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Abstract. In the recent years machine learning techniques have attracted the attention of
wind energy community to make use of the large amount of available data produced from the
running wind turbines. These modern wind turbines are typically equipped with measurement
systems and sensors that can provide a wealth of information about the operating conditions of
the machine. Nevertheless, not all the acquired raw data can be used effectively to enhance the
operation of a turbine. This work addresses the question of estimating the damage equivalent
loads (DEL) of different components of a drivetrain. The estimation is based on low frequency
sampled typically available SCADA measurements. Typical SCADA measurements that are
used as input for the estimation model are generator rotational speed, low speed shaft torque
and generator torque as well as, wind speed and direction. Several machine learning methods
as random forests (RF), support vector machines (SVM), linear regression (LR), decision trees
and neural networks (NN) were developed, exhibiting different behavior for each approach. The
qualitative and quantitative performance of each algorithm are evaluated and compared against
each other. Furthermore, analysis of importance of the input features is presented.

1. Introduction
Machine learning can play a very significant role in enhancing the asset performance in terms of,
for example lifetime extension, reduction of maintenance costs, reduction of downtime, prediction
of components failure. These goals can be achieved by exploiting the raw data available from the
installed measurement and control systems on the assets. These measurements in themselves
can not produce an added value to the asset status, unless they are extracted and processed in
an intelligent manner in order to reveal hidden or not directly usable information. Insights in the
behavior of the system can be discovered using machine learning and data analytics techniques.
Moreover. data analytics algorithms can be incorporated in digital twins frameworks, which can
be combined with the asset management system to achieve the desired goals.

SCADA measurements are diverse, i.e. there are mechanical measurements such as positions,
velocities, accelerations. There are also thermal and acoustic measurements that are typically
available from SHM and SCADA systems installed within the turbines. These measurements
are typically abundant in quantity and source as they can be available starting from 1 second
interval up to 10 minutes averaged data [1]. The feasibility of using SCADA measurements
to reflect the structural status of the asset is investigated in [2]. The author also developed a
framework for load estimation using standard SCADA measurements. The proposed approach
exhibited acceptable performance using both data-based and physics-based methods. Several
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use cases were demonstrated by using different artificial intelligence techniques with SCADA
measurements to enhance the performance of the assets under investigation [3]. The possibility
of early failure and anomalies during operation utilizing SCADA measurements was investigated
in [4]. The paper showed successful detection of early failures of gearboxes in wind turbines, and
failure of generator bearings in direct drive wind turbines. Kalman filters and state estimators
were used in several contributions to predict the load history of mechanical components based
on structural health monitoring (SHM) systems [5, 6]. These state estimators can be based on
simplified physics-based models or data-driven models.

The authors in [7] developed a statistical approach to reconstruct the torque histograms based
on SCADA measurements of power output and rotor speed. The torque histograms are then
incorporated in fatigue calculation algorithm. This approach yielded reduction in prediction
error with 10% compared the state-of-industry algorithms. The approach proposed in [8] used a
linear regression model to quantify the load distribution on blade bearings of wind turbines. The
authors concluded that the approach showed discrepancies because the used methods are based
on research on smaller bearings not taking into effect the realistic behavior of wind turbines
blade bearings.

Neural networks were used to develop a data-based model to estimate the thrust loads on
the rotor from SCADA measurements [9]. These neural networks were then incorporated into a
damage quantification algorithm.

The work proposed in this publication offers a straight-forward and easy to implement
approach fully based on low-frequency SCADA measurements overcoming the drawbacks of
the physics-based and grey-box models found in literature.

2. Objectives
The increase in interest to extend the lifetime of mechanical components, which means reducing
down-time due to faults or maintenance, requires finding unorthodox approaches to exploit the
available data in order to reach the specified objectives of the owners and operators of assets.
The aim of this contribution is to formulate and demonstrate data-driven models based on
machine learning that should be able to estimate DELs endured by mechanical components of
a drivetrain.

The investigated problem assumes the need of a DEL estimator in the drivetrain during
operation. Physics-based approaches, such as finite element and/or multibody dynamical
models, can not offer such possibility due to their high computational demand. Therefore there
is a need to develop a data-driven approach using the readily available measurements from the
installed sensors in the wind turbine. DELs resulting from the vertical reaction of the left torque
arm are considered in this study.

3. Methodology
The concept assumes that the DEL can be expressed as a function of the standard SCADA
measurements: generator speed, air-gap torque, torque at low-speed shaft, pitch angle, wind
speed and direction. Additionally, SCADA systems typically provide statistical quantities as
mean and standard deviation of measurements. The SCADA system provides the measurements
in a discrete manner (∆t

∣∣
k−1→k = 5s in this study). The formulation behind the data-driven
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estimation of DELs writes
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(1)

where TLSS is the torque on low-speed shaft, TGen is the air gap torque applied on the
generator shaft, ωGen is the generator rotational speed, θ is the pitch angle, vwind is the
wind velocity at hub height, φwind is the wind direction at hub height, (•)k−1 is the SCADA

measurement at the beginning of the interval, (•)k is the SCADA measurement at the end of the
interval, µk−1→k• is the mean value of the respective quantity in the interval k − 1→ k, σk−1→k•
is the standard deviation of the respective quantity in the interval k− 1→ k, DELk−1→k is the
damage equivalent load acting on the component in the interval k − 1→ k.

3.1. Approach and Workflow
The proposed approach is described in the flow chart of Fig. 1. It should be mentioned that the
proposed approach shall be implemented within the asset management system of wind turbines
where SCADA measurements would be directly fed to the implemented software. This work is
based on simulations, and therefore SCADA measurements are mimicked by using high-fidelity
simulation models of an exemplary wind turbine.

Generate training and
testing data from

high-fidelity model 

Resample data to 5
seconds intervals

Calculate statistical quantities for
input features and calculate DELs

for output features

Append in data matrixScale data using
appropriate scaler

Split data into n sets
Split each set

randomly into training
and testing data sets

Collect training and
testing data from said

n sets

Fit models
Predict output

features using trained
models

Calculate mean
absolute error (MAE)

and correlation
coefficients

Remove outliers

Figure 1. Proposed Workflow for DELs Estimation
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3.2. Generation of Training and Testing Data
The investigated wind turbine is the IEA 3.4 MW reference wind turbine [10]. The simulation
model of the wind turbine is developed using the aeroservoelastic simulation software Simpack,
where a high-fidelity multibody simulation (MBS) model is developed (cf. Fig. 2 and
3). The developed multibody simulation model in Simpack considers detailed modeling of
flexible elements such as low-speed shaft and flexible teeth contact between gears [11]. Inflow
aerodynamics is also considered using coupling of blade element momentum (BEM) solver
Aerodyn [12].

Figure 2. Isometric View of Wind Turbine
Figure 3. Top View of Wind Turbine
showing Drivetrain

Several load cases were generated in Simpack according to IEC 61400-1 [13]. IEC standard
defines different loadcases for evaluating the design of wind turbines. As the focus here is
generating data that are relevant to calculating DELs on mechanical components, only power
production loadcases were considered, namely design load cases (DLC) 1.2 and 1.3.

DLC 1.2 simulates a wind turbine operating under normal turbulence model (NTM), while
DLC 1.3 simulates a wind turbine operating under extreme turbulence model (ETM). Each
DLC realization produces time histories of the output of interest (vertical reaction on the left
torque arm), through which DELs are calculated using rainflow counting algorithm [14]. Each
DLC reveals different probabilistic distribution of the endured DELs on the components. The
probabilistic distribution of DELs due to vertical reaction on the torque arm is demonstrated in
figure 4, where the correlation between the distribution of DELs, wind speed and the turbulence
models is evident.

The data provided by Simpack is sampled at high frequency of f = 1000Hz. SCADA systems
typically provide measurements at much lower frequency. Therefore the DELs are evaluated in
predefined window of ∆t = 5s to imitate SCADA system behavior.

Afterwards, the statistical quantities (cf. Eq. 1) are calculated for the input features:
TLSS , TGen, ωGen, vwind, φwind for each window between the discrete measurements. The output
feature for the proposed approach is the DEL, which is an indirect quantity that has to be
calculated firstly. The Fatpack package [15] is used for calculating the rainflow-matrix and
perform the rainflow counting to calculate the damage equivalent loads. The calculation of
DELs from the rainflow-matrices according to [14, 2, 16] writes

∆Seq,Nref ,m = m

√∑n
i=1 ∆Smi Ni

Nref

(2)
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Figure 4. Probabilistic Distribution of DELs for DLC 1.2 and 1.3

where n is the number of load ranges, m is the material constant from Wöhler's curve, Ni is
the number of rainflow cycles for the ith stress range, Nref is the reference number of rainflow
cycles for which damage occurs at the stress range, ∆Si is ith stress range, ∆Seq,Nref ,m is the
accumulated linearly damage equivalent load for the considered load timeseries.

3.3. Machine Learning Workflow
After generation and preprocessing of the data from the simulation, these data should be
prepared with a different perspective in order to be used with the machine learning workflow. It is
clear from figure 4 that the distribution of DELs is not following a normal distribution, therefore
caution should be taken when dealing with such skewed data, especially in the extreme region of
distribution. Outliers are removed from the data set to be able to fit the learning algorithms in
a better way, as the learning algorithms commonly perform inadequately in the extreme region
of the given data set. Interquartile Range Method (IQR) is used to remove the outliers within
the data set (Fig. 5).

The data set is then scaled using MinMax() scaler in order to normalize the input and output
features of the model. The scaled data set is then split into n random data subsets and each
subset is split into training and testing randomly and then all the training and testing subsets
are collected together in order to increase the randomness in the data set to overcome model
overfitting.
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Figure 5. Box Plot of DELs Distribution of DELs for DLC 1.2 and 1.3

3.4. Investigated Algorithms
A library of regression algorithms were implemented and investigated in this work. Support
Vector Regression (SVR), Gaussian Process Regression (GPR) with Dot Product and White
Noise kernel, Decision Trees (both normal and ensemble trees), Random Forest (RF) with 100
estimators, Linear Regression and finally deep Neural Network (NN) were developed. The
extra trees are considered to be ensemble-averaged normal decision trees improving prediction
accuracy and protecting the model from overfitting. Validation loss of data-driven models is
defined as the mismatch between ground truth data points and predicted data points evaluated
on the validatid data set during model training. The convergence curve of the validation loss
during training of neural networks is exemplarily in Fig. 6 demonstrated.

Figure 6. Validation Loss of Neural Network (exemplary)

4. Results
The evaluation of the proposed approach is realized by examining several evaluation criteria.
The criteria assessed in this contribution are the correlation coefficients and mean absolute error
of predictions against the reference ground truth.
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Table 1. Mean Absolute Error of the Investigated Algorithms
SVR GPR Tree Extra Tree RF LR NN
0.0741 0.0743 0.0943 0.1028 0.0731 0.0743 0.0801

Table 2. Pearson's Correlation Coefficients
SVR GPR Tree Extra Tree RF LR NN
88.8% 88.8% 81.8% 78.3% 89% 88.8% 89.1%

4.1. Correlation
Figure 7 illustrates the correlation between predictions of the investigated methods and the
ground truth. The predictions deviate noticeable towards the extreme region because there is
much less number of observations in the extreme range (cf. Fig. 5 and 4). The mean absolute
error of the predictions lies below 10% for all methods except for extra randomized decision
trees (Table 1). Pearson's correlation coefficients were evaluated for all algorithms in Table
2. The coefficients are greater than 80% except for extra randomized trees. Fig. 8 shows the
probabilistic distribution of the predicted DELs against the distribution of the ground truth data.
Neural networks, SVR and LR exhibited over-estimation around the regions of DEL = 0.2N/N
and DEL = 0.6N/N due to the sensitivity and overfitting of the algorithms with respect to the
fed training data. Random trees and extra randomized trees yield very similar probabilistic
distribution to the training data.
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Figure 7. Correlation between Predictions and Ground Truth for the Test Data Set

The uncertainties associated with machine learning approaches arise due to the quantity of
the training data and the random nature of the algorithms. There is a limitation on generating
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Figure 8. Probabilistic Distribution of Predicted DELs of each of the investigated algorithms

the training data due to the high computational cost of the simulation model (16 computational
hours for 660 seconds of simulation). The randomness arises from the batching of training
and testing data and the heuristic nature associated with the fitting of the hyperparameters of
machine learning models. These uncertainties lead to slightly different performance of the models
after each run of the training process. Nevertheless, the differences in models performance are
not of quality-affecting nature, as the predicted DELs followed similar statistical distribution
after each run of training.

4.2. Features Importance
One of the key measures to assess the structure of regression models is to investigate the
importance of the input features in order to identify the importance of each input feature and
how to retune the model disregarding less important features to increase model computational
efficiency and prediction performance. Fig. 9 demonstrates the relative feature importance of
one of the regression methods used (Random Forests). It is evident that not all features have
equal importance in contributing to the prediction of the model.

5. Conclusion
This paper proposed an approach to develop a data-driven methodology to estimate damage
equivalent loads of mechanical components of drivetrains of wind turbine using standard
SCADA measurements. The data-driven method was trained and tested using artificial
SCADA measurements generated using aeroservoelastic simulation of a reference wind turbine.
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Figure 9. Feature Importance for Random Forest Model

The proposed workflow resulted in acceptable correlation using the given set of SCADA
measurements.

Several enhancements can be complemented to the proposed approach, namely increasing
the size of training data sets by including more load cases especially the production loadcases.
Increasing the size of training data set can help generalize the trained models to be able to
capture more subregions of the data spectrum.
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