
Citation: Zhang, R.; Li, G.;

Wiedemann, W.; Holst, C. KdO-Net:

Towards Improving the Efficiency of

Deep Convolutional Neural

Networks Applied in the 3D Pairwise

Point Feature Matching. Remote Sens.

2022, 14, 2883. https://doi.org/

10.3390/rs14122883

Academic Editor: Edoardo Pasolli

Received: 25 April 2022

Accepted: 13 June 2022

Published: 16 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

KdO-Net: Towards Improving the Efficiency of Deep
Convolutional Neural Networks Applied in the 3D
Pairwise Point Feature Matching
Rui Zhang 1,2,*, Guangyun Li 3,†, Wolfgang Wiedemann 2,† and Christoph Holst 2

1 Department of Information Engineering, North China University of Water Resources and Electric Power,
Zhengzhou 450046, China

2 Chair of Engineering Geodesy, TUM School of Engineering and Design, Technical University of Munich,
80333 Munich, Germany; w.wiedemann@tum.de (W.W.); christoph.holst@tum.de (C.H.)

3 Department of Geospatial Information, PLA Information Engineering University, Zhengzhou 450001, China;
guangyun_li_chxy@163.com

* Correspondence: zhangrui@ncwu.edu.cn
† These authors contributed equally to this work.

Abstract: In this work, we construct a Kd–Octree hybrid index structure to organize the point cloud
and generate patch-based feature descriptors at its leaf nodes. We propose a simple yet effective
convolutional neural network, termed KdO-Net, with Kd–Octree based descriptors as input for 3D
pairwise point cloud matching. The classic pipeline of 3D point cloud registration involves two steps,
viz., the point feature matching and the globally consistent refinement. We focus on the first step that
can be further divided into three parts, viz., the key point detection, feature descriptor extraction, and
pairwise-point correspondence estimation. In practical applications, the point feature matching is
ambiguous and challenging owing to the low overlap of multiple scans, inconsistency of point density,
and unstructured properties. To solve these issues, we propose the KdO-Net for 3D pairwise point
feature matching and present a novel nearest neighbor searching strategy to address the computation
problem. Thereafter, our method is evaluated with respect to an indoor BundleFusion benchmark, and
generalized to a challenging outdoor ETH dataset. Further, we have extended our method over our
complicated and low-overlapped TUM-lab dataset. The empirical results graphically demonstrate
that our method achieves a superior precision and a comparable feature matching recall to the prior
state-of-the-art deep learning-based methods, despite the overlap being less than 30 percent. Finally,
we implement quantitative and qualitative ablated experiments and visualization interpretations for
illustrating the insights and behavior of our network.

Keywords: point cloud; feature matching; point cloud registration; deep learning; nearest neighbor
searching

1. Introduction

Precise point cloud matching of adjacent fragments has been a favored research field
in surveying and remote sensing, besides being a prerequisite and an important foundation
for various applications such as landslide surveillance [1], three-dimensional model recon-
struction [2], and cultural heritage conservation [3,4]. These applications require feature
matching to ensure a complete coverage of the entire area [5,6]. The traditional methods
based on the geometry constraints and hand-crafted features have been extensively applied
in coarse registration. Nevertheless, this type of approach has the following major limita-
tions. First, the methods based on geometry constraints can obtain appreciable performance
in urban environments with man-made and structured artifacts, but are less effective in
wild landscapes with fewer structural characteristics [5]. Second, the feature point-based
methods for detecting and describing the key points are vulnerable to alterations in the

Remote Sens. 2022, 14, 2883. https://doi.org/10.3390/rs14122883 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14122883
https://doi.org/10.3390/rs14122883
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs14122883
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14122883?type=check_update&version=1

Remote Sens. 2022, 14, 2883 2 of 22

point density and noise [7]. Third, the hand-crafted features are easily affected by the
experience of their designers and the capacity for parameter adjustment [5]. Compared
to the traditional methods, the deep learning-based feature matching methods appar-
ently have better generalization, robustness, repeatability, and distinctiveness. Therefore,
the study of learning-based 3D point matching has recently become one of the mainstream
research topics.

Owing to the boom in deep learning and the requirement of the dense Lidar point
clouds to meet the intensive data needs of deep learning, more point cloud researchers
with expertise in deep learning have applied it as an implicit general model to tackle the
unprecedented, large-scale, and influential challenges [8]. Recent works on the pairwise
3D point cloud matching has gradually followed the trend in computer vision and shifted
to the learning-based methods, particularly the deep Convolutional Neural Networks
(CNNs). The core tasks of the 3D point cloud matching primarily consist of two mod-
ules, viz., the design of feature descriptors [2,5] and the construction of 3D deep neural
network models [9–12].

Recent works on the learning-based 3D point cloud matching have primarily focused
on the 3D feature descriptors, including the learned 3D global feature descriptors [13,14],
learned 3D local feature descriptors [9,12,15–21], and weakly supervised feature descrip-
tors [20,22]. For example, 3DMatch [12], one of the pioneer works with respect to the
learning of 3D local descriptors, has been converted from its original point cloud into
a volumetric 30 ∗ 30 ∗ 30 voxel grid of the Truncated Distance Function (TDF) values.
3DSmoothNet [11], the second example, has encoded the unstructured 3D point clouds as a
voxelized Smoothed Density Value (SDV) representation that served as the feature descrip-
tors. The third classic example is the cylindrical volume descriptor, which is proposed in
SpinNet [9]. This has transformed the point clouds to cylindrical volumes by a spatial point
transformer, which further ensures the rotation invariance. Although the learning-based
3D feature descriptors have achieved great success, the network architecture that is used for
the feature extraction has not been the focus in previous studies. For example, Li et al. [20]
proposed a Multi-Statistics Histogram Descriptor (MSHD) that combines normal, curvature,
and distribution density attribute features, but the extraction of the corresponding key
points is only performed using a BP network. Owing to the difficulty in the acquisition
of the ground-truth data and the application of deep learning in point cloud registration,
besides the lack of a detailed presentation of the network structures and training strategies,
higher performance methods for the application of the deep learning to the alignment are
still being explored.

In all the above-mentioned works, the network models have been illustrated and
described briefly. However, only the matching results for different benchmark datasets
have been listed using the metrics such as recall, without presenting the intermediate
results of the network training. Therefore, we ponder over the actual role of the network
model in the 3D point cloud matching that pertains to the superiority of the results of the
network training, besides investigating the trend of the training accuracy of the deep neural
network and the final performance of the matching. These hints motivate us to investigate
the methods for the pairwise 3D point cloud matching. Following this method, we will
promote a balanced development of the two main modules of the 3D point cloud matching,
which would further improve the matching accuracy and facilitate their application in the
large-scale and real-world scenarios.

We draw inspiration from 3DSmoothNet [11] for encoding unstructured 3D point
clouds as SDV grids that are amenable to the standard convolutional operation. However,
such voxelized representations mandates heavy computation. In our work, apart from
3DSmoothNet, (i) we adopt Kd–Octree, i.e., one hybrid data structure, to organize the voxels
to effectively address the computation problem. (ii) We also design a different network,
particularly by adding compressor units, to avoid a sharp reduction in the number of
channels from 128 in the penultimate layer to 32/16 in the last layer. Further, (iii) we
propose a novel batch-hard based loss function to enhance the descriptiveness of our

Remote Sens. 2022, 14, 2883 3 of 22

network. We also propose certain adjustment strategies for the learning rate (cosine decay
restarts) and the choice of the optimizer (Adadelta). Thus, our contributions are threefold,
as follows.

(1) We propose a Kd–Octree based voxel grid descriptor for the point feature matching.
The feature descriptors produced in the leaf nodes of Kd–Octree are input into the network
for training.

(2) We design a Kd–Octree based network of Extender and Compressor structures, in-
tending to speed up the feature extraction and, more importantly, to preserve the maximum
possible local features.

(3) We propose a novel batch-hard based hybrid loss function, which joins Huber loss
(sigmoid) and Cross Entropy loss (log), guided by the on-the-fly feature matching results
obtained during the training.

Implementation of these proposals will encourage the fast nearest neighbor searching,
and achieve high training accuracy and accurate pairwise point cloud matching. We
demonstrate that our Kd–Octree based voxel descriptor effectively addresses the issue of
the computational efficiency and improves the final feature matching efficiency.

2. Related Works

The review of the existing deep learning-based 3D point cloud feature descriptors
can be found in [9,11,12,23], whereas the more challenging module of the deep neural
networks has been largely neglected. Inspired by this situation, we review the recent
advances in the design of deep neural networks themselves for the 3D point cloud feature
matching. Further, we analyze the challenges by beginning from the network architecture,
training accuracy, and learning rate to the loss function, whereas other literature has
focused on a single task, for example, the feature descriptor extraction [11,24–27] or point
correspondence estimation [15,28,29].

2.1. Network Architecture

Recently, owing to the development of deep learning-based 3D point cloud descriptors,
more researchers have adopted the deep neural networks to extract certain point cloud
features to tackle the 3D matching tasks. Recently published representative approaches
for the point cloud matching can be divided into two categories according to the type
of modality, viz., the cross-modality point cloud matching and the point cloud-to-point
cloud matching.

Cross-modality matching. 2D3D-MatchNet [30] is one earlier work on the learning-
based image-to-point cloud registration. This learns to match the image-based SIFT [31]
key points to the point cloud-based ISS [32] key points by feeding them into each branch
of a Siamese-like network and then training with triplet loss to extract the cross-modal
descriptors. However, this method suffers a low inlier rate owing to the drastic dissimilarity
between the two completely different features across the two modalities. Similarly, Lei
Li et al. [33] have proposed a framework for learning the local multi-view descriptors of
the 3D point clouds from the multi-view images by integrating the multi-view rendering
into the neural networks with a differentiable renderer. The challenge facing this method
is that an effective fusion operation is required to integrate the features from multiple
views into a single compact descriptor. PointNetLK [13] combines the Lucas and Kanade
(LK) algorithm [34] with PointNet [35] for the 3D point cloud matching between the 3D
model and the 2.5D scan. However, this iterative algorithm involves a looping computation
of the optimal twist parameters. Furthermore, according to Christopher Choy et al. [28],
PointNetLK fails to capture the complex scenarios such as 3DMatch. Another two typi-
cal cross-modality registration networks are DeepI2P [36], which has circumvented the
difficulty by converting the registration problem into a classification and inverse camera
projection optimization problem, and unsupervised R&R [37], which learns the point cloud
registration from the two RGB-D images of the scene. Those methods depend on the

Remote Sens. 2022, 14, 2883 4 of 22

transformation matrix between the point cloud coordinates and a camera coordinate frame,
which result in certain errors and loss of the 3D spatial information.

Point cloud-to-point cloud matching. This type of approach has been used exten-
sively for the point cloud matching, as the data of the same modality maintain the consis-
tency of the data characteristics and effectively avoid the information loss caused by the
type conversion of the data between different modalities. For example, the PPFNET [17]
architecture comprises a group of mini-PointNet, which has been utilized to extract the glob-
ally informed 3D local features and find correspondences in the 3D fragment pairs. Ref. [38]
proposed an end-to-end, learnable, multiview point cloud registration network which
employs two-point clouds as the input. It first extracts the FCGF [39] features and inputs
them into the registration block to compute the initial matches, and thereafter a registration
refinement block is used to globally refine the transformation parameters. Concomitantly,
DCP [19] is an ICP-based network from a deep learning perspective to address the local op-
tima and other difficulties in the ICP algorithm. However, as the variant of ICP, it is difficult
for DCP to prevent the algorithm falling into the local optimum and incorrect closest-
point correspondences simultaneously in the matching process. According to Christopher
Choy et al. [28], DCP fails in matching the 3D pair. DGR [28] is an end-to-end framework
that successfully match a challenging 3D pair on the 3DMatch dataset. Unfortunately, there
is no description available on its generalization capability. D3Feat [10] is a fully convo-
lutional network based on Kernel Point Convolution (KPConv) [40], though it has poor
generalization capabilities on the unknown datasets. NgeNet [41] is a neighborhood-aware
geometric encoding network that also uses KPConv as a backbone, but the perception range
of the neighborhood points for each point feature is limited. Li et al. [42] proposed two
networks to extract local features, but they were only validated with a synthetic component
dataset, not applied on the real scenario.

These methods achieve good performance at small-scale indoor point cloud match-
ing, though they are constrained by the number of samples and the capability to extract
features from the model, and they are poorly generalizable to outdoor scenes. Only a
few learning-based architectures can generalize the point cloud matching of the outdoor
scenes. For example, DeepICP [29] has utilized the generalization capability of CNNs in
the similarity learning. However, it has been constrained by the initial positional accuracy
of the source and the target point cloud. 3DFeat-Net [27] has detected the key-points
and extracted the feature descriptors in a weakly supervised fashion before applying the
nearest neighbor matching on the obtained key-points and descriptors. To address the
generalization of the model across the modalities and scenarios, 3DSmoothNet [11] has
leveraged the local reference frame (LRF) to orient the input patches and proposed the
SDV to reduce the sparsity of the input patches. Following the success of 3DSmoothNet,
SpinNet [9], inspired by a cylindrical convolutional network [43], has learned the general
features from the points within the cylindrical voxels. However, both 3DSmoothNet and
SpinNet are patch-based methods. Even if they are rotation invariant and have good
generalization abilities, the training process is time-consuming as each of the patches are
treated individually. In 2022, Pranav Kadam et al. [44] proposed a green solution in terms
of a smaller model size and training/inference time. Nevertheless, it is currently only
applicable to small-scale point clouds and indoor registration. The recall on 3DMatch
dataset is lower than that of 3DSmoothNet. Moreover, their proposed eight partitioning
operation failed to encode better local structure information.

To reduce the computational cost of the patch-based methods, Riegler et al. [45]
proposed a set of unbalanced octrees to store the feature representation. Peng-Shuai
Wang et al. [46] limited the 3D CNN to the octants of the 3D shape boundaries and
leveraged the octree for the O-CNN training. Souza Neto et al. [47] combined a uniaxial
partitioning strategy with kd-tree to reduce the correspondence search. Jianwei Li et al. [48]
used an octree to quickly divide the point clouds and index points for fine verification of
transformation matrix. In this paper, we build a hybrid index structure Kd–Octree, which

Remote Sens. 2022, 14, 2883 5 of 22

combines the global Kd tree with the local Octree to store the point cloud patches in the
leaf nodes and produce the Kd–Octree based feature descriptors.

2.2. Comparisons among the State-of-the-Arts

Training process: To compare and analyze the performance of 3DSmoothNet, D3Feat,
and SpinNet, this section describes their training processes in detail.

3DSmoothNet [11] has adopted the nearest neighboring algorithm to search the match-
ing points, where the searching radius has been set to 0.1. Then, the accuracy is calculated as

accuracy =
K

∑
i=1

(Pi/K) (1)

where K is the total num of points and Pi is the number of neighboring points that match the
i-th key point. In our experiments, the training dataset we have used is BundleFusion [49],
which is a subset of 3DMatch and includes 19 files with a size of 51.7 GB.

Instead of performing a neighboring search, D3Feat [10] first computes the difference
between the furthest positive sample and the closest negative sample, and then counts the
number of points where the difference is less than 0. Suppose (Ai, Bi) is a corresponding pair
and the two points have their corresponding descriptors, Dα,p(i) =

∥∥dAi − dBi

∥∥
2, whereas

the distance between a negative pair is Dα,n(i) = min
{∥∥dAi − dBi

∥∥
2

}
s·t·
∥∥Bj − Bi

∥∥
2 > R,

where R is the safe radius and Bj is the hardest negative sample that lies outside the safe
radius of the true correspondences. Based on these basic definitions, the furthest positive
and the closest negative refers to the maximum value of Da,p and the minimum value of
Da,n, respectively. The accuracy is computed as

accuracy = (
K

∑
i=1

Ωmax(Da,p(i)) ≤ min
min(Da,n(i))

)/K (2)

where Ω is the number of key points wherein Da,p(i) is less than Da,n(i) and K is the
number of key points. However, the network model suffers from network collapse issues
during the training process owing to the loss function. According to Figure 5, the network
collapses at epoch of 140, which is caused by the inherent defect of the unsupervised
contrastive loss function [50]. We have replicated the network repeatedly and the resultant
maximum training accuracy is 47.13%. We have adopted the model with the best training
effect to extract the descriptor feature for each point, and the final feature recall is 90.33%,
as listed in Table 3. Taking the training process and experimental results, we strongly argue
that such high feature matching recall of D3Feat should be attributed to the dense feature
descriptor instead of the network structure itself.

Thereafter, SpinNet [9] has also adopted Formula (2) to compute the accuracy, where
the number of key points is identical to the value of the batch size with the default value of
76. We have reset that to 14 owing to the high computational and memory cost. Following
SpinNet, the training dataset we have used is SUN3D [51] and 7-Scenes [52], besides the
two subsets of 3DMatch. This includes a total of 19 files, and the size is 34.7 GB. According
to Formula (2), we assume that the anchor point and the positive point will be matched
when the distance of each of the valid anchor positive pair is less than that of the anchor
negative pair. The experimental results show that the training process is instable, with large
up and down fluctuations falling in the range of [35.7%, 100%]. For a comparison, we
have adopted the same computing method of the training accuracy with 3DSmoothNet to
re-train SpinNet. The training runs 50,424 steps, whereas other parameter settings are kept
the same as in the previous experiments. The average training accuracies of the two epochs
are 71.43% and 82.38%, respectively.

Learning rate: For the setting of the learning rate, the current practice is to use a
dynamic strategy to adjust the learning rate during the training process. For example,
3DSmoothNet [11] and D3Feat [10] have adopted the exponential decay method to dynam-

Remote Sens. 2022, 14, 2883 6 of 22

ically set the learning rate, as in Formula (3). For 3DSmoothNet network, the learning_rate,
decay_rate, and decay_step values are 0.001, 0.95, and 5000, respectively. Nevertheless,
SpinNet has employed another exponential decay method to adjust the learning rate,
as given in Formula (4), which implies that the learning rate has changed once per epoch
(γ = 0.5).

decayed_learning_rate = learning_rate ∗ decay_rateglobal_step/decay_step (3)

new_learning_rate = learning_rate ∗ γepoch (4)

Loss function: For the design of the loss functions, 3DSmoothNet [11] intends to
minimize the soft margin batch hard loss during the training. D3Feat [10] has utilized the
ordinary contrastive loss [50], as the contrastive learning is popular in Siamese networks and
they have been experimentally found to give better convergence performance. Following
D3Feat, SpinNet [9] has adopted the existing contrastive loss for end-to-end optimization.
However, there exists a uniformity–tolerance dilemma in the contrastive learning, which
is a problem not addressed to date. To further explore the effect of the loss functions on
the 3D point cloud registration, we first formulate the three loss functions and perform
certain experiments with the same network architecture to compare their effectiveness and
efficiency. The loss functions are triplet loss, batch hard loss, and soft margin batch hard loss,
in which batch hard loss is the improvement of triplet loss, and soft margin batch hard loss is a
special case of batch hard loss.

Triplet loss, proposed by FaceNet [53], is a favored method for training the Siamese
network. This loss function includes an anchor point xa, a positive point xp, and a negative
point xn. When these three points are input into a Siamese network to extract the features,
we can obtain their corresponding feature vectors fθ(xa), fθ(xp), and fθ(xn), where fθ is a
function parameterized by θ, which can be anything ranging from a linear transformation
to non-linear mappings. Based on the three feature vectors, we can calculate the distance
Da,p between the vectors fθ(xa) and the fθ(xp), and the distance Da,n between the vectors
fθ(xa) and the fθ(xn). Following the training, a neural network should have the property
that the feature vectors of the same category are clustered together, whereas the feature
vectors of different categories are clearly separated. As shown in Figure 1, in the feature
space, Da,n should be much larger than Da,p, by a minimum margin m. If Da,n � Da,p + m,
then there is no loss. Otherwise, the loss should be Da,p + m− Da,n. Hence, the triplet loss
is defined as

Ltrip(θ, x) = max(0,
1
|x| ∑

a,p,n,ya=yp 6=yn

[m + Da,p − Da,n])

Da,p = ‖ fθ(xp)− fθ(xa)‖2

Da,n = ‖ fθ(xa)− fθ(xn)‖2

(5)

where ya, yp, and yn indicate the type to which the anchor point, positive sample, and neg-
ative sample belong, and indicates a mini-batch.

Batch Hard (BH) loss function [54] is a variant of triplet loss. The objective of the
training is to make the distance between a positive sample and an anchor point to the
minimum, whereas the distance between a negative sample and an anchor point should be
the maximum. Hence, for each sample in a batch, Hermans et al. [54] selected the furthest
positive and the closest negative samples within the batch while forming the triplets for
computing the loss, which is called Batch Hard.

LBH(θ; x) =
1
x

x

∑
i,j=1

[m +

f urthest poisitive︷ ︸︸ ︷
maxD(fθ(xa

i), fθ(xp
i))−

closest negative︷ ︸︸ ︷
min
j 6=i

D(fθ(xa
i), fθ(xn

i))]
(6)

Remote Sens. 2022, 14, 2883 7 of 22

Figure 1. This is an example figure.

Soft Margin Batch Hard (SMBH) is the soft margin version of BH. SMBH replaces the
hinge loss[m + •] in Formula (6) by a smooth approximation using the soft-plus function,
ln(1 + exp(•)), as the log function generally produces stable implementations. Compared
with BH, SMBH decays exponentially instead of having a cut-off, and it is referred as the
soft margin loss function, defined as

LSMBH(θ; x) =
1
x

x

∑
i,j=1

ln(1 + exp[max
i=i,...,x

Da,p

− min
j=1,...,x,j 6=i

Da,n])

=
1
x

x

∑
i,j=1

ln(1 + exp[max
i=i,...,x

‖ fθ(xa
i)− fθ(xp

i)‖2

− min
j=1,...,x,j 6=i

‖ fθ(xa
i)− fθ(xn

i)‖2])

(7)

3. Our Approach

Our end-to-end workflow is as follows. (i) We build a Kd–Octree to organize the
massive point clouds and represent the input points as voxel grids in the leaf nodes of
Kd–Octree, centered on the interest points and aligned with the Local Reference Frame
(LRF). (ii) We feed the Kd–Octree based voxel grids to our KdO-Net to produce the unit
length feature descriptors. (iii) We establish the pairwise-point correspondence by applying
mutually nearest neighbor search in feature space, and (iv) match the pairwise point
cloud fragments in an iterative fashion, evaluate the performance of our KdO-Net for the
correspondence search on the indoor and outdoor real-world point cloud datasets, and
visualize the final point cloud matching result of the two fragments, as shown in Figure 2.

Remote Sens. 2022, 14, 2883 8 of 22

Figure 2. The processing diagram of our proposed KdO-Net method, which consists four modules:
(1) Kd–Octree construction, (2) feature descriptor extraction, (3) pairwise-point correspondence
estimation, and (4) pairwise-point feature matching.

3.1. Kd–Octree Based Voxelization Descriptor
3.1.1. Kd–Octree Construction

In our previous work on ground point filtering based on the vehicle LiDAR point
cloud, a hybrid index structure combining the global Kd-tree and local octree, called Kd–
OcTree index [55], has been proposed to improve the efficiency of the data organization
and management. We construct a similar spatial index structure to speed up the nearest
neighbor search, though with a different corresponding point search strategy, and general-
ize across multiple sensor modalities (from vehicle to terrestrial laser scanners) and from
outdoor to indoor scenes.

Logical structure of Kd–Octree. While constructing the global Kd tree, each layer
node is divided on a dimension Di (i = x, y, z) determined by the current layer discrimi-
nator, and the median of all points on the current Di is taken as the segmentation plane.
To improve the efficiency of the overall Kd tree construction, the threshold of the number
of points on Kd tree leaf nodes is set to 80,000, and when the number of points included
in the node is less than this threshold, the division of the current node is terminated and
this node is marked as a leaf node. In the 3DMatch dataset, the constructed global Kd tree
consists of three layers, which are divided by the x, y, and z axes.

To save the storage space, the real point clouds are stored in the leaf nodes directly,
instead of the root and intermediate nodes of the global Kd tree. This storage method
compresses the amount of data storage and enables a fast retrieval by quickly locating each
leaf node from the root node according to the pointers. Each leaf node of the Kd tree is
reorganized according to the data organization of an octree. The construction of the entire
hybrid index is complete after the construction of the local octrees in all leaf nodes in the
Kd tree.

Data structure of the Kd–Octree: The data structure of the Kd–Octree hybrid index
consists of five data objects, of which KdTree represents a Kd tree structure type, and KdNode
is a Kd tree node structure type, Stack is a stack structure type, LinkStack a chain stack struc-
ture type, and Octree an octree type. Unlike the recursive method and fixed-length array
data structure generally employed to construct the index structure, this work constructs
the stack data structure in a cyclic way. The stack data structure is a dynamic allocation
storage method, which allocates the maximum storage for use and releases the storage
space immediately after the data leaves the stack. The memory occupation rate is greatly
reduced by storing only the pointers to the nodes in the stack while building the Kd–Octree
hybrid index, instead of the real point cloud.

Remote Sens. 2022, 14, 2883 9 of 22

The advantage of Kd–Octree is twofold. Global Kd-tree reconstructs the spatial
neighborhood relations through defining the segmenting dimension and segmenting planes,
which ensures the balance of the whole index. Then the local octree is constructed in the
leaves of the Kd tree, which can avoid certain shortcomings, such as the imbalance of the
point clouds distribution, deeper octree, and large amount of non-point space. The results
show that the Kd–Octree index can speed the neighborhood searching (Section 4.1) and
improve the efficiency of feature matching (Section 5.2).

3.1.2. Nearest Neighbor Searching Strategy

The search starts from the first node of the query and obtains the point cloud informa-
tion stored in the corresponding node. When the leaf nodes satisfy the nearest neighbor
condition, a hierarchical traversal is applied, and the search strategy employed for each
node to be checked is depicted in Algorithm 1.

Algorithm 1: Nearest Neighbor Searching Strategy
0: kdtree.push(root)
1: while kdq is not null do
2: top=kdq.pop()
3: if top->lchild != null and top->rchild != null then
4: if abs(top->kd_cuttingCoordinate[top->kd_cuttingDim] -

query_point[top-> kd_cuttingDim]) <= R then
5: kdq.push(top->lchild)
6: kdq.push(top->rchild)
7: else
8: if query_point[top->kd_cuttingDim] <=

top->kd_cuttingCoordinate[top->kd_cuttingDim] then
9: kdq.push(top->lchild)

10: else
11: kdq.push(top->rchild)
12: end if
13: end if
14: else
15: resq.push(top->thisOctree)
16: end if
17: end while

In Algorithm 1, kdq represents the Kd tree queue, which stores the number of Kd
tree nodes traversed, whereas resq represents the octree node queue, which stores the
final searched octree leaf node information. R is the radius of nearest neighbor search and
query_point is the key point, i.e., the one to search its neighboring points. kd_cuttingCoordinate
indicates the splitting coordinates, whereas kd_cuttingDim indicates the splitting dimension.
While performing a neighborhood search, we use the absolute value of the difference
between the corresponding point and the key point in the current splitting dimension to
represent the distance between them. If this distance is less than the searching radius R,
then the neighborhood search is performed in the left and right subtrees in a hierarchical
traversal manner. Otherwise, it is sufficient to search in only one branch.

Unlike 3DSmoothNet, which encodes the unstructured 3D point clouds as the SDV
grids directly, our method first constructs a Kd–Octree data structure, computes the LRF
around interest points in the leaf nodes of Kd–Octree with the hierarchical traversal strategy,
and then produces the point cloud patches that transform them into SDV voxel grids and
feed them to the network.

Remote Sens. 2022, 14, 2883 10 of 22

3.2. Feature Descriptor Extraction
3.2.1. KdO-Net Architecture

Figure 2 shows the network architecture of our KdO-Net which learns to distinguish
between the matching pairs with a two-branch Siamese architecture [24,27,56,57]. Inspired
by (but different from) 3DSmoothNet, (i) we built upon the Kd–Octree representation,
and our network takes Kd–Octree based voxelized patches computed at the leaf nodes as in-
put. Further, (ii) our network includes two basic modules in each branch, viz., Extender and
Compressor, as shown in Figure 3. The Extender is employed to preserve the rich local geo-
metric information when the resolution of point clouds is reduced during training, whereas
the Compressor aims to obtain a smaller descriptor to reduce the computational cost and
speed up the feature extraction without compromising the performance. Hence, KdO-Net
architecture is a simple yet effective network which consists of 12 convolutional layers.
The first 11 convolutional layers are followed by the batch normalization and the ReLu
activation function, whereas the last convolutional layer is followed by l2-normalization to
normalize the output. KdO-Net applies the stride of 2 in the 4th layer and valid padding in
the 11th and 12th layers (instead of pooling) to down-sample the voxel grid.

Figure 3. The network structure hierarchy diagram of KdO-Net. Each convolutional layer is followed
by batch normalization and ReLu except for the last convolutional layer. The numbers in the bracket
denote the size and depth of the feature descriptor extracted through convolutional layers.

According to the above description, we find that KdO-Net architecture is a well-structured,
simple, and straightforward network. Extensive experimental results in Sections 4.3 and 5
will demonstrate the feasibility, effectivity, and practicality of our network.

3.2.2. Network Training

Considering the SGDR learning rate, to tackle the problem of the fast dropping of
exponential decay, according to Figure 4a, we have adopted a warm restart technique, viz.,
Stochastic Gradient Descent with Warm Restarts (SGDR) [58], to adjust the learning rate,
which is common in gradient-free optimization. Further, it gradually becomes popular in
the gradient-based optimization to avoid being trapped in a local optimum and speed up
convergence. We employ cosine decay restarts, where we only simulate a warm restart once
another epoch is performed, as given below

decayed_lr = lri
min +

1
2
(lri

max − lri
min)(1 + cos(

Tcur

Ti
π)) (8)

where lri
min and lri

max are the range for the learning rate, Ti the number of epochs, Tcur
the number of epochs that have been performed since the last restart, and i the index of
iteration. The restart implies that the learning rate is updated to the initial value, by not

Remote Sens. 2022, 14, 2883 11 of 22

performing the training from scratch. Figure 4b demonstrates the adjustment of the learning
rate with cosine decay restarts.

(a) (b)

Figure 4. Training of KdO-Net on BundleFusion with different learning rate strategies. (a) Learning
rate with exponential decay. (b) Learning rate with cosine decay restarts.

Huber and Cross Entropy loss. Based on the mathematical analysis and experimental
results of triplet loss, batch hard loss, and soft margin batch hard loss, introduced in Section 2.2,
the calculation of loss in [11] employs the result of the difference between the furthest
positive points (Da,p) and the closest negative points (Da,n). To highlight the difference
between Da,p and Da,n for minimizing, Da,p and −Da,n are set to be non-linearized to
enhance the descriptiveness of the network model. Our calculation is shown below

LHCE = (max
i=1,...,x

Da,p + min
j=1,...,x,j 6=i

(−Da,n))/2

Da,p =
1
x

x

∑
i=1

(fθ(xa
i)− fθ(xp

i))
2

−Da,p =
1
x

x

∑
i,j=1;j 6=i

ln(1 + e−| fθ(xa
i)− fθ(xn

i)|)

(9)

where the Huber loss function is applied to compute the loss of the furthest positive points
and the Cross Entropy is used for the closest negative points. Therefore, this loss algorithm
is termed as Huber and Cross Entropy (HCE) loss function in this work.

3.3. Pairwise-Point Correspondence Establishment

For each pair of corresponding fragments S and T, we establish the correspondence
by the following steps. First, we find the mutually closest point pairs in feature space
based on the source descriptor and target descriptor obtained from our KdO-Net model.
Then, we search the ground truth transformation matrix to make sure whether there is
the transformation matrix Mats_t between S and T. If it exists, the Mats_t can be obtained
directly, otherwise the transformation matrix between the two is calculated indirectly in a
circular fashion. For example, if the transformation matrix Mats_p between S and P and the
transformation matrix Matp_t between P and T are known, then the transformation matrix
between S and T can be derived by performing matrix multiplication

Mat
′
s_t = Mats_p ∗Matp_t, (10)

where Mat
′
s_t represents a complement to Mats_t. Next, the source point cloud P and the

target point cloud Q, belonging to the two fragments S and T, respectively, are converted
to the same coordinate system by applying the transformation matrix Mats_t, i.e., we
transform the target point cloud to the coordinate system of source point cloud

Q
′
i = Mats_t ∗Qi, (11)

Remote Sens. 2022, 14, 2883 12 of 22

where Q
′
i is the target point cloud after transformation. Thus far, we have obtained the

corresponding pairs (Pi,Q
′
i) between the two fragments S and T.

3.4. Pairwise-Point Feature Matching

Suppose two points have their corresponding descriptors dPi and d
′
Qi

. The distance
between the correspondence pair is defined as the Euclidean distance between their de-
scriptors as follows

disi = ‖dPi − d
′
Qi
)‖2. (12)

Following the setting of [12], the correspondence are seen as inliers when the distance
disi is less than the inlier distance threshold τ1 = 10 cm. The fragment pairs which have
more than τ2 = 5% inlier correspondences will be counted as one match, where τ2 is the
inlier ratio threshold. It should be noted that the match obtained with Mats_t is correct
feature matching, while the match obtained with Mats_t denotes the correct match that
would have been skipped if based only on the Mats_t. According the feature matching
metrics introduced in Section 4.2.2, we can evaluate the efficiency and robustness of our
approach, with specific validation results presented in Section 4.3.

4. Results

Our approach is implemented in Python using TensorFlow, including the feature
descriptor extraction and feature matching of point clouds between every two fragments.
Our network is only trained with the BundleFusion [49], a small part of indoor 3DMatch [12].
Further, we evaluate its generalization on the challenging outdoor ETH [59] and apply it to
our own TUM-lab dataset. Lastly, we have conducted an extensive ablation experiment on
BundleFusion to study the efficiency of each component of KdO-Net.

4.1. Implementation

Owing to the unstructured and sparse nature of 3D point cloud, it is crucial to adopt
a reasonable representation of the data before feeding the network. Similar to [11], this
paper encodes an unstructured raw point clouds as the structured SDV grids amenable
to the convolutional layers of the standard deep learning libraries. Alternatively, this
representation of SDV reduces the sparsity of the input voxel grid and reduces the boundary
effects. Further, it smooths out small misalignments owing to the errors in the estimation of
the LRF and improves the generalization ability of the network, as explained in the original
paper [11]. For the size of SDV voxel grids, we use 0.3 m and 1 m for 3DMatch and ETH
datasets, respectively, as the point clouds of ETH are sparser by comparing with 3DMatch.

To generate the training examples, we follow the methods of [9–12] to randomly
sample 300 anchor points pa from more than 30% overlap of two fragments, Fi and
Fj. The positive example pp is the potential matching point that represents the nearest-
neighbor pp =: nn(pa) ∈ Tj

(
Fj
)
, where nn() denotes the nearest neighbor search in the

Euclidean space based on the l2 distance. Instead, the negative example pn is the non-
matching point that has been sampled on the fly from all the positive examples of the
mini-batch. How to distinguish the positive and negative points is a question. We define
positive points as point clouds whose distance from the anchor point are below a threshold,
dis (anchor, positive) < τp, whereas the negative points are point clouds whose distance
from the anchor point are greater than a threshold, dis(anchor, positive) > τn [24,26].

For a comparison, we keep the same setting for all the experiments and adopt the same
algorithms and metrics to evaluate their performance. All experiments are conducted on the
platform with Intel Xeon CPU @3.60 GHz and NVIDIA Quadro RTX 4000 GPU. During the
training, we test different batch sizes, compare the efficiency of the descriptor learning and
final feature matching performance with the metrics introduced in Section 4.2.2, and even-
tually use the batch size of 128 on BundleFusion to train our network KdO-Net. Despite
the fact that the network with a batch size of 128 is not the best-performing model on the
training and evaluation datasets, it keeps the consistency between the training effectiveness

Remote Sens. 2022, 14, 2883 13 of 22

and the final feature matching performance. We then optimize the network using Adadelta
optimizer with an initial learning rate of 1.0, and the cosine decay restarts adjustment strategy
with 40,000 steps per epoch. The network needs only 80,000 steps and normally converges
within 2 epochs.

4.2. Evaluation Metrics
4.2.1. Nearest Neighbor Searching and Network Training

For the corresponding search, the time complexity has been reduced to O(NlogN)
using the Kd–Octree based method, where N denotes the number of points. To evaluate the
efficiency of the Kd–Octree based nearest neighbor searching, we perform the supplemen-
tary trial and compare with 3DSmoothNet [11] in terms of the average nearest neighbor
searching time of per key point on BundleFusion training set in Table 1, and the comparison
on 3DMatch test set is presented in Table 2, while running on the same PC with Intel Xeon
CPU E5-2620 and 16G RAM. On both datasets, the average nearest neighbor searching time
of our method is significantly reduced, e.g., 0.37 ms vs. 1.29 ms, which is shorter by 70%.

Table 1. Average nearest neighbor searching time per interest point on each scene of BundleFusion
training set (ms).

Model Apt0 Apt1 Apt2 Copyroom Office0 Office1 Office2 Office3 Avg

3DSmoothNet 1.09 1.01 1.24 0.94 1.08 1.11 1.06 1.07 1.07
KdO-Net 0.37 0.36 0.44 0.32 0.36 0.39 0.36 0.37 0.37

Table 2. Average nearest neighbor searching time per interest point on each scene of 3DMatch test
set (ms).

Model Kitchen Home1 Home2 Hotel1 Hotel2 Hotel3 Study MIT Lab Avg

3DSmoothNet 0.99 1.12 1.04 1.31 1.26 1.30 1.70 1.58 1.29
KdO-Net 0.34 0.37 0.34 0.42 0.41 0.40 0.51 0.47 0.37

Furthermore, the training accuracy is an efficient metric used to measure the learning
ability of a network. It is a metric that decides the accuracy of a model prediction, compared
to the ground truth. In our experiments, the accuracy is calculated by every 100 steps.

4.2.2. Feature Matching Metrics

The performance of the feature matching is quantitatively assessed using the following
evaluation metrics, inlier ratio (IR), mean recall (mR), standard deviation of mR (STD_mR),
mean precision (mPR), and standard deviation of mPR (STD_mPR). IR measures the fraction
of the inlier correspondences, given as the input for a set of putative correspondences
built in the descriptor space for two fragments [36]. Recall and precision are mutually
exclusive and often used in conjunction to provide a more comprehensive assessment of
the effectiveness of the feature matching. The mR is defined as

mR =
1
|F|

|F|

∑
f=1

(IR > τ2)

IR =
1
|C f | ∑

i,j∈C
(‖pi − Tf (qj)‖2 < τ1)

(13)

where |F| is the number of scenes and τ2 is a threshold on the inlier ratio. This implies that,
if the inlier ratio of the two fragments is not greater than τ2, the two fragments cannot be
matched. For the computing of IR,

∥∥∥pi − Tf
(
qj
)∥∥∥

2
denotes the l2-normalization,

∣∣∣C f

∣∣∣ the
number of fragment pairs in a scene, τ1 the threshold on the Euclidean distance between the
correspondence pair (i, j), and Tf denotes the ground-truth transformation alignment of the
fragment pair f ∈ F. For a pairwise matching, the matching recall refer to the percentage of

Remote Sens. 2022, 14, 2883 14 of 22

the successful matching whose IR is above certain threshold (i.e., τ2 = 5%), which measures
the matching quality [10,11,15]. Based on the IR, the STD_mR is computed as

STD_mR =

√√√√ 1
|F| − 1

|F|

∑
f=1

(IR f − IR)2 (14)

Following [55], the mPR is defined as

mPR =
1
|F|

|F|

∑
f=1

PR

PR =
TP

TP + FP

(15)

where TP and FP are the numbers of the true and false positives, respectively. Similar to
STD_mR, the STD_mPR is calculated as

STD_mPR =

√√√√ 1
|F| − 1

|F|

∑
f=1

(
PR f − PR

)2
(16)

4.3. Evaluation
4.3.1. Evaluation on the Indoor 3DMatch Dataset

Dataset: 3DMatch benchmark [12] is an RGB-D reconstruction dataset consisting of
62 real-world indoor scenes, collected from SUN3D [51], 7-Scenes [52], RGB-D Scenes v2 [60],
BundleFusion [49], and Analysis by Synthesis [61]. Zeng et al. [12] have converted these
datasets into a unified file structure and format, with 54 scenes for training and 8 scenes for
testing. The size of the total dataset is 145 GB (328 files altogether). In our implementation,
only BundleFusion set is chosen as the training set, which includes 19 files that are collected
from eight other indoor scenes. Concerning the testing, we adopt the test set from 3DMatch
by following the set of [12].

Training: For producing the Kd–Octree based descriptors, we generate the training
set from the original BundleFusion . Consider a pair of fragments S and T, chosen from the
overlapping region. To generate the training samples, we randomly sample 300 anchor
points Pa from S, and then apply the ground truth transformation matrix Mat to determine
the corresponding points Pc in T. Next, we perform the Kd–Octree based nearest neighbor
searching of Pc to find the positive samples Pp, where the searching radius r = 0.7 m. Finally,
we combine Pa and Pp to obtain the sample pairs [Pa, Pp] for training.

Figure 5 presents the training accuracies and the feature matching results of different
models on the BundleFusion dataset. We experimentally find that our KdO-Net model has
achieved good training accuracy, and the maximum and average values are the highest,
but there is a little fluctuation and less stability due to the smaller training set. The mR and
PR have already reached 91.66% and 97.63% respectively.

To explore the influence of different batch sizes on model training, we adjust the
batch size from 16, 32, 64, and 128 to 256, and the corresponding feature matching results
of KdO-Net are presented in Figure 6, which shows the performance of our network on
3DMatch test set is only a marginal improvement when we increase the batch size, whilst
the precision is gradually decreasing. We find that the model is most stable when the batch
size is equal to 128, and a trade-off between recall and precision is achieved.

Remote Sens. 2022, 14, 2883 15 of 22

(a) (b)

(c) (d)

Figure 5. Comparison of training accuracy on BundleFusion. (a) 3DSmoothNet, (b) D3Feat, (c) SpinNet,
and (d) KdO-Net.

Figure 6. Feature point matching effect versus batch size on BundleFusion set.

For a comparison, the detailed experimental results of different models on the Bundle-
Fusion benchmark are summarized in Table 3, which involves the network evaluation and
feature matching evaluation with the metrics introduced in Section 4.2.2. These are the
maximal training and validation accuracy (in percent), the minimal loss, mR, STD_mR,
mPR, and STD_mPR in percent. The experimental results show that our KdO-Net outper-
forms the alternative approach by a significant margin in terms of the network training.
The detailed quantitative results of the precision of the different methods on each scene of

Remote Sens. 2022, 14, 2883 16 of 22

the 3DMatch benchmark are listed in Table 4, which shows that our KdO-Net outperforms
all the state-of-the-art feature matching networks for most of the scenes.

Additionally, we demonstrate how precise feature matching can be obtained with our
KdO-Net model under different inlier ratios (τ2) and inlier distance (τ1) threshold (originally
τ2 = 0.05 and τ1 = 10 cm). As shown in Figure 7, the descriptor learned with our KdO-Net
outperforms all other models under different thresholds. More importantly, our model still
outperforms other methods even with a strict inlier ratio threshold (e.g., τ2 = 0.2). With the
increase in the inlier distance threshold, the precision inevitably decreases. The precision of
our model achieves 91%, while 3DSmoothNet, SpinNet, and D3Feat drop to 89.6%, 89.1%,
and 88.1%, respectively.

Table 3. Quantitative comparisons with the state-of-the-arts, training on BundleFusion and feature
matching on 3DMatch test set. All results are reproduced on the same platform by ourselves. The best
performance is shown in bold, and “–” denotes the value is unavailable.

Model
Convolution-Based Network Feature Matching

Batch Size Training
Accuracy

Validation
Accuracy Loss mR STD_mR mPR STD_mPR

3DSmoothNet 128 67.2 60.14 0.57 93.22 3.60 96.23 2.49
D3Feat(pred) 1 47.13 40.1 1.18 90.33 5.71 94.25 4.03

SpinNet 14 74.48 – 1.29 86.2 5.92 97.25 1.30
KdO-Net 128 78.4 63.08 0.49 91.66 5.46 97.63 1.30

Figure 7. Feature matching precision on 3DMatch test set under different inlier ratio threshold (left)
and inlier distance threshold (right).

Remote Sens. 2022, 14, 2883 17 of 22

Table 4. Precision (%) of different reproduced models on each scene of BundleFusion, a subset of
3DMatch, with τ1 = 10 cm and τ2 = 0.05. The best performance is shown in bold.

Scene 3DSmoothNet D3Feat(pred) SpinNet KdO-Net

Kitchen 96.99 97.56 97.49 97.34
Home1 96.77 93.24 96.53 96.67
Home2 95.36 93.57 96.02 96.2
Hotel1 98.19 97.26 99.05 98.63
Hotel2 98.94 98.91 98.91 98.96
Hotel3 98.15 96.23 98.11 100
Study 94.77 91.67 95.14 96.51

MIT Lab 90.67 85.54 96.77 96.77
mPR 96.23 94.25 97.25 97.63

STD_mPR 2.49 4.03 1.30 1.30

4.3.2. Generalization from BundleFusion to ETH Dataset

To evaluate the generalization ability of our proposed KdO-Net, we have conducted a
series of experiments on four outdoor laser scanner datasets, viz., Gazebo-Summer, Gazebo-
Winner, Wood-Summer, and Wood-Autumn, from the ETH dataset (Pomerleau et al., 2012),
with the model trained on BundleFusion. We have followed the protocols defined in
(Gojcic et al., 2019), where the voxel size equals 6.25 cm (16 voxels per 1 m, corresponding
to 16 voxels per 0.3 m on the 3DMatch dataset) owing to the lower resolution of the point
clouds in the ETH dataset. According to Table 5, our KdO-Net outperforms 3DSmoothNet
on all scenes with the Kd–Octree based descriptors.

Table 5. Quantitative results on ETH dataset at τ1 = 10 cm, τ2 = 5%, and size_o f _voxel_grid = 1 m
are compared.

Model
Gazebo Wood

mR STD_mR mPR
Summer Winter Summer Winter

3DSmoothNet 82.61 64.36 57.39 63.2 66.89 9.45 100
KdO-Net 84.24 70.93 62.61 68.0 71.45 7.96 100

5. Discussion
5.1. Application

To evaluate the efficiency and practicality of our KdO-Net, we apply it to a substantial
point cloud registration task. Our test scenery shows a laboratory in the basement of the
Chair of Geodesy, Technical University of Munich, partly used as a storage facility, con-
taining different geodetic measurement equipment and facilities, old technical equipment
such as an industrial robot, and stored furniture. The measured room has an approximate
dimension of 18.2 m ∗ 11.5 m ∗ 2.3 m.

The dataset consists of three sites of point cloud, captured with a terrestrial laser
scanner Leica RTC360 from three different stations. The three point clouds are registered
precisely with the manufacturers’ software Cyclone. Following the registration, the point
clouds are subsampled to a mean point spacing of 4mm to be comparable with the 3DMatch
dataset. To generate a higher number of fragments, the registered point cloud of each
station is partitioned into 16 parts, depending on its horizontal angle. These sub-fragments
are cyclically composed to sets of four, forming the 15 final point cloud fragments with
an approximate overlap between 75% and 15%. The coordinates corresponding to each
fragment are transformed by the inverse of the randomly generated homogeneous trans-
formation matrix. The resulting fragments contain between 1.5 and 4.4 million individual
points, depending on the objects in the scenery.

We evaluate our approach through extensive applications and visual interpretations,
shown in Figure 8. The left column represents two fragments before registration, and the
right column shows the corresponding registration results. The overlapping area of the first

Remote Sens. 2022, 14, 2883 18 of 22

row is 31.5%, whereas the overlapping area of the second and third rows is only 17.6% and
11.2%, respectively. To quantitatively evaluate the alignment accuracy, we employ the root
mean square error (RMSE) of the distance between a point cloud and its reference point
cloud as a measure. When RMSE is below 0.2 m, it indicates that the final performance for
the practical use is good [10]. Following [11,12], we use the RANSAC algorithm to estimate
the rigid transformation between the two point clouds, and then calculate the RMSE of
the ground truth correspondence under the estimated transformation [10]. The RMSE of
the three examples is 3.28 cm, 3.36 cm, and 3.31 cm, which further demonstrate that the
feature descriptors extracted with our network are discriminative and powerful, even for
challenging tasks.

Figure 8. Registration results of SCS-Net for a realistic application. (Left): before registration,
(middle): ground truth, and (right): after registration.

5.2. Ablation Study

In this section, we conduct extensive ablation studies on BundleFusion dataset to sys-
tematically evaluate the effectiveness of the separate components in our KdO-Net, includ-
ing the SGDR learning rate, HCE loss function, compressor module, network architecture,
and Kd–Octree. Table 6 demonstrates the experimental results.

Table 6. The score of network training and feature matching of all ablated experiments on the
Bundlefusion dataset (a subset of 3DMatch) at τ1 = 10 cm and τ2 = 0.05.

Component Training Accuracy Loss mR mPR

w/o SGDR 10.96 0.50 3.89 –
w/o HCE 71.89 −0.26 94.07 95.61

w/o compressor 73.05 −0.26 90.53 97.40
simplify SCS-Net 67.06 0.50 87.28 97.50
w/o Kd–Octree 71.09 0.49 89.82 97.63
the full method 78.4 0.49 90.23 97.74

Replacing SGDR learning rate with exponential decay: Instead of adopting the
cosine decay restarts strategy, we employ a commonly used exponential decay method to
adjust the learning rate. The initial learning rate is 0.001, and the rate of exponential learning
rate decaying is 0.95. The training step is 80,000, and the frequency of exponential learning
rate decaying is 20. The results show that the training accuracy drops to 10.96%, which
implies that the network cannot converge. Consequently, the average feature matching
recall is as low as 3.89.

Remote Sens. 2022, 14, 2883 19 of 22

Replacing HCE loss with BH loss: For the pairwise point feature matching, the key
is to highlight the difference between the furthest positive points and the closest negative
points to minimize the loss. To validate the effectiveness of our proposed HCE loss function,
we have replaced it with the popular batch hard loss. Our method brings a significant
improvement in the precision.

Remove the Compressor: To evaluate the function of the Compressor, we have re-
moved it directly and concatenated the last layer of the Extender with the output layer. We
find that the precision decreases, though the training accuracy and mean recall increase
owing to the sparsity of the point clouds on BundleFusion.

Simplify KdO-Net architecture with a Siamese Network: To evaluate the efficiency
of our network structure, we have replaced it with a simplified Siamese network, which
includes five convolutional layers and the channel list [1, 32, 64, 128, 64, 32, 32]. We remove
the convolutional blocks with the same channel in the Encoder component and replace them
with an individual convolutional layer. According to Table 6, the learning performance of
the network drops to 11%, and the mean feature matching recall and average precision
drop by 2.95% and 0.24%, respectively. If a MLP is used directly, there would be a sharp
decrease in the learning effect.

Remove Kd–Octree data structure: To evaluate the effect of Kd–Octree on the point
cloud feature matching, we have removed the data structure directly and produced the
descriptor with the original method. The experimental results demonstrate that the effect
of the feature matching has been reduced.

6. Conclusions

We propose a Kd–Octree based convolutional network, KdO-Net, which takes the
advantages of the global Kd-tree and local Octree to enable the balance of the data structure
and fast computation. We have found that, experimentally, this hybrid index achieves better
performance in the search for the nearest neighbors, and the ablation experiments have
proven that it also facilitates the final effect of the feature matching. KdO-Net includes two
modules, viz., Extender and Compressor. Further, it incorporates Huber and Cross Entropy
loss, connecting the adjustment strategy of Stochastic Gradient Descent with a warm
Restart, to ensure that our network can converge in the correct direction. Besides training
on BundleFusion and generalizing to ETH, we also validate the efficiency and practicality
by using the TUM-lab dataset, captured in the cluttered indoor scenes with an overlap of
15% using a terrestrial laser scanner. We expect that KdO-Net will stimulate more on the
learning-based point feature matching. Future research includes the optimization of the
data structure and designing the adaptive network to learn the 3D descriptors.

Author Contributions: Conceptualization, methodology, software, validation, R.Z., G.L. and W.W.;
resources, data curation, review and editing, R.Z. and W.W.; supervision, G.L. and C.H.; funding ac-
quisition: R.Z. and G.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (42071454),
the Science and Technology Research Projects of Science and Technology Department in Henan
Province, China (192102210265 and 202102210141), and China Scholarship Council.

Data Availability Statement: The data are available at: https://github.com/zhangrui0828/KdO-Net
(accessed on 24 April 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Huang, R.; Ye, Z.; Boerner, R.; Yao, W.; Xu, Y.; Stilla, U. Fast pairwise coarse registration between point clouds of construction sites

using 2D projection based phase correlation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 1015–1020. [CrossRef]
2. Dong, Z.; Yang, B.; Liang, F.; Huang, R.; Scherer, S. Hierarchical registration of unordered TLS point clouds based on binary

shape context descriptor. ISPRS J. Photogramm. Remote Sens. 2018, 144, 61–79. [CrossRef]

https://github.com/zhangrui0828/KdO-Net
http://doi.org/10.5194/isprs-archives-XLII-2-W13-1015-2019
http://dx.doi.org/10.1016/j.isprsjprs.2018.06.018

Remote Sens. 2022, 14, 2883 20 of 22

3. Montuori, A.; Luzi, G.; Stramondo, S.; Casula, G.; Bignami, C.; Bonali, E.; Bianchi, M.G.; Crosetto, M. Combined use of
ground-based systems for Cultural Heritage conservation monitoring. In Proceedings of the 2014 IEEE Geoscience and Remote
Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 4086–4089.

4. Davis, A.; Belton, D.; Helmholz, P.; Bourke, P.; McDonald, J. Pilbara rock art: Laser scanning, photogrammetry and 3D
photographic reconstruction as heritage management tools. Herit. Sci. 2017, 5, 25. [CrossRef]

5. Dong, Z.; Liang, F.; Yang, B.; Xu, Y.; Zang, Y.; Li, J.; Wang, Y.; Dai, W.; Fan, H.; Hyyppä, J. Registration of large-scale terrestrial
laser scanner point clouds: A review and benchmark. ISPRS J. Photogramm. Remote Sens. 2020, 163, 327–342. [CrossRef]

6. Xu, Y.; Boerner, R.; Yao, W.; Hoegner, L.; Uwe, S. Pairwise coarse registration of point clouds in urban scenes using voxel-based
4-planes congruent sets. ISPRS J. Photogramm. Remote Sens. 2019, 151, 106–123. [CrossRef]

7. Guo, Y.; Sohel, F.; Bennamoun, M.; Wan, J.; Lu, M. An Accurate and Robust Range Image Registration Algorithm for 3D Object
Modeling. IEEE Trans. Multimed. 2014, 16, 1377–1390. [CrossRef]

8. Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing: A comprehensive
review and list of resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [CrossRef]

9. Ao, S.; Hu, Q.; Yang, B.; Markham, A.; Guo, Y. SpinNet: Learning a General Surface Descriptor for 3D Point Cloud Registration.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021;
pp. 11753–11762.

10. Bai, X.; Luo, Z.; Zhou, L.; Fu, H.; Quan, L.; Tai, C.L. D3feat: Joint learning of dense detection and description of 3d local features.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020;
pp. 6359–6367.

11. Gojcic, Z.; Zhou, C.; Wegner, J.D.; Wieser, A. The perfect match: 3d point cloud matching with smoothed densities. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5545–5554.

12. Zeng, A.; Song, S.; Nießner, M.; Fisher, M.; Xiao, J.; Funkhouser, T. 3dmatch: Learning local geometric descriptors from rgb-d
reconstructions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26
July 2017; pp. 1802–1811.

13. Aoki, Y.; Goforth, H.; Srivatsan, R.A.; Lucey, S. Pointnetlk: Robust & efficient point cloud registration using pointnet. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 7163–7172.

14. Fang, Y.; Xie, J.; Dai, G.; Wang, M.; Zhu, F.; Xu, T.; Wong, E. 3d deep shape descriptor. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 2319–2328.

15. Deng, H.; Birdal, T.; Ilic, S. Ppf-foldnet: Unsupervised learning of rotation invariant 3d local descriptors. In Proceedings of the
European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 602–618.

16. Elbaz, G.; Avraham, T.; Fischer, A. 3D point cloud registration for localization using a deep neural network auto-encoder.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 4631–4640.

17. Deng, H.; Birdal, T.; Ilic, S. Ppfnet: Global context aware local features for robust 3d point matching. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 195–205.

18. Poiesi, F.; Boscaini, D. Generalisable and distinctive 3D local deep descriptors for point cloud registration. arXiv 2021,
arXiv:2105.10382.

19. Wang, Y.; Solomon, J.M. Deep closest point: Learning representations for point cloud registration. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 3523–3532.

20. Li, J.; Chen, B.; Yuan, M.; Zhao, Q.; Luo, L.; Gao, X. Matching Algorithm for 3D Point Cloud Recognition and Registration Based
on Multi-Statistics Histogram Descriptors. Sensors 2022, 22, 417. [CrossRef]

21. Yue, X.; Liu, Z.; Zhu, J.; Gao, X.; Yang, B.; Tian, Y. Coarse-fine point cloud registration based on local point-pair features and the
iterative closest point algorithm. Appl. Intell. 2022, 1–15. [CrossRef]

22. Sun, L.; Zhang, Z.; Zhong, R.; Chen, D.; Zhang, L.; Zhu, L.; Wang, Q.; Wangb, G.; Zou, J.; Wangc, Y. A Weakly Supervised Graph
Deep Learning Framework for Point Cloud Registration. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5702012. [CrossRef]

23. Hana, X.F.; Jin, J.S.; Xie, J.; Wang, M.J.; Jiang, W. A comprehensive review of 3D point cloud descriptors. arXiv 2018,
arXiv:1802.02297.

24. Poiesi, F.; Boscaini, D. Distinctive 3D local deep descriptors. In Proceedings of the 2020 25th International Conference on Pattern
Recognition (ICPR), Milan, Italy, 10–15 January 2021.

25. Spezialetti, R.; Salti, S.; Stefano, L.D. Learning an effective equivariant 3d descriptor without supervision. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 6401–6410.

26. Tian, Y.; Fan, B.; Wu, F. L2-net: Deep learning of discriminative patch descriptor in euclidean space. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 661–669.

27. Yew, Z.J.; Lee, G.H. 3dfeat-net: Weakly supervised local 3d features for point cloud registration. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 607–623.

28. Choy, C.; Dong, W.; Koltun, V. Deep global registration. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 2514–2523.

http://dx.doi.org/10.1186/s40494-017-0140-7
http://dx.doi.org/10.1016/j.isprsjprs.2020.03.013
http://dx.doi.org/10.1016/j.isprsjprs.2019.02.015
http://dx.doi.org/10.1109/TMM.2014.2316145
http://dx.doi.org/10.1109/MGRS.2017.2762307
http://dx.doi.org/10.3390/s22020417
http://dx.doi.org/10.1007/s10489-022-03201-3
http://dx.doi.org/10.1109/TGRS.2022.3145474

Remote Sens. 2022, 14, 2883 21 of 22

29. Lu, W.; Wan, G.; Zhou, Y.; Fu, X.; Yuan, P.; Song, S. DeepICP: An end-to-end deep neural network for point cloud registration.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019;
pp. 12–21.

30. Feng, M.; Hu, S.; Ang, M.H.; Lee, G.H. 2d3d-matchnet: Learning to match keypoints across 2d image and 3d point cloud. In
Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019;
IEEE: Piscataway, NJ, USA, 2019; pp. 4790–4796.

31. Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference
on Computer Vision, Kerkyra, Greece, 20–27 September 1999; IEEE: Piscataway, NJ, USA, 1999; Volume 2, pp. 1150–1157.

32. Zhong, Y. Intrinsic shape signatures: A shape descriptor for 3d object recognition. In Proceedings of the 2009 IEEE 12th
International Conference on Computer Vision Workshops, ICCV Workshops, Kyoto, Japan, 27 September–4 October 2009; IEEE:
Piscataway, NJ, USA; pp. 689–696.

33. Li, L.; Zhu, S.; Fu, H.; Tan, P.; Tai, C.L. End-to-end learning local multi-view descriptors for 3d point clouds. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1919–1928.

34. Lucas, B.D.; Kanade, T. An Iterative Image Registration Technique with an Application toStereo Vision. In Proceedings of the 7th
International Joint Conference on ArtificialIntelligence, Nagoya, Japan, 23–29 August 1997.

35. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep learning on point sets for 3D classification and segmentation. In Proceedings
of the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2016; Institute of
Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; Volume 2017, pp. 77–85.

36. Li, J.; Lee, G.H. DeepI2P: Image-to-Point Cloud Registration via Deep Classification. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 15960–15969.

37. El Banani, M.; Gao, L.; Johnson, J. Unsupervised R & R: Unsupervised point cloud registration via differentiable rendering. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021;
pp. 7129–7139.

38. Gojcic, Z.; Zhou, C.; Wegner, J.D.; Guibas, L.J.; Birdal, T. Learning multiview 3d point cloud registration. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 1759–1769.

39. Choy, C.; Park, J.; Koltun, V. Fully Convolutional Geometric Features. In Proceedings of the 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019.

40. Thomas, H.; Qi, C.R.; Deschaud, J.E.; Marcotegui, B.; Goulette, F.; Guibas, L.J. Kpconv: Flexible and deformable convolution
for point clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–
2 November 2019; pp. 6411–6420.

41. Zhu, L.; Guan, H.; Lin, C.; Han, R. Neighborhood-aware Geometric Encoding Network for Point Cloud Registration. arXiv 2022,
arXiv:2201.12094.

42. Li, D.; He, K.; Wang, L.; Zhang, D. Local feature extraction network with high correspondences for 3d point cloud registration.
Appl. Intell. 2022, 2022, 1–12. [CrossRef]

43. Joung, S.; Kim, S.; Kim, H.; Kim, M.; Kim, I.J.; Cho, J.; Sohn, K. Cylindrical convolutional networks for joint object detection and
viewpoint estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA,
USA, 13–19 June 2020; pp. 14163–14172.

44. Kadam, P.; Zhang, M.; Liu, S.; Kuo, C.C.J. R-PointHop: A Green, Accurate, and Unsupervised Point Cloud Registration Method.
IEEE Trans. Image Process. 2022, 31, 2710–2725. [CrossRef]

45. Riegler, G.; Osman Ulusoy, A.; Geiger, A. Octnet: Learning deep 3d representations at high resolutions. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3577–3586.

46. Wang, P.S.; Liu, Y.; Guo, Y.X.; Sun, C.Y.; Tong, X. O-cnn: Octree-based convolutional neural networks for 3d shape analysis. ACM
Trans. Graph. 2017, 36, 1–11. [CrossRef]

47. Souza Neto, P.; Marques Soares, J.; Pereira Thé, G.A. Uniaxial Partitioning Strategy for Efficient Point Cloud Registration. Sensors
2022, 22, 2887. [CrossRef]

48. Li, J.; Zhan, J.; Zhou, T.; Bento, V.A.; Wang, Q. Point cloud registration and localization based on voxel plane features. ISPRS J.
Photogramm. Remote Sens. 2022, 188, 363–379. [CrossRef]

49. Dai, A.; Nießner, M.; Zollhöfer, M.; Izadi, S.; Theobalt, C. Bundlefusion: Real-time globally consistent 3d reconstruction using
on-the-fly surface reintegration. ACM Trans. Graph. 2017, 36, 1. [CrossRef]

50. Hadsell, R.; Chopra, S.; LeCun, Y. Dimensionality reduction by learning an invariant mapping. In Proceedings of the 2006 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006;
IEEE: Piscataway, NJ, USA, 2006; Volume 2, pp. 1735–1742.

51. Xiao, J.; Owens, A.; Torralba, A. Sun3d: A database of big spaces reconstructed using sfm and object labels. In Proceedings of the
IEEE International Conference on Computer Vision, Sydney, Australia, 2–8 December 2013; pp. 1625–1632.

52. Shotton, J.; Glocker, B.; Zach, C.; Izadi, S.; Criminisi, A.; Fitzgibbon, A. Scene coordinate regression forests for camera relocalization
in RGB-D images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA,
23–28 June 2013; pp. 2930–2937.

53. Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 815–823.

http://dx.doi.org/10.1007/s10489-021-02377-4
http://dx.doi.org/10.1109/TIP.2022.3160609
http://dx.doi.org/10.1145/3072959.3073608
http://dx.doi.org/10.3390/s22082887
http://dx.doi.org/10.1016/j.isprsjprs.2022.04.017
http://dx.doi.org/10.1145/3072959.3054739

Remote Sens. 2022, 14, 2883 22 of 22

54. Hermans, A.; Beyer, L.; Leibe, B. In defense of the triplet loss for person re-identification. arXiv 2017, arXiv:1703.07737.
55. Zhang, R.; Li, G.; Li, M.; Wang, L. Fusion of images and point clouds for the semantic segmentation of large-scale 3D scenes

based on deep learning. ISPRS J. Photogramm. Remote Sens. 2018, 143, 85–96. [CrossRef]
56. Zhang, Z.; Sun, J.; Dai, Y.; Zhou, D.; Song, X.; He, M. Self-supervised Rigid Transformation Equivariance for Accurate 3D Point

Cloud Registration. Pattern Recognit. 2022, 130, 108784. [CrossRef]
57. Vkb, G.; Carneiro, G.; Reid, I. Learning Local Image Descriptors with Deep Siamese and Triplet Convolutional Networks by

Minimising Global Loss Functions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Las Vegas, NV, USA, 27–30 June 2016.

58. Loshchilov, I.; Hutter, F. Sgdr: Stochastic gradient descent with warm restarts. arXiv 2016, arXiv:1608.03983.
59. Pomerleau, F.; Liu, M.; Colas, F.; Siegwart, R. Challenging data sets for point cloud registration algorithms. Int. J. Robot. Res. 2012,

31, 1705–1711. [CrossRef]
60. Lai, K.; Bo, L.; Fox, D. Unsupervised feature learning for 3d scene labeling. In Proceedings of the 2014 IEEE International

Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; IEEE: Piscataway, NJ, USA, 2014;
pp. 3050–3057.

61. Valentin, J.; Dai, A.; Nießner, M.; Kohli, P.; Torr, P.; Izadi, S.; Keskin, C. Learning to navigate the energy landscape. In Proceedings
of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; IEEE: Piscataway, NJ,
USA, 2016; pp. 323–332.

http://dx.doi.org/10.1016/j.isprsjprs.2018.04.022
http://dx.doi.org/10.1016/j.patcog.2022.108784
http://dx.doi.org/10.1177/0278364912458814

	Introduction
	Related Works
	Network Architecture
	Comparisons among the State-of-the-Arts

	Our Approach
	Kd–Octree Based Voxelization Descriptor
	Kd–Octree Construction
	Nearest Neighbor Searching Strategy

	Feature Descriptor Extraction
	KdO-Net Architecture
	Network Training

	Pairwise-Point Correspondence Establishment
	Pairwise-Point Feature Matching

	Results
	Implementation
	Evaluation Metrics
	Nearest Neighbor Searching and Network Training
	Feature Matching Metrics

	Evaluation
	Evaluation on the Indoor 3DMatch Dataset
	Generalization from BundleFusion to ETH Dataset

	Discussion
	Application
	Ablation Study

	Conclusions
	References

