version from https://gitlab.com/vgab/sim-robots that is mainly tailored
to the COMAU Racer 5 setup of the HR-Recycler project, applied in Part III.

• https://gitlab.lrz.de/hr_recycler/hrr_cobot: high-level python control interface
to control the COMAU Racer 5 setup of the HR-Recycler project, applied in Part III.

Eventually, the a collection of projects have been developed within Part I, which have been
archived by the end of this thesis. Nonetheless, they can be made available upon request:

• vg hgmdp: contains the software to reproduce the experiments from Chapter 3.

• vg game: contains the software to reproduce the experiments from Chapter 4.

• user interfaces: contains a collection of ROS packages to create the user-interfaces
as e.g., needed for the experiment in Chapter 3.

• hrc-mainA: contains a collection of high-level configuration, utilities and visualization
helper, used within human-robot collaboration (HRC)-experiments in Part I.

• env-perceptionA: contain the required ROS-packages for system calibration and

• hrc-commonAB: contains a collection of Matlab®-Simulink handles to control a Kuka
LWR 4+ robot

• hrc-statemachineAB: contains a state-machine in Matlab®-Simulink to command
high-level manipulation skills to a Kuka LWR 4+ robot.

AAdditional credits belong to: Dr.-Ing. Gerold Huber
BAdditional credits belong to: M.Sc. Khoi Hoang Dinh
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B
Hyper-Parameters and Implementation

The software modules that have been developed or used within this thesis build upon a variety
of open-source projects, which need to be references appropriately. For brevity, we summarize
the dedicated usage in a per-part bases in Table B.1.

Module(s) Part I Part II Part III

* Van Rossum and Drake (2009) ¢ ¢ ¢
* Kluyver et al. (2016) ¢ ¢ ¢
* Harris et al. (2020) ¢ ¢ ¢
* Hunter (2007), Waskom et al. (2017) ¢ ¢ ¢
* McKinney et al. (2010) ¢ ¢ ¢
* Virtanen et al. (2020) ¢ ¢ ¢
* Meurer et al. (2017) ¢ ¢
C++ Stroustrup (2000) ¢ ¢
C++ Guennebaud et al. (2010) ¢ ¢
C++ Coleman et al. (2014) ¢ ¢
Ä Quigley et al. (2009) ¢ ¢
Ä Chitta et al. (2017) ¢ ¢
� Koenig and Howard (2004) ¢ ¢
� Todorov et al. (2012) ¢ ¢
� Coumans and Bai (2016–2020) ¢ ¢
* Van Rossum and Drake Jr (1995) ¢
� E. Rohmer S. P. N. Singh (2013) ¢
* Paszke et al. (2019) ¢
* Brockman et al. (2016) ¢
* Klaus Greff et al. (2017), Yadan (2019) ¢
* Corke and Haviland (2021) ¢
* Lucia et al. (2017) ¢
* Balandat et al. (2019), Gardner et al. (2018) ¢
C++ Rusu and Cousins (2011) ¢

Table B.1: Usage of available open-source modules. Grouped models have only been used in shown
combination.

In addition, this thesis and the created projects distinctly profited from £ (Torvald et al.,
2005), LATEX (Lamport, 1986), Linux (ë Torvalds et al. (1991)), docker (n Merkel (2014))
and zsh-projects (Perepelitsa, 2019, Russell, 2009).
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B Hyper-Parameters and Implementation

Implementation Details of Chapter 6

In order to evaluate our MARL-algorithms, we evaluated our implementation on our imple-
mentation of the multi-agent particle environment (MPE)-environment. The hyper-parameters
for the learning procedure that is applied for all algorithms identically is listed in Table B.2.

Parameter Value

batch-size 1024
polyak value for the target-net update 0.95
decay-parameter γ 0.95
exploration episode-length 200
evaluation episode-length 100
number of episodes 5000
number of update-steps 5
update rate every fifth episode
episode-buffer size 1000
number of agents NA 3
polynomial filter-order (Savitzky and Golay, 1964) 3
filter window-size (Savitzky and Golay, 1964) 31

Table B.2: Hyper-parameters for the experimental evaluation and all evaluated algorithms.

Similarly, the (physical) parameters for the MPE-environment are listed in Table B.3.

Parameter Value

dt 0.02 s
NA 3
goal-threshold ζg,MPE 0.02 m
collision-cost 1
v 0.9
m 1 kg
vmax 1.0m/s

Table B.3: Environment parameters for the MPE and cooperative collection task.

Eventually, the hyper-parameters for the individual algorithms are listed in Table B.4. Our best-
response (br)-based policies used identical parameters for the dyadic and game against nature
scheme. Therefore, only one column per algorithm is provided in the table below. We used
Adam Kingma and Ba (2015) for the stochasitc gradient descent (SGD)-optimization for all
algorithms.

The experimental evidence was collected on two distributed computers with the following
hardware components

• OS-Kernel:

– (Ubuntu) Linux-5.13.0-44

– (Ubuntu) Linux-4.15.0-187
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Parameter MADDPG MASAC br-TD3 br-SAC

size of (hidden) critic-layers (64, 64) (64, 64) (64, 64) (64, 64)
size of (hidden) policy-layers (64, 64) (64, 64) (64, 64) (64, 64)
learning-rate critic ιQ 0.01 0.01 0.01 0.01
learning-rate policy ιπ 0.01 0.01 0.01 0.01
polyak-value υ 0.01 0.01 0.01 0.01
α0 0.2 0.2

Table B.4: Hyper-parameters for each algorithm. In case an entry is left blank, the algorithm does
not have this hyper-parameter. The critic-parameters for our br-based approaches have been chosen
identically for the interaction-critic and native critic. Similarly, the parameters for the br-policies are
identical as the actor-policy.

• Processor:

– Intel(R) Core(TM) i3-7100 CPU @ 3.90GHz

– AMD Ryzen Threadripper 2990WX 32-Core

• Python-version: 3.9.7

• GPU-acceleration: disabled
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Glossary

Acronyms

AC actor-critic.

BO Bayesian optimization.

BOC Bayesian optimization with unknown constraints.

br best-response.

CDF cumulative distribution function.

CHOMP covariant Hamiltonian optimization for motion planning.

CI confidence-interval.

COMA counterfactual multi-agent.

CoP center of pressure.

CT control-theory.

DBN dynamic Bayesian network.

DBSCAN density-based-spatial-clustering for applications with noise.

DDPG deep deterministic policy gradient.

DEC-POMDP decentralized partially observable Markov decision process.

DMP dynamic movement primitive.

DoF degree of freedom.

DPG deterministic policy gradient.

DQN deep Q-network.

DSA digital sensor array.

E efficient policy in Section 3.4.

ebr ε-best-response.

EI expected improvement.

EIC expected improvement with constraints.

EP expectation propagation.
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Acronyms

Fixed fixed behavior policy in Section 4.5.

FOL first-order-logic.

frc-based force-based strategy in Section 8.4.

FSA finite-state automaton.

FT force-torque.

GAE generalized advantage estimator.

GMM Gaussian mixture model.

GP Gaussian process.

GPCR Gaussian process for classified regression.

GPMP Gaussian process motion planner.

GPU graphics processing unit.

GUI graphical user-interface.

HAC hierarchical actor-critic.

HATP hierarchical agent-based task planner.

HER hindsight experience replay.

HGMDP hidden goal Markov decision process.

HRC human-robot collaboration.

HRI human-robot interaction.

HRL hierarchical reinforcement learning.

HRT human-robot team.

hybrid-f-v hybrid-force-velocity strategy in Section 8.4.

hybrid-v-f hybrid-velocity-force strategy in Section 8.4.

Hyp hypothesis.

iLQR iterative linear-quadratic regulator.

KB knowledge base.

KL Kullback–Leibler.

L hidden goal Markov decision process (HGMDP)-policy in Section 3.4.

LF partially HGMDP-policy with feedback in Section 3.4.

LfD learning from demonstration.

Line spline based human-prediction game-policy in Section 4.5.
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Acronyms

LQR linear-quadratic regulator.

MAAC multi-actor-attention-critic.

MADDPG multi-agent deep deterministic policy gradient.

MARL multi-agent reinforcement learning.

MASAC multi-agent soft actor-critic.

MCTS Monte-Carlo tree search.

MDP Markov decision process.

MG Markov game.

ML machine learning.

MOMDP mixed observable Markov decision process.

MP manipulation primitive.

MPC model predictive control.

MPE multi-agent particle environment.

MPO maximum a-posteriori policy-optimization.

MRK Mensch-Roboter-Kollaboration.

MuJoCo multi-joint dynamics with contact.

NE Nash-equilibrium.

eNE ε-Nash-equilibrium.

NN neural network.

OC optimal control.

PDF probability density function.

PG policy gradient.

pHRI physical human-robot interaction.

PI probability of improvement.

PIBU probability of improvement with a boundary uncertainty criterion.

POMDP partially observable Markov decision process.

POMG partially observable Markov game.

PPO proximal policy optimization.

Q question.
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Acronyms

RANSAC random sample consenus.

RAP relational activity process.

RL reinforcement learning.

ROS robot operating system.

SAC soft actor-critic.

SE Stackelberg-equilibrium.

SGD stochasitc gradient descent.

SLAM simultaneous localization and mapping.

SMDP semi-Markov decision process.

SE(3) special euclidean group, i.e., the Lie-group to express Cartesian poses.

SO(3) special orthognal group, i.e., the Lie-group to express Cartesian attitude.

Spline spline based human-prediction game-policy in Section 4.5.

STOMP stochastic trajectory optimization for motion planning.

TAMP task and motion planning.

TCP transmission control protocol.

TCP tool center point.

TD temporal difference.

TD3 twin delayed deep deterministic policy gradient.

ToM theory of mind.

TRPO trust region policy optimization.

UCT upper confidence bound applied to trees.

UMDP universal Markov decision process.

URDF unified robot description format.

UVFA universal value function approximation.

vel-based velocity-based strategy in Section 8.4.
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Notation

Notation

p placeholder variable in notation.

(·) blank input to a function, where · represents an arbitrary value of the input.

⊥ Boolean false.

> Boolean true.

|p| obtain the cardinality of a set or vector or space.

p~ best observed data-sample from collected experience data.

p� worst observed data-sample from collected experience data.

m,n scalar variables to denote dimensions, usually in N+.

:= equal by definition.

N p Gaussian distribution representing function or variable p.

p? ground truth data within a regression problem or experiment.

{k}p hierarchical layer-indexing.

κ hyper-parameter; indexing defines actual meaning.

p[k] value of p at iteration k.

pt value of p at time t.

i, j, k scalar indexing variables, usually in N.

pi content indexing of vectors, lists, sets, e.g., p2 denotes the second value of p.

∧ logical AND operation.

∨ logical OR operation.

lb lower limit; indexing defines actual meaning.

1p×p identity matrix of dimension p× p.

0p×p zero matrix of dimension p× p.

P matrix in Rm×n.

[P](i,j) matrix element, usually R1.

p(i) variable p assigned to agent i.

p variable p assigned to all agents.

p(−i) variable p assigned to all agents except i.

N natural numbers.

N+ positive natural numbers.
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Notation

‖p‖i Li-norm, where i is usually 1 (sum of absolutes) or 2 (euclidean).

p∗ optimal or true value of p.

p
+

posterior (belief) within Bayesian belief theory, e.g., a Bayesian-filter.

p− temporal predecessor of p, i.e., in a discrete setting p− = pt−1.

R rational numbers.

R+ positive non-negative rational numbers.

p set of individual elements pi, i.e., p = {p1, p2, . . .}.

\ set difference.

∅ empty set.

∩ intersection of two sets.

∪ union of two sets.

p̂ estimated value of p.

p′ temporal successor of p, i.e., in a discrete setting p′ = pt+1.

†p target network of p, where p is a neural network.

ṗ temporal derivative of p.

ζ threshold-value; indexing defines actual meaning.

t current time or temporal indexing variable.

Tmax maximum run-time (continuous) or number of time steps (discrete) in R1.

~p trajectory as a sequence of T variables p in T × Rn.

≡ equality of two sets, i.e., {p}i ≡ {p}j := ∀p ∈ {p}i ⇔ p ∈ {p}j .

ub upper limit; indexing defines actual meaning.

P>,p> transpose of a matrix or vector.

p vector in Rn.

1p identity vector of dimension p.

0p zero vector of dimension p.
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Automated Planning

List of Symbols

Automated Planning

K planning problem that needs to be solved within the current planning domain.

Pprim finite set of atomic actions within a planning domain.

E entity within planning domain.

M methods, i.e., applicable first-order-logic-functions within planning domain.

D planning domain.

Control-Theory and System-Theory

εang angular error.

c scalar constraint value in R1.

c constraint value as a vector in Rn.

C set of constraints.

u control input signal.

Cinp quadratic cost-weight matrix to penalize input-costs, most commonly diagonal.

Csys quadratic cost-weight matrix to penalize state-costs, most commonly diagonal.

v damping constant.

n disturbance / noise signal.

ε error-vector of desired and current value in Rn.

Kdmp impedance controller – damping gain matrix (quadratic, positive semi-definite).

Kfrc
I integral force-controller gain matrix (quadratic, positive semi-definite).

Kfrc
P proportional force-controller gain matrix (quadratic, positive semi-definite).

Kstif impedance controller – stiffeness gain matrix (quadratic, positive semi-definite).

A linear system dynamics matrix in Rn×n for a system of state-dimension n.

B linear system input matrix in Rn×m, i.e., state-dimension n and control-dimension m.

m mass of an physical entity.

z measurement signal.

S hybrid force-/position controller selection matrix.

s diagonal element of the force-/position controller selection matrix S .
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Markov Game Variables

` single step cost metric for an iterative optimization objective in R1.

sτ time scaling term.

δt update time-step for discrete control processes in R1.

Graph-Theory

AG adjacency matrix of a graph G, where [a](i,j) = 1⇔ ∃ei,j ∈ E .

G arbitrary graph consisting of vertices V and edges E .

e specific edge of the edges-set E of a graph G.

E edge-set of a graph G.

v specific vertex of the vertex-set V of a graph G.

V vertex-set of a graph G.

Markov Game Variables

a Action of agent i.

π Action assignment policy that maps a state to an action a.

d binary done flag, symbolizing the end of a task.

r single step reward return.

o environment observation.

A player or (artificial) agent.

s state value in S .

x fully observable state.

y hidden state.

γ temporal discount factor.
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Machine-Learning and Stochastics

Machine-Learning and Stochastics

b belief, i.e., current PDF of a random variable.

β Boltzmann constant within a Boltzmann distribution.

O algorithmic complexity (Big O - convention).

Σ covariance matrix of a multi-variate probability density function (PDF).

D data buffer containing experiences usable for RL.

X observed data samples.

α entropy temperature paramter for SAC.

Φ scalar feature in R1.

Φ feature vector or mapping in Rn.

K Gram matrix, where [K ](i,j) = k(ξi, ξj).

k k applied on a batch of samples p, and ξ, such that [kp(ξ)](i) = k(pi, ξ).

DKL Kullback–Leibler-divergence of two PDFs.

ι learning rate for SGD.

µ mean of a PDF.

Φ normal cumulative distribution function.

ν normalizing constant, i.e., for none-zero p it holds
∥∥ 1
νp
∥∥

2
= 1 in R1.

ξ unknown parameter-vector in Rn, obtained by means of regression / optimization.

ξ unknown scalar parameter in R1, ξ ∈ ξ.

υ polyak-averaging weight, e.g., used to update target-network.

δTD temporal difference-residual as used in GAE.

σ variance of a one-dimensional PDF.
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Robot-Specific Variables

Constant Numbers

NA number of agents.

Ncell number of cells.

Ncont number of evaluation measurements to check against environment contact.

Ncnt counting variable, i.e., the number a sample has appeared in an iterative algorithm.

Neps number of episodes.

NI size of sliding window for integration component of PID-control.

Niter maximum number of steps within an iterative algorithm.

Nk number of k-level decisions.

Nmtrl number of material types.

Nlink number of link samples.

Nspl number of samples.

Nstep number of steps, e.g., within an episode.

Ntrain number of training-steps.

NFT size of sliding window to evaluate data obtained from a FT-sensor.

Robot-Specific Variables

g goal of a given task T, where g ∈ S.

H Human agent.

q joint angles of a robot in Rn, where n are the DoFs of the robot.

R Robotic agent.

τ torque input active on all joints of a robotic system.

T (manipulation / experimental) task.
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State Spaces and Finite Sets

State Spaces and Finite Sets

X des desired state space or sub-space of the state space X .

X fully observable state space.

G goal space for the goals of a task or process, where G ∈ S.

Y hidden state space.

O observation state space.

A generic action space, often discretized.

S generic state space, often discretized.

SE(3)-Variables

δx Cartesian displacement in SE(3), i.e., in R1.

x Cartesian pose of and object or the end-effector in SE(3).

p Cartesian position in R3.

F Cartesian wrench as force-torque measures in SE(3).

e SE(3) Coordinate system axis in R3, where ‖e‖2 = 1 holds.

x Cartesian x-coordinate in R1. If not phrased explicitly, bax is assumed.

y Cartesian y-coordinate in R1. If not phrased explicitly, bay is assumed.

z Cartesian z-coordinate in R1. If not phrased explicitly, baz is assumed.

ex SE(3) Coordinate system x-axis in R3.

ey SE(3) Coordinate system y-axis in R3.

ez SE(3) Coordinate system z-axis in R3.

f force magnitude or scalar force-component of translational component of F in R1.

n normal vector of a surface / object in Cartesian space in R3.

R rotation matrix in SO(3), i.e., in in R3×3.

Rϕ rotation matrix around ex in R3×3.

Rθ rotation matrix around ey in R3×3.

Rψ rotation matrix around ez in R3×3.

ϕ roll angle in R1, i.e., angular rotation around ex.

θ pitch angle in R1, i.e., angular rotation around ey.
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Variables for Part II

ψ yaw angle in R1, i.e., angular rotation around ez.

τ torque magnitude or scalar force-component of rotational component of F in R1.

T coordinate transformation matrix using homogeneous transformation in SE(3).

v scalar speed, i.e., the magnitude of v in R1.

v translational velocity in SE(3).

Variables for Part I

d distance measure in R1.

αDMP α-parameter for dynamic movement primitive (DMP).

βDMP β-parameter for DMP.

Fshp shaping term for a DMP.

εbr ε-value for an ε-best-response.

p p-value for statistical analysis.

Tspl sampling time.

t task component.

t task component set.

Variables for Part II

π(j)

br dyadic best-response-policy of agent j to the action of agent i.

π(−i)

br dyadic best-response-policy of agent nature to the action of agent i.

e environment-layer index.

Θ function-approximation parameterization for a critic χ .

Π function-approximation parameterization for a policy π.

Ξ function-approximation parameterization for π(j)

br or π(−i)

br .

i interaction-layer index.
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Variables for Part III

Variables for Part III

Dart databuffer with artificially generated data-samples.

pfail desired probability threshold for posterior of failed failures to be infeasible.

psafe desired probability threshold for posterior of safe failures to be safe.

∆p displacement from first point of contact until force-measurement is received.

D gripper DSA-sensor reading.

∆y DSA-sensor cell height.

Ny DSA-sensor resolution width or columns, set to 6 for WSG 50.

Nx DSA-sensor resolution height or rows, set to 14 for WSG 50.

∆x DSA-sensor cell width.

yspl evaluation of Gaussian process (GP) while applying an acquisition-function Faqu .

gspl episodic constraint-vector sample.

J spl episodic objective sample.

sspl episodic success sample, where each scalar evaluates gi(ξ) ≤ ci.

s scaling term s ∈ [0, 1].

~c trajectory of cells within an inference-grid GS in Chapter 7.

c cell values within an inference-grid GS in Chapter 7.

GS Inference grid to regress the S in Chapter 7.

RS Shape particle in Chapter 7.

S Shape parameterization in Chapter 7.

mξ,G largest dimension all nodes within a graphical skill-formalism from Chapter 9.

nξ dimension of the parameter of a regression problem ξ ∈ Rnξ .

leD WSG 50 DSA sensor reading left.

riD WSG 50 DSA sensor reading right.

wDSA width of the DSA sensor array.

wgrpr opening width of a parallel two-finger gripper.
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List of Indices

List of Indices

age age of subject participants.

align alignment control-related variable.

ang angular component of current variable.

art artificial variable.

avg average value of current variable.

bkgd background knowledge of subject participants.

bcnst belief consistency, i.e., how likely is an entity to diverge from a current belief.

cnd candidate(s), i.e., possible solution samples or variables.

cell cell-related variable, where cell is an element of a grid, e.g., GS.

cntr center of e.g., rigid body, multiple points or line.

col collision(-cost).

cont contact with object or environment.

cnt counting variable.

cur current value, e.g., measured state of a plant.

dmp damping-term of mass-spring damper systems or controller-gains.

des desired value, e.g., a desired trajectory.

dom dominant, e.g., an action-profile that dominates another in game-theory.

dtct detection(-time).

dspl displacement related variable, e.g., a maximum distance.

dst distance related variable, e.g., distance cost.

eps current variable is related to current or all episodes.

err error-term for current value.

estim estimated value, e.g., the output from a regression.

ext extrinsic value of current variable.

fail failed trial / sample.

frc force / wrench-related variable.

grid grid related related variable.

grpr robot gripper related variable.

impls impulse variable, e.g., force-impulse during contact.
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List of Indices

insrt insertion related variable, e.g., time needed for a screwdriver insertion.

inp input-related variable.

I integral component of e.g., PID-controller.

int interactive component of current variable.

iter iteration related variable, e.g., maximum number of steps.

leader leader in a leader-follower concept, e.g., in an extensive form game.

leg legibility-related value or function.

len length related variable, e.g., path-length of a trajectory.

link link related variable.

mtrl material type related variable.

max maximum value of current variable.

min minimum value of current variable.

NE Nash-equilibrium.

nat native / self-reflective component of current variable.

noise noise related variable, may be systematic or artificially injected noise.

prm parameterization mapping of parameter regression(-function).

prnt parent of current variable.

pareto Pareto-optimal or dominant related variable, e.g., an action-profile in game-theory.

part partitioned version of variable. Usually referred to a set or space.

pnlty penalty term, usually a cost-function or weight.

PI PI-controller.

pos position related variable or term.

pre pre-condition, e.g., within a planning domain.

pref preference(-cost).

prim primitive / atomic component of current variable.

P proportional component of e.g., PID-controller.

rate update rate in Hz.

rat rationality of an agent (usually a human).

reach reaching(-cost).

ba reference frame – robot base frame.

ct reference frame – control frame.

le reference frame – left digital sensor array (DSA)-frame.
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List of Operators and Functions

ri reference frame – right DSA-frame.

ee reference frame – end-effector frame.

to reference frame – tool center point (TCP) frame.

R rotated variable.

rot rotation related variable.

safe safe variable w.r.t. a constraint-metric.

spl sampled version of current variable.

shp shaping(-function).

step step, e.g., step within a Bayesian-filter update or reinforcement learning (RL)-problem.

stif stiffness of mass-spring damper systems or controller-gains.

sub sub-group of current variable.

suc indicating success for the current task or episode.

sys system dependent variable.

temp temporal related variable.

time time related variable, e.g., duration of an action.

train training(-step).

trans translatoric related variable.

travel travel(-cost).

vel velocity-related variable.

List of Operators and Functions

Faqu acquisition function to generate new data samples in Rn.

A advantage function as the difference of Q and V in R1.

Falign alignment control function in Rn.

S black box success function in R1.

R black box reward function in R1.

g scalar inequality constraint in R1.

g inequality constraint vector in Rn.

diag get diagonal elements from a matrix as vector in Rn.

ρ PDF over a random variable.
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List of Operators and Functions

H entropy of a random variable / PDF in R1.

Fequ equivalence relation in R1.

Festim estimation / regression function in Rn.

E expectation of a random variable / distribution.

F̌ function estimation for an unknown system or process mapping to R1.

N Gaussian PDF.

FN Gaussian shaped function in R1.

χ General critic-function in R1, e.g., V, A or Q.

FS geometric shape estimation function in Rn.

Fg goal mapping function, maps state / observation to a goal g ∈ G ∈ Rn.

∇ gradient over a function or vector in Rn or matrix in in Rn×n.

F H Heaviside function in R1, i.e., F H(p) = 1⇔ p > 0.

ΛVξ joint success-probability for a sequential manipulation task.

k kernel function k(ξi, ξj) in R1.

L loss function in R1.

F̌ J model of the actual objective-function J in R1.

F̌ g model of a success-function, i.e., a binary function mapping Rn 7→ >,⊥.

O observation transition function.

J general objective function for an optimization problem in R1.

F pareto Evaluates if an action-profile is pareto-dominated by another action-profile.

F pareto
dom Evaluates if an action-profile is pareto-dominant.

Fprm parameter regression operator in Rn.

P probability of a random variable / distribution.

Q Q-function in R1, also known as state-action-value function.

fΠ deterministic function to apply the reparameterization trick, cf. soft actor-critic (SAC).

FRPY transform current orientation representation into roll pitch yaw, i.e., ϕ, θ, ψ in R3.

sign return sign of function or scalar variable in R1.

T stochastic transition function.

Γv
ξ success-probability of an MP-node in R1.

U utility function in R1.

U c utility function for a cell within GS in R1.

U S utility function for a shape-particle RS in R1.
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List of Operators and Functions

U reach reachability utility function in R1.

V value function in R1.

Var variance of a random variable / distribution Var ∈ R1.
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Zhang, K., Z. Yang, and T. Başar (2021a): “Multi-agent reinforcement learning: A
selective overview of theories and algorithms,” Handbook of Reinforcement Learning and
Control, 321–384.

Zhang, Q., H. Dong, and W. Pan (2020a): “Lyapunov-Based Reinforcement Learning for
Decentralized Multi-agent Control,” in International Conference on Distributed Artificial
Intelligence (DAI), ed. by M. E. Taylor, Y. Yu, E. Elkind, and Y. Gao, Springer, vol. 12547
of Lecture Notes in Computer Science, 55–68.

Zhang, X., L. Sun, Z. Kuang, and M. Tomizuka (2021b): “Learning Variable Impedance
Control via Inverse Reinforcement Learning for Force-Related Tasks,” IEEE Robotics and
Automation Letters, 6, 2225–2232.

Zhang, Z., K. Qian, B. W. Schuller, and D. Wollherr (2020b): “An Online Robot
Collision Detection and Identification Scheme by Supervised Learning and Bayesian Deci-
sion Theory,” IEEE Transactions on Automation Science and Engineering, 1–13.

Zhou, A., D. Hadfield-Menell, A. Nagabandi, and A. D. Dragan (2017): “Ex-
pressive Robot Motion Timing,” in ACM/IEEE International Conference on Human-Robot
Interaction (HRI), ed. by B. Mutlu, M. Tscheligi, A. Weiss, and J. E. Young, ACM, 22–31.

Zhou, Z., O. S. Oguz, Y. Ren, M. Leibold, and M. Buss (2021): “Data Generation
Method for Learning a Low-dimensional Safe Region in Safe Reinforcement Learning,”
CoRR, abs/2109.05077.

216



References

Zhu, H., V. Gabler, and D. Wollherr (2017): “Legible Action Selection in Human-
Robot Collaboration,” in IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN), Lisbon: IEEE.

Ziebart, B. D., A. L. Maas, J. A. Bagnell, and A. K. Dey (2008): “Maximum Entropy
Inverse Reinforcement Learning,” in AAAI Conference on Artificial Intelligence, 1433–1438.

Zucker, M., N. D. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith, C. M.
Dellin, J. A. Bagnell, and S. S. Srinivasa (2013): “CHOMP: Covariant Hamiltonian
optimization for motion planning,” International Journal of Robotics Research, 32, 1164–
1193.

This bibliography contains 425 references.

217

https://tinyurl.com/3n2kwchm
https://tinyurl.com/mwn77fz3


Own Thesis-Related Publications

Ackermann, J., V. Gabler, T. Osa, and M. Sugiyama (2019): “Reducing Over-
estimation Bias in Multi-Agent Domains Using Double Centralized Critics,” CoRR,
abs/1910.01465.

Bari, S., V. Gabler, and D. Wollherr (2021): “MS2MP: A Min-Sum Message Pass-
ing Algorithm for Motion Planning,” in IEEE International Conference on Robotics and
Automation (ICRA), Xi’an, China: IEEE, 7887–7893.

——— (2023): “Probabilistic Inference-based Robot Motion Planning via Gaussian Belief
Propagation,” IEEE Robotics and Automation Letters, 8, 5156–5163.

Daniels, A., S. Kerz, S. Bari, V. Gabler, and D. Wollherr (2023): “Grasping
in Uncertain Environments: A Case Study For Industrial Robotic Recycling,” in IEEE
International Conference on Systems, Man & Cybernetics (SMC), accepted: IEEE.

Dinh, K. H., O. Oguz, G. Huber, V. Gabler, and D. Wollherr (2015): “An approach
to integrate human motion prediction into local obstacle avoidance in close human-robot
collaboration,” in IEEE Workshop on Advanced Robotics and its Social Impact (ARSO),
Lyon, France.

Gabler, V., G. Huber, M. Bosch, and D. Giakoumis (2020a): “D6.2 - Haptic Regression
Report,” Tech. rep., HR-Recycler - Hybrid Human-Robot RECYcling plant for electriCal
and eLEctRonic equipment.

Gabler, V., G. Huber, S. Endo, D. Wollherr, A. Tissot, and I. Freire Gonzalez
(2022a): “D6.1 - Force Guided Manipulation Evaluation,” Tech. rep., HR-Recycler - Hybrid
Human-Robot RECYcling plant for electriCal and eLEctRonic equipment.

Gabler, V., G. Huber, and D. Wollherr (2022b): “A Force-Sensitive Grasping Con-
troller Using Tactile Gripper Fingers and an Industrial Position-Controlled Robot,” in IEEE
International Conference on Robotics and Automation (ICRA), Philladelphia: IEEE, 770–
776.

Gabler, V., K. Maier, S. Endo, and D. Wollherr (2020b): “Haptic Object Identifi-
cation for Advanced Manipulation Skills,” in International Conference on Biomimetic and
Biohybrid Systems (Living Machines), ed. by V. Vouloutsi, A. Mura, F. J. Esser, T. Speck,
T. J. Prescott, and P. F. M. J. Verschure, Springer, vol. 12413 of Lecture Notes in Computer
Science, 128–140.

Gabler, V., T. Stahl, G. Huber, O. Oguz, and D. Wollherr (2017): “A Game-
Theoretic Approach for Adaptive Action Selection in Close Distance Human-Robot-
Collaboration,” in IEEE International Conference on Robotics and Automation (ICRA),
Singapore: IEEE, 2897–2903.

Gabler, V. and D. Wollherr (2022): “Bayesian Optimization with Unknown Constraints
in Graphical Skill-Models for Compliant Manipulation Tasks Using an Industrial Robot,”
Frontiers Robotics AI, 9.

218



——— (2023): “Decentralized Multi-Agent Reinforcement Learning Based on Best-Response
Policies,” Frontiers Robotics AI, submitted.

Huber, G., V. Gabler, and D. Wollherr (2017): “An online trajectory generator on
SE(3) with magnitude constraints,” in 2017 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, IROS 2017, Vancouver, BC, Canada, September 24-28, 2017,
IEEE, 6171–6177.

Kobayashi, Y., T. Matsumoto, W. Takano, D. Wollherr, and V. Gabler (2017):
“Motion Recognition by Natural Language Including Success and Failure of Tasks for Co-
Working Robot with Human,” in IEEE International Conference on Advanced Intelligent
Mechatronics (AIM), Sheraton Arabella Park Hotel, Munich, Germany: IEEE, 10–15.

Ozgur, O., V. Gabler, G. Huber, Z. Zhou, and D. Wollherr (2016): “Hybrid Hu-
man Motion Prediction for Action Selection Within Human-Robot Collaboration,” in In-
ternational Symposium on Experimental Robotics (ISER), Cham: Springer International
Publishing, 289–298.

Zhu, H., V. Gabler, and D. Wollherr (2017): “Legible Action Selection in Human-
Robot Collaboration,” in IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN), Lisbon: IEEE.

Supervised Student Theses

Ackermann, J. (2017): “Online Adaptation to Human Preferences in Relational Domains,”
Research internship (Bachelor), Technical University of Munich.

——— (2018): “Hierarchical Deep Reinforcement Learning for Multi-Agent Robotic Sys-
tems,” Bachelor thesis, Technical University of Munich.

Budde genannt Dohmann, P. (2016): “Implementation of a Trajectory Learning and
Flexible Roll-out Module Based on Dynamic Movement Primitives on the KUKA LWR
4+,” Research internship (Bachelor), Technical University of Munich.

Deuringer, F. (2019): “Adaptive Impedance Control for Robotic Screwing-Skills given
Partial Information,” Research internship (Master), Technical University of Munich.

Gasse, S. (2016): “Learning Human-Human Collaborative Behavior in Pick and Place
Tasks,” Bachelor thesis, Technical University of Munich.

Hauber, D. (2019): “Learning Joint Object Manipulation for Multi-Robot Systems Given
Few Demonstrations,” Master thesis, Technical University of Munich.

Hofmann, M. (2016): “Improvements of a human robot collaboration framework,” Bachelor
thesis, Technical University of Munich.

Hölzl, F. (2018): “Decentralized Mixed Observable Markov Decision Processes (DEC-
MOMDPs) for Human-Robot Collaboration,” Bachelor thesis, Technical University of Mu-
nich.

219



Supervised Student Theses

Hong Yong, T. (2015): “Creation of a Suction Gripper for LEGO,” Bachelor thesis, Tech-
nical University of Munich.

Kreutmayr, F. (2019): “Human Robot Collaboration as a Differential Game,” Master
thesis, Technical University of Munich.

Krockenberger, D. (2019): “Hierarchical Deep Reinforcement Learning for Multi-Agent
Robotic Systems,” Master thesis, Technical University of Munich.

Li, J. (2016): “Force-Sensitive Manipulation with a KUKA Lightweight Robot,” Master
thesis, Technical University of Munich.

Maier, K. (2019): “Object Identification for Advanced Manipulation Skills Using Haptic
SLAM,” Master thesis, Technical University of Munich.

Münz, D. (2020): “Adaptive Impedance Control for Robotic Screwing-Skills given Partial
Information,” Research internship (Bachelor), Technical University of Munich.

Natzer, J. (2016): “Design of a Human-Robot Collaboration Decision Framework as a
Dynamic Game,” Bachelor thesis, Technical University of Munich.

Riemann, S. (2015): “Development of an hand tracking system in ROS with online data anal-
ysis in Matlab for Human-Robot collaboration,” Research internship (Bachelor), Technical
University of Munich.

Satimun, N., N. Keith, and O. Poh Seng (2017): “Development of virtual reality pipeline-
for interactive human-robot assem-bly using ROS-control and Gazebo-simulator,” Bachelor
thesis, Technical University of Munich.

Seyler, T. (2016): “Human Aware Hierarchical Task Planning Including Temporal Task-
Constraints,” Master thesis, Technical University of Munich.

Shun Fa, T. (2015): “Collision Detection and Classification,” Bachelor thesis, Technical
University of Munich.

Siew, T. (2015): “Implementing a Robot-Human Handover Scenario,” Bachelor thesis, Tech-
nical University of Munich.
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