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Abstract

Background: Although the potential of big data analytics for health care is well recognized, evidence is lacking on its effects
on public health.

Objective: The aim of this study was to assess the impact of the use of big data analytics on people’s health based on the health
indicators and core priorities in the World Health Organization (WHO) General Programme of Work 2019/2023 and the European
Programme of Work (EPW), approved and adopted by its Member States, in addition to SARS-CoV-2–related studies. Furthermore,
we sought to identify the most relevant challenges and opportunities of these tools with respect to people’s health.

Methods: Six databases (MEDLINE, Embase, Cochrane Database of Systematic Reviews via Cochrane Library, Web of Science,
Scopus, and Epistemonikos) were searched from the inception date to September 21, 2020. Systematic reviews assessing the
effects of big data analytics on health indicators were included. Two authors independently performed screening, selection, data
extraction, and quality assessment using the AMSTAR-2 (A Measurement Tool to Assess Systematic Reviews 2) checklist.

Results: The literature search initially yielded 185 records, 35 of which met the inclusion criteria, involving more than 5,000,000
patients. Most of the included studies used patient data collected from electronic health records, hospital information systems,
private patient databases, and imaging datasets, and involved the use of big data analytics for noncommunicable diseases.
“Probability of dying from any of cardiovascular, cancer, diabetes or chronic renal disease” and “suicide mortality rate” were the
most commonly assessed health indicators and core priorities within the WHO General Programme of Work 2019/2023 and the
EPW 2020/2025. Big data analytics have shown moderate to high accuracy for the diagnosis and prediction of complications of
diabetes mellitus as well as for the diagnosis and classification of mental disorders; prediction of suicide attempts and behaviors;
and the diagnosis, treatment, and prediction of important clinical outcomes of several chronic diseases. Confidence in the results
was rated as “critically low” for 25 reviews, as “low” for 7 reviews, and as “moderate” for 3 reviews. The most frequently
identified challenges were establishment of a well-designed and structured data source, and a secure, transparent, and standardized
database for patient data.
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Conclusions: Although the overall quality of included studies was limited, big data analytics has shown moderate to high
accuracy for the diagnosis of certain diseases, improvement in managing chronic diseases, and support for prompt and real-time
analyses of large sets of varied input data to diagnose and predict disease outcomes.

Trial Registration: International Prospective Register of Systematic Reviews (PROSPERO) CRD42020214048;
https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=214048

(J Med Internet Res 2021;23(4):e27275) doi: 10.2196/27275
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Introduction

Big data analytics tools handle complex datasets that traditional
data processing systems cannot efficiently and economically
store, manage, or process. Through the application of artificial
intelligence (AI) algorithms and machine learning (ML), big
data analytics has potential to revolutionize health care,
supporting clinicians, providers, and policymakers for planning
or implementing interventions [1], faster disease detection,
therapeutic decision support, outcome prediction, and increased
personalized medicine, resulting in lower-cost, higher-quality
care with better outcomes [1,2].

In 2018, the World Health Organization (WHO) proposed the
expedited 13th General Programme of Work (GPW13), which
was approved and adopted by its 194 Member States, focusing
on measurable impacts on people’s health at the state level to
transform public health with three core features: enhanced
universal health coverage, health emergencies protection, and
better health and well-being [3]. Forty-six outcome target
indicators emerged from the GPW13, covering a range of health
issues [3]. Big data analytics may help to support health policy
decision-making, accelerate the achievement of the GPW13
core priorities and targets, and guide the roadmap for the
European region based on the European Programme of Work
(EPW) 2020/2025 [4,5].

Therefore, the aim of this study was to provide an overview of
systematic reviews that assessed the effects of the use of big
data analytics on people’s health according to the WHO core
features defined in the GPW13 and the EPW. We included

complex reviews that assessed multiple interventions, different
populations, and differing outcomes resulting from big data
analytics on people’s health, and identified the challenges,
opportunities, and best practices for future research.

Methods

Study Design
This study was designed to provide an overview of systematic
reviews in accordance with guidelines from the Cochrane
Handbook for Systematic Reviews of Interventions, along with
the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) and the QUOROM (Quality of
Reporting of Meta-analyses) guidelines [6-8]. The study protocol
is published on PROSPERO (CRD42020214048).

Search Strategy
To identify records assessing the effect of big data analytics on
people’s health, aligned with the WHO health indicators defined
in the GPW13 (Textbox 1), a comprehensive and systematic
search was performed using six multidisciplinary databases
from their inception to September 21, 2020. The search strategy
was designed in collaboration with a senior librarian and is
described in detail in Multimedia Appendix 1.

References were imported into reference management software
(EndNote X9) and duplicates were removed. Unique records
were uploaded onto the Covidence Platform (Veritas Health
Innovation) for screening, data extraction, and quality
assessment. A manual search of reference lists was performed
to supplement the search.
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Textbox 1. List of 46 World Health Organization health indicators defined at the Thirteenth General Programme of Work.

• Number of persons affected by disasters (per 100,000 population)

• Domestic general government health expenditure (% of general government expenditure)

• Prevalence of stunting in children under 5 (%)

• Prevalence of wasting in children under 5 (%)

• Prevalence of overweight in children under 5 (%)

• Maternal mortality ratio (per 100,000 live births)

• Proportion of births attended by skilled health personnel (%)

• Under 5 mortality rate (per 1000 live births)

• Neonatal mortality rate (per 1000 live births)

• New HIV infections (per 1000 uninfected population)

• Tuberculosis incidence (per 100,000 population)

• Malaria incidence (per 1000 population at risk)

• Hepatitis B incidence (measured by surface antigen [HBsAg] prevalence among children under 5 years)

• Number of people requiring interventions against neglected tropical diseases (NTDs)

• Probability of dying from any of cardiovascular disease (CVD), cancer, diabetes, chronic renal disease (CRD) (aged 30-70 years) (%)

• Suicide mortality rate (per 100,000 population)

• Coverage of treatment interventions for substance-use disorders (%)

• Total alcohol per capita consumption in adults aged >15 years (liters of pure alcohol)

• Road traffic mortality rate (per 100,000 population)

• Proportion of women (aged 15-49 years) having need for family planning satisfied with modern methods (%)

• Universal Health Coverage (UHC) Service Coverage Index

• Population with household expenditures on health >10% of total household expenditure or income (%)

• Mortality rate attributed to air pollution (per 100,000 population)

• Mortality rate attributed to exposure to unsafe water, sanitation, and hygiene (WASH) services (per 100,000 population)

• Mortality rate from unintentional poisoning (per 100,000 population)

• Prevalence of tobacco use in adults aged ≥15 years (%)

• Proportion of population covered by all vaccines included in national programs (diphtheria-tetanus-pertussis vaccine, measles-containing-vaccine
second dose, pneumococcal conjugated vaccine) (%)

• Proportion of health facilities with essential medicines available and affordable on a sustainable basis (%)

• Density of health workers (doctors, nurse and midwives, pharmacists, dentists per 10,000 population)

• International Health Regulations capacity and health emergency preparedness

• Proportion of bloodstream infections due to antimicrobial-resistant organisms (%)

• Proportion of children under 5 years developmentally on track (health, learning, and psychosocial well-being) (%)

• Proportion of women (aged 15-49 years) subjected to violence by current or former intimate partner (%)

• Proportion of women (aged 15-49 years) who make their own decisions regarding sexual relations, contraceptive use, and reproductive health
care (%)

• Proportion of population using safely managed drinking-water services (%)

• Proportion of population using safely managed sanitation services and hand-washing facilities (%)

• Proportion of population with primary reliance on clean fuels (%)

• Annual mean concentrations of fine particulate matter (PM2.5) in urban areas (μg/m3)

• Proportion of children (aged 1-17 years) experiencing physical or psychological aggression (%)

• Vaccine coverage for epidemic-prone diseases

• Proportion of vulnerable people in fragile settings provided with essential health services (%)
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Prevalence of raised blood pressure in adults aged ≥18 years•

• Effective policy/regulation for industrially produced trans-fatty acids

• Prevalence of obesity (%)

• Number of cases of poliomyelitis caused by wild poliovirus

• Patterns of antibiotic consumption at the national level

Study Selection
Peer-reviewed publications categorized as systematic reviews
assessing the effects of big data analytics on any of the GPW13
and EPW health indicators and core priorities were included,
regardless of language and study design. We only considered
studies in which the search was performed in at least two
databases, and included a description of the search strategy and
the methodology used for study selection and data extraction.
We only included studies that evaluated concrete relationships
between the use of big data analytics and its effect on people’s
lives, according to the WHO strategic priorities and indicators.
Along with the 46 indicators listed in Textbox 1, we also
included studies evaluating the use of big data during the
COVID-19 pandemic. To identify gaps, we included reviews
focusing on challenges, best practices, and short- and long-term
opportunities related to big data technologies. Nonsystematic
reviews, primary studies, opinions, short communications,
nonscientific articles, conference abstracts, and reviews with
big data inappropriately defined were excluded.

Although big data analysis is capable of handling large volumes
of data, rather than focusing on the data volume/size, we focused
on the process that defines big data analytics, which includes
the following phases [9]: (1) data selection, (2) data
preprocessing, (3) data transformation, (4) AI/expert systems,
and (5) understanding/assessment. The first three phases include
subtasks such as: (i) feature selection and extraction, (ii) data
cleaning, and (iii) data integration from multiple sources. The
included studies covered all phases of the process. Title, abstract,
and full-text screening were independently performed by two
reviewers using the inclusion criteria. Any disagreements were
resolved by a third independent investigator.

Data Extraction
The following data were extracted from the retrieved articles:
publication information, journal name and impact factor, study
characteristics, big data characteristics, outcomes, lessons and
barriers for implementation, and main limitations. Data were

individually extracted by team members and cross-checked for
accuracy by a second investigator.

Assessment of Methodological Quality of Included
Reviews
Two researchers independently assessed the studies using the
AMSTAR 2 (A Measurement Tool to Assess Systematic
Reviews 2) checklist, which includes the following critical
domains, assessed in 16 items: protocol registered prior to
review, adequacy of literature search, justification for excluded
studies, risk of bias in included studies, appropriateness of
meta-analytic methods, consideration of bias risk when
interpreting results, and assessing the presence and likely impact
of publication bias [10]. Appropriateness to each appraisal
feature was rated as yes, no, partial yes, not applicable, or
unclear. Any conflict was resolved by a third party. Studies with
a review protocol tracking number were analyzed. A final
summary score was given to each included record, rated as
“critically low,” “low,” “moderate,” or “high” [10].

Data Synthesis
Results are reported in summary tables and through a narrative
synthesis, grouping studies assessing the same disease or
condition, and identifying challenges and opportunities. We
also schematically represent the evidence and gaps from these
reviews as an overall synthesis.

Results

Reviews Retrieved
The search retrieved 1536 publications, 112 of which were
duplicates. Most of the studies were excluded after title and
abstract analysis (n=1237), leaving 185 selected for full-text
screening, and 35 [11-45] were ultimately included in the final
analysis after applying the eligibility criteria according to the
QUOROM guidelines [8] (Figure 1). Reference list screening
did not retrieve any additional review. One study under
“awaiting classification” could not be retrieved.
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Figure 1. Flow chart of the different phases of article retrieval.

Quality of Evidence in Individual Systematic Reviews
Multimedia Appendix 2 shows the detailed results of the quality
assessment of the 35 systematic reviews. Overall, most of the
reviews (n=25) were rated with “critically low” confidence in
the results using the AMSTAR 2 criteria, with 7 rated “low”
and 3 rated as “moderate.” None of the reviews achieved a
“high” rating. Common methodological drawbacks included
omission of prospective protocol submission or publication,
inappropriate search strategy, lack of independent and dual
literature screening and data extraction, absence of explanation
for heterogeneity among the studies, unclear or no reasons for
study exclusion, and lack of risk of bias assessment.

No standard critical appraisal tools were mentioned. Among
the 12 reviews that performed any quality assessment, the
Quality Assessment of Diagnostic Accuracy Studies 2 tool was
used in four reviews demonstrating an overall low risk of bias
[14,16,27,28], whereas other tools assessed the risk of bias in
studies not specifically aiming at diagnostic accuracy features.
El Idrissi et al [18] used their own quality assessment tool and
Luo et al [34] used an adapted version of the Critical Appraisal
Skills Programme. Appraisal of the quality of evidence aligned
with the Grading of Recommendations Assessment,
Development and Evaluation method was reported in only one
review [17]. Many reviews did not evaluate bias.

Characteristics of Included Reviews
Summary features and main findings of the 35 systematic
reviews are presented in Multimedia Appendix 3 and
Multimedia Appendix 4, respectively. The included reviews
were published in 34 different journals from 2007 to 2020. Most
were published in English in a first-quartile journal with an
impact factor ranging from 0.977 to 17.679. They covered over
2501 primary studies, involving at least 5,000,000 individuals.
Only three reviews included meta-analyses, and one included
a randomized clinical trial; the others were based on cohort
studies.

Data Sources and Purposes of Included Studies
Many reviews included data collected from electronic medical
records, hospital information systems, or any databank that used
individual patient data to create predictive models or evaluate
collective patterns [12,13,16-21,24-27,30,33-35,37,38,40,42-45].
Additionally, four reviews included primary studies based on
imaging datasets and databanks, assessing different parameters
of accuracy [15,29,31,36]. Other reviews focused on genetic
databases [28,35], data from assisted reproductive technologies
[30], or publicly available data [11,14,22,32]. Four studies
lacked precision about the origin of the datasets used in their
analysis or did not specifically use patient data in the
investigation [23,37,39,41].
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The purposes of the reviews varied broadly. Generally, they (1)
outlined AI applications in different medical specialties; (2)
analyzed features for the detection, prediction, or diagnosis of
multiple diseases or conditions; or (3) pinpointed challenges
and opportunities.

WHO Indicators and Core Priorities
Most of the studies assessed the effects of big data analytics on
noncommunicable diseases [12-15,17,21,22,24,27,31,32,34,36,
38,40-44]. Furthermore, three reviews covered mental health,
associated with the indicator “suicide mortality rate” [19,25,45];
three studies were related to the indicator “probability of dying
from any of cardiovascular, cancer, diabetes, or chronic renal
disease” [16,18,20,28,29]; and two studies were related to the
indicator “proportion of bloodstream infections due to
antimicrobial-resistant organisms” [26,33]. One study described
technology use in disaster management and preparedness,
covering the “number of persons affected by disasters” indicator
[11], and one study was associated with the indicator “maternal
mortality ratio” [30]. Overlap made precise classification into
WHO health indicators challenging, and four studies could not
be categorized because they mainly described challenges or
opportunities in big data analytics [23,39] or because they were
related to the COVID-19 pandemic [35,37].

Diseases or Conditions Assessed

Diabetes Mellitus
AI tools associated with big data analytics in the care of patients
with diabetes mellitus (DM) were assessed in six reviews that
included 345 primary studies [15,20,32,38,40]. Three studies
reviewed AI in screening and diagnosing type 1 or type 2 DM,
providing varied ranges of accuracy, sensitivity, and specificity
[20,32,40]. Variables included systolic blood pressure, body
mass index, triglyceride levels, and others. Two reviews covered
DM control and the clinical management of DM patients [32,40].
One noted that techniques for diabetes self-management varied
among the tools evaluated and reported mean values for its
robust metrics [18]. The other evaluated the use of data-driven
tools for predicting blood glucose dynamics and the impact of
ML and data mining [20], describing the input parameters used
among data-driven analysis models. However, the authors of
these reviews concluded that achieving a methodologically
precise predictive model is challenging and must consider
multiple parameters.

Various studies assessed the ability of big data analytics to
predict individual DM complications such as hypoglycemia,
nephropathy, and others [15,32,38]. Supervised ML methods,
decision trees, deep neural networks, random forests (RF)
learning, and support vector machine (SVM) reportedly had the
best outcomes for assessing complications. One review assessed
deep learning–based algorithms in screening patients for diabetic
retinopathy. Of 11 studies, 8 reported sensitivity and specificity
of 80.3% to 100% and 84%% to 99%, respectively; two reported
accuracies of 78.7% and 81%; and one reported an area under
the receiver operating curve (AUC) of 0.955 [15].

Mental Health
Five reviews reported on AI, data mining, and ML in
psychiatry/psychology [12,14,19,25,45], most commonly
assessing these techniques in the diagnosis of mental disorders.
Two reviews assessed the use of ML algorithms for predicting
suicidal behaviors. High levels of risk classification accuracy
(typically higher than 90%) were reported in two reviews, either
for adult primary care patients or teenagers [19,25]. Although
the review authors stated the potential of ML techniques in daily
clinical practice, limitations were highlighted, including no
external validation and reporting inconsistencies.

The use of ML algorithms for early detection of psychiatric
conditions was also reported [12,45]. ML was used to develop
prediagnosis algorithms for constructing risk models to signal
a patient’s predisposition or risk for a psychiatric/psychological
health issue, for predicting a diagnosis of newly identified
patients, and to differentiate mental conditions with overlapping
symptomatology. For studies using structural neuroimaging to
classify bipolar diseases and other diagnoses, the accuracy
ranged from 52.13% to 100%, whereas studies using serum
biomarkers reported an accuracy ranging from 72.5% to 77.5%.

Only one review used social media to generate analyzable data
on the prevention, recognition, and support for severe mental
illnesses [14]. The study included broad descriptions of ML
techniques and data types for detection, diagnosis, prognosis,
treatment, support, and resulting public health implications. The
authors highlighted the potential for monitoring well-being, and
providing an ecologically and cost-efficient evaluation of
community mental health through social media and electronic
records.

COVID-19
Two reviews reported the application of big data analytics and
ML to better understand the current novel coronavirus pandemic
[35,37]. One assessed data mining and ML techniques in
diagnosing COVID-19 cases. Although the study did not define
the best methodology to evaluate and detect potential cases, the
authors noted an elevated frequency of decision tree models,
naïve Bayes classifiers, and SVM algorithms used during
previous pandemics.

Another review focused on SARS-CoV-2 immunization, and
proposed that AI could expedite vaccine discovery through
studying the virus’s capabilities, virulence, and genome using
genetic databanks. That study merged discussions of deep
learning–based drug screening for predicting the interaction
between protein and ligands, and using imaging results linked
to AI tools for detecting SARS-CoV-2 infections.

Oncology
Four studies described the utility of ML, computerized clinical
decision systems, and deep learning in oncology [24,28,29,31].
Using computerized clinical decision support systems (DSS)
significantly improves process outcomes in oncology [24]. A
compelling example shows that initial decisions were modified
in 31% of cases after consultation of clinical DSS, which
consistently resulted in improved patient management.
Furthermore, implementing clinical DSS led to an average cost
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reduction of US $17,000 for lung cancer patients. A remarkable
workload decrease reportedly occurs when these systems are
implemented in oncology facilities, leading to improved patient
management and adherence to guidelines [24].

One study evaluated ML techniques in a genomic study of head
and neck cancers, and found a wide range of accuracy rates
(56.7% to 99.4%) based on the use of genomic data in prognostic
prediction. Lastly, two studies reported accuracy levels ranging
from 68% to 99.6% when using deep learning algorithms in the
automatic detection of pulmonary nodules in computerized
tomography images.

Cardiovascular and Neurological Conditions
Six studies described the effect of big data analytics in
cardiology [13,16,21,42] and neurology [43,44]. One review
assessed the use of ML techniques for predicting cardiac arrest
[42]. Different variables were used as predictors among
individual studies, including electrocardiographic parameters,
heart rate variability, echocardiography, and others. Supervised
ML techniques were most frequently applied to predict cardiac
arrest events, with clear evidence of regression techniques and
SVM algorithms. The authors reported a mean AUC of 0.76
for risk score development and efficiency evaluation [42].

Similarly, two studies assessed the use of intelligent systems in
diagnosing acute coronary syndrome and heart failure [13,21],
demonstrating high accuracy levels using several methods such
as SVM, feature selection, and neural networks. These studies
also described useful clinical features for creating prediction
and diagnostic models, such as patient clinical data,
electrocardiogram characteristics, and cardiac biomarkers.

Scores to identify patients at higher risk to develop QT-interval
prolongation have been developed, and predictive analytics
incorporated into clinical decision support tools have been tested
for their ability to alert physicians of individuals who are at risk
of or have QT-interval prolongation [16].

Regarding stroke, two systematic reviews evaluated using ML
models for predicting outcomes and diagnosing cerebral
ischemic events [43,44]. Generally, ML models were most
frequently associated with mortality prediction, functional
outcomes, neurological deterioration, and quality of life. The
diagnosis of ischemic stroke was associated with similar or
better comparative accuracy for detecting large vessel occlusion
compared with humans, depending on the AI algorithm
employed [44]. RF algorithms had 68% sensitivity and over
80% specificity compared with humans. Analyses of
convolutional neural network (CNN) algorithms were limited,
but systems using CNNs reported performance metrics on
average 8% to 10% greater than those of ML employing RF,
with up to 85% mean sensitivity for automatic large vessel
occlusion detection. However, AI algorithm performance metrics
used different standards, precluding objective comparison. Core
and perfusion studies from RAPID-computed tomography and
magnetic resonance imaging had the highest metrics for AI
accuracy, above 80%, with some datasets showing 100%
sensitivity to predict favorable perfusion mismatch. The authors
noted several errors of AI use in diagnosing stroke [44].

Miscellaneous Conditions
Several studies reported significant improvement in disease
diagnosis and event prediction using big data analytics tools,
including remarkable enhancement of sepsis prediction using
ML techniques [26]. Another review provided moderate
evidence that ML models can reach high performance standards
in detecting health care–associated infections [33].

One review focused on the diagnostic accuracy of AI systems
in analyzing radiographic images for pulmonary tuberculosis,
mostly referring to development instead of clinical evaluation
[27]. In studies assessing accuracy, the sensitivity ranged from
56% to 97%, specificity ranged from 36% to 95%, and the AUC
ranged from 78% to 99%.

One review also assessed multiple sclerosis diagnosis. Among
detection methodologies, rule-based and natural language
processing methods were deemed to have superior diagnostic
performance based of elevated accuracy and positive predictive
value [41]. This study indicates that these methods have
potential impacts for early recognition of the disease, increasing
quality of life, and allowing prompt pharmacological and
nonpharmacological intervention.

Asthma exacerbation events and predictive models for early
detection were evaluated in one review, which reached a pooled
diagnostic ability of 77% (95% CI 73%-80%) [17]. Among the
included studies, most models for predicting asthma
development had less than 80% accuracy. None of the 42 studies
modeled the reincidence of exacerbation events, and overall
accuracy performance was considered inadequate. However,
the authors encouraged creating models using large datasets to
increase prediction accuracy levels. Logistic regression and Cox
proportional hazard regression appeared to be the most
commonly used methodologies. Gastric tissue disease and the
usability of deep learning techniques were evaluated in one
study [36]. CNN was the most common model used for gastric
problem classification or detection. Additionally, residual neural
network and fully convolutional network were considered to
be appropriate models for disease generation, classification, and
segmentation.

Two reviews analyzed the use of big data analytics and AI in
public health [22,30]. One listed the impact of continuous
pharmacological exposure of pregnant women, emphasizing
that AI could improve popular understanding of drug effects
on pregnancy, mainly through: (i) reliable clinical information
disclosure, (ii) adequate scientific research design, and (iii)
implementation of DSS [30]. Another review assessing the use
of big data in disaster preparedness evidenced that most existing
methods are qualitative, covering the response phase of the
disaster chain of events [11]. The utilized tools included data
originating from geographic information systems, social media
interfaces, and disaster prediction modeling studies.

Challenges and Opportunities
Two systematic reviews provided narrative evaluations of the
challenges of big data analytics in health care [23,39]. Evidence
from these two systematic reviews, and those from the other
reviews, are summarized in Textbox 2.
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Textbox 2. Current challenges to use big data tools for peoples’ health, and future perspectives and opportunities.

Current Challenges

1. Data structure: issues with fragmented data and incompatible or heterogeneous data formats

2. Data security: problems with privacy, lack of transparency, integrity, and inherent data structure

3. Data standardization: concerns with limited interoperability, data obtention, mining, and sharing, along with language barriers

4. Inaccuracy: issues with inconsistencies, lack of precision, and data timeliness

5. Limited awareness of big data analytics capabilities among health managers and health care professionals

6. Lack of evidence of big data analytics on the impact on clinical outcomes for peoples’ health

7. Lack of skills and training among professionals to collect, process, or extract data

8. Managerial issues: ownership and government dilemma, along with data management, organizational, and financial issues

9. Regulatory, political, and legal concerns

10. Expenses with data storage and transfer

Future Perspectives and Opportunities

1. To improve the decision-making process with real-time analytics

2. To improve patient-centric health care and to enhance personalized medicine

3. To support early detection of diseases and prognostic assessment by predicting epidemics and pandemics, improving disease monitoring,
implementing and tracking health behaviors, predicting patients’ vulnerabilities

4. To improve data quality, structure, and accessibility by enabling the improvement of rapid acquisition of large volumes and types of data, in a
transparent way, and the improvement of data error detection

5. To enable potential health care cost reduction

6. To improve quality of care by improving efficient health outcomes, reducing the waste of resources, increasing productivity and performance,
promoting risk reduction, and optimizing process management

7. To provide better forms to manage population health either through early detection of diseases or establishing ways to support health policy
makers.

8. To enhance fraud detection

9. To enhance health-threat detection plans by governmental entities

10. To support the creation of new research hypotheses

Discussion

This overview is the first to assess the effects of big data
analytics on the prioritized WHO indicators, which offers utility
for noncommunicable diseases and the ongoing COVID-19
pandemic. Although the research question focused on the impact
of big data analytics on people’s health, studies assessing the
impact on clinical outcomes are still scarce. Most of the reviews
assessed performance values using big data tools and ML
techniques, and demonstrated their applications in medical
practice. Most of the reviews were associated with the GPW13
indicator “probability of dying from any cardiovascular disease,
cancer, diabetes, chronic respiratory disease.” This indicator
outranks others because of the incidence, prevalence, premature
mortality, and economic impact of these diseases [46]. Similarly,
many reviews were related to “people requiring interventions
against noncommunicable diseases.” The included reviews in
this study addressed many necessary health-related tasks;
however, the quality of evidence was found to be low to
moderate, and studies assessing the impact on clinical outcomes
are notably scarce.

The low to moderate quality of evidence suggests that big data
analytics has moderate to high accuracy for the (1) diagnosis

and prediction of complications of DM, (2) diagnosis of mental
diseases, (3) prediction of suicidal behaviors, and (4) diagnosis
of chronic diseases. Most studies presented performance values,
although no study assessed whether big data analytics or ML
could improve the early detection of specific diseases.

Clinical research and clinical trials significantly contribute to
understanding the patterns and characteristics of diseases, as
well as for improving detection of acute or chronic pathologies
and to guide the development of novel medical interventions
[47]. However, experimental/theoretical investigations,
mathematical approaches, and computer-based studies hinge
on handling sample size limitations and performing data
imputation [48,49]. Computer-driven analysis can easily handle
missing data, examine variable mechanisms in complex systems,
and employ essential tools for exploratory evaluations using
voluminous input data. Big data analytics can execute an
operation on/process data within microseconds after generation
of the dataset, allowing for real-time follow up [50,51]. These
studies and prospective applications could generate innovative
knowledge and promote actionable insights; however, adapting,
validating, and translating scientific data into practical medical
protocols or evaluation studies is necessary.
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Many systematic reviews reported simple or inappropriate
evaluation measures for the task at hand. The most common
metric used to evaluate the performance of a classification
predictive model is accuracy, which is calculated as the
proportion of correct predictions in the test set divided by the
total number of predictions that were made on the test set. This
metric is easy to use and to interpret, as a single number
summarizes the model capability. However, accuracy values
and error rate, which is simply the complement of accuracy, are
not adequate for skewed or imbalanced classification tasks (ie,
when the distribution of observations in the training dataset
across the classes is not equal), because of the bias toward the
majority class. When the distribution is slightly skewed,
accuracy can still be a useful metric; however, when the
distribution is severely skewed, accuracy becomes an unreliable
measure of model performance.

For instance, in a binary classification task with a distribution
of (95%, 5%) for the classes (eg, healthy vs sick), a “dumb
classifier” that simply chooses the class “healthy” for all
instances will have 95% of accuracy in this task, although the
most important issue in this task would be correctly classifying
the “sick” class. Precision (also called the positive predictive
value), which captures the fraction of correctly classified
instances among the instances predicted for a given class (eg,
“sick”); recall or sensitivity, which captures the fraction of
instances of a class (eg, “sick”) that were correctly classified;
and F-measure, the harmonic mean of precision and recall
calculated per class of interest, are more robust metrics for
several practical situations. The proper choice of an evaluation
metric should be carefully determined, as these indices ought
to be used by regulatory bodies for screening tests and not for
diagnostic reasoning [52]. The most important issue is to choose
the appropriate (most robust) performance metric given the
particularities of each case.

Another pitfall identified among the included reviews was the
lack of reporting the precise experimental protocols used for
testing ML algorithms and the specific type of replication
performed.

There is no formal tool for assessing quality and risk of bias in
big data studies. This is an area that is ripe for development. In
Textbox 3, we summarize our recommendations for systematic
reviews on the application of big data and ML for people’s
health based on our experience, the findings of this systematic
review, and inspired by Cunha et al [53].

High variability in the results was evident across different ML
techniques and approaches among the 35 reviews, even for those
assessing the same disease or condition. Indeed, designing big

data analysis and ML experiments involves elevated model
complexity and commonly requires testing of several modeling
algorithms [54]. The diversity of big data tools and ML
algorithms requires proper standardization of protocols and
comparative approaches. Additionally, the process of tuning
the hyperparameters of the algorithms is not uniformly reported.
Important characteristics essential for replicability and external
validation were not frequently available. Lastly, most of the
studies provide little guidance to explain the results. Without
knowing how and why the models achieve their results,
applicability and trust of the models in real-world scenarios are
severely compromised. Therefore, we urge the testing and
assessment of supervised, unsupervised, and semisupervised
methodologies, with explanation and interpretation to justify
the results. Moreover, we encourage hyperparameter
optimization to achieve adjusted improvement of models,
enhance model generalizations for untrained data, and avoid
overfitting to increase predictive accuracy.

Only two published systematic reviews evaluated the impact
of big data analytics on the COVID-19 pandemic. Primary
studies on COVID-19 are lacking, which indicates an
opportunity to apply big data and ML to this and future
epidemics/pandemics [35,37]. As of November 30, 2020, many
published protocols were retrieved through a standard search
on PROSPERO. The titles of these review protocols showed
an intention to evaluate ML tools in diagnosis and prediction,
the impact of telemedicine using ML techniques, and the use
of AI-based disease surveillance [55].

Although DSS are an important application of big data analytics
and may benefit patient care [56-58], only two reviews assessed
such systems [16,24]. One focused on predictive analytics for
identifying patients at risk of drug-induced QTc interval
prolongation, discussing the efficacy of a DSS that has shown
evidence of reduced prescriptions for QT interval–prolonging
drugs. Similarly, one study exploring the impact of DSS on
quality care in oncology showed that implementing these
systems might positively impact physician-prescribing
behaviors, health care costs, and clinician workload.

This overview of systematic reviews updates the available
evidence from multiple primary studies intersecting computer
science, engineering, medicine, and public health. We used a
comprehensive search strategy (performed by an information
specialist) with a predefined published protocol, precise
inclusion criteria, rigorous data extraction, and quality
assessment of retrieved records. We avoided reporting bias
through the dual and blinded examination of systematic reviews
and by having one review author standardizing the extracted
data.
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Textbox 3. Recommendations for systematic reviews on the application of  big data and machine learning for people’s  health.

• Choose an appropriate evaluation measure for the task and data characteristics, and justify your choice

Different evaluation measures such as accuracy, area under the receiver operating characteristic curve, precision, recall, and F-measure capture different
aspects of the task and are influenced by data characteristics such as skewness (ie, imbalance), sampling bias, etc. Choose your measures wisely and
justify your choice based on the aforementioned aspects of the task and the data.

• Ensure the employment of appropriate experimental protocols/design to guarantee generalization of the results

Authors should use experimental protocols based on cross-validation or multiple training/validation/test splits of the employed datasets with more
than one repetition of the experimental procedure.  The objective of this criterion is to analyze whether the study assesses the capacity of generalization
of each method compared in the experiments. The use of a single default split of the input dataset with only one training/test split does not fit this
requirement. Repetitions are essential to demonstrate the generalization of the investigated methods for multiple training and test sets, and to avoid
any suspicion of a “lucky” (single) partition that favors the authors’ method.

• Properly tune, and explicitly report the tuning process and values of the hyperparameters of all compared methods

The effectiveness of big data solutions and machine-learning methods is highly affected by the choice of the parameters of these methods (ie, parameter
tuning). The wrong or improper choice of parameters may make a highly effective method exhibit very poor behavior in a given task. Ideally, the
parameters should be chosen for each specific task and dataset using a partition of the training set (ie, validation), which is different from the dataset
used to train and to test the model. This procedure is known as cross-validation on the training set or nested cross-validation.

Even if the tuning of all methods is properly executed, this should be explicitly reported in the paper, with the exact values (or range of values) used
for each parameter and the best choices used. When the tuning information is missing or absent, it is impossible to determine whether the methods
have been implemented appropriately and if they have achieved their maximum potential in a given task. It is also impossible to assess whether the
comparison is fair, as some methods may have been used at their maximum capacity and others not.

• Pay attention to the appropriate statistical tests

Authors should employ statistical significance tests to contrast the compared strategies in their experimental evaluation. Statistical tests are essential
to assess whether the performance of the analyzed methods in the sample (ie, the considered datasets) is likely to reflect, with certain confidence, their
actual performance in the whole population. As such, they are key to support any claim of superiority of a particular method over others. Without
such tests, the relative performance observed in the sample cannot, by any means, be extrapolated to the population. The choice of the tests should
also reflect the characteristics of the data (ie, determining whether the data follow a normal distribution).

• Make the data and code freely available with proper documentation

One of the issues that hampers reproducibility of studies, and therefore scientific progress, is the lack of original implementation (with proper
documentation) of the methods and techniques, and the unavailability of the original data used to test the methods. Therefore, it is important to make
all data, models, code, documentation, and other digital artifacts used in the research available for others to reuse. The artifacts made available must be
sufficient to ensure that published results can be accurately reproduced.

• Report other dimensions of the problem such as model costs (time) and potential for explainability

Effectiveness of the solutions, as captured by accuracy-oriented measures, is not the only dimension that should be evaluated. Indeed, if the effectiveness
of the studied models is similar and sufficient for a given health-related application, other dimensions such as time efficiency (or the costs) to train
and deploy (test) the models are essential to evaluate the practical applicability of such solutions. Another dimension that may influence the decision
for the practical use of a big data or a machine-learning method in a real practical situation is the ability to understand why the model has produced
certain outputs (ie, explainability). Solutions such as those based on neural networks may be highly effective when presented with huge amounts of
data, but their training and deployment costs as well as their opaqueness may not make them the best choice for a given health-related application.

However, limitations exist. The inferior quality scores based
on the AMSTAR 2 tool might reflect incomplete reporting and
lack of adherence to substandardized review methods. There is
neither an established bias risk tool specifically for big data or
ML studies nor any systematic way of presenting the findings
of such studies. Furthermore, most studies provided a narrative
description of results, requiring summarization. Nevertheless,
all of the reviews were inspected by most authors, and the most
relevant data were condensed in the text or in descriptive tables.

Big data analytics provide public health and health care with
powerful instruments to gather and analyze large volumes of
heterogeneous data. Although research in this field has been
growing exponentially in the last decade, the overall quality of
evidence is found to be low to moderate. High variability of
results was observed across different ML techniques and

approaches, even for the same disease or condition. The diversity
of big data tools and ML algorithms require proper
standardization of protocols and comparative approaches, and
the process of tuning the hyperparameters of the algorithms is
not uniformly reported. Important characteristics essential for
replicability and external validation were not frequently
available.

Additionally, the included reviews in this systematic review
addressed different health-related tasks; however, studies
assessing the impact on clinical outcomes remain scarce. Thus,
evidence of applicability in daily medical practice is still needed.
Further studies should focus on how big data analytics impact
clinical outcomes and on creating proper methodological
guidelines for reporting big data/ML studies, as well as using
robust performance metrics to assess accuracy.
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