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Abstract: This paper presents a new approach for the optimal trajectory planning of nonlinear systems
in a dynamic environment. Given the start and end goals with an objective function, the problem is
to find an optimal trajectory from start to end that minimizes the objective while taking into account
the changes in the environment. One of the main challenges here is that the optimal control sequence
needs to be computed in a limited amount of time and needs to be adapted on-the-fly. The control
method presented in this work has two stages: the first-order gradient algorithm is used at the
beginning to compute an initial guess of the control sequence that satisfies the constraints but is not
yet optimal; then, sequential action control is used to optimize only the portion of the control sequence
that will be applied on the system in the next iteration. This helps to reduce the computational effort
while still being optimal with regard to the objective; thus, the proposed approach is more applicable
for online computation as well as dealing with dynamic environments. We also show that under mild
conditions, the proposed controller is asymptotically stable. Different simulated results demonstrate
the capability of the controller in terms of solving various tracking problems for different systems
under the existence of dynamic obstacles. The proposed method is also compared to the related
indirect optimal control approach and sequential action control in terms of cost and computation
time to evaluate the improvement of the proposed method.

Keywords: optimal control; trajectory generation; robotics; receding horizon control; model predictive
control; dynamic environments; simulation results

1. Introduction

Trajectory planning in robotics and automation has attracted a great deal of attention
recently due to the new demands in this area. Besides reaching the goal, it is crucial that
the controlled robot is able to react to highly dynamic environments, e.g., avoiding vehicles
and pedestrians in the case of autonomously driving cars, or avoiding human co-workers
to provide safety in the case of humans and robots working in the same workspace. This
requires the robot to adapt rapidly to changing situations. Furthermore, it is desired that,
besides safety, also other demands are considered, such as optimizing energy and human
comfort, etc. Solving trajectory planning problems while taking all of these aspects into
consideration is not a trivial task.

In general, the trajectory planning problem is either solved on a kinematic or dynamic
level. On the kinematic level, the outcome of trajectory planning is a set of waypoints;
each consists of a time stamp and the position/velocity/acceleration of the system. Then,
a controller, i.e., a PID controller, is used to generate a control signal applied to the sys-
tem. In this area, different planning techniques were first presented in automated vehicle
demonstrations [1–3]. One of the first techniques was the use of interpolating curve plan-
ners, i.e., with the use of clothoid paths in the Eureka Prometheus Project [4] between
1987 and 1994, where the transitions between linear parts and curves are achieved with
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a linear change in curvature. However, this method is very time-consuming and results
in a continuous but not smooth path. Later, motion planners based on splines emerged,
as in the ARGO Project [5], which have a low computational cost but are not optimal with
regard to curvature minimization. Then, graph-search-based planners such as D* were
used, as in the Darpa PerceptOR program [6,7], where a drawback is that the resulting path
is not continuous. At around the same time, sample-based methods such as rapidly explor-
ing random tree (RRT) [8] were introduced and were commonly used later on as motion
planners in a large variety of applications, from autonomous vehicles [9,10] to articulated
robots [11,12] and multi-agent systems [13]. In [14], the author introduces a path planning
framework using a sample-based approach for articulated robots in the presence of moving
obstacles. In recent research, different learning methods have been used in combination
with sample-based approaches to improve the efficiency of searching the free-collision
path [15,16]. Besides sampling-based methods, optimization-based approaches have also
been developed to generate smooth trajectories by minimizing cost functions with regard
to velocity/acceleration/jerk terms, as presented in [17]. Nevertheless, these algorithms all
compute paths that can be tracked by a controller but not a control force/torque that can
be applied on the robot; the constraints on the physical behaviors of the robot cannot be
considered in these planning methods.

Differing from sampling-based motion planners, optimal control approaches take the
physical behaviors of the robot into account and compute a control input with regard to
a pre-defined cost function, which results in an optimal trajectory. The cost functions can
be utilized to describe different demands, such as human comfort, optimizing energy, etc.;
thus, optimal control methods are very suitable for the aforementioned trajectory planning
problem. Most of the optimal control methods are categorized into indirect [18] and
direct [19] methods. Indirect methods look at the necessary conditions of optimality of the
infinite OCP to derive a boundary value problem (BVP) in ordinary differential equations
(ODE). In contrast, direct methods transform the original infinite OCP into a finite nonlinear
programming problem and then solve it. However, due to extensive computational effort,
these methods are mainly used to compute the trajectories in the offline case and therefore
are unable to react to dynamic environments [20]. To overcome this problem, different
modifications have emerged in which some pre-computations are performed offline and
then used to reduce the computation time in the online phase. For example, in [21], a
finite number of global optimal solutions is computed offline; then, they are generalized
using support vector machines or Gaussian process regression and used as training data in
the online phase. Similarly, machine learning and motion primitives are used in [22,23]
to learn precomputed optimal trajectories. However, in real dynamic environments, an
infinite number of cases can occur; thus, it is difficult to cover all possibilities with a finite
number of precomputed solutions. A solution to deal with dynamic environments is the
use of Dynamic Motion Primitives (DMP) [24], where the parameters of the DMP can be
adapted online and therefore react to the dynamic environment. However, in this method,
the optimality is lost due to the deformation process and therefore the trajectory is not
optimal.

Recently, NMPC [25,26] has received a great deal of attention and has been applied
in several applications [27–31]. One of the main reasons is the development of different
numerical toolboxes and computers with powerful CPUs that are able to solve optimal
control problems efficiently. NMPC is a feedback optimal control framework, which ba-
sically solves an optimal control problem over a finite receding horizon. Then, only the
first interval of the computed control signal is applied until new state measurements are
available. After this, the horizon is shifted ahead for one interval and the procedure repeats.
The major advantages of NMPC are its fast computation time compared to the original
optimal control approaches in [18,19] and its capability of considering dynamic environ-
ments. Thus, NMPC has attracted a lot of attention during the last decade. Considerable
progress has been made in term of algorithms and software implementations that are able
to reduce the computational time of NMPC significantly. In [32], the authors used MPC
with a simplified model to find an optimal reaction force profile for a dynamic legged
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locomotion system and used a simple PID controller to compute the joint torque, position,
and velocity commands based on the reaction forces computed from MPC. In [33,34], the
authors proposed a scheme with a limited number of iterations to obtain an approximate
solution. This reduces the computation time but the the solution is only suboptimal. For
obstacle avoidance in dynamic environments, the authors in [35] developed a robust MPC
approach to deal with moving obstacles, but the model is only on a kinematic level, while
in [36–38] the authors utilized a simple model of the system to reduce the computational
effort. In terms of implementation, the ACADO toolkit [39] is a very strong numerical
NMPC solver that can handle a wide range of applications and problems and has been
used in different research [40,41]. However, even with the strength of powerful computers,
the computation time of NMPC is still significant, especially for nonlinear and complex
models, such as an articulated robot or a car-like system. Therefore, most of the works only
are only successful with simple or slow systems in a static environment.

SAC was introduced in [42] as a model-based algorithm that is able to compute a sub-
optimal control signal for nonlinear systems. It uses the same concept of receding horizon
but the main difference between SAC and NMPC, which is also the selling point of SAC, is
that it derives a closed-form expression of only one interval of the control signal, which will
be applied to the system for a short duration (while NMPC still computes the control signal
over the whole horizon). This short duration is usually chosen as equal to a single step
size of the control signal. Hence, unlike NMPC, which requires numerical solvers, SAC
can derive an analytical expression of this interval. This means that SAC performs faster
than NMPC and other optimal control approaches in general, which makes it a promising
candidate for online applications. However, this promising analytical solution is only
obtainable if there are no constraints in the control problem, the reason being that SAC
uses a different method called mode insert gradient [43], which measures the first-order
sensitivity of the cost function when the control signal is applied for a short duration.
The author then smartly selects an auxiliary cost function, which utilizes this sensitivity
formulation such that the analytical solution can be obtained. However, this procedure by
default neglects the possibility of adding constraints into the problem. This limits SAC from
applications that require additional constraints, i.e., target or final constraints, which are
necessary for trajectory planning tasks. Even though these constraints can be formulated as
part of the cost function, there is no guarantee that they can be fulfilled.

Inspired by SAC, the proposed method, TC-SAC, was first introduced in [44], and
is able to compute an optimal solution very quickly and, in addition, can handle target
constraints for trajectory planning tasks. TC-SAC consists of two steps: at first, a first-
order gradient approach is used to tackle target constraints for the planning problem and
generate an initial guess; after this, SAC is used to improve it further with regard to the cost
function. This makes it a promising candidate for real-time optimal control in a dynamic
environment. In this work, we extend the method in [44] and evaluate TC-SAC in a broader
range of applications. The contribution of this work is as follows:

• We extend the TC-SAC method to cover the cases where target constraints might
be violated;

• Different comparisons between TC-SAC, SAC, and indirect optimal control methods
are given to show the improvement of the proposed method;

• We show that TC-SAC is able to deal with dynamic environments, which involves
avoiding obstacles in our case, and can be applied in different systems without lots
of modifications;

• The stability proof of the proposed method is given and discussed.

The remainder of this work is structured as follows. In Section 2, the design of
the proposed method is outlined: first, the trajectory tracking problem is formulated in
Section 2.1, and then, in Section 2.2, we introduce the basic concept of TC-SAC, as well as
the detailed mathematical formulation of the algorithm. Then, the results of the simulation
with TC-SAC are given in Section 3. We discuss the stability proof of TC-SAC in Section 4
and conclude our work with the discussion and outlook in Section 5.
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2. Materials and Methods
2.1. Problem Formulation

In general, the trajectory tracking task can be formulated as an OCP in the receding
horizon, where the terminal constraint is used for the trajectory generation task. For the
OCP, a dynamic system with n states and m control inputs is considered and described by
a set of ordinary differential equations

ẋ(t) = f(t, x(t), u(t)), x(t0) = x0 (1)

with f : Rn+m+1 → Rn being nonlinear in state x ∈ Rn and control input u ∈ Rm. The
initial state of the system is denoted by x0 and the target configuration xd(t) denotes the
final goal. The cost functional

J1 = mf(x(tf)) +
∫ tf

t0

l1(t, x(t), u(t))dt (2)

with the performance cost l1(·) and the terminal cost mf(·) are used to measure the per-
formance in the horizon [t0, tf]. The optimal control problem over a receding prediction
horizon TP is given by

min
u

J1 = mf(x(tf)) +
∫ tf

t0

l1dt (3a)

s.t. ẋ = f(t, x(t), u(t)), x(t0) = x0, x ∈ Rn (3b)

Φ =

x1(tf)− xd,1(tf)
...

xq(tf)− xd,q(tf)

 = 0, q ≤ n, (3c)

where t0 = tcur denotes the current time, tf = tcur + TP is the final time at the end of the
prediction horizon, and (xd,1(tf), . . . , xd,q(tf)) defines q constrained state at the end of the
prediction horizon tf. Φ is a column vector that represents the set of q terminal constraints
at tf.

In this paper, the dynamic system in (1) is assumed to be given in control-affine form, i.e.,

ẋ = f(t, x(t), u(t)) = g(t, x(t)) + h(t, x(t))u(t) (4)

with f being nonlinear with respect to state x and linear in control input u.

2.2. Target-Constrained Sequential Action Control

This section outlines the proposed approach, called Target-Constrained Sequential
Action Control (TC-SAC) [44], for trajectory planning tasks. The idea of TC-SAC is to
utilize the advantage of SAC in terms of fast computation time and to extend the original
method with an additional controller to tackle constraints. The overall structure of TC-SAC
is given in Figure 1.

Figure 1. Overview of the controller scheme. First, a nominal control input is computed with the
first-order gradient algorithm (green box). After this, the first portion of the control input is updated
with SAC (red box).

The proposed method consists of two parts:
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1. A nominal controller based on the first-order gradient algorithm (FOGA) [45];
2. An optimal controller based on Sequential Action Control (SAC).

In TC-SAC, an initial guess is first computed by an indirect optimal control method,
which is FOGA in our case, in order to consider terminal constraints. Due to time limitations,
FOGA is only run for one iteration to obtain the nominal control u1. Obviously, with one
iteration, u1 is not yet close to the optimal solution. The first interval of u1 is then improved
by SAC since it will be applied on the system in the next iteration. As mentioned, SAC
utilizes the concept of mode insert gradient [43] and a proper selection of an additional
auxiliary cost function to derive an analytical solution for the optimal control u∗2 , which
improves the performance over u1. Note that u∗2 differs from u1 only by the first portion,
while the rest remains the same. Then, in the Selection step (see Figure 1), u∗2 is compared
to u1 in terms of performance and terminal constraint costs. If the comparison shows the
improvement of u∗2 , then it is applied to the system for the next iteration.

Looking in depth into the difference between TC-SAC and SAC, our method has a
better choice of the nominal controller u1. To be precise, the original SAC only computes
one interval of the control signal u∗2 per iteration while assuming u1 ≡ 0. In the case of
TC-SAC, instead, u1 is updated every iteration. Therefore, TC-SAC always improves the
optimality of the control signal over time, while SAC does not. The update of u1 also plays
a crucial role for TC-SAC to incorporate target constraints for trajectory tracking tasks and
is part of the stability proof that will be discussed later in Section 4. Clearly, this update
requires more computational effort than SAC, but it is negligible compared to the benefits
that it provides. Next, both parts of our approach will be outlined and explained in detail.

2.2.1. First-Order Gradient Algorithm (FOGA)

The first part of the controller serves the purpose of incorporating constraints, i.e.,
target constraints, into the OCP, which are crucial for trajectory generation tasks. Since the
theoretical background of SAC uses the co-state equation from the Pontryagin principle [46]
as part of the calculation (see Section 2.2.2 for more details), FOGA is selected as the solver
here to utilize this equation to reduce the amount of steps needed for implementation.
FOGA then solves problem (3) for one iteration to find an initial guess. Since this is an
optimal control problem with equality constraints at the final state, the idea from [45] is used.
First, the dynamic constraint is adjoined to the performance equation l1 by introducing
time-varying Lagrange multiplier vector ρ, whose elements are called the co-states of the
system. This constructs the Hamiltonian H ∈ R1 defined for all t ∈ [t0, tf]:

H(x, u, ρ, t) = ρTf(x, u) + l1(x, u) (5)

Following Pontryagin’s maximum principle [46], the co-state equation

ρ̇ = −
(

∂H
∂x

)T

= −
(

∂l1
∂x

)T

−
(

∂f1

∂x

)T

ρ (6)

must be satisfied. Solving (6) requires a terminal condition, which is usually chosen as

ρ(tf) =
(

∂mf
∂x (tf)

)T
if the state x is not fixed at tf. In our case, this terminal condition is

slightly modified to consider the terminal constraints in (3c):

ρi(tf) =

0, i = 1, · · · , q,(
∂mf
∂xi

)T
t=tf

, i = q + 1, · · · , n,
(7)

with n and q as defined above. Next, the matrix of influence functions R ∈ Rn×q

is introduced

Ṙ =

(
∂f
∂x

)T

R, (8)
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where

Rij(tf) =

{
1, i = j, i = 1, · · · , n,
0, i 6= j, j = 1, · · · , q.

(9)

By defining the matrix R, we are able to predict how changes in the control input,
δu(t), affect the cost function J1 and the q terminal constraints in Φ by the following;
see [45] for more details.

δJ1 =
∫ tf

t0

(
ρT ∂f

∂u
+

∂l1
∂u

)
δu(t)dt (10)

δΦ ,

δx1
...

δxq


t=tf

=
∫ tf

t0

RT ∂f
∂u

δu(t)dt (11)

Now, we want to minimize (10) s.t. constraints (11). However, both have linearized
relations with regard to δu, so there is no minimum for δJ1. A simple method to create a
minimum is to add a quadratic integral penalty function in δu to (10)

δJex = δJ1 +
1
2

∫ tf

t0

(δu)TWδu dt, (12)

where W(t) ∈ Rm×m is an arbitrary positive-definite weighting matrix. The problem then
becomes a minimization problem of δJex subject to (11). Adjoining (11) to (12) with another
constant Lagrange multiplier ν, one obtains

δ J̄ = δJex + νT
[∫ tf

t0

RT ∂f
∂u

δu(t)dt− δΦ

]
. (13)

If we neglect the change in coefficients, the first derivative of (13) is given by

δ(δ J̄) =
∫ tf

t0

[
∂l1
∂u

+ (ρ + Rν)T
∂f
∂u

+ (δu)TW
]

δ(δu)dt (14)

Setting (14) to be zero, one can find a solution of

δu = −W−1
[

∂l1
∂u

+ (ρ + Rν)T
∂f
∂u

]T
(15)

that minimizes (13). Substituting this into (11), we find that

δΦ = −IΦJ − IΦΦν (16)

where IΦΦ ∈ Rn×n and IΦJ ∈ R1×n are computed by

IΦΦ =
∫ tf

t0

RT ∂f
∂u

W−1
(

∂f
∂u

)T

Rdt (17)

and

IJΦ = ITΦJ =
∫ tf

t0

(
ρ

∂f
∂u

+
∂l1
∂u

)
W−1

(
∂f
∂u

)T

Rdt (18)

Assuming that IΦΦ is non-singular, we can solve (16) for the value of ν

ν = −I−1
ΦΦ(δΦ + IΦJ) (19)

with δΦ = −εΦ[x(tf)] and a constant ε ∈ (0, 1]. Note that the existence of the inverse of
IΦΦ is the controllability condition. If I−1

ΦΦ does not exist, it is not possible to control the



Robotics 2022, 11, 72 7 of 26

system with u(t) to satisfy one or more of the terminal conditions (see Appendix B2 in [45]
for more details). Finally, the new control u1 is updated to

u1 = u1,old + δu (20)

with the old control input u1,old and the update δu from (15).
In summary, the procedure of FOGA follows these steps:

1. Initialize a set of control input u(t);
2. Forward integrate (4) with the initial conditions x(t0) and the initial guess of the

control input from step 1;
3. Determine the co-state vector ρ and the matrix of influence functions R by backward

integration through (6) and (8) with the terminal conditions (7) and (9);
4. Calculate IΦΦ, IΦJ through the integrals (17), (18) simultaneously with step 3;
5. Determine ν from (19) and compute an estimation of δu via (15);
6. Update the control input u1 using (20).

Remark: In the standard OCP, steps (2)–(6) are repeated until the optimal solution is
found. However, since we pursue fast computation and real-time capability, these steps are
only performed once. Obviously, u1 is not yet close to the optimal solution. SAC is then
used to further improve the performance without sacrificing the computation time.

2.2.2. Sequential Action Control

The motivation of using Sequential Action Control (SAC) is that, instead of computing
the control input for the whole prediction horizon, it is more crucial to consider the next
interval since it will be applied to the system first. On the other hand, in dynamic envi-
ronments, the predicted controller is affected by moving obstacles or might be completely
changed if the final goal changes on-the-fly. SAC therefore aims to improve the control
input for only the next interval, but still uses the same prediction horizon [t0, tf] for the
performance cost evaluation.

Assuming that the nominal controller u1 is obtained using FOGA, described in Section 2.2.1,
we want to find a control u∗2 , denoted as the optimal control, that further improves the cost
function (2) with regard to the dynamic system (4). SAC then computes a triplet consisting
of the control value u∗2 , its application time τm, and the application duration λ. This triplet
is called an action, and the control signal can be written as

u(t) =

u1, t /∈
[
τm − λ

2 , τm − λ
2

]
u∗2 , t ∈

[
τm − λ

2 , τm − λ
2

] (21)

with the nominal controller u1 and the optimal controller u∗2 . This can be interpreted as a
switching controller, where SAC switches between two modes. These two modes are given by

f1(t)
∧
= f(x(t), u1(t)) (22)

for the nominal controller u1 and

f2(t, τm)
∧
= f(x(t), u∗2(τm)) (23)

for the optimal controller u∗2 . In this paper, the application time τm is deterministic with
τm = tcur + τsample/2, where tcur denotes the current time and τsample denotes the sampling
time. Now, recall that our aim is to improve the cost function (2) with the new controller
u∗2 applied within the duration λ. We then rely on the mode insert gradient [43], which
evaluates the first-order sensitivity of the cost (2)

dJ1

dλ+
(τm) = ρ(τm)

T(f2(·, τm)− f1(·, τm)) (24)
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This equation measures how the cost is influenced by varying the length λ of the
application of the optimal control u∗2 . The co-state ρ in (24) is computed based on (6) and
(7). To reduce the cost J1, (24) should be driven to a desired negative value αd ∈ R−. This
can be done by simply introducing an auxiliary cost function

l2(s) = l2(x(s), u1(s), u2(s), ρ(s))

=
1
2

[
dJ1

dλ+
− αd

]2
+

1
2
‖u2(s)‖2

S

(25)

with S > 0 and ‖u2(s)‖2
S = u2(s)TSu2(s). Solving the minimization problem of (25) results

in a control that achieves the desired sensitivity αd. For models in control-affine form (4),
the solution for this minimization is given analytically by

u∗2 = (Λ + ST)−1[Λu1 + h(x)Tραd] (26)

with Λ = h(x)TρρTh(x).

2.2.3. Extended Sequential Action Control with Target Constraints

One problem that arises from the theoretical background of SAC, presented in
Section 2.2.2, is that it cannot handle constraints, and hence using SAC solely in the next step
can lead to the violation of the constraint (3c). To prevent this occurrence, we extend the the
original SAC method by using the knowledge from FOGA. We redefine the auxiliary cost
function in (25) as

lext
2 (s) = l2(x(s), u1(s), u2(s), ρ(s))

=
1
2

[
dJ1

dλ+
− αd

]2
+

1
2

[
dlc

dλ+
− αc

]2
+

1
2
‖u2(s)‖2

S

(27)

where lc = 1
2 ΦTQcΦ, Qc ∈ Rq×q is a positive definite matrix and Φ is the vector of target

constraints defined in (3c). lc can be interpreted as the additional constraint cost and
therefore dlc

dλ+ measures how this constraint cost is influenced by varying the length λ of
the optimal control u∗2 . Hence, solving the new minimization problem of (27) also drives
this sensitivity to a negative value αc ∈ R−. This leads to the reduction of lc, which then
helps SAC to prevent the constraints from being violated.

The only problem now is the evaluation of dlc
dλ+ . We have

dlc
dλ+

(τm) =
dlc

dx(tf)

dx(tf)

dλ+
(τm) = ΦTQc

dx(tf)

dλ+
(τm) (28)

From (11), we have

δΦ = δx(tf) =
∫ tf

t0

RT ∂f
∂u

δu(t)dt

=
∫ τm+δλ

τm
RT ∂f

∂u
(u2 − u1)dt

(29)

where [τm, τm + δλ] is the infinitesimal duration where u2 is applied. As δλ→ 0, (29) can
be written as

dx(tf) = RT df
du

(τm)(u2 − u1)dλ (30)

or
dx(tf)

dλ+
(τm) = RTh(τm)(u2 − u1) (31)
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Substituting this into (28) and solving the minimization problem of (27) in the same
way as in Section 2.2.2, we obtain a new analytical solution of u∗2

u∗2 = (Λ1 + Λ2 + S)−1(Λ1u1 + Λ2u1 + hTραd + hTRT
c αc) (32)

with Λ1 = hTρρTh, Λ2 = hTRT
c Rch, Rc = ΦTQcRT.

In this work, the application time λ is set to be equal to τsample such that u∗2 is applied
for one interval. Additionally, u∗2 is only applied if it results in both a smaller performance
cost J1 and terminal constraint cost lc over the prediction horizon TP compared to the
nominal control u1. This is considered as the Selection procedure in the control scheme, as
illustrated in Figure 1.

In order to obtain a feasible solution, a boundary of control signals is given by box
constraints, i.e., U = [umin, umax]m, by simply saturating the control output computed
above. Overall, Algorithm 1 outlines the general structure of the proposed method.

Algorithm 1 TC-SAC.
Initialize x0, xd, current time tcurr, prediction horizon TP, sampling time τsample, end time
Tend, initial guess for nominal control u1.

while tcurr < Tend do
if tcurr ≥ τm then

τm = tcurr + τsample/2
Simulate (x, ρ, R) using u1 for t ∈ [t0, tf]
Compute Iψψ, IJψ as in (17) and (18), ν by (19), change in control δu by (15)
Update u1 ← u1 + δu
Saturate u1 to [umin, umax]
Simulate (x, ρ) using new u1 for t ∈ [t0, t f ]
Compute new costs J1,init, lc,init
Specify αd
Compute u∗2 from (26) and saturate it to [umin, umax]
Initialize k = 0, J1,min ← J1,init, J1,SAC ← ∞, lc,min ← lc,init, lc,SAC ← ∞
while k < kmax do

λ = τsample

(τ0, τf ) = (τm − λ
2 , τm + λ

2 )
Re-simulate (x, ρ) applying control (21)
Compute new cost J1,SAC, lc,SAC
k = k + 1
if J1,SAC < J1,init and lc,SAC < lc,init then

J1,min ← J1,SAC, lc,min ← lc,SAC
end if

end while
if J1,SAC < J1,init and lc,SAC < lc,init then

u1 ← u∗2 for t ∈ (τm − λ
2 , τm + λ

2 )
end if

else
Apply control u1

end if
(t0, t f ) = (t0 + τsample, t0 + Tpre + τsample)

end while

3. Results

This section presents different examples to highlight the improvement of the proposed
approach. We apply our method on the reaching task and trajectory tracking task for the
2DOF robotic arm and compare the results with the original SAC. An interesting question
that arises from a theoretical point of view is the extent to which the extended SAC step in
Section 2.2.3 affects the performance of the system. Therefore, two additional controllers
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are added for comparison: first, only the extended SAC with target constraint is used to
compare to SAC, and second, FOGA with multi-steps is used to compare to TC-SAC.

3.1. Reaching Motion Task

In this task, we evaluate the performance of the proposed approach on a 2DOF
robotic arm in the vertical plane, as shown in Figure 2. The full dynamics of the robot are
considered, including friction and gravitation. A detailed mathematical explanation of this
model can be found in [47]. The task of the robot is to reach a pre-defined position. The
performance cost is chosen to penalize the error between the current and desired states

l1(t) = (x(t)− xd)
TQ(x(t)− xd), (33)

where Q � 0 is the weighting matrix. The target constraint is also set to be the desired
position. The prediction horizon is chosen Tp = 0.3 s and the sampling rate is set to
1kHz. The initial position of the robot is x0 = (−π

2 , 0, 0, 0) and the control u is bounded by
u ∈ [−50, 50] Nm. The sensitivity αd is chosen proportional to the cost J1, αd = ωαd J1 with
ωαd = −10. Similarly, the sensitivity αc is set to be αc = ωαc lc with ωαc = −5.

a2

θ1

θ2

l2
Il1

(−)

(+)

x

y

g

Figure 2. Setup of the two-degrees-of-freedom robot used for the simulation.

3.1.1. Upright as Desired Position

First, the results are evaluated in the case of xd being the upright position,
xd = (π

2 , 0, 0, 0). The weighting matrix for the performance cost (33) is Q = diag([100, 50,
0.0001, 0.0001]). Having the first two values of Q much higher than the latter means that
the position errors are penalized more heavily than the velocity errors, which is necessary
for tracking tasks. The weighting matrix for lc in (27) is Qc = diag([10, 1000, 10, 10]). For
FOGA, we run in two iterations to allow a fair comparison to TC-SAC, in terms of cost
improvement and computation time. The simulation is run for 1.5 s and the result is shown
in Figure 3. All methods succeed in controlling and stabilizing the robot. However, TC-SAC
and FOGA need only 0.5 s to converge to xd, while SAC and the extended SAC take more
than 1 s to converge. The overall cost is shown in Table 1. Furthermore, each method is run
100 times to obtain the average computation time. Note that the code is run on the Matlab
environment so the computation time is only used to evaluate the speed of these methods
relatively.

Comparing between SAC and the extended SAC, the new sensitivity term helps to
improve the constraint in the states of the robot. This can be seen clearly in θ2, where the
extended SAC keeps the deviation between the current and desired state at a smaller value
compared to SAC. This shows the effectiveness of the extended SAC in terms of tightening
the target constraints. Comparing between TC-SAC and FOGA, the performance of both
is quite similar, but the computation time of TC-SAC is 34 s less than FOGA with two
iterations. This is because one iteration of SAC takes much less time than one iteration of
FOGA, since SAC has a direct analytical solution. Therefore, TC-SAC is preferable since it
can achieve the same performance in a shorter amount of time.
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Table 1. Total cost and computation time.

SAC Extended SAC TC-SAC FOGA

Total cost 316.74 291.02 152.21 150.60
Computation time 18.18 s 19.60 s 89.82 s 124.63 s
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Figure 3. States of 2DOF robotic arm when the designed position is upright.

3.1.2. Arbitrary Position

In this section, we want to analyze the performance of the methods in the case of any
arbitrary desired position. In this case, the controller has to compensate the gravitational
force, which is zero if the robot is at the upright position (equilibrium point). This highlights
the role of the target constraint in TC-SAC and FOGA in terms of convergence. The desired
position is set to be xd = ( 3π

4 , −3π
4 , 0, 0) and other parameters are set to be the same as in

the case of the upright position. The simulation is run for 2 s and the result is shown in
Figure 4. It can be seen that TC-SAC and FOGA quickly converge to the desired position in
approximately 0.5 s, while both SAC and the extended SAC methods cannot converge to
the desired position in θ1 and θ2. These offsets appear in any desired position that is not
the equilibrium point. Therefore, TC-SAC and FOGA are preferable for reaching/tracking
tasks, even though the computation time is longer.
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Figure 4. States of 2DOF robotic arm in the case of arbitrary desired position.
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3.2. Tracking an Ellipse Trajectory

Moving one step further, we evaluate the methods in a trajectory tracking task. Since
SAC and the extended SAC are incapable of reaching an arbitrary position, they are
excluded from this task. The trajectory is set to be an ellipse where the radii along the x-axis
and y-axis are 0.3 m and 0.18 m, respectively. For the sake of simplicity, the robot follows
the ellipse with a constant velocity and the whole ellipse takes 3 s to finish. The starting
position is set to be upright. In this simulation, the weighting matrices Q, Qc are set to be
Q = diag([100, 50, 10, 10]) and Qc = diag([10, 100, 0.1, 0.1]). Other parameters remain the
same. Figure 5 shows the tracking performance between TC-SAC and FOGA in the XY
graph, while Figure 6 shows this in each state of the robot. Figure 5 also illustrates the
configuration of the robot at different positions along the ellipse.

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

0

0.1

0.2

0.3

0.4

0.5

0.6
XY Plot

Figure 5. Tracking performance of TC-SAC and FOGA.
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Figure 6. States of 2DOF robotic arm in case of tracking an ellipse trajectory.

It can be seen that both controllers are able to track the given trajectory; however,
TC-SAC performs better than FOGA in this task, especially on the right side of the ellipse.
From a mathematical point of view, TC-SAC can be interpreted as a combination of one
iteration of FOGA plus an update from SAC afterward. Hence, it can be said that the SAC
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step improves the cost further compared to the second iteration step of FOGA, and it is
achieved in a much shorter amount of time. This highlights the advantage of TC-SAC in
the case where the controller needs to be computed rapidly due to time restrictions, i.e., in
dynamic environments. TC-SAC helps to improve the overall cost substantially, without
losing too much computation time. Figure 7 also shows the control signal of TC-SAC on
the first and second joint of the robot. The last graph in Figure 7 displays at which time
step SAC is activated (represented as 1), which indicates when the control signal computed
by SAC reduces the cost. By looking at how often SAC overtakes FOGA (u∗2 is applied
instead of u1), we can justify the effectiveness of the additional SAC step in TC-SAC. It can
be seen that u∗2 is used most of the time, which means that SAC often improves the solution
of FOGA (u1). This proves the effectiveness of this additional step since the computation of
SAC is fast. In conclusion, TC-SAC is preferable in applications where the controller needs
to be computed quickly and optimally. In the next section, we will show that TC-SAC is
also applicable in different applications.
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Figure 7. Control signal of the 2DOF robotic arm.

3.3. Trajectory Tracking in Dynamic Environment of a Car-Like System

Autonomous driving recently has received a lot of attention from industry and re-
searchers. In the field of autonomous cars, it is crucial that the controlled car is able to react
to highly dynamic environments. Since other participants in traffic cannot be predicted
beforehand, the car has to adapt rapidly to changing situations. This section presents the
implementation of TC-SAC for the trajectory tracking task, with an emphasis on obstacle
avoidance in both static and dynamic cases. We use the single-track model (also known
as the bicycle model [2,28,48–50]), as shown in Figure 8, as this model is widely used to
represent vehicles.

l

center of mass
Y

X

lr f

fr

Figure 8. Schematic diagram of the single-track model used in this work.
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The single-track model used in this work is nonlinear, with 7 states and 2 control input

x =
[

X, Y, Ψc, v, α, Ψ̇c, δ
]

(34)

u =

[
δ̇input

M

]
(35)

with
δ̇ = δ̇input (36)

with the x and y-coordinates X and Y, the orientation Ψc, the velocity v, the side slip angle
α, the change in orientation Ψ̇c, the steering angle δ, and the applied torque M. The last
state in x is the additional state added so that the single-track model is in control-affine
form. Further details about this car model are given in Appendix A.

A Lissajous curve with a ratio of the frequencies of 2
3 and a phase shift of π

2 is used for
this tracking task.

xref(t) = 50 sin(0.05πt)

yref(t) = 50 cos(0.075πt)

vref(t) =
√

ẋ2
ref(t) + ẏ2

ref(t)

(37)

This reference trajectory is chosen since it results in different curvature and velocity
at every point, which makes it challenging for tracking. The velocity varies between
approximately 3.65 m

s and 14.16 m
s , which does not exceed the limit of the dynamic of the

car. To be able to avoid the obstacles, an additional term is added into the cost function,
which is defined as

l1,avoid =

{
Cobstacle · (dist(·)− r)2, dist(·) < r
0, dist(·) > r

(38)

with the distance between the car from the center to an obstacle dist(·) = dist(x, y, xc, yc) =√
(x− xc)2 + (y− yc)2, the weighting factor Cobstacle, and the obstacle radius r. The overall

performance cost l1 is then given by l1 = l1,track + l1,avoid. Since obstacle avoidance is most
crucial for the safety of passengers and other traffic participants, Cobstacle is set to 106 and
therefore it is considered with a much higher weighting factor than the tracking task.

First, we test our method in the case of trajectory tracking with static obstacle avoid-
ance. It is assumed that the obstacles are 2 m in diameter, which is close to the width of
real cars. However, since avoidance cannot completely be guaranteed with soft constraints,
a safety margin of 1 m around the obstacle is added, which leads to an obstacle radius
r = 2 m to increase safety. The position of the obstacles is given in Figure 9 and marked by
the circles.

It can be seen from the plot that the car successfully avoids all obstacles, while it is
still able to track the reference trajectory. Looking at the cost measurement, there are two
peaks at around 51 s and 91 s, which are the obstacles in the top right and bottom right of
the curve. This means that the obstacles actually interfere with the safety margin around
the car, although there is no collision. Therefore, choosing a proper safety margin is very
important to ensure safety.

For dynamic obstacle avoidance, again, the Lissajous curve is chosen as the reference
trajectory. The prediction horizon is increased to 2 s to consider the more difficult task of
dynamic obstacle avoidance. 13 obstacles are included for the scenario: one at the center,
which is static, 6 on a circular trajectory with a radius of 40 m, and 6 on a circular trajectory
with 50 m radius. Both circles have the same center as the Lissajous curve. The obstacles
are equally distributed on these two circles and take 20 s for a full lap. It is assumed that
the future path of the obstacle is known by the car and therefore can be considered exactly
by TC-SAC. The safety margin around the obstacles is increased to 4 m.
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Figure 9. Performance of TC-SAC on a Lissajous curve as reference trajectory with avoidance of
static obstacles.

A short frame of the dynamic behavior is given in Figure 10, which shows the scenario
at time stamps between 7 s and 10 s with 1 s between the single pictures.
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Figure 10. Dynamic obstacle avoidance. The position at different time steps is indicated by the
number.
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It can be seen that the car is pushed away and afterwards is able to return back
to the reference trajectory. A video as proof of the simulated result has been uploaded
at https://github.com/khoilsr/tcsac_trajectory_generation (accessed on 30 May 2022).
This scenario can be seen as a proof of concept since it creates many different situations
of obstacle avoidance, i.e., obstacles from the front, back, side, and successive obstacle
avoidance situations, before the car could reach the reference trajectory again. Thus, this
scenario is not close to situations that might occur in reality, but more difficult. This also
shows the capability of TC-SAC in rapidly solving optimal control problems in different
applications.

4. Stability Analysis

The class of systems to be controlled is described by the following general nonlinear
set of ODEs

ẋ(t) = f(x(t), u(t)), x(0) = x0 (39)

with state vector x(t) ∈ Rn, input vector u(t) ∈ Rm. We also assume that

1. f : Rn ×Rm → Rn is twice continuously differentiable and f(0, 0) = 0—thus, 0 ∈ Rn

is an equilibrium of the system;
2. system (39) has a unique solution for any initial condition x0 ∈ Rn and any piecewise

continuous u(·) ∈ Rm.

We then analyze and discuss the stability of TC-SAC, presented in Figure 1. For
the sake of simplicity, we consider the stability of the system around the origin x = 0.
The stability of an arbitrary position is achieved similarly by shifting the state and control
signals such that this arbitrary position becomes the origin. In addition, to keep the notation
the same as in the literature, the objective cost function is denoted as V, which is equivalent
to the notation J1 presented in previous sections. Recall the OCP with target constraints

min
u

V(x, t; u) =
∫ T

0
L(x, u, t)dt (40a)

s.t. ẋ = f(t, x(t), u(t)), x(0) = x0, (40b)

x(T) = 0 (40c)

where L has a quadratic form:

L(x, u, t) =
1
2

[
xT(t)Qx(t) + uT(t)Ru(t)

]
(41)

where Q and R are a positive definite matrix.
Here, let x(·; x0, 0) denote the corresponding trajectory of (39) with initial condition

x(0) = x0 and û(·; x0, 0) denote the optimal control sequence that minimizes the objective
function V(x0, 0; u). From a methodological point of view, TC-SAC is a combination of
FOGA in the first step and the extended SAC in the subsequent one. Hence, an intuitive
method to analyze the stability of TC-SAC is to establish the stability conditions for FOGA
first, and then the stability of TC-SAC can be concluded after this. Furthermore, TC-SAC
uses the same concept of receding horizon as MPC; therefore, it is straightforward to derive
the stability conditions of TC-SAC from the stability literature of MPC. In the following,
we first look at the stability conditions of FOGA in the absence of the extended SAC in
Section 4.1. Then, we discuss the stability of TC-SAC in Section 4.2.

4.1. Stability of FOGA

There have been several works that investigate and deploy sufficient conditions for the
closed-loop MPC system to be stable. An overview of most of the works in this area can be
found in [51]. Specifically, for our problem in (40), we are seeking the stability conditions of
a receding horizon control with terminal constraint for nonlinear continuous systems. The
constraint imposed at terminal time T provides a relatively simple procedure to establish

https://github.com/khoilsr/tcsac_trajectory_generation
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the stability of the closed-loop system. In fact, Chen and Shaw [52] derived sufficient
conditions for the closed-loop receding horizon control of (40) to be asymptotically stable.
These conditions are described by the following assumptions.

Assumption 1. There exists an optimal control function û(·; x0, 0), which gives the minimal cost
V̂(x0, 0; u) and satisfies the terminal constraint (40c).

Assumption 2. The optimal cost V̂(x0, 0; u) satisfies the following conditions for any T > 0

(a) V̂(x0, 0; u) = 0 and V̂(x, t; u) > 0 for x 6= 0;
(b) V̂(x, t; u)→ ∞ when ‖x‖ → ∞;

(c) ∂V̂(x,t;u)
∂x exists for any x.

Theorem 1. Suppose that Assumptions 1 and 2 are satisfied; then, for any fixed T > 0, the
closed-loop system is asymptotically stable at the origin.

Proof. See Appendix B.

Assumption 2 can be fulfilled easily by having the cost function in quadratic form, i.e.,

V(x, t; u) =
1
2

∫ t+T

t

(
‖x(τ)‖2

Q + ‖u(τ)‖2
R

)
dτ (42)

Assumption 1 is, however, more difficult to be satisfied. It requires the optimal solution
of (40), in which the terminal constraint (40c) also has to be satisfied for each receding
horizon. We will first prove that there exists an optimal solution that satisfies the terminal
constraint when using FOGA as the solver.

Recall the changes in the cost function J1 and the terminal constraints Φ

δJ1 =
∫ tf

t0

(
ρT ∂f

∂u
+

∂l1
∂u

)
δu(t)dt (43)

δΦ ,

δx1
...

δxq


t=tf

=
∫ tf

t0

RT ∂f
∂u

δu(t)dt (44)

and adjoining (44) to (43), we obtain

δJ1 + νδΦ =
∫ tf

t0

[
∂l1
∂u

+ (ρ + Rν)T
∂f
∂u

]
δu(t)dt (45)

where ν is also a Lagrange multiplier. The equation (45) represents the adjoined cost of the
OCP. With the solution of δu(t) in (15), we have

δJ1 + νδΦ = −W−1
∫ tf

t0

∥∥∥∥∂l1
∂u

+ (ρ + Rν)T
∂f
∂u

∥∥∥∥2
dt < 0 (46)

which is negative unless the integrand vanishes over the whole integration interval. The
Lagrange multiplier ν is computed as

ν = −I−1
ΦΦ(δΦ + IΦJ) (47)

with δΦ = −εΦ[x(tf)] and a constant ε ∈ (0, 1]. The choice of δΦ guarantees that the
constructed control signal u(t) drives the system close to the desired state at the final time
t f . Thus, the terminal constraints can be satisfied after a finite amount of iterations. Since
the system is fully controllable, I−1

ΦΦ exists; thus, there always exists ν and δu such that
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the cost function is decreased and the terminal constraints are satisfied. As the optimal
solution is approached and δΦ = 0, it is clear that

ν→ −I−1
ΦΦIΦJ (48)

∂l1
∂u

+ (ρ + Rν)T
∂f
∂u
→ 0 (49)

FOGA is therefore able to construct an optimal control signal u(t) that minimizes the
cost and satisfies terminal constraints. Hence, Assumption 1 is satisfied.

A problem that arises here is that Assumption 2 uses the optimal cost V̂(x; T) as
the Lyapunov function to establish the closed-loop stability. This requires FOGA to be
performed repeatedly until the optimal solution is found, which is not practical in our case
since we want to achieve fast computation for online capability. However, this optimal
solution is actually not necessary. Indeed, we will show that, with a proper “warm start”,
the closed-loop system is still stable even if the cost is not optimal.

Definition 1 (Warm start). An admissible warm start, ũ, must steer the current state x to the
origin, i.e., satisfy terminal constraint x(T) = 0.

A warm start needs to satisfy the constraints but does not have to be optimal; hence, it
can be acquired much faster. Furthermore, a warm start only needs to be computed once
and can be done offline. In our approach, a warm start is achieved by performing FOGA
for a couple of iterations. The process can be sped up with a proper choice of ε to calculate
the Lagrange multiplier ν in (47). A controller algorithm using a warm start is as follows.

Controller algorithm with warm start
Data: x0 ∈ Rn, δ ∈ (0, ∞), where δ is the sampling interval
Initialization: At time t0 = 0, if x0 is at the origin, i.e., x0 = 0, meaning that the system

is already at the equilibrium, then employ u = 0 to maintain the current state. Else, perform
FOGA for a couple of iterations to compute a feasible warm start u0 for the OCP problem
in (40). Apply the control u0 to the real system over the interval [t0, t0 + δ].

Repeat:

1. At any time t, if x(t) = 0, meaning that the system reaches the origin, employ u = 0.
Else:

2. At any time ti , iδ, i ∈ N:

• Obtain an admissible control u′i as an initial guess

u′i =
{

ui−1 for t ∈ [ti, ti + T − δ]
0 for t ∈ [ti + T − δ, ti + T]

(50)

• Compute an admissible control horizon that is better than the preceding control
horizon in the sense that

V(xi, ti, ui) ≤ V(xi, ti, u′i) (51)

• Apply the control ui to the real system over the interval [ti, ti + δ]

The stability proof of MPC with the warm start is presented in [53]. With a choice of
admissible warm starts, the controller is asymptotically stable. The terminal constraints
are satisfied from the beginning and the cost is improved over time. Even in the situation
where the cost increases due to numerical errors, we simply return to the warm start of the
previous iteration and continue from there.

4.2. Stability of TC-SAC

As mentioned, TC-SAC can be interpreted as a combination of FOGA in the first step
and the extended SAC in the subsequent one. Since FOGA was proven to be stable in
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Section 4.1, we only need to confirm that the extended SAC in the second step does not
violate the stability property of FOGA. In other words, we need to fulfill two conditions:
(1) the performance cost (40a) is decreased when applying the extended SAC, and (2) the
terminal constraint (40c) is not violated.

It can be easily seen that both of the conditions are guaranteed naturally by the
procedure of TC-SAC presented in Section 2.2. From a methodological point of view, TC-
SAC only applies the control signal computed by the extended SAC if it results in a smaller
value in both performance cost V(x, t; u) and terminal cost lc = 1

2 ΦTQcΦ, when compared
to FOGA. The reduction in V(x, t; u) guarantees that condition 1 is satisfied. Similarly,
the reduction in terminal cost lc means that the extended SAC drives the system closer
to the origin at time T, thus fulfilling condition 2. If any of the conditions is not met, the
control signal computed by FOGA is used instead. In both cases, we ensure that TC-SAC
inherits the stability property of FOGA and, therefore, we can conclude that TC-SAC is
asymptotically stable.

5. Discussion and Conclusions

In this paper, we presented a fast and close-to-optimal control method called TC-SAC.
We also evaluated the proposed method in different scenarios and situations to test its
capability. In detail, TC-SAC is able to fulfill most of the reaching/tracking tasks, even in
critical scenarios such as the Lissajous trajectory. Furthermore, it was shown that TC-SAC
is able to avoid static and dynamic obstacles efficiently with only soft constraints, i.e.,
with obstacle avoidance costs. In terms of computational effort, TC-SAC is able to find a
sub-optimal solution that is close to the optimal one, without significantly affecting the
computation time. Therefore, our proposed method has a lot of potential for applications
that require online capability and performance costs to be optimal. Note that TC-SAC is a
model-based control method; hence, it can be applied to different linear/nonlinear systems,
and is not only limited to the applications presented in this paper. Moreover, the stability
proof presented in this work shows TC-SAC to be a reliable controller when it comes
to safety aspects. The only downside is that TC-SAC is not able to consider inequality
constraints, which might limit its use to systems that have strict requirements in this type
of constraint.

Although the results in this work were only achieved in simulation, we believe that
this method can be easily transferred to real systems due to its high potential. For real-time
applications, the algorithm needs to be written in a system programming level such as C
programming, so that it can be computed as quickly as possible. The prediction horizon Tp
also needs to be properly selected to achieve good results in terms of optimality, without
losing too much of the computational effort. For complex systems such as high-DOF or
humanoid robots, a simplified model might be needed to reduce the computation time. In
addition, since our approach is model-based, a precise model of the system will play an
important role in the quality of the controller. Thus, for systems with unknown parameters,
a model identification procedure needs to be performed first.

As for the future work of this paper, TC-SAC will be first implemented on a remote
control car system and on a 2DOF robot for testing the trajectory tracking problems and
obstacle avoidance behaviors. We also plan to investigate further the influence of the
inaccuracy between the real and simulated models on the controller and the robustness of
TC-SAC in the existence of noise and disturbances.
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Appendix A. Vehicle Dynamic Model

For car-like systems, a wide range of model complexities exist. One of the most com-
plex representations of a car-like system is the multi-body model, which can very accurately
describe the overall physical behavior of the car [54]. However, this level of complexity
does not suit the requirements for online application due to the excessive computational
load. The model presented in this work is a simplified single-track model [55], which
is commonly used in studies of different controllers/methods related to car-like systems
due to its simplicity and accurate representation of the dynamic behaviors of a car. The
state-space model is as follows:

ẋ =



Ẋ
Ẏ
Ψ̇c
v̇
α̇

Ψ̈c

 =



vcos(α + Ψc)
vsin(α + Ψc)

Ψ̇c
aave
save
ωave

 (A1)

with the x and y-coordinates X and Y, the orientation Ψc, the velocity v, the side slip angle

α and the change in orientation Ψ̇c. The control input is given by u =

[
δ
M

]
, with the

steering angle δ and the applied torque M. aave, save and ωave are given by:

aave =
1
m
(Ff ,Xcos(α− δ) + Fr,Xcos(α) + Ff ,Ysin(α− δ)

+ Fr,Ysin(α)− 0.5cwρL Av2)
(A2)

save =
1

mv
(−Ff ,Xsin(α− δ)− Fr,Xsin(α)

+ Ff ,Ycos(α− δ) + Fr,Ycos(α)−mvΨ̇c)
(A3)

ωave =
Ff ,X l f sin(δ) + Ff ,Y l f cos(δ)− Fr,Y lr

ΘZ
(A4)
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with the drag coefficient cw, the density of the air ρL and the front surface A of the car and
the inertia ΘZ of the car. Ff /r,Y in (A2)–(A4) are the lateral tire forces obtained by using
Pacejka’s magic tire formula

Ff /r,Y = DY sin
(

CY atan
(

BYα f /r − EY

(
BYα f /r − atan

(
BYα f /r

))))
(A5)

with BY =
KY Ff /r,Z

CY DY
, DY = µY Ff /r,Z and CY, EY, KY are the constants. µY is the friction

coefficient in the lateral direction, Ff /r,Z is the tire load on the front and rear axis and α f /r
is the side slip angle on the front and rear axis. Ff /r,Z is given by

Ff /r,Z = mcg
lr/ f

l f + lr
(A6)

For the longitudinal forces Ff ,X in (A2)–(A4), they are simplified as

Ff ,X = Fr,X =
M
r

(A7)

with the torque M as the control input for the system and r as the radius of the tires.

Model Modification: The single-track model presented above is not linear with respect
to δ, the steering angle, where it is used in trigonometrical functions as in (A4). Since
TC-SAC requires the system to be in control-affine form, as described in (4), a simple way
to correct this is to change the steering angle from a control input to a state and introduce
the derivative of it, δ̇input, as the new control input.

After these changes are applied, the state-space model changes to:

x =



X
Y
Ψc
v
α

Ψ̇c
δ


; ẋ =



Ẋ
Ẏ
Ψ̇c
v̇
α̇

Ψ̈c
δ̇


(A8)

with the control input

u =

[
δ̇input

M

]
(A9)

with
δ̇ = δ̇input (A10)

and the steering angle δ still can be controlled directly. All other equations of the state-space
model remain the same.

With these changes, ẋ = f (t, x, u) can be written in a control-affine form with:

h(t, x(t)) =



0 0
0 0
0 0
0 cos(α)+cos(α−δ)

mr
0 −sin(α)+sin(α−δ)

mrv

0
l f sin(δ)

rΘ
1 0


(A11)
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and

g(t, x(t)) =

vcos(Ψc + α)
...
0

 (A12)

Although the input δ̇ serves mainly for the reason of control-affine form, it also
improves the smoothness of the steering angle, i.e., a jump in the derivative results in a
linear change in the signal. This makes the controller more realistic when applied on a
real system, since the steering angle will be applied, not the derivative of it. However, the
drawback of the modification is that, since the steering angle is not a control input, it cannot
be saturated afterwards. In detail, it cannot be limited to realistic values, i.e., 35–45◦. To
overcome this problem, uδ is changed as follows:

δ̇ = uδ − kδ (A13)

with the constant k ∈ R+. Note that now uδ has no direct physical meaning. Through this
change, h(t, x(t)) is not affected, while g(t, x(t)) changes to

g(t, x(t)) =

vcos(Ψc + α)
...
−k

 (A14)

and the control input u to

u =

[
uδ

M

]
(A15)

For the maximum and minimum steering angle, δmax = −δmin holds, as, for the
maximum and minimum control input, uδ,max = −uδ,min holds. k, therefore, has to be
chosen depending on the desired maximum steering angle δmax and the maximum control
input uδ,max for it. Thus, k is determined with:

k =
uδ,max

δmax
(A16)

Appendix B. Proof of Theorem 1

Here, we summarize the proof given in [56] for the case of nonlinear systems with
terminal constraints. The idea is to show that the optimal cost function V̂(x, t; u) can
be used as a Lyapunov function for the receding horizon control. Let x∗ and u∗ denote
the receding horizon strategy when the initial state is x0 at t = 0. We wish to evaluate
(d/dt)V̂(x∗(t)) at an arbitrary, fixed instant of time. By definition,

V̂(x∗(t)) =
1
2

∫ t+∆t

t

[
x̂T(τ)Qx̂(τ) + ûT(τ)Qû(τ)

]
dτ

+
1
2

∫ t+T

t+∆t

[
x̂T(τ)Qx̂(τ) + ûT(τ)Qû(τ)

]
dτ (A17)

where x̂(τ) , x̂(τ; x∗(t), t) and û(τ) , û(τ; x∗(t), t) are the optimal solution for the OCP
in (40). Consider a control ũ : [t + ∆t, t + T + ∆t] defined as follows:

û(τ) ,
{

û(τ; x∗(t), t) for τ ∈ [t + ∆t, t + T]
0 for τ ∈ (t + T, t + T + ∆t].

(A18)
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Let x̃(·) = x̃(·; x̂(t + ∆t), t + ∆t) denote the corresponding trajectory with initial
condition x̃(t + ∆t) = x̂(t + ∆t; x∗(t), t). Clearly,

x̃(τ) =
{

x̃(τ; x∗(t), t) for τ ∈ [t + ∆t, t + T]
0 for τ ∈ (t + T, t + T + ∆t)

(A19)

because x̃(t + T; x̂(t + ∆t), t + ∆t) = x̂(t + T; x∗(t), t) = 0 and ũ = 0 for τ > t + T. Since ũ
is not necessarily optimal, it follows that

V̂(x∗(t)) =
1
2

∫ t+∆t

t

[
x̂T(τ)Qx̂(τ) + ûT(τ)Qû(τ)

]
dτ + V(x̂(t + ∆t), t + ∆t; ũ)

≥ 1
2

∫ t+∆t

t

[
x̂T(τ)Qx̂(τ) + ûT(τ)Qû(τ)

]
dτ + V̂(x̂(t + ∆t)) (A20)

so that

V̂(x̂(t + ∆t))− V̂(x∗(t)) ≤ −1
2

∫ t+∆t

t

[
x̂T(τ)Qx̂(τ) + ûT(τ)Qû(τ)

]
dτ (A21)

Since V̂ is continuously differentiable, it follows from the Mean Value Theorem that

V̂(x̂(t + ∆t))− V̂(x∗(t))
∆t

= ∇xV̂(x∗(t)

+ θ(∆t)(x̂(t + ∆t)− x∗(t)))
(x̂(t + ∆t)− x∗(t))

∆t
(A22)

for θ(∆t) ∈ (0, 1). Since

x∗(t) = x̂(t; x∗(t), t) = x̂(t), u∗(t) = û(t; u∗(t), t) = û(t) (A23)

and û is continuous at t, we have that

lim
∆t→0+

x̂(t + ∆t)− x∗(t)
∆t

= f (x̂(t), û(t)) = f (x∗(t), u∗(t)). (A24)

Since ∇xV̂ and x are continuous, then from (A20), (A23) and (A24), it follows that

lim
∆t→0+

V̂(x̂(t + ∆t))− V̂(x∗(t))
∆t

= ∇xV̂(x∗(t)) f (x∗(t), u∗(t)). (A25)

By continuity of x̂ and û and the Mean Value Theorem for integrals, we also have

lim
∆t→0+

− 1
2∆t

∫ t+∆t

t

[
x̂T(τ)Qx̂(τ) + ûT(τ)Qû(τ)

]
dτ

≤ lim
∆t→0+

− 1
2∆t

∫ t+∆t

t

[
x̂T(τ)Qx̂(τ)

]
dτ = −1

2

[
x∗(t)TQx∗(t)

]
. (A26)

Dividing both sides of (A21) by ∆t > 0 and taking the limit as ∆t→ 0+ yields

∇xV̂(x∗(t)) f (x∗(t), u∗(t)) ≤ −1
2

[
x∗(t)TQx∗(t)

]
< 0. (A27)

Hence,
(d/dt)V̂(x∗(t)) = ∇xV̂(x∗(t)) f (x∗(t), u∗(t)) < 0 (A28)

unless x∗(t) = 0. Hence, the system is asymptotically stable.
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