
����������
�������

Citation: Sanusi, U.; John, S.; Mueller,

J.; Tellier, A. Quiescence Generates

Moving Average in a Stochastic

Epidemiological Model with One

Host and Two Parasites. Mathematics

2022, 10, 2289. https://doi.org/

10.3390/math10132289

Academic Editors: Sophia Jang and

Jui-Ling Yu

Received: 25 May 2022

Accepted: 28 June 2022

Published: 30 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Quiescence Generates Moving Average in a Stochastic
Epidemiological Model with One Host and Two Parasites

Usman Sanusi 1,2,3 , Sona John 1,2, Johannes Mueller 2,4 and Aurélien Tellier 1,*
1 Population Genetics, Department of Life Science Systems, School of Life Sciences, Technical University of

Munich, 85354 Freising, Germany; usman.sanusi@tum.de (U.S.); sona.john@tum.de (S.J.)
2 Department of Mathematics, Technical University of Munich, 85748 Garching, Germany;

johannes.mueller@mytum.de
3 Department of Mathematics and Statistics, Umaru Musa Yar’adua University, Dutsin-Ma Road,

Katsina P.M.B. 2218, Nigeria
4 Institute for Computational Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany
* Correspondence: aurelien.tellier@tum.de

Abstract: Mathematical modelling of epidemiological and coevolutionary dynamics is widely being
used to improve disease management strategies of infectious diseases. Many diseases present some
form of intra-host quiescent stage, also known as covert infection, while others exhibit dormant stages
in the environment. As quiescent/dormant stages can be resistant to drug, antibiotics, fungicide
treatments, it is of practical relevance to study the influence of these two life-history traits on the
coevolutionary dynamics. We develop first a deterministic coevolutionary model with two parasite
types infecting one host type and study analytically the stability of the dynamical system. We
specifically derive a stability condition for a five-by-five system of equations with quiescence. Second,
we develop a stochastic version of the model to study the influence of quiescence on stochasticity
of the system dynamics. We compute the steady state distribution of the parasite types which
follows a multivariate normal distribution. Furthermore, we obtain numerical solutions for the
covariance matrix of the system under symmetric and asymmetric quiescence rates between parasite
types. When parasite strains are identical, quiescence increases the variance of the number of infected
individuals at high transmission rate and vice versa when the transmission rate is low. However, when
there is competition between parasite strains with different quiescent rates, quiescence generates
a moving average behaviour which dampen off stochasticity and decreases the variance of the
number of infected hosts. The strain with the highest rate of entering quiescence determines the
strength of the moving average and the magnitude of reduction of stochasticity. Thus, it is worth
investigating simple models of multi-strain parasite under quiescence/dormancy to improve disease
management strategies.

Keywords: parasite dormancy; moving average; epidemiology; stochasticity; coevolution; infectious
diseases

MSC: 92D30; 34F05; 60H30

1. Introduction

Dormancy or quiescence is a bet-hedging strategy common to many bacteria,
fungi [1,2], invertebrates [3], and plants which evolves to dampen off the effect of bad condi-
tions and maximize the reproductive output under good conditions [4–6]. This bet-hedging
in time occurs when the individual (bacteria, fungus, invertebrates) or the offspring of
the individual (plants, invertebrates) enter dormancy with a low metabolic state for some
period of time during which reproduction and evolution occurs in the active part of the
population. The dormant individuals constitutes a reservoir, the so-called seed banks, and
can re-enter the active population at a later time point. Dormancy (quiescence) evolves a
bet-hedging strategy in response to unpredictable environments such as random variations
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of the abiotic conditions [7], competition under density-dependence regulation of the popu-
lation [8], contact between a bacteria host and viruses [9], frequency- or density-dependent
selection due to host-parasite coevolution [10] or prey-predator interactions. Dormancy
(quiescence) introduces overlap between generation and a storage effect which generates a
time delay in the generation time [11,12]. At the population level, dormancy is shown to
slow down the rate of genetic drift, that is increasing the time to random loss or fixation
of neutral alleles. Moreover, seed banks also slow down the action of natural selection by
increasing the time to fixation (loss) of the positively (deleterious) selected alleles [13–15].
We note the use of the term dormancy preferably for plant seeds or crustacean eggs (e.g.,
Daphnia sp.), while quiescence refers to individual bacteria or fungi switching between “on”
and “off” metabolic states [16]. As we focus on microparasites in the following, we prefer
the term quiescence from now on.

Parasite quiescence is a strategy of microparasites (bacteria, fungi) becoming inactive
inside an infected host for some period of time. During this period, the disease does not
progress in the host and the host can express symptoms or be asymptomatic. Importantly,
quiescent parasites do not contribute to the disease transmission. In the medical commu-
nity, the infections in which the parasite is quiescent or inactive are referred to as silent or
dormant, and in the virology literature they are referred to as covert [17]. Parasite quies-
cence has well known but yet underappreciated consequences for disease management.
During quiescence, the parasite are often resistant to the application of drugs, antibiotics or
fungicides [18–21]. Furthermore, applying antibiotics can trigger the switching of bacteria
from active to the inactive (quiescent) state. Plasmodium falciparum, the main agent of
malaria, has the ability to lurk in the hepatocytes of some patients, remaining inactive but
being resistance to drug treatments, causing later on disease relapse [10,21,22]. P. vivax,
another malarial agent, exhibits also the ability to become dormant in the liver of a host
for some weeks, months even up to a year or more, which makes the task to eradicate the
disease difficult [23–25]. Therefore, it is important to determine the (1) conditions for the
evolution of parasite quiescence, and (2) influence of quiescence on the sustainability of
parasite populations. A key theoretical study on the evolution of quiescence in animal
parasites [17] shows that silent/covert infection is not likely to be the optimal strategy (trait
value) for the parasite (so-called Evolutionary Stable Strategy (ESS)) in an epidemiological
model with one host and one parasite genotype. Parasite quiescence would only evolve
if there were substantial fluctuations in the host population size or seasonal variations in
transmission rates. Therefore, the authors state that their “models predict low rates of
covert infection, which does not reflect the consistent high levels that are found in some
host–parasite systems”. Based on a modelling framework with fixed population sizes but
two hosts and two parasite types, the host population can evolve dormancy as an optimal
strategy (ESS) as a result of the parasite pressure and coevolutionary dynamics [4]. While
more theoretical work is needed to decipher the conditions for the evolution of parasite
quiescence/dormancy, likely involving a combination of temporally variable environmen-
tal and coevolutionary pressures, we focus in the present study on the consequence of
quiescence for the stability and outcome of host-parasite coevolutionary dynamics. As a
first step in this direction, we consider here a model with one host and two parasite strains
(or types).

Indeed, one host population under pressure by several parasite strains, or even several
parasite species, is the rule rather than the exception [26,27]. Considering the epidemiologi-
cal dynamics under competition/co-infection between strains is important [7] to predict
the evolution of parasite virulence, that is disease induced death rate of host [28]. We
are interested here in understanding the epidemiological dynamics of a single host type
infected by one of the two parasite strains exhibiting quiescence. We ask whether quies-
cence affects the parameters for which two strains can co-exist or competitively exclude
one another. Furthermore, the maintenance of several strains, the persistence of disease
as endemic or the persistence of the host population are affected by stochastic processes.
Disease epidemics are subjected to stochasticity at various levels, the main one being in
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the transmission rate, and thus stochastic approaches are required to predict the outcome
of epidemics. While the deterministic model of epidemiology successfully captures the
behaviour when the size of host and parasite populations are large, stochasticity can affect
the outcome of the dynamics for small sizes significantly [29–32]. Quiescence affects the
size of the parasite active population and thus possibly the epidemiological dynamics. We
hereby hypothesize that quiescence may also affects the outcome of stochasticity on the
co-existence of our two parasite strains epidemiological model.

In the first part we describe our epidemiological model with changes in the number
of healthy and infected host individuals over time under quiescence of both parasite
strains. We then derive a stability condition for the dynamical ODE system. In the second
part of the study, we introduce stochasticity in disease transmission and derive a Fokker-
Planck equation of the Continuous Time Markov Chain model. Lastly, we perform some
numerical study on the model behaviour under stochasticity. We show that for symmetric
case i.e., when the infected class are identical and quiescence phases are also identical,
quiescence increases the variance, and decrease it when the rate of infection is small.
For asymmetric case i.e., when the infected class as well as the quiescence phases are not
identical, quiescence has a major effect in reducing the intensity of the noise in the stochastic
process, whenever the rate of entering (or exiting) quiescence differ between strains. By
analogy, we term this phenomenon as moving average.

2. Deterministic Model with Quiescence
2.1. Model Description

Our model is similar in essence to classic epidemiological models [7,11,33–36]. Here
we consider one host population and two parasite strains, thus the population is divided
into five mutually exclusive compartments: one healthy susceptible host compartment
H, two infected host, I1 and I2, infected by parasite of type 1 and 2 respectively, and two
quiescence compartments Q1 and Q2, comprise the infected individuals I1 and I2 for which
the parasite is in the quiescent state. We define the following system of ordinary differential
equations describing the rate of change of the number of individuals in each compartment.

dI1

dt
= β1HI1 − ρ1 I1 − dI1 − γ1 I1 − ν1 I1 + ζ1Q1 + ε1

dI2

dt
= β2HI2 − ρ2 I2 − dI2 − γ2 I2 − ν2 I2 + ζ2Q2 + ε2

dH
dt

= Λ− β1HI1 − β2HI2 − dH + ν1 I1 + ν2 I2

dQ1

dt
= ρ1 I1 − ζ1Q1 − dQ1

dQ2

dt
= ρ2 I2 − ζ2Q2 − dQ2

(1)

where Λ is the constant birth rate of healthy host and d to is the natural death rate, γ1
and γ2 are the disease induced death rate or (virulence) caused by parasite 1, and 2
respectively. Similarly all other parasite specific parameters such as disease transmission
rate β, recovery rate ν, rate at which parasite switches to quiescence ρ and the switching
back rate ζ are defined for each parasite strains separately. The parameters ε1 and ε2
are the rates of incoming migration of parasite 1 and 2 respectively from an outside
compartment/population. These parameters are introduced to avoid the competitive
exclusion principle, namely without the ε’s, one parasite type necessarily excludes the other
and there is no coexistence of both parasite types at the epidemic equilibrium, the same
effect is expected if the migration of quiescent parasite would occur (not shown here). We
assume (1) that the parasite lives and multiplies within its host, (2) the absence of multiple
infection so that strains 1 and 2 of the parasite are mutually exclusive on one host, and
(3) no latency period for the parasite, hence, the infected persons are infectious immediately
after infection. Note that the model reduces to a simple model of one susceptible host
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and two infected host types (SI1 I2S, referred to as system without quiescence) when
setting the quiescence parameters equal to zero (Appendix C). In the present study we are
particularly interested in following the number of hosts infected by parasite 1 or 2 and to
study conditions for which both types of parasites are maintained. We therefore assume
constant birth rate, to ensure a non-explosive process when moving to the stochastic version
of our model. We finally introduce the parameters ε1 and ε2 to promote the coexistence
of both strains at the equilibrium and to guarantee a unique steady state solution in the
continuous time Markov chain version of the model (see below, Stochastic model).

2.2. Steady State Solutions

In this section we find the equilibrium solutions of the system. First, we analyse the
system without inflow of new infection to the population (ε1 = ε2 = 0). This simple system
generically has the three equilibrium states: (1) a disease free equilibrium in which both
parasite strains die off and are removed from the system (yielding I1 = I2 = Q1 = Q2 = 0),
(2) two-boundary equilibria at which a single parasite strain survive i.e., competitive
exclusion when parameters of the model are non-symmetric (yielding in either I1 = Q1 = 0
or I2 = Q2 = 0). In the non-generic case that we have symmetric parameters, we have line
of stationary solutions. By evaluating the Jacobian matrix of the system, one can evaluate
the stability conditions for these equilibria. To ensure the existence of unique polymorphic
equilibrium, we introduce two parameters for invasion/immigration rates namely, ε1 and
ε2 which are greater than zero. The introduction of these two parameters results in moving
the disease free as well as one of the boundary equilibria to the negative cone i.e., makes
them to have negative values which is biologically meaningless. We are thereafter left
with only one polymorphic equilibrium which is biologically meaningful. Henceforth,
we focus on the analysis of the polymorphic equilibrium for which both parasite strains
are maintained in the system. We show the existence and uniqueness of this endemic
equilibrium under mild conditions (for more details, see Appendix A).

2.3. Stability Analysis

An n× n Jacobian matrix P is said to be stable, and thus an equilibrium being locally
stable, if all its eigenvalues lie on the left half plane. As it may be impractical to determine
the stability of a matrix analytically [11], by using the Lyapunov theorem to determine if
the system is stable, it is easier to apply the Routh-Hurwitz criterion [11,37,38]. However,
this criteria can be cumbersome if the matrix is of high dimension. In this section we
therefore derive the stability condition for a generic 5× 5 matrix G with parasite quiescence
by reducing our system to 3× 3 which is more easily amenable to computation.

The Jacobian of system in Equation (1) evaluated at equilibrium is given as follows

G =


β1H∗ − ρ1 − γ1 − ν1 − d 0 β1 I∗1 ζ1 0

0 β2H∗ − ρ2 − γ2 − ν2 − d β2 I∗2 0 ζ2
−β1H∗ + ν1 −β2H∗ + ν2 −β1 I∗1 − β2 I∗2 − d 0 0

ρ1 0 0 −ζ1 − d 0
0 ρ2 0 0 −ζ2 − d

.

Now we define a matrix
A ∈ ((ai,j)) ∈ R3×3 (2)

to be the Jacobian matrix evaluated at equilibrium of the system without quiescent described
in Appendix C. We introduce B = G + dI, such that the spectrum of B is just the shifted
spectrum of G. Indeed, the stability of B implies stability of G.

Let

B =


a11 − ρ1 a12 a13 ζ1 0

a21 a22 − ρ2 a23 0 ζ2
a31 a32 a33 0 0
ρ1 0 0 −ζ1 0
0 ρ2 0 0 −ζ2

. (3)
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Proposition 1. Let 3× 3 matrix A be a Jacobian matrix of system without quiescence phase and
we also define

a1 = −tr(A) = −a11 − a22 − a33,

a2 = a11a22 + a11a33 + a22a33 − a23a32 − a12a21 − a13a31,

a3 = −det(A).

(4)

The matrix A in (2) is stable if and only if

tr(A) < 0, det (A) < 0 and a2 > 0. (5)

The above Proposition 1 is simply a reformulation of the Routh-Hurwitz criteria (see de-
tails in [11,37,38]). We now find a criteria for stability of B under the following proposition.

Proposition 2. The following three statements are equivalent for the matrix B above:

• Statement 1: The matrix B in (3) is stable for all ρ1, ρ2, ζ1, ζ2 > 0.

• Statement 2 : b1 > 0, b2 > 0, b3 > 0, b4 > 0, b5 > 0, b1b2b3 > b2
3 + b2

1b4,
(b1b4 − b5)(b1b2b3 − b2

3 − b2
1b4) > b5(b1b2 − b3)

2 + b1b2
5 for all ρ1, ρ2, ζ1, ζ2 > 0.

• Statement 3: det(A) < 0, tr(A) ≤ 0, a2 > 0, a11 ≤ 0, a22 ≤ 0, a33 ≤ 0,
a13a31 ≤ a11a33, a23a32 ≤ a22a33.

The above statements are technically equivalent in the sense that for the system in (1) to
be stable it must satisfy the given statements. We prove that statement 1 implies statement 2,
statement 2 implies statement 3 and statement 3 implies statement 1. This proposition is a
generalisation of the theorem in [11] and we use the same method as in [11] (see Appendix B
for the proof of the Proposition 2 above, as we prove the stability of a generic matrix B
as defined in (3)). The conditions in statement 3 of the above proposition can be used to
prove that the endemic equilibrium of (1) is locally asymptotically stable. Which means
that if the system undergoes a perturbation (the system is set not too far away from its
equilibrium) then the system eventually reaches its equilibrium. The local stability is not as
strong as global stability, the latter meaning that the system returns to it equilibrium after
whatever perturbation (without restriction). Note that we see the effect of local stability
of the equilibrium solutions in the stochastic simulations using Gillespie’s algorithm, as
the realisations (sample paths) remain within the domain of attraction of the deterministic
endemic equilibrium (Figure 1a,b).

As mentioned, the statement 2 may sometimes be hard to apply, thus as an alternative,
one can use statement 3 to show that (1) is locally asymptotically stable. This is relatively easy
as the dimension of the system is now reduced to 3× 3, so that it is possible to compute the
Jacobian matrix of the system without quiescence (A5) described in Appendix C to obtain
the matrix A in (2). Then one can test the conditions described in statement 3 above. Once
those conditions are satisfied then the larger system (1) is also locally asymptotically stable.
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(a) (b)

Figure 1. Numerical simulations of the deterministic model (1) compared with stochastic simulation
using Gillespie’s algorithm. In (a), the initial population size is H = 1000, I1 = 100, I2 = 100,
Q1 = Q2 = 50. The values of the parameters are symmetrical; β1 = β2 = 0.005, Λ = 1000,
d = 0.5, ν1 = ν2 = 0.3, γ1 = γ2 = 0.003, ε1 = ε2 = 0.6, ζ1 = ζ2 = 0.7, ρ1 = ρ2 = 0.7. While in (b),
the initial population size is H = 100, I1 = 10, I2 = 10, Q1 = Q2 = 5. The values of the parameters
are asymmetrical; β1 = 0.005, β2 = 0.0005, Λ = 100, d = 0.3, ν1 = 0.3, ν2 = 0.003, γ1 = γ2 = 0.003,
ε1 = 10, ε2 = 50, ζ1 = 0.2, ζ2 = 0.4, ρ1 = 0.4, ρ2 = 0.1.

3. Stochastic Analysis
3.1. Transition Probabilities

This section defines a stochastic version to the deterministic model as described in
Equation (1) of Section 2.1. We add stochasticity occurring at any of the possible transition of
individuals between classes (birth and death). The transition probabilities of jumping from
one state (e.g., infected quiescent) to the another state (e.g., infected) are defined bellow.
We choose ∆t very small so that during this time interval only one event occurs. The
proportion of healthy population is H, the proportion of infected by parasite 1 population
is I1, the proportion of infected by parasite 2 population is I2, the proportion of population
in quiescence compartment infected by parasite 1 is Q1 and the proportion of population
in quiescence compartment infected by parasite 2 is Q2. The possible changes are either
H + 1, H − 1, I1 + 1, I1 − 1, I2 + 1, I2 − 1, Q1 + 1, Q1 − 1, Q2 + 1, Q2 − 1 or no change at all.
Therefore, our stochastic process is a birth and death process. The one step transition
probabilities are given in Table 1.

3.2. Stochastic Simulations

In order to test the validity of our assumptions to analyse the stochastic system, we
used Gillespie’s algorithm [39–41] to generate stochastic realisations/sample paths of the
birth and death processes (Figure 1a,b). In (Figure 1a,b), the stochastic trajectories fluctuate
around the deterministic equilibrium as predicted by Equation (1). Please note that in
(Figure 1a) there are only three curves in the deterministic trajectories while there are five
in the stochastic realisation. This is to due the fact that we chose symmetric parameter
values of the model, so I1 = I2 and Q1 = Q2 in the deterministic setting, but not in the
stochastic version.
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Table 1. Transitions rates for the quiescence model 1.

Type Transition Rate

Birth of healthy host H (Ht, I1t, I2t, Q1t, Q2t)→ (Ht + 1, I1t, I2t, Q1t, Q2t) Λ∆t + o∆(t)
Natural death of H (Ht, I1t, I2t, Q1t, Q2t)→ (Ht − 1, I1t, I2t, Q1t, Q2t) dH∆t + o∆(t)
Infection of H by I1 (Ht, I1t, I2t, Q1t, Q2t)→ (Ht − 1, I1t + 1, I2t, Q1t, Q2t) β1HI1∆t + o∆(t)
Infection of H by I2 (Ht, I1t, I2t, Q1t, Q2t)→ (Ht − 1, I1t, I2t + 1, Q1t, Q2t) β2HI2∆t + o∆(t)

Death of I1 (Ht, I1t, I2t, Q1t, Q2t)→ (Ht, I1t − 1, I2t, Q1t, Q2t) (d + γ1)I1∆t + o∆(t)
Death of I2 (Ht, I1t, I2t, Q1t, Q2t)→ (Ht, I1t, I2t − 1, Q1t, Q2t) (d + γ1)I2∆t + o∆(t)

Recovery I1 & replacement with H (Ht, I1t, I2t, Q1t, Q2t)→ (Ht + 1, I1t − 1, I2t, Q1t, Q2t) ν1 I1∆t + o∆(t)
Recovery I2 & replacement with H (Ht, I1t, I2t, Q1t, Q2t)→ (Ht + 1, I1t1, I2t − 1, Q1t, Q2t) ν2 I2∆t + o∆(t)

Immigration to I1 (Ht, I1t, I2t, Q1t, Q2t)→ (Ht, I1t + 1, I2t, Q1t, Q2t) ε1∆t + o∆(t)
Immigration to I2 (Ht, I1t, I2t, Q1t, Q2t)→ (Ht, I1t, I2t + 1, Q1t, Q2t) ε2∆t + o∆(t)

Go quiescent I1 & birth of Q1 (Ht, I1t, I2t, Q1t, Q2t)→ (Ht, I1t − 1, I2t, Q1t + 1, Q2t) ρ1 I1∆t + o∆(t)
Go quiescent I1 & birth of Q1 (Ht, I1t, I2t, Q1t, Q2t)→ (Ht, I1t, I2t − 1, Q1t, Q2t + 1) ρ2 I2∆t + o∆(t)

Wake-up Q1 & replacement with I1 (Ht, I1t, I2t, Q1t, Q2t)→ (Ht, I1t + 1, I2t, Q1t − 1, Q2t) ζ1Q1∆t + o∆(t)
Wake-up Q2 & replacement with I2 (Ht, I1t, I2t, Q1t, Q2t)→ (Ht, I1t, I2t + 1, Q1t, Q2t − 1) ζ2Q2∆t + o∆(t)

Natural death of Q1 (Ht, I1t, I2t, Q1t, Q2t)→ (Ht, I1t, I2t, Q1t − 1, Q2t) dQ1∆t + o∆(t)
Natural death of Q2 (Ht, I1t, I2t, Q1t, Q2t)→ (Ht, I1t, I2t, Q1t, Q2t − 1) dQ2∆t + o∆(t)

3.3. Master Equation

The forward Kolmogorov differential equation also known as Master Equation, de-
scribes the rate of change of these probabilities is given in Table 1. The master equation
describes the evolution of the disease individuals at the early times of the infection. To
understand the long term dynamics, we need to derive its corresponding Fokker-Planck
equation.

Let p(i, j, k, l, m)(t) = Prob{H(t) = i, I1(t) = j, I2(t) = k, Q1(t) = l, Q2(t) = m}, then

dp(i,j,k,l,m)

dt
=Λp(i−1,j,k,l,m) + d(i + 1)p(i+1,j,k,l,m) + β1(i + 1)(j− 1)p(i+1,j−1,k,l,m)

+ (d + γ1)(j + 1)p(i,j+1,k,l,m) + β2(i + 1)(k− 1)p(i+1,j,k−1,l,m)

+ (d + γ2)(k + 1)p(i,j,k+1,l,m) + ν1(j + 1)p(i−1,j+1,k,l,m) + ν2(k + 1)p(i−1,j,k+1,l,m)

+ ε1 p(i,j−1,k,l,m) + ε2 p(i,j,k−1,l,m) + ρ1(j + 1)p(i,j+1,k,l−1,m) + ρ2(k + 1)p(i,j,k+1,l,m−1)

+ ζ1(l + 1)p(i,j−1,k,l+1,m) + ζ2(m + 1)p(i,j,k−1,l,m+1)

+ d(l + 1)p(i,j,k,l+1,m) + d(m + 1)p(i,j,k,l,m+1)

−
[
Λ + di + β1ij + (d + γ1)j + β2ik + (d + γ2)k + ν1 j + ν2k

+ ε1 + ε2 + ρ1 j + ρ2k + ζ1l + ζ2m + dl + dm
]

p(i,j,k,l,m)

(6)

This master Equation (6) is then used to work out Kramers-Moyal expansion that led to
the derivation of the Fokker-Planck equation below.

3.4. Fokker-Planck Equation of the Model

To understand the long term dynamics of the master Equation (6), we need to derive
the corresponding Fokker-Planck equation. The Fokker-Planck equation describes further
the rate of change of transitions probabilities described in Table 1. We can also find the long
term distribution of variables.

Now, let

p(i, j, k, l, m) =
∫ ih+ h

2

ih− h
2

∫ jh+ h
2

jh− h
2

∫ kh+ h
2

kh− h
2

∫ lh+ h
2

lh− h
2

∫ mh+ h
2

mh− h
2

u(x1, x2, x3, x4, x5)dx1dx2dx3dx4dx5 + o(h6),

let also x1 = ih, x2 = jh, x3 = kh, x4 = lh, x5 = mh and h = 1
N . We then performed

Kramers-Moyal expansion to derived the following Fokker-Planck equation which is given
as follows.
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∂tu(x1, . . . , x5, t) = −∂x1{hλ− dx1 − β1x1x2 − β2x1x3 + ν1x2 + ν2x3}u(x1, . . . , x5, t)

−∂x2{β1x1x2 − (d + γ1)x2 − ν1x2 − ρ1x2 + ζ1x4 + ε1}u(x1, . . . , x5, t)

−∂x3{β2x1x3 − (d + γ2)x2 − ν2x2 − ρ2x3 + ζ2x5 + ε2}u(x1, . . . , x5, t)

−∂x4{ρ1x2 − ζ1x4 − dx4}u(x1, . . . , x5, t)

−∂x5{ρ2x3 − ζ2x5 − dx5}u(x1, . . . , x5, t)

+
h
2

∂x1x1{hλ + dx1 + β1x1x2 + β2x1x3 + ν1x2 + ν2x3}u(x1, . . . , x5, t)

+
h
2

∂x2x2{β1x1x2 + (d + γ1)x2 + ν1x2 + ρ1x2 + hε1}u(x1, . . . , x5, t)

+
h
2

∂x3x3{β2x1x3 + (d + γ2)x3 + ν2x3 + ρ2x3 + hε2}u(x1, . . . , x5, t)

+
h
2

∂x4x4{ρ1x2 + ζ1x4 + dx4}u(x1, . . . , x5, t)

+
h
2

∂x5x5{ρ2x3 + ζ2x5 + dx5}u(x1, . . . , x5, t)

−h∂x1x2{β1x1x2 + ν1x2}u(x1, . . . , x5, t)

−h∂x1x3{β2x1x3 + ν1x3}u(x1, . . . , x5, t)

−h∂x2x4{ρ1x2 + ζ1x4}u(x1, . . . , x5, t)

−h∂x3x5{ρ2x3 + ζ2x5}u(x1, . . . , x5, t)

(7)

3.5. Linear Transformation of the Fokker-Planck Equation

In order to solve the above Fokker-Planck Equation (7), we use the so-called asymptotic
method (see for example [42]). The principle is to transform the multivariate Fokker-Planck
equation to a linear Fokker-Planck equation which is linearised around the stationary state
of the deterministic system (1). The solution of the linear Fokker-Planck is found to be
normally distributed, the solution is given in the following two theorems (see chapter
8 of [43]). We numerically checked this results using our stochastic simulations and the
comparison is shown in (Figure 2).

Figure 2. Histogram generated from simulations using Gillespie’s algorithm is compared to the
probability density with mean and variance obtained from simulation using Gillespie’s algorithm and
the probability density of normal distribution with mean and variance obtained from the theory of I1,
infected by parasite 1 compartment at time = 300 of the stochastic model with quiescence. The initial
population sizes of the model are; I1 = 50, 000, I2 = 10, 000, Q1 = 5000, Q2 = 5000. The parameters
of the model are β1 = β2 = 0.05, Λ = 1000, d = 0.5, ν1 = ν2 = 0.3, γ1 = γ2 = 0.003, ζ1 = ζ2 = 0.1,
ρ1 = ρ2 = 0.7, ε1 = ε2 = 10.
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Theorem 1. The linear multivariate Fokker-Planck of (7) can be written as follows

∂P(y, t)
dt

= −
5

∑
ij

Mij
∂

∂yi
yiP(y, t) +

1
2

5

∑
ij

Nij
∂2

∂yi∂yj
P(y, t) (8)

where y = (y1, . . . , y5), Nij is symmetric and positive definite, its solution is given as

P(y, t) = (2π)
1
2 det(Σ)

1
2 exp(−1

2
yΣ−1yT)

with
Σ−1 = 2

∫ ∞

0
e−MtNe−Mtdt.

The matrices N and M are defined explicitly in Appendix D.

Theorem 2. For every matrix N which is symmetric and positive-definite, there a unique solution
Σ−1 to the following equation known as Lyapunov equation

MΣ−1 + Σ−1MT = N

where Σ−1 is symmetric, positive-definite and equal to

Σ−1 =
∫ ∞

0
e−MtNe−MT tdt.

Theorem 2 which is known as Lyapunov equation [44] allows us to compute the
covariance matrix as found in the normal distribution shown in Theorem 1 fairly easily,
this is due to the fact that matrices A and B are constant matrices, the only unknown is the
Σ−1 matrix. The covariance matrix is of dimension 5 and tells us the degree at which each
compartments namely healthy, infected by strain 1 and 2 and quiescence class 1 and 2 go
together i.e., the relationship between each class. We use MATLAB to perform numerical
calculations for the analytical solutions of the covariance matrix Σ−1 .

We also computed 10,000 independent stochastic realisations using Gillespie’s algo-
rithm. The probability histogram was plotted in (Figure 2) for the number of infected
individuals by strain 1. This distribution is then compared with the probability density
function of the normal distribution with mean and variance obtained from both Gilliespie’s
algorithm and the normal approximation method using linear multivariate Fokker-Planck
Equation (7). The results are consistent which further validates our analytical result ob-
tained using linear Fokker-Planck.

4. Covariance Matrix

In order to understand the effect of quiescence in our stochastic model, we need to
compare the system with quiescence to that of the system without quiescence in terms of
the number of infected by both parasites. To do the comparative study we need to collapse
the covariance matrix for both models with and without quiescence so that we only have 2
covariance matrix of the infected individuals. For the model with quiescence, this is done
by adding the number of individuals in the infected class and the number of individuals in
the quiescence stage to obtain a total number of infected individuals (irrespective of their
quiescence status). For the system without quiescence, it is straight forward, it is achieved
by isolating the number of individuals in the infected compartment. This step is justified
below, and the following results indicate how to compute the covariance matrix [45,46].
The obtained covariance matrix is denoted as the collapsed covariance matrix.
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Let Y ∼ Nr(µ, Σ) be r-variate multivariate normal distribution with mean µ and
variance Σ, where

Y =


Y1
Y2
...

Yr

 µ =


µ1
µ2
...

µr

 Σ =


σ1,1 σ1,2 · · · σ1,r
σ2,1 σ2,2 · · · σ2,r

...
...

. . .
...

σr,1 σm,2 · · · σr,r


Any q linear combination of the Yi, say A′Y, is (q-variate) multivariate normal. Let

A′Y =



a11Y1 + a12Y2 + · · ·+ a1rYr

a21Y1 + a22Y2 + · · ·+ a2rYr

· · ·+ · · ·+ · · ·+ . . .

aq1Y1 + aq2Y2 + · · ·+ aqrYr


,

then
A′Y ∼ Nq(A′µ, A′ΣA). (9)

Numerical examples of the collapsed covariance matrix are shown for various parame-
ter combinations. The collapsed covariance matrix of the model with quiescence is denoted
as Eq and the collapsed covariance matrix of the model without quiescence as Ewq. In an
effort to understand the effect of quiescence on the stochastic process, we consider two
different cases of parameter combinations: symmetric where the parameter values of strain
1 and 2 are exactly the same (Examples 1–3), and non-symmetric where the parameter
values of stain 1 and 2 are different (for example ρ1 6= ρ2, Examples 4–7).

Example 1. We fix the following parameter values: β1 = β2 = 0.005, d = 0.5, Λ = 1000, ν1 =
ν2 = 0.3, ρ1 = ρ2 = 0.7, γ1 = γ2 = 0.003, ζ1 = ζ2 = 0.1, ε1 = ε2 = 0.6 and the initial
population sizes are H = 50, 000, I1 = 10, 000, I2 = 10, 000, Q1 = 5000, Q2 = 5000, time = 300.
We obtain the following collapsed covariance matrices:

Eq1 =

(
683, 640 −682, 500
−682, 500 683, 640

)
, Ewq1 =

(
298, 630 −297, 560
−297, 560 298, 630

)
.

Example 2. We use the same parameter values as in example 1 only with a lower quiescence rate
ρ1 = ρ2 = 0.4

Eq2 =

(
655, 170 −654, 060
−654, 060 655, 170

)
, Ewq2 = Ewq1

We show in Example 1 that the model with quiescence exhibits a larger variance compared
with the model without quiescence. When comparing Examples 1 and 2, we observe the effect of
quiescence on reducing the variance of the number of infected individuals. When the rate of entering
quiescence stage (ρ) decreases, the variance of the number of infected individuals decreases (Eq1
versus Eq2).

Example 3. The parameter and initial values are identical to Example 1 except that the disease
transmission rates are now 10 times lower β1 = β2 = 0.0005:

Eq3 =

(
14.81 −0.0388
−0.0388 14.81

)
, Ewq3 =

(
27, 651 −26, 443
−26, 443 27, 651

)
.

In Example 3, we observe the effect of decreasing the transmission rate in reducing the variance
and covariance of the collapsed covariance matrix. In contrast to example 1, in Example 3, we find
that the model with quiescence has less variance compared to the model without quiescence.
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We describe the effect of quiescence on variance by comparing Examples 1 and 3. In contrast
to the absence of quiescence, quiescence generates two effects under low transmission rate: (1) a
decrease of the number of infections, and (2) a decrease in the probability of extinction (in a small
population stochasticity is important). Based on our simulations, it is indeed more likely for the
parasite to go extinct in Example 3 than in Example 1. Therefore, both effects of quiescence in
Example 3 concur to reduce the variance compared to the absence of quiescence. In Example 1,
the population size of each parasite is high enough to be well approximated by a mean-field ODE,
quiescence increases the number of infections and quiescence events produce additional randomness
and simply inflate the variance (compared to the absence of quiescence).

Example 4. We use the same parameter values as in example 1 only with asymmetric rates of
quiescence ρ1 = 0.3, ρ2 = 0.5

Eq4 =

(
2251.9 −57.42
−57.42 64.35

)
, Ewq4 = Ewq1

Now that we use asymmetrical rates of entering quiescence between the two strains in Example
4, the variance are much decreased compared to Examples 1 and 2. This further reduction in variance
occurs because of the competition amongst the two parasite types in the model with quiescence
(which was absent because of symmetrical rates in Examples 1–3). In other words, because the two
parasite strains have different quiescence rates, there is also competition between them to infect
host individuals. Furthermore, the strain with the largest rate of entering the quiescence stage (ρ)
exhibits a smaller variance than the strain with a lower quiescent rate. By analogy, we call this
phenomenon as moving average behaviour (see Section 5).

Example 5. We use the same parameter values as in Example 1 only with asymmetric rates of
entering ρ1 = 0.8, ρ2 = 0.4 and exiting ζ1 = 0.4, ζ2 = 0.8 quiescence.

Eq5 =

(
19.17 −15.07
−15.07 2187.1

)
, Ewq5 = Ewq1.

In Example 5, we investigate the influence of asymmetric rates of entering and exiting the
quiescent stage on the variance in infected individuals. We set the rate of entering quiescence of
strain 1 to be larger than rate of strain 2, while the rate of exiting quiescence of strain 1 is smaller
than that of strain 2. We still observe the so-called moving average effect, that is, the strain with the
largest rate of entering the quiescence has the smaller variance. This example shows that entering
quiescence has significant effect in changing the dynamics of the system.

Example 6. We use the same parameter values as in Example 1 only with asymmetric rates of
entering ρ1 = 0.8, ρ2 = 0.4 and exiting ζ1 = 0.8, ζ2 = 0.4 quiescence.

Eq6 =

(
164.04 −151.92
−151.92 2332.6

)
, Ewq6 = Ewq1.

In Example 6, we take the rate of entering and exiting quiescence to be the same for each
strain, that is, ρ1 = 0.8 = ζ1 = 0.8, ρ2 = 0.4 = ζ2 = 0.4, to ascertain if the moving average is
determined by the rate of entering quiescence or the longest quiescence time. This example confirms
that the moving average is determined by the rate of entering quiescence. We note by this example
that rate of exiting quiescence stage doesn’t effect the dynamic significantly as far as the moving
average is concern.

Example 7. In Example 7, we increase the disease transmission rates and decrease the birth and
death rate (compared to Example 1), while we assume asymmetric rates of entering quiescence (as in
Example 5) but symmetric rates of exiting quiescence as well as the immigration rate. The following
values are used β1 = β2 = 0.05, d = 0.4, Λ = 100, ν1 = 0.03, ν2 = 0.3, ρ1 = 0.8, ρ2 = 0.4, γ1 =
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γ2 = 0.03, ζ1 = ζ2 = 0.1, ε1 = ε2 = 0.6 and the initial population sizes are as in Example 1. We
obtain the following collapsed covariance matrices:

Eq6 =

(
967.63 −927.22
−927.22 1151.1

)
, Ewq6 =

(
245.56 −3.6384
−3.6384 5.8915

)
.

From Example 7, here we use asymmetric values of parameters in both models, we
see the influence of quiescence in reducing the variance of the collapsed covariance matrix
whenever one of the rates of entering quiescence is high. In addition, we also see the
effect of strain competition in the model without quiescence in reducing the variance of the
number of infected individuals. In the model with quiescence we take the recovery rate of
infected individuals by strain 1 to be 10 times smaller than those infected by strain 2, and
observe our moving average effect.

As additional verification, we draw contour plots of the joint density of infected
individuals by strain 1 and 2 in (Figure 3a,b) which compare the variance in the number of
infected individuals by both strains. We confirm that the joint distribution of the number
of infected individuals by parasite strain 1 and 2 have a smaller surface area, that is with
less variance, under the model with quiescence than the absence of quiescence. In all
examples, the values of the covariance (off-diagonal elements) are negative, and we observe
this effect also in the contours (Figure 3a,b) because the number of infected individuals
by parasite 1 and 2 are negatively correlated. This negative correlation is a result of
the competition between the parasite types. We finally analyse the change in variance
(Figure 4a) and covariance (Figure 4b) of the collapsed covariance matrix as a function of ρ1
and ρ2 (rates of entering quiescence). The effect of the transmission rates β1 and β2 is here
again visible: when β1 = β2 are low, high rates of entering quiescence depletes the infected
compartments so that the number of infected drops down and the infection decreases,
which in turn reduces the variance. When β1 = β2 are high, there are enough infected
to keep the infection spreading despite the rate of quiescence, hence the increases in the
variance (under a fixed values of ζ1 and ζ2 (Figure 4a,b). The behaviour of the covariance
is reversed as the infected classes are negatively correlated. Based on the examples above,
increasing ζ1 and ζ2 would results in decreasing the difference between the variance (as
well as for the covariance) for the different transmission rates β1 and β2.
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Figure 3. Contour plots of the joint density of infected individuals by strain 1 and 2 based on
simulations for (a) Example 4, and (b) Example 5 considered in the text. The x-axis is the number
of infected individuals of strain 1 while the y-axis is the number of infected individuals by strain 2
based on the parameters stated in each example.
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Figure 4. Effect of quiescence, rates of entering the quiescence phase ρ1 = ρ2, and of transmission rates
β1 = β2 on the (a) variance of parasite 1, and (b) covariance of parasite 1 of the collapsed covariance
matrix. We use the following parameter values (symmetrical case): d = 0.5, Λ = 1000, ν1 = ν2 =

0.3, γ1 = γ2 = 0.003, ζ1 = ζ2 = 0.1, ε1 = ε2 = 10 and the initial population sizes are H = 50, 000,
I1 = 10, 000, I2 = 10, 000, Q1 = 5000, Q2 = 5000, time = 300. The blue line is for β1 = β2 = 0.0015,
and the red line for β1 = β2 = 0.3125.

5. Discussion

In this study we aim to understand the effect of quiescence on the spread of infectious
disease and with competition between parasite strains. Our study shows that introduc-
ing the pathogens ability to switch between an active and inactive (quiescence) phase
can significantly impact the stochasticity in the system. In our system, when the inva-
sion/immigration rates are turned off, one of the parasite type becomes extinct. However,
when the invasion/immigration rates are turned on, coexistence of host and both parasite
types is possible. If both strains show equal rates of infection, transmission and quiescence,
there is no real competition and the system behaves as if only one parasite would be present.
On other hand, when the parasite types have different characteristics, there is competition
between them which generates various epidemiological dynamics.

Our collapsed covariance measure quantifies the infection load at the steady state
of the system with and without quiescence. We measure this infection load for various
parameter combinations of interest to understand the impact of quiescence on the stochas-
tic process. Under symmetric quiescence rates and high transmission rates, quiescence
increases the variance in infected individuals, while the quiescence reduces the variance in
infected when transmission rates are low. When considering asymmetry in quiescence rates
between parasite strains, we uncover a special phenomenon which we call by analogy to
the moving average behaviour. Namely, the strain with the high rate of entering quiescence
serves as moving average for the whole parasite population and buffers the effect of the sec-
ond less quiescent strain. In other words, the strain with the higher quiescence determines
the intensity of the noise in the stochastic infection process determining the variance of the
number of infected individuals (lower variance under low disease transmission, higher
variance under high disease transmission). Moving average is a well known concept in
sound, signal, and image processing. In sound processing for example, moving average
also known as low pass filter, filters the frequencies so that only low frequencies can be
heard. The sound of noisy wave or distorted signal, is being smoothens by applying a
moving average processing function because it assumes the areas of high frequencies as
noise. We are not aware of the use of moving average in the field of disease epidemiology,
and hence introduce it here as a consequence of quiescence in parasite. When different
strains of parasite do show different quiescent rates, the competition between them under
a stochastic epidemiological process reduces the number of infected individuals, as well
as the virulence of the disease (number of host death). We theoretically predict that under
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competition between parasite types, the strain with the lower rate of entering quiescence
gets fixed, however, if coexistence can be maintained by influx of parasite strains from
outside, quiescence has the beneficial effect to reduce the stochasticity of the system. An ex-
tension for our work is to investigate if quiescence itself can evolve in such epidemiological
setup as a bet-hedging strategy reducing stochasticity in transmission rates.

Due to the difficulty in the existing methods to analyse the stability of 5× 5 matrix, we
developed here a criterion for the study of stability of the system with quiescence for the
deterministic system. Proposition 2 is important because it reduces the dimension of the
system from 5 to 3. It is well known that studying the stability of the system with higher
dimension is hard, often times impossible. While system with low dimension is easy and
straight forward to study its stability. Thus the reduction in Proposition 2 is of significant
importance that removes the difficulties of analysing matrix with high dimension.

We then extended our model to a stochastic version. We show that the analytic
solution of the linear Fokker-Planck equation is normally distributed with mean around the
equilibrium solution. We confirm this results by computing 10,000 independent stochastic
realisations using Gillespie’s algorithm (Figure 2). The probability histogram was plotted
at a time equals to 300 generations. This distribution is then compared with the probability
density function of the normal distribution with mean and variance as obtained from both
Gilliespie’s algorithm and the normal approximation method using linear multivariate
Fokker-Planck Equation (7). The results are consistent which further validates our analytical
result obtained using the linear Fokker-Planck equation.

As revealed by a wealth of recent studies on plant or animal, microbiomes are com-
posed of multiple species and multiple strains per species. The composition of species
and/or strains is governed by antagonistic, mutualistic or neutral inter- and intra-specific in-
teractions along with stochastic processes such as birth and death, extinction-recolonization
and migration of strains/species [see [30,47]]. We speculate that our results on quiescence
should be affecting the dynamics in these multi-species systems. Moreover, many microbe,
especially human parasites, enter quiescence stage as a mechanism of resistance against
antibiotics [48]. This has important consequences for the management of infectious dis-
eases. Furthermore, host bacteria can also enter quiescence upon contact with viruses [9],
which can lead to changes in the expected population dynamics of the bacterial and virus
populations [49]. It is therefore of paramount importance to understand the influence of
the quiescence on the population of hosts and parasites, especially as coevolution between
antagonistic species can drive the evolution of quiescence/dormancy [10].

6. Conclusions

We show in our study that quiescence reduces stochasticity and reduces the noise
under strain competition. This principle is general enough and the same idea should
be investigated for a model of bacteria submitted to stochasticity of antibiotic treatment.
We speculate that quiescence is not only a bet-hedging strategy, but also influences the
stochasticity of the population behaviour, namely the population size of bacteria becoming
more stable in time and insensitive to antibiotic treatment. Our results also call for more
in depth investigations of the quiescence behaviour upon infection, of the length and
determinants of the quiescent stages and the effect of quiescence on stochastic disease
transmission in human diseases.
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Appendix A. Equilibrium Solution of the Model with Quiescent

From Equations (4) and (5) of system (1), the quiescence compartments, we find the
equilibrium solutions and is given as follows

Q∗1 =
ρ1 I1

ζ1 + d,
, Q∗2 =

ρ2 I2

ζ2 + d
. Let c1 =

ρ1

ζ1 + d
, c2 =

ρ2

ζ2 + d
,

then the equilibrium solutions of the infected compartment (Equations (1) and (2) of system
(1)) are given by

I∗1 =
ε1

d + γ1 + ν1 + ρ1 − ζ1c11 − β1H∗
, I∗2 =

ε2

d + γ2 + ν2 + ρ2 − ζ2c12 − β2H∗
.

Now we need to calculate the equilibrium solution in the healthy compartment, to do
so we need the following propositions.

Proposition A1. For ε1, ε2 > 0, there is at least one non-negative equilibrium solution in the
healthy compartment.

Proof. Substituting the equilibrium solutions of the quiescence and infected compartments
as calculated above in the first equation of the system (1), we have

P(H) = Λ(d + γ1 + ν1 + ρ1 − ζ1c1 − β1H)(d + γ2 + ν2 + ρ2 − ζ2c2 − β2H)− β1Hε1(d +
γ2 + ν2 + ρ2 − ζ2c2 − β2H)− β2Hε2(d + γ1 + ν1 + ρ1 − ζ1c1 − β1H)− dH(d + γ1 + ν1 +
ρ1 − ζ1c1 − β1H)(d + γ2 + ν2 + ρ2 − ζ2c2 − β2H) + ν1ε1(d + γ2 + ν2 + ρ2 − ζ2c2 − β2H) +
ν2ε2(d + γ1 + ν1 + ρ1 − ζ1c1 − β1H),

then

P(0) = Λ(d + γ1 + ν1 + ρ1 − ζ1c1)(d + γ2 + ν2 + ρ1 − ζ1c1) + ν1ε1(d + γ2 + ν2 + ρ2 −
ζ2c2) + ν2ε2(d + γ1 + ν1 + ρ1 − ζ1c1) > 0,

because the terms inside brackets are all positive, and P(H)→ −∞, then by intermediary
value theorem there exist H∗ such that

P(H∗) = 0, H∗ > 0

Please observe that other compartments (I∗1 , I∗2 , Q∗1 , Q∗2) for H∗ are non-negative, since

P
(d + γ1 + ν1 + ρ1 − ζ1c1

β1

)
< 0, =⇒ H∗ ≤ d + γ1 + ν1 + ρ1 − ζ1c1

β1
=⇒ I∗1 ≥ 0,

by the same argument, we show that I∗2 > 0. Since I∗1 , I∗2 > 0, then Q∗1 , Q∗2 > 0

In the above Proposition A1, we find a polynomial of degree three in which we use
intermediate value theorem to show that the polynomial has a solution.

Uniqueness of The Equilibrium Solution
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We introduce the terms a, b, c, d defined bellow, with this notation, we obtain the
following proposition

Proposition A2. If b2 < 3ac , then there is a unique non-negative equilibrium solution of P(H).

Proof. Let
P(H) = aH3 + bH2 + cH + d = 0,

dP
dH

= 3aH2 + 2bH2 + c = 0. (A1)

The solution of quadratic Equation (A1) is

H =
−(2b)±

√
(2b)2 − 4(3a)c

2(3a)
(A2)

where
a = −3β1β2d,

b = 2dβ1ρ2 + 2dβ2ρ1 + 2dβ1ν2 + 2dβ1ν1 − 2c12dβ1ζ2 − 2c11dβ2ζ1 + 2β1β2ε2 + 2β1β2ε1 +
2dβ1γ2 + 2dβ1γ1 + 2Λβ1β2 + 2d2β2 + 2d2β1, c = −β1ε1ν2 − Λβ1ν2 − β2ε1ν1 − Λβ2ν1 −
dρ1ρ2 − dν1ρ2 + c11dζ1ρ2 − β1ε1ρ2 − dγ1ρ2 −Λβ1ρ2 − d2ρ2 − dν2ρ1 + c12dζ2ρ1 − β2ε2ρ1 −
dγ2ρ1 − Λβ2ρ1 − d2ρ1 − dν1ν2 + c11dζ1ν2 − β1ε2ν2 − d2ν2 + c12dζ2ν1 − β2ε2ν1 − dγ2ν1 −
d2ν1 − c11c12dζ1ζ2 + c12β1ε1ζ2 + c12dγ1ζ2 + c12Λβ1ζ2 + c12d2ζ2 + c11β2ε2ζ1 + c11dγ2ζ1 +
c11Λβ2ζ1 + c11d2ζ1− β2γ1ε2− dβ2ε2− β1γ2ε1− dβ1ε1− dγ1γ2−Λβ1γ2− d2γ2−Λβ2γ1−
d2γ1 −Λdβ1 − d3, choose parameter values so that

b2 < 3ac,

then the quadratic Equation (A2) does not have real solution.

In the above proof, we use calculus to find the maximum value of the polynomial. The
analysis shows that the polynomial does not have a maximum or minimum value at the
specified interval. This shows that the polynomial has only one root by Proposition A2
(existence of a solution) above.

Appendix B. Proof of Proposition 2

We now prove Proposition 2 stated in Section 2.3 above regarding the stability of the
matrix B defined in (3).

Proof. The characteristics polynomial of B is given by

λ5 + b1λ4 + b2λ3 + b3λ2 + b4λ + b5 = 0
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where

b1 = ρ1 + ρ2 + ζ1 + ζ2 − tr(A)

b2 = ρ1ρ2 + ρ1ζ1 + ρ2ζ1 + ζ1ζ2 − ζ1tr(A)− ζ2tr(A)− (a11 + a33)ρ2 − (a22 + a33)ρ1 + a2

b3 = ζ1a2 + ζ2a2 + (a11a33 − a13a31)ρ2 + (a22a33 − a23a32)ρ1 − det(A)− ζ1ζ2tr(A)

− (a22 + a33)ρ1ζ2 − a33ρ1ρ2 − a33ρ2ζ1 − a11ρ2ζ1

b4 = ζ1ζ2a2 + (a22a33 − a23a32)ρ1ζ2 + (a11a33 − a13a31)ρ2ζ1 − (ζ1 + ζ2)det(A)

b5 = −ζ1ζ2det(A)

• Step 1 By Routh-Hurwitz Criterion [11,37,38], the matrix B is stable if and only if the
following conditions hold:

(i) bi > 0 (i = 1, . . . , 5)
(ii) b1b2b3 > b2

3 + b2
1b4

(iii) (b1b4 − b5)(b1b2b3 − b2
3 − b2

1b4) > b5(b1b2 − b3)
2 + b1b2

5

• Step 2
Suppose that for all ρ1, ρ2, ζ1, ζ2 > 0

(iv) b1 > 0

= ρ1 + ρ2 + ζ1 + ζ2 − tr(A) > 0 =⇒ tr(A) ≤ 0
(v) b2 > 0

= ρ1ρ2 + ρ1ζ1 + ρ2ζ1 + ζ1ζ2− ζ1tr(A)− ζ2tr(A)− (a11 + a33)ρ2− (a22 + a33)ρ1 +
a2 > 0

=⇒ tr(A) ≤ 0, a11 ≤ 0, a22 ≤ 0, and a33 ≤ 0
(vi) b3 > 0

= ζ1a2 + ζ2a2 + (a11a33 − a13a31)ρ2 + (a22a33 − a23a32)ρ1 − det(A)− ζ1ζ2tr(A)

− (a22 + a33)ρ1ζ2 − a33ρ1ρ2 − a33ρ2ζ1 − a11ρ2ζ1 > 0

=⇒ det(A) < 0, tr(A) ≤ 0, a11 ≤ 0, a22 ≤ 0,

a33 ≤ 0, a13a31 ≤ a11a33, and a23a32 ≤ a22a33
(vii) b4 > 0

=⇒ ζ1ζ2a2 + (a22a33 − a23a32)ρ1ζ2 + (a11a33 − a13a31)ρ2ζ1 > (ζ1 + ζ2)det(A)

=⇒ det(A) < 0, a13a31 ≤ a11a33, and a23a32 ≤ a22a33
(viii) b5 > 0

= −ζ1ζ2det(A) > 0 =⇒ det(A) < 0

• Step 3:
Assume that det(A) < 0, tr(A) ≤ 0, a2 > 0, a11 ≤ 0, a22 ≤ 0, a33 ≤ 0,

a13a31 ≤ a11a33, a23a32 ≤ a22a33. then for all ρ1, ρ2, ζ1, ζ2 > 0, we have
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(ix) ρ1 + ρ2 + ζ1 + ζ2 − tr(A) = b1 > 0
(x) ρ1ρ2 + ρ1ζ1 + ρ2ζ1 + ζ1ζ2 − ζ1tr(A)− ζ2tr(A)− (a11 + a33)ρ2 − (a22 + a33)ρ1 +

a2 = b2 > 0
(xi) ζ1a2 + ζ2a2 + (a11a33 − a13a31)ρ2 + (a22a33 − a23a32)ρ1 − det(A) − ζ1ζ2tr(A) −

(a22 + a33)ρ1ζ2 − a33ρ1ρ2 − a33ρ2ζ1 − a11ρ2ζ1 = b3 > 0
(xii) ζ1ζ2a2 + (a22a33 − a23a32)ρ1ζ2 + (a11a33 − a13a31)ρ2ζ1 − (ζ1 + ζ2)det(A) = b4 >

0
(xiii) −ζ1ζ2det(A) = b5 > 0
(xiv)

(ρ1 + ρ2 + ζ1 + ζ2 − tr(A))(ρ1ρ2 + ρ1ζ1 + ρ2ζ1 + ζ1ζ2 − ζ1tr(A)− ζ2tr(A)

− (a11 + a33)ρ2 − (a22 + a33)ρ1 + a2)(−det(A) + ζ1a2 + ζ2a2 + (a11a33 − a13a31)ρ2

+ (a22a33 − a23a32)ρ1 − (a22 + a33)ρ1ζ2 − a33ρ1ρ2 − a33ρ2ζ1 − a11ρ2ζ1 − ζ1ζ2tr(A))

− (−det(A) + ζ1a2 + ζ2a2 + (a11a33 − a13a31)ρ2 + (a22a33 − a23a32)ρ1 − (a22 + a33)ρ1ζ2

− a33ρ1ρ2 − a33ρ2ζ1 − a11ρ2ζ1 − ζ1ζ2tr(A))2 − (ρ1 + ρ2 + ζ1 + ζ2 − tr(A))2(−ζ1det(A)

− ζ2det(A) + ζ1ζ2a2 + (a22a33 − a23a32)ρ1ζ2 + (a11a33 − a13a31)ρ2ζ1)

(A3)

= b1b2b3 − b2
3 − b2

1b4 > 0

=⇒ b1b2b3 > b2
3 + b2

1b4.

For the full expansion of Equation (A3) for all ρ1 > 0, ρ2 > 0, ζ1 > 0, ζ2 > 0, see the
wxMaxima output (as online available notebook).

(xv)(
(ρ1 + ρ2 + ζ1 + ζ2 − tr(A))(−ζ1det(A)− ζ2det(A) + ζ1ζ2a2 + (a22a33 − a23a32)ρ1ζ2

+ (a11a33 − a13a31)ρ2ζ1)− (ζ1ζ2det(A))
)(

(ρ1 + ρ2 + ζ1 + ζ2 − tr(A))(ρ1ρ2 + ρ1ζ1

+ ρ2ζ1 + ζ1ζ2 − ζ1tr(A)− ζ2tr(A)− (a11 + a33)ρ2 − (a22 + a33)ρ1 + a2)

(−det(A) + ζ1a2 + ζ2a2 + (a11a33 − a13a31)ρ2

+ (a22a33 − a23a32)ρ1 − (a22 + a33)ρ1ζ2 − a33ρ1ρ2 − a33ρ2ζ1 − a11ρ2ζ1 − ζ1ζ2tr(A))

− (−det(A) + ζ1a2 + ζ2a2 + (a11a33 − a13a31)ρ2 + (a22a33 − a23a32)ρ1 − (a22 + a33)ρ1ζ2

− a33ρ1ρ2 − a33ρ2ζ1 − a11ρ2ζ1 − ζ1ζ2tr(A)))2 − (ρ1 + ρ2 + ζ1 + ζ2 − tr(A))2

− (ρ1 + ρ2 + ζ1 + ζ2 − tr(A))(−ζ1det(A)− ζ2det(A) + ζ1ζ2a2 + (a22a33 − a23a32)ρ1ζ2

+ (a11a33 − a13a31)ρ2ζ1)

)
− (ζ1ζ2det(A))

(
(ρ1 + ρ2 + ζ1 + ζ2 − tr(A))(ρ1ρ2 + ρ1ρ1 + ρ2ζ1 + ζ1ζ2 − ζ1tr(A)− ζ2tr(A)

− (a11 + a33)ρ2 − (a22 + a33)ρ1 + a2)− (−det(A) + ζ1a2 + ζ2a2 + (a11a33 − a13a31)ρ2

+ (a22a33 − a23a32)ρ1 − (a22 + a33)ρ1ζ2 − a33ρ1ρ2 − a33ρ2ζ1 − a11ρ2ζ1 − ζ1ζ2tr(A))
)2

− (ρ1 + ρ2 + ζ1 + ζ2 − tr(A))(−ζ1ζ2det(A))2 > 0

(A4)
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= (b1b4 − b5)(b1b2b3 − b2
3 − b2

1b4)− b5(b1b2 − b3)
2 − b1b2

5 > 0

=⇒ (b1b4 − b5)(b1b2b3 − b2
3 − b2

1b4) > b5(b1b2 − b3)
2 + b1b2

5
For the full expansion of Equation (A4) for all ρ1 > 0, ρ2 > 0, ζ1 > 0, ζ2 > 0, see
the wxMaxima output (as online available notebook).

Appendix C. Description of the Model without Quiescence

In this section we will develop a mathematical model that describes the evolution of
single Host- two parasites with constant recruitment rate. The model without quiescence is
given by these set (system) of ordinary differential equations:

dI1

dt
= β1HI1 − dI1 − γ1 I1 − ν1 I1 + ε1

dI2

dt
= β2HI2 − dI2 − γ2 I2 − ν2 I2 + ε2

dH
dt

= Λ− β1HI1 − β2HI2 − dH + ν1 I1 + ν2 I2

(A5)

Steady State Solution of the System
The analysis of steady state of the the system without quiescence (A5) has the same

steps and similar results as for the system with quiescence.
Transition Probabilities

Table A1. Transitions rates of the model without quiescence (A5).

Type Transition Rate

birth of healthy host H (Ht, I1t, I2t)→ (Ht + 1, I1t, I2t) Λ∆t + o∆(t)
natural death of H (Ht, I1t, I2t)→ (Ht − 1, I1t, I2t) dH∆t + o∆(t)
infection of H by I1 (Ht, I1t, I2t)→ (Ht − 1, I1t + 1, I2t) β1HI1∆t + o∆(t)
infection of H by I2 (Ht, I1t, I2t)→ (Ht − 1, I1t, I2t + 1) β2HI2∆t + o∆(t)

death of I1 (Ht, I1t, I2t)→ (Ht, I1t − 1, I2t) (d + γ1)I1∆t + o∆(t)
death of I2 (Ht, I1t, I2t)→ (Ht, I1t, I2t − 1) (d + γ1)I2∆t + o∆(t)

recovery I1 & replacement H (Ht, I1t, I2t)→ (Ht + 1, I1t − 1, I2t) ν1 I1∆t + o∆(t)
recovery I2 & replacement H (Ht, I1t, I2t)→ (Ht + 1, I1t1, I2t − 1) ν2 I2∆t + o∆(t)

immigration to I1 (Ht, I1t, I2t)→ (Ht, I1t + 1, I2t) ε1∆t + o∆(t)
immigration to I2 (Ht, I1t, I2t)→ (Ht, I1t, I2t + 1) ε2∆t + o∆(t)

Master equation
Let p(i, j, k)(t) = Prob{H(t) = i, I1(t) = j, I2(t) = k}, then

dp(i,j,k)
dt

=Λp(i−1,j,k) + d(i + 1)p(i+1,j,k) + β1(i + 1)(j− 1)p(i+1,j−1,k)

+ (d + γ1)(j + 1)p(i,j+1,k) + β2(i + 1)(k− 1)p(i+1,j,k−1) + (d + γ2)(k + 1)p(i,j,k+1)

+ ν1(j + 1)p(i−1,j+1,k) + ν2(k + 1)p(i−1,j,k+1) + ε1 p(i,j−1,k) + ε2 p(i,j,k−1)

− [Λ + di + β1ij + (d + γ1)j + β2ik + (d + γ2)k + ν1 j + ν2k + ε1 + ε2]p(i,j,k)

(A6)

This master Equation (A6) is then used to work out the Kramers-Moyal expansion that
led to the derivation of the Fokker-Planck equation below.

Derivation of Fokker-Planck Equation
Now, let

p(i, j, k) =
∫ ih+ h

2

ih− h
2

∫ jh+ h
2

jh− h
2

∫ kh+ h
2

kh− h
2

u(x, y, z)dxdydz + o(h4),
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let also x = ih, y = jh, z = kh and h = 1
N . We then performed Kramers-Moyal expansion to

derived the following Fokker-Planck equation which is given as follows.

∂tu(x, y, t) = −∂x{hλ− dx− β1xy− β2xz + ν1y + ν2z}u(x, y, z)

−∂y{β1xy− (d + γ1)y− ν1y + hε1}u(x, y, z)

−∂z{β2xy− (d + γ2)y− ν2y + hε2}u(x, y, z)

+
h
2

∂xx{λ + dx + β1xy + β2xz + ν1y + ν2z}u(x, y, z)

−h∂xy{β1xy + ν1y}u(x, y, z)

+
h
2

∂yy{β1xy + (d + γ1)y + ν1y + ε1}u(x, y, z)

−h∂xz{β2xz + ν2z}u(x, y, z)

+
h
2

∂zz{β2xy + (d + γ1)y + ν2y + ε2}u(x, y, z)

(A7)

Linear Transformation of the Fokker-Planck equation

Theorem A1. The linear Fokker-Planck equation for the above non-linear Fokker-Planck can be
written more compactly as follows

∂P(y, t)
dt

= −
3

∑
ij

Mij
∂

∂yi
yiP(y, t) +

1
2

3

∑
ij

Nij
∂2

∂yi∂yj
P(y, t) (A8)

where y = (x, y, z), Nij is symmetric and positive definite, its solution is give as

P(y, t) = (2π)
1
2 det(Σ)

1
2 exp(−1

2
yΣ−1yT)

with
Σ−1 = 2

∫ ∞

0
e−MtNe−Mtdt.

Theorem A2. For every matrix N which is symmetric and positive-definite, there a unique solution
Σ−1 to the following equation known as Lyapunov equation

MΣ−1 + Σ−1MT = N

where Σ−1 is symmetric, positive-definite and equal to

Σ−1 =
∫ ∞

0
e−MtNe−MT tdt.

The above theorem known as Lyapunov theorem [44] gives us the opportunity to
compute covariance matrix more easily since matrices M and N are constant matrices,
the only unknown is Σ−1 matrix. We use MATLAB to obtain the covariance matrix Σ−1

numerically. The stochastic matrices M and N for the system without quiescence are similar
to those that of the system with quiescence.

Appendix D. Stochastic Matrices of the Linear Fokker-Planck Equation

M =


−d− β1 I∗1 − β1 I∗2 −β1H∗ + ν1 −β1H∗ + ν2 0 0

β1 I∗1 β1H∗ − d− γ1 − ν1 − ρ1 0 ζ1 0
β1 I∗2 0 β1H∗ − d− γ2 − ν2 − ρ2 0 ζ2

0 ρ1 0 −ζ1 − d 0
0 0 ρ2 0 −ζ2 − d


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N =


n11 −(β1H∗ I∗1 + ν1 I∗1 ) −(β1H∗ I∗2 + ν1 I∗2 ) 0 0

−(β1H∗ I∗1 + ν1 I∗1 ) n22 0 −(ρ1 I∗1 + ζ1Q∗1) 0
−(β1H∗ I∗2 + ν1 I∗2 ) 0 n33 0 −(ρ2 I∗2 + ζ2Q∗2)

0 −(ρ1 I∗1 + ζ1Q∗1) 0 n44 0
0 0 −(ρ2 I∗2 + ζ2Q∗2) 0 n55


where

n11 = λ + dH∗ + β1H∗ I∗1 + β1H∗ I2 + ν1 I∗1 + ν2 I∗2 ,

n22 = β1H∗ I∗1 + (d + γ1)I∗1 + ν1 I∗1 + ρ1 I∗2 + ζ1Q∗1 + ε1,

n33 = β1H∗ I∗2 + (d + γ2)I∗2 + ν2 I∗2 + ρ2 I∗2 + ζ2Q∗2 + ε2,

n44 = ρ1 I∗1 + ζ1Q∗1 + dQ∗1 ,

n55 = ρ2 I∗2 + ζ2Q∗2 + dQ∗2

where H∗, I∗1 , I∗2 , Q∗1 , Q∗2 are equilibrium solutions of (1) (rearranged in such away that
healthy compartment comes first equation in the system. The order of the other compart-
ments remains unchanged).
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