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It is reported that the China–Pakistan Economic Corridor has been affected by extreme
precipitation events. Since the 20th century, extreme weather events have occurred
frequently, and the damage and loss caused by them have increased. In particular, the
flood disaster caused by excessive extreme precipitation seriously hindered the
development of the human society. Based on CRiteria Importance Through Intercriteria
Correlation and square root of generalized cross-validation, this study used
intensity–area–duration to analyze the trend of future extreme precipitation events,
corrected the equidistance cumulative distribution function method deviation of
different future scenario models (CESM2, CNRM-CM6-1, IPSL-CM6A-LR, and
MIROC6) and evaluated the simulation ability of the revised model. The results showed
that: 1) the deviation correction results of CNRM-CM6-1 in the Coupled Model
Intercomparison Project Phase (CMIP) 6 could better simulate the precipitation data in
the study area, and its single result could achieve the fitting effect of the CMIP5 multimodel
ensemble average; 2) under CNRM-CM6-1, the frequency of extreme precipitation events
under the three climate scenarios (SSP1-2.6, SSP3-7.0, and SSP5-8.5) presents
interdecadal fluctuations of 3.215 times/10A, 1.215 times/10A, and 5.063 times/10A,
respectively. The average impact area of extreme precipitation events would decrease in
the next 30 years, while the total impact area and the extreme precipitation events in a
small range would increase. Under the future scenario, the increase rate of extreme
precipitation was highest in August, which increased the probability of extreme events; 3) in
the next 30 years, the flood risk had an obvious expansion trend, which was mainly
reflected in the expansion of the area of high-, medium-, and low-risk areas. The risk zoning
results obtained by the two different flood risk assessment methods were different, but the
overall risk trend was the same. This study provided more advanced research for regional
flood risk, reasonable prediction for flood risk under future climate models, and useful
information for flood disaster prediction in the study area and contributes to the formulation
of local disaster prevention and reduction policies.
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1 INTRODUCTION

The impact of climate change on the hydrological cycle has been
recognized for a long time (Sun et al., 2021). Although it is widely
acknowledged that precipitation extremes are likely to cause an
increase in flood risk, the relationship between climate and flood is
rather complex (Zhang et al., 2008). It was reported that frequent
extreme climate events had brought the serious loss of life and
property to people worldwide since the beginning of the 21st
century (Zhang et al., 2011). With the increasing emissions of
global carbon dioxide and other greenhouse gases, global warming
continues to intensify (Pachauri and Reisinger, 2008; Huang et al.,
2017), and the instability and extremes of the climate increased,
increasing the intensity and frequency of extreme precipitation
events and floods in the future scenario (Meehl et al., 2000). Floods
caused by extreme precipitation frequently occur in China-
Pakistan Economic Corridor (CPEC) and increased frequency
and strength with duration expansion. Therefore, it was
urgently needed to investigate climate change’s flood risk in
high-risk areas.

Extreme precipitation events are critical indicators for
studying extreme climate events and an essential factor for
studying future climate changes. The flood disaster caused by
extreme precipitation seriously hinders the development of
society, and human civilization’s progress has become the
focus of attention all over the world (Goswami et al., 2006). In
the present-day climate over most of the globe, the curve relating
daily precipitation extremes with local temperatures had a peak
structure, increasing as expected at the low–medium range of
temperature variations but decreasing at high temperatures
(Wang et al., 2011; Chang et al., 2022). Wang et al. (2015)
attempted to explain the climate change effects on regional
precipitation. However, the characteristics of precipitation
extremes may depend on the method used for analysis. One
method that could reveal precipitation characteristics is Intensity-
Area-Duration (IAD), which for identifying extreme
precipitation events was improved based on
severity–Area–Duration (SAD) of Andreadis et al. (2005). This
method was proved to be effective for assessing drought and flood
risk by several researchers. Jing et al. (2016) applied IAD to
identify regional extreme precipitation events for the first time in
researching regional extreme precipitation events in China. They
correlated the identified extreme precipitation events with
population economic exposure. Wen et al. (2019) also used
this method to identify drought events under three global
warming scenarios based on several global climate models
(CPEC (formerly known as silk road and well-known as
Karakoram Highway) had been affected by extreme 25
precipitation events).

It should be noted that the role of precipitation extremes in
shaping flood risk depends on land cover, region, and
environmental conditions (Wang et al., 2017; Sun et al., 2022).
Benito et al. (2015) used the flood risk assessment model
established by the ancient flood data to assess the risk in
Europe. The ancient flood data had a large time span and can
fully reflect the impact of climate change. This kind of assessment
method was more accurate in calculating flood probability. Yang

et al. (2010) used the BP neural network algorithm of rough set
reduction to obtain the flood risk. The integrated system based on
the spatial processing ability of the geographic information
system (GIS) has gradually become a powerful tool for flood
risk assessment. Brendel et al. (2021) used SWMM and GSSHA to
model storm pipeline networks and urban floods in Roanoke,
Virginia. They found that the value of GSSHA to the city lies in its
ability to predict flood duration and spatial range in a two-
dimensional rangeability.

The GCMs were considered to be useful for the investigation
of hydrological cycles (Li et al., 2018; Yang et al., 2021), decision-
making in water resource management (Sun et al., 2021), and the
atmosphere–land interactions (Simpkins, 2017; Sun et al., 2021).
It may be helpful to use future scenarios and GCMs for the
projection of precipitation extremes and flood risks (Su et al.,
2008). The climate model was a vital tool used to predict climate
change and explore the change mechanism of meteorological
elements (Xue et al., 2013). At present, GCM simulations have
provided climate change scenarios for scholars worldwide to
carry out future climate research and evaluation and climate
negotiations (Zhao et al., 2021). Regionalized increased and
decreased drought duration and frequency were driven by
changes in precipitation mean and variability (Su et al., 2006;
Pierce et al., 2009; Sun et al., 2016). To predict the future flood risk
of CPEC, provide theoretical support for managers to formulate
policies, and reduce the losses caused by extreme events in CPEC,
this study used IAD to predict the trend of future extreme
precipitation events based on the data on three new combined
path models in CMIP6. In addition, it used four future scenario
model data sets to predict future extreme events. The results were
analyzed and compared by downscaling analysis. Then, the most
suitable model for CPEC was selected to obtain the development
trend of flood disaster risk of CPEC and provide theoretical
support for future risk aversion. The rest of this article describes
the data and methods in Section 2. The results are presented in
Section 3, followed by discussions in Section 4 and conclusions
in Section 5. This study will provide a reference for the research
of regional flood risk and the prediction of regional flood risk
under future scenarios and provide theoretical support for
extreme regional events and flood prevention measures.

2 DATA AND METHODS

2.1 Study Area
CPEC extends from the port of Guarda in Pakistan to Kashgar in
China, especially covering the whole territory of Pakistan,
Kashgar in Xinjiang, and its surrounding areas, with a total
length of about 3,000 km and a total area of about
932,000 km2. The Indus River is an international river that
runs through the whole territory of Pakistan and provides
most of the irrigation water in the region. Its five tributaries,
Jhelum River, Janab River, Ravi River, Bias River, and Sutlej River,
converge in the Punjab plain (Figure 1). The precipitation in
CPEC was mainly affected by two weather systems: summer
precipitation and winter precipitation (Khan et al., 2014).
Summer precipitation resulted from the Indian Ocean
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monsoon disturbance, and winter precipitation resulted from the
Mediterranean westerly disturbance (Safi et al., 2018). The
southern part of CPEC was affected by the Indian Ocean
monsoon climate with uneven precipitation and regional
precipitation within the year, which was very prone to extreme
precipitation. Since the 1990s, the precipitation in this area has
increased significantly, and extreme climate events have been
significant. Flash floods, originating from extreme weather
events, have relatively less duration but severe intensity and
impacts. These floods usually occur during the South Asian
monsoon period between July and September (Memon et al.,
2015). In 2011, large-scale heavy rains were observed in Sindh,
leading to substantial economic losses, destruction of ecological
resources, food shortages, and starvation (Haq et al., 2012).

Historically, CPEC has suffered many rainstorms and flood
disasters (Federal Flood Commission, Ministry of Water and
Power, 2015). According to statistics, 25 significant flood events
have occurred in CPEC in the past 70 years. The flood disaster
had caused more than $30 billion in the loss in Pakistan. About
25,502 people were killed, 197,273 villages were destroyed,
616,598 km2 of land has been affected, and the flood disaster
has become one of the main challenges affecting local economic
and social development.

2.2 Data
2.2.1 Precipitation Data Sets
This study used a specific precipitation data set to study and
analyze the extreme precipitation events and flood risk
assessment. This data set used the professional meteorological
interpolation software ANUSPLIN to carry out spatial
interpolation combined with three-dimensional geospatial
information and evaluate the interpolation model’s effect
through generalized cross-validation and error analysis. Test
and verification of this data set can be referred toWu et al. (2021).

The CMIP6 precipitation data were selected for this study’s
extreme precipitation and flood risk projection. Compared with
the planned model, the scenario model in CMIP6 usually had
better resolution and improved dynamic process, and the new
emission scenario based on the shared socioeconomic pathway
(SSP)/Representative Concentration Pathways (RCP) could be
used for future climate change simulation (Eyring et al., 2016;
O’Neill et al., 2016; Riahi et al., 2017; Jiang et al., 2020). The
models data used in this study were three scenarios (SSP1-2.6,
SSP3-7.0, and SSP5-8.5) of the global climate model (Table 1) in
the scenario comparison plan under CMIP6. The precipitation
data from 1984 to 2013 were used as the base period, and the data
from 2021 to 2050 were used as the simulation data. In order to

facilitate comparative analysis, based on the observation data set,
the spatial resolution of model data was uniformly interpolated
on a grid point of 0.25 × 0.25 by bilinear interpolation. The data
used in the grid include the data on 50 meteorological stations
within CPEC. The stations are evenly distributed in the south of
30°N, relatively concentrated in 30°N ~ 35°N, and almost no
stations are distributed in the north of 35°N in the study area.
According to the precipitation distribution in the study area, the
area north of 35°N is affected by terrain and airflow, and the
annual precipitation is sparse, so it can be ignored. The
precipitation in the whole study area is mainly distributed in
the southern and central plains. Therefore, the selection of sites is
reasonable.

Notably, the daily scale data are more obvious than the
monthly scale data. We had considered using daily scale data
to make the results of the benchmark period close to the
extreme situation. However, the data on the benchmark
period here was mainly to verify the relative accuracy of
the model simulation and select the best. Therefore, the data
on the monthly scale could fully achieve the purpose here.
We also referred that Ali et al. (2018) used Hydrologiska
Byrans Vattenbalansavdeling (HBV) light model to simulate
the hydrology of the Hunza River Basin, which is affected by
extreme precipitation. It was found that the model based on
monthly scale data performs better. Based on this, they
compared the simulation results of CSM1.1, CanESM2,
and MIROC-ESM three GCMs models in the future
scenario.

Here, this study selected four different model data recently
released by CMIP6 for long-term simulation ability evaluation
and set the model data closest to the measured data for statistical
downscaling to improve the simulation ability of the model
further (Lu et al., 2021). These models were commonly used
by others. Abbas et al. (2022) used these four models for climate
simulation in Pakistan. The CESM2 simulations exhibit
agreement with satellite-era observations of the climate mean
state, seasonal cycle, and interannual variability that are among
the closest coupled climate model in the present CMIP6 archive
(Danabasoglu et al., 2020). The equilibrium climate sensitivity of
CNRM-CM6-1 is significantly increased compared to that of
CNRM-CM5-1 (Voldoire et al., 2019). The equilibrium climate
sensitivity and transient climate response of IPSL-CM6A-LR
have increased from the previous climate model IPSL-CM5A-
LR used in CMIP5 (Boucher et al., 2020). The tropical climate
systems (e.g., summertime precipitation in the western Pacific
and the eastward-propagatingMadden-Julian oscillation) and the
midlatitude atmospheric circulation (e.g., the westerlies, the polar

TABLE 1 | Basic information of four global climate models in CMIP6.

Model Institution Resolution (longitude ×
latitude)

Ensembles

CESM2 NSF-DOE-NCAR 1.25 × 0.9424 r1i1p1f1
CNRM-CM6-1 CNRM-CERFACS 1.4062 × 1.4088 r1i1p1f2, r2i1p1f2, r3i1p1f2, r4i1p1f2, r5i1p1f2, and r6i1p1f2
IPSL-CM6A-LR IPSL 2.5 × 1.2676 r1i1p1f1
MIROC6 MIROL 1.4062 × 1.4088 r1i1p1f1
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night jet, and troposphere–stratosphere interactions) are
significantly improved in MIROC6 (Kataoka et al., 2020).

2.2.2 Collected Data for Flood Risk Assessment
The CPEC regional geographic data set was constructed in this
study by comprehensively considering multiple data sources.
The resampling method was used to solve the spatial data
resolution difference between multiple data sources. The
selected DEM data with 30 m resolution (downloaded from
geospatial data cloud: http://www.gscloud.cn/) and the original
DEM data processing were used to obtain non-depression DEM
and slope data. The land use was divided into 10 categories (the
impact of vegetation, water conservancy facilities, and other
factors considered in the classification). Globeland30 (30M
global surface coverage data, downloaded from the National
Geographic Information Resources Directory Service System:
https://www.webmap.cn/) was used to sort according to the
impact degree, and the partial area index of the cultivated land
was obtained after processing. The NDVI indexes required for
analysis were obtained from landsat8 satellite data through
image processing and band operation. Furthermore, the
gridded population of the world (GPW) V4 population
density data set (grid 0.25°, 30 km resolution) was selected to
obtain the population density data in the study area. In order to
get the building density, this study used the 2010 QuickBird
orthophoto of CPEC as the primary data source. The road
network density map was drawn after the aforementioned
parallel processing based on the road network data (from
OpenStreetMap: https://www.openstreetmap.org/).

2.3 Methods
2.3.1 Intensity–Area–Duration (IAD)
By employing IAD, this study comprehensively considered the
three-dimensional characteristics, which was the intensity,

impact area, and duration of extreme precipitation, and
defines the grid set with certain intensity within a specific
range on a given timescale as an extreme precipitation event
based (Andreadis et al., 2005) on drought SAD.

In identifying extreme precipitation events, we first extracted
the scope of the event, that is, the influence area of an extreme
precipitation event. The grid point with the largest relative
intensity within the range of extreme precipitation events in
each timescale was the “strongest precipitation center” of the
event, and then we searched the “secondary heavy precipitation
center” from the center to the surrounding and repeated until
there was no point exceeding the threshold within the range. Each
extreme precipitation event’s relative intensity and impact area
was recorded, and then we found a new “strongest precipitation
center” and repeated the aforementioned steps until all regional
extreme precipitation events within the duration scale were found
(Figure 2).

2.3.2 Assessment of the Flood Risk
The intuitionistic fuzzy analytic hierarchy process (IFAHP) was
an improved subjective weighting method based on the analytic
hierarchy process (AHP) (Sadiq and Tesfamariam, 2009). First,
the intuitionistic fuzzy judgment matrix was constructed, and
then its consistency was tested, and finally, the weight of each
index was calculated.

CRITIC was an objective weighting method proposed by
Diakoulaki et al. (1995). The basic idea of determining the
index weight was based on two fundamental concepts: one was
a comparative strength, and the other was the conflict between
indicators. The basic idea of the critical method was to
comprehensively use the difference and disagreement
between indicators to calculate the weight, and the
difference was based on the standard deviation σ. The
calculation formula was as follows:

FIGURE 1 | Geographical location and meteorological station distribution of CPEC.
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σ �
��������������
1
n
∑n

i�1(Xi − �X)2√
, (1)

where n is the evaluation quantity of the same index, Xi is the ith
value of the same index, and �X is the average value of the
index value.

The improved combination weighting method of game
theory (ICWGT) analyzed the rationality and decision
equilibrium of decision-making behavior when game theory
interacts with each other by introducing game theory in the
field of operations research. Its idea of combination weighting
was to find a consistent or compromise weighting method
among different weighting methods by minimizing the
deviation between each index weight and the optimal linear
combination index weight to achieve a balanced optimization
method (Ren and Li, 2017) to screen the optimal combination
weight. The combination weighting based on game theory
could be expressed as follows:

w � ∑L

l�1αlw
T
l , (2)

where αl is the linear combination coefficient, αl > 0, w is the
combined weight vector, and wl is the weight obtained by each
weighting method. The weight vector w is combined with all
wlvalues; the objective was to minimize the deviation of L. By
optimizing the L linear combination coefficients of the

aforementioned formula, the optimal solution w* of w can be
obtained. The resulting game model was as follows:

min

���������∑L

l�1αlw
T
l − wp

���������
2

, p � 1, 2..., L, (3)

where p indicates the number of methods to calculate the weight
of evaluation indicators, and the pth basic weight set is wp.

In this study, the index weight of subjective weighting was
obtained according to IFAHP, and the index weight of objective
weighting was obtained according to CRITIC. On the basis of
these, the combination coefficient was calculated through the
improved game theory combination weighting, and the final
index weight with combination weighting was normalized.
Details of the process can be referred to Wu et al. (2021).

2.3.3 Accuracy Assessment
The global model data would inevitably appear in the simulation
of regional precipitation, and there would be corresponding
deviations in interpolating the grid data. To improve the
simulation accuracy of the model data, a statistical
downscaling correction method was used for model correction.
Statistical downscaling of climate models was carried out through
EDCDFm. It corrected the deviation of GCM-simulated climate
elements through the difference of cumulative distribution

FIGURE 2 | Schematic diagram of identifying extreme precipitation events by the IAD method. (A) Distribution map of extreme precipitation events in different
duration scales in the region. (B) Calculation steps of IAD identifying extreme precipitation events, which includes cyclic judgment calculation. The extreme precipitation
events within the range are gradually identified according to the intensity until all identification is completed, and finally, the IAD envelope is obtained.
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characteristics between measured data and GCM-simulated data
to make the model achieve a more accurate simulation effect. It
was assumed that the difference between the cumulative
distribution probabilities of the two data in the observation
stage would remain unchanged in the future.

F(x) � (1 − Q)H(x) + G(X), (4)
where F(x) is the cumulative distribution function of
precipitation in the observation period, and q is the
proportion of precipitation months. H(x) is the step function.
The month without precipitation is 0, and the month with
precipitation is 1.

Pmcf � F−1
OC(Fmc(Pmc)), (5)

Pmpj � Pmp

F−1
oc (Fmp(Pmp))

F−1
mc(Fmp(Pmp)), (6)

where Pmcj is the corrected value of the model data in the base
period, Pmpj is the corrected value of the model data in the future
period, Foc

−1 is the quantile function of the observed value in the
base period, Fmc is the cumulative distribution function in the
historical period of the model, Pmc is the precipitation data in the
historical period of the model, Pmp is the precipitation data
simulated in the future of the model, and Fmc

−1 is the quantile
function in the historical period of the model, and Fmp is the
cumulative distribution function of data in the future period of
the model.

RTGCV was selected to compare and analyze the model
interpolation results with the observed values and combined
with the root mean square error (RMSE) as the index to
evaluate the interpolation effect. RMSE was the estimated
value error after excluding the observed value error. The
smaller the RMSE was, the better the interpolation effect was.
Through verification, it was found that the fluctuation of RTGCV
had apparent periodic law, with larger in summer and less in
autumn and winter, and there were no significant interannual
variation characteristics.

3 RESULTS

3.1 Data Accuracy Assessment in CPEC
For the validation of observed precipitation data sets used in
this study, the statistical analysis showed that the annual
average RMSE of interpolation grid point was 0.9 mm,
which showed that the precipitation grid-point data had
good accuracy and interpolation effect. The precipitation
data obtained by GCMs were then compared with observed
data sets. First, the simulation ability of the four models’ data
interpolated to the same accuracy was evaluated. Then, the
multiyear average monthly precipitation was used as the
evaluation index.

According to the existing research, the precipitation seasons in
CPEC are from July to September. In particular, there are many
extreme precipitation events in August, and the probability of
extreme precipitation events will increase in the future (Bhatti
et al., 2020). Therefore, the results obtained from the accurate

evaluation of the model in August are more reasonable and
representative. Consequently, the data of a grid point in
August were taken as an example.

Figure 3A showed that the rainfall after correction matches
well, which significantly reduced the correction error; Figure 3B
showed the measured multiyear average monthly precipitation in
the benchmark period 1984–2013 and the multiyear average
monthly precipitation in the historical period of model
simulation. It could be seen that except that MIROC6
obviously underestimates precipitation; most of the
precipitation simulated by other models was slightly
overestimated. Among them, the precipitation simulated by
CNRM-CM6-1 was slightly underestimated by 10 mm in July,
and the rest was overestimated somewhat, and its simulation
situation was the closest. On the other hand, IPSL-CM6A-LR had
the best simulation effect in March and May, and several models
had significantly overestimated the simulation in November. In
Figure 3C, the Taylor diagrams of four models were given, and
the results of several models were in a good interval, among which
CESM2 and CNRM-CM6-1 had smaller RMSD (Equivalent to
RMSE divided by the standard deviation of the observed data).

Here, CESM2 and CNRM-CM6-1 with better precipitation
simulation effect were selected for EDCDFm deviation
correction, the simulation ability of the revised model was
evaluated, and the Taylor diagram was used to compare the
proximity between the two models and the observation data.
The results of the model evaluation are shown in Figure 3D.
Among them, the spatial correlation coefficients of the two
corrected models were more outstanding than 0.9, the RMSD
of CNRM-CM6-1 was smaller, and the ratio of their standard
deviation was close to 1. Therefore, the model data simulation
ability of CNRM-CM6-1 were more robust, and the three paths
of the model data were selected for extreme precipitation event
evaluation.

3.2 Projection of Extreme Precipitation in
CPEC
For extreme precipitation events in different durations, the
frequency difference of extreme precipitation events in the
three scenarios in the future was not obvious under the
condition of continuous 3d extreme precipitation.

Figure 4 shows the frequency of extreme precipitation events
in the three scenarios in the future. The years of maximum
frequency indicated under the three scenarios were different.
Under SSP3-7.0, the frequency of extreme precipitation was the
highest around 2037, and SSP1-2.6 was consistent with the year of
the maximum frequency of extreme precipitation under SSP5-
8.5. After reaching the maximum frequency, it showed a
downward trend and then rose again after reaching the
bottom in 2046. From the overall direction, under the three
scenarios, the frequency of extreme precipitation fluctuated and
increased and increased significantly in 2030. The interdecadal
frequency variabilities under the three scenarios were
3.215 times/10A, 1.215 times/10A, and 5.063 times/10A,
respectively. The interdecadal variability of extreme
precipitation under the three scenarios was quite different. The
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interdecadal variability under SSP5-8.5 was relatively large, in line
with the climate change characteristics of high forcing and high
radiation.

Comparing the occurrence of extreme precipitation events in
the prediction stage with the average extreme precipitation
frequency in the reference period, Figure 5 was obtained.
Compared with the base period, the extreme precipitation
frequency under the three scenario models showed an upward
trend, with significant extreme points under SSP1-2.6 and a large
variation range under SSP3-7.0. On the other hand, under SSP5-
8.5, the change of extreme precipitation frequency was relatively
average, but it was always a large stage.

The impact area of extreme precipitation events was the
grid area covered by an extreme event, and it was one of the
important indicators to evaluate extreme precipitation events.
In the prediction period, the average annual impact area
under the three scenarios of extreme precipitation events
lasting for 1 day generally showed an upward trend year by
year (Figure 6). Among them, the impact area under SSP5-8.5
increased the fastest, and the minimum area exceeded
20000 km2, the multiyear average impact area of a single
event was 41000 km2, and the maximum impact area
reached 52.53 million km2. As a result, the total impact

area in the prediction period was 120.33 million km2, and
the total impact area in the benchmark period was 101.44
million km2.

In Figures 4–6, we concluded that in the next 15 years, the
average impact area of extreme precipitation events under the
three scenarios would decrease, and the total impact area would
increase to a certain extent. In addition, the number of extreme
events would decrease slightly, indicating that the number of
small-scale and high-intensity extreme precipitation events
would increase from 2021 to 2035. In the next 30 years, the
average impact area of extreme precipitation events would
decrease, the total impact area would increase, and the
number of extreme events would increase, indicating that the
number of small-scale extreme precipitation events would
increase from 2021 to 2050.

The observation of precipitation extremes was largely
different among different SSPs. In identifying IAD extreme
precipitation events, this study adopts the concepts of grid
precipitation threshold and relative intensity. Most of the grid
precipitation thresholds have increased in varying degrees
under the following three scenarios, especially for periods of
5 days and 7 days. The multiyear monthly average
precipitation was used as the standard to obtain the

FIGURE 3 | (A)Model correction process (Taking August data of a grid point as an example). (B) Monthly precipitation in the base period and the monthly
precipitation simulated by the model data. (C) Taylor diagram of four model data. (D) Taylor diagram of the model after deviation correction.
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variation trend of future precipitation. Figure 7 shows the
multiyear average monthly precipitation during the
observation period from 1984 to 2013 and the future three
scenarios from 2021 to 2050. For the dry season, the
precipitation under SSP1-2.6 was more than that under
other paths, and the simulation of precipitation in SSP1-2.6
focused on balancing the precipitation in the dry season; In the

rainy season (July/August), the simulation under SSP5-8.5 was
more significant than the other two. This was a precipitation
process simulated by high radiation and high forcing without
climate policy intervention, which could better represent an
extreme scenario. Therefore, the following inundation
simulation and flood risk assessment were carried out using
the precipitation data under this scenario.

FIGURE 4 | Annual variation of the extreme precipitation frequency in three future scenarios under different durations. (A) Lasting for 1 day. (B) Lasting for 3 days.
(C) Lasting for 5 days. (D) Lasting for 7 days.

FIGURE 5 |Change percentage of extreme precipitation frequency under different scenarios in the future. (A) Average change percentage. (B)Change percentage
of each year.
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3.3 Projection of the Flood Risk in CPEC
In the context of global climate change, the intensity of extreme
precipitation was increasing. Through the processing and
research of model data, this study obtained that the extreme
precipitation was the most obvious under SSP5-8.5. Therefore,
the daily rainfall value in 2021–2050 under SSP5-8.5 and CNRM-
CM6-1 was selected to calculate the area rainfall process with a
100-year return period and 20-year return period, and the
corresponding DEM, land use, and other data were substituted
into the flood area model for simulation, The flood inundation
map (Figure 8) of the 100-year return period (high scenario) and
20-year (low scenario) under the future climate model scenario
could be obtained to guide the flood prevention work under the
future climate change scenario.

As shown in the figures, compared with the design flood
inundation distribution in the historical period, the design
flood inundation range had a partial increasing trend in the

FIGURE 6 | Average annual impact area of extreme precipitation under different scenarios in the future. (A) Under SSP1-2.6. (B) Under SSP3-7.0. (C) Under
SSP5-8.5.

FIGURE 7 | Monthly average precipitation in the base period and
monthly average precipitation in three combined paths from 2021 to 2050.

FIGURE 8 | Schematic diagram of the flood risk under the future scenario (SSP5-8.5). (A) 100-year flood process value. (B) 20-year flood process value.
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future scenario and had increased in a small range. According
to the statistics of inundation areas in different water depths,
it was found that the increased range of inundation areas in
different risk areas was different. Compared with the flood
inundation in the historical period, the expansion area of the
design 100-year flood under 1 m inundation depth was more
prominent in the future scenario, and the expansion area of
high water depth inundation was less pronounced.

As for frequency calculation, the daily rainfall data from
2021 to 2050 under SSP5-8.5 and CNRM-CM6-1 were
selected for analysis. The grid-point rainfall was calculated
as the design rainfall under the return period of 20 years and
100 years, respectively. The spatial distribution of design
rainfall was obtained by interpolation of design rainfall to
carry out the following risk assessment calculation. Finally,
the 20-year flood risk distribution and 100-year flood risk
distribution under the future scenario could be obtained
(Figure 9). Compared with the historical observation
period, under the future scenario, the area of medium- and
high-risk areas in the 20-year flood risk zoning was partially
expanded, especially located in the south of Sindh province
and part of the Indus River into the sea, and the medium- and
high-risk areas tend to expand in the middle of Punjab
province. The expansion of the high-risk area with 100-
year flood risk was the most obvious, which was mainly
located in the plain of Punjab province. The area of the
high-risk area was expanded by about 3.1%. The area of
the low-risk area was in the south of Sindh province, and
the south of Balochistan province had increased by 4.2%, and
the area of the low-risk area and the medium-risk area had
decreased correspondingly.

In general, the area of high-risk areas in the future scenario
had an expanding trend, especially located in the east and
south, affected by the summer monsoon and densely populated
areas. Therefore, it was necessary to improve the flood
prevention level further to avoid more significant losses in
the future.

4 DISCUSSION

Due to the differences in simulation mechanism, topographic
elements, and spatial resolution of different climate models, the
simulation results were uncertain, and the simulation ability of
other regions was different, especially in areas with complex
topographic and atmospheric elements. The prediction of
global precipitation data by the model data before CMIP5 was
more in line with the measured situation than in a single region.
In recent years, significant progress has been made in the regional
simulation of GCMs. Huang et al. (2015) found that CMIP5
multimodel set data had a strong simulation ability for temporal
and spatial temperature and precipitation changes. The model
could also well simulate the seasonal fluctuations of precipitation.
Chen et al. (2014) used 43 GCMs to predict the precipitation in
China. They found that the CMIP5 model data could better
simulate the regional distribution characteristics, which were
higher in the southwest. Therefore, when using the global
climate model to analyze the various features of
meteorological elements under regional future climate change,
it was necessary to select appropriate GCMs and evaluate the
simulation ability of the climate model. Significantly, there would
still be uncertainty in the application of GCM in predicting
extreme regional events even if there were downscaling
methods and deviation correction methods and the RCM
dynamical downscaling method was still dominant in terms of
regional precipitation simulation (Guo and Wang, 2016). In
future research, it is suggested to use RCM or the GCM model
with high accuracy and project precipitation extremes/floods.

Unlike CMIP5 model data, CMIP6 combined the typical
concentration path and shared economy path to form a new
scenario path model (SSP-RCP) to obtain more reliable
prediction results. Jiang et al. (2020) also attempted to use
CMIP6 data to evolve temporal–spatial characteristics of
temperature and precipitation. However, IAD was not applied
to their study. The climate in different regions of CPEC was quite
different. Therefore, it was difficult to study the change

FIGURE 9 | Flood risk zoning in different return periods under future scenarios (SSP5-8.5). (A) 20-year flood risk zoning. (B) 100-year flood risk zoning.
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characteristics of extreme events in time series on a large unified
scale and take the characteristics of different regions into account.
The study area could be divided according to climatic and
topographic characteristics to further explore the changing
trend of extreme events in different regions. Spatially, the
number of people affected by drought would be greater than
that in the reference period. The increase in temperature
exacerbated the drought. Regional drought risk levels were
different (Wen et al., 2019), which proved IAD had a good
effect on spatial characteristics. Considering the three-
dimensional aspects of extreme precipitation events, IAD
clustering was used to identify extreme precipitation events in
CPEC in this study. The changing trend of extreme precipitation
events under the background of climate change was obtained. It
could expand the simulation path of the existing research to carry
out more representative research on extreme climate events.

In this study, the newly released model data in CMIP6 were
downscaled, the simulation ability was evaluated, and the
applicability of CNRM-CM6-1 model data in CPEC was
obtained. Compared with CMIP5, the single CNRM-CM6-1
model in CMIP6 could achieve the fitting effect of the
multimodel aggregation average in CMIP5. Furthermore, the
path data of three SSPs under CNRM-CM6-1 in CMIP6 were
used to predict and evaluate extreme events under different
climate change backgrounds in the future. Meanwhile, IFAHP,
CRITIC, and ICWGT used in this study for assessing flood risk
could make results obtained quickly, which was helpful for the
division of flood risk areas. In previous studies, Abbas et al. (2022)
found that under the high-forcing scenario (SSP5-8.5), the trend of
extreme precipitation events in CPEC increased significantly, and
the tendency of extreme precipitation events in summer also
increased significantly, which is consistent with the conclusions
of this article. In the verification of temperature simulation in
Thailand (Suchada et al., 2021), the simulation results and
accuracy of CNRM-CM6-1 were affirmed, so the accuracy of the
simulation results based on CNRM-CM6-1 could be considered to
be guaranteed. However, the resolution of CNRM-CM6-1 may still
impact the accuracy of research results. Therefore, in future research,
if the model’s resolution can be solved, it will be an important
breakthrough in improving the accuracy of disaster prediction.

5 CONCLUSION

For the rainfall data under the new combination scenario in the
newly released CMIP6 model data, EDCDFm was used to correct
the downscaling deviation. Before the correction, the model data
were partially overestimated for rainfall. We selected the model
closest to the measured data for correction. The single corrected
model had a good fitting ability for the measured data’s seasonal

fluctuation and spatial distribution. The appropriate level of a
single model could reach the level of the multimodel set in
CMIP5.

Variation characteristics of extreme precipitation events
under the background of climate change. Under CNRM-
CM6-1, the frequency of extreme precipitation events
presents interdecadal fluctuations of 3.215 times/10A,
1.215 times/10A, and 5.063 times/10A under three
combined path datasets (SSP1-2.6, SSP3-7.0, and SSP5-8.5).
In the next 30 years, the average impact area of extreme
precipitation events would decrease, the total impact area
would increase, and the extreme precipitation events in a
small range would increase. Under the future scenario, the
increased rate of extreme precipitation in August was the
fastest, which increased the probability of extreme events.

For the flood risk under different return periods in the future,
compared with the observation period, the flood risk had a more
obvious expansion trend in the next 30 years, which was mainly
reflected in the expansion of the area of high-, medium-, and low-
risk areas. The risk zoning results obtained by the two different
flood risk assessment methods differed, but the overall risk trend
was the same.
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