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Abstract. State-of-the-art lidar-based 3D object detection methods rely
on supervised learning and large labeled datasets. However, annotat-
ing lidar data is resource-consuming, and depending only on supervised
learning limits the applicability of trained models. Self-supervised train-
ing strategies can alleviate these issues by learning a general point cloud
backbone model for downstream 3D vision tasks. Against this backdrop,
we show the relationship between self-supervised multi-frame flow repre-
sentations and single-frame 3D detection hypotheses. Our main contri-
bution leverages learned flow and motion representations and combines
a self-supervised backbone with a supervised 3D detection head. First,
a self-supervised scene flow estimation model is trained with cycle con-
sistency. Then, the point cloud encoder of this model is used as the
backbone of a single-frame 3D object detection head model. This second
3D object detection model learns to utilize motion representations to
distinguish dynamic objects exhibiting different movement patterns. Ex-
periments on KITTI and nuScenes benchmarks show that the proposed
self-supervised pre-training increases 3D detection performance signifi-
cantly. https://github.com/emecercelik/ssl-3d-detection.git

Keywords: 3D detection, self-supervised learning, scene flow, lidar point
clouds

1 Introduction

Lidar promises accurate distance measurement, which is crucial for real-time sys-
tems such as 3D perception modules of automated vehicles. Supervised learning
methods have dominated benchmarks created for challenging downstream 3D vi-
sion tasks. However, high-performing models need a copious amount of labeled
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Fig. 1. This study shows the relationship between self-supervised flow representations
and supervised 3D detection hypotheses. We illustrate the importance of defining 3D
objects-of-interest hypotheses in a spatio-temporal context. For example, a car should
not just be defined by its shape but also by its capability to move in space and time.
To this end, a scene flow estimation network is trained with cycle consistency in a
self-supervised manner. Then, the backbone of this pre-trained model is used to feed
a supervised 3D object detection head. The proposed strategy improves detection per-
formance significantly compared to baselines when the amount of labeled data is less
for supervised learning.

data for training. Annotating lidar data is labor-intensive and is a bottleneck
for real-world deployment.

Recent work showed the importance of self-supervised learning to build large
backbones by exploiting the structure of data. For example, the temporal con-
textual changes in videos can be exploited in contrastive learning strategies [39].
Contrastive methods have also been used with data augmentation [30] for simi-
lar purposes. MoCo [15] classifies images in binary form as positive and negative
to learn useful representations. Another approach is to quantize representations
from a teacher network [6], [1]. However, these works focus solely on the RGB
image domain. Not much work focuses on unsupervised or self-supervised 3D ob-
ject detection. Point cloud sparsity poses additional challenges, as the structure
of data is significantly different from denser modalities.

The main body of state-of-the-art 3D object detection with point cloud lit-
erature comprises supervised learning methods [60,53,14,36,54,37,55,38,9,21,56].

Point cloud scene flow is another important 3D vision task. Initially, su-
pervised learning was shown to be superior for the task [43,25,13,50,24,49,31].
More recently, self-supervised and unsupervised 3D scene flow and stereo flow
methods have been introduced [47,2,18,58,62,20,7,12,33,48,27]. However, these
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developments have not been utilized for the 3D object detection task up until
now.

We propose to employ a scene flow backbone trained in a self-supervised
fashion to learn useful representations that other downstream head models can
utilize after fine-tuning, such as a 3D object detection head (Fig. 1). First, we
follow the cycle-consistency approach [29] to train a FlowNet3D-based [24] scene-
flow backbone using self-supervised learning. We introduce architectural changes
to the FlowNet3D module to incorporate a point cloud backbone that can also
be utilized with a detection head. We explore several training and loss strategies,
including auxiliary training, to find the best layout. Empirical evidence obtained
from KITTI [11] and nuScenes [5] datasets show that the proposed strategy
increases 3D detection performance significantly.

Our method differs from [29] in two important ways. To the best of our
knowledge, lidar point cloud-based 3D object detection has not been success-
fully achieved with a self-supervised backbone up until now. Our modifications
to the FlowNet3D [24] architecture enables the integration of point-level tempo-
ral changes with 3D detection. Secondly, our combined auxiliary training cycle
consistency and supervised 3D detection losses lead to learning more general
representations as well as motion representations, which identify objects based
on their contextual motion patterns.

A summary of our main contributions is as follows:

– Employing self-supervised point cloud scene flow estimation to learn mo-
tion representations for 3D object detection in tandem with supervised fine-
tuning

– We show that auxiliary training is the best strategy for using self-supervised
cycle-consistency loss along with supervised 3D detection loss.

– The proposed strategy is especially effective with a lesser amount of super-
vised data. We obtained a significant performance boost when only a smaller
part of supervised training data was used for the 3D detection task.

2 Related Work

Scene flow. Scene flow was first introduced as an extension of optical flow in
the third dimension and was estimated with a linear computation algorithm[40].
Stereo cameras [17,41] and RGB-D were also [35] utilized to derive scene flow.
Current state-of-the-art uses lidar point clouds and deep neural networks to
estimate scene flow with supervised learning [24,49,13]. Most commonly, two
subsequent lidar frames are used to estimate the flow vectors of each point in
the scene. Building ground truth for such vectors is labor-intensive. As such,
synthetic datasets are more popular for scene flow benchmarking [31].

Self-supervised scene flow estimation. Self-supervised scene flow esti-
mation is a relatively understudied angle. A recently proposed solution [29] is
to use cycle-consistency and nearest neighbors losses to train an estimation net-
work. Several other distance metrics and regularization techniques such as using
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chamfer distance, smoothing, and regularization [51] have also been employed
for the same task. A more recent study showed that self-supervised scene flow
could also be combined with motion segmentation [3].

Self-supervised 3D Object Detection. A monocular 3D object detection
model has been trained with self-supervised learning using shape priors and 2D
instance masks [4]. Another monocular 3D object detection model with weak
supervision has been trained using shape priors [46]. [34] generates random syn-
thetic point cloud scenes for pre-training to learn useful representations from
CAD models. [52,22,16] mainly use contrastive pre-training to learn geometri-
cal point cloud representations with different views of the same scene. However,
there is not much work focusing on self-supervised 3D object detection consid-
ering motion representations with point clouds. We aim to fill this gap in the
literature.

3 Method

Backbone of a 3D object detector is mainly used to extract point, voxel, or region
features to detect possible objects in that vicinity. Due to the limitation in la-
belled dataset sizes, we aim to train the backbone on a large unlabelled dataset
using self-supervision to obtain good motion-aware point representations. Af-
terwards, it is possible to use the pre-trained backbone for the 3D detection
supervised training with a smaller dataset. Thus, the 3D detection network can
benefit from the initialized point motion representations to distinguish objects
based on movement patterns. We summarize our method in Fig. 2.

3.1 Problem Definition

Given two subsequent lidar point cloud frames Pt = {pi}M ,p ∈ R3 and Pt+1 ∈
RN×3, we are first interested in estimating the scene flow Ft→t+1 = {di}M ,
where di = p′

i − pi. p
′
i denotes the new position at time t+ 1 of point i in the

first point cloud Pt. It should be noted that the second point cloud may or may
not contain a point corresponding to p′

i due to sparsity. The second objective is
to map P → {Tj}U , where Tj is the 3D object detection tuple containing class
id and bounding box shape and coordinates, using previously-learned spatio-
temporal representations. U is the total number of objects in the point cloud
frame.

We aim to benefit from the point motion representations learned by the
3D feature extractor, g, during self-supervised scene flow training Ft→t+1 =
s(g(Pt,Pt+1)), where s is the scene flow head. In this way, the 3D detection
head, h, can use the spatio-temporal motion representations learned in g to
better identify complex object point patterns for meaningful detection results
such that {Tj}U = h(g(P)).
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Fig. 2. Our self-supervised 3D object detection pre-training: The auxiliary scene flow
head is used to train the 3D detection backbone (point- or voxel-based) for motion-
aware point cloud representations with self-supervised cycle consistency loss [29]. The
motion representations learned without labelled data can help distinguish objects based
on their motion patterns for a 3D downstream task. Then, we further train the pre-
trained backbone and a 3D detection head for 3D detection with labelled data.

3.2 Self-supervised Scene Flow

Backbone: We first follow the cycle-consistency approach [29] to train a scene
flow estimator. We use a 3D detector’s backbone to extract local features of
sampled points from two consecutive frames. This allows the self-supervised
scene flow gradients to be backpropagated through the backbone. Hence, the
backbone learns point representations encoding object movement patterns. The
learned spatio-temporal features can be further used to distinguish objects from
the background and other objects for the 3D perception task.

Scene Flow Head: The scene flow head based on FlowNet3D [24] generates
flow embeddings from local point features provided by the 3D backbone. The
shape of input points, Pt, is reconstructed by applying set upconv layers to local
flow embeddings for the final scene flow estimations Ft→t+1.

Training with Cycle Consistency: We use 3D detection backbone as the
feature extractor for the scene flow head. Both the backbone and the scene flow
head are trained with the self-supervised cycle consistency loss given in [29].
For the cycle consistency, the scene flow is calculated in forward and backward
directions, meaning Ft→t+1 and Ft+1→t. The Ft+1→t makes use of the new
positions of the propagated points p′

i to close the cycle. The p′′
i is the estimated

positions of the pi in the backward direction with the Ft+1→t. The mismatch
between the pi and the p′′

i at frame t allows training of the backbone in a
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self-supervised way. With the self-supervised training, 3D backbone learns to
generate regional flow and motion features from the given set of point clouds.

3.3 Downstream Task: 3D Object Detection

We are interested in the 3D object detection as the 3D downstream task. The
scene flow head, s, and the 3D object detection head, h, use the same backbone,
g, as seen in Fig. 2. Also, point- or voxel-based 3D backbone encodings can be
used. We initialize 3D detector’s backbone weights with the pre-trained weights
from the auxiliary self-supervised scene flow training. In this way, we assume that
the pre-trained backbone from scene flow can already provide good geometry-
and motion-aware point features. The 3D detection head takes distinguishable
spatio-temporal point cloud features based on different object motion patterns.
Hence, the 3D detection network can detect objects more accurately even after
supervised training with a smaller labelled dataset. We show the efficacy of our
approach in section 5. Note that the scene flow head is for the auxiliary scene
flow training and is not used during the 3D detection training and inference.

4 Implementation Details

Our self-supervised auxiliary backbone pre-training approach can be used with
different 3D detector architectures. We evaluate our method with mainly three
different 3D detectors, Point-GNN4[38], CenterPoint5[57], and PointPillars5[21],
which are point-, voxel-based approaches. For the self-supervised scene flow task,
we add the modified FlowNet3D as well as the cycle-consistency loss6 [29] to 3D
detectors’ training pipelines.

4.1 Pre-training with Self-supervised Scene Flow

The FlowNet3D takes a set of points from two successive frames as input and
estimates the flow vectors. The network extracts the point features with two cas-
caded PointNet Set Abstraction modules, each with a 3-layer MLP. We remove
the first PointNet Set Abstraction module and feed in the point features from
3D detector’s backbone to the second PointNet Set Abstraction module.

Point cloud backbone: We use Point-GNN, PointPillars, and CenterPoint
backbones for our main and ablation results. The CenterPoint and PointPillars
backbones have the same architecture as we use mmdetection3d [8] implementa-
tions. Point-GNN extracts keypoint features from a 3-level graph network used
as a backbone, from which we obtain keypoint features of two consecutive point
clouds. After sampling N points from each frame, we apply bilinear interpolation
to get features of the sampled points from keypoint features according to their

4 https://github.com/WeijingShi/Point-GNN
5 https://github.com/open-mmlab/mmdetection3d/
6 https://github.com/HimangiM/Just-Go-with-the-Flow-Self-Supervised-Scene-Flow-
Estimation

https://github.com/WeijingShi/Point-GNN
https://github.com/open-mmlab/mmdetection3d/
https://github.com/HimangiM/Just-Go-with-the-Flow-Self-Supervised-Scene-Flow-Estimation
https://github.com/HimangiM/Just-Go-with-the-Flow-Self-Supervised-Scene-Flow-Estimation


3D Object Detection with a Self-supervised Lidar Scene Flow Backbone 7

positions. We use the settings provided for the best performing Point-GNN with
T = 3, which represents the number of graph levels. For the CenterPoint and
PointPillars detectors, we follow a similar approach and use their voxel encoders
to obtain features of the sampled points from two consecutive frames without
making any changes to the 3D detector’s architecture.

Scene flow head: Scene flow head is responsible for estimating 3D motion
of the points between two sequential frames. The FlowNet3D’s scene flow head
consists of flow embedding, set conv layers, and set upconv layers followed by
fully-connected layers for estimating point flow vectors. The scene flow head
takes the local point features as inputs. We remove only the final set upconv
layer that takes skip connections from the first PointNet Set Abstraction module,
which we replace with the 3D detector’s backbone.

Training strategy: We train the point cloud backbone and scene flow head
end-to-end using the self-supervised scene flow loss. For the scene flow training
on Point-GNN backbone, we initialize our scene flow head weights with the pre-
trained FlowNet3D weights on the supervised FlyingThings3D [28] simulation
data, we use Stochastic Gradient Descent (SGD) optimizer with 6.25 × 10−5

learning rate. The number of sampled points from each frame is N = 2048. We
train the scene flow network for 80k steps on the KITTI tracking dataset without
using any labels. The model is trained on a single Nvidia Tesla V100 GPU. We
train the PointPillars scene flow network on KITTI tracking dataset with 0.01
learning rate. We sample 2048 points per frame to train the model with batch
size 2 on one Nvidia RTX 2080 GPU. For the PointPillars- and CenterPoint-
based scene flow training on nuScenes dataset, we use Adam optimizer using the
voxel encoders as the bakcbone with a 0.001 learning rate. Our batch size is 2
for N = 2048 sampled points. We train the network for 4 epochs on one Nvidia
RTX 2080 GPU.

4.2 3D Detection Fine-tuning

3D detection heads: We use Point-GNN, CenterPoint, and PointPillars as the
3D detectors for our results to show the efficacy of our self-supervised scene flow
pre-training approach. We initialize detectors’ backbone weights with the pre-
trained backbone weights from the auxiliary scene flow task for a better point
feature representation.

Training strategy: After initializing weights of the 3D detector backbone
from the scene flow task, we further train the backbone and the 3D detection
heads with the 3D detection loss. We apply an alternating training strategy
between the self-supervised scene flow and supervised 3D detection trainings:
(i) Train the backbone and the scene flow head for self-supervised scene flow,
(ii) train the pre-trained backbone and the detection head with 3D detection
training, (iii) train the backbone from step (ii) and the scene flow head from
step (i) for the scene flow, and finally (iv) train the backbone from step (iii) and
the detection head from step (ii) for 3D detection.

We train the Point-GNN baseline for 1400k steps using the SGD optimizer
with a learning rate of 0.125 as done in the Point-GNN paper. For the training
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in step (ii) and step (iv), we use SGD with a learning rate of 0.1. The trainings
took place on an Nvidia Tesla V100 GPU. We use batch size 4 for all Point-GNN
trainings. The PointPillars detector is trained for 24 epochs with a learning rate
of 0.001 using AdamW optimizer. We used two Nvidia RTX 2080 Ti GPUs for
the training. We use batch size 2 for the PointPillars scene flow training and
batch size 4 for the detection training. For the training of CenterPoint detector,
we keep the default setting in mmdetection3d, which is trained for 20 epochs
with a learning rate of 0.001 using the AdamW optimizer. We set the batch size
2 for the scene flow traing and batch size 20 for detection head training. We use
one Nvidia RTX 3090 GPU for the training.

4.3 Datasets

We use KITTI 3D Object Detection, KITTI Multi-object Tracking datasets
[11] as well as nuScenes dataset [5] for the self-supervised scene flow and the
supervised 3D detection training and validation.

KITTI 3D Object Detection: KITTI 3D Object Detection dataset con-
sists of 7481 training frames sampled from different drives. Since the provided
frames are not sequential, we use lidar point clouds only for 3D object detection
training. Only objects visible in the camera-view are annotated. We utilize the
common train-val split with 3712 training and 3769 validation samples. For the
evaluation, the KITTI average precision (AP) metric is used for three different
difficulty levels with IoU = 0.7 for the car class.

KITTI Multi-object Tracking: This dataset contains 21 training and 29
testing drives, each of which consists of several sequential frames. We use the
tracking dataset only for the self-supervised scene flow training without using
any annotations. Therefore, we combine all the training and testing drive data
for training except the training drives 11, 15, 16, and 18, which are used for
observing cycle consistency validation loss. This gives us 11902 frames for self-
supervised scene flow training.

nuScenes: nuScenes is also an autonomous driving dataset, which consists
of 700 training and 150 validation drives. The annotations are provided at 2 Hz
for 360-degree objects and the lidar sweeps are collected at 20 Hz. nuScenes is a
larger dataset than KITTI and it is collected from denser and more challenging
environments. There are 10 classes annotated in the nuScenes dataset. The main
metrics are the average precision (AP) per class, mean average precision (mAP)
among all classes, and the nuScenes detection score (NDS). Since the provided
data contains sequential lidar point clouds, we use this dataset for both self-
supervised scene flow and 3D detection trainings.

4.4 Loss

For the 3D object detection training, we keep the same loss functions used for
the 3D detectors.

Point-GNN[38]: Point-GNN combines localization, classification, and reg-
ularization losses. Classification loss is calculated with the average cross-entropy
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loss among four classes, which are background, horizontal and vertical anchor
box classes, and a don’t care class. The network regresses 7 bounding box pa-
rameters, (x, y, z) for the center coordinates, (w, h, l) for the width, height, and
length sizes, and θ for the orientation of the bounding box. The Huber loss and
L1 regularization are used as regression and regularization losses, respectively.
We use the original loss coefficients for the total loss.

PointPillars[21]: Similarly, PointPillars regresses the 7 bounding box pa-
rameters and utilizes the Huber loss as a regression loss. The orientation is
predicted from a set of discrete bins, for which the softmax classification loss is
utilized. The focal loss is used as a classification loss for the object classes. All
the loss values are combined with respective coefficients for the total loss and
we use the default values given in the mmdetection3d [8] repository.

CenterPoint[57]: CenterPoint is trained with the focal loss for the heatmap-
based classification and the binary cross entropy loss for the IoU-based confidence
score. Huber loss is used for the regression of box parameters. We keep the default
values given in the mmdetection3d [8] repository.

Self-supervised scene flow loss: We utilize the self-supervised loss used
in [29] for training the 3D detector backbone and the scene flow head. The loss
consists of the nearest neighbor and the cycle consistency losses. The nearest
neighbor loss calculates the Euclidean distance of the point p′

i to its nearest
neighbor in frame t + 1. p′

i is the point transformed from frame t to t + 1. For
the cycle consistency loss calculation the flow is applied in the forward (Ft→t+1)
and the backward (Ft+1→t) directions. The distance between the resulting p′′

i

point and its anchor pi is used for the cycle consistency loss. Both losses are
summed up for the total loss and only this loss is used for the training of the
backbone and the scene flow head.

4.5 Experiments

We conduct several experiments to show the efficacy of our self-supervised pre-
training method on 3D object detection task using Point-GNN, PointPillars,
CenterPoint, and SSN [61] 3D detectors. First, we compare our self-supervised
pre-trained Point-GNN, CenterPoint, and PointPillars with their baselines trained
with 100% of the annotated 3D detection data. We show our results on KITTI
and nuScenes validation and test sets. Then, we check the performance of our
self-supervised detectors and their baselines in the low-data regime. For this,
we apply supervised training using only using a smaller part of the annotated
data in the ablation study. We also report detection accuracy of self-supervised
detectors trained with and without alternating training strategy to justify our
alternating self-supervised scene flow and supervised 3D detection scheme. Fi-
nally, we compare our self-supervised scene flow pre-training method against
other self-supervised learning methods.
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Fig. 3. Qualitative Results: Three different scenes from the KITTI 3D Detection vali-
dation set in the columns. Blue and green bounding boxes are for our approach and the
baseline Point-GNN [38], respectively. Our method can detect a distant hard object
(left-most column) and a moving distant car (middle column) while the baseline misses
it. Our method also performs better in a denser environment (right-most column).

5 Results & Discussion

In this section, we provide our main results obtained using our scene flow-based
self-supervised training with Point-GNN, CenterPoint, and PointPillars 3D de-
tectors on KITTI and nuScenes validation and test sets.

Car (IoU=0.7) 3D AP BEV AP

Method Easy Mod Hard Easy Mod Hard

Point-GNN* [38] 90.44 82.12 77.70 93.03 89.31 86.86
Self-supervised Point-GNN 91.43 82.85 80.12 93.55 89.79 87.23

Improvement +0.99 +0.73 +2.42 +0.52 +0.48 +0.37

PointPillars 85.41 73.98 67.76 89.93 86.57 85.20
Self-supervised PointPillars 85.92 76.33 74.32 89.96 87.44 85.53

Improvement +0.51 +2.36 +6.56 +0.03 +0.87 +0.33
Table 1. Self-supervised Point-GNN & PointPillars compared with the baseline on
KITTI val. set for car class using 3D APR40 metric. (*Reproduced baseline results for
APR40 .)

5.1 Point-GNN

The self-supervised Point-GNN is pre-trained on the scene flow task with cycle
consistency loss using KITTI Tracking dataset without any annotations. Fol-
lowing, it is trained with the annotated KITTI 3D detection dataset using the
proposed alternating training scheme. The baseline is trained using the same
configuration and hyper-parameters. The only difference is that the baseline
network weights are initialized randomly. Table 1 shows the 3D and BEV APR40

scores of the baseline and self-supervised Point-GNN on KITTI validation set,
where our method outperforms the baseline in all difficulty levels and especially
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Car (IoU=0.7) 3D AP BEV AP

Method Easy Mod Hard Easy Mod Hard

AVOD[19] 76.39 66.47 60.23 89.75 84.95 78.32
F-PointNet[32] 82.19 69.79 60.59 91.17 84.67 74.77
TANet[26] 84.39 75.94 68.82 91.58 86.54 81.19

Associate-3Ddet[10] 85.99 77.40 70.53 91.40 88.09 82.96
UBER-ATG-MMF[23] 88.40 77.43 70.22 93.67 88.21 81.99

CenterNet3D[44] 86.20 77.90 73.03 91.80 88.46 83.62
SECOND[53] 87.44 79.46 73.97 92.01 88.98 83.67
SERCNN[59] 87.74 78.96 74.30 94.11 88.10 83.43

PointPillars 80.51 68.57 61.79 90.74 84.98 79.63
Self-supervised PointPillars 82.54 72.99 67.54 88.92 85.73 80.33

Improvement +2.03 +4.42 +5.75 -1.82 +0.75 +0.7
Table 2. Self-supervised PointPillars compared with the baseline on KITTI test set
for car class using 3D APR40 metric.

with a large margin in hard difficulty level ( 2.5%). Similarly, our self-supervised
Point-GNN outperforms its baseline on the KITTI test set on hard difficulty level
with a 2% improvement. In supplementary material, we also include the same
comparison with APR11

metric using the reported Point-GNN results, where our
method outperforms the original Point-GNN. These results show that motion-
related point representations help distinguish even difficult objects that reflect
only a small number of points.

The Fig. 3 shows our qualitative results on KITTI 3D Object Detection
scenes. The blue bounding boxes and green bounding boxes indicate results of
our approach and the baseline, respectively. We show the bird’s eye view and
front-view lidar visualizations at the top and middle rows. At the bottom, we
show the projected 3D bounding boxes on the image plane. Our approach can
detect distant objects (left-most column) better as well as distant and moving
objects (middle column). In addition, as seen in the right-most column of Fig.
3, our approach can provide better detection results in a denser scene.

5.2 CenterPoint

Our self-supervised CenterPoint also outperforms the CenterPoint baseline on
nuScenes validation and test sets as the mAP and NDS results given in Tables
3 and 4, respectively. We obtained the baseline scores with the best-performing
mmdetection3d CenterPoint checkpoint[8] for both evaluation sets.

5.3 PointPillars

We also report results of our self-supervised pre-training method using Point-
Pillars [21] 3D detector on the nuScenes and KITTI datasets. We pre-train the
PointPillars voxel encoder with the self-supervised scene flow task without an-
notations. Following, the entire PointPillars network is trained on the annotated



12 E. Yurtsever, E. Erçelik et al.

Method mAP NDS Car Ped Bus Barrier T. C. Truck Trailer Moto.

SECOND[53] 27.12 - 75.53 59.86 29.04 32.21 22.49 21.88 12.96 16.89
PointPillars*[21] 40.02 53.29 80.60 72.40 46.30 52.60 33.60 35.10 26.20 38.40
Self-supervised
PointPillars

42.06 55.02 81.10 74.50 49.50 54.70 34.70 38.40 29.70 38.80

CenterPoint*[57] 49.13 59.73 83.70 77.40 61.90 59.40 52.90 50.20 35.00 44.40
Self-supervised
CenterPoint

49.94 60.06 84.10 77.90 61.50 61.00 52.50 51.00 35.20 44.10

Table 3. Self-supervised PointPillars results on nuScenes validation set.(* mmdetec-
tion3d PointPillars checkpoint results, on which we built our work.)

3D detection data using our alternating training strategy. We compare our self-
supervised PointPillars with its baseline on the KITTI validation and test sets as
given in Tables 1 and 2, respectively. Consistent with the previously-introduced
results, our method improves the baseline results with a large margin for the
3D detection task. The increment is the most obvious for 3D AP moderate and
hard difficulty levels with 2.4% and 6.6% for the validation set and with 4.4%
and 5.8% for the test set.

In Table 3, we compare our self-supervised PointPillars with the baseline on
nuScenes validation set. The baseline results are obtained from the best check-
point given in the well-known mmdetection3d repository [8]. Our self-supervised
PointPillars outperforms the baseline with a large increment on mAP and NDS
metrics ( 2%) as well as for all class scores. Moreover, we provide results of our
self-supervised PointPillars on nuScenes test set in Table 4 comparing to the
previously-submitted PointPillars versions from the nuScenes leaderboard.

Method mAP NDS Car Ped Bus Barrier T. C. Truck Trailer Moto.

PointPillars[21] 30.50 45.30 68.40 59.70 28.20 38.90 30.80 23.00 23.40 27.40
InfoFocus[45] 39.50 39.50 77.90 63.40 44.80 47.80 46.50 31.40 37.30 29.00

PointPillars+[42] 40.10 55.00 76.00 64.00 32.10 56.40 45.60 31.00 36.60 34.20
Self-supervised
PointPillars

43.63 56.28 81.00 73.10 37.10 58.20 47.80 36.10 41.80 35.40

CenterPoint[42] 49.54 59.64 83.40 76.10 54.20 62.40 62.40 44.40 48.90 37.80
Self-supervised
CenterPoint

51.42 60.92 83.80 77.00 56.80 65.10 63.90 46.30 48.50 41.10

Table 4. Self-supervised PointPillars and CenterPoint results on nuScenes test set
comparing with other PointPillars-based detector and CenterPoint baseline submissions
from the nuScenes leaderboard. The CenterPoint baseline is from mmdetection3d.

5.4 Ablation Study

We conduct two types of ablation studies to further justify the effectiveness of
our self-supervised pre-training approach: (i) performance after training with
limited annotated data and (ii) performance with and without alternating train-
ing strategy. Datasets with 3D annotations are mostly limited for the real-world
scenarios due to expense and difficulty of requiring expert knowledge for the

https://github.com/open-mmlab/mmdetection3d/tree/v1.0.0.dev0/configs/centerpoint
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annotation process. To show our method’s enhancement over the baseline using
the self-supervised pre-training, we train our self-supervised 3D detectors and
baselines with a percentage of the annotated datasets.

Training Data Size 1% 5% 20%

Car AP (IoU=0.7) Easy Mod Hard Easy Mod Hard Easy Mod Hard

Point-GNN 63.34 50.92 44.05 81.26 71.27 65.05 88.47 77.20 74.20
SSL Point-GNN 66.47 51.42 44.63 84.04 72.69 65.93 88.65 79.52 74.87

Improvement +3.13 +0.50 +0.58 +2.78 +1.42 +0.88 +0.18 +2.32 +0.67

Table 5. Self-supervised (SSL) Point-GNN trained with a percentage (1%, 5%, and
20%) of labelled 3D detection data. 3D APR40 results for car class on KITTI val. set.

In Table 5, we show the performance of self-supervised Point-GNN and the
baseline trained with 1%, 5%, and 20% of the KITTI train split. Our method
consistently outperforms the baseline for all difficulty levels on KITTI validation
set. We note that all self-supervised 3D detector ablation results are obtained
without alternating training except the alternating training ablation. We con-
duct the same experiment for PointPillars, CenterPoint, and SSN 3D detectors
on nuScenes validation set and report the results in the supplementary material.
Similarly, self-supervised 3D detectors outperform their baselines with large mar-
gins. Overall, our results suggest that the self-supervised scene flow pre-training
can help learn more representative point-wise features in the lack of labelled
training data.

In addition, we conduct an ablation study to justify our alternating train-
ing strategy. The alternating training enhances the hard difficulty 3D AP with
2.32% increment for Point-GNN. We think that this improvement is due to the
repeated motion-awareness of the backbone brought by the first 3D detection
fine-tuning. The detailed 3D and BEV AP results for Point-GNN are provided
in the supplementary material. Similarly, the alternating training results for
PointPillars, CenterPoint, and SSN 3D detectors reported in the supplementary
material support our argument.

5.5 Comparison with Other Self-supervised Learning Methods

Our method is the first study that shows the relation between the self-supervised
scene flow and 3D detection representations. Our experiments show that the
self-supervised scene flow pre-training provides useful point representations for
the supervised 3D detection training. In addition, we compare our CenterPoint-
based self-supervised scene flow pre-training against other state-of-the-art self-
supervised learning methods in Table 6. Our method performs better than
other CenterPoint-based self-supervised methods in the low-data regime on the
nuScenes validation set.

5.6 Sparse Scene Flow Estimations

Fig. 4 shows visualized sparse scene flow estimations on the sampled KITTI lidar
point clouds obtained using Point-GNN backbone. Red points are the sparsely-
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Approach Model 5% 10%
mAP NDS mAP NDS

PointContrast[52] 30.79 41.57 38.25 50.1
GCC3D[22] CenterPoint[57] 32.75 44.2 39.14 50.48

Ours 36.04 48.28 41.29 51.35
Table 6. Comparison against other self-supervised learning methods on nuScenes val-
idation set. GCC3D and PointContrast results are taken from [22].

Fig. 4. Sparse scene flow estimation on the sampled KITTI lidar points from different
frames. Gray points are from the full point clouds at frame t+1, red points are sampled
points at frame t, and green ones are the propagated points to the frame t + 1 using
scene flow estimation.

sampled points at frame t, which are propagated to the frame t + 1 using the
estimated flow vectors as shown with the green points. The green points closely
match the gray points, which are the original point cloud at frame t + 1. The
network is trained with the cycle consistency loss followed by a 100 epoch fine-
tuning on the KITTI Scene Flow Dataset following [29]. This suggests that our
scene flow network learns useful point features and therefore the point cloud
motion patterns, which improves the 3D object detection accuracy.

6 Conclusion

In this study, we propose a self-supervised backbone training approach for 3D
object detection. We utilize large unlabelled datasets for self-supervised training
of the 3D detection backbone. The scene flow task is used for the self-supervision
using the cycle consistency, which helps the backbone learning the point cloud
data structure. We show that our approach can improve the detection results
of different 3D detectors comparing to their baselines on KITTI and nuScenes
datasets. We also show that self-supervised pre-training is especially helpful with
the lack of data. Our approach is flexible and can be combined with different
point- and voxel-based 3D detectors.
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