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COVID-19 is a heterogeneous disease caused by SARS-CoV-2. Aside from infections of
the lungs, the disease can spread throughout the body and damage many other tissues,
leading to multiorgan failure in severe cases. The highly variable symptom severity is
influenced by genetic predispositions and preexisting diseases which have not been
investigated in a large-scale multimodal manner. We present a holistic analysis framework,
setting previously reported COVID-19 genes in context with prepandemic data, such as
gene expression patterns across multiple tissues, polygenetic predispositions, and patient
diseases, which are putative comorbidities of COVID-19. First, we generate a multimodal
network using the prior-based network inference method KiMONo. We then embed the
network to generate a meaningful lower-dimensional representation of the data. The input
data are obtained via the Genotype-Tissue Expression project (GTEx), containing
expression data from a range of tissues with genomic and phenotypic information of
over 900 patients and 50 tissues. The generated network consists of nodes, that is, genes
and polygenic risk scores (PRS) for several diseases/phenotypes, as well as for COVID-19
severity and hospitalization, and links between them if they are statistically associated in a
regularized linear model by feature selection. Applying network embedding on the
generated multimodal network allows us to perform efficient network analysis by
identifying nodes close by in a lower-dimensional space that correspond to entities
which are statistically linked. By determining the similarity between COVID-19 genes
and other nodes through embedding, we identify disease associations to tissues, like the
brain and gut. We also find strong associations between COVID-19 genes and various
diseases such as ischemic heart disease, cerebrovascular disease, and hypertension.
Moreover, we find evidence linking PTPN6 to a range of comorbidities along with the
genetic predisposition of COVID-19, suggesting that this kinase is a central player in severe
cases of COVID-19. In conclusion, our holistic network inference coupled with network
embedding of multimodal data enables the contextualization of COVID-19-associated
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genes with respect to tissues, disease states, and genetic risk factors. Such
contextualization can be exploited to further elucidate the biological importance of
known and novel genes for severity of the disease in patients.

Keywords: multi-omic integration, network inference, network embedding, COVID-19, machine learning, polygenic
risk score (PRS)

INTRODUCTION

The coronavirus strain severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) causes COVID-19, a respiratory
illness, and is solely responsible for one of the deadliest
pandemics in modern human history. Once infected, most
patients experience symptoms such as cough, sore throat,
fever, shortness of breath, nausea, and diarrhea. In severe
cases, the disease leads to acute respiratory distress syndrome,
a serious lung condition resulting in low blood oxygen (Tay et al.,
2020). Even though the virus mainly affects the respiratory
systems, a viral load has been found in many other tissues
(Demichev, 2021). Hence, it is not surprising that studies
demonstrated the effect of COVID-19 onto a wide range of
systems, including cardiovascular, renal, hepatobiliary, and
neurological systems (Gupta et al., 2020). These findings were
recently underpinned by linking fatal COVID-19 cases to kidney
and liver failure, also pointing out the key role of several chronic
diseases in mortality of patients (Elezkurtaj et al., 2021). Among
the most reported are arterial hypertension, obesity, ischemic
heart disease, cerebrovascular disease, alcohol and nicotine abuse,
and chronic obstructive pulmonary disease (COPD) (Elezkurtaj
et al., 2021). Mortality rates were associated with lung damage
initiated by a SARS-CoV-2 infection but powerfully predisposed
by preexisting diseases (comorbidities).

Another potential contributor to disease pathogenesis is host
genetics. Several genetic loci were shown to be associated with
susceptibility to a severe disease course of COVID-19 (Ellinghaus
et al., 2020). The genetic component was interrogated in a large
international effort of the COVID-19 Host Genetics Initiative,
which conducted genome-wide association studies (GWASs) and
uncovered single-nucleotide polymorphisms (SNPs) that were
correlated to severe cases of COVID-19 (The COVID-19 Host
Genetics Initiative, 2020). Together, these studies revealed that
the host antiviral defense mechanisms were related to genetic
predisposition and that the disease affects different tissues and
individuals in different ways, which are better understood in the
context of human variety.

In addition to the GWAS studies, functional experimental
assays have shed light on the molecular mechanisms of the
response to SARS-CoV-2 infections in cell lines. Such studies
investigated, for example, the interactome between the host and
virus through ribonucleoprotein capture and immunoprecipitation
(Gordon et al., 2020; Lee et al., 2020) to find host factors that can
physically interact with viral proteins. Furthermore, CRISPR
studies identified host factors critical for SARS-CoV-2 infection
(Schneider et al., 2021; Wu et al., 2021). Another source for
understanding the viral response comes from whole blood
sample data, quantifying the genes, proteins, metabolites, and

lipids differentially expressed in cases and controls (Shen et al.,
2020; D’Alessandro et al., 2020; Di et al., 2020; Messner et al., 2020;
Wu et al., 2021; Overmyer et al., 2021; Geyer et al., 2021; Demichev,
2021). Many efforts have been made to understand different
aspects of the infection with SARS-CoV-2, yet an integrated
view with multiple tissues is lacking. Montaldo et al. (2021)
already recognized the importance of multi-omic studies to
identify pathogenic mechanisms in COVID-19 development,
which they carried out by a review of domain literature.

Methods for multi-omics data integration span from
unsupervised multi-omic factor analysis (Argelaguet et al.,
2018) over methods which maximize the correlation between
multiple omics datasets (Singh et al., 2019) to multimodal
network inference approaches (Ogris et al., 2021). In our
previous work, we developed KiMONo, a versatile network
inference tool (Ogris et al., 2021) that leverages prior
information from existing biological networks to reduce the
high-dimensional input space and model every gene
measurement individually using a sparse group lasso. By
aggregating selected features from KiMONo’s statistical
models, a network consisting of different modalities can be
generated, connecting the modeled genes with their
explanatory variables. Such a multimodal network is, however,
highly complex and difficult to analyze with classical network
analysis tools, such as degree and betweenness analysis or module
detection algorithms. To mine the network and extract
meaningful associations, graph representation learning
approaches have shown great promise when applied to analyze
complex biomedical networks (Li et al., 2021; Nelson et al., 2019).
The geometry of this embedding space is optimized to capture
meaningful similarities or associations between nodes of a given
network. It can be utilized to infer relationships between nodes in
a network, for example, between genes and genetic risk score or
genes and tissues and to understand the multimodal context for
each factor of interest. The first efforts to prioritize important
connected nodes have been conducted by GeneWalk (Ietswaart
et al., 2021). Briefly, GeneWalk generates a low-dimensional
embedding space of a gene–gene network together with their
biological Gene Ontology terms by learning the relationships
between nodes from random walks over the multimodal network.
The authors showed that this low-dimension embedding from
this unsupervised representation learning algorithm enabled a
more informative characterization of each gene’s annotated terms
with the underlying specific biological context.

Given the complexity of COVID-19 and the many genetic,
general risk, and comorbidity factors that contribute to the
different possible disease manifestations, we here aimed at
deriving a multimodal view, especially from the genetic and
comorbidity perspective, across the whole body. These multi-
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omic data were modeled into an embedding space for the efficient
exploration of the relationship betweenmodalities. However, data
on COVID-19 including clinical phenotypes, genomic, and
transcriptomic measures on a large scale and for different
tissues of populations are still sparse, and therefore, cannot be
fully exploited by multi-omics data integration methods to
generate a global multi-tissue and cross-individual view of the
disease. Thus, we leverage a population dataset prior to the
COVID-19 outbreak that comprises comprehensive multi-
tissue, multi-omics, and deep phenotyping data from the
Genotype-Tissue Expression (GTEx) consortium (Carithers
et al., 2015). In this study, we take an orthogonal approach to
understand the complexity of symptoms, affected tissue, and
individual genetic variation to the molecular response to
COVID-19. To this end, we established a new analysis strategy
by setting up a machine learning framework which combines
network inference and embedding to integrate these pre-corona
population data, uncover patterns in those data, and use this
knowledge to understand the role of host factors important for
COVID-19 in a broader context, in the light of other existing
diseases, phenotypes, and genetic variation and gene expression
across a broad range of tissues from GTEx.

First, we used the genomic information to calculate polygenic
risk scores (PRSs) which reflected the genetic risk to develop a
certain disease. For this, we used GWAS summary statistics from a
range of diseases with associations to COVID-19, such as
pneumological, cardiovascular, or metabolic diseases. In the next
step, we integrated the PRS together with phenotypes and disease
states (which can be viewed as comorbidities for COVID-19) and
gene expression across GTEx tissues to generate a multimodal
network using KiMONo. Finally, we applied a graph embedding
approach, based on the DeepWalk algorithm (Perozzi et al., 2014),
which uses shallow neural networks to learn an embedding of every
node. This embedding representation summarizes the associations
between nodes in the multimodal network into a single similarity
value for each pair of nodes, allowing us to efficiently explore and
interpret a complex network. Finally, we annotated genes in the
embedding that were found in different experimental studies
related to COVID-19, such as GWAS (The COVID-19 Host
Genetics Initiative, 2020), CRISPR (Wei et al., 2021; Schneider
et al., 2021), physical binding experiments (Gordon et al., 2020; Lee
et al., 2020), and patient OMICS data from blood serum and
plasma (Shen et al., 2020; D’Alessandro et al., 2020; Di et al., 2020;
Messner et al., 2020; Wu et al., 2021; Overmyer et al., 2021; Geyer
et al., 2021; Demichev, 2021). This allowed us to elucidate the
associations of known COVID-19 genes to tissues, disease states,
and genetic risk factors, which we call the multimodal context
hereafter. Through our statistical framework for inferring and
embedding multi-omic networks, we gained insights that go
beyond classical network statistics and put known COVID-19
genes in a multimodal context.

MATERIAL AND METHODS

In the following section, we present our two-step machine
learning framework consisting of inference followed by

embedding of a multimodal network. We evaluate the
resulting embedding by investigating the proximity of tissue
nodes to tissue-specific genes. Furthermore, we explore the
embedding for a range of diseases and genetic predisposition
of diseases. Finally, we overlay the literature-derived annotation
of COVID-19 genes to the embedding and capture their multi-
omic context.

Genomic Data and Polygenic Risk Score
Calculation
We used data from the GTEx consortium spanning 984
individuals, consisting of phenotypic information, gene
expression, and genomic variation (SNPs). Polygenic risk
scores (PRSs) represent the genetic load for developing a
certain disease. For their calculation, GWAS summary
statistics were obtained for a range of diseases including type
II diabetes (T2D) andmajor depressive disorder (MDD) as well as
three COVID-19 susceptibility, severity, and hospitalization
studies (The COVID-19 Host Genetics Initiative, 2020). The
full table with the GWAS study source can be found under
Supplementary Table S1. Next, we lifted the individual-level
genotype data, available for 866 individuals, from the reference
genome GRCh38 to GRCh37/hg19 using the tool LiftOverPlink
(Ritchie, 2014) to match the GWAS summary statistics. We
ended up with 1,119,899 SNPs that were successfully mapped
and used for the calculation of 27 PRSs. For polygenic risk score
prediction, we used the PRS-CS tool (Ge et al., 2019), which
implements a Bayesian regression approach and utilizes a
continuous shrinkage (CS) on SNP effect sizes. To account for
the correlation between SNPs in close proximity, the method uses
an external linkage disequilibrium (LD) reference panel; in our
case, we used the European LD reference panel constructed using
the 1000 Genomes Project (Ge, 2018). The global shrinkage
parameter phi, which is required for the adjustment of effect
sizes and depends on the sparseness of the genetic architecture of
a trait (Ge et al., 2019), was set based on each disease’s
polygenicity and sample size as follows: (1) for polygenic traits
with large GWAS sample sizes (≥250,000) the phi parameter was
set to default, that is, its value was estimated from the data using a
fully Bayesian approach; (2) traits with a number of samples less
than 250,000 and with a number of significant SNPs (p ≤ 5e−08)
less than or equal to 100 were considered having low polygenicity
and thus phi was set to 1e−4; (3) traits with a number of samples
less than 250,000 and with a number of significant SNPs
(p ≤ 5e−08) larger than 100 were considered having high
polygenicity and thus phi was set to 1e−2. In the final step, we
used PLINK2 (Chang et al., 2015) (PLINK v2; Shaun and Chang,
2019) to calculate the overall risk of each individual in the GTEx
cohort for different diseases and traits.

GTEx Data Processing
In the GTEx consortium, gene expression was measured in a
range of tissues and sub-tissues. Genes were filtered to keep only
protein coding genes and excluding those on the chromosomes X,
Y to reduce sex-specific effects, following previous studies (Melé
et al., 2015; Saha et al., 2017). Mitochondrial genes were also
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excluded as they are under different transcriptional control and
would require additional modeling. Next, low-expression genes
(at least 0.1 TPM in 80% of samples) were filtered out and
considered for further analysis only if they were included in
the BioGrid protein–protein interaction database (Oughtred
et al., 2019). In addition, samples were filtered out if the tissue
of origin was related to the reproductive system such as ovary,
uterus, prostate, and testis to minimize sex-specific biases and a
low sample size n < 100. Of 56,200 genes initially present in the
GTEx database, 7,251 genes passed the filtering process and
44 sub-tissue types from 30 tissues were used in the end
(Supplementary Figure S1).

Technical covariates were available on tissue resolution,
comprising the platform of sequencing, mode of sequencing
(PCR based), PC genotyping components, and probabilistic
estimation of expression residual (PEER) factors (Stegle et al.,
2010) that account for confounding factors such as technical
sequencing conditions. The authors performed a PCA to
decompose data variation due to other causes, such as batch
and genotyping components, accounting for the phylogenetic
relationship between individuals. For the network inference,
tissues were dummy-coded for the respective gene expression
samples. For the reference level in the regularized linear models of
sparse group lasso, we used the cultured fibroblasts samples as
they are sufficiently distinct from all other tissue groups.
Phenotypic information, comprising BMI, sex and age, and the
disease states, including renal failure, ischemic heart disease, liver
disease and MDD, was coded as binary vectors. Together, they
made up the features used as input for the network inference
algorithm KiMONo. In summary, a total of 13,486 samples from
793 individuals had the complete set of existing diseases (n = 12),
phenotype (n = 3), gene expression (n = 7,251), tissue (n = 44),
covariates (n = 78), and calculated PRS scores (n = 27).

Network Inference and Embedding
To derive similarities between multimodal data, our two-step
framework first infers a multimodal network and projects the
nodes into a low-dimensional embedding space from which we
compute similarities. For the generation of the multi-omic
network, we used KiMONo to select features statistically
contributing to the prediction of the expression pattern of
each gene. The feature selection process applied by KiMONo
works both on the modality groups (genes, phenotype, etc.) and
on the individual features. The features retained by the sparse
group lasso model from KiMONo were introduced in a network
as nodes, linked to the node for the modeled gene.

ygenei ~ ∑
m ∈ modalities

βmXm.

For every gene i, we used direct interaction partner gene
expression as additional predictors, which is a core concept of
the KiMONo method. The BioGrid protein–protein interaction
database with experimentally validated interactions was used as
prior information to preselect gene–gene interactions to include a
reduced number of genes to the sparse group lasso model. No
prior information was used to filter the other modalities which
resulted in having phenotypes, disease states (comorbidities of

COVID-19), tissues, and phenotypic information as input to
every gene model. To avoid statistical overrepresentation of
edges between network nodes with no prior information
applied, reverse models were calculated by modeling the values
of the nongene features from all previously selected genes. Only
the most influential genes ranked by their absolute beta (top 30%)
were retained to harmonize the magnitude of edges between
gene–gene and gene–nongene. We then assembled a multimodal
network by connecting all modeled features with their
explanatory variables, as identified by KiMONo models.
Stability selection was performed over 30 runs, and features
were retained if the feature was selected in more than 70% of
the runs to only consider robustly selected features. Default
filtering steps of R2 > 0.01 and absolute mean beta coefficient
>0.01 were applied on the inferred gene models to reduce noisy
connections and ensure high-quality models.

The second step in our framework was to learn the low-
dimensional embedding of the multimodal network by applying
the GeneWalk embedding method (Ietswaart et al., 2021). Based
on DeepWalk (Perozzi et al., 2014), the algorithm first generates
sequences of nodes from unbiased random walks across the
network. Then, a one hidden layer neural network learns to
predict the target node based on the surrounding nodes in the
random walk sequence following the SkipGram model (Mikolov
et al., 2013; Mikolov et al., 2013). By varying the sliding window
size, that is, the truncated length of the random walk, more or less
large neighborhoods and direct or indirect neighboring node
pairs are included. After training, the embeddings of each node
can be extracted from the weights of the hidden layer of the
shallow neural network. They can be used to determine its
proximity to any other node in the embedding space by
calculating the cosine similarity between the two embedding
vectors. We refer to this value as the similarity between
two nodes.

We applied a gridsearch on a smaller-sized network to
determine optimal parameters for the algorithms. The network
was calculated only on the data from brain samples, hereafter
referred to as “brain network.” The parameters were “window
size” = [2, 3] for the definition of positive examples and the
“dimension of the embedding” = [4, 8, 16, 32] during the training
process. These were tuned by maximizing the variance of the
similarity distribution of 10,000 randomly sampled nodes. The
highest variance reflects the highest information content of the
network’s node in the embedding space without overfitting the
data. The set of optimal embedding parameters used for all
following analyses were window size = 2 and embedding
dimension = 16. We then performed the embedding of the
entire network 100 times to account for variability in the
stochastic walk samples, yielding in 100 vector embeddings. In
these, we analyzed the relationship between nodes that displayed
the highest cosine similarity score to a given query node of
interest, such as a disease or comorbidity node. Here, for each
query node, we extracted the top 1,000 most similar nodes
(according to the cosine similarity measure) for each of the
100 runs of the embedding. A node was considered robustly
similar to a query node if it occurred in its top 1,000 in at least 80
of the 100 runs. Finally, for each query node, its associated robust
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nodes were ranked by their maximal similarity score. These sets
of most similar nodes, thus, represented the multimodal
contextualization of genes, which we used to elucidate the
relationship between each of the COVID-19–associated genes
and tissues or diseases.

Our machine learning framework was implemented in R and
python and is freely available under https://github.com/
cellmapslab/embed_multimodalNet.

Tissue Enrichment Analysis
We expected genes which are preferentially expressed in a certain
tissue or are tissue-specific to be closer in the embedding space to
the node representing that tissue type compared to the nodes of
other tissues. For the validation of the overall approach, we
compared the n = 50, 100, 200, 300, and 500 topmost similar
and least similar genes to tissue nodes according to their mean
similarity score across 100 runs. Validation was performed using
genes with tissue-enhanced expression from the protein atlas
(Uhlén et al., 2015). For example, for the brain, we searched for
“tissue_category_rna: brain; tissue enhanced AND sort_by: tissue
specific score” on the web server (The Human Protein Atlas,
2022).

For this validation approach, we focused on the tissue brain
and liver as these tissues had the largest number of samples and
the highest amount of tissue-enhanced genes within the protein
atlas. We computed the odds ratio of finding a tissue
enhancement within the set of genes most similar compared
to the set of genes least similar to that tissue. The raw expression
within the GTEx dataset was visualized through a heatmap, and
gene mRNA levels in the most-similar tissue were compared with
the levels of other tissues to confirm their tissue specificity.

COVID-19–Related Host Factors and
Investigation of Multimodal Context
To study the multimodal context of COVID-19–associated genes,
we compiled published SARS-CoV-2/COVID-19-related
molecular datasets across four different types of experiments.
We focused on tissues, disease states, and PRS in the proximity
in the embedding space of these SARS-CoV-2/COVID-
19–associated genes, proteins, and variants. In this case,
specifically, instead of taking the top 1,000 nodes, we set a
threshold on the similarity score (namely >0.65) to expand the
similarity-based search space in order to include more nongene
node embeddings. This is because node embeddings in very close
proximity to a COVID-19 gene were embeddings of other gene
nodes. When the threshold was surpassed, we represented the
similarity of tissues, disease states, and PRS to the literature-derived
genes as similarity-based graphs. In these graphs, we only included
genes in close proximity to nodes of PRS COVID-19 susceptibility,
severity, and hospitalization. The reasoning was to focus on the
genetic component of the predisposition to COVID-19.

COVID-19 genetics. Full summary statistics of COVID-19
GWAS (without 23andMe data, release June 6, 2021) were
downloaded for the reference genome GRCh38. SNPs reported
as significant with p < 1e−3 in comparison of very severe cases
versus population (A1), hospitalization versus non-hospitalization

(B1), and hospitalization versus population (B2) (The COVID-19
Host Genetics Initiative, 2020). Significant variants were
overlapped with ENSEMBL gene version 101 (using knowing01
Explore software) to identify affected genes resulting in 515, 663,
and 475 genes for A1, B1, and B2, respectively.

Viral-host direct protein interactions. Physical interaction
studies investigated the interactome between the host and SARS-
CoV-2 virus using ribonucleoprotein captures and
immunoprecipitation (Gordon et al., 2020; Lee et al., 2020).
For the ribonucleoprotein captures, we used the 109 proteins
that were regarded as the “SARS-CoV-2 RNA interactome” (Lee
et al., 2020). For the immunoprecipitation experiment, we used
the same high-confidence scoring criteria with MiST score ≥0.7, a
SAINTexpress Bayesian false-discovery rate (BFDR) ≤0.05, and
an average spectral count ≥2 (Gordon et al., 2020).

CRISPR phenotype screens. The third set was built from genes
from CRISPR studies that identified host factors critical for
SARS-CoV-2 infection (Schneider et al., 2021; Stephenson
et al., 2021).

The top 20 genes of pro-viral and anti-viral each were taken
and ranked by the mean z-score in the Cas0-v2 conditions (Wei
et al., 2021), and significant hits from Huh-7.5 37°C SARS-CoV-2
experiments were taken (Schneider et al., 2021).

Patient multi-omics data. We collected statistical results from
eight studies. For all proteomics studies, we identified regulated
proteins by applying a lax significance cutoff of adjusted p < 0.1
unless stated otherwise due to limited number of overall hits. From
262 in-patient sera, pairwise comparisons of the three time points
of the first day of sampling, day of highest signal, and negatively
tested for SARS-CoV-2 had been extracted (Geyer et al., 2021).
From the sera of 19 individuals, pairwise comparisons of the three
groups, healthy, non-severe, and severe COVID-19, had been
extracted (Shen et al., 2020). From the sera of 38 individuals,
we used the comparison controls versus patients with varying
COVID-19 severities (D’Alessandro et al., 2020), to which we
applied the lax filtering of p < 0.05 as the data lack multiple testing
correction information. A total of 104 patient sera across different
COVID-19 severities had been used to identify biomarkers, which
were used without additional filtering (Messner et al., 2020). From
a discovery cohort of 33 individuals, we extracted the published 90
differentially regulated proteins comparing control and COVID-19
patient sera on which no additional cutoff was applied (Di et al.,
2020). Blood plasma proteomics from 139 inpatients had been
correlated with 86 diagnostic parameters and associated with
severity using a lax-adjusted p < 0.1 cutoff (Demichev 2021).
We additionally collected data from two multi-omic studies.
Notably, we applied very stringent cutoff criteria on
transcriptome data due to strong inflation of the number of
regulated genes. From 231 COVID-19 patients without
comorbidities, we extracted the pairwise comparisons of
asymptomatic, mild, and severe cases using serum proteomics
applying a lax-adjusted p cutoff <0.1 and a stringent cutoff on genes
(adjusted p < 1e−10) measured by RNA-seq in whole blood (Wu
et al., 2021). Finally, 128 individuals with and without COVID-19
infection were used to measure and compare association to disease
state in context of ICU care by plasma proteomics (adjusted p <
0.1) and leukocyte transcriptomics (adjusted p <1e−10) as well as
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ICU × COVID-19 interaction analysis applying adjusted p < 0.1 for
both omics (Overmyer et al., 2021).

RESULTS

COVID-19 disease affects multiple organs featuring symptoms
from lung, neurological, hematological, liver, kidney, and heart
disease. To shed light on these multimodal characteristics, we use
the pre-pandemic multi-tissue GTEx cohort of close to 1,000
individuals. This cohort contains individuals with various disease
diagnoses, which are referred to as comorbidities in the context of
a SARS-CoV-2 infection. We established a new statistical
framework to elucidate the multimodal context of any feature
of interest, but especially of previously identified genes associated
to COVID-19. This framework consisted of inferring a
multimodal network and embedding the nodes into a low-
dimensional embedding space for effective exploration of
similarities between nodes and data modalities (Figure 1).

Disease State and Polygenic Risk Capture
Differential Information
Using our novel framework, we were able to integrate data of
different modalities from phenotypes and gene expression of 43

tissues to the genetic risks and existing disease diagnoses. To
capture the genetic risk of developing a disease, we computed
polygenic risk scores (PRS) for all GTEx individuals with available
genotypes by using a genome-wide scoring approach.We identified
and computed PRS for 24 large GWAS of diseases and traits, which
are known or suggested to bear a risk of a severe COVID-19 disease
course and from three COVID-19 GWAS itself.

For an exploration of data modalities, we calculated the
Pearson’s correlation between disease states, PRS, and
phenotypes (Supplementary Figure S2). The correlation
between PRS of diseases was high, such as for schizophrenia
to bipolar, major depressive disorder (MDD), and coronary
artery disease with Pearson’s correlations of 0.97, 0.62, and
0.53, respectively. Furthermore, the PRS of type II diabetes
(T2D) was correlated with type I diabetes (T1D) (0.38),
COVID-19 severity (0.76), stroke (0.24), and hypertension
(0.46). On the other hand, the actual disease state T2D was
correlated lowly with disease renal failure (0.22), hypertension
(0.35), and age (0.25). However, there was almost no correlation
between the genetic risk (PRS) and actual development of a
disease (diagnosis as provided by GTEx). For instance, the
correlation for hypertension, asthma, T1D, and T2D were
0.14, 0.09, 0.19, and 0.04, respectively. The low correlation of
genetic load with disease status makes the integration of
complementary information very important in the study of a

FIGURE1 |Novel network inference and embedding framework to integratemultimodal data for the investigation in low-dimensional space. (A)Data from the GTEx
consortium consisted of gene expression across multiple tissues, phenotypes such as sex and age, diagnosis, technical and biological covariates, as well as polygenic
risk scores (PRS) representing the genetic predisposition for a certain disease. (B)Multimodal data integration was carried out with the network inference method named
KiMONo to obtain a multimodal multi-tissue network. (C) Resulting network was embedded into a low-dimensional space using a method adapted from
GeneWalk, which uses the results of random walks of sequentially visited nodes. (D) Weights of the hidden layer are the embeddings and were explored using cosine
similarity scores to (E) validate the embedding space using tissue-specific genes and (F) understand themultimodal context of genes essential to COVID-19, which have
been identified previously by external sources.
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disease, when the PRS covers the genetic risk to develop a certain
disease, but the actual development of a disease is additionally
influenced by environmental factors.

Multimodal Network Embedding of the
GTEx Cohort
Multimodal GTEx data were integrated with the inference
algorithm, KiMONo, and an example for one single gene model
can be found in Supplementary Figure S3. Models were filtered for
low performance, low beta values, and stability selection. We
obtained 7,236 gene models of 7,251 with 461,216 edges. Next,
after running the reverse models and retaining the statistically
significant associations, the median R2 of all the models was 0.52
(Figure 2A), and we obtained a network comprising genes (n =
7,202), phenotypes (n = 3), diseases (n= 12), PRS (n = 27), covariates
(n = 77), and tissues (n = 43) (Figure 2B). While the genes were
dominating the network in the number of nodes, the most common
edge type was n = 62,902 between a gene and tissue variable, as well
as n= 44,965 between gene and covariates, n= 18,521 between genes,
n = 11,613 between the gene and PRS, n = 10,553 between gene and
disease states, and n = 2,817 between the gene and phenotypes
(Figure 2C).

To identify an optimal set of parameters for the embedding
from the multimodal genetic risk-, gene expression-, phenotype-,
and disease diagnosis-aware network, we performed a grid search
on a smaller network derived from brain gene expression
samples. The optimal parameters of the models were a
window size = 2 of positive examples and embedding
dimensionality = 16, for which the normal distributed variance
(Supplementary Figure S4B) was the highest, with a mean of
0.080 across 10 repetitions (Supplementary Figure S4A). This
reflected the highest information content to be captured without
overfitting to the data. The network embedding algorithm was
run 100 times to reduce the variability in stochastic random
walks, using this set of optimal parameters for the multimodal
network inference with KiMONo.

To establish a simplified visualization of the 16-dimensional
embedding space, we chose one random run representative of 100
runs and subjected it to PCA and finally visualized all nodes in the
first and second principal component. As the number of
dimensions was optimized during the grid search process,
both principal components together explained a variance of
20.17% (Figure 2D). The genes were spread across the PCA,
with same structure within the other modalities. Some diseases
and PRS displayed high PC1 values, such as the PRS for obesity

FIGURE 2 | Embedding of a multimodal network consisting of nodes from different data modalities including gene expression, PRS, diseases (comorbidities of
COVID-19), phenotypes, and tissues of 13,486 samples from 793 individuals from the GTEx cohort. (A) Subnetwork of the inferred multimodal data. (B) Number of
nodes and (C) edges of the complete network. (D) R2 performance of sparse group lasso gene models from KiMONo, as a quality measure of the edges of the full
network. (E) PCA of full network embedding (1 of 100 runs) with PRS for obesity, COVID-19, and cancer, as well as CDK5 gene, brain cortex tissue, and age
phenotype highlighted with labels. (F) For one node of interest (brain cortex), the highest similarity score across 100 runs was plotted against the variance across 100
runs. The nodes with the highest similarity score to the node of interest (brain cortex in purple) have a low standard deviation across 100 runs. Marginal density plots
displayed to the sides. (G) Variance of similarity scores of all nongene nodes.
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and COVID-19 and the disease renal failure, while the PRS for
cancer andmany tissues had lower PC1 values (Figure 2E). While
the linear PCA cannot completely represent the nonlinear
embedding space, the PCA could be viewed as an
approximation of the embedding space.

Furthermore, we computed the maximal similarity score
across a 100 runs from the brain cortex tissue node to all
other nodes and identified that the topmost similar node with
a maximal similarity score above 0.65 also had a relatively low
variance across 100 runs (Figure 2F). The robustness of pairwise
similarity scores across 100 runs was confirmed by the low
variance of similarity scores of nongenes to all other nodes
(Figure 2G).

Embedding Recapitulates the Association
Between the Brain Tissue Node and
Brain-Specific Genes
To validate the embedding space obtained from our multimodal
network, we evaluated how much the similarity scores between
gene nodes and tissue nodes recapitulated the tissue-specific
expression patterns of genes. To do so, we retrieved the
similarity scores from all genes with the brain tissue node and

overlapped varying n topmost and least similar genes with genes
previously reported to be enhanced in their expression in brain
tissues within The Human Protein Atlas database. We found that
these genes appeared more frequently in the set of most similar
genes than in the set of least similar genes, thus confirming their
functional role in the tissue of interest. The odds ratio of
enrichment within the most similar nodes is 4.33-fold higher
than that in the least similar nodes, when looking at the top and
bottom n = 200 nodes (mtop � 20, mbottom � 5,
x2 test p value � 0.0038) and even 12.24-fold for n = 100
(mtop � 11, mbottom � 1, x2 test p value � 0.0074) (Figure 3A).
For further tissues which had many samples within GTEx and a
high number of genes with tissue-enhanced expression within the
database such as liver, the same trend was visible (Figure 3A).
Finally, the enhanced tissue expression for brain-specific genes
was confirmed by the expression values in transcript per million
(TPM) within the GTEx dataset (Figure 3B).

For the illustration of the embedding space centered around
the tissue brain cortex, we visualized the whole embedding
from one single run using the principal components 1 and 2 of
a PCA (Figure 3C) and then zoomed into the local proximity
embedding space containing the most similar nodes
(Figure 3D).

FIGURE 3 | Embedding of multimodal network identifies tissue-associated genes. (A) Enrichment of tissue-enhanced genes within the top n most similar nodes
compared to bottom n least similar nodes by mean similarity score across 100 runs of embedding in expression in the brain and liver. (B)Median expression per tissue
within the GTEx dataset of 50 genes found to be enriched in expression in the brain among the top 500most similar nodes. (C) Embedding of all nodes of the multimodal
network of a representative run, highlighted are nodes with high similarity score of tissue node brain cortex. (D) Zoomed-in view of embedding space around brain
cortex with 15 topmost similar nodes highlighted by labels. (E) Ranking of most similar nodes for brain cortex and brain frontal cortal BA9 across all 100 runs of
embedding, with 1-hop neighbor genes in dark blue and 3-hop neighbor genes in light blue.
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For the tissue brain cortex, one of the most similar nodes was
the gene major histocompatibility complex, class II, DR alpha
(HLA-DRA) which is shown to be elevated in expression in
gliomas (Fan et al., 2017). Another node was the tissue type brain
frontal cortex BA9.

To further demonstrate how the similarity scores can be used
for contextualization of genes and other modalities, we extracted
the contextualized top nodes for both brain cortex and brain
frontal cortex across 100 embedding runs ranked by the
maximum similarity score (Figure 2E). The top genes for both
brain regions have been annotated in previous studies to be
associated with mental disease or for the functioning of the
brain. Notably, we found Ras-related dexamethasone induced
1 (RASD1), which encodes for a small GTPase overexpressed as
protein in the frontal cortex (Fishilevich et al., 2016) and is
associated with the pathway of nNOS signaling at neuronal
synapses. Interestingly, we note that this node has a high
similarity to the brain frontal cortex node (similarity score =

0.84), while it was not a direct neighbor, but a 3-hop neighbor, in
the underlying multimodal network. This shows how the network
embedding can capture highly relevant relationships between
nodes, despite their relative distance in the underlying network.

Embedding Elucidates Context of Known
Diseases
We further illustrate the use of the embedding by exploring inmore
depth the relationship between nodes of various modalities and
nodes of selected diseases and PRS. For instance, ischemic heart
disease was found closest to hypertension, chronic obstructive
pulmonary disease (COPD), and cerebrovascular disease
(Supplementary Figure S4A). Among the genes, 1-hop and 2-
hop neighbors in the underlying network, were chromatin
licensing and DNA replication factor 1 (CDT1),
minichromosome maintenance complex component 5 (MCM5),
and cAMP-responsive element-binding protein 1 (CREB1), which

FIGURE 4 |Multimodal context of known host factors important for COVID-19, stemming from different public experimental and patient data sources. Multimodal
context, especially with regard to the tissues, PRS, and COVID-19 comorbidities, was represented as a network, an edge between two nodes was drawn when the
similarity score within the embedding space >0.65 and robustly identified in 80 of 100 run repetitions. Similarity networks of genes derived through (A) GWAS studies
(The COVID-19 Host Genetics Initiative 2020) and (B) CRISPR studies derived from Wei et al. (2021) and Schneider et al. (2021). (C) Furthermore, physical
interaction experiments of ribonucleoprotein captures and immunoprecipitation (Gordon et al., 2020; Lee et al., 2020), as well as (D) patient data of whole blood samples
(Shen et al., 2020; D’Alessandro et al., 2020; Di et al., 2020; Messner et al., 2020; Wu et al., 2021; Overmyer et al., 2021; Geyer et al., 2021; Demichev 2021).
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have been linked to ischemic heart disease before. The latter has
been found to be a strong genetic predictor for heart rate response
by being a key player during contraction and cardiac memory
(Urbanek et al., 2005; Rankinen et al., 2010; Haidar and Moni,
2020). Furthermore, within the top 15most similar nodes, we could
find the node for genetic predisposition for heart failure and the
node for predisposition for COVID-19 hospitalization.

Interestingly, the disease node for major depressive disorder
(MDD) was in the midst of gene nodes in the PCA with no other
node modalities appearing in the 15 most similar node ranking
(Supplementary Figure S5B). Most similar genes were
mammalian STE20-like kinase-1 (MST1), kinase promoting
apoptosis, or aryl hydrocarbon receptor nuclear translocator
like 2 (ARNTL2), involved in the circadian clock regulation
and found to be one of the three genome-wide associations of
suicide in MDD. Another was cytochrome P450 family 2
subfamily E member 1 (CYP2E1), which is an important
protein in the microsomal oxidation system. Shao et al. (2021)
evaluated the mutual pathomechanisms in both MDD and
nonalcoholic fatty liver disease as they mediate and promote
the progression of each other.

As another example, T2D was highly similar to T1D and
pneumonia, as well as the tissue tibial artery (Supplementary
Figure S5C). Genes from 1- to 3-hop neighbors have been
described and associated with T2D in literature before,
including microtubule nucleation factor (TPX2), fibroblast
growth factor receptor 1 (FGFR1), RNA helicase and ATPase
(UPF1), and Huntington (HTT) (Tani et al., 2012; Montojo et al.,
2017; Hall et al., 2019; Li et al., 2020).

As a final example for disease states which is also a known
pathology of COVID-19, we studied pneumonia (Supplementary
Figure S5D). Among the most similar nodes were acute
pneumonia, T1D and T2D, as well as tibial artery. The
increased risk of pneumonia in diagnosed patients with
diabetes has been established (Vardakas et al., 2007; Ehrlich
et al., 2009). Furthermore, neutrophil cytosolic factor 1
(NCF1) encodes for a component of the NADPH oxidase
complex and has been associated with fibrosis, inflammation,
as well as pneumonia (Zamakhchari et al., 2016). Annexin A1
(ANXA1), playing a role in innate and adaptive immune
response, has also been found to control the inflammatory
response. The gene has been further suggested as a prognostic
biomarker for COVID-19 by decrease in severe cases (Machado
et al., 2020).

Next, we investigated the most similar nodes to each of the PRS
nodes, which represent the genetic risk for a certain disease. The top
15 nodes of each PRS were frequently other PRS nodes. This
inflation might be due to the higher correlation of PRS among
one another, as we had quantified prior to the embedding
(Supplementary Figure S2). For instance, 12 of the 15 most
similar nodes to the node of chronic kidney disease were genetic
risk scores that ranged from coronary artery disease to COPD and
Crohn’s disease (Supplementary Figure S6A), which are known
comorbidities (Chen and Liao, 2016; Demir et al., 2014; Cai et al.,
2013). The three other most similar nodes were genes, namely,
glutathione S-transferase Mu 3 (GSTM3), scavenger receptor
cysteine-rich type 1 protein M130 (CD163), and ribosomal

protein S10 (RPS10) (1-, 1-, and 2-hop neighbors, respectively).
All three have been described as important for the development of
renal tissue, carcinomas, or as biomarkers for inflammation (Tan
et al., 2013; Mejia-Vilet et al., 2020; Serin et al., 2021).

As another example, ornithine decarboxylase 1 (ODC1) (3-
hop neighbor) was the topmost similar gene to the genetic risk for
cancer. Kim et al. (2017) proposed ODC1 as a therapeutic target
for inhibition for endometrial cancer, as it is often overexpressed
and contributes to cell proliferation. Among the other similar
nodes were the genetic risk for lung cancer (similarity score =
0.83) as well as for alcohol abuse (similarity score = 0.79)
(Supplementary Figure S6B).

The PRS for schizophrenia was most similar to the one of
MDD and bipolar disorder along with the PRS for COVID-19 and
the one for obesity (Supplementary Figure S6C). Indeed, the
connection between mental diseases and COVID-19 had been of
interest, with the highest odds ratio for susceptibility and
mortality in patients with severe mental disorders (Fond et al.,
2021; Liu et al., 2021; Wang et al., 2021). It has been suggested
that this vulnerable group exhibits lower immune function and
poorer resilience. In this section, we demonstrate how the
similarity score can be used for contextualization of disease
states and PRS to capitulate disease-associated factors and genes.

Embedding Uncovers Novel Dependencies
Between COVID-19 and Tissues, PRS, and
COVID-19 Comorbidities
Having shown the applicability of the framework to capture both
tissue-specific and at the same time disease-specific genes and
described associations, we aimed next at understanding host
factors important for COVID-19 in its complex multimodal
context of GTEx cohort data. Thus, we compiled genes from
previous studies of different sources and explored their
proximities in the embedding space. These were gene sets derived
from GWAS, CRISPR, physical interaction studies, as well as multi-
omics patient data. The top associations of these genes to tissues,
PRS, and diseases (which can be considered comorbidities of
COVID-19) were represented as similarity graphs that pass our
threshold of similarity score >0.65. In addition, we focused on the
multimodal context of genes which had a connection to at least one
of the three COVID-19 genetic predispositions (PRS) of
susceptibility, severity, or hospitalization.

First, we investigated the similarity network of genes derived
from GWAS studies (Figure 4A). Small and large ribosomal
subunits and factors, such as 40S ribosomal protein S10 (RPS10),
60S ribosomal protein L7a (RPL7A), 60S ribosomal protein L24
(RPL24), and 60S ribosomal protein L14 (RPL14) were connected
to many genetic risks. RPS10 was additionally connected to
comorbidities such as COPD, cerebrovascular disease, and
renal failure. There is evidence of ribosomal protein entry
channel blockage by the viral NSP1 during infection, thus
inhibiting mRNA translation (Simeoni et al., 2021). Another
notable set of proteins were factors from the proteasome,
consisting of proteasome 26S subunit, non-ATPase 3
(PSMD3), proteasome 26S subunit, non-ATPase 1 (PSMD1),
and proteasome 20S subunit alpha 1 (PSMA1). The latter was
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associated with adipose tissue and renal failure in the embedding
and is involved in the maintenance of protein homeostasis
involved in ATP-dependent degradation of ubiquitinated
proteins, including those of coronaviruses (Tiwari et al., 2021).
Ring finger and CHY zinc finger domain containing 1 (RCHY1)
was associated with many comorbidities, including COPD,
cerebrovascular disease, renal failure, ischemic heart disease,
liver disease, and pneumonia, as well as the genetic risks of
psoriasis, heart failure, and coronary artery disease. RCHY1
that was derived from the GWAS study comparing COVID-19
hospitalized versus nonhospitalized was connected to both PRS of
COVID-19 and COVID-19 hospitalization. This protein is also
involved in E3-dependent ubiquitination and proteasomal
degradation, including tumor protein 53 (TP53), histone
deacetylase 1 (HDAC1), and cyclin-dependent kinase inhibitor
1B (CDKN1B), thus regulating their levels and cell cycle
progression. While ribosomes and proteases were connected to
many genetic risks, RCHY1 was further similar to many
developed diseases that were reported to be comorbidities of
COVID-19.

Proteasome 26S subunit, ATPase 2 (PSMC2) and proteasome
20S subunit Alpha 4 (PSMA4) identified by a CRISPR study
(Schneider et al., 2021) were associated with many genetic risks
of diseases, ranging from heart failure to MDD (Figure 4B). The
tumor necrosis factor receptor associated factor 3 (TRAF3) identified
byWei et al. (2021) study was on the other hand associated with the
diseases renal failure and COPD and has been annotated by previous
studies in signal transduction for activation of immune and antiviral
responses. The risk of hospitalization with COVID-19 was
associated with the genes small ribosomal protein S6 (RPS6) and
a member of the SWI/SNF family involved in ATP-dependent
chromatin remodeling complexes (SMARCA5) identified by
Schneider et al. (2021) and RuthHanna et al. (2021), respectively.
They were further connected to comorbidities of pneumonia and
ischemic heart disease occurring in the individuals. Gupta and
Nayak (2021) focused on SMARCA4, which is a paralog, acting
as the catalytic subunit of the SWI/SNF remodeling complex,
regulating chromatin structure.

Viral factors were found to physically interact with large
ribosomal subunits from the 40S and 60S protein. Ribosomal
protein L30 (RPL30) and ribosomal protein L21 (RPL21)
identified by Lee et al. (2020) were well-connected to many
different diseases (Figure 4C). While RPL30 was connected to
almost all genetic risks including all three COVID-19 genetic risk
nodes, RPL21 was additionally connected to the comorbidity of
ischemic heart disease which is common in patients hospitalized
with COVID-19. DNA (cytosine-5)-methyltransferase 1
(DNMT1) and Cullin (CUL2) identified by Gordon et al.
(2020) were found to have interesting functional annotations
of DNA methylation maintaining methylation patterns and
ubiquitination for the marking of proteins for degradation.

Finally, accumulated over the eight serum or plasma-derived
proteome and transcriptome patient data studies, we detected
close similarity to genes and proteins of four studies. Eight genes
encode for subunits of proteasomes (Figure 4D). They were
connected most frequently to MDD and schizophrenia, as well as
Crohn’s disease, heart failure, and smoking. Three of the eight

factors, namely, PSMC1, PSMC2, and PSMA4 were in addition
associated with adipose tissue and the risk of a severe case of
COVID-19. The 11 subunits of ribosomes (seven RPL, three RPS,
and one RNF) were connected to a variety of PRS, predominantly,
heart failure, MDD, and obesity.

Protein tyrosine phosphatase non-receptor type 6 (PTPN6)
was associated with one COVID-19 node and with the highest
number of diseases (7) from COPD over hypertension to
cerebrovascular disease. This protein tyrosine phosphatase
regulates a variety of cellular processes from cell growth to
oncogenic transformation. It has also been shown to be
expressed in B cells in severe COVID-19 (Stephenson et al.,
2021). In addition, tubulin beta class I (TUBB) and spectrin alpha,
non-erythrocytic 1 (SPTAN1) are both involved in the
cytoskeleton, encoding for beta tubulin and scaffolding
proteins, respectively. The multi-omic context of SPTAN1
proved to be interesting by being connected to pneumonia
and T2D as comorbidity and tibial artery as tissue.

Some genes that were identified over the serum and plasma
patient data are involved in the cellular response to DNA damage
and repair, namely, RAD51 recombinase (RAD51), mediator of
DNA damage checkpoint 1 (MDC1), bloom syndrome RecQ-like
helicase (BLM), and Erb-B2 receptor tyrosine kinase 2 (ERBB2).
ERBB2, belonging to the epidermal growth factor receptor family of
receptor tyrosine kinases, had also been previously linked to the
cytokine release storm and thus severity of an infection with SARS-
CoV-2 (Khitan et al., 2022). This gene was especially of interest in
combination with obesity and gut microbiome in COVID-19
patients (Khitan et al., 2022). Finally, we explored the tissue
context of COVID-19–associated genes, identified in blood of
mostly severe patients, independently if they were additionally
associated to the genetic predisposition. By counting the number
of tissues in close proximity, we found that brain-related tissues such
as nucleus accumbens basal ganglia, substantia nigra, or spinal cord
were among the most frequently discovered, along with tibial artery,
small intestine, and pituitary (Table 1). During the acute phase of
infection, SARS-CoV-2 was found in the substantia nigra, where it
preferentially targeted dopaminergic neurons (Bouali-Benazzouz
and Benazzouz, 2021). It has been discussed that the infection of
brain tissue could trigger cellular processes linked to
neurodegeneration, and its course has been shown to worsen
diseases such as Parkinsonism (Bouali-Benazzouz and Benazzouz,
2021). Lehmann et al. (2021) described that the small intestine was
affected in COVID-19 patients. Frara et al. (2021) showed poorer
outcomes for patients with pituitary dysfunction, affecting patients
with an abnormal endocrine phenotype such as hypopituitarism and
diabetes. Also, COVID-19 patients exhibit worse outcomes with
thrombosis in the tibial arteries (Singh et al., 2021).

DISCUSSION

We established a two-step framework that allows us to integrate
multi-omic data across multiple tissues and given genetic risk and
disease state information in order to better understand diseases,
especially COVID-19, in their complex context. First, a multimodal
network was inferred using KiMONo which associates genes with
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all other data modalities, consisting of genes, tissues, phenotypes,
comorbidities, and PRS, using multiple regression. Second, all
nodes were projected into an embedding space using the
method GeneWalk. For efficient analysis of the embedding,
similarity scores were employed, under the assumption that
associated nodes are in the proximity within the embedding
space. We showed that the multimodal network from the GTEx
pre-corona population cohort was of high quality being able to
achieve high gene model performances using the R2 measures.
Furthermore, we assured the quality of the embeddings by
optimizing the parameters such that we maximize the variance
of the resulting node pair cosine similarity distribution. The fact
that similarity scores between any two vectors had low standard
deviation across the 100 runs reflects the robustness of the resulting
embeddings.

We validated the relevance of the network embedding by
showing that tissue-specific genes were significantly more
enriched in the set of genes with the highest similarity scores
to the tissue of interest, as compared with the set of genes with the
lowest similarity scores. Thus, our method was able to capture the
most important factors for each node of interest. The embedding
was also validated by recapitulating disease-related factors such as
for the disease ischemic heart disease, T2D, and MDD or the
genetic predisposition for chronic kidney disease and cancer.
Interestingly, those top similar nodes come from a diverse degree
of neighborhood of the initial KiMONo network, which confirms
that the embedding helps capture highly relevant relationships
between nodes. In summary, we were able to (1) prioritize
important factors from multitude of connections in the
original network and (2) pick up factors that were connected
over 1, 2, and 3 hops. With the embedding, the relationship
between any two nodes could be examined in the full network
context and does not need to be restricted to directly connected

ones. The information gain exceeding the original network is due
to the embedding which is learned by using sequences within
randomwalks as training examples. In this way, the larger context
of each node is being taken into account for the embedding.

We delineated the multimodal context of previously identified
COVID-19 genes. Strikingly, different experimental types
captured different information. While the networks from
genes that were derived from physical interaction experiments
were able to elucidate the roles of ribosomal proteins, the genes
from CRISPR studies had a focus on proteases and genes that had
COVID-19 comorbidities in their proximity such as SMARCA5
and TRAF3, involved in chromatin remodeling and activation of
viral response. Furthermore, the networks from whole blood
samples of patients revealed the role of many proteases and
ribosomes that had many genetic risks in their proximity.
Others were coupled to functions such as DNA repair,
ubiquitination, and functions within the cytoskeleton. Another
interesting gene only present in the patient’s blood data was
PTPN6; it was associated with the highest amount of
comorbidities, ranging from COPD to hypertension. This gene
was less associated with the genetic risk for different diseases but
with the actual development of them, making this gene a central
player for COVID-19 when other comorbidities were already
present. Importantly, we also delineate that in this disease, many
tissues were involved, including the brain and small intestine.

The framework’s limitations are the prior used to establish
gene–gene links. Our analysis was limited to around 7,000 genes
mainly due to lack of mappability to the prior, but could be
extended to the full set of human protein coding genes. In
addition, we limited the PRS only to GWAS studies, selecting
the diseases that have been found to be most relevant for COVID-
19, while many others are of potential relevance in a cross-tissue
cross-disease cohort. Our network could also be used to

TABLE 1 | Top five tissue context in embedding of known COVID-19 genes discovered by different study types, expressed as counts and proportion of all tissues.

Tissue Count Proportion
of all tissues

GWAS Brain spinal cord cervical c-1 27 0.046
Breast mammary tissue 22 0.0375
Brain frontal cortex BA9 22 0.0375
Cells EBV-transformed lymphocytes 22 0.0375
Heart atrial appendage 22 0.0375

CRISPR Brain nucleus accumbens basal ganglia 4 0.0656
Artery tibial 4 0.0656
Adipose subcutaneous 4 0.0656
Brain anterior cingulate cortex BA24 3 0.0492
Breast mammary tissue 3 0.0492

Physical interaction Brain substantia nigra 9 0.0811
Pituitary 8 0.0721
Small intestine terminal ileum 5 0.045
Pancreas 5 0.045
Adipose visceral omentum 5 0.045

Patient Brain spinal cord cervical c-1 142 0.0433
Breast mammary tissue 127 0.0388
Stomach 126 0.0385
Pituitary 122 0.0372
Cells EBV-transformed lymphocytes 118 0.036
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understand the context of other diseases by expanding the PRS or
diseases being integrated into the network.

The power of our analysis stems from the large cohort,
enabling the contextualization of the modality impact of a
disease on a population level and across different tissues. The
considerable amount of samples gives it statistical power,
especially in the brain tissues. To our knowledge, this is the
first time that the genetic predisposition to COVID-19 has been
analyzed using a pre-corona population cohort spanningmultiple
tissues in the body, while taking the genetic setting, the developed
diseases, and phenotypes into account. This allowed for the
understanding of this complex disease on many layers from
genetics to comorbidities influenced by environmental factors,
especially when the information they covered was
complementary.
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