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Abstract— Simultaneous localization and mapping (SLAM)
is one of the essential techniques and functionalities used by
robots to perform autonomous navigation tasks. Inspired by the
rodent hippocampus, this paper presents a biologically inspired
SLAM system based on a LiDAR sensor using a hippocampal
model to build a cognitive map and estimate the robot pose in
indoor environments. Based on the biologically inspired models
mimicking boundary cells, place cells, and head direction cells,
the SLAM system using LiDAR point cloud data is capable of
leveraging the self-motion cues from the LiDAR odometry and
the boundary cues from the LiDAR boundary cells to build a
cognitive map and estimate the robot pose. Experiment results
show that with the LiDAR boundary cells the proposed SLAM
system greatly outperforms the camera-based brain-inspired
method in both simulation and indoor environments, and is
competitive with the conventional LiDAR-based SLAM methods.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM), as one
of the essential techniques and functionalities used by robots
to perform autonomous navigation tasks [1], aims to build
a map to construct a spatial representation of the unknown
environment, and simultaneously locate the robot on the map
being built. A large amount of research focuses on solving
the SLAM problem with various types of sensors [2]–[4], in-
cluding monocular and stereo cameras, RGB-D cameras, and
LiDAR sensors. Compared to camera sensors, LiDAR sensors
are capable of obtaining more accurate distance and depth
information by actively projecting laser beams, and are less
subject to illumination changes in the environment. Hence,
LiDAR sensors are widely used in autonomous driving and
a considerable amount of research has been performed on
using LiDAR sensors to resolve the SLAM problem [3], [5],
[6], and other autonomous driving tasks including object
detection [7], classification [8], and tracking [9].

In regard to mammals, research findings have shown that
animals such as rodents have a different navigation system.
Mammals are born with instinctive abilities and skills to
perform navigation and cognition tasks. Successful discov-
eries have been made in investigating and understanding the
spatial representation and navigation system of mammalian
brains. Studies from neuroscience [10] have revealed that the
hippocampus and entorhinal cortex play an important role in
spatial navigation by coordinating several types of neurons
for different functionalities, including place cells [11], [12],
head direction cells [13], grid cells [14], [15], and boundary
cells [16]–[18], in which the studies demonstrate these types
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of neurons are related to place recognition, boundary sensing,
and path integration which is the capacity to use idiothetic
cues to track the animal’s movements [19], [20].

An increasing number of studies have been inspired by
the neural mechanisms to solve the navigation [21]–[23] and
SLAM problem [24]. RatSLAM in [24] utilized place cells
and head direction cells to build a hippocampal model to in-
tegrate motion data and landmarks from vision sensors when
mapping. In addition, a considerable number of related stud-
ies have been published based on this navigational model,
employing many types of sensors, including cameras [25]–
[28] and RGB-D sensors [29].

LiDAR sensor, which corresponds to animal echolocation
that exists in some bat species and odontocetes, has the intu-
itive advantage in detecting boundaries in the environment.
In addition, with the advantages of LiDAR sensors including
high accuracy and stability, significant potential exists to
further improve the overall performance of the biologically
inspired SLAM system by using LiDAR sensors. However,
to date, little literature has been published with regard to
LiDAR-based biologically inspired SLAM approaches. Con-
sidering the connection to echolocating animals, it is intrigu-
ing to explore the applications and investigate the advan-
tages of LiDAR sensors in biologically inspired navigation.
Due to the developments of neuromorphic chips [30], [31]
and the emerging deployments of navigational models [32],
[33], a LiDAR-based biologically-inspired model with higher
performance also has the potential to benefit the navigation
system for biomimetic robots. Hence, in this work we focus
on leveraging LiDAR sensors in biologically-inspired SLAM.

In this paper, we present a biologically inspired SLAM
system based on a LiDAR sensor to build cognitive maps
for indoor environments, which mimics the mechanisms of
boundary cells, place cells, and head direction cells of mam-
mals. The system, employing a LiDAR sensor as the primary
sensor, consists of three major modules, which include the
LiDAR odometry, LiDAR boundary cells, and the pose cell
network. The SLAM system using point cloud data from
a LiDAR sensor is capable of leveraging self-motion cues
from the LiDAR odometry and boundary view cues from the
LiDAR boundary cells to build a cognitive map and estimate
the robot pose. Experiment results show that the proposed
SLAM system greatly outperforms camera-based RatSLAM
in terms of accuracy for SLAM tasks in both simulation
and indoor environments, and is very competitive with the
conventional LiDAR-based SLAM methods. Specifically, the
main contributions of this work are listed as follows:

• To fully leverage the advantages of the LiDAR sensor, a
LiDAR odometry algorithm is implemented to generate
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Fig. 1. System framework and major modules of the LiDAR-based biologically inspired SLAM system. The system is composed of the LiDAR odometry,
LiDAR boundary cells, and the pose cell network.

pseudo-odometry data as the self-motion cues for the
robot, to reduce the usage of physical odometric sensors
such as IMU and wheel encoders that are prone to
internal errors and noise.

• The egocentric boundary cell model for LiDAR is im-
plemented to provide boundary view cues to perform
place recognition and position calibration. A two-stage
boundary view matching approach is proposed to reduce
the computational complexity of place recognition.

• The pose cell network model is adapted for the LiDAR
sensor to implement the spacial location representation
for the robot, and perform path integration and position
calibration with the LiDAR self-motion cues and LiDAR
boundary view cues.

II. RELATED WORK

A. Conventional LiDAR SLAM
Error accumulation in point cloud matching and odometry
drift is one of the main challenges of LiDAR-based SLAM.
A number of studies have attempted to tackle this problem.
Kohlbrecher et al. [5] proposed a scan-to-map matching
algorithm with multi-resolution maps to reduce the match-
ing errors. A LiDAR-based SLAM algorithm proposed by
Grisetti et al. [34] utilized particle filters to reduce the
odometry drift while mapping. However, these algorithms
without loop closure detection, which is a technique to
recognize previously visited locations, are still subject to
cumulative sensor errors over long time mapping. Hess et
al. [6] proposed the Cartographer SLAM system, which
could perform loop closure detection for LiDAR SLAM to
further improve the accuracy of mapping and localization.
To detect loop closures, the system regularly runs the global
pose optimization, in which the LiDAR scan is matched with
all collected submaps to find the closest submap and update
the pose estimate. It requires the loop closure detection to
complete before the new scan being received.

B. Brain-Inspired Navigation
A number of studies were investigated to solve the SLAM
problem with biologically inspired methods. Milford et al.
proposed RatSLAM [24] to utilize the place cell and head
direction cell model to perform loop closure detection and

solve the SLAM problem based on a camera sensor. Ex-
perimental results in [27], [28] also show the applicability
of their proposed system in large-scale scenarios. Zhou et
al. [26] employed the ORB features for the camera sensor
to improve loop closure detection when mapping. Tian et
al. [29] proposed an RGB-D sensor-based SLAM method
with the path integration model, and BatSLAM [35] com-
bined the mapping module of RatSLAM and a sonar sensor
to solve the SLAM tasks. However, in the related literature,
it is rare that studies have focused on biologically inspired
SLAM approaches using LiDAR sensors.

III. METHODOLOGY

The proposed biologically inspired SLAM system uses a
LiDAR as the main sensor and data source. The architecture
of the SLAM system is illustrated in Fig. 1. LiDAR odometry
plays an important role in generating motion data for the
robot. The boundary cells provides boundary view cues that
are processed and integrated based on the LiDAR observation.
The pose cell network estimates the robot 3-DoF pose p =
(x, y, θ)T by performing path integration and loop closure
based on the self-motion data from LiDAR odometry and
boundary view cues from the boundary cell module.
A. LiDAR Odometry
The LiDAR odometry in the SLAM system provides odomet-
ric motion data for the pose cells to update the network state
and perform path integration. Receiving consecutive point
clouds from the LiDAR sensor, the aim of the LiDAR odom-
etry is to estimate the pose change ∆p = (∆x,∆y,∆θ)
during the time period of the robot movement.

The LiDAR sensor rotates in the horizontal plane and scans
the surrounding objects with a fixed angle increment based
on the angular resolution of the LiDAR sensor. A point cloud
P from a complete scan can be defined as a sequence of
endpoint distances as follows:

P =
(
di, i = 1, 2, ..., N

)
, (1)

where di is the distance of the i-th scan endpoint, and N is
the number of points in a complete scan, which is determined
by the scanning angular resolution of the LiDAR sensor.

To estimate the pose change ∆p with a given new input
point cloud, the points are first transformed into the form of



R2 Cartesian coordinate e = (x, y)T as follows:

ei =

(
di · cosαi

di · sinαi

)
, (2)

where αi is the scanning angle of the i-th endpoint.
In this work, local LiDAR mapping on an occupancy

grid map is adopted to compute the pose change. A local
occupancy grid map M is employed to downsample the
accumulation of LiDAR observations and reduce the effect of
the sensor noise and dynamic obstacles [36]. The point cloud
from LiDAR observation is matched against the local map to
reduce the cumulative drift in scan-to-scan matching [5].

To estimate the pose change ∆p, a nonlinear optimization
is constructed and performed to find the objective pose
change ∆p′, where the current LiDAR point cloud can
best match the local map M after being projected. The
optimization objective is defined as follows:

∆p = argmax
∆p′

N∑
i

M∗
(
R∆p′ ·(Rp ·ei+Tp)+T∆p′

)
, (3)

where p is the current pose of the robot. M∗ is an upsampled
local map of M to provide a continuous occupancy function
for the discrete grid map M [5]. Rp and Tp are the
corresponding rotation and translation transforms for a given
pose p = (x, y, θ)T :

Rp · e+Tp =

(
cosθ −sinθ
sinθ cosθ

)
· e+

(
x
y

)
. (4)

The input point cloud is initially transformed to the local
map with the current pose p. The objective ∆p′ is optimized
to yield the pose change estimate ∆p = (∆x,∆y,∆θ) as
the output of LiDAR odometry, which is subsequently used to
update the activity of pose cells and perform path integration.

B. LiDAR Boundary Cells
With the LiDAR observation inputs, the LiDAR boundary
cells module detects and processes the surrounding bound-
aries into boundary cell activity, which can be considered
as abstracted boundary view information for the egocentric
scene. Egocentric boundary views are used to provide the
boundary cues to the pose cells to perform loop closure.

The computational model of boundary cells was first
predicted in [16], [37], and the existence of boundary cells
was discovered and proposed in [17], [18]. Each neuron of
the boundary cells responds to a boundary in proximity in a
certain area, which is denoted as the receptive field. In the
LiDAR boundary cell model, the receptive fields of the cells
are arranged around the robot in concentric rings at different
distances, as illustrated in Fig. 2. Each boundary cell is tuned
to fire maximally with the input at the center of its receptive
field. Given a LiDAR point input e = (d, α) in the polar
coordinate system, the neuron activity update ∆bi for the i-
th boundary cell, whose receptive field center is at (di, αi),
is defined as follow:

∆bi =
1

d
· e

−(
d−di
σdi

)2

· e−(
α−αi
σα

)2 , (5)

where σdi and σα are the parameters to determine the area

(di, αi)
bi

Fig. 2. Receptive fields of boundary cells.

sensitivity of the receptive field by tuning the variances for
angle and distance. σdi

is a variable linear to di in order
to expand the receptive field when distance increases [17],
while σα is a constant determined by the number of boundary
cells in a ring. The activity level of boundary cells is
inversely proportional to the distance to corresponds the
property that the boundary cells’ firing rate gradually in-
creases with approaching closer to the boundary [17].

The real-time LiDAR boundary cell activity will be com-
pared with the previously learned boundary views to generate
a pose calibration activity if a matched previous view is
found, or to learn a new boundary view if none is matched.
To reduce the matching complexity, a two-stage boundary
view matching approach is proposed in this work. In the
first stage, coarse prematching is performed to boost the real-
time performance and reduce the computational complexity.
A coarse view feature for the LiDAR boundary cells is
proposed to roughly describe and index the boundary views
by utilizing the aggregate of the boundary cell firing activity.
The coarse view feature h is defined as follows:

h =
⌊
10−ds ·

M∑
i

bi

⌋
, (6)

where ds is a constant downscaling factor to control the
preciseness for the coarse matching, and M is the size
of the boundary cells. The coarse view feature h can be
considered a hash value for the LiDAR boundary view, which
is leveraged to reduce unnecessary matching processes in
the second stage. By combining the coarse feature, a LiDAR
boundary view v is constructed as a tuple of the coarse view
feature h and the boundary cell activity B:

v =
〈
h,B = {bi, i = 1, 2, ...,M}

〉
. (7)

In the second stage of the boundary view matching pro-
cess, for the boundary views with the equal coarse view fea-
ture h, the corresponding views are subsequently compared
to estimate the similarity s = S(Bi, B), which is evaluated
by computing the mean squared differences between the two
boundary views:

S(B1, B2) =
1

M

M∑
i

(
B1(i)−B2(i)

)2
, (8)

The similarity s is then used to determine whether the learned
boundary view vi is matched with the current boundary view
v. The boundary views are subsequently associated with the
boundary view vector V , which is defined as a vector of
matching activity levels of the boundary views. To maintain
the matching levels over time for each boundary view, the
activity of each node in the vector will be updated as follows:



Vi = 1−
min

(
st, S(Bi, B)

)
st

, (9)

where st is the matching threshold for similarity. The activity
level is calculated based on the matching error between the
boundary view v =

〈
h,B

〉
for the current LiDAR observation

and the i-th learned boundary view vi =
〈
hi, Bi

〉
, in which

the error is clamped, inverted, and scaled to [0, 1]. In the
event that no present boundary view is matched, the vector V
will be extended to Vi+1 to associate the new boundary view.
Eventually, the activity V is output to the pose cell network
to perform pose association for a new boundary view or loop
closure for learned boundary views.
C. Pose Cell Network
In this work, we adapt and implement the 3D pose cell
network that combines 2D place cells and 1D head direction
cells to maintain the pose representation and integrate self-
motion cues from LiDAR odometry and the boundary view
cues from LiDAR boundary cells, which is designed to
reduce odometry drift and solve boundary view ambiguity
in the process of mapping. Leveraging the pose cell network
enables the proposed SLAM system to build a cognitive map
by performing path integration based on self-motion cues. In
addition, with the LiDAR view cues, the pose cell network
can calibrate the estimated pose and the online cognitive map
by performing loop closure to reduce the accumulated errors
and drifts by LiDAR odometry.

The pose cell network is a 3D continuous attractor network
(3D-CAN) [38], which can be represented as a 3D matrix of
the activity: PCx′,y′,θ′ . The three dimensions of the pose
cell network represent the three degrees of the 3-DoF pose
p = (x, y, θ)T , respectively, where x′, y′, θ′ ∈ Z are the
discrete representation of x, y, θ ∈ R. Each pose cell unit
in the pose cell network is connected with its neighbor
units with excitatory and inhibitory connections, which wrap
across the boundaries of the network in three dimensions
to enable the pose cell network to represent an unbounded
space with a limited number of pose cells [24]. The pose
cell network enrolls local excitation and global inhibition
activities, which are based on a three-dimensional Gaussian
distribution, to self-update the pose cell network dynamics
over time [28]. The stable state of the pose cell network, in
which the activated cells are clustered, encodes the estimate
of pose p as the centroid of the activity packet [39].

Driven by the robot motion, the path integration updates
the activity of the pose cells based on the self-motion
cues from the LiDAR odometry detailed in SECTION III-
A. The activity of each pose cell is shifted along with the
translational and rotational movement based on the pose
change ∆p = (∆x,∆y,∆θ). The activity update for each
pose cell is defined as follows:

∆PCx′,y′,θ′ =

δx+1∑
i=δx

δy+1∑
j=δy

δθ+1∑
k=δθ

rijk ·PC(x′+i),(y′+j),(θ′+k)

δx = ⌊kx∆x⌋, δy = ⌊ky∆y⌋, δθ = ⌊kθ∆θ⌋,
(10)

where rijk is a residue based on the fractional part of the
pose changes spread over the 2 × 2 × 2 cube to reduce
the precision loss by quantization [24], kx, ky, kθ are the
constant scaling factors for the three dimensions.

Given the LiDAR boundary view cues from the boundary
cells, a calibrating activity is injected into the pose cell
network to perform further loop closure and re-localization.
The activity of each pose cell is updated based on the activity
of boundary cells V , as defined as follows:

∆PCx′,y′,θ′ = kV ·
∑
i

Ai,x′,y′,θ′ · Vi, (11)

where kV is the constant calibration rate, and Ai,x′,y′,θ′ is an
adjacency matrix for the connections from the boundary cells
to the pose cells. When a new boundary view Vi is learned,
an excitatory link from Vi to the current state of the pose
cell network (x′, y′, θ′) is established, where Ai,x′,y′,θ′ is
accordingly set to 1. To solve the boundary view ambiguity,
only a sequence of updates by consecutive boundary views
can shift the main activity packet of the pose cells.

In the mapping process, the information from the LiDAR
odometry, LiDAR boundary cells, and the pose cells are
combined and accumulated to estimate the robot pose p =
(x, y, θ)T in the R3 space, and build a cognitive map as a
topological graph of robot movement experiences. A node in
the cognitive map is an experience node defined as a tuple
of the states of the pose cells PC, the boundary cells V , and
the pose estimate p:

ei =
〈
PCi, V i,pi

〉
. (12)

After a period of robot movement, when a new boundary
view is learned, a new experience node ej , separate from
the previous node ei, is created based on the pose change
∆pij . Then the two experience nodes are connected with a
directed edge from ei to ej based on the pose transition lij ,
which is defined as follows:

ej =
〈
PCj , V j ,pi +∆pij

〉
,

lij =
〈
∆pij ,∆tij

〉
.

(13)

When a learned boundary view is observed and loop closure
is detected, a new transition between two existing experience
nodes is established, which results in a closure in the
cognitive map. The pose transition ∆p of each node and
edge is accordingly updated as follows to distribute the
accumulated odometry error over the loop trail, and update
the pose estimate p = (x, y, θ)T of the robot.

∆pi = a

[ Nf∑
j=1

(
pj − pi −∆pij

)
+

Nt∑
k=1

(
pk − pi −∆pki

)]
,

(14)
where a is a constant correction factor set to 0.5, Nf and
Nt are the number of the outgoing and incoming edges of
ei. Hence, the cognitive map and the pose estimate p are
obtained and updated online as the output of the proposed
LiDAR-based biologically inspired SLAM system.



(a) Original scenario for camera (b) Rebuilt maze scenario for
LiDAR simulation

(c) Rebuilt maze in 3D view (d) LiDAR point cloud sample

Fig. 3. Overview of the maze simulation scenario.

-6

-4

-2

 0

 2

 4

 6

-16 -14 -12 -10 -8 -6 -4 -2  0  2

y
 (

m
)

x (m)

(a) t = 200 s

-6

-4

-2

 0

 2

 4

 6

-16 -14 -12 -10 -8 -6 -4 -2  0  2

y
 (

m
)

x (m)

(b) t = 400 s

-6

-4

-2

 0

 2

 4

 6

-16 -14 -12 -10 -8 -6 -4 -2  0  2

y
 (

m
)

x (m)

(c) t = 600 s

-6

-4

-2

 0

 2

 4

 6

-16 -14 -12 -10 -8 -6 -4 -2  0  2

y
 (

m
)

x (m)

(d) Ground truth

Fig. 4. Mapping progress in the maze simulation scenario.

IV. EXPERIMENTS

In this section, we present the experimental results for
the proposed approach. To evaluate the LiDAR-based bio-
logically inspired SLAM system, experiments are conducted
in both simulation and real indoor scenarios to investigate
the mapping and localization performance. The proposed
SLAM system is implemented and tested on the Robot Op-
erating System (ROS) [40]. We first report the experimental
results of a simulation experiment to evaluate the mapping
performance as well as the localization accuracy. Second,
a mapping experiment in an indoor environment based on a
ground robot is detailed. The results of the indoor experiment
are illustrated and analyzed to demonstrate the applicability
and accuracy of the proposed system in the real world.
A. Simulation Experiment
In the simulation experiments, a maze scenario is ported
from the iRat 2011 Australia dataset [39], which is originally
designed for the visual RatSLAM. Since the original dataset
does not include LiDAR sensor data, it is not feasible to
carry out the LiDAR SLAM experiments using the dataset.
Therefore, we rebuild the maze scenario in the simulator to
make it suited for LiDAR-based simulations.

Fig. 3 gives an overview of the maze scenario. Utilizing
the Stage simulator in ROS, the point cloud data for a robot
spawned in the maze scenario are obtained from a config-
urable virtual LiDAR in the simulator. At the same time,
the ground truth information of the poses and movements
of robots are also collected for evaluation purposes, but the
odometry data is not involved in the SLAM process. Only
the LiDAR point cloud data are used in the proposed method.

In the simulation experiment, the robot is controlled man-
ually to navigate the maze for 600 seconds to evaluate the
mapping performance with loop closure during long-term
mapping. Fig. 4 illustrates the progressive cognitive maps
built by the SLAM system in the simulation experiment and
the ground truth path provided by the ROS Stage simulator.
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Fig. 5. Active boundary cell and relative pose error over time in simulation.

As shown in the mapping progress over time, the error in the
cognitive map remains low over time. The mapping result of
high similarity to the ground truth path demonstrates that
SLAM performance is sufficiently accurate.

Fig. 5 reveals the activity of the boundary cells, which
further reflects the loop closure detection and calibration of
the cognitive map and the robot pose estimate. The number
of boundary cells increases as the robot keeps moving to
unexplored scenes, which are learned as the new boundary
views. This is consistent with Fig. 5, in which the increase of
the boundary view ID composes the main part of the scatter
plot. The figure also reveals the loop closure detection during
the mapping progress. The dramatic decrease in the active
boundary view ID indicates that a number of previously
learned boundary views are matched with the current LiDAR
observation. Combining Fig. 4 and Fig. 5, it is obvious that
during the mapping process, at around 380 s the proposed
SLAM managed to detect the previously learned views and
performed loop closure calibration to reduce the accumulated
error in the map, which demonstrates the ability of the
boundary cells to detect loop closure in the mapping process.

In Fig. 5 we also report the relative pose error (RPE) [41]
during the mapping process in the simulation experiment.
The localization RPE computed based on the ground truth
data is up to 0.127m at around 440 s, with a mean value
of 0.0284m for the 600 seconds of the mapping process
in the 16.8m × 12.6m space. As shown in the graph, the
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Fig. 6. Mapping progress in the real indoor maze environment.
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Fig. 7. Relative pose errors over time in the maze mapping process.

error remains at a low level for the whole mapping process.
For several periods of time around 250 s to 350 s, and 480 s
to 540 s, the position error started to accumulate but was
soon corrected and remained low for a period of time. The
transition of the accumulated error shows the process of loop
closure detection and demonstrates the high performance of
the proposed SLAM system for mapping and localization.

B. Indoor Experiment
To further evaluate the performance of the proposed SLAM
system, experiments were conducted in a real indoor sce-
nario, based on a ground robot platform. The ground robot
is driven by four differential wheels which are controlled
by an embedded Raspberry Pi 3 single-board computer. A
2D Hokuyo UTM-30LX-EW LiDAR sensor is installed on the
robot to obtain LiDAR point cloud for mapping experiments.

To specifically evaluate the mapping accuracy in the
experiments, as shown in Fig. 6a, we built a maze experimen-
tal environment with an external localization and tracking
system based on a bird view camera. Due to the limitations
of the field of view and installation height for the camera,
the size of the maze is relatively limited. In the indoor
maze experiment, the robot was controlled to continuously
navigate the maze for a specified period of time, while the
bird view camera kept tracking the movements of the robot
in real time to provide the ground truth for localization
evaluation in parallel.

The progress of the mapping experiment for 900 s in the
maze settings is illustrated in Fig. 6 from Fig. 6b to Fig. 6d,
in which each cognitive map was taken at the annotated
intervals during the mapping process. To further quantify
the localization and mapping performance, in the indoor
experiments, we additionally introduce two related SLAM
algorithms for comparison purposes. To date, since it is
rare that studies have focused on LiDAR-based biologically
inspired SLAM algorithms, we evaluated RatSLAM [39],

which is based on a camera sensor and is one of the most
commonly used open-source biologically-inspired SLAM
system. In addition, the experiments also include two conven-
tional LiDAR-based SLAM systems named Hector SLAM [5]
and Cartographer [6], which are ones of the state-of-art
indoor SLAM methods for indoor scenarios [3], [4]. We
mainly evaluated the SLAM accuracy for the involved SLAM
methods in the same experimental settings. In the experi-
ments, relative pose errors (RPE) are computed based on
the estimated poses given by the SLAM algorithms and the
real-time ground-truth poses given by the bird view camera.
Fig. 7 shows the position RPE curves of the proposed
method, RatSLAM, Hector SLAM, and Cartographer, during
the mapping process of the indoor maze environment. As
shown in the figure, the error curve of RatSLAM fluctuated
more dramatically than that of the proposed biologically-
inspired method and the others. The position error of the
proposed SLAM system is much stabler and lower than
RatSLAM and is close to the state-of-art conventional SLAM
methods. Interestingly, in this particular small-scale scenario,
the error of Cartographer is slightly higher than Hector
SLAM. The Root Mean Square Error (RMSE) for RPE of
the proposed method for the estimated poses in the indoor
experiments is 2.23 cm. In comparison, the RMSE of Rat-
SLAM, Hector SLAM, Cartographer are 25.38 cm, 2.59 cm,
and 7.97 cm. The results demonstrate that the accuracy of the
proposed LiDAR-based biologically-inspired SLAM method
outperforms camera-based RatSLAM and the performance is
close to and slightly higher than that of the conventional
LiDAR SLAM method Hector SLAM.

V. CONCLUSION

In this paper, we present a novel biologically-inspired
SLAM system that mimics the mechanisms of boundary
cells, place cells, and head direction cells, and leverages the
LiDAR sensor to perform cognitive mapping and localization
for indoor environments. With the self-motion cues and the
boundary view cues from the LiDAR odometry and LiDAR
boundary cells, the proposed SLAM system performs path
integration and loop closure in the pose cell network to
maintain and calibrate the robot pose estimates and build
a cognitive map. Experimental results in simulation and the
realistic indoor environment show that the proposed SLAM
system is highly applicable and accurate in both scenarios
and greatly outperforms RatSLAM, and is competitive with
the state-of-art conventional LiDAR-based SLAM methods.
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