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Abstract: Decisions on transport policy measures have long-term and important impacts on the
economy, environment and society. Transport policy measures can lock up capital for decades
and cause manifold external effects. In order to allow policymakers to evaluate transport policies,
the developed decision support tool facilitates the evaluation of the multidimensional impacts of
the implementation of transport policies. The objective of the decision support toolset presented
in this paper is to support transportation planning and design practices based on an integrated
transportation analysis of the area of examination to determine the most applicable combination
of mobility services. This paper provides a comprehensive description of the interactive decision
support tool implemented to help cities and decision makers design their strategies and shape the
urban mobility of the future.

Keywords: emerging urban mobility solutions; decision support tool

1. Introduction

Decisions on transport policy measures have long-term and important impacts on the
economy, environment and society. In order to allow policymakers to evaluate transport
policies, a decision support tool (DST) is required to evaluate the impacts of the implemen-
tation of transport policies. The described decision support tool (DST) in this paper is a
scientific and technical procedure, aiming to identify the impact of potential urban mobility
solutions, depending on the characteristics and mobility data of each city.

The DST presented in this paper was developed within the MOMENTUM project.
The goal of the DST is to develop a set of new data analysis methods, transport models
and planning support tools to capture the impact of these new transport options on the
urban mobility ecosystem in order to support cities in the task of designing the right policy
mix to exploit the full potential of these emerging mobility solutions. The developed DST
is an online, user-friendly tool and consists of three levels. Based on the granularity of
data, different scenarios for each level can be tested, as can be seen in Table 1. The cities
participating are Thessaloniki, Madrid, Regensburg and Leuven. All cities presented a set of
case studies with heterogeneous characteristics in terms of size, morphology, environmental,
socioeconomic and cultural factors, mobility issues and policy goals.
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Table 1. Input data and analysis for each level of the DST.

Input Data Requirements Analysis Capabilities

Level 1 Low:
Demographics + socioeconomic data

Analytical:
Preliminary transportation design

Level 2 Medium:
Mobility data

Extensive:
Data-driven decision system

Level 3 High:
Full information using transport simulation tools

Comprehensive:
Transport planning

Many European cities, especially small- and medium-sized cities, continue to use
the traditional, strategic, four-step transport modeling approach for transport planning.
This approach has been established and applied to various scenarios and, hence, has
become the primary approach for travel demand modeling. The method assumes that the
network input is dissected into traffic analysis zones, which contain relatively homogeneous
socioeconomic factors and geographically close land-use objects (e.g., housing). There is an
inertia to alter the traditional approach to other advanced methods due to insufficient data,
a deficit of technical expertise and the convenience of simpler models. The advancement of
the traditional four-step model, the agent-based approach, has been carried out at the level
of individuals, as opposed to the level of the traffic analysis zones.

Decision Support Toolset
Figure 1 describes the flowchart of the implementation of the DST. Based on the

available input data of each city described in Table 1, each city can achieve the most
relevant level of detail. The first step is to discuss with the city and stakeholders the
urban mobility services they need to investigate in order to develop the city’s strategy.
Afterwards, based on the available input transportation data and needs of each city, they
can perform DST implementation. Level 1 provides a preliminary analysis of the examined
area, indicating the most applicable modes for the city and the range of the efficient number
of key factors of the services (e.g., stations, bicycles, scooters, buses). In Level 2, the DST
provides a detailed investigation of the number of units and the locations of the stops.
Level 3 includes a comprehensive transportation analysis of the area examined. For this
level, current demand and supply are fed to the transportation model, investigating the
impact of new emerging mobility solutions in the urban environment of the city.
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Figure 1. Flowchart of the DST.

Based on the implementation of the DST in the real cases where it was examined,
we will present below three scenarios of the application of the DST in a city. In this set
of scenarios, different approaches will be presented, based on the input data each city
can provide.

Scenario 1
For this case study, we will assume that a city does not have mobility data or a

transportation model. In this example, cities can only test Level 1. In this level, users need
to add average values or highly aggregated socioeconomic, operational and functional
variables. Based on the KPIs available for Level 1, users can identify the layout of their
proposed solution, through produced dashboards, charts and values of the parameters
(such as number of stations, docks, number of bicycles and scooters)
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Scenario 2
For this case study, we will assume that a city has mobility data but not a transportation

model. In this case, users can test until Level 2 of the DST. It goes without saying that
users can test Level 1 but not Level 3, as a transport model is needed. In Level 2, users
can use the algorithms available in the DST in order to convert data into the applicable
format. Mobility data to be used as input data can be floating car data or OD matrices.
Data such as bike lane networks, public transport lines and road networks are used as
constraints in order to provide more accurate results. Based on the KPIs available for Level
2, users can identify more precise decisions compared to Level 1. Users can have access to
a set of results such as the actual location of stops of the service, the fleet size needed and
the capacity of stops and units (vehicles, bicycles and scooters). These values are critical
parameters for the overall performance of the system under various scenarios.

Scenario 3
For this case study, we will assume that the city has a transportation model. In this

case, a more analytical procedure needs to be followed, including a modal split of the
available means of transport and optionally a synthetic population investigation. Due
to the amount of calculation needed, these actions need to take place offline and then,
using the results produced, need to be imported into the online version of the tool. Based
on the KPIs available for Level 2, users can identify more precise decisions compared to
previous levels. The mobility service simulator provides KPIs related to the users of each
service. These include waiting times for each user to be served, travel times to complete
their trip and number of served and unserved requests. Moreover, the model produced
provides indicators regarding traffic emissions, car ownership and induced demand due to
the introduction of new shared mobility services.

The added value of the DST is the unique option cities have to test and examine
different scenarios, despite the amount of input transportation data they have. All cities can
be used as test beds and perform a combination of levels provided by the DST. If applicable,
cities are advised to test all levels in order to minimize the level of uncertainty for the
produced results

Within the scope of this paper, we present a summary of the methodologies developed
along with the connection to an online DST and the results from the investigation of a
bike-sharing system in the city of Thessaloniki. In Section 2, the materials and methods
investigated are described, while in Section 3, we present the results produced from the
application of the DST in the city of Thessaloniki. In Section 4, the discussion and the added
value of the produced results are described.

2. Materials and Methods
2.1. Scope of a Decision Support Toolset

The scope of the decision support systems has been changing through the years. Today,
with the rampant advancements in information technologies, DSSs are used in a variety of
applications across many domains. The ultimate goal of state-of-the-art decision support
systems is to utilize the available data and implement the necessary models to help users
in their decision making, both at the strategic and operational levels.

In general, a decision support tool or system consists of the following main compo-
nents, described in Figure 2:

• A database management system (DBMS): This component holds the available data the
DSS acts upon. Currently, the large amount of data collected and processed allows us
to talk about Big Data.

• Models: These include the techniques, algorithms and processes, as well as the type
of support provided and area of application. The current trend includes techniques
derived from the popular artificial intelligence techniques and algorithms.

• User interface: This guides and helps the users through the decision-making process
by providing a friendly, flexible, simple and interactive interface.
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Based on the main components described above and the descriptions of the previous
sections, a high-level architecture diagram can be constructed.

As can be seen in Figure 3, the components of the decision support tool include
the following:
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Front-end: This component refers to the user’s side of the system and includes the
web platform, the interface the user interacts with and the minimal computations on the
data retrieved from the server.

Back-end: This component provides the processing power of the decision support
tool and includes the API used for the data exchange, the server used for the algorithms’
execution and the database used for the storage of the data.
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External data sources: This component feeds the back-end with the necessary data for
the execution of the algorithms and is provided from external sources such as weather data.

2.2. Categories of Decision Support Toolsets

There are five different types of decision support systems described in the literature
(Power, 2002 & 2004). The deviation among them is based on the way data have been
received. The description of the different DST types can be found below:

Communication-driven decision support systems: The target group of these decision
support systems is the internal teams, which include partners of an organization willing to
establish an efficient collaboration, e.g., a successful meeting. A web or client server is the
most common technology used to deploy these decision support systems.

Data-driven decision support systems: These systems are useful for querying a
database or data warehouse to seek specific answers for specific purposes. They can
be deployed using a mainframe system, client/server link or via the web.

Document-driven decision support systems: These systems are used to search web
pages and find documents on a specific set of keywords or search terms. They can be
implemented via the web or a client/server system.

Knowledge-driven decision support systems: These cover a broad range of paradigms
in artificial intelligence to assist decision makers from different domains. Various data
mining techniques are included, such as neural networks, fuzzy logic, evolutionary al-
gorithm or case-based reasoning. Such techniques can be utilized for developing these
systems to provide specialized expertise and information for specific decision-making prob-
lems. They can be deployed using client/server systems, the web or software running on
standalone computers.

Model-driven decision support systems: These are complex systems developed based
on some model (e.g., mathematical and analytical models) to help analyze decisions or
choose between different alternatives. They can be deployed via software/hardware in
standalone computers, client/server systems or the web.

Secondary components include the users themselves and visualization techniques
and tools (e.g., geographic information systems (GISs)). The user’s component includes
the individuals or group of people that will use the DST, such as stakeholders, service
providers, etc. The visualization component is very important for the user’s experience
while using the DST. Displaying the information in a compact and interesting way (e.g.,
through a map) can be beneficial for the overall success of the DST.

2.3. Developed DST and Produced KPIs

Within this section, we present the structure of the developed decision support toolset,
the methodology followed for implanting the tool and the key performance indicators
deriving from the tool.

Level 1—Preliminary transportation analysis
In the first level of the decision tool, an initial investigation of the urban mobility

landscape of the city is examined. The preliminary analysis of this step requires a small
amount of data such as geospatial socioeconomic data about the population of the studied
area and the available operating fleets of mobility services. Due to the low granularity of
input data, assumptions of demand, will be made so that decision makers can receive an
initial estimation of potential urban mobility plans at a very low cost in terms of data.

Validation of the methodological procedure followed in Level 1 of the DST, was based
on values cities provided. The input data received in order to validate Level 1 was twofold:
on the one hand were associated with the values used for testing the DST while on the other
hand, the expected or existing values of services (number of stations, docks per station,
number of bicycles), currently operating the areas tested. Based on the validation of the
values given and feedback received, the calibration of Level 1 was implemented.

However, based on the results expected by the cities, various mechanisms to “calibrate”
the problem optimization were included in order to allow the cities to ask for more “social”
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solutions and less economic. The features added to the tool are targeted at the expansion of
possibilities to the city partners to assess the impact from the user’s perspective or from the
operational side. Furthermore, the addition of the sensitivity analysis of demand option in
Level 1 aimed to give the user of the DST the ability to receive a range of solutions, not only
the optimal values of the tool, in order to define the most applicable set of interventions to
a specific city/area.

Level 2—Data-driven decision system
The aim of this level is to develop an analysis of the planning and evaluation of

emerging mobility systems using a data-driven input data approach.
The added value of the Level 2 is based on the level of analysis that can be achieved,

based on the available input data. The granularity of input data leads to the development
of an in-depth analysis of the proposed modes of transport. To estimate the existing de-
mand distribution, different algorithms are implemented in order to conclude efficient
mobility service options. Information from various sources will be used in this proce-
dure in order to provide the most accurate calculations. Information on the bicycle net-
work, public transport stops and the road network will produce optimal solutions for the
tested scenarios.

Level 2 provides data-driven information for the services tested, providing compre-
hensive operational and planning results. More information about the methodological
approach followed in the Level 2 of the DST was based on the values cities provided. The
input data were received in order to validate values used for testing the DST with expected
or existing values of services currently operating in the areas tested. Based on the valida-
tion and the feedback received, features and methodologies for visualizing and presenting
results were added to the tool. Finally, using available transportation information the city
partners provided from data-driven information to OD matrices, scripts were produced and
provided by the Centre for Research and Technology Hellas (CERTH) in order to produce
the appropriate format of input data for Level 2 for all study cases.

Level 3—Comprehensive Transport planning
The last step of the multilevel decision support tool will involve a comprehensive

analysis of the examined district by modeling the transport scheme of the selected city.
Modeling for transport planning can be a powerful tool in understanding the potential
traffic impacts of the proposed solutions if used in an appropriate way. It can also enable
strategies to be developed, aiming to mitigate environmental impacts.

The interactive decision support dashboard, the policies under consideration and
the KPIs are tailored to the specific requirements of each case study. More information
about the KPIs to be produced can be found in D5.2 “Interaction Support Toolset”. The
implementation in the city of Thessaloniki worked as a testbed for the implementation in the
rest of the cities. The new toolset is implemented on top of the existing mobility ecosystem,
which holds a variety of data analysis and simulation tools, allowing the cooperation of
public and private institutions. It has become a real-life conditions testbed for innovative
mobility solutions.

The nature of the methodological stream of Level 3 is based on the investigation of
the transport model of the city examined. In this level, comprehensive transportation
information is used in order to examine the potential impact of emerging mobility services.
The intermediate modeling approach [1] is used as the basis for Level 3. The structure of
the modeling approach is briefly described in Appendix B.

On the online version of the DST, in Level 3, the user needs to proceed with the
implementation offline and then use the visualization and analytical tools of the online
version to assess the produced results

2.4. Methodological Approach

While the majority of cities continue to use the four-step modeling approach, modeling
of shared mobility services calls for the advanced approach (i.e., agent-based approach), as
modeling at the level of individual vehicles is a necessity for emerging mobility solutions.
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Considering the aforementioned facts, there is a need for a pragmatic modeling approach,
which adopts the disaggregate modeling principle from agent- and activity-based methods
and integrates the same into the traditional strategic modeling approach. In this context,
the project has developed an intermediate modeling approach and the implementation of a
user-friendly DST in order to help users easily benefit from the knowledge gained. This
method is located in between the traditional strategic and agent activity-based approaches,
allowing to adequately model and evaluate the fleet planning and operations of shared
mobility services.

Evidence-based policies with an impact on urban transport systems require reliable
information about mobility patterns and travel demand. The traditional approach for the
collection of travel demand information is based on surveys. These include household
travel surveys and vehicle intercept surveys. Surveys provide rich information on mobility
patterns and drivers’ behavior. Nevertheless, they have limitations in terms of collecting
and interpreting received data. Answers to the traditional surveys might be incorrect
and imprecise, and they are expensive and time-consuming, which limits the size of the
sample and the frequency of updates. This leads to many urban mobility plans being
developed on the basis of information that does not precisely reflect the existing or future
transportation environment. The potential of new, opportunistically collected data sources
will help transport planners to overcome some of these limitations. These include sensor
vehicular data, floating vehicular data, smart transport card data sensor personal data,
floating personal data, social media data, mobile phone data, service operation data, etc.
These alternative data sources can be fused with other contextual data sources (census
information, land use, etc.) to complement and enrich the information obtained from
traditional sources.

Data fusion and data analysis of conventional and opportunistically collected data
sources can shed light on these issues. Within the implementation of the DST, we first
performed a data collection and harmonization process. Then, using the harmonized data,
we developed and validated different data fusion and artificial intelligence techniques
to analyze mobility patterns and travel behavior. The adoption and usage patterns of
some of the shared mobility modes available in the cities participating in the project were
also studied.

For the operational part of the bike-sharing, micromobility and demand-responsive
transport (DRT) service problems, most of the studies focus on the use of mixed-integer
models along with dynamic programming and time-series algorithms. There are studies
that develop models for the redistribution of bikes across stations with the use of combina-
torial optimization and corresponding heuristics [2,3]. Related to this problem, inventory
control theory is another approach used in the literature to solve related problems [4].
Additionally, demand prediction is also considered an important task for managing micro-
mobility operations [5,6]. These initiatives are used also in the developed DST, while one
of the objectives is to establish a system that allows resilient and sustainable operations
management of such services. In the same way, the operational aspect of DRT services is
well solved and studied, in comparison to the planning. The dial-a-ride problem formula-
tion is the most common approach to optimize the routes and accurately serve the demand
that services achieve to arrange the routes and accurately serve the demand [7].

Strategic planning and facility location are also core problems of the services related
to the DST. Most of the studies that handle facility location and demand coverage planning
problems use as input some possible candidate stops and try via linear-integer programs to
define the best subset given some service-level constraints [8,9]. Similarly, mixed-integer
algorithms and two-stage formulation have been examined in [10] to design a DRT service
network. On the other hand, some studies make use of analytical statistical models that
estimate the socioeconomic optimum of the fleet size required to serve the demand of an
area [11]. In our solution, the socioeconomic approach is used to obtain an estimation of
the optimal values, while the facility location, fleet size and system capacity are designed
based on real distributions of the spatial demand. Moreover, as the dynamics of the system



Sustainability 2022, 14, 7764 8 of 19

evolve over time, it is important to model this process in our computations according to
the system dynamics paradigm [12]. The facility location is determined for all the services
under a general-purpose p-median model [13], based on candidates produced by a variant
of the k-means algorithm [14,15]. Lastly, the fleet size, the capacity of vehicles and the
number of docks are calculated via guided optimization models [16,17] and discrete event-
based evaluation of each scenario. Searching over the literature, there is a vast palette of
techniques for optimizing the different steps of a complete study, including data collection,
data processing/cleaning, pattern recognition, decision analytics and optimization and
robust optimization with simulation. The novelty of this study lies in the presentation of a
unified process that streams this pipeline of operations, starting from data collection until
the final decision about the optimal system parameters, packed in a user-friendly tool that
improves the intuition and comprehension of public authorities such as city councils and
transport consultants.

2.5. Key Performance Indicators (KPIs)

Performance measurement is a useful tool that can help decision makers and authori-
ties to assess the importance of transportation and appropriate investment in transportation
investments. The ultimate purpose of measuring performance is to improve transportation
services for users. Moreover, performance measurement provides both important inputs
for setting priorities and critical information that helps decision makers detect potential
problems and make corrections in order to meet the goals and objectives of future mobility.

In the development of the proposed DST, different scenarios and transport modes are
tested in order to specify the transport system dynamics. Network performance indicators
are essential parameters in transport modeling evaluation models. The development of the
DST and the research activities encompass the development of assessing the impact of new
mobility services in the test case cities of Thessaloniki, Leuven, Madrid and Regensburg.
Questions and needs related to urban mobility services in the cities examined were used in
order to form the produced KPIs. The test cases of the four cities are:

• Scenarios and policies for each city;
• Datasets available in each city;
• Novelties and evolutions;
• Mobility policy priorities;
• Suggested policies to be tested;
• Questions to be addressed.

Considering the mobility policies and questions to be addressed for each case study,
a list of KPIs was compiled. It is important to mention that, due to the different levels of
granularity of input data for each level of the DST, the type of KPIs that can be derived
varies depending on the data availability. Table 2 below shows the KPIs available in the
DST for each examined Level of the tool.

Table 2. List with available KPIs for every level.

KPIs Level 1 Level 2 Level 3

System’s cost for each scenario Provided Provided Provided

Travel time Provided Provided Provided

Kilometers traveled Provided Provided Provided

Number of units needed (vehicles, bicycles, etc.) Provided Provided Provided

Passengers’ waiting time Provided Provided Provided

Demand coverage Provided Provided

Accessibility Provided Provided

Network coverage Provided Provided
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Table 2. Cont.

KPIs Level 1 Level 2 Level 3

Fleet’s management operation pick-up points for DRT,
station’s locations from BS and micromobilitiy Provided Provided

Modal split (BS, CS, RS, conventional systems) Provided

Kilometers traveled per mode Provided

Network’s performance indicator (congestion, traffic
flow, delays, travel times, queue lengths) Provided

Use of active mobility means Provided

Usage rate for each rate (number of trips, percentage of
time used) Provided

Car ownership (number of people per 1000 citizens) Provided

3. Results

In this section, the results of the implementation of the decision support toolset are
presented. The city of Thessaloniki was used as a test bed. All three levels of the DST are
described below, along with the input and output data of the tested scenarios.

Level 1—Preliminary transportation analysis
Thessaloniki’s case study focused on how a DRT service should be implemented

to contribute to sustainable mobility in the city, the role of ridesharing in the transport
system of the city and the impacts of bike sharing and micromobility in transport planning.
Socioeconomic and functional variables’ characteristics were used as input data for Level
1 implementation, calculated as part of the Sustainable Urban Mobility Planning (SUMP)
process for the city of Thessaloniki. The implementation of Level 1 was performed based
on the recently updated and calculated values for the city of Thessaloniki. Socioeconomic
and functional variables’ data, such as the demand for services and value of time, were
calculated using a stated preference study in the city of Thessaloniki for the purpose of
preparing the new SUMP for the city. Values such as the cost of operation were calculated
based on the operational costs of existing systems in the city.

For the bike-sharing service in Thessaloniki, different scenarios were tested. The differ-
ent scenarios included changes in the operational, socioeconomic variables and estimated
demand for bicycle trips in the examined area. The weight assigned for the cost of the
user (weight refers to a value selected by the user of the DST in order to define the level of
influence of the cost) was tested in the values between 0.1 and 1 in order to investigate the
impact of the cost of using the provided service to the users. For the tests included in the
Annex, tests with a weight of 0.5 are included, as these values were calculated to be more
associated with the case study of Thessaloniki. Furthermore, the maximum waiting time
was tested for values ranging from 1 to 6 min, while the maximum walking time the users
need to walk to reach a station fluctuated from 5 to 10 min. Decision variables, including
minimum and maximum values for the number of stations and docks, were selected based
on the current number of stations and units operating in the city. In Thessaloniki, the avail-
able bike-sharing system is not sufficient to cover the demand of users. Hence, different
scenarios were tested in order to identify the best solution. Finally, the demand range that
was tested varied between 80 and 120 percent of the demand.

In this example, one scenario for the bike-sharing system is presented. The values
used for the scenario of the bike-sharing system are described in Table 3. In the images
below, the produced results are presented (Figure 4). The values used for the various tests
examined for Level 1 for all available services are included in the Appendix A.
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Table 3. Input values used for Level 1.

Service Bike Sharing

Country Greece
City Thessaloniki
Population 1,012,297
Square meters of area of interest 19.3 km

Cost of operation

Bicycle operating cost per km 0.1 EUR/km
Bicycle depreciation cost per hour 0.1 EUR/km
Operator cost per hour (per station) 0.2 EUR/km
Dock depreciation cost per hour 0.05 EUR/km
Weight assigned to the user (range from 0 to 1) 0.5

Socioeconomic and functional variables

Value of time of users 15 EUR/km
User walking speed 5 km/h
Bicycles travel speed 12 km/h
Mean demand of the area 50 trips/h
Standard deviation of demand of the area 8 trips/h
Travel time activation Yes

Constrains

Maximum waiting time 3 min
Maximum walking time 8 min
Decision Variables

Number of stations

Min 1
Max 100

Number of Docks

Min 1
Max 50
Run sensitivity module for demand Yes

Demand range around the one declared above (%)

Min 80
Max 120
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Figure 4. Produced KPIs.

The first set of results produced by Level 1 of the DST includes optimal values and
KPIs based on the values used as input data. The number of bicycles and docks is presented
along with user and operator costs in Figure 5.



Sustainability 2022, 14, 7764 11 of 19

Sustainability 2022, 14, x FOR PEER REVIEW 11 of 21 
 

 

Figure 4. Produced KPIs. 

The first set of results produced by Level 1 of the DST includes optimal values and 

KPIs based on the values used as input data. The number of bicycles and docks is pre-

sented along with user and operator costs in Figure 5. 

 

Figure 5. Range of optimal values. 

The following charts present the calculated range of optimal solutions for the dif-

ferent indicators in the bike-sharing system in Thessaloniki. Based on Figure 6 the opti-

mal number of stations can range from 9 to 60 (and maybe more), while the number of 

docks in each station depends on this value. The solution should be in the light-blue ar-

ea. This is a useful tool in order to restrict the search range in Level 2 rather than search-

ing in large state spaces, which can lead to high computational effort. 

 

Figure 6. Impact of number of stations on the potential number of docks. 

Figure 5. Range of optimal values.

The following charts present the calculated range of optimal solutions for the different
indicators in the bike-sharing system in Thessaloniki. Based on Figure 6 the optimal number
of stations can range from 9 to 60 (and maybe more), while the number of docks in each
station depends on this value. The solution should be in the light-blue area. This is a useful
tool in order to restrict the search range in Level 2 rather than searching in large state spaces,
which can lead to high computational effort.
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Level 2—Data-driven decision system
Level 2 extends the uniform distribution assumption and considers the data of spatially

distributed trips. The analysis uses a dataset of real trips produced by operations of a
scooter-sharing service in the area of Thessaloniki. An example of the distribution of
scooter trips is depicted in Figure 7. The tool illustrates the distribution for each time
frame available in the dataset of demand. The geographical representation of the demand
helps the user to understand the demand patterns and better interpret the whole process
including the results.
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Figure 7. HeatMap visualization of the demand.

The analysis also takes into account the bike lanes network of Thessaloniki as the
tool offers that option. According to this distribution and the desired goal of a 300 m
(on average) walking distance per passenger, a set of station 130 candidates is generated
(Figure 8). The distribution of the candidate stations in the area of study is proportional
to the spatial distribution of the demand. The aim is to adopt the demand patterns in
this set to better fit the demand. Intuitively, the areas with higher demand may also
require a higher density of stations that ensure a reliable service level, along with higher
proximity rates.
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Figure 8. Station candidates according to DST.

Then, the facility location module carries the computation to define the final set of
stations and the related number of docks each one should have. The final set of stations
minimizes the walking distance of the origin and the destination of each trip. Additionally,
the subset of stations that were finally selected is closer to the bike lane network. Small
adjustments to the final setup are established through manual allocation to find appropriate
urban spaces that do not disturb the urban infrastructures. The optimal bike-sharing
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network is presented in Figure 9. The capacity and the inventory of each station were also
calculated via heuristics, which were developed especially for the purposes of Level 2.
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Figure 9. Bike-sharing network.

The calculation of the size of each station is characterized by arrival/departure rates
that affect the queuing properties [18] of each one. Based on these rates, a Monte Carlo
simulation was performed to fine-tune the capacity and the inventory in each hub. To
examine the optimal strategy of setting the size, a series of experiments were conducted.
Experiments S1 and S2 consider the uniform inventory and available parking space in
each station equal to 10 bike/20 docks and 15 bike/30 docks, respectively. In the S3 series,
the size and inventory should be proportional to the difference between the arrival and
departure rates of each station. Therefore, stations having a higher arrival rate than the
departure offer more available space (capacity inventory), while the opposite requires
higher inventories and limited available capacity.

Strategies 3 (S3) and 2 (S2) do not present any statistically important differences. How-
ever, S2 requires fewer investments in bikes and docks with nearly the same performance.
Based on the results illustrated in Figures 10 and 11, the rebalancing operation should take
place every 12 h (720 min) at most. To achieve this, only one vehicle is needed according
to the last step of Level 2 of the DST. The vehicle should group the stations into two parti-
tions and serve them separately to get this operation more efficiently. This operation was
simulated with the use of the Aimsun Ride toolset.
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Figure 11. Rate of unserved requests.

In Figure 12 below, an example is illustrated where the user can see the visualized
routes of the requests served. The green figures depict the origin of the request, while the
red figures depict the destination points.
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Level 3—Comprehensive Transport Planning
One of the scenarios tested for the case of Thessaloniki was to evaluate the introduction

of the extensive bike-sharing system in the city. Currently, a station-based bike-sharing
system and a floating bike-sharing system are operating in the city. The aim of this scenario
is to enrich the existing service and produce insights into expanding the use of the service.

The existing VISUM transport model in the city is used as the basis for this case study.
The existing model was originally developed in VISUM 15.0, and the most recent update of
this model took place as part of the Sustainable Urban Mobility Plan of the Municipality of
Thessaloniki (2017–2019).

A base synthetic population was generated using the open-source software PoPGen.
Synthetic individuals were generated based on data from a stated preference (SP) survey
(collected in the year 2017, with a sample of around 11,000 participants), along with
aggregate demographic statistics obtained from the Hellenic Statistical Authority for the
extended region of Thessaloniki. Socioeconomic data used include household size, car
ownership level and income at the household level, along with the location zone of the
household. At the level of individuals, utilized variables include age, gender, education
and employment status. The levels for categorical variables are selected based on the
specifications of the disaggregate mode choice model, which is applied in the subsequent
step of the modeling framework.
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To estimate the modal split for the bike-sharing system, a disaggregate mode choice
model developed within the project [19] is utilized by adopting the utility specification
corresponding to this service. The variables used in the mode choice model, along with
their coefficient values and description, are presented in Table 4.

Table 4. Variables used in the mode choice model.

Name Coefficient Description

Age_20_To_44 1.444 1 if the age of the individual is between
20 and 44, 0 else.

Male 1.438 1 if the individual is male, 0 else.

University_Or_Vocational_Degree 0.922 1 if the individual has university or vocational
degree.

has_PTPass 1.071 1 if the individual has public transport pass, 0 else.

Bikesharing_Supply 1.337
The inventory of available bikes in the nearest station
(the average inventory used as an estimator of the
related variable).

Trip_Dist_KM_2To5 2.369 1 if the individual’s travel distance is between 2 to
5 km, 0 else.

Trip_Dist_KM2 1.569 1 if the individual’s travel distance is less than 2 km,
0 else.

Travel_Time_Mins15_Bikesharing 1.258 1 if the individual’s travel duration is between 0 to
15 min, 0 else.

Travel_Time_Mins30_Bikesharing 0.792 1 if the individual’s travel duration is less than
30 min, 0 else.

Vehicle_Non_Availability_
Bikesharing −100 1 if there is no availability of the bike-sharing service

for a particular trip, 0 else.

Furthermore, the estimated disaggregate demand for the shared systems, along with
data and information related to the request characteristics, service and network supply
derived from Level 2, are fed into the fleet management model to optimize the trip plan
solutions and simulate the operations to serve the demand for the shared services. The
Aimsun Ride shared mobility service simulation platform, implemented within the Aimsun
Next [20] transport modeling simulation software, is used to obtain precise and accurate
information about transport network behavior, while fleet management algorithms are
used to handle both planning and operational components in the simulation experiments.
For the bike-sharing system in Thessaloniki, the number of requests for the service was
75 for the peak hour examined (08:00–09:00). In the image below, you can see the locations
of the requests. Table 5 presents the KPIs from the implementation and simulation of the
bike-sharing system in the area examined in Thessaloniki.

Table 5. Key performance indicators produced.

KPIs Values

Requests served 100%
Number of requests completed 75

Number of bicycles used 73
Average total trip (min) 16.7

Max total travel trip (min) 27.3
Min total travel trip (min) 8.1

Average “bike” travel time (min) 9.5
Max “bike” travel time (min) 20.5
Min “bike” travel time (min) 3.2
Average walking time (min) 7.2

Max walking time (min) 12.3
Min walking time (min) 2.2

Average traveled distance (km) 4.5
Max traveled distance (km) 8.5
Min traveled distance (km) 2.5

As can be seen, all requests assigned were served. The average total trip is 16.7 min.
The term total trip refers to the sum of walking and “bike travel” time. This includes the
time the user needs to walk from their destination to the bike station, ride their bicycle to
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the final bicycle station and walk to their final destination. The average “bike travel” time
is 9.5 min, while the average walking time is 7.2 min.

In the figure below (Figure 13), the user can have a more detailed analysis of the
produced routes. For each route, various KPIs produced are described, such as the travel
time for each segment and the walking time of the users of the service.
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4. Discussion

Decisions on transport policy measures have long-term impacts on society. Transport
policy measures can lock up capital for decades and cause manifold external effects. Due
to the growth in the urban population, there has been an increase in demand for mobility
and, consequently, an increase in the number of vehicles on the roads. The increased levels
of traffic congestion indicate a strong and imminent need for cities to foster sustainable
and eco-friendly solutions for urban mobility. In order to allow European policymakers
to evaluate transport policies, a decision support tool (DST) is required to evaluate the
economic, environmental and social impacts of the implementation of transport policies.

In the DST proposed, each level entails a different degree of complexity, both in the
input and in the output data. The proposed three-level DST is a scientific and technical
procedure aiming to explore the available urban mobility solutions for each examined area,
depending on the characteristics (socioeconomic, spatial, existing infrastructure, etc.) of
each case study. In each stage of the decision support tool, a different level of detail is
followed depending on the availability of the input data.

Level 1 is an optimization process, providing the optimum range of results (docks,
number of units, etc.). However, based on the results expected by the cities, various
mechanisms to “calibrate” the way the problem is optimized were included in order to
allow the cities to ask for more “social” economic solutions. Features added to the tool
targeted the expansion of possibilities to the city partners to optimize the supply layout and
evaluate the operational system of the services. Furthermore, the addition of the sensitivity
analysis of demand option in Level 1 aimed to give the user of the DST the ability to receive
a range of solutions, not only the optimal values of the tool in order to define the most
applicable set of interventions.

Level 2 aims to embody methods that utilize spatially distributed data from trips or
OD matrices to perform strategic decisions for the service. The user of the tool should define
the desired characteristics of the service to let the algorithm decide the resources needed
to fulfill the requirements. In this step, the user should tune the values of demand in the
examined area, road network and constraints such as bicycle network and public transport
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stops. Based on these criteria, the planning module can return the optimal number and
location of stops/docks, the capacity of vehicles or stops and similar system parameters.
The operational module helps to evaluate each strategic setup based on performance
metrics. These metrics are also used in the optimization of planning parameters, as they
reveal possible surpluses or shortages of resources for the service.

Level 3 of the DST involves a comprehensive analysis of the examined district by mod-
eling the transport scheme of the selected city. The fleet operational algorithms developed
for each examined service, synthetic population integration, along with the mode choice
model developed, interact with the shared mobility services simulation platform, Aimsun
Ride. This integration allows one to execute the requests in a simulation environment
according to the optimized trip plans. Various indicators with respect to both the users
of the service, as well as the service performance, are obtained. The main advantage of
the simulation is the capability to provide more accurate predictions and extended KPIs,
which are not available in Level 1 and Level 2 of the decision support tool due to the
nature and limitations of the methodologies that they utilize. The proposed modeling
schema consists of various models and algorithms that, when integrated, can provide the
necessary functionalities in order to perform more accurate and realistic strategic planning
and evaluation of emerging shared mobility services.

New emerging mobility services have recently been introduced in the urban envi-
ronment of many cities across the world. These new sustainable transportation solutions
demand a different approach in terms of designing the urban environment of the cities.
Agent-based models for emerging urban mobility services developed provide a new trans-
port approach to the existing traditional methods, with more updated and compliant input
data. The examined decision support toolset presented in this paper is a powerful tool
for decision makers to coordinate their actions in adopting emerging mobility solutions
by testing various scenarios for emerging urban mobility scenarios. The DST includes the
investigation of new emerging mobility services in the existing transportation environment
of a city, utilizing various sources of input data. Algorithms and methodologies devel-
oped in the DST interact with state-of-the-art transport software, providing comprehensive
network performance indicators.

Based on the cutting-edge scientific and technological innovations developed in the
presented decision support toolset, it can be used for future research to improve the capabilities
of the tool by including more emerging mobility services, upgrading the state-of-the-art open-
access platform aiming to transform the future of transport and mobility systems.
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Appendix A

Table A1. Values used for testing the bike sharing system.

Service: Bike-Sharing System

Area of Interest Cost of Operation Socioeconomic and Functional Variables Constraints Decision Variables

City Area

Bicycle
Operating
Cost per

km

Bicycle
Depreciation

Cost per
Hour

Operator
Cost per

Hour (per
Station)

Dock
Depreciation

Cost per
Hour

Weight
Assigned

to the
User

Value of
Time of

Users

User
Walking

Speed

Bicycles
Travel
Speed

Mean
Demand

of the
Area

Standard
Deviation of
Demand of

the Area

Travel
Time

Activation

Maximum
Waiting

Time

Maximum
Walking

Time

Number
of

Stations

Number
of

Docks

Thessaloniki 0.1 0.1 1 1 0.5 6 5 12 50 8 YES 3 8 1 to 21 1 to 40

Thessaloniki 0.3 0.1 1 1 0.5 6 5 12 50 8 YES 3 8 1 to 21 1 to 40

Thessaloniki 0.1 0.1 1 1 0.5 6 5 12 50 8 YES 6 8 1 to 10 1 to 40

Thessaloniki 0.1 0.1 1 1 0.5 6 5 12 50 8 YES 3 8 1 to 20 1 to 15
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